hash
stringlengths
64
64
content
stringlengths
0
1.51M
5e598caae2965ed57d0dcfa94baa6df11d864936f797d12236dee15236158c43
from copy import copy from sympy.tensor.array.dense_ndim_array import MutableDenseNDimArray from sympy import Symbol, Rational, SparseMatrix, diff, sympify, S from sympy.core.compatibility import long from sympy.matrices import Matrix from sympy.tensor.array.sparse_ndim_array import MutableSparseNDimArray from sympy.utilities.pytest import raises def test_ndim_array_initiation(): arr_with_one_element = MutableDenseNDimArray([23]) assert len(arr_with_one_element) == 1 assert arr_with_one_element[0] == 23 assert arr_with_one_element.rank() == 1 raises(ValueError, lambda: arr_with_one_element[1]) arr_with_symbol_element = MutableDenseNDimArray([Symbol('x')]) assert len(arr_with_symbol_element) == 1 assert arr_with_symbol_element[0] == Symbol('x') assert arr_with_symbol_element.rank() == 1 number5 = 5 vector = MutableDenseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector.rank() == 1 raises(ValueError, lambda: arr_with_one_element[5]) vector = MutableSparseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector._sparse_array == {} assert vector.rank() == 1 n_dim_array = MutableDenseNDimArray(range(3**4), (3, 3, 3, 3,)) assert len(n_dim_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == (3, 3, 3, 3) assert n_dim_array.rank() == 4 raises(ValueError, lambda: n_dim_array[0, 0, 0, 3]) raises(ValueError, lambda: n_dim_array[3, 0, 0, 0]) raises(ValueError, lambda: n_dim_array[3**4]) array_shape = (3, 3, 3, 3) sparse_array = MutableSparseNDimArray.zeros(*array_shape) assert len(sparse_array._sparse_array) == 0 assert len(sparse_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == array_shape assert n_dim_array.rank() == 4 one_dim_array = MutableDenseNDimArray([2, 3, 1]) assert len(one_dim_array) == 3 assert one_dim_array.shape == (3,) assert one_dim_array.rank() == 1 assert one_dim_array.tolist() == [2, 3, 1] shape = (3, 3) array_with_many_args = MutableSparseNDimArray.zeros(*shape) assert len(array_with_many_args) == 3 * 3 assert array_with_many_args.shape == shape assert array_with_many_args[0, 0] == 0 assert array_with_many_args.rank() == 2 shape = (long(3), long(3)) array_with_long_shape = MutableSparseNDimArray.zeros(*shape) assert len(array_with_long_shape) == 3 * 3 assert array_with_long_shape.shape == shape assert array_with_long_shape[long(0), long(0)] == 0 assert array_with_long_shape.rank() == 2 vector_with_long_shape = MutableDenseNDimArray(range(5), long(5)) assert len(vector_with_long_shape) == 5 assert vector_with_long_shape.shape == (long(5),) assert vector_with_long_shape.rank() == 1 raises(ValueError, lambda: vector_with_long_shape[long(5)]) from sympy.abc import x for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]: rank_zero_array = ArrayType(x) assert len(rank_zero_array) == 1 assert rank_zero_array.shape == () assert rank_zero_array.rank() == 0 assert rank_zero_array[()] == x raises(ValueError, lambda: rank_zero_array[0]) def test_sympify(): from sympy.abc import x, y, z, t arr = MutableDenseNDimArray([[x, y], [1, z*t]]) arr_other = sympify(arr) assert arr_other.shape == (2, 2) assert arr_other == arr def test_reshape(): array = MutableDenseNDimArray(range(50), 50) assert array.shape == (50,) assert array.rank() == 1 array = array.reshape(5, 5, 2) assert array.shape == (5, 5, 2) assert array.rank() == 3 assert len(array) == 50 def test_iterator(): array = MutableDenseNDimArray(range(4), (2, 2)) j = 0 for i in array: assert i == j j += 1 array = array.reshape(4) j = 0 for i in array: assert i == j j += 1 def test_getitem(): for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]: array = ArrayType(range(24)).reshape(2, 3, 4) assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) assert array[0, 0] == ArrayType([0, 1, 2, 3]) value = 0 for i in range(2): for j in range(3): for k in range(4): assert array[i, j, k] == value value += 1 raises(ValueError, lambda: array[3, 4, 5]) raises(ValueError, lambda: array[3, 4, 5, 6]) def test_sparse(): sparse_array = MutableSparseNDimArray([0, 0, 0, 1], (2, 2)) assert len(sparse_array) == 2 * 2 # dictionary where all data is, only non-zero entries are actually stored: assert len(sparse_array._sparse_array) == 1 assert list(sparse_array) == [0, 0, 0, 1] for i, j in zip(sparse_array, [0, 0, 0, 1]): assert i == j sparse_array[0, 0] = 123 assert len(sparse_array._sparse_array) == 2 assert sparse_array[0, 0] == 123 assert sparse_array/0 == MutableSparseNDimArray([[S.ComplexInfinity, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2)) # when element in sparse array become zero it will disappear from # dictionary sparse_array[0, 0] = 0 assert len(sparse_array._sparse_array) == 1 sparse_array[1, 1] = 0 assert len(sparse_array._sparse_array) == 0 assert sparse_array[0, 0] == 0 # test for large scale sparse array # equality test a = MutableSparseNDimArray.zeros(100000, 200000) b = MutableSparseNDimArray.zeros(100000, 200000) assert a == b a[1, 1] = 1 b[1, 1] = 2 assert a != b # __mul__ and __rmul__ assert a * 3 == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert 3 * a == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert a * 0 == MutableSparseNDimArray({}, (100000, 200000)) assert 0 * a == MutableSparseNDimArray({}, (100000, 200000)) # __div__ assert a/3 == MutableSparseNDimArray({200001: S.One/3}, (100000, 200000)) # __neg__ assert -a == MutableSparseNDimArray({200001: -1}, (100000, 200000)) def test_calculation(): a = MutableDenseNDimArray([1]*9, (3, 3)) b = MutableDenseNDimArray([9]*9, (3, 3)) c = a + b for i in c: assert i == 10 assert c == MutableDenseNDimArray([10]*9, (3, 3)) assert c == MutableSparseNDimArray([10]*9, (3, 3)) c = b - a for i in c: assert i == 8 assert c == MutableDenseNDimArray([8]*9, (3, 3)) assert c == MutableSparseNDimArray([8]*9, (3, 3)) def test_ndim_array_converting(): dense_array = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) alist = dense_array.tolist() alist == [[1, 2], [3, 4]] matrix = dense_array.tomatrix() assert (isinstance(matrix, Matrix)) for i in range(len(dense_array)): assert dense_array[dense_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == dense_array.shape assert MutableDenseNDimArray(matrix) == dense_array assert MutableDenseNDimArray(matrix.as_immutable()) == dense_array assert MutableDenseNDimArray(matrix.as_mutable()) == dense_array sparse_array = MutableSparseNDimArray([1, 2, 3, 4], (2, 2)) alist = sparse_array.tolist() assert alist == [[1, 2], [3, 4]] matrix = sparse_array.tomatrix() assert(isinstance(matrix, SparseMatrix)) for i in range(len(sparse_array)): assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == sparse_array.shape assert MutableSparseNDimArray(matrix) == sparse_array assert MutableSparseNDimArray(matrix.as_immutable()) == sparse_array assert MutableSparseNDimArray(matrix.as_mutable()) == sparse_array def test_converting_functions(): arr_list = [1, 2, 3, 4] arr_matrix = Matrix(((1, 2), (3, 4))) # list arr_ndim_array = MutableDenseNDimArray(arr_list, (2, 2)) assert (isinstance(arr_ndim_array, MutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() # Matrix arr_ndim_array = MutableDenseNDimArray(arr_matrix) assert (isinstance(arr_ndim_array, MutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() assert arr_matrix.shape == arr_ndim_array.shape def test_equality(): first_list = [1, 2, 3, 4] second_list = [1, 2, 3, 4] third_list = [4, 3, 2, 1] assert first_list == second_list assert first_list != third_list first_ndim_array = MutableDenseNDimArray(first_list, (2, 2)) second_ndim_array = MutableDenseNDimArray(second_list, (2, 2)) third_ndim_array = MutableDenseNDimArray(third_list, (2, 2)) fourth_ndim_array = MutableDenseNDimArray(first_list, (2, 2)) assert first_ndim_array == second_ndim_array second_ndim_array[0, 0] = 0 assert first_ndim_array != second_ndim_array assert first_ndim_array != third_ndim_array assert first_ndim_array == fourth_ndim_array def test_arithmetic(): a = MutableDenseNDimArray([3 for i in range(9)], (3, 3)) b = MutableDenseNDimArray([7 for i in range(9)], (3, 3)) c1 = a + b c2 = b + a assert c1 == c2 d1 = a - b d2 = b - a assert d1 == d2 * (-1) e1 = a * 5 e2 = 5 * a e3 = copy(a) e3 *= 5 assert e1 == e2 == e3 f1 = a / 5 f2 = copy(a) f2 /= 5 assert f1 == f2 assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \ f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5) assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \ == type(e1) == type(e2) == type(e3) == type(f1) z0 = -a assert z0 == MutableDenseNDimArray([-3 for i in range(9)], (3, 3)) def test_higher_dimenions(): m3 = MutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert m3.tolist() == [[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]] assert m3._get_tuple_index(0) == (0, 0, 0) assert m3._get_tuple_index(1) == (0, 0, 1) assert m3._get_tuple_index(4) == (0, 1, 0) assert m3._get_tuple_index(12) == (1, 0, 0) assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]' m3_rebuilt = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]) assert m3 == m3_rebuilt m3_other = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4)) assert m3 == m3_other def test_slices(): md = MutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert md[:] == md._array assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert md[:, :, :] == md sd = MutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert sd == MutableSparseNDimArray(md) assert sd[:] == md._array assert sd[:] == list(sd) assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert sd[:, :, :] == sd def test_slices_assign(): a = MutableDenseNDimArray(range(12), shape=(4, 3)) b = MutableSparseNDimArray(range(12), shape=(4, 3)) for i in [a, b]: assert i.tolist() == [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[0, :] = [2, 2, 2] assert i.tolist() == [[2, 2, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[0, 1:] = [8, 8] assert i.tolist() == [[2, 8, 8], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[1:3, 1] = [20, 44] assert i.tolist() == [[2, 8, 8], [3, 20, 5], [6, 44, 8], [9, 10, 11]] def test_diff(): from sympy.abc import x, y, z md = MutableDenseNDimArray([[x, y], [x*z, x*y*z]]) assert md.diff(x) == MutableDenseNDimArray([[1, 0], [z, y*z]]) assert diff(md, x) == MutableDenseNDimArray([[1, 0], [z, y*z]]) sd = MutableSparseNDimArray(md) assert sd == MutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2)) assert sd.diff(x) == MutableSparseNDimArray([[1, 0], [z, y*z]]) assert diff(sd, x) == MutableSparseNDimArray([[1, 0], [z, y*z]])
859e409c1f6c6784a422253b18215d8e561f566997bcd9a741da9a148d1ef570
from sympy.tensor.array.array_comprehension import ArrayComprehension from sympy.tensor.array import ImmutableDenseNDimArray from sympy.abc import i, j, k, l from sympy.utilities.pytest import raises from sympy.matrices import Matrix def test_array_comprehension(): a = ArrayComprehension(i*j, (i, 1, 3), (j, 2, 4)) b = ArrayComprehension(i, (i, 1, j+1)) c = ArrayComprehension(i+j+k+l, (i, 1, 2), (j, 1, 3), (k, 1, 4), (l, 1, 5)) d = ArrayComprehension(k, (i, 1, 5)) e = ArrayComprehension(i, (j, k+1, k+5)) assert a.doit().tolist() == [[2, 3, 4], [4, 6, 8], [6, 9, 12]] assert a.shape == (3, 3) assert a.is_shape_numeric == True assert a.tolist() == [[2, 3, 4], [4, 6, 8], [6, 9, 12]] assert a.tomatrix() == Matrix([ [2, 3, 4], [4, 6, 8], [6, 9, 12]]) assert len(a) == 9 assert isinstance(b.doit(), ArrayComprehension) assert isinstance(a.doit(), ImmutableDenseNDimArray) assert b.subs(j, 3) == ArrayComprehension(i, (i, 1, 4)) assert b.free_symbols == {j} assert b.shape == (j + 1,) assert b.rank() == 1 assert b.is_shape_numeric == False assert c.free_symbols == set() assert c.function == i + j + k + l assert c.limits == ((i, 1, 2), (j, 1, 3), (k, 1, 4), (l, 1, 5)) assert c.doit().tolist() == [[[[4, 5, 6, 7, 8], [5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11]], [[5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12]], [[6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13]]], [[[5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12]], [[6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13]], [[7, 8, 9, 10, 11], [8, 9, 10, 11, 12], [9, 10, 11, 12, 13], [10, 11, 12, 13, 14]]]] assert c.free_symbols == set() assert c.variables == [i, j, k, l] assert c.bound_symbols == [i, j, k, l] assert d.doit().tolist() == [k, k, k, k, k] assert len(e) == 5 raises(TypeError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, [1, 3, 2]))) raises(ValueError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, 1))) raises(ValueError, lambda: ArrayComprehension(i*j, (i, 1, 3), (j, 2, j+1))) raises(ValueError, lambda: len(ArrayComprehension(i*j, (i, 1, 3), (j, 2, j+4)))) raises(TypeError, lambda: ArrayComprehension(i*j, (i, 0, i + 1.5), (j, 0, 2))) raises(ValueError, lambda: b.tolist()) raises(ValueError, lambda: b.tomatrix()) raises(ValueError, lambda: c.tomatrix())
466c10039edfd01787138aa50211ec84f2cf47631286ed39120c7b2bbffdbdf8
"""Implementation of DPLL algorithm Features: - Clause learning - Watch literal scheme - VSIDS heuristic References: - https://en.wikipedia.org/wiki/DPLL_algorithm """ from __future__ import print_function, division from collections import defaultdict from heapq import heappush, heappop from sympy.core.compatibility import range from sympy import default_sort_key, ordered from sympy.logic.boolalg import conjuncts, to_cnf, to_int_repr, _find_predicates def dpll_satisfiable(expr, all_models=False): """ Check satisfiability of a propositional sentence. It returns a model rather than True when it succeeds. Returns a generator of all models if all_models is True. Examples ======== >>> from sympy.abc import A, B >>> from sympy.logic.algorithms.dpll2 import dpll_satisfiable >>> dpll_satisfiable(A & ~B) {A: True, B: False} >>> dpll_satisfiable(A & ~A) False """ clauses = conjuncts(to_cnf(expr)) if False in clauses: if all_models: return (f for f in [False]) return False symbols = sorted(_find_predicates(expr), key=default_sort_key) symbols_int_repr = range(1, len(symbols) + 1) clauses_int_repr = to_int_repr(clauses, symbols) solver = SATSolver(clauses_int_repr, symbols_int_repr, set(), symbols) models = solver._find_model() if all_models: return _all_models(models) try: return next(models) except StopIteration: return False # Uncomment to confirm the solution is valid (hitting set for the clauses) #else: #for cls in clauses_int_repr: #assert solver.var_settings.intersection(cls) def _all_models(models): satisfiable = False try: while True: yield next(models) satisfiable = True except StopIteration: if not satisfiable: yield False class SATSolver(object): """ Class for representing a SAT solver capable of finding a model to a boolean theory in conjunctive normal form. """ def __init__(self, clauses, variables, var_settings, symbols=None, heuristic='vsids', clause_learning='none', INTERVAL=500): self.var_settings = var_settings self.heuristic = heuristic self.is_unsatisfied = False self._unit_prop_queue = [] self.update_functions = [] self.INTERVAL = INTERVAL if symbols is None: self.symbols = list(ordered(variables)) else: self.symbols = symbols self._initialize_variables(variables) self._initialize_clauses(clauses) if 'vsids' == heuristic: self._vsids_init() self.heur_calculate = self._vsids_calculate self.heur_lit_assigned = self._vsids_lit_assigned self.heur_lit_unset = self._vsids_lit_unset self.heur_clause_added = self._vsids_clause_added # Note: Uncomment this if/when clause learning is enabled #self.update_functions.append(self._vsids_decay) else: raise NotImplementedError if 'simple' == clause_learning: self.add_learned_clause = self._simple_add_learned_clause self.compute_conflict = self.simple_compute_conflict self.update_functions.append(self.simple_clean_clauses) elif 'none' == clause_learning: self.add_learned_clause = lambda x: None self.compute_conflict = lambda: None else: raise NotImplementedError # Create the base level self.levels = [Level(0)] self._current_level.varsettings = var_settings # Keep stats self.num_decisions = 0 self.num_learned_clauses = 0 self.original_num_clauses = len(self.clauses) def _initialize_variables(self, variables): """Set up the variable data structures needed.""" self.sentinels = defaultdict(set) self.occurrence_count = defaultdict(int) self.variable_set = [False] * (len(variables) + 1) def _initialize_clauses(self, clauses): """Set up the clause data structures needed. For each clause, the following changes are made: - Unit clauses are queued for propagation right away. - Non-unit clauses have their first and last literals set as sentinels. - The number of clauses a literal appears in is computed. """ self.clauses = [] for cls in clauses: self.clauses.append(list(cls)) for i in range(len(self.clauses)): # Handle the unit clauses if 1 == len(self.clauses[i]): self._unit_prop_queue.append(self.clauses[i][0]) continue self.sentinels[self.clauses[i][0]].add(i) self.sentinels[self.clauses[i][-1]].add(i) for lit in self.clauses[i]: self.occurrence_count[lit] += 1 def _find_model(self): """ Main DPLL loop. Returns a generator of models. Variables are chosen successively, and assigned to be either True or False. If a solution is not found with this setting, the opposite is chosen and the search continues. The solver halts when every variable has a setting. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> list(l._find_model()) [{1: True, 2: False, 3: False}, {1: True, 2: True, 3: True}] >>> from sympy.abc import A, B, C >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set(), [A, B, C]) >>> list(l._find_model()) [{A: True, B: False, C: False}, {A: True, B: True, C: True}] """ # We use this variable to keep track of if we should flip a # variable setting in successive rounds flip_var = False # Check if unit prop says the theory is unsat right off the bat self._simplify() if self.is_unsatisfied: return # While the theory still has clauses remaining while True: # Perform cleanup / fixup at regular intervals if self.num_decisions % self.INTERVAL == 0: for func in self.update_functions: func() if flip_var: # We have just backtracked and we are trying to opposite literal flip_var = False lit = self._current_level.decision else: # Pick a literal to set lit = self.heur_calculate() self.num_decisions += 1 # Stopping condition for a satisfying theory if 0 == lit: yield dict((self.symbols[abs(lit) - 1], lit > 0) for lit in self.var_settings) while self._current_level.flipped: self._undo() if len(self.levels) == 1: return flip_lit = -self._current_level.decision self._undo() self.levels.append(Level(flip_lit, flipped=True)) flip_var = True continue # Start the new decision level self.levels.append(Level(lit)) # Assign the literal, updating the clauses it satisfies self._assign_literal(lit) # _simplify the theory self._simplify() # Check if we've made the theory unsat if self.is_unsatisfied: self.is_unsatisfied = False # We unroll all of the decisions until we can flip a literal while self._current_level.flipped: self._undo() # If we've unrolled all the way, the theory is unsat if 1 == len(self.levels): return # Detect and add a learned clause self.add_learned_clause(self.compute_conflict()) # Try the opposite setting of the most recent decision flip_lit = -self._current_level.decision self._undo() self.levels.append(Level(flip_lit, flipped=True)) flip_var = True ######################## # Helper Methods # ######################## @property def _current_level(self): """The current decision level data structure Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{1}, {2}], {1, 2}, set()) >>> next(l._find_model()) {1: True, 2: True} >>> l._current_level.decision 0 >>> l._current_level.flipped False >>> l._current_level.var_settings {1, 2} """ return self.levels[-1] def _clause_sat(self, cls): """Check if a clause is satisfied by the current variable setting. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{1}, {-1}], {1}, set()) >>> try: ... next(l._find_model()) ... except StopIteration: ... pass >>> l._clause_sat(0) False >>> l._clause_sat(1) True """ for lit in self.clauses[cls]: if lit in self.var_settings: return True return False def _is_sentinel(self, lit, cls): """Check if a literal is a sentinel of a given clause. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l._is_sentinel(2, 3) True >>> l._is_sentinel(-3, 1) False """ return cls in self.sentinels[lit] def _assign_literal(self, lit): """Make a literal assignment. The literal assignment must be recorded as part of the current decision level. Additionally, if the literal is marked as a sentinel of any clause, then a new sentinel must be chosen. If this is not possible, then unit propagation is triggered and another literal is added to the queue to be set in the future. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l.var_settings {-3, -2, 1} >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l._assign_literal(-1) >>> try: ... next(l._find_model()) ... except StopIteration: ... pass >>> l.var_settings {-1} """ self.var_settings.add(lit) self._current_level.var_settings.add(lit) self.variable_set[abs(lit)] = True self.heur_lit_assigned(lit) sentinel_list = list(self.sentinels[-lit]) for cls in sentinel_list: if not self._clause_sat(cls): other_sentinel = None for newlit in self.clauses[cls]: if newlit != -lit: if self._is_sentinel(newlit, cls): other_sentinel = newlit elif not self.variable_set[abs(newlit)]: self.sentinels[-lit].remove(cls) self.sentinels[newlit].add(cls) other_sentinel = None break # Check if no sentinel update exists if other_sentinel: self._unit_prop_queue.append(other_sentinel) def _undo(self): """ _undo the changes of the most recent decision level. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> level = l._current_level >>> level.decision, level.var_settings, level.flipped (-3, {-3, -2}, False) >>> l._undo() >>> level = l._current_level >>> level.decision, level.var_settings, level.flipped (0, {1}, False) """ # Undo the variable settings for lit in self._current_level.var_settings: self.var_settings.remove(lit) self.heur_lit_unset(lit) self.variable_set[abs(lit)] = False # Pop the level off the stack self.levels.pop() ######################### # Propagation # ######################### """ Propagation methods should attempt to soundly simplify the boolean theory, and return True if any simplification occurred and False otherwise. """ def _simplify(self): """Iterate over the various forms of propagation to simplify the theory. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.variable_set [False, False, False, False] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}} >>> l._simplify() >>> l.variable_set [False, True, False, False] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, -1: set(), 2: {0, 3}, ...3: {2, 4}} """ changed = True while changed: changed = False changed |= self._unit_prop() changed |= self._pure_literal() def _unit_prop(self): """Perform unit propagation on the current theory.""" result = len(self._unit_prop_queue) > 0 while self._unit_prop_queue: next_lit = self._unit_prop_queue.pop() if -next_lit in self.var_settings: self.is_unsatisfied = True self._unit_prop_queue = [] return False else: self._assign_literal(next_lit) return result def _pure_literal(self): """Look for pure literals and assign them when found.""" return False ######################### # Heuristics # ######################### def _vsids_init(self): """Initialize the data structures needed for the VSIDS heuristic.""" self.lit_heap = [] self.lit_scores = {} for var in range(1, len(self.variable_set)): self.lit_scores[var] = float(-self.occurrence_count[var]) self.lit_scores[-var] = float(-self.occurrence_count[-var]) heappush(self.lit_heap, (self.lit_scores[var], var)) heappush(self.lit_heap, (self.lit_scores[-var], -var)) def _vsids_decay(self): """Decay the VSIDS scores for every literal. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_scores {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0} >>> l._vsids_decay() >>> l.lit_scores {-3: -1.0, -2: -1.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -1.0} """ # We divide every literal score by 2 for a decay factor # Note: This doesn't change the heap property for lit in self.lit_scores.keys(): self.lit_scores[lit] /= 2.0 def _vsids_calculate(self): """ VSIDS Heuristic Calculation Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_heap [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)] >>> l._vsids_calculate() -3 >>> l.lit_heap [(-2.0, -2), (-2.0, 2), (0.0, -1), (0.0, 1), (-2.0, 3)] """ if len(self.lit_heap) == 0: return 0 # Clean out the front of the heap as long the variables are set while self.variable_set[abs(self.lit_heap[0][1])]: heappop(self.lit_heap) if len(self.lit_heap) == 0: return 0 return heappop(self.lit_heap)[1] def _vsids_lit_assigned(self, lit): """Handle the assignment of a literal for the VSIDS heuristic.""" pass def _vsids_lit_unset(self, lit): """Handle the unsetting of a literal for the VSIDS heuristic. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_heap [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)] >>> l._vsids_lit_unset(2) >>> l.lit_heap [(-2.0, -3), (-2.0, -2), (-2.0, -2), (-2.0, 2), (-2.0, 3), (0.0, -1), ...(-2.0, 2), (0.0, 1)] """ var = abs(lit) heappush(self.lit_heap, (self.lit_scores[var], var)) heappush(self.lit_heap, (self.lit_scores[-var], -var)) def _vsids_clause_added(self, cls): """Handle the addition of a new clause for the VSIDS heuristic. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.num_learned_clauses 0 >>> l.lit_scores {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0} >>> l._vsids_clause_added({2, -3}) >>> l.num_learned_clauses 1 >>> l.lit_scores {-3: -1.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -2.0} """ self.num_learned_clauses += 1 for lit in cls: self.lit_scores[lit] += 1 ######################## # Clause Learning # ######################## def _simple_add_learned_clause(self, cls): """Add a new clause to the theory. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.num_learned_clauses 0 >>> l.clauses [[2, -3], [1], [3, -3], [2, -2], [3, -2]] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}} >>> l._simple_add_learned_clause([3]) >>> l.clauses [[2, -3], [1], [3, -3], [2, -2], [3, -2], [3]] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4, 5}} """ cls_num = len(self.clauses) self.clauses.append(cls) for lit in cls: self.occurrence_count[lit] += 1 self.sentinels[cls[0]].add(cls_num) self.sentinels[cls[-1]].add(cls_num) self.heur_clause_added(cls) def _simple_compute_conflict(self): """ Build a clause representing the fact that at least one decision made so far is wrong. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l._simple_compute_conflict() [3] """ return [-(level.decision) for level in self.levels[1:]] def _simple_clean_clauses(self): """Clean up learned clauses.""" pass class Level(object): """ Represents a single level in the DPLL algorithm, and contains enough information for a sound backtracking procedure. """ def __init__(self, decision, flipped=False): self.decision = decision self.var_settings = set() self.flipped = flipped
91588f02cd5d44416d000c6a36d4afe5933e21900e9c78e02c0b1f809c930b21
from sympy.assumptions.ask import Q from sympy.core.numbers import oo from sympy.core.relational import Equality, Eq, Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.functions import Piecewise from sympy.functions.elementary.miscellaneous import Max, Min from sympy.functions.elementary.trigonometric import sin from sympy.sets.sets import (EmptySet, Interval, Union) from sympy.simplify.simplify import simplify from sympy.logic.boolalg import ( And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or, POSform, SOPform, Xor, Xnor, conjuncts, disjuncts, distribute_or_over_and, distribute_and_over_or, eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic, to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false, BooleanAtom, is_literal, term_to_integer, integer_to_term, truth_table, as_Boolean) from sympy.utilities.pytest import raises, XFAIL, slow from sympy.utilities import cartes from itertools import combinations A, B, C, D = symbols('A:D') a, b, c, d, e, w, x, y, z = symbols('a:e w:z') def test_overloading(): """Test that |, & are overloaded as expected""" assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): assert And() is true assert And(A) == A assert And(True) is true assert And(False) is false assert And(True, True) is true assert And(True, False) is false assert And(False, False) is false assert And(True, A) == A assert And(False, A) is false assert And(True, True, True) is true assert And(True, True, A) == A assert And(True, False, A) is false assert And(1, A) == A raises(TypeError, lambda: And(2, A)) raises(TypeError, lambda: And(A < 2, A)) assert And(A < 1, A >= 1) is false e = A > 1 assert And(e, e.canonical) == e.canonical g, l, ge, le = A > B, B < A, A >= B, B <= A assert And(g, l, ge, le) == And(l, le) def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(1, A) is true raises(TypeError, lambda: Or(2, A)) raises(TypeError, lambda: Or(A < 2, A)) assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge) def test_Xor(): assert Xor() is false assert Xor(A) == A assert Xor(A, A) is false assert Xor(True, A, A) is true assert Xor(A, A, A, A, A) == A assert Xor(True, False, False, A, B) == ~Xor(A, B) assert Xor(True) is true assert Xor(False) is false assert Xor(True, True) is false assert Xor(True, False) is true assert Xor(False, False) is false assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) is true assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A assert isinstance(Xor(A, B), Xor) assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D) assert Xor(A, B, Xor(B, C)) == Xor(A, C) assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B) e = A > 1 assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1) def test_rewrite_as_And(): expr = x ^ y assert expr.rewrite(And) == (x | y) & (~x | ~y) def test_rewrite_as_Or(): expr = x ^ y assert expr.rewrite(Or) == (x & ~y) | (y & ~x) def test_rewrite_as_Nand(): expr = (y & z) | (z & ~w) assert expr.rewrite(Nand) == ~(~(y & z) & ~(z & ~w)) def test_rewrite_as_Nor(): expr = z & (y | ~w) assert expr.rewrite(Nor) == ~(~z | ~(y | ~w)) def test_Not(): raises(TypeError, lambda: Not(True, False)) assert Not(True) is false assert Not(False) is true assert Not(0) is true assert Not(1) is false assert Not(2) is false def test_Nand(): assert Nand() is false assert Nand(A) == ~A assert Nand(True) is false assert Nand(False) is true assert Nand(True, True) is false assert Nand(True, False) is true assert Nand(False, False) is true assert Nand(True, A) == ~A assert Nand(False, A) is true assert Nand(True, True, True) is false assert Nand(True, True, A) == ~A assert Nand(True, False, A) is true def test_Nor(): assert Nor() is true assert Nor(A) == ~A assert Nor(True) is false assert Nor(False) is true assert Nor(True, True) is false assert Nor(True, False) is false assert Nor(False, False) is true assert Nor(True, A) is false assert Nor(False, A) == ~A assert Nor(True, True, True) is false assert Nor(True, True, A) is false assert Nor(True, False, A) is false def test_Xnor(): assert Xnor() is true assert Xnor(A) == ~A assert Xnor(A, A) is true assert Xnor(True, A, A) is false assert Xnor(A, A, A, A, A) == ~A assert Xnor(True) is false assert Xnor(False) is true assert Xnor(True, True) is true assert Xnor(True, False) is false assert Xnor(False, False) is true assert Xnor(True, A) == A assert Xnor(False, A) == ~A assert Xnor(True, False, False) is false assert Xnor(True, False, A) == A assert Xnor(False, False, A) == ~A def test_Implies(): raises(ValueError, lambda: Implies(A, B, C)) assert Implies(True, True) is true assert Implies(True, False) is false assert Implies(False, True) is true assert Implies(False, False) is true assert Implies(0, A) is true assert Implies(1, 1) is true assert Implies(1, 0) is false assert A >> B == B << A assert (A < 1) >> (A >= 1) == (A >= 1) assert (A < 1) >> (S(1) > A) is true assert A >> A is true def test_Equivalent(): assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() is true assert Equivalent(A, A) == Equivalent(A) is true assert Equivalent(True, True) == Equivalent(False, False) is true assert Equivalent(True, False) == Equivalent(False, True) is false assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B assert Equivalent(1, A) == A assert Equivalent(0, A) == Not(A) assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C) assert Equivalent(A < 1, A >= 1) is false assert Equivalent(A < 1, A >= 1, 0) is false assert Equivalent(A < 1, A >= 1, 1) is false assert Equivalent(A < 1, S(1) > A) == Equivalent(1, 1) == Equivalent(0, 0) assert Equivalent(Equality(A, B), Equality(B, A)) is true def test_equals(): assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False raises(NotImplementedError, lambda: (A & B).equals(A > B)) def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == \ Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, 3, 7, 11, 15] dontcares = [0, 2, 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, {y: 1, z: 1}] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [{y: 1, z: 1}, 1] dontcares = [[0, 0, 0, 0]] minterms = [[0, 0, 0]] raises(ValueError, lambda: SOPform([w, x, y, z], minterms)) raises(ValueError, lambda: POSform([w, x, y, z], minterms)) raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"])) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) is S.false assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) b = (~x & ~y & ~z) | (~x & ~y & z) e = And(A, b) assert simplify_logic(e) == A & ~x & ~y raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla')) # Check that expressions with nine variables or more are not simplified # (without the force-flag) a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j') expr = a & b & c & d & e & f & g & h & j | \ a & b & c & d & e & f & g & h & ~j # This expression can be simplified to get rid of the j variables assert simplify_logic(expr) == expr # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0)) assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1)) assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y)) assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1)) assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify( ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2)) assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1) assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1) assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify( ) == And(Ne(x, 1), Ne(x, 0)) def test_bool_map(): """ Test working of bool_map function. """ minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] assert bool_map(Not(Not(a)), a) == (a, {a: a}) assert bool_map(SOPform([w, x, y, z], minterms), POSform([w, x, y, z], minterms)) == \ (And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y}) assert bool_map(SOPform([x, z, y], [[1, 0, 1]]), SOPform([a, b, c], [[1, 0, 1]])) != False function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]]) function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]]) assert bool_map(function1, function2) == \ (function1, {y: a, z: b}) assert bool_map(Xor(x, y), ~Xor(x, y)) == False assert bool_map(And(x, y), Or(x, y)) is None assert bool_map(And(x, y), And(x, y, z)) is None # issue 16179 assert bool_map(Xor(x, y, z), ~Xor(x, y, z)) == False assert bool_map(Xor(a, x, y, z), ~Xor(a, x, y, z)) == False def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) is false assert And(A, True, False) is false assert Or(A, True) is true assert Or(A, False) == A def test_is_boolean(): assert true.is_Boolean assert (A & B).is_Boolean assert (A | B).is_Boolean assert (~A).is_Boolean assert (A ^ B).is_Boolean def test_subs(): assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) is false assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) is false assert (A & B).subs({A: True, B: True}) is true assert (A | B).subs(A, True) is true assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) is true assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B: True}) is true """ we test for axioms of boolean algebra see https://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutativity of And and Or""" A, B = map(Boolean, symbols('A,B')) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" assert (A & B) & C == A & (B & C) def test_or_assicativity(): assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a # test methods def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A) def test_conjuncts(): assert conjuncts(A & B & C) == {A, B, C} assert conjuncts((A | B) & C) == {A | B, C} assert conjuncts(A) == {A} assert conjuncts(True) == {True} assert conjuncts(False) == {False} def test_disjuncts(): assert disjuncts(A | B | C) == {A, B, C} assert disjuncts((A | B) & C) == {(A | B) & C} assert disjuncts(A) == {A} assert disjuncts(True) == {True} assert disjuncts(False) == {False} def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C)) def test_to_nnf(): assert to_nnf(true) is true assert to_nnf(false) is false assert to_nnf(A) == A assert to_nnf(A | ~A | B) is true assert to_nnf(A & ~A & B) is false assert to_nnf(A >> B) == ~A | B assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A) assert to_nnf(A ^ B ^ C) == \ (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C) assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C) assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C assert to_nnf(Not(A >> B)) == A & ~B assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C)) assert to_nnf(Not(A ^ B ^ C)) == \ (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C) assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C) assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B) assert to_nnf((A >> B) ^ (B >> A), False) == \ (~A | ~B | A | B) & ((A & ~B) | (~A & B)) assert ITE(A, 1, 0).to_nnf() == A assert ITE(A, 0, 1).to_nnf() == ~A # although ITE can hold non-Boolean, it will complain if # an attempt is made to convert the ITE to Boolean nnf raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf()) def test_to_cnf(): assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C assert to_cnf(A & B) == And(A, B) assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == \ (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C), True) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) assert to_cnf(A + 1) == A + 1 def test_to_dnf(): assert to_dnf(~(B | C)) == And(Not(B), Not(C)) assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C)) assert to_dnf(A >> B) == (~A) | B assert to_dnf(A >> (B & C)) == (~A) | (B & C) assert to_dnf(A | B) == A | B assert to_dnf(Equivalent(A, B), True) == \ Or(And(A, B), And(Not(A), Not(B))) assert to_dnf(Equivalent(A, B & C), True) == \ Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C))) assert to_dnf(A + 1) == A + 1 def test_to_int_repr(): x, y, z = map(Boolean, symbols('x,y,z')) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: # arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_nnf(): assert is_nnf(true) is True assert is_nnf(A) is True assert is_nnf(~A) is True assert is_nnf(A & B) is True assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True assert is_nnf((A | B) & (~A | ~B)) is True assert is_nnf(Not(Or(A, B))) is False assert is_nnf(A ^ B) is False assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False def test_is_cnf(): assert is_cnf(x) is True assert is_cnf(x | y | z) is True assert is_cnf(x & y & z) is True assert is_cnf((x | y) & z) is True assert is_cnf((x & y) | z) is False assert is_cnf(~(x & y) | z) is False def test_is_dnf(): assert is_dnf(x) is True assert is_dnf(x | y | z) is True assert is_dnf(x & y & z) is True assert is_dnf((x & y) | z) is True assert is_dnf((x | y) & z) is False assert is_dnf(~(x | y) & z) is False def test_ITE(): A, B, C = symbols('A:C') assert ITE(True, False, True) is false assert ITE(True, True, False) is true assert ITE(False, True, False) is false assert ITE(False, False, True) is true assert isinstance(ITE(A, B, C), ITE) A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) is false assert ITE(x, A, B) == Not(x) assert ITE(x, B, A) == x assert ITE(1, x, y) == x assert ITE(0, x, y) == y raises(TypeError, lambda: ITE(2, x, y)) raises(TypeError, lambda: ITE(1, [], y)) raises(TypeError, lambda: ITE(1, (), y)) raises(TypeError, lambda: ITE(1, y, [])) assert ITE(1, 1, 1) is S.true assert isinstance(ITE(1, 1, 1, evaluate=False), ITE) raises(TypeError, lambda: ITE(x > 1, y, x)) assert ITE(Eq(x, True), y, x) == ITE(x, y, x) assert ITE(Eq(x, False), y, x) == ITE(~x, y, x) assert ITE(Ne(x, True), y, x) == ITE(~x, y, x) assert ITE(Ne(x, False), y, x) == ITE(x, y, x) assert ITE(Eq(S. true, x), y, x) == ITE(x, y, x) assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x) # 0 and 1 in the context are not treated as True/False # so the equality must always be False since dissimilar # objects cannot be equal assert ITE(Eq(x, 0), y, x) == x assert ITE(Eq(x, 1), y, x) == x assert ITE(Ne(x, 0), y, x) == y assert ITE(Ne(x, 1), y, x) == y assert ITE(Eq(x, 0), y, z).subs(x, 0) == y assert ITE(Eq(x, 0), y, z).subs(x, 1) == z raises(ValueError, lambda: ITE(x > 1, y, x, z)) def test_is_literal(): assert is_literal(True) is True assert is_literal(False) is True assert is_literal(A) is True assert is_literal(~A) is True assert is_literal(Or(A, B)) is False assert is_literal(Q.zero(A)) is True assert is_literal(Not(Q.zero(A))) is True assert is_literal(Or(A, B)) is False assert is_literal(And(Q.zero(A), Q.zero(B))) is False def test_operators(): # Mostly test __and__, __rand__, and so on assert True & A == A & True == A assert False & A == A & False == False assert A & B == And(A, B) assert True | A == A | True == True assert False | A == A | False == A assert A | B == Or(A, B) assert ~A == Not(A) assert True >> A == A << True == A assert False >> A == A << False == True assert A >> True == True << A == True assert A >> False == False << A == ~A assert A >> B == B << A == Implies(A, B) assert True ^ A == A ^ True == ~A assert False ^ A == A ^ False == A assert A ^ B == Xor(A, B) def test_true_false(): assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len({true, True}) == len({false, False}) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in cartes([True, true], [False, false]): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if F is not False: assert F & F is false if T is not True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if F is not False: assert F | F is false if T is not True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if F is not False: assert F ^ F is false if T is not True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if F is not False: assert F >> F is true assert F << F is true if T is not True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false assert all(i.simplify(1, 2) is i for i in (S.true, S.false)) def test_bool_as_set(): assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo) assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2) assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo) assert Not(x > 2).as_set() == Interval(-oo, 2) # issue 10240 assert Not(And(x > 2, x < 3)).as_set() == \ Union(Interval(-oo, 2), Interval(3, oo)) assert true.as_set() == S.UniversalSet assert false.as_set() == EmptySet() assert x.as_set() == S.UniversalSet assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1) assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set() raises(NotImplementedError, lambda: (sin(x) < 1).as_set()) @XFAIL def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True) def test_all_or_nothing(): x = symbols('x', extended_real=True) args = x >= -oo, x <= oo v = And(*args) if v.func is And: assert len(v.args) == len(args) - args.count(S.true) else: assert v == True v = Or(*args) if v.func is Or: assert len(v.args) == 2 else: assert v == True def test_canonical_atoms(): assert true.canonical == true assert false.canonical == false def test_negated_atoms(): assert true.negated == false assert false.negated == true def test_issue_8777(): assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True) assert And(x >= 1, x < oo).as_set() == Interval(1, oo) assert (x < oo).as_set() == Interval(-oo, oo) assert (x > -oo).as_set() == Interval(-oo, oo) def test_issue_8975(): assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo) def test_term_to_integer(): assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82 assert term_to_integer('0010101000111001') == 10809 def test_integer_to_term(): assert integer_to_term(777) == [1, 1, 0, 0, 0, 0, 1, 0, 0, 1] assert integer_to_term(123, 3) == [1, 1, 1, 1, 0, 1, 1] assert integer_to_term(456, 16) == [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] def test_truth_table(): assert list(truth_table(And(x, y), [x, y], input=False)) == \ [False, False, False, True] assert list(truth_table(x | y, [x, y], input=False)) == \ [False, True, True, True] assert list(truth_table(x >> y, [x, y], input=False)) == \ [True, True, False, True] assert list(truth_table(And(x, y), [x, y])) == \ [([0, 0], False), ([0, 1], False), ([1, 0], False), ([1, 1], True)] def test_issue_8571(): for t in (S.true, S.false): raises(TypeError, lambda: +t) raises(TypeError, lambda: -t) raises(TypeError, lambda: abs(t)) # use int(bool(t)) to get 0 or 1 raises(TypeError, lambda: int(t)) for o in [S.Zero, S.One, x]: for _ in range(2): raises(TypeError, lambda: o + t) raises(TypeError, lambda: o - t) raises(TypeError, lambda: o % t) raises(TypeError, lambda: o*t) raises(TypeError, lambda: o/t) raises(TypeError, lambda: o**t) o, t = t, o # do again in reversed order def test_expand_relational(): n = symbols('n', negative=True) p, q = symbols('p q', positive=True) r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0) assert r is not S.false assert r.expand() is S.false assert (q > 0).expand() is S.true def test_issue_12717(): assert S.true.is_Atom == True assert S.false.is_Atom == True def test_as_Boolean(): nz = symbols('nz', nonzero=True) assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz)) z = symbols('z', zero=True) assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z)) assert all(as_Boolean(i) == i for i in (x, x < 0)) for i in (2, S(2), x + 1, []): raises(TypeError, lambda: as_Boolean(i)) def test_binary_symbols(): assert ITE(x < 1, y, z).binary_symbols == set((y, z)) for f in (Eq, Ne): assert f(x, 1).binary_symbols == set() assert f(x, True).binary_symbols == set([x]) assert f(x, False).binary_symbols == set([x]) assert S.true.binary_symbols == set() assert S.false.binary_symbols == set() assert x.binary_symbols == set([x]) assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == set([x, y]) assert Q.prime(x).binary_symbols == set() assert Q.is_true(x < 1).binary_symbols == set() assert Q.is_true(x).binary_symbols == set([x]) assert Q.is_true(Eq(x, True)).binary_symbols == set([x]) assert Q.prime(x).binary_symbols == set() def test_BooleanFunction_diff(): assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True)) def test_issue_14700(): A, B, C, D, E, F, G, H = symbols('A B C D E F G H') q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) | (B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) | (D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) | (D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) | (B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) & (D | G | H) & (F | G | H) & (B | F | ~D | ~H) & (~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) & (A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) & (B | E | H | ~A | ~D | ~F | ~G)) assert simplify_logic(q, "dnf") == soldnf assert simplify_logic(q, "cnf") == solcnf minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1]] dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]] assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x) # Should not be more complicated with don't cares assert SOPform([w, x, y, z], minterms, dontcares) == \ (x & ~w) | (y & z & ~x) def test_relational_simplification(): w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) # Test all combinations or sign and order assert Or(x >= y, x < y).simplify() == S.true assert Or(x >= y, y > x).simplify() == S.true assert Or(x >= y, -x > -y).simplify() == S.true assert Or(x >= y, -y < -x).simplify() == S.true assert Or(-x <= -y, x < y).simplify() == S.true assert Or(-x <= -y, -x > -y).simplify() == S.true assert Or(-x <= -y, y > x).simplify() == S.true assert Or(-x <= -y, -y < -x).simplify() == S.true assert Or(y <= x, x < y).simplify() == S.true assert Or(y <= x, y > x).simplify() == S.true assert Or(y <= x, -x > -y).simplify() == S.true assert Or(y <= x, -y < -x).simplify() == S.true assert Or(-y >= -x, x < y).simplify() == S.true assert Or(-y >= -x, y > x).simplify() == S.true assert Or(-y >= -x, -x > -y).simplify() == S.true assert Or(-y >= -x, -y < -x).simplify() == S.true assert Or(x < y, x >= y).simplify() == S.true assert Or(y > x, x >= y).simplify() == S.true assert Or(-x > -y, x >= y).simplify() == S.true assert Or(-y < -x, x >= y).simplify() == S.true assert Or(x < y, -x <= -y).simplify() == S.true assert Or(-x > -y, -x <= -y).simplify() == S.true assert Or(y > x, -x <= -y).simplify() == S.true assert Or(-y < -x, -x <= -y).simplify() == S.true assert Or(x < y, y <= x).simplify() == S.true assert Or(y > x, y <= x).simplify() == S.true assert Or(-x > -y, y <= x).simplify() == S.true assert Or(-y < -x, y <= x).simplify() == S.true assert Or(x < y, -y >= -x).simplify() == S.true assert Or(y > x, -y >= -x).simplify() == S.true assert Or(-x > -y, -y >= -x).simplify() == S.true assert Or(-y < -x, -y >= -x).simplify() == S.true # Some other tests assert Or(x >= y, w < z, x <= y).simplify() == S.true assert And(x >= y, x < y).simplify() == S.false assert Or(x >= y, Eq(y, x)).simplify() == (x >= y) assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y) assert Or(Eq(x, y), x >= y, w < y, z < y).simplify() == \ Or(x >= y, y > Min(w, z)) assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify() == \ And(Eq(x, y), y > Max(w, z)) assert Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \ (Eq(x, y) | (x >= 1) | (y > Min(2, z))) assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \ (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z)) assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \ (Eq(x, y) & Eq(d, e) & (d >= e)) assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0)) assert Xor(x >= y, x <= y).simplify() == Ne(x, y) @slow def test_relational_simplification_numerically(): def test_simplification_numerically_function(original, simplified): symb = original.free_symbols n = len(symb) valuelist = list(set(list(combinations(list(range(-(n-1), n))*n, n)))) for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.subs(sublist) simplifiedvalue = simplified.subs(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for {}"\ "".format(original, simplified, sublist) w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) expressions = (And(Eq(x, y), x >= y, w < y, y >= z, z < y), And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), And(x >= y, Eq(y, x)), Or(And(Eq(x, y), x >= y, w < y, Or(y >= z, z < y)), And(Eq(x, y), x >= 1, 2 < y, y >= -1, z < y)), (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)), ) for expression in expressions: test_simplification_numerically_function(expression, expression.simplify()) def test_relational_simplification_patterns_numerically(): from sympy.core import Wild from sympy.logic.boolalg import simplify_patterns_and, \ simplify_patterns_or, simplify_patterns_xor a = Wild('a') b = Wild('b') c = Wild('c') symb = [a, b, c] patternlists = [simplify_patterns_and(), simplify_patterns_or(), simplify_patterns_xor()] for patternlist in patternlists: for pattern in patternlist: original = pattern[0] simplified = pattern[1] valuelist = list(set(list(combinations(list(range(-2, 2))*3, 3)))) for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.subs(sublist) simplifiedvalue = simplified.subs(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for"\ "{}".format(original, simplified, sublist)
95e7fe295e04f6cb10710372e1a9408bd1e6b6e8c0aa0f95e2cd78229483cc35
import random from sympy import ( Abs, Add, E, Float, I, Integer, Max, Min, N, Poly, Pow, PurePoly, Rational, S, Symbol, cos, exp, expand_mul, oo, pi, signsimp, simplify, sin, sqrt, symbols, sympify, trigsimp, tan, sstr, diff, Function) from sympy.matrices.matrices import (ShapeError, MatrixError, NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive, _simplify) from sympy.matrices import ( GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix, casoratian, diag, eye, hessian, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix, MatrixSymbol) from sympy.core.compatibility import long, iterable, range, Hashable from sympy.core import Tuple, Wild from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.utilities.iterables import flatten, capture from sympy.utilities.pytest import raises, XFAIL, slow, skip, warns_deprecated_sympy from sympy.solvers import solve from sympy.assumptions import Q from sympy.tensor.array import Array from sympy.matrices.expressions import MatPow from sympy.abc import a, b, c, d, x, y, z, t # don't re-order this list classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) def test_args(): for c, cls in enumerate(classes): m = cls.zeros(3, 2) # all should give back the same type of arguments, e.g. ints for shape assert m.shape == (3, 2) and all(type(i) is int for i in m.shape) assert m.rows == 3 and type(m.rows) is int assert m.cols == 2 and type(m.cols) is int if not c % 2: assert type(m._mat) in (list, tuple, Tuple) else: assert type(m._smat) is dict def test_division(): v = Matrix(1, 2, [x, y]) assert v.__div__(z) == Matrix(1, 2, [x/z, y/z]) assert v.__truediv__(z) == Matrix(1, 2, [x/z, y/z]) assert v/z == Matrix(1, 2, [x/z, y/z]) def test_sum(): m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = Matrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_abs(): m = Matrix(1, 2, [-3, x]) n = Matrix(1, 2, [3, Abs(x)]) assert abs(m) == n def test_addition(): a = Matrix(( (1, 2), (3, 1), )) b = Matrix(( (1, 2), (3, 0), )) assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]]) def test_fancy_index_matrix(): for M in (Matrix, SparseMatrix): a = M(3, 3, range(9)) assert a == a[:, :] assert a[1, :] == Matrix(1, 3, [3, 4, 5]) assert a[:, 1] == Matrix([1, 4, 7]) assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[[0, 1], 2] == a[[0, 1], [2]] assert a[2, [0, 1]] == a[[2], [0, 1]] assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[0, 0] == 0 assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[::2, 1] == a[[0, 2], 1] assert a[1, ::2] == a[1, [0, 2]] a = M(3, 3, range(9)) assert a[[0, 2, 1, 2, 1], :] == Matrix([ [0, 1, 2], [6, 7, 8], [3, 4, 5], [6, 7, 8], [3, 4, 5]]) assert a[:, [0,2,1,2,1]] == Matrix([ [0, 2, 1, 2, 1], [3, 5, 4, 5, 4], [6, 8, 7, 8, 7]]) a = SparseMatrix.zeros(3) a[1, 2] = 2 a[0, 1] = 3 a[2, 0] = 4 assert a.extract([1, 1], [2]) == Matrix([ [2], [2]]) assert a.extract([1, 0], [2, 2, 2]) == Matrix([ [2, 2, 2], [0, 0, 0]]) assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([ [2, 0, 0, 0], [0, 0, 3, 0], [2, 0, 0, 0], [0, 4, 0, 4]]) def test_multiplication(): a = Matrix(( (1, 2), (3, 1), (0, 6), )) b = Matrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = matrix_multiply_elementwise(a, c) assert h == a.multiply_elementwise(c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: matrix_multiply_elementwise(a, b)) c = b * Symbol("x") assert isinstance(c, Matrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) R = Rational A = Matrix([[2, 3], [4, 5]]) assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2] assert (A**5)[:] == [6140, 8097, 10796, 14237] A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] assert A**0 == eye(3) assert A**1 == A assert (Matrix([[2]]) ** 100)[0, 0] == 2**100 assert eye(2)**10000000 == eye(2) assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]]) A = Matrix([[33, 24], [48, 57]]) assert (A**(S(1)/2))[:] == [5, 2, 4, 7] A = Matrix([[0, 4], [-1, 5]]) assert (A**(S(1)/2))**2 == A assert Matrix([[1, 0], [1, 1]])**(S(1)/2) == Matrix([[1, 0], [S.Half, 1]]) assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1.0, 0], [0.5, 1.0]]) from sympy.abc import a, b, n assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]]) assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]]) assert Matrix([[a, 1, 0], [0, a, 1], [0, 0, a]])**n == Matrix([ [a**n, a**(n-1)*n, a**(n-2)*(n-1)*n/2], [0, a**n, a**(n-1)*n], [0, 0, a**n]]) assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([ [a**n, a**(n-1)*n, 0], [0, a**n, 0], [0, 0, b**n]]) A = Matrix([[1, 0], [1, 7]]) assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3) A = Matrix([[2]]) assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \ A._eval_pow_by_recursion(10) # testing a matrix that cannot be jordan blocked issue 11766 m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10))) # test issue 11964 raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10))) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3 assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**(S(3)/2)) A = Matrix([[8, 1], [3, 2]]) assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]]) A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) n = Symbol('n', integer=True) assert isinstance(A**n, MatPow) n = Symbol('n', integer=True, negative=True) raises(ValueError, lambda: A**n) n = Symbol('n', integer=True, nonnegative=True) assert A**n == Matrix([ [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1], [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)], [ 0, 0, 1]]) assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**(S(3)/2)) A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]]) assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]]) assert A**5.0 == A**5 A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]]) n = Symbol("n") An = A**n assert An.subs(n, 2).doit() == A**2 raises(ValueError, lambda: An.subs(n, -2).doit()) assert An * An == A**(2*n) # concretizing behavior for non-integer and complex powers A = Matrix([[0,0,0],[0,0,0],[0,0,0]]) n = Symbol('n', integer=True, positive=True) assert A**n == A n = Symbol('n', integer=True, nonnegative=True) assert A**n == diag(0**n, 0**n, 0**n) assert (A**n).subs(n, 0) == eye(3) assert (A**n).subs(n, 1) == zeros(3) A = Matrix ([[2,0,0],[0,2,0],[0,0,2]]) assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1) assert A**I == diag (2**I, 2**I, 2**I) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**I) A = Matrix([[S.Half, S.Half], [S.Half, S.Half]]) assert A**S.Half == A A = Matrix([[1, 1],[3, 3]]) assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]]) def test_creation(): raises(ValueError, lambda: Matrix(5, 5, range(20))) raises(ValueError, lambda: Matrix(5, -1, [])) raises(IndexError, lambda: Matrix((1, 2))[2]) with raises(IndexError): Matrix((1, 2))[1:2] = 5 with raises(IndexError): Matrix((1, 2))[3] = 5 assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, []) # anything can go into a matrix (laplace_transform uses tuples) assert Matrix([[[], ()]]).tolist() == [[[], ()]] assert Matrix([[[], ()]]).T.tolist() == [[[]], [()]] a = Matrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = Matrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b assert Matrix(b) == b c23 = Matrix(2, 3, range(1, 7)) c13 = Matrix(1, 3, range(7, 10)) c = Matrix([c23, c13]) assert c.cols == 3 assert c.rows == 3 assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9] assert Matrix(eye(2)) == eye(2) assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2)) assert ImmutableMatrix(c) == c.as_immutable() assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable() assert c is not Matrix(c) dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]] M = Matrix(dat) assert M == Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) assert M.tolist() != dat # keep block form if evaluate=False assert Matrix(dat, evaluate=False).tolist() == dat A = MatrixSymbol("A", 2, 2) dat = [ones(2), A] assert Matrix(dat) == Matrix([ [ 1, 1], [ 1, 1], [A[0, 0], A[0, 1]], [A[1, 0], A[1, 1]]]) assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat] # 0-dim tolerance assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)]) raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)])) raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)])) def test_irregular_block(): assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] m = Matrix(lst) assert m.tolist() == lst def test_as_mutable(): assert zeros(0, 3).as_mutable() == zeros(0, 3) assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3)) assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0)) def test_determinant(): for M in [Matrix(), Matrix([[1]])]: assert ( M.det() == M._eval_det_bareiss() == M._eval_det_berkowitz() == M._eval_det_lu() == 1) M = Matrix(( (-3, 2), ( 8, -5) )) assert M.det(method="bareiss") == -1 assert M.det(method="berkowitz") == -1 assert M.det(method="lu") == -1 M = Matrix(( (x, 1), (y, 2*y) )) assert M.det(method="bareiss") == 2*x*y - y assert M.det(method="berkowitz") == 2*x*y - y assert M.det(method="lu") == 2*x*y - y M = Matrix(( (1, 1, 1), (1, 2, 3), (1, 3, 6) )) assert M.det(method="bareiss") == 1 assert M.det(method="berkowitz") == 1 assert M.det(method="lu") == 1 M = Matrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareiss") == -289 assert M.det(method="berkowitz") == -289 assert M.det(method="lu") == -289 M = Matrix(( ( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16) )) assert M.det(method="bareiss") == 0 assert M.det(method="berkowitz") == 0 assert M.det(method="lu") == 0 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )) assert M.det(method="bareiss") == 275 assert M.det(method="berkowitz") == 275 assert M.det(method="lu") == 275 M = Matrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )) assert M.det(method="bareiss") == -55 assert M.det(method="berkowitz") == -55 assert M.det(method="lu") == -55 M = Matrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )) assert M.det(method="bareiss") == 11664 assert M.det(method="berkowitz") == 11664 assert M.det(method="lu") == 11664 M = Matrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )) assert M.det(method="bareiss") == 123 assert M.det(method="berkowitz") == 123 assert M.det(method="lu") == 123 M = Matrix(( (x, y, z), (1, 0, 0), (y, z, x) )) assert M.det(method="bareiss") == z**2 - x*y assert M.det(method="berkowitz") == z**2 - x*y assert M.det(method="lu") == z**2 - x*y # issue 13835 a = symbols('a') M = lambda n: Matrix([[i + a*j for i in range(n)] for j in range(n)]) assert M(5).det() == 0 assert M(6).det() == 0 assert M(7).det() == 0 def test_slicing(): m0 = eye(4) assert m0[:3, :3] == eye(3) assert m0[2:4, 0:2] == zeros(2) m1 = Matrix(3, 3, lambda i, j: i + j) assert m1[0, :] == Matrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == Matrix(2, 1, (2, 3)) m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]]) def test_submatrix_assignment(): m = zeros(4) m[2:4, 2:4] = eye(2) assert m == Matrix(((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) m[:2, :2] = eye(2) assert m == eye(4) m[:, 0] = Matrix(4, 1, (1, 2, 3, 4)) assert m == Matrix(((1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1))) m[:, :] = zeros(4) assert m == zeros(4) m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)] assert m == Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == Matrix(((0, 2, 3, 4), (0, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) def test_extract(): m = Matrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_reshape(): m0 = eye(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = Matrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_applyfunc(): m0 = eye(3) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) def test_expand(): m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert Matrix([exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([ [1, 1, Rational(3, 2)], [0, 1, -1], [0, 0, 1]] ) def test_refine(): m0 = Matrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_random(): M = randMatrix(3, 3) M = randMatrix(3, 3, seed=3) assert M == randMatrix(3, 3, seed=3) M = randMatrix(3, 4, 0, 150) M = randMatrix(3, seed=4, symmetric=True) assert M == randMatrix(3, seed=4, symmetric=True) S = M.copy() S.simplify() assert S == M # doesn't fail when elements are Numbers, not int rng = random.Random(4) assert M == randMatrix(3, symmetric=True, prng=rng) # Ensure symmetry for size in (10, 11): # Test odd and even for percent in (100, 70, 30): M = randMatrix(size, symmetric=True, percent=percent, prng=rng) assert M == M.T M = randMatrix(10, min=1, percent=70) zero_count = 0 for i in range(M.shape[0]): for j in range(M.shape[1]): if M[i, j] == 0: zero_count += 1 assert zero_count == 30 def test_LUdecomp(): testmat = Matrix([[0, 2, 5, 3], [3, 3, 7, 4], [8, 4, 0, 2], [-2, 6, 3, 4]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4) testmat = Matrix([[6, -2, 7, 4], [0, 3, 6, 7], [1, -2, 7, 4], [-9, 2, 6, 3]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4) # non-square testmat = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) L, U, p = testmat.LUdecomposition(rankcheck=False) assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4, 3) # square and singular testmat = Matrix([[1, 2, 3], [2, 4, 6], [4, 5, 6]]) L, U, p = testmat.LUdecomposition(rankcheck=False) assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(3) M = Matrix(((1, x, 1), (2, y, 0), (y, 0, z))) L, U, p = M.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - M == zeros(3) mL = Matrix(( (1, 0, 0), (2, 3, 0), )) assert mL.is_lower is True assert mL.is_upper is False mU = Matrix(( (1, 2, 3), (0, 4, 5), )) assert mU.is_lower is False assert mU.is_upper is True # test FF LUdecomp M = Matrix([[1, 3, 3], [3, 2, 6], [3, 2, 2]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U M = Matrix([[1, 2, 3, 4], [3, -1, 2, 3], [3, 1, 3, -2], [6, -1, 0, 2]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U M = Matrix([[0, 0, 1], [2, 3, 0], [3, 1, 4]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U # issue 15794 M = Matrix( [[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) raises(ValueError, lambda : M.LUdecomposition_Simple(rankcheck=True)) def test_LUsolve(): A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = Matrix(3, 1, [3, 7, 5]) b = A*x soln = A.LUsolve(b) assert soln == x A = Matrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) x = Matrix(3, 1, [-1, 2, 5]) b = A*x soln = A.LUsolve(b) assert soln == x A = Matrix([[2, 1], [1, 0], [1, 0]]) # issue 14548 b = Matrix([3, 1, 1]) assert A.LUsolve(b) == Matrix([1, 1]) b = Matrix([3, 1, 2]) # inconsistent raises(ValueError, lambda: A.LUsolve(b)) A = Matrix([[0, -1, 2], [5, 10, 7], [8, 3, 4], [2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = Matrix([2, 1, -4]) b = A*x soln = A.LUsolve(b) assert soln == x A = Matrix([[0, -1, 2], [5, 10, 7]]) # underdetermined x = Matrix([-1, 2, 0]) b = A*x raises(NotImplementedError, lambda: A.LUsolve(b)) A = Matrix(4, 4, lambda i, j: 1/(i+j+1) if i != 3 else 0) b = Matrix.zeros(4, 1) raises(NotImplementedError, lambda: A.LUsolve(b)) def test_QRsolve(): A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = Matrix(3, 1, [3, 7, 5]) b = A*x soln = A.QRsolve(b) assert soln == x x = Matrix([[1, 2], [3, 4], [5, 6]]) b = A*x soln = A.QRsolve(b) assert soln == x A = Matrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) x = Matrix(3, 1, [-1, 2, 5]) b = A*x soln = A.QRsolve(b) assert soln == x x = Matrix([[7, 8], [9, 10], [11, 12]]) b = A*x soln = A.QRsolve(b) assert soln == x def test_inverse(): A = eye(4) assert A.inv() == eye(4) assert A.inv(method="LU") == eye(4) assert A.inv(method="ADJ") == eye(4) A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) Ainv = A.inv() assert A*Ainv == eye(3) assert A.inv(method="LU") == Ainv assert A.inv(method="ADJ") == Ainv # test that immutability is not a problem cls = ImmutableMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU'.split()) cls = ImmutableSparseMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'CH LDL'.split()) def test_matrix_inverse_mod(): A = Matrix(2, 1, [1, 0]) raises(NonSquareMatrixError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 0, 0, 0]) raises(ValueError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 2, 3, 4]) Ai = Matrix(2, 2, [1, 1, 0, 1]) assert A.inv_mod(3) == Ai A = Matrix(2, 2, [1, 0, 0, 1]) assert A.inv_mod(2) == A A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(ValueError, lambda: A.inv_mod(5)) A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1]) Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4]) assert A.inv_mod(9) == Ai A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5]) Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1]) assert A.inv_mod(6) == Ai A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5]) Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1]) assert A.inv_mod(7) == Ai def test_util(): R = Rational v1 = Matrix(1, 3, [1, 2, 3]) v2 = Matrix(1, 3, [3, 4, 5]) assert v1.norm() == sqrt(14) assert v1.project(v2) == Matrix(1, 3, [R(39)/25, R(52)/25, R(13)/5]) assert Matrix.zeros(1, 2) == Matrix(1, 2, [0, 0]) assert ones(1, 2) == Matrix(1, 2, [1, 1]) assert v1.copy() == v1 # cofactor assert eye(3) == eye(3).cofactor_matrix() test = Matrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]]) assert test.cofactor_matrix() == \ Matrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]]) test = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert test.cofactor_matrix() == \ Matrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]]) def test_jacobian_hessian(): L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = Matrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) f = x**2*y syms = [x, y] assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]]) f = x**2*y**3 assert hessian(f, syms) == \ Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]]) f = z + x*y**2 g = x**2 + 2*y**3 ans = Matrix([[0, 2*y], [2*y, 2*x]]) assert ans == hessian(f, Matrix([x, y])) assert ans == hessian(f, Matrix([x, y]).T) assert hessian(f, (y, x), [g]) == Matrix([ [ 0, 6*y**2, 2*x], [6*y**2, 2*x, 2*y], [ 2*x, 2*y, 0]]) def test_QR(): A = Matrix([[1, 2], [2, 3]]) Q, S = A.QRdecomposition() R = Rational assert Q == Matrix([ [ 5**R(-1, 2), (R(2)/5)*(R(1)/5)**R(-1, 2)], [2*5**R(-1, 2), (-R(1)/5)*(R(1)/5)**R(-1, 2)]]) assert S == Matrix([[5**R(1, 2), 8*5**R(-1, 2)], [0, (R(1)/5)**R(1, 2)]]) assert Q*S == A assert Q.T * Q == eye(2) A = Matrix([[1, 1, 1], [1, 1, 3], [2, 3, 4]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R def test_QR_non_square(): # Narrow (cols < rows) matrices A = Matrix([[9, 0, 26], [12, 0, -7], [0, 4, 4], [0, -3, -3]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, -1, 4], [1, 4, -2], [1, 4, 2], [1, -1, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix(2, 1, [1, 2]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Wide (cols > rows) matrices A = Matrix([[1, 2, 3], [4, 5, 6]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 2, 3, 4], [1, 4, 9, 16], [1, 8, 27, 64]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix(1, 2, [1, 2]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R def test_QR_trivial(): # Rank deficient matrices A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Zero rank matrices A = Matrix([[0, 0, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Rank deficient matrices with zero norm from beginning columns A = Matrix([[0, 0, 0], [1, 2, 3]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0, 0], [1, 2, 3, 4], [0, 0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0, 0], [1, 2, 3, 4], [0, 0, 0, 0], [2, 4, 6, 8]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R def test_nullspace(): # first test reduced row-ech form R = Rational M = Matrix([[5, 7, 2, 1], [1, 6, 2, -1]]) out, tmp = M.rref() assert out == Matrix([[1, 0, -R(2)/23, R(13)/23], [0, 1, R(8)/23, R(-6)/23]]) M = Matrix([[-5, -1, 4, -3, -1], [ 1, -1, -1, 1, 0], [-1, 0, 0, 0, 0], [ 4, 1, -4, 3, 1], [-2, 0, 2, -2, -1]]) assert M*M.nullspace()[0] == Matrix(5, 1, [0]*5) M = Matrix([[ 1, 3, 0, 2, 6, 3, 1], [-2, -6, 0, -2, -8, 3, 1], [ 3, 9, 0, 0, 6, 6, 2], [-1, -3, 0, 1, 0, 9, 3]]) out, tmp = M.rref() assert out == Matrix([[1, 3, 0, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 1, R(1)/3], [0, 0, 0, 0, 0, 0, 0]]) # now check the vectors basis = M.nullspace() assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0]) assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0]) assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0]) assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1)/3, 1]) # issue 4797; just see that we can do it when rows > cols M = Matrix([[1, 2], [2, 4], [3, 6]]) assert M.nullspace() def test_columnspace(): M = Matrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) # now check the vectors basis = M.columnspace() assert basis[0] == Matrix([1, -2, 0, 3]) assert basis[1] == Matrix([2, -5, -3, 6]) assert basis[2] == Matrix([2, -1, 4, -7]) #check by columnspace definition a, b, c, d, e = symbols('a b c d e') X = Matrix([a, b, c, d, e]) for i in range(len(basis)): eq=M*X-basis[i] assert len(solve(eq, X)) != 0 #check if rank-nullity theorem holds assert M.rank() == len(basis) assert len(M.nullspace()) + len(M.columnspace()) == M.cols def test_wronskian(): assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2 assert wronskian([exp(x), exp(2*x)], x) == exp(3*x) assert wronskian([exp(x), x], x) == exp(x) - x*exp(x) assert wronskian([1, x, x**2], x) == 2 w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \ exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3 assert wronskian([exp(x), cos(x), x**3], x).expand() == w1 assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \ == w1 w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2 assert wronskian([sin(x), cos(x), x**3], x).expand() == w2 assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \ == w2 assert wronskian([], x) == 1 def test_eigen(): R = Rational assert eye(3).charpoly(x) == Poly((x - 1)**3, x) assert eye(3).charpoly(y) == Poly((y - 1)**3, y) M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.eigenvals(multiple=False) == {S.One: 3} assert M.eigenvals(multiple=True) == [1, 1, 1] assert M.eigenvects() == ( [(1, 3, [Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])])]) assert M.left_eigenvects() == ( [(1, 3, [Matrix([[1, 0, 0]]), Matrix([[0, 1, 0]]), Matrix([[0, 0, 1]])])]) M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} assert M.eigenvects() == ( [ (-1, 1, [Matrix([-1, 1, 0])]), ( 0, 1, [Matrix([0, -1, 1])]), ( 2, 1, [Matrix([R(2, 3), R(1, 3), 1])]) ]) assert M.left_eigenvects() == ( [ (-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])]) ]) a = Symbol('a') M = Matrix([[a, 0], [0, 1]]) assert M.eigenvals() == {a: 1, S.One: 1} M = Matrix([[1, -1], [1, 3]]) assert M.eigenvects() == ([(2, 2, [Matrix(2, 1, [-1, 1])])]) assert M.left_eigenvects() == ([(2, 2, [Matrix([[1, 1]])])]) M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a = R(15, 2) b = 3*33**R(1, 2) c = R(13, 2) d = (R(33, 8) + 3*b/8) e = (R(33, 8) - 3*b/8) def NS(e, n): return str(N(e, n)) r = [ (a - b/2, 1, [Matrix([(12 + 24/(c - b/2))/((c - b/2)*e) + 3/(c - b/2), (6 + 12/(c - b/2))/e, 1])]), ( 0, 1, [Matrix([1, -2, 1])]), (a + b/2, 1, [Matrix([(12 + 24/(c + b/2))/((c + b/2)*d) + 3/(c + b/2), (6 + 12/(c + b/2))/d, 1])]), ] r1 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] r = M.eigenvects() r2 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] assert sorted(r1) == sorted(r2) eps = Symbol('eps', real=True) M = Matrix([[abs(eps), I*eps ], [-I*eps, abs(eps) ]]) assert M.eigenvects() == ( [ ( 0, 1, [Matrix([[-I*eps/abs(eps)], [1]])]), ( 2*abs(eps), 1, [ Matrix([[I*eps/abs(eps)], [1]]) ] ), ]) assert M.left_eigenvects() == ( [ (0, 1, [Matrix([[I*eps/Abs(eps), 1]])]), (2*Abs(eps), 1, [Matrix([[-I*eps/Abs(eps), 1]])]) ]) M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) M._eigenvects = M.eigenvects(simplify=False) assert max(i.q for i in M._eigenvects[0][2][0]) > 1 M._eigenvects = M.eigenvects(simplify=True) assert max(i.q for i in M._eigenvects[0][2][0]) == 1 M = Matrix([[S(1)/4, 1], [1, 1]]) assert M.eigenvects(simplify=True) == [ (S(5)/8 - sqrt(73)/8, 1, [Matrix([[-sqrt(73)/8 - S(3)/8], [1]])]), (S(5)/8 + sqrt(73)/8, 1, [Matrix([[-S(3)/8 + sqrt(73)/8], [1]])])] assert M.eigenvects(simplify=False) ==[ (S(5)/8 - sqrt(73)/8, 1, [Matrix([[-1/(-S(3)/8 + sqrt(73)/8)], [ 1]])]), (S(5)/8 + sqrt(73)/8, 1, [Matrix([[-1/(-sqrt(73)/8 - S(3)/8)], [ 1]])])] m = Matrix([[1, .6, .6], [.6, .9, .9], [.9, .6, .6]]) evals = { S(5)/4 - sqrt(385)/20: 1, sqrt(385)/20 + S(5)/4: 1, S.Zero: 1} assert m.eigenvals() == evals nevals = list(sorted(m.eigenvals(rational=False).keys())) sevals = list(sorted(evals.keys())) assert all(abs(nevals[i] - sevals[i]) < 1e-9 for i in range(len(nevals))) # issue 10719 assert Matrix([]).eigenvals() == {} assert Matrix([]).eigenvects() == [] # issue 15119 raises(NonSquareMatrixError, lambda : Matrix([[1, 2], [0, 4], [0, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 0], [3, 4], [5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals(error_when_incomplete = False)) raises(NonSquareMatrixError, lambda : Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals(error_when_incomplete = False)) # issue 15125 from sympy.core.function import count_ops q = Symbol("q", positive = True) m = Matrix([[-2, exp(-q), 1], [exp(q), -2, 1], [1, 1, -2]]) assert count_ops(m.eigenvals(simplify=False)) > count_ops(m.eigenvals(simplify=True)) assert count_ops(m.eigenvals(simplify=lambda x: x)) > count_ops(m.eigenvals(simplify=True)) assert isinstance(m.eigenvals(simplify=True, multiple=False), dict) assert isinstance(m.eigenvals(simplify=True, multiple=True), list) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=False), dict) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=True), list) def test_definite(): # Examples from Gilbert Strang, "Introduction to Linear Algebra" # Positive definite matrices m = Matrix([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[5, 4], [4, 5]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Positive semidefinite matrices m = Matrix([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[1, 2], [2, 4]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Examples from Mathematica documentation # Non-hermitian positive definite matrices m = Matrix([[2, 3], [4, 8]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[1, 2*I], [-I, 4]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Symbolic matrices examples a = Symbol('a', positive=True) b = Symbol('b', negative=True) m = Matrix([[a, 0, 0], [0, a, 0], [0, 0, a]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[b, 0, 0], [0, b, 0], [0, 0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == True assert m.is_negative_semidefinite == True assert m.is_indefinite == False m = Matrix([[a, 0], [0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == True def test_positive_definite(): # Test alternative algorithms for testing positive definitiveness. m = Matrix([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) assert m._eval_is_positive_definite(method='eigen') == True assert m._eval_is_positive_definite(method='LDL') == True assert m._eval_is_positive_definite(method='CH') == True m = Matrix([[5, 4], [4, 5]]) assert m._eval_is_positive_definite(method='eigen') == True assert m._eval_is_positive_definite(method='LDL') == True assert m._eval_is_positive_definite(method='CH') == True m = Matrix([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]]) assert m._eval_is_positive_definite(method='eigen') == False assert m._eval_is_positive_definite(method='LDL') == False assert m._eval_is_positive_definite(method='CH') == False m = Matrix([[1, 2], [2, 4]]) assert m._eval_is_positive_definite(method='eigen') == False assert m._eval_is_positive_definite(method='LDL') == False assert m._eval_is_positive_definite(method='CH') == False m = Matrix([[2, 3], [4, 8]]) assert m._eval_is_positive_definite(method='eigen') == True assert m._eval_is_positive_definite(method='LDL') == True assert m._eval_is_positive_definite(method='CH') == True m = Matrix([[1, 2*I], [-I, 4]]) assert m._eval_is_positive_definite(method='eigen') == True assert m._eval_is_positive_definite(method='LDL') == True assert m._eval_is_positive_definite(method='CH') == True a = Symbol('a', positive=True) b = Symbol('b', negative=True) m = Matrix([[a, 0, 0], [0, a, 0], [0, 0, a]]) assert m._eval_is_positive_definite(method='eigen') == True assert m._eval_is_positive_definite(method='LDL') == True assert m._eval_is_positive_definite(method='CH') == True m = Matrix([[b, 0, 0], [0, b, 0], [0, 0, b]]) assert m._eval_is_positive_definite(method='eigen') == False assert m._eval_is_positive_definite(method='LDL') == False assert m._eval_is_positive_definite(method='CH') == False m = Matrix([[a, 0], [0, b]]) assert m._eval_is_positive_definite(method='eigen') == False assert m._eval_is_positive_definite(method='LDL') == False assert m._eval_is_positive_definite(method='CH') == False def test_subs(): assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([(x - 1)*(y - 1)]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2) def test_xreplace(): assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2}) def test_simplify(): n = Symbol('n') f = Function('f') M = Matrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) M.simplify() assert M == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = Matrix([[eq]]) M.simplify() assert M == Matrix([[eq]]) M.simplify(ratio=oo) == M assert M == Matrix([[eq.simplify(ratio=oo)]]) def test_transpose(): M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]]) assert M.T == Matrix( [ [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [0, 0] ]) assert M.T.T == M assert M.T == M.transpose() def test_conjugate(): M = Matrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_conj_dirac(): raises(AttributeError, lambda: eye(3).D) M = Matrix([[1, I, I, I], [0, 1, I, I], [0, 0, 1, I], [0, 0, 0, 1]]) assert M.D == Matrix([[ 1, 0, 0, 0], [-I, 1, 0, 0], [-I, -I, -1, 0], [-I, -I, I, -1]]) def test_trace(): M = Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_shape(): M = Matrix([[x, 0, 0], [0, y, 0]]) assert M.shape == (2, 3) def test_col_row_op(): M = Matrix([[x, 0, 0], [0, y, 0]]) M.row_op(1, lambda r, j: r + j + 1) assert M == Matrix([[x, 0, 0], [1, y + 2, 3]]) M.col_op(0, lambda c, j: c + y**j) assert M == Matrix([[x + 1, 0, 0], [1 + y, y + 2, 3]]) # neither row nor slice give copies that allow the original matrix to # be changed assert M.row(0) == Matrix([[x + 1, 0, 0]]) r1 = M.row(0) r1[0] = 42 assert M[0, 0] == x + 1 r1 = M[0, :-1] # also testing negative slice r1[0] = 42 assert M[0, 0] == x + 1 c1 = M.col(0) assert c1 == Matrix([x + 1, 1 + y]) c1[0] = 0 assert M[0, 0] == x + 1 c1 = M[:, 0] c1[0] = 42 assert M[0, 0] == x + 1 def test_zip_row_op(): for cls in classes[:2]: # XXX: immutable matrices don't support row ops M = cls.eye(3) M.zip_row_op(1, 0, lambda v, u: v + 2*u) assert M == cls([[1, 0, 0], [2, 1, 0], [0, 0, 1]]) M = cls.eye(3)*2 M[0, 1] = -1 M.zip_row_op(1, 0, lambda v, u: v + 2*u); M assert M == cls([[2, -1, 0], [4, 0, 0], [0, 0, 2]]) def test_issue_3950(): m = Matrix([1, 2, 3]) a = Matrix([1, 2, 3]) b = Matrix([2, 2, 3]) assert not (m in []) assert not (m in [1]) assert m != 1 assert m == a assert m != b def test_issue_3981(): class Index1(object): def __index__(self): return 1 class Index2(object): def __index__(self): return 2 index1 = Index1() index2 = Index2() m = Matrix([1, 2, 3]) assert m[index2] == 3 m[index2] = 5 assert m[2] == 5 m = Matrix([[1, 2, 3], [4, 5, 6]]) assert m[index1, index2] == 6 assert m[1, index2] == 6 assert m[index1, 2] == 6 m[index1, index2] = 4 assert m[1, 2] == 4 m[1, index2] = 6 assert m[1, 2] == 6 m[index1, 2] = 8 assert m[1, 2] == 8 def test_evalf(): a = Matrix([sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_is_symbolic(): a = Matrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = Matrix([[1, x, 3]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3]]) assert a.is_symbolic() is False a = Matrix([[1], [x], [3]]) assert a.is_symbolic() is True a = Matrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = Matrix([[1, 2, 3]]) assert a.is_upper is True a = Matrix([[1], [2], [3]]) assert a.is_upper is False a = zeros(4, 2) assert a.is_upper is True def test_is_lower(): a = Matrix([[1, 2, 3]]) assert a.is_lower is False a = Matrix([[1], [2], [3]]) assert a.is_lower is True def test_is_nilpotent(): a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0]) assert a.is_nilpotent() a = Matrix([[1, 0], [0, 1]]) assert not a.is_nilpotent() a = Matrix([]) assert a.is_nilpotent() def test_zeros_ones_fill(): n, m = 3, 5 a = zeros(n, m) a.fill( 5 ) b = 5 * ones(n, m) assert a == b assert a.rows == b.rows == 3 assert a.cols == b.cols == 5 assert a.shape == b.shape == (3, 5) assert zeros(2) == zeros(2, 2) assert ones(2) == ones(2, 2) assert zeros(2, 3) == Matrix(2, 3, [0]*6) assert ones(2, 3) == Matrix(2, 3, [1]*6) def test_empty_zeros(): a = zeros(0) assert a == Matrix() a = zeros(0, 2) assert a.rows == 0 assert a.cols == 2 a = zeros(2, 0) assert a.rows == 2 assert a.cols == 0 def test_issue_3749(): a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]]) assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]]) assert Matrix([ [x, -x, x**2], [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \ Matrix([[oo, -oo, oo], [oo, 0, oo]]) assert Matrix([ [(exp(x) - 1)/x, 2*x + y*x, x**x ], [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \ Matrix([[1, 0, 1], [oo, 0, sin(1)]]) assert a.integrate(x) == Matrix([ [Rational(1, 3)*x**3, y*x**2/2], [x**2*sin(y)/2, x**2*cos(y)/2]]) def test_inv_iszerofunc(): A = eye(4) A.col_swap(0, 1) for method in "GE", "LU": assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \ A.inv(method="ADJ") def test_jacobian_metrics(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi)]) Y = Matrix([rho, phi]) J = X.jacobian(Y) assert J == X.jacobian(Y.T) assert J == (X.T).jacobian(Y) assert J == (X.T).jacobian(Y.T) g = J.T*eye(J.shape[0])*J g = g.applyfunc(trigsimp) assert g == Matrix([[1, 0], [0, rho**2]]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) Y = Matrix([rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J def test_issue_4564(): X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)]) Y = Matrix([x, y, z]) for i in range(1, 3): for j in range(1, 3): X_slice = X[:i, :] Y_slice = Y[:j, :] J = X_slice.jacobian(Y_slice) assert J.rows == i assert J.cols == j for k in range(j): assert J[:, k] == X_slice def test_nonvectorJacobian(): X = Matrix([[exp(x + y + z), exp(x + y + z)], [exp(x + y + z), exp(x + y + z)]]) raises(TypeError, lambda: X.jacobian(Matrix([x, y, z]))) X = X[0, :] Y = Matrix([[x, y], [x, z]]) raises(TypeError, lambda: X.jacobian(Y)) raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ]))) def test_vec(): m = Matrix([[1, 3], [2, 4]]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_vech(): m = Matrix([[1, 2], [2, 3]]) m_vech = m.vech() assert m_vech.cols == 1 for i in range(3): assert m_vech[i] == i + 1 m_vech = m.vech(diagonal=False) assert m_vech[0] == 2 m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]]) m_vech = m.vech(diagonal=False) assert m_vech[0] == x*(x + y) m = Matrix([[1, x*(x + y)], [y*x, 1]]) m_vech = m.vech(diagonal=False, check_symmetry=False) assert m_vech[0] == y*x def test_vech_errors(): m = Matrix([[1, 3]]) raises(ShapeError, lambda: m.vech()) m = Matrix([[1, 3], [2, 4]]) raises(ValueError, lambda: m.vech()) raises(ShapeError, lambda: Matrix([ [1, 3] ]).vech()) raises(ValueError, lambda: Matrix([ [1, 3], [2, 4] ]).vech()) def test_diag(): # mostly tested in testcommonmatrix.py assert diag([1, 2, 3]) == Matrix([1, 2, 3]) m = [1, 2, [3]] raises(ValueError, lambda: diag(m)) assert diag(m, strict=False) == Matrix([1, 2, 3]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert diag(a, b, b).get_diag_blocks() == [a, b, b] assert diag(a, b, c).get_diag_blocks() == [a, b, c] assert diag(a, c, b).get_diag_blocks() == [a, c, b] assert diag(c, c, b).get_diag_blocks() == [c, c, b] def test_inv_block(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A = diag(a, b, b) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv()) A = diag(a, b, c) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv()) A = diag(a, c, b) assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv()) A = diag(a, a, b, a, c, a) assert A.inv(try_block_diag=True) == diag( a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv()) assert A.inv(try_block_diag=True, method="ADJ") == diag( a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"), a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ")) def test_creation_args(): """ Check that matrix dimensions can be specified using any reasonable type (see issue 4614). """ raises(ValueError, lambda: zeros(3, -1)) raises(TypeError, lambda: zeros(1, 2, 3, 4)) assert zeros(long(3)) == zeros(3) assert zeros(Integer(3)) == zeros(3) raises(ValueError, lambda: zeros(3.)) assert eye(long(3)) == eye(3) assert eye(Integer(3)) == eye(3) raises(ValueError, lambda: eye(3.)) assert ones(long(3), Integer(4)) == ones(3, 4) raises(TypeError, lambda: Matrix(5)) raises(TypeError, lambda: Matrix(1, 2)) raises(ValueError, lambda: Matrix([1, [2]])) def test_diagonal_symmetrical(): m = Matrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = Matrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = diag(1, 2, 3) assert m.is_diagonal() assert m.is_symmetric() m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = Matrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = Matrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = Matrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_diagonalization(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) assert not m.is_diagonalizable() assert not m.is_symmetric() raises(NonSquareMatrixError, lambda: m.diagonalize()) # diagonalizable m = diag(1, 2, 3) (P, D) = m.diagonalize() assert P == eye(3) assert D == m m = Matrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(2, 2, [1, 0, 0, 3]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == eye(2) assert D == m m = Matrix(2, 2, [1, 1, 0, 0]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D for i in P: assert i.as_numer_denom()[1] == 1 m = Matrix(2, 2, [1, 0, 0, 0]) assert m.is_diagonal() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == Matrix([[0, 1], [1, 0]]) # diagonalizable, complex only m = Matrix(2, 2, [0, 1, -1, 0]) assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D # not diagonalizable m = Matrix(2, 2, [0, 1, 0, 0]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) # symbolic a, b, c, d = symbols('a b c d') m = Matrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() def test_issue_15887(): # Mutable matrix should not use cache a = MutableDenseMatrix([[0, 1], [1, 0]]) assert a.is_diagonalizable() is True a[1, 0] = 0 assert a.is_diagonalizable() is False a = MutableDenseMatrix([[0, 1], [1, 0]]) a.diagonalize() a[1, 0] = 0 raises(MatrixError, lambda: a.diagonalize()) # Test deprecated cache and kwargs with warns_deprecated_sympy(): a.is_diagonalizable(clear_cache=True) with warns_deprecated_sympy(): a.is_diagonalizable(clear_subproducts=True) @XFAIL def test_eigen_vects(): m = Matrix(2, 2, [1, 0, 0, I]) raises(NotImplementedError, lambda: m.is_diagonalizable(True)) # !!! bug because of eigenvects() or roots(x**2 + (-1 - I)*x + I, x) # see issue 5292 assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) (P, D) = m.diagonalize(True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # diagonalizable m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13]) Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J assert Jmust == m.diagonalize()[1] # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1]) # m.jordan_form() # very long # m.jordan_form() # # diagonalizable, complex only # Jordan cells # complexity: one of eigenvalues is zero m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) # The blocks are ordered according to the value of their eigenvalues, # in order to make the matrix compatible with .diagonalize() Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J # complexity: all of eigenvalues are equal m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6]) # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1]) # same here see 1456ff Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1]) P, J = m.jordan_form() assert Jmust == J # complexity: two of eigenvalues are zero m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4]) Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5]) Jmust = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2] ) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4]) # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2]) # same here see 1456ff Jmust = Matrix(4, 4, [-2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2]) assert not m.is_diagonalizable() Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4]) P, J = m.jordan_form() assert Jmust == J # checking for maximum precision to remain unchanged m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)], [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]]) P, J = m.jordan_form() for term in J._mat: if isinstance(term, Float): assert term._prec == 110 def test_jordan_form_complex_issue_9274(): A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) p = 2 - 4*I; q = 2 + 4*I; Jmust1 = Matrix([[p, 1, 0, 0], [0, p, 0, 0], [0, 0, q, 1], [0, 0, 0, q]]) Jmust2 = Matrix([[q, 1, 0, 0], [0, q, 0, 0], [0, 0, p, 1], [0, 0, 0, p]]) P, J = A.jordan_form() assert J == Jmust1 or J == Jmust2 assert simplify(P*J*P.inv()) == A def test_issue_10220(): # two non-orthogonal Jordan blocks with eigenvalue 1 M = Matrix([[1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) P, J = M.jordan_form() assert P == Matrix([[0, 1, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) assert J == Matrix([ [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_jordan_form_issue_15858(): A = Matrix([ [1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) (P, J) = A.jordan_form() assert simplify(P) == Matrix([ [-I, -I/2, I, I/2], [-1 + I, 0, -1 - I, 0], [0, I*(-1 + I)/2, 0, I*(1 + I)/2], [0, 1, 0, 1]]) assert J == Matrix([ [-I, 1, 0, 0], [0, -I, 0, 0], [0, 0, I, 1], [0, 0, 0, I]]) def test_Matrix_berkowitz_charpoly(): UA, K_i, K_w = symbols('UA K_i K_w') A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)], [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]]) charpoly = A.charpoly(x) assert charpoly == \ Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x + K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)') assert type(charpoly) is PurePoly A = Matrix([[1, 3], [2, 0]]) assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6) A = Matrix([[1, 2], [x, 0]]) p = A.charpoly(x) assert p.gen != x assert p.as_expr().subs(p.gen, x) == x**2 - 3*x def test_exp_jordan_block(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]]) m = Matrix.jordan_block(3, l) assert m._eval_matrix_exp_jblock() == \ Matrix([ [exp(l), exp(l), exp(l)/2], [0, exp(l), exp(l)], [0, 0, exp(l)]]) def test_exp(): m = Matrix([[3, 4], [0, -2]]) m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]]) assert m.exp() == m_exp assert exp(m) == m_exp m = Matrix([[1, 0], [0, 1]]) assert m.exp() == Matrix([[E, 0], [0, E]]) assert exp(m) == Matrix([[E, 0], [0, E]]) m = Matrix([[1, -1], [1, 1]]) assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]]) def test_has(): A = Matrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = A.subs(x, 2) assert not A.has(x) def test_LUdecomposition_Simple_iszerofunc(): # Test if callable passed to matrices.LUdecomposition_Simple() as iszerofunc keyword argument is used inside # matrices.LUdecomposition_Simple() magic_string = "I got passed in!" def goofyiszero(value): raise ValueError(magic_string) try: lu, p = Matrix([[1, 0], [0, 1]]).LUdecomposition_Simple(iszerofunc=goofyiszero) except ValueError as err: assert magic_string == err.args[0] return assert False def test_LUdecomposition_iszerofunc(): # Test if callable passed to matrices.LUdecomposition() as iszerofunc keyword argument is used inside # matrices.LUdecomposition_Simple() magic_string = "I got passed in!" def goofyiszero(value): raise ValueError(magic_string) try: l, u, p = Matrix([[1, 0], [0, 1]]).LUdecomposition(iszerofunc=goofyiszero) except ValueError as err: assert magic_string == err.args[0] return assert False def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=None indicates that no simplifications # should be performed during the search. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, Rational(1, 2)]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column) assert pivot_val == Rational(1, 2) def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=_simplify indicates that the search # should attempt to simplify candidate pivots. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x**2, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert pivot_val == 1 def test_find_reasonable_pivot_naive_simplifies(): # Test if matrices._find_reasonable_pivot_naive() # simplifies candidate pivots, and reports # their offsets correctly. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert len(simplified) == 2 assert simplified[0][0] == 1 assert simplified[0][1] == 1+x assert simplified[1][0] == 2 assert simplified[1][1] == 1 def test_errors(): raises(ValueError, lambda: Matrix([[1, 2], [1]])) raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5]) raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2]) raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True)) raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6)) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2]))) raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0, 1], set([]))) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv()) raises(ShapeError, lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]]))) raises( ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1, 2], [3, 4]]))) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace()) raises(TypeError, lambda: Matrix([1]).applyfunc(1)) raises(ShapeError, lambda: Matrix([1]).LUsolve(Matrix([[1, 2], [3, 4]]))) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5)) raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1)) raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1)) raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2]))) raises(ShapeError, lambda: Matrix([1, 2]).dot([])) raises(TypeError, lambda: Matrix([1, 2]).dot('a')) with warns_deprecated_sympy(): Matrix([[1, 2], [3, 4]]).dot(Matrix([[4, 3], [1, 2]])) raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3])) raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp()) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized()) raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method')) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det()) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method')) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function")) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False)) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]]))) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), [])) raises(ValueError, lambda: hessian(Symbol('x')**2, 'a')) raises(IndexError, lambda: eye(3)[5, 2]) raises(IndexError, lambda: eye(3)[2, 5]) M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) raises(ValueError, lambda: M.det('method=LU_decomposition()')) V = Matrix([[10, 10, 10]]) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.row_insert(4.7, V)) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.col_insert(-4.2, V)) def test_len(): assert len(Matrix()) == 0 assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2 assert len(Matrix(0, 2, lambda i, j: 0)) == \ len(Matrix(2, 0, lambda i, j: 0)) == 0 assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6 assert Matrix([1]) == Matrix([[1]]) assert not Matrix() assert Matrix() == Matrix([]) def test_integrate(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2))) assert A.integrate(x) == \ Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3))) assert A.integrate(y) == \ Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2))) def test_limit(): A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1))) assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1))) def test_diff(): A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) assert isinstance(A.diff(x), type(A)) assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) A_imm = A.as_immutable() assert isinstance(A_imm.diff(x), type(A_imm)) assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) def test_diff_by_matrix(): # Derive matrix by matrix: A = MutableDenseMatrix([[x, y], [z, t]]) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) A_imm = A.as_immutable() assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Derive a constant matrix: assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]]) B = ImmutableDenseMatrix([a, b]) assert A.diff(B) == Array.zeros(2, 1, 2, 2) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Test diff with tuples: dB = B.diff([[a, b]]) assert dB.shape == (2, 2, 1) assert dB == Array([[[1], [0]], [[0], [1]]]) f = Function("f") fxyz = f(x, y, z) assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)]) assert fxyz.diff(([x, y, z], 2)) == Array([ [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)], [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)], [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)], ]) expr = sin(x)*exp(y) assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)]) assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]]) # Test different notations: fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0] fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0] fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)]) # Test scalar derived by matrix remains matrix: res = x.diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[1, 0]]) res = (x**3).diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[3*x**2, 0]]) def test_getattr(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) raises(AttributeError, lambda: A.nonexistantattribute) assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) def test_hessenberg(): A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = A.T assert A.is_lower_hessenberg A[0, -1] = 1 assert A.is_lower_hessenberg is False A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg A = zeros(5, 2) assert A.is_upper_hessenberg def test_cholesky(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = Matrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) def test_LDLdecomposition(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).LDLdecomposition(hermitian=False)) A = Matrix(((1, 5), (5, 1))) L, D = A.LDLdecomposition(hermitian=False) assert L * D * L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L, D = A.LDLdecomposition() assert L * D * L.T == A assert L.is_lower assert L == Matrix([[1, 0, 0], [ S(3)/5, 1, 0], [S(-1)/5, S(1)/3, 1]]) assert D.is_diagonal() assert D == Matrix([[25, 0, 0], [0, 9, 0], [0, 0, 9]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) L, D = A.LDLdecomposition() assert expand_mul(L * D * L.H) == A assert L == Matrix(((1, 0, 0), (I/2, 1, 0), (S(1)/2 - I/2, 0, 1))) assert D == Matrix(((4, 0, 0), (0, 1, 0), (0, 0, 9))) def test_cholesky_solve(): A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = Matrix(3, 1, [3, 7, 5]) b = A*x soln = A.cholesky_solve(b) assert soln == x A = Matrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) x = Matrix(3, 1, [-1, 2, 5]) b = A*x soln = A.cholesky_solve(b) assert soln == x A = Matrix(((1, 5), (5, 1))) x = Matrix((4, -3)) b = A*x soln = A.cholesky_solve(b) assert soln == x A = Matrix(((9, 3*I), (-3*I, 5))) x = Matrix((-2, 1)) b = A*x soln = A.cholesky_solve(b) assert expand_mul(soln) == x A = Matrix(((9*I, 3), (-3 + I, 5))) x = Matrix((2 + 3*I, -1)) b = A*x soln = A.cholesky_solve(b) assert expand_mul(soln) == x a00, a01, a11, b0, b1 = symbols('a00, a01, a11, b0, b1') A = Matrix(((a00, a01), (a01, a11))) b = Matrix((b0, b1)) x = A.cholesky_solve(b) assert simplify(A*x) == b def test_LDLsolve(): A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = Matrix(3, 1, [3, 7, 5]) b = A*x soln = A.LDLsolve(b) assert soln == x A = Matrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) x = Matrix(3, 1, [-1, 2, 5]) b = A*x soln = A.LDLsolve(b) assert soln == x A = Matrix(((9, 3*I), (-3*I, 5))) x = Matrix((-2, 1)) b = A*x soln = A.LDLsolve(b) assert expand_mul(soln) == x A = Matrix(((9*I, 3), (-3 + I, 5))) x = Matrix((2 + 3*I, -1)) b = A*x soln = A.LDLsolve(b) assert expand_mul(soln) == x A = Matrix(((9, 3), (3, 9))) x = Matrix((1, 1)) b = A * x soln = A.LDLsolve(b) assert expand_mul(soln) == x A = Matrix([[-5, -3, -4], [-3, -7, 7]]) x = Matrix([[8], [7], [-2]]) b = A * x raises(NotImplementedError, lambda: A.LDLsolve(b)) def test_lower_triangular_solve(): raises(NonSquareMatrixError, lambda: Matrix([1, 0]).lower_triangular_solve(Matrix([0, 1]))) raises(ShapeError, lambda: Matrix([[1, 0], [0, 1]]).lower_triangular_solve(Matrix([1]))) raises(ValueError, lambda: Matrix([[2, 1], [1, 2]]).lower_triangular_solve( Matrix([[1, 0], [0, 1]]))) A = Matrix([[1, 0], [0, 1]]) B = Matrix([[x, y], [y, x]]) C = Matrix([[4, 8], [2, 9]]) assert A.lower_triangular_solve(B) == B assert A.lower_triangular_solve(C) == C def test_upper_triangular_solve(): raises(NonSquareMatrixError, lambda: Matrix([1, 0]).upper_triangular_solve(Matrix([0, 1]))) raises(TypeError, lambda: Matrix([[1, 0], [0, 1]]).upper_triangular_solve(Matrix([1]))) raises(TypeError, lambda: Matrix([[2, 1], [1, 2]]).upper_triangular_solve( Matrix([[1, 0], [0, 1]]))) A = Matrix([[1, 0], [0, 1]]) B = Matrix([[x, y], [y, x]]) C = Matrix([[2, 4], [3, 8]]) assert A.upper_triangular_solve(B) == B assert A.upper_triangular_solve(C) == C def test_diagonal_solve(): raises(TypeError, lambda: Matrix([1, 1]).diagonal_solve(Matrix([1]))) A = Matrix([[1, 0], [0, 1]])*2 B = Matrix([[x, y], [y, x]]) assert A.diagonal_solve(B) == B/2 A = Matrix([[1, 0], [1, 2]]) raises(TypeError, lambda: A.diagonal_solve(B)) def test_matrix_norm(): # Vector Tests # Test columns and symbols x = Symbol('x', real=True) v = Matrix([cos(x), sin(x)]) assert trigsimp(v.norm(2)) == 1 assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, S(1)/10) # Test Rows A = Matrix([[5, Rational(3, 2)]]) assert A.norm() == Pow(25 + Rational(9, 4), S(1)/2) assert A.norm(oo) == max(A._mat) assert A.norm(-oo) == min(A._mat) # Matrix Tests # Intuitive test A = Matrix([[1, 1], [1, 1]]) assert A.norm(2) == 2 assert A.norm(-2) == 0 assert A.norm('frobenius') == 2 assert eye(10).norm(2) == eye(10).norm(-2) == 1 assert A.norm(oo) == 2 # Test with Symbols and more complex entries A = Matrix([[3, y, y], [x, S(1)/2, -pi]]) assert (A.norm('fro') == sqrt(S(37)/4 + 2*abs(y)**2 + pi**2 + x**2)) # Check non-square A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]]) assert A.norm(2) == sqrt(S(389)/8 + sqrt(78665)/8) assert A.norm(-2) == S(0) assert A.norm('frobenius') == sqrt(389)/2 # Test properties of matrix norms # https://en.wikipedia.org/wiki/Matrix_norm#Definition # Two matrices A = Matrix([[1, 2], [3, 4]]) B = Matrix([[5, 5], [-2, 2]]) C = Matrix([[0, -I], [I, 0]]) D = Matrix([[1, 0], [0, -1]]) L = [A, B, C, D] alpha = Symbol('alpha', real=True) for order in ['fro', 2, -2]: # Zero Check assert zeros(3).norm(order) == S(0) # Check Triangle Inequality for all Pairs of Matrices for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert (dif >= 0) # Scalar multiplication linearity for M in [A, B, C, D]: dif = simplify((alpha*M).norm(order) - abs(alpha) * M.norm(order)) assert dif == 0 # Test Properties of Vector Norms # https://en.wikipedia.org/wiki/Vector_norm # Two column vectors a = Matrix([1, 1 - 1*I, -3]) b = Matrix([S(1)/2, 1*I, 1]) c = Matrix([-1, -1, -1]) d = Matrix([3, 2, I]) e = Matrix([Integer(1e2), Rational(1, 1e2), 1]) L = [a, b, c, d, e] alpha = Symbol('alpha', real=True) for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]: # Zero Check if order > 0: assert Matrix([0, 0, 0]).norm(order) == S(0) # Triangle inequality on all pairs if order >= 1: # Triangle InEq holds only for these norms for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert simplify(dif >= 0) is S.true # Linear to scalar multiplication if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]: for X in L: dif = simplify((alpha*X).norm(order) - (abs(alpha) * X.norm(order))) assert dif == 0 # ord=1 M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6]) assert M.norm(1) == 13 def test_condition_number(): x = Symbol('x', real=True) A = eye(3) A[0, 0] = 10 A[2, 2] = S(1)/10 assert A.condition_number() == 100 A[1, 1] = x assert A.condition_number() == Max(10, Abs(x)) / Min(S(1)/10, Abs(x)) M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) Mc = M.condition_number() assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in [Rational(1, 5), Rational(1, 2), Rational(1, 10), pi/2, pi, 7*pi/4 ]) #issue 10782 assert Matrix([]).condition_number() == 0 def test_equality(): A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9))) B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1))) assert A == A[:, :] assert not A != A[:, :] assert not A == B assert A != B assert A != 10 assert not A == 10 # A SparseMatrix can be equal to a Matrix C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert C == D assert not C != D def test_col_join(): assert eye(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l def test_normalized(): assert Matrix([3, 4]).normalized() == \ Matrix([Rational(3, 5), Rational(4, 5)]) # Zero vector trivial cases assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0]) # Machine precision error truncation trivial cases m = Matrix([0,0,1.e-100]) assert m.normalized( iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero ) == Matrix([0, 0, 0]) def test_print_nonzero(): assert capture(lambda: eye(3).print_nonzero()) == \ '[X ]\n[ X ]\n[ X]\n' assert capture(lambda: eye(3).print_nonzero('.')) == \ '[. ]\n[ . ]\n[ .]\n' def test_zeros_eye(): assert Matrix.eye(3) == eye(3) assert Matrix.zeros(3) == zeros(3) assert ones(3, 4) == Matrix(3, 4, [1]*12) i = Matrix([[1, 0], [0, 1]]) z = Matrix([[0, 0], [0, 0]]) for cls in classes: m = cls.eye(2) assert i == m # but m == i will fail if m is immutable assert i == eye(2, cls=cls) assert type(m) == cls m = cls.zeros(2) assert z == m assert z == zeros(2, cls=cls) assert type(m) == cls def test_is_zero(): assert Matrix().is_zero assert Matrix([[0, 0], [0, 0]]).is_zero assert zeros(3, 4).is_zero assert not eye(3).is_zero assert Matrix([[x, 0], [0, 0]]).is_zero == None assert SparseMatrix([[x, 0], [0, 0]]).is_zero == None assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero == None assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero == None assert Matrix([[x, 1], [0, 0]]).is_zero == False a = Symbol('a', nonzero=True) assert Matrix([[a, 0], [0, 0]]).is_zero == False def test_rotation_matrices(): # This tests the rotation matrices by rotating about an axis and back. theta = pi/3 r3_plus = rot_axis3(theta) r3_minus = rot_axis3(-theta) r2_plus = rot_axis2(theta) r2_minus = rot_axis2(-theta) r1_plus = rot_axis1(theta) r1_minus = rot_axis1(-theta) assert r3_minus*r3_plus*eye(3) == eye(3) assert r2_minus*r2_plus*eye(3) == eye(3) assert r1_minus*r1_plus*eye(3) == eye(3) # Check the correctness of the trace of the rotation matrix assert r1_plus.trace() == 1 + 2*cos(theta) assert r2_plus.trace() == 1 + 2*cos(theta) assert r3_plus.trace() == 1 + 2*cos(theta) # Check that a rotation with zero angle doesn't change anything. assert rot_axis1(0) == eye(3) assert rot_axis2(0) == eye(3) assert rot_axis3(0) == eye(3) def test_DeferredVector(): assert str(DeferredVector("vector")[4]) == "vector[4]" assert sympify(DeferredVector("d")) == DeferredVector("d") raises(IndexError, lambda: DeferredVector("d")[-1]) assert str(DeferredVector("d")) == "d" assert repr(DeferredVector("test")) == "DeferredVector('test')" def test_DeferredVector_not_iterable(): assert not iterable(DeferredVector('X')) def test_DeferredVector_Matrix(): raises(TypeError, lambda: Matrix(DeferredVector("V"))) def test_GramSchmidt(): R = Rational m1 = Matrix(1, 2, [1, 2]) m2 = Matrix(1, 2, [2, 3]) assert GramSchmidt([m1, m2]) == \ [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])] assert GramSchmidt([m1.T, m2.T]) == \ [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])] # from wikipedia assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [ Matrix([3*sqrt(10)/10, sqrt(10)/10]), Matrix([-sqrt(10)/10, 3*sqrt(10)/10])] def test_casoratian(): assert casoratian([1, 2, 3, 4], 1) == 0 assert casoratian([1, 2, 3, 4], 1, zero=False) == 0 def test_zero_dimension_multiply(): assert (Matrix()*zeros(0, 3)).shape == (0, 3) assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3) assert zeros(0, 3)*zeros(3, 0) == Matrix() def test_slice_issue_2884(): m = Matrix(2, 2, range(4)) assert m[1, :] == Matrix([[2, 3]]) assert m[-1, :] == Matrix([[2, 3]]) assert m[:, 1] == Matrix([[1, 3]]).T assert m[:, -1] == Matrix([[1, 3]]).T raises(IndexError, lambda: m[2, :]) raises(IndexError, lambda: m[2, 2]) def test_slice_issue_3401(): assert zeros(0, 3)[:, -1].shape == (0, 1) assert zeros(3, 0)[0, :] == Matrix(1, 0, []) def test_copyin(): s = zeros(3, 3) s[3] = 1 assert s[:, 0] == Matrix([0, 1, 0]) assert s[3] == 1 assert s[3: 4] == [1] s[1, 1] = 42 assert s[1, 1] == 42 assert s[1, 1:] == Matrix([[42, 0]]) s[1, 1:] = Matrix([[5, 6]]) assert s[1, :] == Matrix([[1, 5, 6]]) s[1, 1:] = [[42, 43]] assert s[1, :] == Matrix([[1, 42, 43]]) s[0, 0] = 17 assert s[:, :1] == Matrix([17, 1, 0]) s[0, 0] = [1, 1, 1] assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = Matrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = SparseMatrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) def test_invertible_check(): # sometimes a singular matrix will have a pivot vector shorter than # the number of rows in a matrix... assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,)) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv()) m = Matrix([ [-1, -1, 0], [ x, 1, 1], [ 1, x, -1], ]) assert len(m.rref()[1]) != m.rows # in addition, unless simplify=True in the call to rref, the identity # matrix will be returned even though m is not invertible assert m.rref()[0] != eye(3) assert m.rref(simplify=signsimp)[0] != eye(3) raises(ValueError, lambda: m.inv(method="ADJ")) raises(ValueError, lambda: m.inv(method="GE")) raises(ValueError, lambda: m.inv(method="LU")) def test_issue_3959(): x, y = symbols('x, y') e = x*y assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y def test_issue_5964(): assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])' def test_issue_7604(): x, y = symbols(u"x y") assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \ 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])' def test_is_Identity(): assert eye(3).is_Identity assert eye(3).as_immutable().is_Identity assert not zeros(3).is_Identity assert not ones(3).is_Identity # issue 6242 assert not Matrix([[1, 0, 0]]).is_Identity # issue 8854 assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity assert not SparseMatrix(2,3, range(6)).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity def test_dot(): assert ones(1, 3).dot(ones(3, 1)) == 3 assert ones(1, 3).dot([1, 1, 1]) == 3 assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14 assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5 assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5 raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test")) def test_dual(): B_x, B_y, B_z, E_x, E_y, E_z = symbols( 'B_x B_y B_z E_x E_y E_z', real=True) F = Matrix(( ( 0, E_x, E_y, E_z), (-E_x, 0, B_z, -B_y), (-E_y, -B_z, 0, B_x), (-E_z, B_y, -B_x, 0) )) Fd = Matrix(( ( 0, -B_x, -B_y, -B_z), (B_x, 0, E_z, -E_y), (B_y, -E_z, 0, E_x), (B_z, E_y, -E_x, 0) )) assert F.dual().equals(Fd) assert eye(3).dual().equals(zeros(3)) assert F.dual().dual().equals(-F) def test_anti_symmetric(): assert Matrix([1, 2]).is_anti_symmetric() is False m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False # tweak to fail m[2, 1] = -m[2, 1] assert m.is_anti_symmetric() is False # untweak m[2, 1] = -m[2, 1] m = m.expand() assert m.is_anti_symmetric(simplify=False) is True m[0, 0] = 1 assert m.is_anti_symmetric() is False def test_normalize_sort_diogonalization(): A = Matrix(((1, 2), (2, 1))) P, Q = A.diagonalize(normalize=True) assert P*P.T == P.T*P == eye(P.cols) P, Q = A.diagonalize(normalize=True, sort=True) assert P*P.T == P.T*P == eye(P.cols) assert P*Q*P.inv() == A def test_issue_5321(): raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])])) def test_issue_5320(): assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([ [1, 0], [0, 1], [2, 0], [0, 2] ]) cls = SparseMatrix assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) def test_issue_11944(): A = Matrix([[1]]) AIm = sympify(A) assert Matrix.hstack(AIm, A) == Matrix([[1, 1]]) assert Matrix.vstack(AIm, A) == Matrix([[1], [1]]) def test_cross(): a = [1, 2, 3] b = [3, 4, 5] col = Matrix([-2, 4, -2]) row = col.T def test(M, ans): assert ans == M assert type(M) == cls for cls in classes: A = cls(a) B = cls(b) test(A.cross(B), col) test(A.cross(B.T), col) test(A.T.cross(B.T), row) test(A.T.cross(B), row) raises(ShapeError, lambda: Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1]))) def test_hash(): for cls in classes[-2:]: s = {cls.eye(1), cls.eye(1)} assert len(s) == 1 and s.pop() == cls.eye(1) # issue 3979 for cls in classes[:2]: assert not isinstance(cls.eye(1), Hashable) @XFAIL def test_issue_3979(): # when this passes, delete this and change the [1:2] # to [:2] in the test_hash above for issue 3979 cls = classes[0] raises(AttributeError, lambda: hash(cls.eye(1))) def test_adjoint(): dat = [[0, I], [1, 0]] ans = Matrix([[0, 1], [-I, 0]]) for cls in classes: assert ans == cls(dat).adjoint() def test_simplify_immutable(): from sympy import simplify, sin, cos assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \ ImmutableMatrix([[1]]) def test_rank(): from sympy.abc import x m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.rank() == 2 n = Matrix(3, 3, range(1, 10)) assert n.rank() == 2 p = zeros(3) assert p.rank() == 0 def test_issue_11434(): ax, ay, bx, by, cx, cy, dx, dy, ex, ey, t0, t1 = \ symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') M = Matrix([[ax, ay, ax*t0, ay*t0, 0], [bx, by, bx*t0, by*t0, 0], [cx, cy, cx*t0, cy*t0, 1], [dx, dy, dx*t0, dy*t0, 1], [ex, ey, 2*ex*t1 - ex*t0, 2*ey*t1 - ey*t0, 0]]) assert M.rank() == 4 def test_rank_regression_from_so(): # see: # https://stackoverflow.com/questions/19072700/why-does-sympy-give-me-the-wrong-answer-when-i-row-reduce-a-symbolic-matrix nu, lamb = symbols('nu, lambda') A = Matrix([[-3*nu, 1, 0, 0], [ 3*nu, -2*nu - 1, 2, 0], [ 0, 2*nu, (-1*nu) - lamb - 2, 3], [ 0, 0, nu + lamb, -3]]) expected_reduced = Matrix([[1, 0, 0, 1/(nu**2*(-lamb - nu))], [0, 1, 0, 3/(nu*(-lamb - nu))], [0, 0, 1, 3/(-lamb - nu)], [0, 0, 0, 0]]) expected_pivots = (0, 1, 2) reduced, pivots = A.rref() assert simplify(expected_reduced - reduced) == zeros(*A.shape) assert pivots == expected_pivots def test_replace(): from sympy import symbols, Function, Matrix F, G = symbols('F, G', cls=Function) K = Matrix(2, 2, lambda i, j: G(i+j)) M = Matrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): from sympy import symbols, Function, Matrix F, G = symbols('F, G', cls=Function) K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1)\ : G(1)}), (G(2), {F(2): G(2)})]) M = Matrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G, True) assert N == K def test_atoms(): m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.atoms() == {S(1),S(2),S(-1), x} assert m.atoms(Symbol) == {x} def test_pinv(): # Pseudoinverse of an invertible matrix is the inverse. A1 = Matrix([[a, b], [c, d]]) assert simplify(A1.pinv(method="RD")) == simplify(A1.inv()) # Test the four properties of the pseudoinverse for various matrices. As = [Matrix([[13, 104], [2212, 3], [-3, 5]]), Matrix([[1, 7, 9], [11, 17, 19]]), Matrix([a, b])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Pinv with diagonalization makes expression too complicated. for A in As: A_pinv = simplify(A.pinv(method="ED")) AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Computing pinv using diagonalization makes an expression that # is too complicated to simplify. # A1 = Matrix([[a, b], [c, d]]) # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv()) # so this is tested numerically at a fixed random point from sympy.core.numbers import comp q = A1.pinv(method="ED") w = A1.inv() reps = {a: -73633, b: 11362, c: 55486, d: 62570} assert all( comp(i.n(), j.n()) for i, j in zip(q.subs(reps), w.subs(reps)) ) def test_pinv_solve(): # Fully determined system (unique result, identical to other solvers). A = Matrix([[1, 5], [7, 9]]) B = Matrix([12, 13]) assert A.pinv_solve(B) == A.cholesky_solve(B) assert A.pinv_solve(B) == A.LDLsolve(B) assert A.pinv_solve(B) == Matrix([sympify('-43/26'), sympify('71/26')]) assert A * A.pinv() * B == B # Fully determined, with two-dimensional B matrix. B = Matrix([[12, 13, 14], [15, 16, 17]]) assert A.pinv_solve(B) == A.cholesky_solve(B) assert A.pinv_solve(B) == A.LDLsolve(B) assert A.pinv_solve(B) == Matrix([[-33, -37, -41], [69, 75, 81]]) / 26 assert A * A.pinv() * B == B # Underdetermined system (infinite results). A = Matrix([[1, 0, 1], [0, 1, 1]]) B = Matrix([5, 7]) solution = A.pinv_solve(B) w = {} for s in solution.atoms(Symbol): # Extract dummy symbols used in the solution. w[s.name] = s assert solution == Matrix([[w['w0_0']/3 + w['w1_0']/3 - w['w2_0']/3 + 1], [w['w0_0']/3 + w['w1_0']/3 - w['w2_0']/3 + 3], [-w['w0_0']/3 - w['w1_0']/3 + w['w2_0']/3 + 4]]) assert A * A.pinv() * B == B # Overdetermined system (least squares results). A = Matrix([[1, 0], [0, 0], [0, 1]]) B = Matrix([3, 2, 1]) assert A.pinv_solve(B) == Matrix([3, 1]) # Proof the solution is not exact. assert A * A.pinv() * B != B def test_pinv_rank_deficient(): # Test the four properties of the pseudoinverse for various matrices. As = [Matrix([[1, 1, 1], [2, 2, 2]]), Matrix([[1, 0], [0, 0]]), Matrix([[1, 2], [2, 4], [3, 6]])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA for A in As: A_pinv = A.pinv(method="ED") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # Test solving with rank-deficient matrices. A = Matrix([[1, 0], [0, 0]]) # Exact, non-unique solution. B = Matrix([3, 0]) solution = A.pinv_solve(B) w1 = solution.atoms(Symbol).pop() assert w1.name == 'w1_0' assert solution == Matrix([3, w1]) assert A * A.pinv() * B == B # Least squares, non-unique solution. B = Matrix([3, 1]) solution = A.pinv_solve(B) w1 = solution.atoms(Symbol).pop() assert w1.name == 'w1_0' assert solution == Matrix([3, w1]) assert A * A.pinv() * B != B @XFAIL def test_pinv_rank_deficient_when_diagonalization_fails(): # Test the four properties of the pseudoinverse for matrices when # diagonalization of A.H*A fails. As = [Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0,0,0,0,0,0]])] for A in As: A_pinv = A.pinv(method="ED") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA def test_pinv_succeeds_with_rank_decomposition_method(): # Test rank decomposition method of pseudoinverse succeeding As = [Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0,0,0,0,0,0]])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA def test_gauss_jordan_solve(): # Square, full rank, unique solution A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) b = Matrix([3, 6, 9]) sol, params = A.gauss_jordan_solve(b) assert sol == Matrix([[-1], [2], [0]]) assert params == Matrix(0, 1, []) # Square, full rank, unique solution, B has more columns than rows A = eye(3) B = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) sol, params = A.gauss_jordan_solve(B) assert sol == B assert params == Matrix(0, 4, []) # Square, reduced rank, parametrized solution A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = Matrix([3, 6, 9]) sol, params, freevar = A.gauss_jordan_solve(b, freevar=True) w = {} for s in sol.atoms(Symbol): # Extract dummy symbols used in the solution. w[s.name] = s assert sol == Matrix([[w['tau0'] - 1], [-2*w['tau0'] + 2], [w['tau0']]]) assert params == Matrix([[w['tau0']]]) assert freevar == [2] # Square, reduced rank, parametrized solution, B has two columns A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B = Matrix([[3, 4], [6, 8], [9, 12]]) sol, params, freevar = A.gauss_jordan_solve(B, freevar=True) w = {} for s in sol.atoms(Symbol): # Extract dummy symbols used in the solution. w[s.name] = s assert sol == Matrix([[w['tau0'] - 1, w['tau1'] - S(4)/3], [-2*w['tau0'] + 2, -2*w['tau1'] + S(8)/3], [w['tau0'], w['tau1']],]) assert params == Matrix([[w['tau0'], w['tau1']]]) assert freevar == [2] # Square, reduced rank, parametrized solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) b = Matrix([0, 0, 0]) sol, params = A.gauss_jordan_solve(b) w = {} for s in sol.atoms(Symbol): w[s.name] = s assert sol == Matrix([[-2*w['tau0'] - 3*w['tau1']], [w['tau0']], [w['tau1']]]) assert params == Matrix([[w['tau0']], [w['tau1']]]) # Square, reduced rank, parametrized solution A = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) b = Matrix([0, 0, 0]) sol, params = A.gauss_jordan_solve(b) w = {} for s in sol.atoms(Symbol): w[s.name] = s assert sol == Matrix([[w['tau0']], [w['tau1']], [w['tau2']]]) assert params == Matrix([[w['tau0']], [w['tau1']], [w['tau2']]]) # Square, reduced rank, no solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) b = Matrix([0, 0, 1]) raises(ValueError, lambda: A.gauss_jordan_solve(b)) # Rectangular, tall, full rank, unique solution A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) b = Matrix([0, 0, 1, 0]) sol, params = A.gauss_jordan_solve(b) assert sol == Matrix([[-S(1)/2], [0], [S(1)/6]]) assert params == Matrix(0, 1, []) # Rectangular, tall, full rank, unique solution, B has less columns than rows A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) B = Matrix([[0,0], [0, 0], [1, 2], [0, 0]]) sol, params = A.gauss_jordan_solve(B) assert sol == Matrix([[-S(1)/2, -S(2)/2], [0, 0], [S(1)/6, S(2)/6]]) assert params == Matrix(0, 2, []) # Rectangular, tall, full rank, no solution A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) b = Matrix([0, 0, 0, 1]) raises(ValueError, lambda: A.gauss_jordan_solve(b)) # Rectangular, tall, full rank, no solution, B has two columns (2nd has no solution) A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) B = Matrix([[0,0], [0, 0], [1, 0], [0, 1]]) raises(ValueError, lambda: A.gauss_jordan_solve(B)) # Rectangular, tall, full rank, no solution, B has two columns (1st has no solution) A = Matrix([[1, 5, 3], [2, 1, 6], [1, 7, 9], [1, 4, 3]]) B = Matrix([[0,0], [0, 0], [0, 1], [1, 0]]) raises(ValueError, lambda: A.gauss_jordan_solve(B)) # Rectangular, tall, reduced rank, parametrized solution A = Matrix([[1, 5, 3], [2, 10, 6], [3, 15, 9], [1, 4, 3]]) b = Matrix([0, 0, 0, 1]) sol, params = A.gauss_jordan_solve(b) w = {} for s in sol.atoms(Symbol): w[s.name] = s assert sol == Matrix([[-3*w['tau0'] + 5], [-1], [w['tau0']]]) assert params == Matrix([[w['tau0']]]) # Rectangular, tall, reduced rank, no solution A = Matrix([[1, 5, 3], [2, 10, 6], [3, 15, 9], [1, 4, 3]]) b = Matrix([0, 0, 1, 1]) raises(ValueError, lambda: A.gauss_jordan_solve(b)) # Rectangular, wide, full rank, parametrized solution A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 1, 12]]) b = Matrix([1, 1, 1]) sol, params = A.gauss_jordan_solve(b) w = {} for s in sol.atoms(Symbol): w[s.name] = s assert sol == Matrix([[2*w['tau0'] - 1], [-3*w['tau0'] + 1], [0], [w['tau0']]]) assert params == Matrix([[w['tau0']]]) # Rectangular, wide, reduced rank, parametrized solution A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]) b = Matrix([0, 1, 0]) sol, params = A.gauss_jordan_solve(b) w = {} for s in sol.atoms(Symbol): w[s.name] = s assert sol == Matrix([[w['tau0'] + 2*w['tau1'] + 1/S(2)], [-2*w['tau0'] - 3*w['tau1'] - 1/S(4)], [w['tau0']], [w['tau1']]]) assert params == Matrix([[w['tau0']], [w['tau1']]]) # watch out for clashing symbols x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1') M = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) A = M[:, :-1] b = M[:, -1:] sol, params = A.gauss_jordan_solve(b) assert params == Matrix(3, 1, [x0, x1, x2]) assert sol == Matrix(5, 1, [x1, 0, x0, _x0, x2]) # Rectangular, wide, reduced rank, no solution A = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]) b = Matrix([1, 1, 1]) raises(ValueError, lambda: A.gauss_jordan_solve(b)) def test_solve(): A = Matrix([[1,2], [2,4]]) b = Matrix([[3], [4]]) raises(ValueError, lambda: A.solve(b)) #no solution b = Matrix([[ 4], [8]]) raises(ValueError, lambda: A.solve(b)) #infinite solution def test_issue_7201(): assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, []) assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, []) def test_free_symbols(): for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix: assert M([[x], [0]]).free_symbols == {x} def test_from_ndarray(): """See issue 7465.""" try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3]) assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]]) assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \ Matrix([[1, 2, 3], [4, 5, 6]]) assert Matrix(array([x, y, z])) == Matrix([x, y, z]) raises(NotImplementedError, lambda: Matrix(array([[ [1, 2], [3, 4]], [[5, 6], [7, 8]]]))) def test_hermitian(): a = Matrix([[1, I], [-I, 1]]) assert a.is_hermitian a[0, 0] = 2*I assert a.is_hermitian is False a[0, 0] = x assert a.is_hermitian is None a[0, 1] = a[1, 0]*I assert a.is_hermitian is False def test_doit(): a = Matrix([[Add(x,x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_issue_9457_9467_9876(): # for row_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.row_del(1) assert M == Matrix([[1, 2, 3], [3, 4, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.row_del(-2) assert N == Matrix([[1, 2, 3], [3, 4, 5]]) O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]]) O.row_del(-1) assert O == Matrix([[1, 2, 3], [5, 6, 7]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.row_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.row_del(-10)) # for col_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.col_del(1) assert M == Matrix([[1, 3], [2, 4], [3, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.col_del(-2) assert N == Matrix([[1, 3], [2, 4], [3, 5]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.col_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.col_del(-10)) def test_issue_9422(): x, y = symbols('x y', commutative=False) a, b = symbols('a b') M = eye(2) M1 = Matrix(2, 2, [x, y, y, z]) assert y*x*M != x*y*M assert b*a*M == a*b*M assert x*M1 != M1*x assert a*M1 == M1*a assert y*x*M == Matrix([[y*x, 0], [0, y*x]]) def test_issue_10770(): M = Matrix([]) a = ['col_insert', 'row_join'], Matrix([9, 6, 3]) b = ['row_insert', 'col_join'], a[1].T c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]]) for ops, m in (a, b, c): for op in ops: f = getattr(M, op) new = f(m) if 'join' in op else f(42, m) assert new == m and id(new) != id(m) def test_issue_10658(): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert A.extract([0, 1, 2], [True, True, False]) == \ Matrix([[1, 2], [4, 5], [7, 8]]) assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]]) assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]]) assert A.extract([True, False, True], [0, 1, 2]) == \ Matrix([[1, 2, 3], [7, 8, 9]]) assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, []) assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, []) assert A.extract([True, False, True], [False, True, False]) == \ Matrix([[2], [8]]) def test_opportunistic_simplification(): # this test relates to issue #10718, #9480, #11434 # issue #9480 m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]]) assert m.rank() == 1 # issue #10781 m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]]) assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2) # issue #11434 ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]]) assert m.rank() == 4 def test_partial_pivoting(): # example from https://en.wikipedia.org/wiki/Pivot_element # partial pivoting with back substitution gives a perfect result # naive pivoting give an error ~1e-13, so anything better than # 1e-15 is good mm=Matrix([[0.003 ,59.14, 59.17],[ 5.291, -6.13,46.78]]) assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0], [ 0, 1.0, 1.0]])).norm() < 1e-15 # issue #11549 m_mixed = Matrix([[6e-17, 1.0, 4],[ -1.0, 0, 8],[ 0, 0, 1]]) m_float = Matrix([[6e-17, 1.0, 4.],[ -1.0, 0., 8.],[ 0., 0., 1.]]) m_inv = Matrix([[ 0, -1.0, 8.0],[1.0, 6.0e-17, -4.0],[ 0, 0, 1]]) # this example is numerically unstable and involves a matrix with a norm >= 8, # this comparing the difference of the results with 1e-15 is numerically sound. assert (m_mixed.inv() - m_inv).norm() < 1e-15 assert (m_float.inv() - m_inv).norm() < 1e-15 def test_iszero_substitution(): """ When doing numerical computations, all elements that pass the iszerofunc test should be set to numerically zero if they aren't already. """ # Matrix from issue #9060 m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]]) m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0] m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]]) m_diff = m_rref - m_correct assert m_diff.norm() < 1e-15 # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16 assert m_rref[2,2] == 0 def test_rank_decomposition(): a = Matrix(0, 0, []) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix(1, 1, [5]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix(3, 3, [1, 2, 3, 1, 2, 3, 1, 2, 3]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix([ [0, 0, 1, 2, 2, -5, 3], [-1, 5, 2, 2, 1, -7, 5], [0, 0, -2, -3, -3, 8, -5], [-1, 5, 0, -1, -2, 1, 0]]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a def test_issue_11238(): from sympy import Point xx = 8*tan(13*pi/45)/(tan(13*pi/45) + sqrt(3)) yy = (-8*sqrt(3)*tan(13*pi/45)**2 + 24*tan(13*pi/45))/(-3 + tan(13*pi/45)**2) p1 = Point(0, 0) p2 = Point(1, -sqrt(3)) p0 = Point(xx,yy) m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)]) m2 = Matrix([p1 - p0, p2 - p0]) m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)]) # This system has expressions which are zero and # cannot be easily proved to be such, so without # numerical testing, these assertions will fail. Z = lambda x: abs(x.n()) < 1e-20 assert m1.rank(simplify=True, iszerofunc=Z) == 1 assert m2.rank(simplify=True, iszerofunc=Z) == 1 assert m3.rank(simplify=True, iszerofunc=Z) == 1 def test_as_real_imag(): m1 = Matrix(2,2,[1,2,3,4]) m2 = m1*S.ImaginaryUnit m3 = m1 + m2 for kls in classes: a,b = kls(m3).as_real_imag() assert list(a) == list(m1) assert list(b) == list(m1) def test_deprecated(): # Maintain tests for deprecated functions. We must capture # the deprecation warnings. When the deprecated functionality is # removed, the corresponding tests should be removed. m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) P, Jcells = m.jordan_cells() assert Jcells[1] == Matrix(1, 1, [2]) assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2]) with warns_deprecated_sympy(): assert Matrix([[1,2],[3,4]]).dot(Matrix([[1,3],[4,5]])) == [10, 19, 14, 28] def test_issue_14489(): from sympy import Mod A = Matrix([-1, 1, 2]) B = Matrix([10, 20, -15]) assert Mod(A, 3) == Matrix([2, 1, 2]) assert Mod(B, 4) == Matrix([2, 0, 1]) def test_issue_14517(): M = Matrix([ [ 0, 10*I, 10*I, 0], [10*I, 0, 0, 10*I], [10*I, 0, 5 + 2*I, 10*I], [ 0, 10*I, 10*I, 5 + 2*I]]) ev = M.eigenvals() # test one random eigenvalue, the computation is a little slow test_ev = random.choice(list(ev.keys())) assert (M - test_ev*eye(4)).det() == 0 def test_issue_14943(): # Test that __array__ accepts the optional dtype argument try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') M = Matrix([[1,2], [3,4]]) assert array(M, dtype=float).dtype.name == 'float64' def test_issue_8240(): # Eigenvalues of large triangular matrices n = 200 diagonal_variables = [Symbol('x%s' % i) for i in range(n)] M = [[0 for i in range(n)] for j in range(n)] for i in range(n): M[i][i] = diagonal_variables[i] M = Matrix(M) eigenvals = M.eigenvals() assert len(eigenvals) == n for i in range(n): assert eigenvals[diagonal_variables[i]] == 1 eigenvals = M.eigenvals(multiple=True) assert set(eigenvals) == set(diagonal_variables) # with multiplicity M = Matrix([[x, 0, 0], [1, y, 0], [2, 3, x]]) eigenvals = M.eigenvals() assert eigenvals == {x: 2, y: 1} eigenvals = M.eigenvals(multiple=True) assert len(eigenvals) == 3 assert eigenvals.count(x) == 2 assert eigenvals.count(y) == 1 def test_legacy_det(): # Minimal support for legacy keys for 'method' in det() # Partially copied from test_determinant() M = Matrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )) assert M.det(method="bareis") == -289 assert M.det(method="det_lu") == -289 assert M.det(method="det_LU") == -289 M = Matrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )) assert M.det(method="bareis") == 275 assert M.det(method="det_lu") == 275 assert M.det(method="Bareis") == 275 M = Matrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )) assert M.det(method="bareis") == -55 assert M.det(method="det_lu") == -55 assert M.det(method="BAREISS") == -55 M = Matrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )) assert M.det(method="bareis") == 11664 assert M.det(method="det_lu") == 11664 assert M.det(method="BERKOWITZ") == 11664 M = Matrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )) assert M.det(method="bareis") == 123 assert M.det(method="det_lu") == 123 assert M.det(method="LU") == 123 def test_case_6913(): m = MatrixSymbol('m', 1, 1) a = Symbol("a") a = m[0, 0]>0 assert str(a) == 'm[0, 0] > 0' def test_issue_15872(): A = Matrix([[1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) B = A - Matrix.eye(4) * I assert B.rank() == 3 assert (B**2).rank() == 2 assert (B**3).rank() == 2 def test_issue_11948(): A = MatrixSymbol('A', 3, 3) a = Wild('a') assert A.match(a) == {a: A}
f4852287f266441829dbe9b65f1e3871cb04ea31673fe5ff94f7d77ab91d1ca7
from __future__ import print_function, division from .matexpr import MatrixExpr, ShapeError, Identity, ZeroMatrix from sympy.core import S from sympy.core.compatibility import range from sympy.core.sympify import _sympify from sympy.matrices import MatrixBase class MatPow(MatrixExpr): def __new__(cls, base, exp): base = _sympify(base) if not base.is_Matrix: raise TypeError("Function parameter should be a matrix") exp = _sympify(exp) return super(MatPow, cls).__new__(cls, base, exp) @property def base(self): return self.args[0] @property def exp(self): return self.args[1] @property def shape(self): return self.base.shape def _entry(self, i, j, **kwargs): from sympy.matrices.expressions import MatMul A = self.doit() if isinstance(A, MatPow): # We still have a MatPow, make an explicit MatMul out of it. if not A.base.is_square: raise ShapeError("Power of non-square matrix %s" % A.base) elif A.exp.is_Integer and A.exp.is_positive: A = MatMul(*[A.base for k in range(A.exp)]) #elif A.exp.is_Integer and self.exp.is_negative: # Note: possible future improvement: in principle we can take # positive powers of the inverse, but carefully avoid recursion, # perhaps by adding `_entry` to Inverse (as it is our subclass). # T = A.base.as_explicit().inverse() # A = MatMul(*[T for k in range(-A.exp)]) else: # Leave the expression unevaluated: from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) return A._entry(i, j) def doit(self, **kwargs): from sympy.matrices.expressions import Inverse deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args base, exp = args # combine all powers, e.g. (A**2)**3 = A**6 while isinstance(base, MatPow): exp = exp*base.args[1] base = base.args[0] if exp.is_zero and base.is_square: if isinstance(base, MatrixBase): return base.func(Identity(base.shape[0])) return Identity(base.shape[0]) elif isinstance(base, ZeroMatrix) and exp.is_negative: raise ValueError("Matrix determinant is 0, not invertible.") elif isinstance(base, (Identity, ZeroMatrix)): return base elif isinstance(base, MatrixBase): if exp is S.One: return base return base**exp # Note: just evaluate cases we know, return unevaluated on others. # E.g., MatrixSymbol('x', n, m) to power 0 is not an error. elif exp is S(-1) and base.is_square: return Inverse(base).doit(**kwargs) elif exp is S.One: return base return MatPow(base, exp) def _eval_transpose(self): base, exp = self.args return MatPow(base.T, exp) def _eval_derivative_matrix_lines(self, x): from sympy.core.expr import ExprBuilder from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct from .matmul import MatMul from .inverse import Inverse exp = self.exp if self.base.shape == (1, 1) and not exp.has(x): lr = self.base._eval_derivative_matrix_lines(x) for i in lr: subexpr = ExprBuilder( CodegenArrayContraction, [ ExprBuilder( CodegenArrayTensorProduct, [ Identity(1), i._lines[0], exp*self.base**(exp-1), i._lines[1], Identity(1), ] ), (0, 3, 4), (5, 7, 8) ], validator=CodegenArrayContraction._validate ) i._first_pointer_parent = subexpr.args[0].args i._first_pointer_index = 0 i._second_pointer_parent = subexpr.args[0].args i._second_pointer_index = 4 i._lines = [subexpr] return lr if (exp > 0) == True: newexpr = MatMul.fromiter([self.base for i in range(exp)]) elif (exp == -1) == True: return Inverse(self.base)._eval_derivative_matrix_lines(x) elif (exp < 0) == True: newexpr = MatMul.fromiter([Inverse(self.base) for i in range(-exp)]) elif (exp == 0) == True: return self.doit()._eval_derivative_matrix_lines(x) else: raise NotImplementedError("cannot evaluate %s derived by %s" % (self, x)) return newexpr._eval_derivative_matrix_lines(x)
47a91915002dcf16359ef2f9ef605b7db274feb7fd81d7730c4a7446da18ee3b
from __future__ import print_function, division from sympy.core import Basic, Expr from sympy.core.sympify import _sympify from sympy.matrices.expressions.transpose import transpose class DotProduct(Expr): """ Dot product of vector matrices The input should be two 1 x n or n x 1 matrices. The output represents the scalar dotproduct. This is similar to using MatrixElement and MatMul, except DotProduct does not require that one vector to be a row vector and the other vector to be a column vector. >>> from sympy import MatrixSymbol, DotProduct >>> A = MatrixSymbol('A', 1, 3) >>> B = MatrixSymbol('B', 1, 3) >>> DotProduct(A, B) DotProduct(A, B) >>> DotProduct(A, B).doit() A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2] """ def __new__(cls, arg1, arg2): arg1, arg2 = _sympify((arg1, arg2)) if not arg1.is_Matrix: raise TypeError("Argument 1 of DotProduct is not a matrix") if not arg2.is_Matrix: raise TypeError("Argument 2 of DotProduct is not a matrix") if not (1 in arg1.shape): raise TypeError("Argument 1 of DotProduct is not a vector") if not (1 in arg2.shape): raise TypeError("Argument 2 of DotProduct is not a vector") if set(arg1.shape) != set(arg2.shape): raise TypeError("DotProduct arguments are not the same length") return Basic.__new__(cls, arg1, arg2) def doit(self, expand=False): if self.args[0].shape == self.args[1].shape: if self.args[0].shape[0] == 1: mul = self.args[0]*transpose(self.args[1]) else: mul = transpose(self.args[0])*self.args[1] else: if self.args[0].shape[0] == 1: mul = self.args[0]*self.args[1] else: mul = transpose(self.args[0])*transpose(self.args[1]) return mul[0]
b23e381808863cb894fc65c5f37a4271201189db940c7541c474d841a88ac9b0
from __future__ import print_function, division from sympy import ask, Q from sympy.core import Basic, Add from sympy.core.compatibility import range from sympy.strategies import typed, exhaust, condition, do_one, unpack from sympy.strategies.traverse import bottom_up from sympy.utilities import sift from sympy.utilities.misc import filldedent from sympy.matrices.expressions.matexpr import MatrixExpr, ZeroMatrix, Identity from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions.transpose import Transpose, transpose from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions.determinant import det, Determinant from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions.inverse import Inverse from sympy.matrices import Matrix, ShapeError from sympy.functions.elementary.complexes import re, im class BlockMatrix(MatrixExpr): """A BlockMatrix is a Matrix comprised of other matrices. The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression >>> from sympy import (MatrixSymbol, BlockMatrix, symbols, ... Identity, ZeroMatrix, block_collapse) >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]]) >>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]]) >>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]]) Some matrices might be comprised of rows of blocks with the matrices in each row having the same height and the rows all having the same total number of columns but not having the same number of columns for each matrix in each row. In this case, the matrix is not a block matrix and should be instantiated by Matrix. >>> from sympy import ones, Matrix >>> dat = [ ... [ones(3,2), ones(3,3)*2], ... [ones(2,3)*3, ones(2,2)*4]] ... >>> BlockMatrix(dat) Traceback (most recent call last): ... ValueError: Although this matrix is comprised of blocks, the blocks do not fill the matrix in a size-symmetric fashion. To create a full matrix from these arguments, pass them directly to Matrix. >>> Matrix(dat) Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) See Also ======== sympy.matrices.matrices.MatrixBase.irregular """ def __new__(cls, *args, **kwargs): from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.matrices import zeros from sympy.matrices.matrices import MatrixBase from sympy.utilities.iterables import is_sequence isMat = lambda i: getattr(i, 'is_Matrix', False) if len(args) != 1 or \ not is_sequence(args[0]) or \ len(set([isMat(r) for r in args[0]])) != 1: raise ValueError(filldedent(''' expecting a sequence of 1 or more rows containing Matrices.''')) rows = args[0] if args else [] if not isMat(rows): if rows and isMat(rows[0]): rows = [rows] # rows is not list of lists or [] # regularity check # same number of matrices in each row blocky = ok = len(set([len(r) for r in rows])) == 1 if ok: # same number of rows for each matrix in a row for r in rows: ok = len(set([i.rows for i in r])) == 1 if not ok: break blocky = ok # same number of cols for each matrix in each col for c in range(len(rows[0])): ok = len(set([rows[i][c].cols for i in range(len(rows))])) == 1 if not ok: break if not ok: # same total cols in each row ok = len(set([ sum([i.cols for i in r]) for r in rows])) == 1 if blocky and ok: raise ValueError(filldedent(''' Although this matrix is comprised of blocks, the blocks do not fill the matrix in a size-symmetric fashion. To create a full matrix from these arguments, pass them directly to Matrix.''')) raise ValueError(filldedent(''' When there are not the same number of rows in each row's matrices or there are not the same number of total columns in each row, the matrix is not a block matrix. If this matrix is known to consist of blocks fully filling a 2-D space then see Matrix.irregular.''')) mat = ImmutableDenseMatrix(rows, evaluate=False) obj = Basic.__new__(cls, mat) return obj @property def shape(self): numrows = numcols = 0 M = self.blocks for i in range(M.shape[0]): numrows += M[i, 0].shape[0] for i in range(M.shape[1]): numcols += M[0, i].shape[1] return (numrows, numcols) @property def blockshape(self): return self.blocks.shape @property def blocks(self): return self.args[0] @property def rowblocksizes(self): return [self.blocks[i, 0].rows for i in range(self.blockshape[0])] @property def colblocksizes(self): return [self.blocks[0, i].cols for i in range(self.blockshape[1])] def structurally_equal(self, other): return (isinstance(other, BlockMatrix) and self.shape == other.shape and self.blockshape == other.blockshape and self.rowblocksizes == other.rowblocksizes and self.colblocksizes == other.colblocksizes) def _blockmul(self, other): if (isinstance(other, BlockMatrix) and self.colblocksizes == other.rowblocksizes): return BlockMatrix(self.blocks*other.blocks) return self * other def _blockadd(self, other): if (isinstance(other, BlockMatrix) and self.structurally_equal(other)): return BlockMatrix(self.blocks + other.blocks) return self + other def _eval_transpose(self): # Flip all the individual matrices matrices = [transpose(matrix) for matrix in self.blocks] # Make a copy M = Matrix(self.blockshape[0], self.blockshape[1], matrices) # Transpose the block structure M = M.transpose() return BlockMatrix(M) def _eval_trace(self): if self.rowblocksizes == self.colblocksizes: return Add(*[Trace(self.blocks[i, i]) for i in range(self.blockshape[0])]) raise NotImplementedError( "Can't perform trace of irregular blockshape") def _eval_determinant(self): if self.blockshape == (2, 2): [[A, B], [C, D]] = self.blocks.tolist() if ask(Q.invertible(A)): return det(A)*det(D - C*A.I*B) elif ask(Q.invertible(D)): return det(D)*det(A - B*D.I*C) return Determinant(self) def as_real_imag(self): real_matrices = [re(matrix) for matrix in self.blocks] real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices) im_matrices = [im(matrix) for matrix in self.blocks] im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices) return (real_matrices, im_matrices) def transpose(self): """Return transpose of matrix. Examples ======== >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix >>> from sympy.abc import l, m, n >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> B.transpose() Matrix([ [X.T, 0], [Z.T, Y.T]]) >>> _.transpose() Matrix([ [X, Z], [0, Y]]) """ return self._eval_transpose() def _entry(self, i, j, **kwargs): # Find row entry for row_block, numrows in enumerate(self.rowblocksizes): if (i < numrows) != False: break else: i -= numrows for col_block, numcols in enumerate(self.colblocksizes): if (j < numcols) != False: break else: j -= numcols return self.blocks[row_block, col_block][i, j] @property def is_Identity(self): if self.blockshape[0] != self.blockshape[1]: return False for i in range(self.blockshape[0]): for j in range(self.blockshape[1]): if i==j and not self.blocks[i, j].is_Identity: return False if i!=j and not self.blocks[i, j].is_ZeroMatrix: return False return True @property def is_structurally_symmetric(self): return self.rowblocksizes == self.colblocksizes def equals(self, other): if self == other: return True if (isinstance(other, BlockMatrix) and self.blocks == other.blocks): return True return super(BlockMatrix, self).equals(other) class BlockDiagMatrix(BlockMatrix): """ A BlockDiagMatrix is a BlockMatrix with matrices only along the diagonal >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols, Identity >>> n, m, l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> BlockDiagMatrix(X, Y) Matrix([ [X, 0], [0, Y]]) See Also ======== sympy.matrices.common.diag """ def __new__(cls, *mats): return Basic.__new__(BlockDiagMatrix, *mats) @property def diag(self): return self.args @property def blocks(self): from sympy.matrices.immutable import ImmutableDenseMatrix mats = self.args data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols) for j in range(len(mats))] for i in range(len(mats))] return ImmutableDenseMatrix(data) @property def shape(self): return (sum(block.rows for block in self.args), sum(block.cols for block in self.args)) @property def blockshape(self): n = len(self.args) return (n, n) @property def rowblocksizes(self): return [block.rows for block in self.args] @property def colblocksizes(self): return [block.cols for block in self.args] def _eval_inverse(self, expand='ignored'): return BlockDiagMatrix(*[mat.inverse() for mat in self.args]) def _eval_transpose(self): return BlockDiagMatrix(*[mat.transpose() for mat in self.args]) def _blockmul(self, other): if (isinstance(other, BlockDiagMatrix) and self.colblocksizes == other.rowblocksizes): return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)]) else: return BlockMatrix._blockmul(self, other) def _blockadd(self, other): if (isinstance(other, BlockDiagMatrix) and self.blockshape == other.blockshape and self.rowblocksizes == other.rowblocksizes and self.colblocksizes == other.colblocksizes): return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)]) else: return BlockMatrix._blockadd(self, other) def block_collapse(expr): """Evaluates a block matrix expression >>> from sympy import MatrixSymbol, BlockMatrix, symbols, \ Identity, Matrix, ZeroMatrix, block_collapse >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]]) >>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]]) >>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]]) """ from sympy.strategies.util import expr_fns hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix) conditioned_rl = condition( hasbm, typed( {MatAdd: do_one(bc_matadd, bc_block_plus_ident), MatMul: do_one(bc_matmul, bc_dist), MatPow: bc_matmul, Transpose: bc_transpose, Inverse: bc_inverse, BlockMatrix: do_one(bc_unpack, deblock)} ) ) rule = exhaust( bottom_up( exhaust(conditioned_rl), fns=expr_fns ) ) result = rule(expr) doit = getattr(result, 'doit', None) if doit is not None: return doit() else: return result def bc_unpack(expr): if expr.blockshape == (1, 1): return expr.blocks[0, 0] return expr def bc_matadd(expr): args = sift(expr.args, lambda M: isinstance(M, BlockMatrix)) blocks = args[True] if not blocks: return expr nonblocks = args[False] block = blocks[0] for b in blocks[1:]: block = block._blockadd(b) if nonblocks: return MatAdd(*nonblocks) + block else: return block def bc_block_plus_ident(expr): idents = [arg for arg in expr.args if arg.is_Identity] if not idents: return expr blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)] if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks) and blocks[0].is_structurally_symmetric): block_id = BlockDiagMatrix(*[Identity(k) for k in blocks[0].rowblocksizes]) return MatAdd(block_id * len(idents), *blocks).doit() return expr def bc_dist(expr): """ Turn a*[X, Y] into [a*X, a*Y] """ factor, mat = expr.as_coeff_mmul() if factor == 1: return expr unpacked = unpack(mat) if isinstance(unpacked, BlockDiagMatrix): B = unpacked.diag new_B = [factor * mat for mat in B] return BlockDiagMatrix(*new_B) elif isinstance(unpacked, BlockMatrix): B = unpacked.blocks new_B = [ [factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)] return BlockMatrix(new_B) return unpacked def bc_matmul(expr): if isinstance(expr, MatPow): if expr.args[1].is_Integer: factor, matrices = (1, [expr.args[0]]*expr.args[1]) else: return expr else: factor, matrices = expr.as_coeff_matrices() i = 0 while (i+1 < len(matrices)): A, B = matrices[i:i+2] if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix): matrices[i] = A._blockmul(B) matrices.pop(i+1) elif isinstance(A, BlockMatrix): matrices[i] = A._blockmul(BlockMatrix([[B]])) matrices.pop(i+1) elif isinstance(B, BlockMatrix): matrices[i] = BlockMatrix([[A]])._blockmul(B) matrices.pop(i+1) else: i+=1 return MatMul(factor, *matrices).doit() def bc_transpose(expr): collapse = block_collapse(expr.arg) return collapse._eval_transpose() def bc_inverse(expr): if isinstance(expr.arg, BlockDiagMatrix): return expr._eval_inverse() expr2 = blockinverse_1x1(expr) if expr != expr2: return expr2 return blockinverse_2x2(Inverse(reblock_2x2(expr.arg))) def blockinverse_1x1(expr): if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1): mat = Matrix([[expr.arg.blocks[0].inverse()]]) return BlockMatrix(mat) return expr def blockinverse_2x2(expr): if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2): # Cite: The Matrix Cookbook Section 9.1.3 [[A, B], [C, D]] = expr.arg.blocks.tolist() return BlockMatrix([[ (A - B*D.I*C).I, (-A).I*B*(D - C*A.I*B).I], [-(D - C*A.I*B).I*C*A.I, (D - C*A.I*B).I]]) else: return expr def deblock(B): """ Flatten a BlockMatrix of BlockMatrices """ if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix): return B wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]]) bb = B.blocks.applyfunc(wrap) # everything is a block from sympy import Matrix try: MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), []) for row in range(0, bb.shape[0]): M = Matrix(bb[row, 0].blocks) for col in range(1, bb.shape[1]): M = M.row_join(bb[row, col].blocks) MM = MM.col_join(M) return BlockMatrix(MM) except ShapeError: return B def reblock_2x2(B): """ Reblock a BlockMatrix so that it has 2x2 blocks of block matrices """ if not isinstance(B, BlockMatrix) or not all(d > 2 for d in B.blocks.shape): return B BM = BlockMatrix # for brevity's sake return BM([[ B.blocks[0, 0], BM(B.blocks[0, 1:])], [BM(B.blocks[1:, 0]), BM(B.blocks[1:, 1:])]]) def bounds(sizes): """ Convert sequence of numbers into pairs of low-high pairs >>> from sympy.matrices.expressions.blockmatrix import bounds >>> bounds((1, 10, 50)) [(0, 1), (1, 11), (11, 61)] """ low = 0 rv = [] for size in sizes: rv.append((low, low + size)) low += size return rv def blockcut(expr, rowsizes, colsizes): """ Cut a matrix expression into Blocks >>> from sympy import ImmutableMatrix, blockcut >>> M = ImmutableMatrix(4, 4, range(16)) >>> B = blockcut(M, (1, 3), (1, 3)) >>> type(B).__name__ 'BlockMatrix' >>> ImmutableMatrix(B.blocks[0, 1]) Matrix([[1, 2, 3]]) """ rowbounds = bounds(rowsizes) colbounds = bounds(colsizes) return BlockMatrix([[MatrixSlice(expr, rowbound, colbound) for colbound in colbounds] for rowbound in rowbounds])
fb5678fdf8791782c5e065e78b29cbf6c9570bb094309b082068479172bc347f
from sympy.matrices.expressions.blockmatrix import ( block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix, BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse, blockcut, reblock_2x2, deblock) from sympy.matrices.expressions import (MatrixSymbol, Identity, Inverse, trace, Transpose, det) from sympy.matrices import ( Matrix, ImmutableMatrix, ImmutableSparseMatrix, ones) from sympy.core import Tuple, symbols, Expr from sympy.core.compatibility import range from sympy.functions import transpose i, j, k, l, m, n, p = symbols('i:n, p', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) G = MatrixSymbol('G', n, n) H = MatrixSymbol('H', n, n) b1 = BlockMatrix([[G, H]]) b2 = BlockMatrix([[G], [H]]) def test_bc_matmul(): assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]]) def test_bc_matadd(): assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \ BlockMatrix([[G+H, H+H]]) def test_bc_transpose(): assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \ BlockMatrix([[A.T, C.T], [B.T, D.T]]) def test_bc_dist_diag(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) X = BlockDiagMatrix(A, B, C) assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C)) def test_block_plus_ident(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) assert bc_block_plus_ident(X+Identity(m+n)) == \ BlockDiagMatrix(Identity(n), Identity(m)) + X def test_BlockMatrix(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, k) C = MatrixSymbol('C', l, m) D = MatrixSymbol('D', l, k) M = MatrixSymbol('M', m + k, p) N = MatrixSymbol('N', l + n, k + m) X = BlockMatrix(Matrix([[A, B], [C, D]])) assert X.__class__(*X.args) == X # block_collapse does nothing on normal inputs E = MatrixSymbol('E', n, m) assert block_collapse(A + 2*E) == A + 2*E F = MatrixSymbol('F', m, m) assert block_collapse(E.T*A*F) == E.T*A*F assert X.shape == (l + n, k + m) assert X.blockshape == (2, 2) assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]])) assert transpose(X).shape == X.shape[::-1] # Test that BlockMatrices and MatrixSymbols can still mix assert (X*M).is_MatMul assert X._blockmul(M).is_MatMul assert (X*M).shape == (n + l, p) assert (X + N).is_MatAdd assert X._blockadd(N).is_MatAdd assert (X + N).shape == X.shape E = MatrixSymbol('E', m, 1) F = MatrixSymbol('F', k, 1) Y = BlockMatrix(Matrix([[E], [F]])) assert (X*Y).shape == (l + n, 1) assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F # block_collapse passes down into container objects, transposes, and inverse assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y)) assert block_collapse(Tuple(X*Y, 2*X)) == ( block_collapse(X*Y), block_collapse(2*X)) # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies Ab = BlockMatrix([[A]]) Z = MatrixSymbol('Z', *A.shape) assert block_collapse(Ab + Z) == A + Z def test_block_collapse_explicit_matrices(): A = Matrix([[1, 2], [3, 4]]) assert block_collapse(BlockMatrix([[A]])) == A A = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert block_collapse(BlockMatrix([[A]])) == A def test_BlockMatrix_trace(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) assert trace(X) == trace(A) + trace(D) def test_BlockMatrix_Determinant(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) from sympy import assuming, Q with assuming(Q.invertible(A)): assert det(X) == det(A) * det(D - C*A.I*B) assert isinstance(det(X), Expr) def test_squareBlockMatrix(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) Y = BlockMatrix([[A]]) assert X.is_square assert (block_collapse(X + Identity(m + n)) == BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]])) Q = X + Identity(m + n) assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul assert block_collapse(Y.I) == A.I assert block_collapse(X.inverse()) == BlockMatrix([ [(-B*D.I*C + A).I, -A.I*B*(D + -C*A.I*B).I], [-(D - C*A.I*B).I*C*A.I, (D - C*A.I*B).I]]) assert isinstance(X.inverse(), Inverse) assert not X.is_Identity Z = BlockMatrix([[Identity(n), B], [C, D]]) assert not Z.is_Identity def test_BlockDiagMatrix(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) M = MatrixSymbol('M', n + m + l, n + m + l) X = BlockDiagMatrix(A, B, C) Y = BlockDiagMatrix(A, 2*B, 3*C) assert X.blocks[1, 1] == B assert X.shape == (n + m + l, n + m + l) assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C] for i in range(3) for j in range(3)) assert X.__class__(*X.args) == X assert isinstance(block_collapse(X.I * X), Identity) assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C) assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C) #XXX: should be == ?? assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C)) assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C) assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C) # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs assert (X*(2*M)).is_MatMul assert (X + (2*M)).is_MatAdd assert (X._blockmul(M)).is_MatMul assert (X._blockadd(M)).is_MatAdd def test_blockcut(): A = MatrixSymbol('A', n, m) B = blockcut(A, (n/2, n/2), (m/2, m/2)) assert A[i, j] == B[i, j] assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]], [A[n/2:, :m/2], A[n/2:, m/2:]]]) M = ImmutableMatrix(4, 4, range(16)) B = blockcut(M, (2, 2), (2, 2)) assert M == ImmutableMatrix(B) B = blockcut(M, (1, 3), (2, 2)) assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]]) def test_reblock_2x2(): B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2) for j in range(3)] for i in range(3)]) assert B.blocks.shape == (3, 3) BB = reblock_2x2(B) assert BB.blocks.shape == (2, 2) assert B.shape == BB.shape assert B.as_explicit() == BB.as_explicit() def test_deblock(): B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n) for j in range(4)] for i in range(4)]) assert deblock(reblock_2x2(B)) == B def test_block_collapse_type(): bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2])) bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4])) assert bm1.T.__class__ == BlockDiagMatrix assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
db99ae91e726b8946ea4239f86718ef009f57d9f716dcd23f6d17738aaf24ccf
from sympy.utilities.pytest import raises from sympy.core import symbols, pi, S from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix from sympy.matrices.expressions import MatPow, MatAdd, MatMul from sympy.matrices.expressions.matexpr import ShapeError n, m, l, k = symbols('n m l k', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) E = MatrixSymbol('E', m, n) def test_entry(): from sympy.concrete import Sum assert MatPow(A, 1)[0, 0] == A[0, 0] assert MatPow(C, 0)[0, 0] == 1 assert MatPow(C, 0)[0, 1] == 0 assert isinstance(MatPow(C, 2)[0, 0], Sum) def test_as_explicit_symbol(): X = MatrixSymbol('X', 2, 2) assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2)) assert MatPow(X, 1).as_explicit() == X.as_explicit() assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2 def test_as_explicit_nonsquare_symbol(): X = MatrixSymbol('X', 2, 3) assert MatPow(X, 1).as_explicit() == X.as_explicit() for r in [0, 2, S.Half, S.Pi]: raises(ShapeError, lambda: MatPow(X, r).as_explicit()) def test_as_explicit(): A = ImmutableMatrix([[1, 2], [3, 4]]) assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2)) assert MatPow(A, 1).as_explicit() == A assert MatPow(A, 2).as_explicit() == A**2 assert MatPow(A, -1).as_explicit() == A.inv() assert MatPow(A, -2).as_explicit() == (A.inv())**2 # less expensive than testing on a 2x2 A = ImmutableMatrix([4]); assert MatPow(A, S.Half).as_explicit() == A**S.Half def test_as_explicit_nonsquare(): A = ImmutableMatrix([[1, 2, 3], [4, 5, 6]]) assert MatPow(A, 1).as_explicit() == A raises(ShapeError, lambda: MatPow(A, 0).as_explicit()) raises(ShapeError, lambda: MatPow(A, 2).as_explicit()) raises(ShapeError, lambda: MatPow(A, -1).as_explicit()) raises(ValueError, lambda: MatPow(A, pi).as_explicit()) def test_doit_nonsquare_MatrixSymbol(): assert MatPow(A, 1).doit() == A for r in [0, 2, -1, pi]: assert MatPow(A, r).doit() == MatPow(A, r) def test_doit_square_MatrixSymbol_symsize(): assert MatPow(C, 0).doit() == Identity(n) assert MatPow(C, 1).doit() == C for r in [2, pi]: assert MatPow(C, r).doit() == MatPow(C, r) def test_doit_with_MatrixBase(): X = ImmutableMatrix([[1, 2], [3, 4]]) assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2)) assert MatPow(X, 1).doit() == X assert MatPow(X, 2).doit() == X**2 assert MatPow(X, -1).doit() == X.inv() assert MatPow(X, -2).doit() == (X.inv())**2 # less expensive than testing on a 2x2 assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2]) X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0 raises(ValueError, lambda: MatPow(X,-1).doit()) raises(ValueError, lambda: MatPow(X,-2).doit()) def test_doit_nonsquare(): X = ImmutableMatrix([[1, 2, 3], [4, 5, 6]]) assert MatPow(X, 1).doit() == X raises(ShapeError, lambda: MatPow(X, 0).doit()) raises(ShapeError, lambda: MatPow(X, 2).doit()) raises(ShapeError, lambda: MatPow(X, -1).doit()) raises(ShapeError, lambda: MatPow(X, pi).doit()) def test_doit_equals_pow(): #17179 X = ImmutableMatrix ([[1,0],[0,1]]) assert MatPow(X, n).doit() == X**n == X def test_doit_nested_MatrixExpr(): X = ImmutableMatrix([[1, 2], [3, 4]]) Y = ImmutableMatrix([[2, 3], [4, 5]]) assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2 assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2 def test_identity_power(): k = Identity(n) assert MatPow(k, 4).doit() == k assert MatPow(k, n).doit() == k assert MatPow(k, -3).doit() == k assert MatPow(k, 0).doit() == k l = Identity(3) assert MatPow(l, n).doit() == l assert MatPow(l, -1).doit() == l assert MatPow(l, 0).doit() == l def test_zero_power(): z1 = ZeroMatrix(n, n) assert MatPow(z1, 3).doit() == z1 raises(ValueError, lambda:MatPow(z1, -1).doit()) assert MatPow(z1, 0).doit() == Identity(n) assert MatPow(z1, n).doit() == z1 raises(ValueError, lambda:MatPow(z1, -2).doit()) z2 = ZeroMatrix(4, 4) assert MatPow(z2, n).doit() == z2 raises(ValueError, lambda:MatPow(z2, -3).doit()) assert MatPow(z2, 2).doit() == z2 assert MatPow(z2, 0).doit() == Identity(4) raises(ValueError, lambda:MatPow(z2, -1).doit()) def test_transpose_power(): from sympy.matrices.expressions.transpose import Transpose as TP assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5 assert ((C*D).T**5).T == (C*D)**5 assert (C.T.I.T)**7 == C**-7 assert (C.T**l).T**k == C**(l*k) assert ((E.T * A.T)**5).T == (A*E)**5 assert ((A*E).T**5).T**7 == (A*E)**35 assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5 assert ((D*C)**-5).T**-5 == ((D*C)**25).T assert (((D*C)**l).T**k).T == (D*C)**(l*k)
3df663d59c9bf9edcdb8ffa40283ec10ad118c150cac6980bab83757cf1eff38
from sympy import (KroneckerDelta, diff, Piecewise, Sum, Dummy, factor, expand, zeros, gcd_terms, Eq, Symbol) from sympy.core import S, symbols, Add, Mul, SympifyError from sympy.core.compatibility import long from sympy.functions import transpose, sin, cos, sqrt, cbrt, exp from sympy.simplify import simplify from sympy.matrices import (Identity, ImmutableMatrix, Inverse, MatAdd, MatMul, MatPow, Matrix, MatrixExpr, MatrixSymbol, ShapeError, ZeroMatrix, SparseMatrix, Transpose, Adjoint) from sympy.matrices.expressions.matexpr import (MatrixElement, GenericZeroMatrix, GenericIdentity, OneMatrix) from sympy.utilities.pytest import raises, XFAIL n, m, l, k, p = symbols('n m l k p', integer=True) x = symbols('x') A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) E = MatrixSymbol('E', m, n) w = MatrixSymbol('w', n, 1) def test_shape(): assert A.shape == (n, m) assert (A*B).shape == (n, l) raises(ShapeError, lambda: B*A) def test_matexpr(): assert (x*A).shape == A.shape assert (x*A).__class__ == MatMul assert 2*A - A - A == ZeroMatrix(*A.shape) assert (A*B).shape == (n, l) def test_subs(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', m, l) assert A.subs(n, m).shape == (m, m) assert (A*B).subs(B, C) == A*C assert (A*B).subs(l, n).is_square def test_ZeroMatrix(): A = MatrixSymbol('A', n, m) Z = ZeroMatrix(n, m) assert A + Z == A assert A*Z.T == ZeroMatrix(n, n) assert Z*A.T == ZeroMatrix(n, n) assert A - A == ZeroMatrix(*A.shape) assert not Z assert transpose(Z) == ZeroMatrix(m, n) assert Z.conjugate() == Z assert ZeroMatrix(n, n)**0 == Identity(n) with raises(ShapeError): Z**0 with raises(ShapeError): Z**2 def test_ZeroMatrix_doit(): Znn = ZeroMatrix(Add(n, n, evaluate=False), n) assert isinstance(Znn.rows, Add) assert Znn.doit() == ZeroMatrix(2*n, n) assert isinstance(Znn.doit().rows, Mul) def test_OneMatrix(): A = MatrixSymbol('A', n, m) a = MatrixSymbol('a', n, 1) U = OneMatrix(n, m) assert U.shape == (n, m) assert isinstance(A + U, Add) assert transpose(U) == OneMatrix(m, n) assert U.conjugate() == U assert OneMatrix(n, n) ** 0 == Identity(n) with raises(ShapeError): U ** 0 with raises(ShapeError): U ** 2 U = OneMatrix(n, n) assert U[1, 2] == 1 U = OneMatrix(2, 3) assert U.as_explicit() == ImmutableMatrix.ones(2, 3) def test_OneMatrix_doit(): Unn = OneMatrix(Add(n, n, evaluate=False), n) assert isinstance(Unn.rows, Add) assert Unn.doit() == OneMatrix(2 * n, n) assert isinstance(Unn.doit().rows, Mul) def test_Identity(): A = MatrixSymbol('A', n, m) i, j = symbols('i j') In = Identity(n) Im = Identity(m) assert A*Im == A assert In*A == A assert transpose(In) == In assert In.inverse() == In assert In.conjugate() == In assert In[i, j] != 0 assert Sum(In[i, j], (i, 0, n-1), (j, 0, n-1)).subs(n,3).doit() == 3 assert Sum(Sum(In[i, j], (i, 0, n-1)), (j, 0, n-1)).subs(n,3).doit() == 3 def test_Identity_doit(): Inn = Identity(Add(n, n, evaluate=False)) assert isinstance(Inn.rows, Add) assert Inn.doit() == Identity(2*n) assert isinstance(Inn.doit().rows, Mul) def test_addition(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, m) assert isinstance(A + B, MatAdd) assert (A + B).shape == A.shape assert isinstance(A - A + 2*B, MatMul) raises(ShapeError, lambda: A + B.T) raises(TypeError, lambda: A + 1) raises(TypeError, lambda: 5 + A) raises(TypeError, lambda: 5 - A) assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m) with raises(TypeError): ZeroMatrix(n,m) + S(0) def test_multiplication(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) assert (2*A*B).shape == (n, l) assert (A*0*B) == ZeroMatrix(n, l) raises(ShapeError, lambda: B*A) assert (2*A).shape == A.shape assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l) assert C * Identity(n) * C.I == Identity(n) assert B/2 == S.Half*B raises(NotImplementedError, lambda: 2/B) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert Identity(n) * (A + B) == A + B assert A**2*A == A**3 assert A**2*(A.I)**3 == A.I assert A**3*(A.I)**2 == A def test_MatPow(): A = MatrixSymbol('A', n, n) AA = MatPow(A, 2) assert AA.exp == 2 assert AA.base == A assert (A**n).exp == n assert A**0 == Identity(n) assert A**1 == A assert A**2 == AA assert A**-1 == Inverse(A) assert (A**-1)**-1 == A assert (A**2)**3 == A**6 assert A**S.Half == sqrt(A) assert A**(S(1)/3) == cbrt(A) raises(ShapeError, lambda: MatrixSymbol('B', 3, 2)**2) def test_MatrixSymbol(): n, m, t = symbols('n,m,t') X = MatrixSymbol('X', n, m) assert X.shape == (n, m) raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855 assert X.doit() == X def test_dense_conversion(): X = MatrixSymbol('X', 2, 2) assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j]) assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j]) def test_free_symbols(): assert (C*D).free_symbols == set((C, D)) def test_zero_matmul(): assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr) def test_matadd_simplify(): A = MatrixSymbol('A', 1, 1) assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \ MatAdd(A, Matrix([[1]])) def test_matmul_simplify(): A = MatrixSymbol('A', 1, 1) assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \ MatMul(A, Matrix([[1]])) def test_invariants(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) X = MatrixSymbol('X', n, n) objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A), Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1), MatPow(X, 0)] for obj in objs: assert obj == obj.__class__(*obj.args) def test_indexing(): A = MatrixSymbol('A', n, m) A[1, 2] A[l, k] A[l+1, k+1] def test_single_indexing(): A = MatrixSymbol('A', 2, 3) assert A[1] == A[0, 1] assert A[long(1)] == A[0, 1] assert A[3] == A[1, 0] assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]] raises(IndexError, lambda: A[6]) raises(IndexError, lambda: A[n]) B = MatrixSymbol('B', n, m) raises(IndexError, lambda: B[1]) B = MatrixSymbol('B', n, 3) assert B[3] == B[1, 0] def test_MatrixElement_commutative(): assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1] def test_MatrixSymbol_determinant(): A = MatrixSymbol('A', 4, 4) assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \ A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \ A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \ A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \ A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \ A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \ A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \ A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \ A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \ A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \ A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \ A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \ A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0] def test_MatrixElement_diff(): assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0] def test_MatrixElement_doit(): u = MatrixSymbol('u', 2, 1) v = ImmutableMatrix([3, 5]) assert u[0, 0].subs(u, v).doit() == v[0, 0] def test_identity_powers(): M = Identity(n) assert MatPow(M, 3).doit() == M**3 assert M**n == M assert MatPow(M, 0).doit() == M**2 assert M**-2 == M assert MatPow(M, -2).doit() == M**0 N = Identity(3) assert MatPow(N, 2).doit() == N**n assert MatPow(N, 3).doit() == N assert MatPow(N, -2).doit() == N**4 assert MatPow(N, 2).doit() == N**0 def test_Zero_power(): z1 = ZeroMatrix(n, n) assert z1**4 == z1 raises(ValueError, lambda:z1**-2) assert z1**0 == Identity(n) assert MatPow(z1, 2).doit() == z1**2 raises(ValueError, lambda:MatPow(z1, -2).doit()) z2 = ZeroMatrix(3, 3) assert MatPow(z2, 4).doit() == z2**4 raises(ValueError, lambda:z2**-3) assert z2**3 == MatPow(z2, 3).doit() assert z2**0 == Identity(3) raises(ValueError, lambda:MatPow(z2, -1).doit()) def test_matrixelement_diff(): dexpr = diff((D*w)[k,0], w[p,0]) assert w[k, p].diff(w[k, p]) == 1 assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k)*KroneckerDelta(0, p) assert str(dexpr) == "Sum(KroneckerDelta(_i_1, p)*D[k, _i_1], (_i_1, 0, n - 1))" assert str(dexpr.doit()) == 'Piecewise((D[k, p], (p >= 0) & (p <= n - 1)), (0, True))' # TODO: bug with .dummy_eq( ), the previous 2 lines should be replaced by: return # stop eval _i_1 = Dummy("_i_1") assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p)*D[k, _i_1], (_i_1, 0, n - 1))) assert dexpr.doit().dummy_eq(Piecewise((D[k, p], (p >= 0) & (p <= n - 1)), (0, True))) def test_MatrixElement_with_values(): x, y, z, w = symbols("x y z w") M = Matrix([[x, y], [z, w]]) i, j = symbols("i, j") Mij = M[i, j] assert isinstance(Mij, MatrixElement) Ms = SparseMatrix([[2, 3], [4, 5]]) msij = Ms[i, j] assert isinstance(msij, MatrixElement) for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]: assert Mij.subs({i: oi, j: oj}) == M[oi, oj] assert msij.subs({i: oi, j: oj}) == Ms[oi, oj] A = MatrixSymbol("A", 2, 2) assert A[0, 0].subs(A, M) == x assert A[i, j].subs(A, M) == M[i, j] assert M[i, j].subs(M, A) == A[i, j] assert isinstance(M[3*i - 2, j], MatrixElement) assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0] assert isinstance(M[i, 0], MatrixElement) assert M[i, 0].subs(i, 0) == M[0, 0] assert M[0, i].subs(i, 1) == M[0, 1] assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j] raises(ValueError, lambda: M[i, 2]) raises(ValueError, lambda: M[i, -1]) raises(ValueError, lambda: M[2, i]) raises(ValueError, lambda: M[-1, i]) def test_inv(): B = MatrixSymbol('B', 3, 3) assert B.inv() == B**-1 @XFAIL def test_factor_expand(): A = MatrixSymbol("A", n, n) B = MatrixSymbol("B", n, n) expr1 = (A + B)*(C + D) expr2 = A*C + B*C + A*D + B*D assert expr1 != expr2 assert expand(expr1) == expr2 assert factor(expr2) == expr1 expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1) I = Identity(n) # Ideally we get the first, but we at least don't want a wrong answer assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1] def test_issue_2749(): A = MatrixSymbol("A", 5, 2) assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \ [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]]) def test_issue_2750(): x = MatrixSymbol('x', 1, 1) assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]]) def test_issue_7842(): A = MatrixSymbol('A', 3, 1) B = MatrixSymbol('B', 2, 1) assert Eq(A, B) == False assert Eq(A[1,0], B[1, 0]).func is Eq A = ZeroMatrix(2, 3) B = ZeroMatrix(2, 3) assert Eq(A, B) == True def test_generic_zero_matrix(): z = GenericZeroMatrix() A = MatrixSymbol("A", n, n) assert z == z assert z != A assert A != z assert z.is_ZeroMatrix raises(TypeError, lambda: z.shape) raises(TypeError, lambda: z.rows) raises(TypeError, lambda: z.cols) assert MatAdd() == z assert MatAdd(z, A) == MatAdd(A) # Make sure it is hashable hash(z) def test_generic_identity(): I = GenericIdentity() A = MatrixSymbol("A", n, n) assert I == I assert I != A assert A != I assert I.is_Identity assert I**-1 == I raises(TypeError, lambda: I.shape) raises(TypeError, lambda: I.rows) raises(TypeError, lambda: I.cols) assert MatMul() == I assert MatMul(I, A) == MatMul(A) # Make sure it is hashable hash(I) def test_MatMul_postprocessor(): z = zeros(2) z1 = ZeroMatrix(2, 2) assert Mul(0, z) == Mul(z, 0) in [z, z1] M = Matrix([[1, 2], [3, 4]]) Mx = Matrix([[x, 2*x], [3*x, 4*x]]) assert Mul(x, M) == Mul(M, x) == Mx A = MatrixSymbol("A", 2, 2) assert Mul(A, M) == MatMul(A, M) assert Mul(M, A) == MatMul(M, A) # Scalars should be absorbed into constant matrices a = Mul(x, M, A) b = Mul(M, x, A) c = Mul(M, A, x) assert a == b == c == MatMul(Mx, A) a = Mul(x, A, M) b = Mul(A, x, M) c = Mul(A, M, x) assert a == b == c == MatMul(A, Mx) assert Mul(M, M) == M**2 assert Mul(A, M, M) == MatMul(A, M**2) assert Mul(M, M, A) == MatMul(M**2, A) assert Mul(M, A, M) == MatMul(M, A, M) assert Mul(A, x, M, M, x) == MatMul(A, Mx**2) @XFAIL def test_MatAdd_postprocessor_xfail(): # This is difficult to get working because of the way that Add processes # its args. z = zeros(2) assert Add(z, S.NaN) == Add(S.NaN, z) def test_MatAdd_postprocessor(): # Some of these are nonsensical, but we do not raise errors for Add # because that breaks algorithms that want to replace matrices with dummy # symbols. z = zeros(2) assert Add(0, z) == Add(z, 0) == z a = Add(S.Infinity, z) assert a == Add(z, S.Infinity) assert isinstance(a, Add) assert a.args == (S.Infinity, z) a = Add(S.ComplexInfinity, z) assert a == Add(z, S.ComplexInfinity) assert isinstance(a, Add) assert a.args == (S.ComplexInfinity, z) a = Add(z, S.NaN) # assert a == Add(S.NaN, z) # See the XFAIL above assert isinstance(a, Add) assert a.args == (S.NaN, z) M = Matrix([[1, 2], [3, 4]]) a = Add(x, M) assert a == Add(M, x) assert isinstance(a, Add) assert a.args == (x, M) A = MatrixSymbol("A", 2, 2) assert Add(A, M) == Add(M, A) == A + M # Scalars should be absorbed into constant matrices (producing an error) a = Add(x, M, A) assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x) assert isinstance(a, Add) assert a.args == (x, A + M) assert Add(M, M) == 2*M assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M a = Add(A, x, M, M, x) assert isinstance(a, Add) assert a.args == (2*x, A + 2*M) def test_simplify_matrix_expressions(): # Various simplification functions assert type(gcd_terms(C*D + D*C)) == MatAdd a = gcd_terms(2*C*D + 4*D*C) assert type(a) == MatMul assert a.args == (2, (C*D + 2*D*C)) def test_exp(): A = MatrixSymbol('A', 2, 2) B = MatrixSymbol('B', 2, 2) expr1 = exp(A)*exp(B) expr2 = exp(B)*exp(A) assert expr1 != expr2 assert expr1 - expr2 != 0 assert not isinstance(expr1, exp) assert not isinstance(expr2, exp) def test_invalid_args(): raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A')) def test_matrixsymbol_from_symbol(): # The label should be preserved during doit and subs A_label = Symbol('A', complex=True) A = MatrixSymbol(A_label, 2, 2) A_1 = A.doit() A_2 = A.subs(2, 3) assert A_1.args == A.args assert A_2.args[0] == A.args[0]
bcc32acf3c8feb064aa68723c2807e6f3d56edf5fabd5fd5d885046c1d9e367f
from sympy.core.expr import unchanged from sympy.core.mul import Mul from sympy.matrices import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct from sympy.utilities.pytest import raises A = Matrix(3, 1, [1, 2, 3]) B = Matrix(3, 1, [1, 3, 5]) C = Matrix(4, 1, [1, 2, 4, 5]) D = Matrix(2, 2, [1, 2, 3, 4]) def test_docproduct(): assert DotProduct(A, B).doit() == 22 assert DotProduct(A.T, B).doit() == 22 assert DotProduct(A, B.T).doit() == 22 assert DotProduct(A.T, B.T).doit() == 22 raises(TypeError, lambda: DotProduct(1, A)) raises(TypeError, lambda: DotProduct(A, 1)) raises(TypeError, lambda: DotProduct(A, D)) raises(TypeError, lambda: DotProduct(D, A)) raises(TypeError, lambda: DotProduct(B, C).doit()) def test_dotproduct_symbolic(): A = MatrixSymbol('A', 3, 1) B = MatrixSymbol('B', 3, 1) dot = DotProduct(A, B) assert dot.is_scalar == True assert unchanged(Mul, 2, dot) # XXX Fix forced evaluation for arithmetics with matrix expressions assert dot * A == (A[0, 0]*B[0, 0] + A[1, 0]*B[1, 0] + A[2, 0]*B[2, 0])*A
86aab816bcbeb753aff86897a45da81819331896b5045980f2b242a52bbdc313
from sympy.core.compatibility import range, PY3 from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set, ComplexRegion) from sympy.sets.sets import (FiniteSet, Interval, imageset, Union, Intersection, ProductSet, Contains) from sympy.simplify.simplify import simplify from sympy import (S, Symbol, Lambda, symbols, cos, sin, pi, oo, Basic, Rational, sqrt, tan, log, exp, Abs, I, Tuple, eye, Dummy, floor, And, Eq) from sympy.utilities.iterables import cartes from sympy.utilities.pytest import XFAIL, raises from sympy.abc import x, y, t import itertools def test_naturals(): N = S.Naturals assert 5 in N assert -5 not in N assert 5.5 not in N ni = iter(N) a, b, c, d = next(ni), next(ni), next(ni), next(ni) assert (a, b, c, d) == (1, 2, 3, 4) assert isinstance(a, Basic) assert N.intersect(Interval(-5, 5)) == Range(1, 6) assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5) assert N.boundary == N assert N.inf == 1 assert N.sup == oo assert not N.contains(oo) for s in (S.Naturals0, S.Naturals): assert s.intersection(S.Reals) is s assert s.is_subset(S.Reals) assert N.as_relational(x) == And(Eq(floor(x), x), x >= S.One, x < oo) def test_naturals0(): N = S.Naturals0 assert 0 in N assert -1 not in N assert next(iter(N)) == 0 assert not N.contains(oo) assert N.contains(sin(x)) == Contains(sin(x), N) def test_integers(): Z = S.Integers assert 5 in Z assert -5 in Z assert 5.5 not in Z assert not Z.contains(oo) assert not Z.contains(-oo) zi = iter(Z) a, b, c, d = next(zi), next(zi), next(zi), next(zi) assert (a, b, c, d) == (0, 1, -1, 2) assert isinstance(a, Basic) assert Z.intersect(Interval(-5, 5)) == Range(-5, 6) assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5) assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity) assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity) assert Z.inf == -oo assert Z.sup == oo assert Z.boundary == Z assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo) def test_ImageSet(): raises(ValueError, lambda: ImageSet(x, S.Integers)) assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1) assert ImageSet(Lambda(x, y), S.Integers ) == {y} squares = ImageSet(Lambda(x, x**2), S.Naturals) assert 4 in squares assert 5 not in squares assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9) assert 16 not in squares.intersect(Interval(0, 10)) si = iter(squares) a, b, c, d = next(si), next(si), next(si), next(si) assert (a, b, c, d) == (1, 4, 9, 16) harmonics = ImageSet(Lambda(x, 1/x), S.Naturals) assert Rational(1, 5) in harmonics assert Rational(.25) in harmonics assert 0.25 not in harmonics assert Rational(.3) not in harmonics assert (1, 2) not in harmonics assert harmonics.is_iterable assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0) assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4) c = ComplexRegion(Interval(1, 3)*Interval(1, 3)) assert Tuple(2, 6) in ImageSet(Lambda((x, y), (x, 2*y)), c) assert Tuple(2, S.Half) in ImageSet(Lambda((x, y), (x, 1/y)), c) assert Tuple(2, -2) not in ImageSet(Lambda((x, y), (x, y**2)), c) assert Tuple(2, -2) in ImageSet(Lambda((x, y), (x, -2)), c) c3 = Interval(3, 7)*Interval(8, 11)*Interval(5, 9) assert Tuple(8, 3, 9) in ImageSet(Lambda((t, y, x), (y, t, x)), c3) assert Tuple(S(1)/8, 3, 9) in ImageSet(Lambda((t, y, x), (1/y, t, x)), c3) assert 2/pi not in ImageSet(Lambda((x, y), 2/x), c) assert 2/S(100) not in ImageSet(Lambda((x, y), 2/x), c) assert 2/S(3) in ImageSet(Lambda((x, y), 2/x), c) assert imageset(lambda x, y: x + y, S.Integers, S.Naturals ).base_set == ProductSet(S.Integers, S.Naturals) def test_image_is_ImageSet(): assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet) def test_halfcircle(): # This test sometimes works and sometimes doesn't. # It may be an issue with solve? Maybe with using Lambdas/dummys? # I believe the code within fancysets is correct r, th = symbols('r, theta', real=True) L = Lambda((r, th), (r*cos(th), r*sin(th))) halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi)) assert (r, 0) in halfcircle assert (1, 0) in halfcircle assert (0, -1) not in halfcircle assert (r, 2*pi) not in halfcircle assert (0, 0) in halfcircle assert not halfcircle.is_iterable def test_ImageSet_iterator_not_injective(): L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ... evens = ImageSet(L, S.Naturals) i = iter(evens) # No repeats here assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6) def test_inf_Range_len(): raises(ValueError, lambda: len(Range(0, oo, 2))) assert Range(0, oo, 2).size is S.Infinity assert Range(0, -oo, -2).size is S.Infinity assert Range(oo, 0, -2).size is S.Infinity assert Range(-oo, 0, 2).size is S.Infinity def test_Range_set(): empty = Range(0) assert Range(5) == Range(0, 5) == Range(0, 5, 1) r = Range(10, 20, 2) assert 12 in r assert 8 not in r assert 11 not in r assert 30 not in r assert list(Range(0, 5)) == list(range(5)) assert list(Range(5, 0, -1)) == list(range(5, 0, -1)) assert Range(5, 15).sup == 14 assert Range(5, 15).inf == 5 assert Range(15, 5, -1).sup == 15 assert Range(15, 5, -1).inf == 6 assert Range(10, 67, 10).sup == 60 assert Range(60, 7, -10).inf == 10 assert len(Range(10, 38, 10)) == 3 assert Range(0, 0, 5) == empty assert Range(oo, oo, 1) == empty assert Range(oo, 1, 1) == empty assert Range(-oo, 1, -1) == empty assert Range(1, oo, -1) == empty assert Range(1, -oo, 1) == empty raises(ValueError, lambda: Range(1, 4, oo)) raises(ValueError, lambda: Range(-oo, oo)) raises(ValueError, lambda: Range(oo, -oo, -1)) raises(ValueError, lambda: Range(-oo, oo, 2)) raises(ValueError, lambda: Range(0, pi, 1)) raises(ValueError, lambda: Range(1, 10, 0)) assert 5 in Range(0, oo, 5) assert -5 in Range(-oo, 0, 5) assert oo not in Range(0, oo) ni = symbols('ni', integer=False) assert ni not in Range(oo) u = symbols('u', integer=None) assert Range(oo).contains(u) is not False inf = symbols('inf', infinite=True) assert inf not in Range(oo) inf = symbols('inf', infinite=True) assert inf not in Range(oo) assert Range(0, oo, 2)[-1] == oo assert Range(-oo, 1, 1)[-1] is S.Zero assert Range(oo, 1, -1)[-1] == 2 assert Range(0, -oo, -2)[-1] == -oo assert Range(1, 10, 1)[-1] == 9 assert all(i.is_Integer for i in Range(0, -1, 1)) it = iter(Range(-oo, 0, 2)) raises(ValueError, lambda: next(it)) assert empty.intersect(S.Integers) == empty assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1) # test slicing assert Range(1, 10, 1)[5] == 6 assert Range(1, 12, 2)[5] == 11 assert Range(1, 10, 1)[-1] == 9 assert Range(1, 10, 3)[-1] == 7 raises(ValueError, lambda: Range(oo,0,-1)[1:3:0]) raises(ValueError, lambda: Range(oo,0,-1)[:1]) raises(ValueError, lambda: Range(1, oo)[-2]) raises(ValueError, lambda: Range(-oo, 1)[2]) raises(IndexError, lambda: Range(10)[-20]) raises(IndexError, lambda: Range(10)[20]) raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0]) assert Range(2, -oo, -2)[2:2:2] == empty assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2]) assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[::2]) assert Range(oo, 2, -2)[::] == Range(oo, 2, -2) assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4) assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4) raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2]) assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[0::2]) assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2) raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2]) assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2) raises(ValueError, lambda: Range(oo, 2, -2)[0:2:]) raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1]) assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4) assert Range(oo, 0, -2)[-10:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2]) raises(ValueError, lambda: Range(oo, 0, -2)[0::-2]) assert Range(oo, 0, -2)[0:-4:-2] == empty assert Range(oo, 0, -2)[:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1]) # test empty Range assert empty.reversed == empty assert 0 not in empty assert list(empty) == [] assert len(empty) == 0 assert empty.size is S.Zero assert empty.intersect(FiniteSet(0)) is S.EmptySet assert bool(empty) is False raises(IndexError, lambda: empty[0]) assert empty[:0] == empty raises(NotImplementedError, lambda: empty.inf) raises(NotImplementedError, lambda: empty.sup) AB = [None] + list(range(12)) for R in [ Range(1, 10), Range(1, 10, 2), ]: r = list(R) for a, b, c in cartes(AB, AB, [-3, -1, None, 1, 3]): for reverse in range(2): r = list(reversed(r)) R = R.reversed result = list(R[a:b:c]) ans = r[a:b:c] txt = ('\n%s[%s:%s:%s] = %s -> %s' % ( R, a, b, c, result, ans)) check = ans == result assert check, txt assert Range(1, 10, 1).boundary == Range(1, 10, 1) for r in (Range(1, 10, 2), Range(1, oo, 2)): rev = r.reversed assert r.inf == rev.inf and r.sup == rev.sup assert r.step == -rev.step # Make sure to use range in Python 3 and xrange in Python 2 (regardless of # compatibility imports above) if PY3: builtin_range = range else: builtin_range = xrange assert Range(builtin_range(10)) == Range(10) assert Range(builtin_range(1, 10)) == Range(1, 10) assert Range(builtin_range(1, 10, 2)) == Range(1, 10, 2) if PY3: assert Range(builtin_range(1000000000000)) == \ Range(1000000000000) # test Range.as_relational assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(x - 1, floor(x) - 1) assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq((3 - x)/2, floor((3 - x)/2)) def test_range_range_intersection(): for a, b, r in [ (Range(0), Range(1), S.EmptySet), (Range(3), Range(4, oo), S.EmptySet), (Range(3), Range(-3, -1), S.EmptySet), (Range(1, 3), Range(0, 3), Range(1, 3)), (Range(1, 3), Range(1, 4), Range(1, 3)), (Range(1, oo, 2), Range(2, oo, 2), S.EmptySet), (Range(0, oo, 2), Range(oo), Range(0, oo, 2)), (Range(0, oo, 2), Range(100), Range(0, 100, 2)), (Range(2, oo, 2), Range(oo), Range(2, oo, 2)), (Range(0, oo, 2), Range(5, 6), S.EmptySet), (Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)), (Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet), (Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)), (Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]: assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r a, b = b, a assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r def test_range_interval_intersection(): p = symbols('p', positive=True) assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection) assert Range(4).intersect(Interval(0, 3)) == Range(4) assert Range(4).intersect(Interval(-oo, oo)) == Range(4) assert Range(4).intersect(Interval(1, oo)) == Range(1, 4) assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4) assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4) assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4) assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3) assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet # Null Range intersections assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet def test_Integers_eval_imageset(): ans = ImageSet(Lambda(x, 2*x + S(3)/7), S.Integers) im = imageset(Lambda(x, -2*x + S(3)/7), S.Integers) assert im == ans im = imageset(Lambda(x, -2*x - S(11)/7), S.Integers) assert im == ans y = Symbol('y') L = imageset(x, 2*x + y, S.Integers) assert y + 4 in L _x = symbols('x', negative=True) eq = _x**2 - _x + 1 assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1 eq = 3*_x - 1 assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2 assert imageset(x, (x, 1/x), S.Integers) == \ ImageSet(Lambda(x, (x, 1/x)), S.Integers) def test_Range_eval_imageset(): a, b, c = symbols('a b c') assert imageset(x, a*(x + b) + c, Range(3)) == \ imageset(x, a*x + a*b + c, Range(3)) eq = (x + 1)**2 assert imageset(x, eq, Range(3)).lamda.expr == eq eq = a*(x + b) + c r = Range(3, -3, -2) imset = imageset(x, eq, r) assert imset.lamda.expr != eq assert list(imset) == [eq.subs(x, i).expand() for i in list(r)] def test_fun(): assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)), Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1)) def test_Reals(): assert 5 in S.Reals assert S.Pi in S.Reals assert -sqrt(2) in S.Reals assert (2, 5) not in S.Reals assert sqrt(-1) not in S.Reals assert S.Reals == Interval(-oo, oo) assert S.Reals != Interval(0, oo) assert S.Reals.is_subset(Interval(-oo, oo)) def test_Complex(): assert 5 in S.Complexes assert 5 + 4*I in S.Complexes assert S.Pi in S.Complexes assert -sqrt(2) in S.Complexes assert -I in S.Complexes assert sqrt(-1) in S.Complexes assert S.Complexes.intersect(S.Reals) == S.Reals assert S.Complexes.union(S.Reals) == S.Complexes assert S.Complexes == ComplexRegion(S.Reals*S.Reals) assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False assert str(S.Complexes) == "S.Complexes" assert repr(S.Complexes) == "S.Complexes" def take(n, iterable): "Return first n items of the iterable as a list" return list(itertools.islice(iterable, n)) def test_intersections(): assert S.Integers.intersect(S.Reals) == S.Integers assert 5 in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(S.Reals) assert -5 not in S.Naturals.intersect(S.Reals) assert 5.5 not in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(Interval(3, oo)) assert -5 in S.Integers.intersect(Interval(-oo, 3)) assert all(x.is_Integer for x in take(10, S.Integers.intersect(Interval(3, oo)) )) def test_infinitely_indexed_set_1(): from sympy.abc import n, m, t assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers) assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(m, 2*m), S.Integers).intersect( imageset(Lambda(n, 3*n), S.Integers)) == \ ImageSet(Lambda(t, 6*t), S.Integers) assert imageset(x, x/2 + S(1)/3, S.Integers).intersect(S.Integers) is S.EmptySet assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers def test_infinitely_indexed_set_2(): from sympy.abc import n a = Symbol('a', integer=True) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, n + a), S.Integers) assert imageset(Lambda(n, n + pi), S.Integers) == \ imageset(Lambda(n, n + a + pi), S.Integers) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, -n + a), S.Integers) assert imageset(Lambda(n, -6*n), S.Integers) == \ ImageSet(Lambda(n, 6*n), S.Integers) assert imageset(Lambda(n, 2*n + pi), S.Integers) == \ ImageSet(Lambda(n, 2*n + pi - 2), S.Integers) def test_imageset_intersect_real(): from sympy import I from sympy.abc import n assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == \ FiniteSet(-1, 1) s = ImageSet( Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) # s is unevaluated, but after intersection the result # should be canonical assert s.intersect(S.Reals) == imageset( Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet( Lambda(n, 2*pi*n + 7*pi/4), S.Integers) def test_imageset_intersect_interval(): from sympy.abc import n f1 = ImageSet(Lambda(n, n*pi), S.Integers) f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi)) f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) # complex expressions f4 = ImageSet(Lambda(n, n*I*pi), S.Integers) f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers) # non-linear expressions f6 = ImageSet(Lambda(n, log(n)), S.Integers) f7 = ImageSet(Lambda(n, n**2), S.Integers) f8 = ImageSet(Lambda(n, Abs(n)), S.Integers) f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0) assert f1.intersect(Interval(-1, 1)) == FiniteSet(0) assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi) assert f2.intersect(Interval(1, 2)) == Interval(1, 2) assert f3.intersect(Interval(-1, 1)) == S.EmptySet assert f3.intersect(Interval(-5, 5)) == FiniteSet(-3*pi/2, pi/2) assert f4.intersect(Interval(-1, 1)) == FiniteSet(0) assert f4.intersect(Interval(1, 2)) == S.EmptySet assert f5.intersect(Interval(0, 1)) == S.EmptySet assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2)) assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10)) assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2)) assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2)) def test_infinitely_indexed_set_3(): from sympy.abc import n, m, t assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect( imageset(Lambda(n, 3*pi*n), S.Integers)) == \ ImageSet(Lambda(t, 6*pi*t), S.Integers) assert imageset(Lambda(n, 2*n + 1), S.Integers) == \ imageset(Lambda(n, 2*n - 1), S.Integers) assert imageset(Lambda(n, 3*n + 2), S.Integers) == \ imageset(Lambda(n, 3*n - 1), S.Integers) def test_ImageSet_simplification(): from sympy.abc import n, m assert imageset(Lambda(n, n), S.Integers) == S.Integers assert imageset(Lambda(n, sin(n)), imageset(Lambda(m, tan(m)), S.Integers)) == \ imageset(Lambda(m, sin(tan(m))), S.Integers) assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2) assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2) assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2) def test_ImageSet_contains(): from sympy.abc import x assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers) assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet i = Dummy(integer=True) q = imageset(x, x + I*y, S.Integers).intersection(S.Reals) assert q.subs(y, I*i).intersection(S.Integers) is S.Integers q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals) assert q.subs(y, 0) is S.Integers assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers z = cos(1)**2 + sin(1)**2 - 1 q = imageset(x, x + I*z, S.Integers).intersection(S.Reals) assert q is not S.EmptySet def test_ComplexRegion_contains(): # contains in ComplexRegion a = Interval(2, 3) b = Interval(4, 6) c = Interval(7, 9) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*b, c*a)) assert 2.5 + 4.5*I in c1 assert 2 + 4*I in c1 assert 3 + 4*I in c1 assert 8 + 2.5*I in c2 assert 2.5 + 6.1*I not in c1 assert 4.5 + 3.2*I not in c1 r1 = Interval(0, 1) theta1 = Interval(0, 2*S.Pi) c3 = ComplexRegion(r1*theta1, polar=True) assert (0.5 + 6*I/10) in c3 assert (S.Half + 6*I/10) in c3 assert (S.Half + .6*I) in c3 assert (0.5 + .6*I) in c3 assert I in c3 assert 1 in c3 assert 0 in c3 assert 1 + I not in c3 assert 1 - I not in c3 raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2)) def test_ComplexRegion_intersect(): # Polar form X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True) unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True) first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True) assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk assert right_half_disk.intersect(first_quad_disk) == first_quad_disk assert upper_half_disk.intersect(right_half_disk) == first_quad_disk assert upper_half_disk.intersect(lower_half_disk) == X_axis c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True) assert c1.intersect(Interval(1, 5)) == Interval(1, 4) assert c1.intersect(Interval(4, 9)) == FiniteSet(4) assert c1.intersect(Interval(5, 12)) is S.EmptySet # Rectangular form X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0)) unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1)) upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo)) lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0)) right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo)) first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo)) assert upper_half_plane.intersect(unit_square) == upper_half_unit_square assert right_half_plane.intersect(first_quad_plane) == first_quad_plane assert upper_half_plane.intersect(right_half_plane) == first_quad_plane assert upper_half_plane.intersect(lower_half_plane) == X_axis c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10)) assert c1.intersect(Interval(2, 7)) == Interval(2, 5) assert c1.intersect(Interval(5, 7)) == FiniteSet(5) assert c1.intersect(Interval(6, 9)) is S.EmptySet # unevaluated object C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False) def test_ComplexRegion_union(): # Polar form c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi)) p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi)) assert c1.union(c2) == ComplexRegion(p1, polar=True) assert c3.union(c4) == ComplexRegion(p2, polar=True) # Rectangular form c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9)) c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12)) c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0)) c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20)) p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12)) p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20)) assert c5.union(c6) == ComplexRegion(p3) assert c7.union(c8) == ComplexRegion(p4) assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False) assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4))) def test_ComplexRegion_from_real(): c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True) raises(ValueError, lambda: c1.from_real(c1)) assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False) def test_ComplexRegion_measure(): a, b = Interval(2, 5), Interval(4, 8) theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True) assert c1.measure == 12 assert c2.measure == 9*pi def test_normalize_theta_set(): # Interval assert normalize_theta_set(Interval(pi, 2*pi)) == \ Union(FiniteSet(0), Interval.Ropen(pi, 2*pi)) assert normalize_theta_set(Interval(9*pi/2, 5*pi)) == Interval(pi/2, pi) assert normalize_theta_set(Interval(-3*pi/2, pi/2)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval.open(-3*pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval.open(-7*pi/2, -3*pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(3*pi/2, 2*pi)) assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval(-3*pi/2, -pi/2)) == Interval(pi/2, 3*pi/2) assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi) assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.open(3*pi/2, 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) assert normalize_theta_set(Interval.open(4*pi, 9*pi/2)) == Interval.open(0, pi/2) assert normalize_theta_set(Interval.Lopen(4*pi, 9*pi/2)) == Interval.Lopen(0, pi/2) assert normalize_theta_set(Interval.Ropen(4*pi, 9*pi/2)) == Interval.Ropen(0, pi/2) assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \ Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi)) # FiniteSet assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi) assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi) assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, 3*pi/2) assert normalize_theta_set(FiniteSet(-3*pi/2, pi/2)) == \ FiniteSet(pi/2) assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0) # Unions assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \ Union(Interval(0, pi/3), Interval(pi/2, pi)) assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, 7*pi/3))) == \ Interval(0, pi) # ValueError for non-real sets raises(ValueError, lambda: normalize_theta_set(S.Complexes)) # NotImplementedError for subset of reals raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1))) # NotImplementedError without pi as coefficient raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi))) raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10))) raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi))) def test_ComplexRegion_FiniteSet(): x, y, z, a, b, c = symbols('x y z a b c') # Issue #9669 assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \ FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y, b + I*z, c + I*x, c + I*y, c + I*z) assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I) def test_union_RealSubSet(): assert (S.Complexes).union(Interval(1, 2)) == S.Complexes assert (S.Complexes).union(S.Integers) == S.Complexes def test_issue_9980(): c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3)) c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3)) R = Union(c1, c2) assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \ Interval(1, 5)*Interval(1, 3)), False) assert c1.func(*c1.args) == c1 assert R.func(*R.args) == R def test_issue_11732(): interval12 = Interval(1, 2) finiteset1234 = FiniteSet(1, 2, 3, 4) pointComplex = Tuple(1, 5) assert (interval12 in S.Naturals) == False assert (interval12 in S.Naturals0) == False assert (interval12 in S.Integers) == False assert (interval12 in S.Complexes) == False assert (finiteset1234 in S.Naturals) == False assert (finiteset1234 in S.Naturals0) == False assert (finiteset1234 in S.Integers) == False assert (finiteset1234 in S.Complexes) == False assert (pointComplex in S.Naturals) == False assert (pointComplex in S.Naturals0) == False assert (pointComplex in S.Integers) == False assert (pointComplex in S.Complexes) == True def test_issue_11730(): unit = Interval(0, 1) square = ComplexRegion(unit ** 2) assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes assert Union(unit, square) == square assert Intersection(S.Reals, square) == unit def test_issue_11938(): unit = Interval(0, 1) ival = Interval(1, 2) cr1 = ComplexRegion(ival * unit) assert Intersection(cr1, S.Reals) == ival assert Intersection(cr1, unit) == FiniteSet(1) arg1 = Interval(0, S.Pi) arg2 = FiniteSet(S.Pi) arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4) cp1 = ComplexRegion(unit * arg1, polar=True) cp2 = ComplexRegion(unit * arg2, polar=True) cp3 = ComplexRegion(unit * arg3, polar=True) assert Intersection(cp1, S.Reals) == Interval(-1, 1) assert Intersection(cp2, S.Reals) == Interval(-1, 0) assert Intersection(cp3, S.Reals) == FiniteSet(0) def test_issue_11914(): a, b = Interval(0, 1), Interval(0, pi) c, d = Interval(2, 3), Interval(pi, 3 * pi / 2) cp1 = ComplexRegion(a * b, polar=True) cp2 = ComplexRegion(c * d, polar=True) assert -3 in cp1.union(cp2) assert -3 in cp2.union(cp1) assert -5 not in cp1.union(cp2) def test_issue_9543(): assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals) def test_issue_16871(): assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1} assert ImageSet(Lambda(x, x - 3), S.Integers ).intersection(S.Integers) is S.Integers @XFAIL def test_issue_16871b(): assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers) def test_no_mod_on_imaginary(): assert imageset(Lambda(x, 2*x + 3*I), S.Integers ) == ImageSet(Lambda(x, 2*x + I), S.Integers) def test_Rationals(): assert S.Integers.is_subset(S.Rationals) assert S.Naturals.is_subset(S.Rationals) assert S.Naturals0.is_subset(S.Rationals) assert S.Rationals.is_subset(S.Reals) assert S.Rationals.inf == -oo assert S.Rationals.sup == oo it = iter(S.Rationals) assert [next(it) for i in range(12)] == [ 0, 1, -1, S(1)/2, 2, -S(1)/2, -2, S(1)/3, 3, -S(1)/3, -3, S(2)/3] assert Basic() not in S.Rationals assert S.Half in S.Rationals assert 1.0 not in S.Rationals assert 2 in S.Rationals r = symbols('r', rational=True) assert r in S.Rationals raises(TypeError, lambda: x in S.Rationals) assert S.Rationals.boundary == S.Rationals def test_imageset_intersection(): n = Dummy() s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) assert s.intersect(S.Reals) == ImageSet( Lambda(n, 2*pi*n + 7*pi/4), S.Integers)
c4d143c20df7cfd353588a991afbf2a113980acb04df4a493d85b8a927108460
from sympy import (pi, sin, cos, Symbol, Integral, Sum, sqrt, log, oo, LambertW, I, meijerg, exp_polar, Max, Piecewise, And) from sympy.plotting import (plot, plot_parametric, plot3d_parametric_line, plot3d, plot3d_parametric_surface) from sympy.plotting.plot import unset_show, plot_contour, PlotGrid from sympy.utilities import lambdify as lambdify_ from sympy.utilities.pytest import skip, raises, warns from sympy.plotting.experimental_lambdify import lambdify from sympy.external import import_module from tempfile import NamedTemporaryFile import os unset_show() # XXX: We could implement this as a context manager instead # That would need rewriting the plot_and_save() function # entirely class TmpFileManager: tmp_files = [] @classmethod def tmp_file(cls, name=''): cls.tmp_files.append(NamedTemporaryFile(prefix=name, suffix='.png').name) return cls.tmp_files[-1] @classmethod def cleanup(cls): for file in cls.tmp_files: try: os.remove(file) except OSError: # If the file doesn't exist, for instance, if the test failed. pass def plot_and_save_1(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') ### # Examples from the 'introduction' notebook ### p = plot(x) p = plot(x*sin(x), x*cos(x)) p.extend(p) p[0].line_color = lambda a: a p[1].line_color = 'b' p.title = 'Big title' p.xlabel = 'the x axis' p[1].label = 'straight line' p.legend = True p.aspect_ratio = (1, 1) p.xlim = (-15, 20) p.save(tmp_file('%s_basic_options_and_colors' % name)) p._backend.close() p.extend(plot(x + 1)) p.append(plot(x + 3, x**2)[1]) p.save(tmp_file('%s_plot_extend_append' % name)) p[2] = plot(x**2, (x, -2, 3)) p.save(tmp_file('%s_plot_setitem' % name)) p._backend.close() p = plot(sin(x), (x, -2*pi, 4*pi)) p.save(tmp_file('%s_line_explicit' % name)) p._backend.close() p = plot(sin(x)) p.save(tmp_file('%s_line_default_range' % name)) p._backend.close() p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3))) p.save(tmp_file('%s_line_multiple_range' % name)) p._backend.close() raises(ValueError, lambda: plot(x, y)) #Piecewise plots p = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1)) p.save(tmp_file('%s_plot_piecewise' % name)) p._backend.close() p = plot(Piecewise((x, x < 1), (x**2, True)), (x, -3, 3)) p.save(tmp_file('%s_plot_piecewise_2' % name)) p._backend.close() # test issue 7471 p1 = plot(x) p2 = plot(3) p1.extend(p2) p.save(tmp_file('%s_horizontal_line' % name)) p._backend.close() # test issue 10925 f = Piecewise((-1, x < -1), (x, And(-1 <= x, x < 0)), \ (x**2, And(0 <= x, x < 1)), (x**3, x >= 1)) p = plot(f, (x, -3, 3)) p.save(tmp_file('%s_plot_piecewise_3' % name)) p._backend.close() def plot_and_save_2(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') z = Symbol('z') #parametric 2d plots. #Single plot with default range. plot_parametric(sin(x), cos(x)).save(tmp_file()) #Single plot with range. p = plot_parametric(sin(x), cos(x), (x, -5, 5)) p.save(tmp_file('%s_parametric_range' % name)) p._backend.close() #Multiple plots with same range. p = plot_parametric((sin(x), cos(x)), (x, sin(x))) p.save(tmp_file('%s_parametric_multiple' % name)) p._backend.close() #Multiple plots with different ranges. p = plot_parametric((sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5))) p.save(tmp_file('%s_parametric_multiple_ranges' % name)) p._backend.close() #depth of recursion specified. p = plot_parametric(x, sin(x), depth=13) p.save(tmp_file('%s_recursion_depth' % name)) p._backend.close() #No adaptive sampling. p = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500) p.save(tmp_file('%s_adaptive' % name)) p._backend.close() #3d parametric plots p = plot3d_parametric_line(sin(x), cos(x), x) p.save(tmp_file('%s_3d_line' % name)) p._backend.close() p = plot3d_parametric_line( (sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3))) p.save(tmp_file('%s_3d_line_multiple' % name)) p._backend.close() p = plot3d_parametric_line(sin(x), cos(x), x, nb_of_points=30) p.save(tmp_file('%s_3d_line_points' % name)) p._backend.close() # 3d surface single plot. p = plot3d(x * y) p.save(tmp_file('%s_surface' % name)) p._backend.close() # Multiple 3D plots with same range. p = plot3d(-x * y, x * y, (x, -5, 5)) p.save(tmp_file('%s_surface_multiple' % name)) p._backend.close() # Multiple 3D plots with different ranges. p = plot3d( (x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3))) p.save(tmp_file('%s_surface_multiple_ranges' % name)) p._backend.close() # Single Parametric 3D plot p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y) p.save(tmp_file('%s_parametric_surface' % name)) p._backend.close() # Multiple Parametric 3D plots. p = plot3d_parametric_surface( (x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)), (sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5))) p.save(tmp_file('%s_parametric_surface' % name)) p._backend.close() # Single Contour plot. p = plot_contour(sin(x)*sin(y), (x, -5, 5), (y, -5, 5)) p.save(tmp_file('%s_contour_plot' % name)) p._backend.close() # Multiple Contour plots with same range. p = plot_contour(x**2 + y**2, x**3 + y**3, (x, -5, 5), (y, -5, 5)) p.save(tmp_file('%s_contour_plot' % name)) p._backend.close() # Multiple Contour plots with different range. p = plot_contour((x**2 + y**2, (x, -5, 5), (y, -5, 5)), (x**3 + y**3, (x, -3, 3), (y, -3, 3))) p.save(tmp_file('%s_contour_plot' % name)) p._backend.close() def plot_and_save_3(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') z = Symbol('z') ### # Examples from the 'colors' notebook ### p = plot(sin(x)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_line_arity2' % name)) p._backend.close() p = plot(x*sin(x), x*cos(x), (x, 0, 10)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_param_line_arity1' % name)) p[0].line_color = lambda a, b: a p.save(tmp_file('%s_colors_param_line_arity2a' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_param_line_arity2b' % name)) p._backend.close() p = plot3d_parametric_line(sin(x) + 0.1*sin(x)*cos(7*x), cos(x) + 0.1*cos(x)*cos(7*x), 0.1*sin(7*x), (x, 0, 2*pi)) p[0].line_color = lambdify_(x, sin(4*x)) p.save(tmp_file('%s_colors_3d_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_3d_line_arity2' % name)) p[0].line_color = lambda a, b, c: c p.save(tmp_file('%s_colors_3d_line_arity3' % name)) p._backend.close() p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_surface_arity1' % name)) p[0].surface_color = lambda a, b: b p.save(tmp_file('%s_colors_surface_arity2' % name)) p[0].surface_color = lambda a, b, c: c p.save(tmp_file('%s_colors_surface_arity3a' % name)) p[0].surface_color = lambdify_((x, y, z), sqrt((x - 3*pi)**2 + y**2)) p.save(tmp_file('%s_colors_surface_arity3b' % name)) p._backend.close() p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y, (x, -1, 1), (y, -1, 1)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_param_surf_arity1' % name)) p[0].surface_color = lambda a, b: a*b p.save(tmp_file('%s_colors_param_surf_arity2' % name)) p[0].surface_color = lambdify_((x, y, z), sqrt(x**2 + y**2 + z**2)) p.save(tmp_file('%s_colors_param_surf_arity3' % name)) p._backend.close() def plot_and_save_4(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') ### # Examples from the 'advanced' notebook ### # XXX: This raises the warning "The evaluation of the expression is # problematic. We are trying a failback method that may still work. Please # report this as a bug." It has to use the fallback because using evalf() # is the only way to evaluate the integral. We should perhaps just remove # that warning. with warns(UserWarning, match="The evaluation of the expression is problematic"): i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y)) p = plot(i, (y, 1, 5)) p.save(tmp_file('%s_advanced_integral' % name)) p._backend.close() def plot_and_save_5(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') s = Sum(1/x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) p.save(tmp_file('%s_advanced_inf_sum' % name)) p._backend.close() p = plot(Sum(1/x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True p.save(tmp_file('%s_advanced_fin_sum' % name)) p._backend.close() def plot_and_save_6(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') ### # Test expressions that can not be translated to np and generate complex # results. ### plot(sin(x) + I*cos(x)).save(tmp_file()) plot(sqrt(sqrt(-x))).save(tmp_file()) plot(LambertW(x)).save(tmp_file()) plot(sqrt(LambertW(x))).save(tmp_file()) #Characteristic function of a StudentT distribution with nu=10 plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I*pi)/2) + meijerg(((1/2,), ()), ((5, 0, 1/2), ()), 5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file()) def plotgrid_and_save(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') p1 = plot(x) p2 = plot_parametric((sin(x), cos(x)), (x, sin(x)), show=False) p3 = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500, show=False) p4 = plot3d_parametric_line(sin(x), cos(x), x, show=False) # symmetric grid p = PlotGrid(2, 2, p1, p2, p3, p4) p.save(tmp_file('%s_grid1' % name)) p._backend.close() # grid size greater than the number of subplots p = PlotGrid(3, 4, p1, p2, p3, p4) p.save(tmp_file('%s_grid2' % name)) p._backend.close() p5 = plot(cos(x),(x, -pi, pi), show=False) p5[0].line_color = lambda a: a p6 = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1), show=False) p7 = plot_contour((x**2 + y**2, (x, -5, 5), (y, -5, 5)), (x**3 + y**3, (x, -3, 3), (y, -3, 3)), show=False) # unsymmetric grid (subplots in one line) p = PlotGrid(1, 3, p5, p6, p7) p.save(tmp_file('%s_grid3' % name)) p._backend.close() def test_matplotlib_1(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_1('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_2(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_2('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_3(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_3('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_4(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_4('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_5(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_5('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_6(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save_6('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") def test_matplotlib_7(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plotgrid_and_save('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") # Tests for exception handling in experimental_lambdify def test_experimental_lambify(): x = Symbol('x') f = lambdify([x], Max(x, 5)) # XXX should f be tested? If f(2) is attempted, an # error is raised because a complex produced during wrapping of the arg # is being compared with an int. assert Max(2, 5) == 5 assert Max(5, 7) == 7 x = Symbol('x-3') f = lambdify([x], x + 1) assert f(1) == 2 def test_append_issue_7140(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p1 = plot(x) p2 = plot(x**2) p3 = plot(x + 2) # append a series p2.append(p1[0]) assert len(p2._series) == 2 with raises(TypeError): p1.append(p2) with raises(TypeError): p1.append(p2._series) def test_issue_15265(): from sympy.core.sympify import sympify from sympy.core.singleton import S matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') eqn = sin(x) p = plot(eqn, xlim=(-S.Pi, S.Pi), ylim=(-1, 1)) p._backend.close() p = plot(eqn, xlim=(-1, 1), ylim=(-S.Pi, S.Pi)) p._backend.close() p = plot(eqn, xlim=(-1, 1), ylim=(sympify('-3.14'), sympify('3.14'))) p._backend.close() p = plot(eqn, xlim=(sympify('-3.14'), sympify('3.14')), ylim=(-1, 1)) p._backend.close() raises(ValueError, lambda: plot(eqn, xlim=(-S.ImaginaryUnit, 1), ylim=(-1, 1))) raises(ValueError, lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.ImaginaryUnit))) raises(ValueError, lambda: plot(eqn, xlim=(-S.Infinity, 1), ylim=(-1, 1))) raises(ValueError, lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.Infinity)))
bc483d521b055ab8c2bd9886eef184c6881157a6abfaa7b2ec745291cac6f157
from sympy.external.importtools import import_module disabled = False # if pyglet.gl fails to import, e.g. opengl is missing, we disable the tests pyglet_gl = import_module("pyglet.gl", catch=(OSError,)) pyglet_window = import_module("pyglet.window", catch=(OSError,)) if not pyglet_gl or not pyglet_window: disabled = True from sympy import symbols, sin, cos, log x, y, z = symbols('x, y, z') def test_import(): from sympy.plotting.pygletplot import PygletPlot def test_plot_2d(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(x, [x, -5, 5, 4], visible=False) p.wait_for_calculations() def test_plot_2d_discontinuous(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(1/x, [x, -1, 1, 2], visible=False) p.wait_for_calculations() def test_plot_3d(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(x*y, [x, -5, 5, 5], [y, -5, 5, 5], visible=False) p.wait_for_calculations() def test_plot_3d_discontinuous(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(1/x, [x, -3, 3, 6], [y, -1, 1, 1], visible=False) p.wait_for_calculations() def test_plot_2d_polar(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(1/x, [x, -1, 1, 4], 'mode=polar', visible=False) p.wait_for_calculations() def test_plot_3d_cylinder(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot( 1/y, [x, 0, 6.282, 4], [y, -1, 1, 4], 'mode=polar;style=solid', visible=False) p.wait_for_calculations() def test_plot_3d_spherical(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot( 1, [x, 0, 6.282, 4], [y, 0, 3.141, 4], 'mode=spherical;style=wireframe', visible=False) p.wait_for_calculations() def test_plot_2d_parametric(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(sin(x), cos(x), [x, 0, 6.282, 4], visible=False) p.wait_for_calculations() def test_plot_3d_parametric(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(sin(x), cos(x), x/5.0, [x, 0, 6.282, 4], visible=False) p.wait_for_calculations() def _test_plot_log(): from sympy.plotting.pygletplot import PygletPlot p = PygletPlot(log(x), [x, 0, 6.282, 4], 'mode=polar', visible=False) p.wait_for_calculations() def test_plot_integral(): # Make sure it doesn't treat x as an independent variable from sympy.plotting.pygletplot import PygletPlot from sympy import Integral p = PygletPlot(Integral(z*x, (x, 1, z), (z, 1, y)), visible=False) p.wait_for_calculations()
4783f42e8339b5796ba095169a2b5f958f09ce11f4fe4068a75b639a32d3c0f8
#!/usr/bin/env python """Distutils based setup script for SymPy. This uses Distutils (https://python.org/sigs/distutils-sig/) the standard python mechanism for installing packages. Optionally, you can use Setuptools (https://setuptools.readthedocs.io/en/latest/) to automatically handle dependencies. For the easiest installation just type the command (you'll probably need root privileges for that): python setup.py install This will install the library in the default location. For instructions on how to customize the install procedure read the output of: python setup.py --help install In addition, there are some other commands: python setup.py clean -> will clean all trash (*.pyc and stuff) python setup.py test -> will run the complete test suite python setup.py bench -> will run the complete benchmark suite python setup.py audit -> will run pyflakes checker on source code To get a full list of available commands, read the output of: python setup.py --help-commands Or, if all else fails, feel free to write to the sympy list at [email protected] and ask for help. """ import sys import os import shutil import glob import subprocess from distutils.command.sdist import sdist min_mpmath_version = '0.19' # This directory dir_setup = os.path.dirname(os.path.realpath(__file__)) extra_kwargs = {} try: from setuptools import setup, Command extra_kwargs['zip_safe'] = False extra_kwargs['entry_points'] = { 'console_scripts': [ 'isympy = isympy:main', ] } except ImportError: from distutils.core import setup, Command extra_kwargs['scripts'] = ['bin/isympy'] # handle mpmath deps in the hard way: from distutils.version import LooseVersion try: import mpmath if mpmath.__version__ < LooseVersion(min_mpmath_version): raise ImportError except ImportError: print("Please install the mpmath package with a version >= %s" % min_mpmath_version) sys.exit(-1) PY3 = sys.version_info[0] > 2 # Make sure I have the right Python version. if ((sys.version_info[0] == 2 and sys.version_info[1] < 7) or (sys.version_info[0] == 3 and sys.version_info[1] < 4)): print("SymPy requires Python 2.7 or 3.4 or newer. Python %d.%d detected" % sys.version_info[:2]) sys.exit(-1) # Check that this list is uptodate against the result of the command: # python bin/generate_module_list.py modules = [ 'sympy.algebras', 'sympy.assumptions', 'sympy.assumptions.handlers', 'sympy.benchmarks', 'sympy.calculus', 'sympy.categories', 'sympy.codegen', 'sympy.combinatorics', 'sympy.concrete', 'sympy.core', 'sympy.core.benchmarks', 'sympy.crypto', 'sympy.deprecated', 'sympy.diffgeom', 'sympy.discrete', 'sympy.external', 'sympy.functions', 'sympy.functions.combinatorial', 'sympy.functions.elementary', 'sympy.functions.elementary.benchmarks', 'sympy.functions.special', 'sympy.functions.special.benchmarks', 'sympy.geometry', 'sympy.holonomic', 'sympy.integrals', 'sympy.integrals.benchmarks', 'sympy.integrals.rubi', 'sympy.integrals.rubi.parsetools', 'sympy.integrals.rubi.rubi_tests', 'sympy.integrals.rubi.rules', 'sympy.interactive', 'sympy.liealgebras', 'sympy.logic', 'sympy.logic.algorithms', 'sympy.logic.utilities', 'sympy.matrices', 'sympy.matrices.benchmarks', 'sympy.matrices.expressions', 'sympy.multipledispatch', 'sympy.ntheory', 'sympy.parsing', 'sympy.parsing.autolev', 'sympy.parsing.autolev._antlr', 'sympy.parsing.autolev.test-examples', 'sympy.parsing.autolev.test-examples.pydy-example-repo', 'sympy.parsing.c', 'sympy.parsing.fortran', 'sympy.parsing.latex', 'sympy.parsing.latex._antlr', 'sympy.physics', 'sympy.physics.continuum_mechanics', 'sympy.physics.hep', 'sympy.physics.mechanics', 'sympy.physics.optics', 'sympy.physics.quantum', 'sympy.physics.units', 'sympy.physics.units.systems', 'sympy.physics.vector', 'sympy.plotting', 'sympy.plotting.intervalmath', 'sympy.plotting.pygletplot', 'sympy.polys', 'sympy.polys.agca', 'sympy.polys.benchmarks', 'sympy.polys.domains', 'sympy.printing', 'sympy.printing.pretty', 'sympy.sandbox', 'sympy.series', 'sympy.series.benchmarks', 'sympy.sets', 'sympy.sets.handlers', 'sympy.simplify', 'sympy.solvers', 'sympy.solvers.benchmarks', 'sympy.stats', 'sympy.strategies', 'sympy.strategies.branch', 'sympy.tensor', 'sympy.tensor.array', 'sympy.unify', 'sympy.utilities', 'sympy.utilities._compilation', 'sympy.utilities.mathml', 'sympy.vector', ] class audit(Command): """Audits SymPy's source code for following issues: - Names which are used but not defined or used before they are defined. - Names which are redefined without having been used. """ description = "Audit SymPy source with PyFlakes" user_options = [] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): import os try: import pyflakes.scripts.pyflakes as flakes except ImportError: print("In order to run the audit, you need to have PyFlakes installed.") sys.exit(-1) dirs = (os.path.join(*d) for d in (m.split('.') for m in modules)) warns = 0 for dir in dirs: for filename in os.listdir(dir): if filename.endswith('.py') and filename != '__init__.py': warns += flakes.checkPath(os.path.join(dir, filename)) if warns > 0: print("Audit finished with total %d warnings" % warns) class clean(Command): """Cleans *.pyc and debian trashs, so you should get the same copy as is in the VCS. """ description = "remove build files" user_options = [("all", "a", "the same")] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): curr_dir = os.getcwd() for root, dirs, files in os.walk(dir_setup): for file in files: if file.endswith('.pyc') and os.path.isfile: os.remove(os.path.join(root, file)) os.chdir(dir_setup) names = ["python-build-stamp-2.4", "MANIFEST", "build", "dist", "doc/_build", "sample.tex"] for f in names: if os.path.isfile(f): os.remove(f) elif os.path.isdir(f): shutil.rmtree(f) for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules", "physics", "vector", "*.pdf")): if os.path.isfile(name): os.remove(name) os.chdir(curr_dir) class test_sympy(Command): """Runs all tests under the sympy/ folder """ description = "run all tests and doctests; also see bin/test and bin/doctest" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.utilities import runtests runtests.run_all_tests() class run_benchmarks(Command): """Runs all SymPy benchmarks""" description = "run all benchmarks" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass # we use py.test like architecture: # # o collector -- collects benchmarks # o runner -- executes benchmarks # o presenter -- displays benchmarks results # # this is done in sympy.utilities.benchmarking on top of py.test def run(self): from sympy.utilities import benchmarking benchmarking.main(['sympy']) class antlr(Command): """Generate code with antlr4""" description = "generate parser code from antlr grammars" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.parsing.latex._build_latex_antlr import build_parser if not build_parser(): sys.exit(-1) class sdist_sympy(sdist): def run(self): # Fetch git commit hash and write down to commit_hash.txt before # shipped in tarball. commit_hash = None commit_hash_filepath = 'doc/commit_hash.txt' try: commit_hash = \ subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() print('Commit hash found : {}.'.format(commit_hash)) print('Writing it to {}.'.format(commit_hash_filepath)) except: pass if commit_hash: with open(commit_hash_filepath, 'w') as f: f.write(commit_hash) super(sdist_sympy, self).run() try: os.remove(commit_hash_filepath) print( 'Successfully removed temporary file {}.' .format(commit_hash_filepath)) except OSError as e: print("Error deleting %s - %s." % (e.filename, e.strerror)) # Check that this list is uptodate against the result of the command: # python bin/generate_test_list.py tests = [ 'sympy.algebras.tests', 'sympy.assumptions.tests', 'sympy.calculus.tests', 'sympy.categories.tests', 'sympy.codegen.tests', 'sympy.combinatorics.tests', 'sympy.concrete.tests', 'sympy.core.tests', 'sympy.crypto.tests', 'sympy.deprecated.tests', 'sympy.diffgeom.tests', 'sympy.discrete.tests', 'sympy.external.tests', 'sympy.functions.combinatorial.tests', 'sympy.functions.elementary.tests', 'sympy.functions.special.tests', 'sympy.geometry.tests', 'sympy.holonomic.tests', 'sympy.integrals.rubi.parsetools.tests', 'sympy.integrals.rubi.rubi_tests.tests', 'sympy.integrals.rubi.tests', 'sympy.integrals.tests', 'sympy.interactive.tests', 'sympy.liealgebras.tests', 'sympy.logic.tests', 'sympy.matrices.expressions.tests', 'sympy.matrices.tests', 'sympy.multipledispatch.tests', 'sympy.ntheory.tests', 'sympy.parsing.tests', 'sympy.physics.continuum_mechanics.tests', 'sympy.physics.hep.tests', 'sympy.physics.mechanics.tests', 'sympy.physics.optics.tests', 'sympy.physics.quantum.tests', 'sympy.physics.tests', 'sympy.physics.units.tests', 'sympy.physics.vector.tests', 'sympy.plotting.intervalmath.tests', 'sympy.plotting.pygletplot.tests', 'sympy.plotting.tests', 'sympy.polys.agca.tests', 'sympy.polys.domains.tests', 'sympy.polys.tests', 'sympy.printing.pretty.tests', 'sympy.printing.tests', 'sympy.sandbox.tests', 'sympy.series.tests', 'sympy.sets.tests', 'sympy.simplify.tests', 'sympy.solvers.tests', 'sympy.stats.tests', 'sympy.strategies.branch.tests', 'sympy.strategies.tests', 'sympy.tensor.array.tests', 'sympy.tensor.tests', 'sympy.unify.tests', 'sympy.utilities._compilation.tests', 'sympy.utilities.tests', 'sympy.vector.tests', ] long_description = '''SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python.''' with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f: # Defines __version__ exec(f.read()) with open(os.path.join(dir_setup, 'sympy', '__init__.py')) as f: long_description = f.read().split('"""')[1] if __name__ == '__main__': setup(name='sympy', version=__version__, description='Computer algebra system (CAS) in Python', long_description=long_description, author='SymPy development team', author_email='[email protected]', license='BSD', keywords="Math CAS", url='https://sympy.org', py_modules=['isympy'], packages=['sympy'] + modules + tests, ext_modules=[], package_data={ 'sympy.utilities.mathml': ['data/*.xsl'], 'sympy.logic.benchmarks': ['input/*.cnf'], 'sympy.parsing.autolev': ['*.g4'], 'sympy.parsing.autolev.test-examples': ['*.al'], 'sympy.parsing.autolev.test-examples.pydy-example-repo': ['*.al'], 'sympy.parsing.latex': ['*.txt', '*.g4'], 'sympy.integrals.rubi.parsetools': ['header.py.txt'], }, data_files=[('share/man/man1', ['doc/man/isympy.1'])], cmdclass={'test': test_sympy, 'bench': run_benchmarks, 'clean': clean, 'audit': audit, 'antlr': antlr, 'sdist': sdist_sympy, }, classifiers=[ 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], install_requires=[ 'mpmath>=%s' % min_mpmath_version, ], **extra_kwargs )
f97c88d80ed3c2b97c94b33df3890f8e9c4b0d1408070316ce8bad201c5065df
#!/usr/bin/env python """ Test that from sympy import * Doesn't import anything other than SymPy, it's hard dependencies (mpmath), and hard optional dependencies (gmpy2, fastcache). Importing unnecessary libraries can accidentally add hard dependencies to SymPy in the worst case, or at best slow down the SymPy import time when they are installed. Note, for this test to be effective, every external library that could potentially be imported by SymPy must be installed. TODO: Monkeypatch the importer to detect non-standard library imports even when they aren't installed. Based on code from https://stackoverflow.com/questions/22195382/how-to-check-if-a-module-library-package-is-part-of-the-python-standard-library. """ # These libraries will always be imported with SymPy hard_dependencies = ['mpmath'] # These libraries are optional, but are always imported at SymPy import time # when they are installed. External libraries should only be added to this # list if they are required for core SymPy functionality. hard_optional_dependencies = ['gmpy', 'gmpy2', 'fastcache', 'pycosat'] import sys import os stdlib = {p for p in sys.path if p.startswith(sys.prefix) and 'site-packages' not in p} existing_modules = list(sys.modules.keys()) # hook in-tree SymPy into Python path, if possible this_path = os.path.abspath(__file__) this_dir = os.path.dirname(this_path) sympy_top = os.path.split(this_dir)[0] sympy_dir = os.path.join(sympy_top, 'sympy') if os.path.isdir(sympy_dir): sys.path.insert(0, sympy_top) def test_external_imports(): exec("from sympy import *", {}) bad = [] for mod in sys.modules: if '.' in mod and mod.split('.')[0] in sys.modules: # Only worry about the top-level modules continue if mod in existing_modules: continue if any(mod == i or mod.startswith(i + '.') for i in ['sympy'] + hard_dependencies + hard_optional_dependencies): continue if mod in sys.builtin_module_names: continue fname = getattr(sys.modules[mod], "__file__", None) if fname is None: bad.append(mod) continue if fname.endswith(('__init__.py', '__init__.pyc', '__init__.pyo')): fname = os.path.dirname(fname) if os.path.dirname(fname) in stdlib: continue bad.append(mod) if bad: raise RuntimeError("""Unexpected external modules found when running 'from sympy import *': """ + '\n '.join(bad)) print("No unexpected external modules were imported with 'from sympy import *'!") if __name__ == '__main__': test_external_imports()
63a74bef345128ac79b1175df9bc71e5ea295fd20eed1ceb07015216bbc2e8d5
""" This module exports all latin and greek letters as Symbols, so you can conveniently do >>> from sympy.abc import x, y instead of the slightly more clunky-looking >>> from sympy import symbols >>> x, y = symbols('x y') Caveats ======= 1. As of the time of writing this, the names ``C``, ``O``, ``S``, ``I``, ``N``, ``E``, and ``Q`` are colliding with names defined in SymPy. If you import them from both ``sympy.abc`` and ``sympy``, the second import will "win". This is an issue only for * imports, which should only be used for short-lived code such as interactive sessions and throwaway scripts that do not survive until the next SymPy upgrade, where ``sympy`` may contain a different set of names. 2. This module does not define symbol names on demand, i.e. ```from sympy.abc import foo``` will be reported as an error because ``sympy.abc`` does not contain the name ``foo``. To get a symbol named `'foo'`, you still need to use ``Symbol('foo')`` or ``symbols('foo')``. You can freely mix usage of ``sympy.abc`` and ``Symbol``/``symbols``, though sticking with one and only one way to get the symbols does tend to make the code more readable. The module also defines some special names to help detect which names clash with the default SymPy namespace. ``_clash1`` defines all the single letter variables that clash with SymPy objects; ``_clash2`` defines the multi-letter clashing symbols; and ``_clash`` is the union of both. These can be passed for ``locals`` during sympification if one desires Symbols rather than the non-Symbol objects for those names. Examples ======== >>> from sympy import S >>> from sympy.abc import _clash1, _clash2, _clash >>> S("Q & C", locals=_clash1) C & Q >>> S('pi(x)', locals=_clash2) pi(x) >>> S('pi(C, Q)', locals=_clash) pi(C, Q) """ from __future__ import print_function, division import string from .core import Symbol, symbols from .core.alphabets import greeks from .core.compatibility import exec_ ##### Symbol definitions ##### # Implementation note: The easiest way to avoid typos in the symbols() # parameter is to copy it from the left-hand side of the assignment. a, b, c, d, e, f, g, h, i, j = symbols('a, b, c, d, e, f, g, h, i, j') k, l, m, n, o, p, q, r, s, t = symbols('k, l, m, n, o, p, q, r, s, t') u, v, w, x, y, z = symbols('u, v, w, x, y, z') A, B, C, D, E, F, G, H, I, J = symbols('A, B, C, D, E, F, G, H, I, J') K, L, M, N, O, P, Q, R, S, T = symbols('K, L, M, N, O, P, Q, R, S, T') U, V, W, X, Y, Z = symbols('U, V, W, X, Y, Z') alpha, beta, gamma, delta = symbols('alpha, beta, gamma, delta') epsilon, zeta, eta, theta = symbols('epsilon, zeta, eta, theta') iota, kappa, lamda, mu = symbols('iota, kappa, lamda, mu') nu, xi, omicron, pi = symbols('nu, xi, omicron, pi') rho, sigma, tau, upsilon = symbols('rho, sigma, tau, upsilon') phi, chi, psi, omega = symbols('phi, chi, psi, omega') ##### Clashing-symbols diagnostics ##### # We want to know which names in SymPy collide with those in here. # This is mostly for diagnosing SymPy's namespace during SymPy development. _latin = list(string.ascii_letters) # OSINEQ should not be imported as they clash; gamma, pi and zeta clash, too _greek = list(greeks) # make a copy, so we can mutate it # Note: We import lamda since lambda is a reserved keyword in Python _greek.remove("lambda") _greek.append("lamda") ns = {} exec_('from sympy import *', ns) _clash1 = {} _clash2 = {} while ns: _k, _ = ns.popitem() if _k in _greek: _clash2[_k] = Symbol(_k) _greek.remove(_k) elif _k in _latin: _clash1[_k] = Symbol(_k) _latin.remove(_k) _clash = {} _clash.update(_clash1) _clash.update(_clash2) del _latin, _greek, Symbol, _k
8ec2f78201e469e96816889604fba1e0fdfc1c094c2956f0991e44716734aa4c
#!/usr/bin/env python """Limits Example Demonstrates limits. """ from sympy import exp, log, Symbol, Rational, sin, limit, sqrt, oo def sqrt3(x): return x**Rational(1, 3) def show(computed, correct): print("computed:", computed, "correct:", correct) def main(): x = Symbol("x") show( limit(sqrt(x**2 - 5*x + 6) - x, x, oo), -Rational(5)/2 ) show( limit(x*(sqrt(x**2 + 1) - x), x, oo), Rational(1)/2 ) show( limit(x - sqrt3(x**3 - 1), x, oo), Rational(0) ) show( limit(log(1 + exp(x))/x, x, -oo), Rational(0) ) show( limit(log(1 + exp(x))/x, x, oo), Rational(1) ) show( limit(sin(3*x)/x, x, 0), Rational(3) ) show( limit(sin(5*x)/sin(2*x), x, 0), Rational(5)/2 ) show( limit(((x - 1)/(x + 1))**x, x, oo), exp(-2)) if __name__ == "__main__": main()
939365d05bb66081e2a5797957a77c2cb859e3c5f0a9925abd53067d20c04c20
#!/usr/bin/env python """Partial Differential Equations example Demonstrates various ways to solve partial differential equations """ from sympy import symbols, Eq, Function, pde_separate, pprint, sin, cos from sympy import Derivative as D def main(): r, phi, theta = symbols("r,phi,theta") Xi = Function('Xi') R, Phi, Theta, u = map(Function, ['R', 'Phi', 'Theta', 'u']) C1, C2 = symbols('C1,C2') pprint("Separation of variables in Laplace equation in spherical coordinates") pprint("Laplace equation in spherical coordinates:") eq = Eq(D(Xi(r, phi, theta), r, 2) + 2/r * D(Xi(r, phi, theta), r) + 1/(r**2 * sin(phi)**2) * D(Xi(r, phi, theta), theta, 2) + cos(phi)/(r**2 * sin(phi)) * D(Xi(r, phi, theta), phi) + 1/r**2 * D(Xi(r, phi, theta), phi, 2), 0) pprint(eq) pprint("We can either separate this equation in regards with variable r:") res_r = pde_separate(eq, Xi(r, phi, theta), [R(r), u(phi, theta)]) pprint(res_r) pprint("Or separate it in regards of theta:") res_theta = pde_separate(eq, Xi(r, phi, theta), [Theta(theta), u(r, phi)]) pprint(res_theta) res_phi = pde_separate(eq, Xi(r, phi, theta), [Phi(phi), u(r, theta)]) pprint("But we cannot separate it in regards of variable phi: ") pprint("Result: %s" % res_phi) pprint("\n\nSo let's make theta dependent part equal with -C1:") eq_theta = Eq(res_theta[0], -C1) pprint(eq_theta) pprint("\nThis also means that second part is also equal to -C1:") eq_left = Eq(res_theta[1], -C1) pprint(eq_left) pprint("\nLets try to separate phi again :)") res_theta = pde_separate(eq_left, u(r, phi), [Phi(phi), R(r)]) pprint("\nThis time it is successful:") pprint(res_theta) pprint("\n\nSo our final equations with separated variables are:") pprint(eq_theta) pprint(Eq(res_theta[0], C2)) pprint(Eq(res_theta[1], C2)) if __name__ == "__main__": main()
33f275a9f207c21c85b538606e49817e74fb004037ba2e21c0e82dd1f3cdeb31
# -*- coding: utf-8 -*- # # SymPy documentation build configuration file, created by # sphinx-quickstart.py on Sat Mar 22 19:34:32 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import sys import inspect import os import subprocess import sympy # If your extensions are in another directory, add it here. sys.path = ['ext'] + sys.path # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.addons.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode', 'sphinx_math_dollar', 'sphinx.ext.mathjax', 'numpydoc', 'sympylive', 'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive'] # Use this to use pngmath instead #extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ] # To stop docstrings inheritance. autodoc_inherit_docstrings = False # MathJax file, which is free to use. See https://www.mathjax.org/#gettingstarted # As explained in the link using latest.js will get the latest version even # though it says 2.7.5. mathjax_path = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_HTML-full' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' suppress_warnings = ['ref.citation', 'ref.footnote'] # General substitutions. project = 'SymPy' copyright = '2019 SymPy Development Team' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. version = sympy.__version__ # The full version, including alpha/beta/rc tags. release = version # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Don't show the source code hyperlinks when using matplotlib plot directive. plot_html_show_source_link = False # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'default.css' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' html_theme = 'classic' html_logo = '_static/sympylogo.png' html_favicon = '../_build/logo/sympy-notailtext-favicon.ico' # See http://www.sphinx-doc.org/en/master/theming.html#builtin-themes # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. #html_index = '' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True html_domain_indices = ['py-modindex'] # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # Output file base name for HTML help builder. htmlhelp_basename = 'SymPydoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual], toctree_only). # toctree_only is set to True so that the start file document itself is not included in the # output, only the documents referenced by it via TOC trees. The extra stuff in the master # document is intended to show up in the HTML, but doesn't really belong in the LaTeX output. latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation', 'SymPy Development Team', 'manual', True)] # Additional stuff for the LaTeX preamble. # Tweaked to work with XeTeX. latex_elements = { 'babel': '', 'fontenc': r''' \usepackage{bm} \usepackage{amssymb} \usepackage{fontspec} \usepackage[english]{babel} \defaultfontfeatures{Mapping=tex-text} \setmainfont{DejaVu Serif} \setsansfont{DejaVu Sans} \setmonofont{DejaVu Sans Mono} ''', 'fontpkg': '', 'inputenc': '', 'utf8extra': '', 'preamble': r''' % redefine \LaTeX to be usable in math mode \expandafter\def\expandafter\LaTeX\expandafter{\expandafter\text\expandafter{\LaTeX}} ''' } # SymPy logo on title page html_logo = '_static/sympylogo.png' latex_logo = '_static/sympylogo_big.png' # Documents to append as an appendix to all manuals. #latex_appendices = [] # Show page numbers next to internal references latex_show_pagerefs = True # We use False otherwise the module index gets generated twice. latex_use_modindex = False default_role = 'math' pngmath_divpng_args = ['-gamma 1.5', '-D 110'] # Note, this is ignored by the mathjax extension # Any \newcommand should be defined in the file pngmath_latex_preamble = '\\usepackage{amsmath}\n' \ '\\usepackage{bm}\n' \ '\\usepackage{amsfonts}\n' \ '\\usepackage{amssymb}\n' \ '\\setlength{\\parindent}{0pt}\n' texinfo_documents = [ (master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team', 'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1), ] # Use svg for graphviz graphviz_output_format = 'svg' # Requried for linkcode extension. # Get commit hash from the external file. commit_hash_filepath = '../commit_hash.txt' commit_hash = None if os.path.isfile(commit_hash_filepath): with open(commit_hash_filepath, 'r') as f: commit_hash = f.readline() # Get commit hash from the external file. if not commit_hash: try: commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() except: import warnings warnings.warn( "Failed to get the git commit hash as the command " \ "'git rev-parse HEAD' is not working. The commit hash will be " \ "assumed as the SymPy master, but the lines may be misleading " \ "or nonexistent as it is not the correct branch the doc is " \ "built with. Check your installation of 'git' if you want to " \ "resolve this warning.") commit_hash = 'master' fork = 'sympy' blobpath = \ "https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash) def linkcode_resolve(domain, info): """Determine the URL corresponding to Python object.""" if domain != 'py': return modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return # strip decorators, which would resolve to the source of the decorator # possibly an upstream bug in getsourcefile, bpo-1764286 try: unwrap = inspect.unwrap except AttributeError: pass else: obj = unwrap(obj) try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: return try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__)) return blobpath + fn + linespec
9022272d5058198d3253932527fad8434a43d83ead4ce95055b50be61d7e5604
""" Continuous Random Variables - Prebuilt variables Contains ======== Arcsin Benini Beta BetaNoncentral BetaPrime Cauchy Chi ChiNoncentral ChiSquared Dagum Erlang ExGaussian Exponential ExponentialPower FDistribution FisherZ Frechet Gamma GammaInverse Gumbel Gompertz Kumaraswamy Laplace Logistic LogLogistic LogNormal Maxwell Nakagami Normal Pareto QuadraticU RaisedCosine Rayleigh ShiftedGompertz StudentT Trapezoidal Triangular Uniform UniformSum VonMises Weibull WignerSemicircle """ from __future__ import print_function, division import random from sympy import beta as beta_fn from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma, sign, Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs, Lambda, Basic, lowergamma, erf, erfc, erfi, erfinv, I, hyper, uppergamma, sinh, Ne, expint) from sympy.external import import_module from sympy.matrices import MatrixBase, MatrixExpr from sympy.stats.crv import (SingleContinuousPSpace, SingleContinuousDistribution, ContinuousDistributionHandmade) from sympy.stats.joint_rv import JointPSpace, CompoundDistribution from sympy.stats.joint_rv_types import multivariate_rv from sympy.stats.rv import _value_check, RandomSymbol oo = S.Infinity __all__ = ['ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang', 'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution', 'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel', 'Kumaraswamy', 'Laplace', 'Logistic', 'LogLogistic', 'LogNormal', 'Maxwell', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'QuadraticU', 'RaisedCosine', 'Rayleigh', 'StudentT', 'ShiftedGompertz', 'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Weibull', 'WignerSemicircle' ] def ContinuousRV(symbol, density, set=Interval(-oo, oo)): """ Create a Continuous Random Variable given the following: -- a symbol -- a probability density function -- set on which the pdf is valid (defaults to entire real line) Returns a RandomSymbol. Many common continuous random variable types are already implemented. This function should be necessary only very rarely. Examples ======== >>> from sympy import Symbol, sqrt, exp, pi >>> from sympy.stats import ContinuousRV, P, E >>> x = Symbol("x") >>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution >>> X = ContinuousRV(x, pdf) >>> E(X) 0 >>> P(X>0) 1/2 """ pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) dist = ContinuousDistributionHandmade(pdf, set) return SingleContinuousPSpace(symbol, dist).value def rv(symbol, cls, args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) pspace = SingleContinuousPSpace(symbol, dist) if any(isinstance(arg, RandomSymbol) for arg in args): pspace = JointPSpace(symbol, CompoundDistribution(dist)) return pspace.value ######################################## # Continuous Probability Distributions # ######################################## #------------------------------------------------------------------------------- # Arcsin distribution ---------------------------------------------------------- class ArcsinDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') def set(self): return Interval(self.a, self.b) def pdf(self, x): return 1/(pi*sqrt((x - self.a)*(self.b - x))) def _cdf(self, x): from sympy import asin a, b = self.a, self.b return Piecewise( (S.Zero, x < a), (2*asin(sqrt((x - a)/(b - a)))/pi, x <= b), (S.One, True)) def Arcsin(name, a=0, b=1): r""" Create a Continuous Random Variable with an arcsin distribution. The density of the arcsin distribution is given by .. math:: f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}} with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`. Parameters ========== a : Real number, the left interval boundary b : Real number, the right interval boundary Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Arcsin, density, cdf >>> from sympy import Symbol, simplify >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = Arcsin("x", a, b) >>> density(X)(z) 1/(pi*sqrt((-a + z)*(b - z))) >>> cdf(X)(z) Piecewise((0, a > z), (2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Arcsine_distribution """ return rv(name, ArcsinDistribution, (a, b)) #------------------------------------------------------------------------------- # Benini distribution ---------------------------------------------------------- class BeniniDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'sigma') @staticmethod def check(alpha, beta, sigma): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(sigma > 0, "Scale parameter Sigma must be positive.") @property def set(self): return Interval(self.sigma, oo) def pdf(self, x): alpha, beta, sigma = self.alpha, self.beta, self.sigma return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2) *(alpha/x + 2*beta*log(x/sigma)/x)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function of the ' 'Benini distribution does not exist.') def Benini(name, alpha, beta, sigma): r""" Create a Continuous Random Variable with a Benini distribution. The density of the Benini distribution is given by .. math:: f(x) := e^{-\alpha\log{\frac{x}{\sigma}} -\beta\log^2\left[{\frac{x}{\sigma}}\right]} \left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right) This is a heavy-tailed distribution and is also known as the log-Rayleigh distribution. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape sigma : Real number, `\sigma > 0`, a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Benini, density, cdf >>> from sympy import Symbol, simplify, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Benini("x", alpha, beta, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / / z \\ / z \ 2/ z \ | 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----| |alpha \sigma/| \sigma/ \sigma/ |----- + -----------------|*e \ z z / >>> cdf(X)(z) Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Benini_distribution .. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html """ return rv(name, BeniniDistribution, (alpha, beta, sigma)) #------------------------------------------------------------------------------- # Beta distribution ------------------------------------------------------------ class BetaDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, 1) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta) def sample(self): return random.betavariate(self.alpha, self.beta) def _characteristic_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), I*t) def _moment_generating_function(self, t): return hyper((self.alpha,), (self.alpha + self.beta,), t) def Beta(name, alpha, beta): r""" Create a Continuous Random Variable with a Beta distribution. The density of the Beta distribution is given by .. math:: f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Beta, density, E, variance >>> from sympy import Symbol, simplify, pprint, factor >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Beta("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 beta - 1 z *(1 - z) -------------------------- B(alpha, beta) >>> simplify(E(X)) alpha/(alpha + beta) >>> factor(simplify(variance(X))) alpha*beta/((alpha + beta)**2*(alpha + beta + 1)) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_distribution .. [2] http://mathworld.wolfram.com/BetaDistribution.html """ return rv(name, BetaDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Noncentral Beta distribution ------------------------------------------------------------ class BetaNoncentralDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta', 'lamda') set = Interval(0, 1) @staticmethod def check(alpha, beta, lamda): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") _value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive") def pdf(self, x): alpha, beta, lamda = self.alpha, self.beta, self.lamda k = Dummy("k") return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *( 1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo)) def BetaNoncentral(name, alpha, beta, lamda): r""" Create a Continuous Random Variable with a Type I Noncentral Beta distribution. The density of the Noncentral Beta distribution is given by .. math:: f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!} \frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape lamda: Real number, `\lambda >= 0`, noncentrality parameter Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import BetaNoncentral, density, cdf >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> lamda = Symbol("lamda", nonnegative=True) >>> z = Symbol("z") >>> X = BetaNoncentral("x", alpha, beta, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) oo _____ \ ` \ -lamda \ k ------- \ k + alpha - 1 /lamda\ beta - 1 2 ) z *|-----| *(1 - z) *e / \ 2 / / ------------------------------------------------ / B(k + alpha, beta)*k! /____, k = 0 Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows : >>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit() 2*exp(1/2) The argument evaluate=False prevents an attempt at evaluation of the sum for general x, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution .. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html """ return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda)) #------------------------------------------------------------------------------- # Beta prime distribution ------------------------------------------------------ class BetaPrimeDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Shape parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") set = Interval(0, oo) def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta) def BetaPrime(name, alpha, beta): r""" Create a continuous random variable with a Beta prime distribution. The density of the Beta prime distribution is given by .. math:: f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)} with :math:`x > 0`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import BetaPrime, density >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = BetaPrime("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 -alpha - beta z *(z + 1) ------------------------------- B(alpha, beta) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution .. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html """ return rv(name, BetaPrimeDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Cauchy distribution ---------------------------------------------------------- class CauchyDistribution(SingleContinuousDistribution): _argnames = ('x0', 'gamma') @staticmethod def check(x0, gamma): _value_check(gamma > 0, "Scale parameter Gamma must be positive.") def pdf(self, x): return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2)) def _cdf(self, x): x0, gamma = self.x0, self.gamma return (1/pi)*atan((x - x0)/gamma) + S.Half def _characteristic_function(self, t): return exp(self.x0 * I * t - self.gamma * Abs(t)) def _moment_generating_function(self, t): raise NotImplementedError("The moment generating function for the " "Cauchy distribution does not exist.") def _quantile(self, p): return self.x0 + self.gamma*tan(pi*(p - S.Half)) def Cauchy(name, x0, gamma): r""" Create a continuous random variable with a Cauchy distribution. The density of the Cauchy distribution is given by .. math:: f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]} Parameters ========== x0 : Real number, the location gamma : Real number, `\gamma > 0`, a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Cauchy, density >>> from sympy import Symbol >>> x0 = Symbol("x0") >>> gamma = Symbol("gamma", positive=True) >>> z = Symbol("z") >>> X = Cauchy("x", x0, gamma) >>> density(X)(z) 1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2)) References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_distribution .. [2] http://mathworld.wolfram.com/CauchyDistribution.html """ return rv(name, CauchyDistribution, (x0, gamma)) #------------------------------------------------------------------------------- # Chi distribution ------------------------------------------------------------- class ChiDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2) def _characteristic_function(self, t): k = self.k part_1 = hyper((k/2,), (S(1)/2,), -t**2/2) part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2) part_3 = hyper(((k+1)/2,), (S(3)/2,), -t**2/2) return part_1 + part_2*part_3 def _moment_generating_function(self, t): k = self.k part_1 = hyper((k / 2,), (S(1) / 2,), t ** 2 / 2) part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2) part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2) return part_1 + part_2 * part_3 def Chi(name, k): r""" Create a continuous random variable with a Chi distribution. The density of the Chi distribution is given by .. math:: f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)} with :math:`x \geq 0`. Parameters ========== k : Positive integer, The number of degrees of freedom Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Chi, density, E >>> from sympy import Symbol, simplify >>> k = Symbol("k", integer=True) >>> z = Symbol("z") >>> X = Chi("x", k) >>> density(X)(z) 2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2) >>> simplify(E(X)) sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2) References ========== .. [1] https://en.wikipedia.org/wiki/Chi_distribution .. [2] http://mathworld.wolfram.com/ChiDistribution.html """ return rv(name, ChiDistribution, (k,)) #------------------------------------------------------------------------------- # Non-central Chi distribution ------------------------------------------------- class ChiNoncentralDistribution(SingleContinuousDistribution): _argnames = ('k', 'l') @staticmethod def check(k, l): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") _value_check(l > 0, "Shift parameter Lambda must be positive.") set = Interval(0, oo) def pdf(self, x): k, l = self.k, self.l return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x) def ChiNoncentral(name, k, l): r""" Create a continuous random variable with a non-central Chi distribution. The density of the non-central Chi distribution is given by .. math:: f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda} {(\lambda x)^{k/2}} I_{k/2-1}(\lambda x) with `x \geq 0`. Here, `I_\nu (x)` is the :ref:`modified Bessel function of the first kind <besseli>`. Parameters ========== k : A positive Integer, `k > 0`, the number of degrees of freedom lambda : Real number, `\lambda > 0`, Shift parameter Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import ChiNoncentral, density >>> from sympy import Symbol >>> k = Symbol("k", integer=True) >>> l = Symbol("l") >>> z = Symbol("z") >>> X = ChiNoncentral("x", k, l) >>> density(X)(z) l*z**k*(l*z)**(-k/2)*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z) References ========== .. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution """ return rv(name, ChiNoncentralDistribution, (k, l)) #------------------------------------------------------------------------------- # Chi squared distribution ----------------------------------------------------- class ChiSquaredDistribution(SingleContinuousDistribution): _argnames = ('k',) @staticmethod def check(k): _value_check(k > 0, "Number of degrees of freedom (k) must be positive.") _value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.") set = Interval(0, oo) def pdf(self, x): k = self.k return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2) def _cdf(self, x): k = self.k return Piecewise( (S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0), (0, True) ) def _characteristic_function(self, t): return (1 - 2*I*t)**(-self.k/2) def _moment_generating_function(self, t): return (1 - 2*t)**(-self.k/2) def ChiSquared(name, k): r""" Create a continuous random variable with a Chi-squared distribution. The density of the Chi-squared distribution is given by .. math:: f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} with :math:`x \geq 0`. Parameters ========== k : Positive integer, The number of degrees of freedom Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import ChiSquared, density, E, variance, moment >>> from sympy import Symbol >>> k = Symbol("k", integer=True, positive=True) >>> z = Symbol("z") >>> X = ChiSquared("x", k) >>> density(X)(z) 2**(-k/2)*z**(k/2 - 1)*exp(-z/2)/gamma(k/2) >>> E(X) k >>> variance(X) 2*k >>> moment(X, 3) k**3 + 6*k**2 + 8*k References ========== .. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution .. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html """ return rv(name, ChiSquaredDistribution, (k, )) #------------------------------------------------------------------------------- # Dagum distribution ----------------------------------------------------------- class DagumDistribution(SingleContinuousDistribution): _argnames = ('p', 'a', 'b') set = Interval(0, oo) @staticmethod def check(p, a, b): _value_check(p > 0, "Shape parameter p must be positive.") _value_check(a > 0, "Shape parameter a must be positive.") _value_check(b > 0, "Scale parameter b must be positive.") def pdf(self, x): p, a, b = self.p, self.a, self.b return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1))) def _cdf(self, x): p, a, b = self.p, self.a, self.b return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0), (S.Zero, True)) def Dagum(name, p, a, b): r""" Create a continuous random variable with a Dagum distribution. The density of the Dagum distribution is given by .. math:: f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}} {\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right) with :math:`x > 0`. Parameters ========== p : Real number, `p > 0`, a shape a : Real number, `a > 0`, a shape b : Real number, `b > 0`, a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Dagum, density, cdf >>> from sympy import Symbol >>> p = Symbol("p", positive=True) >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Dagum("x", p, a, b) >>> density(X)(z) a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z >>> cdf(X)(z) Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Dagum_distribution """ return rv(name, DagumDistribution, (p, a, b)) #------------------------------------------------------------------------------- # Erlang distribution ---------------------------------------------------------- def Erlang(name, k, l): r""" Create a continuous random variable with an Erlang distribution. The density of the Erlang distribution is given by .. math:: f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} with :math:`x \in [0,\infty]`. Parameters ========== k : Positive integer l : Real number, `\lambda > 0`, the rate Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Erlang, density, cdf, E, variance >>> from sympy import Symbol, simplify, pprint >>> k = Symbol("k", integer=True, positive=True) >>> l = Symbol("l", positive=True) >>> z = Symbol("z") >>> X = Erlang("x", k, l) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k k - 1 -l*z l *z *e --------------- Gamma(k) >>> C = cdf(X)(z) >>> pprint(C, use_unicode=False) /lowergamma(k, l*z) |------------------ for z > 0 < Gamma(k) | \ 0 otherwise >>> E(X) k/l >>> simplify(variance(X)) k/l**2 References ========== .. [1] https://en.wikipedia.org/wiki/Erlang_distribution .. [2] http://mathworld.wolfram.com/ErlangDistribution.html """ return rv(name, GammaDistribution, (k, S.One/l)) # ------------------------------------------------------------------------------- # ExGaussian distribution ----------------------------------------------------- class ExGaussianDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std', 'rate') set = Interval(-oo, oo) @staticmethod def check(mean, std, rate): _value_check( std > 0, "Standard deviation of ExGaussian must be positive.") _value_check(rate > 0, "Rate of ExGaussian must be positive.") def pdf(self, x): mean, std, rate = self.mean, self.std, self.rate term1 = rate/2 term2 = exp(rate * (2 * mean + rate * std**2 - 2*x)/2) term3 = erfc((mean + rate*std**2 - x)/(sqrt(2)*std)) return term1*term2*term3 def _cdf(self, x): from sympy.stats import cdf mean, std, rate = self.mean, self.std, self.rate u = rate*(x - mean) v = rate*std GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) return GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) def _characteristic_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - I*t/rate)**(-1) term2 = exp(I*mean*t - std**2*t**2/2) return term1 * term2 def _moment_generating_function(self, t): mean, std, rate = self.mean, self.std, self.rate term1 = (1 - t/rate)**(-1) term2 = exp(mean*t + std**2*t**2/2) return term1*term2 def ExGaussian(name, mean, std, rate): r""" Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution. The density of the exponentially modified Gaussian distribution is given by .. math:: f(x) := \frac{\lambda}{2}e^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)} \text{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma}) with `x > 0`. Note that the expected value is `1/\lambda`. Parameters ========== mu : A Real number, the mean of Gaussian component std: A positive Real number, :math: `\sigma^2 > 0` the variance of Gaussian component lambda: A positive Real number, :math: `\lambda > 0` the rate of Exponential component Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import ExGaussian, density, cdf, E >>> from sympy.stats import variance, skewness >>> from sympy import Symbol, pprint, simplify >>> mean = Symbol("mu") >>> std = Symbol("sigma", positive=True) >>> rate = Symbol("lamda", positive=True) >>> z = Symbol("z") >>> X = ExGaussian("x", mean, std, rate) >>> pprint(density(X)(z), use_unicode=False) / 2 \ lamda*\lamda*sigma + 2*mu - 2*z/ --------------------------------- / ___ / 2 \\ 2 |\/ 2 *\lamda*sigma + mu - z/| lamda*e *erfc|-----------------------------| \ 2*sigma / ---------------------------------------------------------------------------- 2 >>> cdf(X)(z) -(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2 + 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu + z)/(2*sigma))/2 + 1/2 >>> E(X) (lamda*mu + 1)/lamda >>> simplify(variance(X)) sigma**2 + lamda**(-2) >>> simplify(skewness(X)) 2/(lamda**2*sigma**2 + 1)**(3/2) References ========== .. [1] https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution """ return rv(name, ExGaussianDistribution, (mean, std, rate)) #------------------------------------------------------------------------------- # Exponential distribution ----------------------------------------------------- class ExponentialDistribution(SingleContinuousDistribution): _argnames = ('rate',) set = Interval(0, oo) @staticmethod def check(rate): _value_check(rate > 0, "Rate must be positive.") def pdf(self, x): return self.rate * exp(-self.rate*x) def sample(self): return random.expovariate(self.rate) def _cdf(self, x): return Piecewise( (S.One - exp(-self.rate*x), x >= 0), (0, True), ) def _characteristic_function(self, t): rate = self.rate return rate / (rate - I*t) def _moment_generating_function(self, t): rate = self.rate return rate / (rate - t) def _quantile(self, p): return -log(1-p)/self.rate def Exponential(name, rate): r""" Create a continuous random variable with an Exponential distribution. The density of the exponential distribution is given by .. math:: f(x) := \lambda \exp(-\lambda x) with `x > 0`. Note that the expected value is `1/\lambda`. Parameters ========== rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean) Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Exponential, density, cdf, E >>> from sympy.stats import variance, std, skewness, quantile >>> from sympy import Symbol >>> l = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> p = Symbol("p") >>> X = Exponential("x", l) >>> density(X)(z) lambda*exp(-lambda*z) >>> cdf(X)(z) Piecewise((1 - exp(-lambda*z), z >= 0), (0, True)) >>> quantile(X)(p) -log(1 - p)/lambda >>> E(X) 1/lambda >>> variance(X) lambda**(-2) >>> skewness(X) 2 >>> X = Exponential('x', 10) >>> density(X)(z) 10*exp(-10*z) >>> E(X) 1/10 >>> std(X) 1/10 References ========== .. [1] https://en.wikipedia.org/wiki/Exponential_distribution .. [2] http://mathworld.wolfram.com/ExponentialDistribution.html """ return rv(name, ExponentialDistribution, (rate, )) # ------------------------------------------------------------------------------- # Exponential Power distribution ----------------------------------------------------- class ExponentialPowerDistribution(SingleContinuousDistribution): _argnames = ('mu', 'alpha', 'beta') set = Interval(-oo, oo) @staticmethod def check(mu, alpha, beta): _value_check(alpha > 0, "Scale parameter alpha must be positive.") _value_check(beta > 0, "Shape parameter beta must be positive.") def pdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = beta*exp(-(Abs(x - mu)/alpha)**beta) den = 2*alpha*gamma(1/beta) return num/den def _cdf(self, x): mu, alpha, beta = self.mu, self.alpha, self.beta num = lowergamma(1/beta, (Abs(x - mu) / alpha)**beta) den = 2*gamma(1/beta) return sign(x - mu)*num/den + S.Half def ExponentialPower(name, mu, alpha, beta): r""" Create a Continuous Random Variable with Exponential Power distribution. This distribution is known also as Generalized Normal distribution version 1 The density of the Exponential Power distribution is given by .. math:: f(x) := \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{{-(\frac{|x - \mu|}{\alpha})^{\beta}}} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number, 'mu' is a location alpha : Real number, 'alpha > 0' is a scale beta : Real number, 'beta > 0' is a shape Returns ======= A RandomSymbol Examples ======== >>> from sympy.stats import ExponentialPower, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> z = Symbol("z") >>> mu = Symbol("mu") >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> X = ExponentialPower("x", mu, alpha, beta) >>> pprint(density(X)(z), use_unicode=False) beta /|mu - z|\ -|--------| \ alpha / beta*e --------------------- / 1 \ 2*alpha*Gamma|----| \beta/ >>> cdf(X)(z) 1/2 + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/(2*gamma(1/beta)) References ========== .. [1] https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html .. [2] https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1 """ return rv(name, ExponentialPowerDistribution, (mu, alpha, beta)) #------------------------------------------------------------------------------- # F distribution --------------------------------------------------------------- class FDistributionDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(0, oo) @staticmethod def check(d1, d2): _value_check((d1 > 0, d1.is_integer), "Degrees of freedom d1 must be positive integer.") _value_check((d2 > 0, d2.is_integer), "Degrees of freedom d2 must be positive integer.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2)) / (x * beta_fn(d1/2, d2/2))) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'F-distribution does not exist.') def FDistribution(name, d1, d2): r""" Create a continuous random variable with a F distribution. The density of the F distribution is given by .. math:: f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}} {(d_1 x + d_2)^{d_1 + d_2}}}} {x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)} with :math:`x > 0`. Parameters ========== d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1) d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1) Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import FDistribution, density >>> from sympy import Symbol, simplify, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FDistribution("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d2 -- ______________________________ 2 / d1 -d1 - d2 d2 *\/ (d1*z) *(d1*z + d2) -------------------------------------- /d1 d2\ z*B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/F-distribution .. [2] http://mathworld.wolfram.com/F-Distribution.html """ return rv(name, FDistributionDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Fisher Z distribution -------------------------------------------------------- class FisherZDistribution(SingleContinuousDistribution): _argnames = ('d1', 'd2') set = Interval(-oo, oo) @staticmethod def check(d1, d2): _value_check(d1 > 0, "Degree of freedom d1 must be positive.") _value_check(d2 > 0, "Degree of freedom d2 must be positive.") def pdf(self, x): d1, d2 = self.d1, self.d2 return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) * exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2)) def FisherZ(name, d1, d2): r""" Create a Continuous Random Variable with an Fisher's Z distribution. The density of the Fisher's Z distribution is given by .. math:: f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)} \frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}} .. TODO - What is the difference between these degrees of freedom? Parameters ========== d1 : `d_1 > 0`, degree of freedom d2 : `d_2 > 0`, degree of freedom Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import FisherZ, density >>> from sympy import Symbol, simplify, pprint >>> d1 = Symbol("d1", positive=True) >>> d2 = Symbol("d2", positive=True) >>> z = Symbol("z") >>> X = FisherZ("x", d1, d2) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) d1 d2 d1 d2 - -- - -- -- -- 2 2 2 2 / 2*z \ d1*z 2*d1 *d2 *\d1*e + d2/ *e ----------------------------------------- /d1 d2\ B|--, --| \2 2 / References ========== .. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution .. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html """ return rv(name, FisherZDistribution, (d1, d2)) #------------------------------------------------------------------------------- # Frechet distribution --------------------------------------------------------- class FrechetDistribution(SingleContinuousDistribution): _argnames = ('a', 's', 'm') set = Interval(0, oo) @staticmethod def check(a, s, m): _value_check(a > 0, "Shape parameter alpha must be positive.") _value_check(s > 0, "Scale parameter s must be positive.") def __new__(cls, a, s=1, m=0): a, s, m = list(map(sympify, (a, s, m))) return Basic.__new__(cls, a, s, m) def pdf(self, x): a, s, m = self.a, self.s, self.m return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a)) def _cdf(self, x): a, s, m = self.a, self.s, self.m return Piecewise((exp(-((x-m)/s)**(-a)), x >= m), (S.Zero, True)) def Frechet(name, a, s=1, m=0): r""" Create a continuous random variable with a Frechet distribution. The density of the Frechet distribution is given by .. math:: f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha} e^{-(\frac{x-m}{s})^{-\alpha}} with :math:`x \geq m`. Parameters ========== a : Real number, :math:`a \in \left(0, \infty\right)` the shape s : Real number, :math:`s \in \left(0, \infty\right)` the scale m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Frechet, density, E, std, cdf >>> from sympy import Symbol, simplify >>> a = Symbol("a", positive=True) >>> s = Symbol("s", positive=True) >>> m = Symbol("m", real=True) >>> z = Symbol("z") >>> X = Frechet("x", a, s, m) >>> density(X)(z) a*((-m + z)/s)**(-a - 1)*exp(-((-m + z)/s)**(-a))/s >>> cdf(X)(z) Piecewise((exp(-((-m + z)/s)**(-a)), m <= z), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution """ return rv(name, FrechetDistribution, (a, s, m)) #------------------------------------------------------------------------------- # Gamma distribution ----------------------------------------------------------- class GammaDistribution(SingleContinuousDistribution): _argnames = ('k', 'theta') set = Interval(0, oo) @staticmethod def check(k, theta): _value_check(k > 0, "k must be positive") _value_check(theta > 0, "Theta must be positive") def pdf(self, x): k, theta = self.k, self.theta return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k) def sample(self): return random.gammavariate(self.k, self.theta) def _cdf(self, x): k, theta = self.k, self.theta return Piecewise( (lowergamma(k, S(x)/theta)/gamma(k), x > 0), (S.Zero, True)) def _characteristic_function(self, t): return (1 - self.theta*I*t)**(-self.k) def _moment_generating_function(self, t): return (1- self.theta*t)**(-self.k) def Gamma(name, k, theta): r""" Create a continuous random variable with a Gamma distribution. The density of the Gamma distribution is given by .. math:: f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}} with :math:`x \in [0,1]`. Parameters ========== k : Real number, `k > 0`, a shape theta : Real number, `\theta > 0`, a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Gamma, density, cdf, E, variance >>> from sympy import Symbol, pprint, simplify >>> k = Symbol("k", positive=True) >>> theta = Symbol("theta", positive=True) >>> z = Symbol("z") >>> X = Gamma("x", k, theta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -z ----- -k k - 1 theta theta *z *e --------------------- Gamma(k) >>> C = cdf(X, meijerg=True)(z) >>> pprint(C, use_unicode=False) / / z \ |k*lowergamma|k, -----| | \ theta/ <---------------------- for z >= 0 | Gamma(k + 1) | \ 0 otherwise >>> E(X) k*theta >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 k*theta References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_distribution .. [2] http://mathworld.wolfram.com/GammaDistribution.html """ return rv(name, GammaDistribution, (k, theta)) #------------------------------------------------------------------------------- # Inverse Gamma distribution --------------------------------------------------- class GammaInverseDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "alpha must be positive") _value_check(b > 0, "beta must be positive") def pdf(self, x): a, b = self.a, self.b return b**a/gamma(a) * x**(-a-1) * exp(-b/x) def _cdf(self, x): a, b = self.a, self.b return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0), (S.Zero, True)) def sample(self): scipy = import_module('scipy') if scipy: from scipy.stats import invgamma return invgamma.rvs(float(self.a), 0, float(self.b)) else: raise NotImplementedError('Sampling the Inverse Gamma Distribution requires Scipy.') def _characteristic_function(self, t): a, b = self.a, self.b return 2 * (-I*b*t)**(a/2) * besselk(sqrt(-4*I*b*t)) / gamma(a) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the ' 'gamma inverse distribution does not exist.') def GammaInverse(name, a, b): r""" Create a continuous random variable with an inverse Gamma distribution. The density of the inverse Gamma distribution is given by .. math:: f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(\frac{-\beta}{x}\right) with :math:`x > 0`. Parameters ========== a : Real number, `a > 0` a shape b : Real number, `b > 0` a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import GammaInverse, density, cdf, E, variance >>> from sympy import Symbol, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = GammaInverse("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) -b --- a -a - 1 z b *z *e --------------- Gamma(a) >>> cdf(X)(z) Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution """ return rv(name, GammaInverseDistribution, (a, b)) #------------------------------------------------------------------------------- # Gumbel distribution (Maximum and Minimum) -------------------------------------------------------- class GumbelDistribution(SingleContinuousDistribution): _argnames = ('beta', 'mu', 'minimum') set = Interval(-oo, oo) @staticmethod def check(beta, mu, minimum): _value_check(beta > 0, "Scale parameter beta must be positive.") def pdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta f_max = (1/beta)*exp(-z - exp(-z)) f_min = (1/beta)*exp(z - exp(z)) return Piecewise((f_min, self.minimum), (f_max, not self.minimum)) def _cdf(self, x): beta, mu = self.beta, self.mu z = (x - mu)/beta F_max = exp(-exp(-z)) F_min = 1 - exp(-exp(z)) return Piecewise((F_min, self.minimum), (F_max, not self.minimum)) def _characteristic_function(self, t): cf_max = gamma(1 - I*self.beta*t) * exp(I*self.mu*t) cf_min = gamma(1 + I*self.beta*t) * exp(I*self.mu*t) return Piecewise((cf_min, self.minimum), (cf_max, not self.minimum)) def _moment_generating_function(self, t): mgf_max = gamma(1 - self.beta*t) * exp(self.mu*t) mgf_min = gamma(1 + self.beta*t) * exp(self.mu*t) return Piecewise((mgf_min, self.minimum), (mgf_max, not self.minimum)) def Gumbel(name, beta, mu, minimum=False): r""" Create a Continuous Random Variable with Gumbel distribution. The density of the Gumbel distribution is given by For Maximum .. math:: f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta} - \exp \left( -\dfrac{x - \mu}{\beta} \right) \right) with :math:`x \in [ - \infty, \infty ]`. For Minimum .. math:: f(x) := \frac{e^{- e^{\frac{- \mu + x}{\beta}} + \frac{- \mu + x}{\beta}}}{\beta} with :math:`x \in [ - \infty, \infty ]`. Parameters ========== mu : Real number, 'mu' is a location beta : Real number, 'beta > 0' is a scale minimum : Boolean, by default, False, set to True for enabling minimum distribution Returns ======= A RandomSymbol Examples ======== >>> from sympy.stats import Gumbel, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> x = Symbol("x") >>> mu = Symbol("mu") >>> beta = Symbol("beta", positive=True) >>> X = Gumbel("x", beta, mu) >>> density(X)(x) exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta >>> cdf(X)(x) exp(-exp(-(-mu + x)/beta)) References ========== .. [1] http://mathworld.wolfram.com/GumbelDistribution.html .. [2] https://en.wikipedia.org/wiki/Gumbel_distribution .. [3] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_max.html .. [4] http://www.mathwave.com/help/easyfit/html/analyses/distributions/gumbel_min.html """ return rv(name, GumbelDistribution, (beta, mu, minimum)) #------------------------------------------------------------------------------- # Gompertz distribution -------------------------------------------------------- class GompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): eta, b = self.eta, self.b return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x)) def _cdf(self, x): eta, b = self.eta, self.b return 1 - exp(eta)*exp(-eta*exp(b*x)) def _moment_generating_function(self, t): eta, b = self.eta, self.b return eta * exp(eta) * expint(t/b, eta) def Gompertz(name, b, eta): r""" Create a Continuous Random Variable with Gompertz distribution. The density of the Gompertz distribution is given by .. math:: f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right) with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Gompertz, density, E, variance >>> from sympy import Symbol, simplify, pprint >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> z = Symbol("z") >>> X = Gompertz("x", b, eta) >>> density(X)(z) b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z)) References ========== .. [1] https://en.wikipedia.org/wiki/Gompertz_distribution """ return rv(name, GompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # Kumaraswamy distribution ----------------------------------------------------- class KumaraswamyDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') set = Interval(0, oo) @staticmethod def check(a, b): _value_check(a > 0, "a must be positive") _value_check(b > 0, "b must be positive") def pdf(self, x): a, b = self.a, self.b return a * b * x**(a-1) * (1-x**a)**(b-1) def _cdf(self, x): a, b = self.a, self.b return Piecewise( (S.Zero, x < S.Zero), (1 - (1 - x**a)**b, x <= S.One), (S.One, True)) def Kumaraswamy(name, a, b): r""" Create a Continuous Random Variable with a Kumaraswamy distribution. The density of the Kumaraswamy distribution is given by .. math:: f(x) := a b x^{a-1} (1-x^a)^{b-1} with :math:`x \in [0,1]`. Parameters ========== a : Real number, `a > 0` a shape b : Real number, `b > 0` a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Kumaraswamy, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> a = Symbol("a", positive=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Kumaraswamy("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) b - 1 a - 1 / a\ a*b*z *\1 - z / >>> cdf(X)(z) Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution """ return rv(name, KumaraswamyDistribution, (a, b)) #------------------------------------------------------------------------------- # Laplace distribution --------------------------------------------------------- class LaplaceDistribution(SingleContinuousDistribution): _argnames = ('mu', 'b') set = Interval(-oo, oo) @staticmethod def check(mu, b): _value_check(b > 0, "Scale parameter b must be positive.") _value_check(mu.is_real, "Location parameter mu should be real") def pdf(self, x): mu, b = self.mu, self.b return 1/(2*b)*exp(-Abs(x - mu)/b) def _cdf(self, x): mu, b = self.mu, self.b return Piecewise( (S.Half*exp((x - mu)/b), x < mu), (S.One - S.Half*exp(-(x - mu)/b), x >= mu) ) def _characteristic_function(self, t): return exp(self.mu*I*t) / (1 + self.b**2*t**2) def _moment_generating_function(self, t): return exp(self.mu*t) / (1 - self.b**2*t**2) def Laplace(name, mu, b): r""" Create a continuous random variable with a Laplace distribution. The density of the Laplace distribution is given by .. math:: f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right) Parameters ========== mu : Real number or a list/matrix, the location (mean) or the location vector b : Real number or a positive definite matrix, representing a scale or the covariance matrix. Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Laplace, density, cdf >>> from sympy import Symbol, pprint >>> mu = Symbol("mu") >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Laplace("x", mu, b) >>> density(X)(z) exp(-Abs(mu - z)/b)/(2*b) >>> cdf(X)(z) Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True)) >>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]]) >>> pprint(density(L)(1, 2), use_unicode=False) 5 / ____\ e *besselk\0, \/ 35 / --------------------- pi References ========== .. [1] https://en.wikipedia.org/wiki/Laplace_distribution .. [2] http://mathworld.wolfram.com/LaplaceDistribution.html """ if isinstance(mu, (list, MatrixBase)) and\ isinstance(b, (list, MatrixBase)): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution return multivariate_rv( MultivariateLaplaceDistribution, name, mu, b) return rv(name, LaplaceDistribution, (mu, b)) #------------------------------------------------------------------------------- # Logistic distribution -------------------------------------------------------- class LogisticDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') set = Interval(-oo, oo) @staticmethod def check(mu, s): _value_check(s > 0, "Scale parameter s must be positive.") def pdf(self, x): mu, s = self.mu, self.s return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2) def _cdf(self, x): mu, s = self.mu, self.s return S.One/(1 + exp(-(x - mu)/s)) def _characteristic_function(self, t): return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return exp(self.mu*t) * beta_fn(1 - self.s*t, 1 + self.s*t) def _quantile(self, p): return self.mu - self.s*log(-S.One + S.One/p) def Logistic(name, mu, s): r""" Create a continuous random variable with a logistic distribution. The density of the logistic distribution is given by .. math:: f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2} Parameters ========== mu : Real number, the location (mean) s : Real number, `s > 0` a scale Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Logistic, density, cdf >>> from sympy import Symbol >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = Logistic("x", mu, s) >>> density(X)(z) exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2) >>> cdf(X)(z) 1/(exp((mu - z)/s) + 1) References ========== .. [1] https://en.wikipedia.org/wiki/Logistic_distribution .. [2] http://mathworld.wolfram.com/LogisticDistribution.html """ return rv(name, LogisticDistribution, (mu, s)) #------------------------------------------------------------------------------- # Log-logistic distribution -------------------------------------------------------- class LogLogisticDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Scale parameter Alpha must be positive.") _value_check(beta > 0, "Shape parameter Beta must be positive.") def pdf(self, x): a, b = self.alpha, self.beta return ((b/a)*(x/a)**(b - 1))/(1 + (x/a)**b)**2 def _cdf(self, x): a, b = self.alpha, self.beta return 1/(1 + (x/a)**(-b)) def _quantile(self, p): a, b = self.alpha, self.beta return a*((p/(1 - p))**(1/b)) def expectation(self, expr, var, **kwargs): a, b = self.args return Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) def LogLogistic(name, alpha, beta): r""" Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when `beta > 1`. The density of the log-logistic distribution is given by .. math:: f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta - 1}} {(1 + (\frac{x}{\alpha})^{\beta})^2} Parameters ========== alpha : Real number, `\alpha > 0`, scale parameter and median of distribution beta : Real number, `\beta > 0` a shape parameter Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import LogLogistic, density, cdf, quantile >>> from sympy import Symbol, pprint >>> alpha = Symbol("alpha", real=True, positive=True) >>> beta = Symbol("beta", real=True, positive=True) >>> p = Symbol("p") >>> z = Symbol("z", positive=True) >>> X = LogLogistic("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) beta - 1 / z \ beta*|-----| \alpha/ ------------------------ 2 / beta \ |/ z \ | alpha*||-----| + 1| \\alpha/ / >>> cdf(X)(z) 1/(1 + (z/alpha)**(-beta)) >>> quantile(X)(p) alpha*(p/(1 - p))**(1/beta) References ========== .. [1] https://en.wikipedia.org/wiki/Log-logistic_distribution """ return rv(name, LogLogisticDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Log Normal distribution ------------------------------------------------------ class LogNormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') set = Interval(0, oo) @staticmethod def check(mean, std): _value_check(std > 0, "Parameter std must be positive.") def pdf(self, x): mean, std = self.mean, self.std return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std) def sample(self): return random.lognormvariate(self.mean, self.std) def _cdf(self, x): mean, std = self.mean, self.std return Piecewise( (S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0), (S.Zero, True) ) def _moment_generating_function(self, t): raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.') def LogNormal(name, mean, std): r""" Create a continuous random variable with a log-normal distribution. The density of the log-normal distribution is given by .. math:: f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}} with :math:`x \geq 0`. Parameters ========== mu : Real number, the log-scale sigma : Real number, :math:`\sigma^2 > 0` a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import LogNormal, density >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu", real=True) >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = LogNormal("x", mu, sigma) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -(-mu + log(z)) ----------------- 2 ___ 2*sigma \/ 2 *e ------------------------ ____ 2*\/ pi *sigma*z >>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z) References ========== .. [1] https://en.wikipedia.org/wiki/Lognormal .. [2] http://mathworld.wolfram.com/LogNormalDistribution.html """ return rv(name, LogNormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Maxwell distribution --------------------------------------------------------- class MaxwellDistribution(SingleContinuousDistribution): _argnames = ('a',) set = Interval(0, oo) @staticmethod def check(a): _value_check(a > 0, "Parameter a must be positive.") def pdf(self, x): a = self.a return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3 def _cdf(self, x): a = self.a return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) def Maxwell(name, a): r""" Create a continuous random variable with a Maxwell distribution. The density of the Maxwell distribution is given by .. math:: f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3} with :math:`x \geq 0`. .. TODO - what does the parameter mean? Parameters ========== a : Real number, `a > 0` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Maxwell, density, E, variance >>> from sympy import Symbol, simplify >>> a = Symbol("a", positive=True) >>> z = Symbol("z") >>> X = Maxwell("x", a) >>> density(X)(z) sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3) >>> E(X) 2*sqrt(2)*a/sqrt(pi) >>> simplify(variance(X)) a**2*(-8 + 3*pi)/pi References ========== .. [1] https://en.wikipedia.org/wiki/Maxwell_distribution .. [2] http://mathworld.wolfram.com/MaxwellDistribution.html """ return rv(name, MaxwellDistribution, (a, )) #------------------------------------------------------------------------------- # Nakagami distribution -------------------------------------------------------- class NakagamiDistribution(SingleContinuousDistribution): _argnames = ('mu', 'omega') set = Interval(0, oo) @staticmethod def check(mu, omega): _value_check(mu >= S.Half, "Shape parameter mu must be greater than equal to 1/2.") _value_check(omega > 0, "Spread parameter omega must be positive.") def pdf(self, x): mu, omega = self.mu, self.omega return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2) def _cdf(self, x): mu, omega = self.mu, self.omega return Piecewise( (lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0), (S.Zero, True)) def Nakagami(name, mu, omega): r""" Create a continuous random variable with a Nakagami distribution. The density of the Nakagami distribution is given by .. math:: f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1} \exp\left(-\frac{\mu}{\omega}x^2 \right) with :math:`x > 0`. Parameters ========== mu : Real number, `\mu \geq \frac{1}{2}` a shape omega : Real number, `\omega > 0`, the spread Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Nakagami, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu", positive=True) >>> omega = Symbol("omega", positive=True) >>> z = Symbol("z") >>> X = Nakagami("x", mu, omega) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -mu*z ------- mu -mu 2*mu - 1 omega 2*mu *omega *z *e ---------------------------------- Gamma(mu) >>> simplify(E(X)) sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1) >>> V = simplify(variance(X)) >>> pprint(V, use_unicode=False) 2 omega*Gamma (mu + 1/2) omega - ----------------------- Gamma(mu)*Gamma(mu + 1) >>> cdf(X)(z) Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Nakagami_distribution """ return rv(name, NakagamiDistribution, (mu, omega)) #------------------------------------------------------------------------------- # Normal distribution ---------------------------------------------------------- class NormalDistribution(SingleContinuousDistribution): _argnames = ('mean', 'std') @staticmethod def check(mean, std): _value_check(std > 0, "Standard deviation must be positive") def pdf(self, x): return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std) def sample(self): return random.normalvariate(self.mean, self.std) def _cdf(self, x): mean, std = self.mean, self.std return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half def _characteristic_function(self, t): mean, std = self.mean, self.std return exp(I*mean*t - std**2*t**2/2) def _moment_generating_function(self, t): mean, std = self.mean, self.std return exp(mean*t + std**2*t**2/2) def _quantile(self, p): mean, std = self.mean, self.std return mean + std*sqrt(2)*erfinv(2*p - 1) def Normal(name, mean, std): r""" Create a continuous random variable with a Normal distribution. The density of the Normal distribution is given by .. math:: f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} } Parameters ========== mu : Real number or a list representing the mean or the mean vector sigma : Real number or a positive definite square matrix, :math:`\sigma^2 > 0` the variance Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile >>> from sympy import Symbol, simplify, pprint, factor, together, factor_terms >>> mu = Symbol("mu") >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> y = Symbol("y") >>> p = Symbol("p") >>> X = Normal("x", mu, sigma) >>> density(X)(z) sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma) >>> C = simplify(cdf(X))(z) # it needs a little more help... >>> pprint(C, use_unicode=False) / ___ \ |\/ 2 *(-mu + z)| erf|---------------| \ 2*sigma / 1 -------------------- + - 2 2 >>> quantile(X)(p) mu + sqrt(2)*sigma*erfinv(2*p - 1) >>> simplify(skewness(X)) 0 >>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1 >>> density(X)(z) sqrt(2)*exp(-z**2/2)/(2*sqrt(pi)) >>> E(2*X + 1) 1 >>> simplify(std(2*X + 1)) 2 >>> m = Normal('X', [1, 2], [[2, 1], [1, 2]]) >>> from sympy.stats.joint_rv import marginal_distribution >>> pprint(density(m)(y, z), use_unicode=False) /1 y\ /2*y z\ / z\ / y 2*z \ |- - -|*|--- - -| + |1 - -|*|- - + --- - 1| ___ \2 2/ \ 3 3/ \ 2/ \ 3 3 / \/ 3 *e -------------------------------------------------- 6*pi >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Normal_distribution .. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html """ if isinstance(mean, (list, MatrixBase, MatrixExpr)) and\ isinstance(std, (list, MatrixBase, MatrixExpr)): from sympy.stats.joint_rv_types import MultivariateNormalDistribution return multivariate_rv( MultivariateNormalDistribution, name, mean, std) return rv(name, NormalDistribution, (mean, std)) #------------------------------------------------------------------------------- # Inverse Gaussian distribution ---------------------------------------------------------- class GaussianInverseDistribution(SingleContinuousDistribution): _argnames = ('mean', 'shape') @property def set(self): return Interval(0, oo) @staticmethod def check(mean, shape): _value_check(shape > 0, "Shape parameter must be positive") _value_check(mean > 0, "Mean must be positive") def pdf(self, x): mu, s = self.mean, self.shape return exp(-s*(x - mu)**2 / (2*x*mu**2)) * sqrt(s/((2*pi*x**3))) def sample(self): scipy = import_module('scipy') if scipy: from scipy.stats import invgauss return invgauss.rvs(float(self.mean/self.shape), 0, float(self.shape)) else: raise NotImplementedError( 'Sampling the Inverse Gaussian Distribution requires Scipy.') def _cdf(self, x): from sympy.stats import cdf mu, s = self.mean, self.shape stdNormalcdf = cdf(Normal('x', 0, 1)) first_term = stdNormalcdf(sqrt(s/x) * ((x/mu) - S.One)) second_term = exp(2*s/mu) * stdNormalcdf(-sqrt(s/x)*(x/mu + S.One)) return first_term + second_term def _characteristic_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*I*t)/s))) def _moment_generating_function(self, t): mu, s = self.mean, self.shape return exp((s/mu)*(1 - sqrt(1 - (2*mu**2*t)/s))) def GaussianInverse(name, mean, shape): r""" Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution. The density of the Inverse Gaussian distribution is given by .. math:: f(x) := \sqrt{\frac{\lambda}{2\pi x^3}} e^{-\frac{\lambda(x-\mu)^2}{2x\mu^2}} Parameters ========== mu : Positive number representing the mean lambda : Positive number representing the shape parameter Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import GaussianInverse, density, cdf, E, std, skewness >>> from sympy import Symbol, pprint >>> mu = Symbol("mu", positive=True) >>> lamda = Symbol("lambda", positive=True) >>> z = Symbol("z", positive=True) >>> X = GaussianInverse("x", mu, lamda) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) 2 -lambda*(-mu + z) ------------------- 2 ___ ________ 2*mu *z \/ 2 *\/ lambda *e ------------------------------------- ____ 3/2 2*\/ pi *z >>> E(X) mu >>> std(X).expand() mu**(3/2)/sqrt(lambda) >>> skewness(X).expand() 3*sqrt(mu)/sqrt(lambda) References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution .. [2] http://mathworld.wolfram.com/InverseGaussianDistribution.html """ return rv(name, GaussianInverseDistribution, (mean, shape)) Wald = GaussianInverse #------------------------------------------------------------------------------- # Pareto distribution ---------------------------------------------------------- class ParetoDistribution(SingleContinuousDistribution): _argnames = ('xm', 'alpha') @property def set(self): return Interval(self.xm, oo) @staticmethod def check(xm, alpha): _value_check(xm > 0, "Xm must be positive") _value_check(alpha > 0, "Alpha must be positive") def pdf(self, x): xm, alpha = self.xm, self.alpha return alpha * xm**alpha / x**(alpha + 1) def sample(self): return random.paretovariate(self.alpha) def _cdf(self, x): xm, alpha = self.xm, self.alpha return Piecewise( (S.One - xm**alpha/x**alpha, x>=xm), (0, True), ) def _moment_generating_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t) def _characteristic_function(self, t): xm, alpha = self.xm, self.alpha return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t) def Pareto(name, xm, alpha): r""" Create a continuous random variable with the Pareto distribution. The density of the Pareto distribution is given by .. math:: f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}} with :math:`x \in [x_m,\infty]`. Parameters ========== xm : Real number, `x_m > 0`, a scale alpha : Real number, `\alpha > 0`, a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Pareto, density >>> from sympy import Symbol >>> xm = Symbol("xm", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Pareto("x", xm, beta) >>> density(X)(z) beta*xm**beta*z**(-beta - 1) References ========== .. [1] https://en.wikipedia.org/wiki/Pareto_distribution .. [2] http://mathworld.wolfram.com/ParetoDistribution.html """ return rv(name, ParetoDistribution, (xm, alpha)) #------------------------------------------------------------------------------- # QuadraticU distribution ------------------------------------------------------ class QuadraticUDistribution(SingleContinuousDistribution): _argnames = ('a', 'b') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b): _value_check(b > a, "Parameter b must be in range (%s, oo)."%(a)) def pdf(self, x): a, b = self.a, self.b alpha = 12 / (b-a)**3 beta = (a+b) / 2 return Piecewise( (alpha * (x-beta)**2, And(a<=x, x<=b)), (S.Zero, True)) def _moment_generating_function(self, t): a, b = self.a, self.b return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) - exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2) def _characteristic_function(self, t): def _moment_generating_function(self, t): a, b = self.a, self.b return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) / ((a-b)**3 * t**2) def QuadraticU(name, a, b): r""" Create a Continuous Random Variable with a U-quadratic distribution. The density of the U-quadratic distribution is given by .. math:: f(x) := \alpha (x-\beta)^2 with :math:`x \in [a,b]`. Parameters ========== a : Real number b : Real number, :math:`a < b` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import QuadraticU, density, E, variance >>> from sympy import Symbol, simplify, factor, pprint >>> a = Symbol("a", real=True) >>> b = Symbol("b", real=True) >>> z = Symbol("z") >>> X = QuadraticU("x", a, b) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / 2 | / a b \ |12*|- - - - + z| | \ 2 2 / <----------------- for And(b >= z, a <= z) | 3 | (-a + b) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution """ return rv(name, QuadraticUDistribution, (a, b)) #------------------------------------------------------------------------------- # RaisedCosine distribution ---------------------------------------------------- class RaisedCosineDistribution(SingleContinuousDistribution): _argnames = ('mu', 's') @property def set(self): return Interval(self.mu - self.s, self.mu + self.s) @staticmethod def check(mu, s): _value_check(s > 0, "s must be positive") def pdf(self, x): mu, s = self.mu, self.s return Piecewise( ((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)), (S.Zero, True)) def _characteristic_function(self, t): mu, s = self.mu, self.s return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)), (exp(I*pi*mu/s)/2, Eq(t, pi/s)), (pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True)) def _moment_generating_function(self, t): mu, s = self.mu, self.s return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2)) def RaisedCosine(name, mu, s): r""" Create a Continuous Random Variable with a raised cosine distribution. The density of the raised cosine distribution is given by .. math:: f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right) with :math:`x \in [\mu-s,\mu+s]`. Parameters ========== mu : Real number s : Real number, `s > 0` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import RaisedCosine, density, E, variance >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu", real=True) >>> s = Symbol("s", positive=True) >>> z = Symbol("z") >>> X = RaisedCosine("x", mu, s) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) / /pi*(-mu + z)\ |cos|------------| + 1 | \ s / <--------------------- for And(z >= mu - s, z <= mu + s) | 2*s | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution """ return rv(name, RaisedCosineDistribution, (mu, s)) #------------------------------------------------------------------------------- # Rayleigh distribution -------------------------------------------------------- class RayleighDistribution(SingleContinuousDistribution): _argnames = ('sigma',) set = Interval(0, oo) @staticmethod def check(sigma): _value_check(sigma > 0, "Scale parameter sigma must be positive.") def pdf(self, x): sigma = self.sigma return x/sigma**2*exp(-x**2/(2*sigma**2)) def _cdf(self, x): sigma = self.sigma return 1 - exp(-(x**2/(2*sigma**2))) def _characteristic_function(self, t): sigma = self.sigma return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I) def _moment_generating_function(self, t): sigma = self.sigma return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1) def Rayleigh(name, sigma): r""" Create a continuous random variable with a Rayleigh distribution. The density of the Rayleigh distribution is given by .. math :: f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2} with :math:`x > 0`. Parameters ========== sigma : Real number, `\sigma > 0` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Rayleigh, density, E, variance >>> from sympy import Symbol, simplify >>> sigma = Symbol("sigma", positive=True) >>> z = Symbol("z") >>> X = Rayleigh("x", sigma) >>> density(X)(z) z*exp(-z**2/(2*sigma**2))/sigma**2 >>> E(X) sqrt(2)*sqrt(pi)*sigma/2 >>> variance(X) -pi*sigma**2/2 + 2*sigma**2 References ========== .. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution .. [2] http://mathworld.wolfram.com/RayleighDistribution.html """ return rv(name, RayleighDistribution, (sigma, )) #------------------------------------------------------------------------------- # Shifted Gompertz distribution ------------------------------------------------ class ShiftedGompertzDistribution(SingleContinuousDistribution): _argnames = ('b', 'eta') set = Interval(0, oo) @staticmethod def check(b, eta): _value_check(b > 0, "b must be positive") _value_check(eta > 0, "eta must be positive") def pdf(self, x): b, eta = self.b, self.eta return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x))) def ShiftedGompertz(name, b, eta): r""" Create a continuous random variable with a Shifted Gompertz distribution. The density of the Shifted Gompertz distribution is given by .. math:: f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right] with :math: 'x \in [0, \inf)'. Parameters ========== b: Real number, 'b > 0' a scale eta: Real number, 'eta > 0' a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import ShiftedGompertz, density, E, variance >>> from sympy import Symbol >>> b = Symbol("b", positive=True) >>> eta = Symbol("eta", positive=True) >>> x = Symbol("x") >>> X = ShiftedGompertz("x", b, eta) >>> density(X)(x) b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) References ========== .. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution """ return rv(name, ShiftedGompertzDistribution, (b, eta)) #------------------------------------------------------------------------------- # StudentT distribution -------------------------------------------------------- class StudentTDistribution(SingleContinuousDistribution): _argnames = ('nu',) set = Interval(-oo, oo) @staticmethod def check(nu): _value_check(nu > 0, "Degrees of freedom nu must be positive.") def pdf(self, x): nu = self.nu return 1/(sqrt(nu)*beta_fn(S(1)/2, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2) def _cdf(self, x): nu = self.nu return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2), (S(3)/2,), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2)) def _moment_generating_function(self, t): raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.') def StudentT(name, nu): r""" Create a continuous random variable with a student's t distribution. The density of the student's t distribution is given by .. math:: f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)} {\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}} Parameters ========== nu : Real number, `\nu > 0`, the degrees of freedom Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import StudentT, density, E, variance, cdf >>> from sympy import Symbol, simplify, pprint >>> nu = Symbol("nu", positive=True) >>> z = Symbol("z") >>> X = StudentT("x", nu) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) nu 1 - -- - - 2 2 / 2\ | z | |1 + --| \ nu/ ----------------- ____ / nu\ \/ nu *B|1/2, --| \ 2 / >>> cdf(X)(z) 1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,), -z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Student_t-distribution .. [2] http://mathworld.wolfram.com/Studentst-Distribution.html """ return rv(name, StudentTDistribution, (nu, )) #------------------------------------------------------------------------------- # Trapezoidal distribution ------------------------------------------------------ class TrapezoidalDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c', 'd') @property def set(self): return Interval(self.a, self.d) @staticmethod def check(a, b, c, d): _value_check(a < d, "Lower bound parameter a < %s. a = %s"%(d, a)) _value_check((a <= b, b < c), "Level start parameter b must be in range [%s, %s). b = %s"%(a, c, b)) _value_check((b < c, c <= d), "Level end parameter c must be in range (%s, %s]. c = %s"%(b, d, c)) _value_check(d >= c, "Upper bound parameter d > %s. d = %s"%(c, d)) def pdf(self, x): a, b, c, d = self.a, self.b, self.c, self.d return Piecewise( (2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)), (2 / (d+c-a-b), And(b <= x, x < c)), (2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)), (S.Zero, True)) def Trapezoidal(name, a, b, c, d): r""" Create a continuous random variable with a trapezoidal distribution. The density of the trapezoidal distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\ \frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\ \frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\ 0 & \mathrm{for\ } d < x. \end{cases} Parameters ========== a : Real number, :math:`a < d` b : Real number, :math:`a <= b < c` c : Real number, :math:`b < c <= d` d : Real number Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Trapezoidal, density, E >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> d = Symbol("d") >>> z = Symbol("z") >>> X = Trapezoidal("x", a,b,c,d) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |------------------------- for And(a <= z, b > z) |(-a + b)*(-a - b + c + d) | | 2 | -------------- for And(b <= z, c > z) < -a - b + c + d | | 2*d - 2*z |------------------------- for And(d >= z, c <= z) |(-c + d)*(-a - b + c + d) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution """ return rv(name, TrapezoidalDistribution, (a, b, c, d)) #------------------------------------------------------------------------------- # Triangular distribution ------------------------------------------------------ class TriangularDistribution(SingleContinuousDistribution): _argnames = ('a', 'b', 'c') @property def set(self): return Interval(self.a, self.b) @staticmethod def check(a, b, c): _value_check(b > a, "Parameter b > %s. b = %s"%(a, b)) _value_check((a <= c, c <= b), "Parameter c must be in range [%s, %s]. c = %s"%(a, b, c)) def pdf(self, x): a, b, c = self.a, self.b, self.c return Piecewise( (2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)), (2/(b - a), Eq(x, c)), (2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)), (S.Zero, True)) def _characteristic_function(self, t): a, b, c = self.a, self.b, self.c return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2) def _moment_generating_function(self, t): a, b, c = self.a, self.b, self.c return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c - a) * exp(b * t)) / ( (b - a) * (c - a) * (b - c) * t ** 2) def Triangular(name, a, b, c): r""" Create a continuous random variable with a triangular distribution. The density of the triangular distribution is given by .. math:: f(x) := \begin{cases} 0 & \mathrm{for\ } x < a, \\ \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\ \frac{2}{b-a} & \mathrm{for\ } x = c, \\ \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\ 0 & \mathrm{for\ } b < x. \end{cases} Parameters ========== a : Real number, :math:`a \in \left(-\infty, \infty\right)` b : Real number, :math:`a < b` c : Real number, :math:`a \leq c \leq b` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Triangular, density, E >>> from sympy import Symbol, pprint >>> a = Symbol("a") >>> b = Symbol("b") >>> c = Symbol("c") >>> z = Symbol("z") >>> X = Triangular("x", a,b,c) >>> pprint(density(X)(z), use_unicode=False) / -2*a + 2*z |----------------- for And(a <= z, c > z) |(-a + b)*(-a + c) | | 2 | ------ for c = z < -a + b | | 2*b - 2*z |---------------- for And(b >= z, c < z) |(-a + b)*(b - c) | \ 0 otherwise References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_distribution .. [2] http://mathworld.wolfram.com/TriangularDistribution.html """ return rv(name, TriangularDistribution, (a, b, c)) #------------------------------------------------------------------------------- # Uniform distribution --------------------------------------------------------- class UniformDistribution(SingleContinuousDistribution): _argnames = ('left', 'right') @property def set(self): return Interval(self.left, self.right) @staticmethod def check(left, right): _value_check(left < right, "Lower limit should be less than Upper limit.") def pdf(self, x): left, right = self.left, self.right return Piecewise( (S.One/(right - left), And(left <= x, x <= right)), (S.Zero, True) ) def _cdf(self, x): left, right = self.left, self.right return Piecewise( (S.Zero, x < left), ((x - left)/(right - left), x <= right), (S.One, True) ) def _characteristic_function(self, t): left, right = self.left, self.right return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): left, right = self.left, self.right return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)), (S.One, True)) def expectation(self, expr, var, **kwargs): from sympy import Max, Min kwargs['evaluate'] = True result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs) result = result.subs({Max(self.left, self.right): self.right, Min(self.left, self.right): self.left}) return result def sample(self): return random.uniform(self.left, self.right) def Uniform(name, left, right): r""" Create a continuous random variable with a uniform distribution. The density of the uniform distribution is given by .. math:: f(x) := \begin{cases} \frac{1}{b - a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} with :math:`x \in [a,b]`. Parameters ========== a : Real number, :math:`-\infty < a` the left boundary b : Real number, :math:`a < b < \infty` the right boundary Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Uniform, density, cdf, E, variance, skewness >>> from sympy import Symbol, simplify >>> a = Symbol("a", negative=True) >>> b = Symbol("b", positive=True) >>> z = Symbol("z") >>> X = Uniform("x", a, b) >>> density(X)(z) Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True)) >>> cdf(X)(z) Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True)) >>> E(X) a/2 + b/2 >>> simplify(variance(X)) a**2/12 - a*b/6 + b**2/12 References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 .. [2] http://mathworld.wolfram.com/UniformDistribution.html """ return rv(name, UniformDistribution, (left, right)) #------------------------------------------------------------------------------- # UniformSum distribution ------------------------------------------------------ class UniformSumDistribution(SingleContinuousDistribution): _argnames = ('n',) @property def set(self): return Interval(0, self.n) @staticmethod def check(n): _value_check((n > 0, n.is_integer), "Parameter n must be positive integer.") def pdf(self, x): n = self.n k = Dummy("k") return 1/factorial( n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x))) def _cdf(self, x): n = self.n k = Dummy("k") return Piecewise((S.Zero, x < 0), (1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n), (k, 0, floor(x))), x <= n), (S.One, True)) def _characteristic_function(self, t): return ((exp(I*t) - 1) / (I*t))**self.n def _moment_generating_function(self, t): return ((exp(t) - 1) / t)**self.n def UniformSum(name, n): r""" Create a continuous random variable with an Irwin-Hall distribution. The probability distribution function depends on a single parameter `n` which is an integer. The density of the Irwin-Hall distribution is given by .. math :: f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k \binom{n}{k}(x-k)^{n-1} Parameters ========== n : A positive Integer, `n > 0` Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import UniformSum, density, cdf >>> from sympy import Symbol, pprint >>> n = Symbol("n", integer=True) >>> z = Symbol("z") >>> X = UniformSum("x", n) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) floor(z) ___ \ ` \ k n - 1 /n\ ) (-1) *(-k + z) *| | / \k/ /__, k = 0 -------------------------------- (n - 1)! >>> cdf(X)(z) Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k), (_k, 0, floor(z)))/factorial(n), n >= z), (1, True)) Compute cdf with specific 'x' and 'n' values as follows : >>> cdf(UniformSum("x", 5), evaluate=False)(2).doit() 9/40 The argument evaluate=False prevents an attempt at evaluation of the sum for general n, before the argument 2 is passed. References ========== .. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution .. [2] http://mathworld.wolfram.com/UniformSumDistribution.html """ return rv(name, UniformSumDistribution, (n, )) #------------------------------------------------------------------------------- # VonMises distribution -------------------------------------------------------- class VonMisesDistribution(SingleContinuousDistribution): _argnames = ('mu', 'k') set = Interval(0, 2*pi) @staticmethod def check(mu, k): _value_check(k > 0, "k must be positive") def pdf(self, x): mu, k = self.mu, self.k return exp(k*cos(x-mu)) / (2*pi*besseli(0, k)) def VonMises(name, mu, k): r""" Create a Continuous Random Variable with a von Mises distribution. The density of the von Mises distribution is given by .. math:: f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)} with :math:`x \in [0,2\pi]`. Parameters ========== mu : Real number, measure of location k : Real number, measure of concentration Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import VonMises, density, E, variance >>> from sympy import Symbol, simplify, pprint >>> mu = Symbol("mu") >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = VonMises("x", mu, k) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) k*cos(mu - z) e ------------------ 2*pi*besseli(0, k) References ========== .. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution .. [2] http://mathworld.wolfram.com/vonMisesDistribution.html """ return rv(name, VonMisesDistribution, (mu, k)) #------------------------------------------------------------------------------- # Weibull distribution --------------------------------------------------------- class WeibullDistribution(SingleContinuousDistribution): _argnames = ('alpha', 'beta') set = Interval(0, oo) @staticmethod def check(alpha, beta): _value_check(alpha > 0, "Alpha must be positive") _value_check(beta > 0, "Beta must be positive") def pdf(self, x): alpha, beta = self.alpha, self.beta return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha def sample(self): return random.weibullvariate(self.alpha, self.beta) def Weibull(name, alpha, beta): r""" Create a continuous random variable with a Weibull distribution. The density of the Weibull distribution is given by .. math:: f(x) := \begin{cases} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^{k}} & x\geq0\\ 0 & x<0 \end{cases} Parameters ========== lambda : Real number, :math:`\lambda > 0` a scale k : Real number, `k > 0` a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Weibull, density, E, variance >>> from sympy import Symbol, simplify >>> l = Symbol("lambda", positive=True) >>> k = Symbol("k", positive=True) >>> z = Symbol("z") >>> X = Weibull("x", l, k) >>> density(X)(z) k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda >>> simplify(E(X)) lambda*gamma(1 + 1/k) >>> simplify(variance(X)) lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k)) References ========== .. [1] https://en.wikipedia.org/wiki/Weibull_distribution .. [2] http://mathworld.wolfram.com/WeibullDistribution.html """ return rv(name, WeibullDistribution, (alpha, beta)) #------------------------------------------------------------------------------- # Wigner semicircle distribution ----------------------------------------------- class WignerSemicircleDistribution(SingleContinuousDistribution): _argnames = ('R',) @property def set(self): return Interval(-self.R, self.R) @staticmethod def check(R): _value_check(R > 0, "Radius R must be positive.") def pdf(self, x): R = self.R return 2/(pi*R**2)*sqrt(R**2 - x**2) def _characteristic_function(self, t): return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def _moment_generating_function(self, t): return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)), (S.One, True)) def WignerSemicircle(name, R): r""" Create a continuous random variable with a Wigner semicircle distribution. The density of the Wigner semicircle distribution is given by .. math:: f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2} with :math:`x \in [-R,R]`. Parameters ========== R : Real number, `R > 0`, the radius Returns ======= A `RandomSymbol`. Examples ======== >>> from sympy.stats import WignerSemicircle, density, E >>> from sympy import Symbol, simplify >>> R = Symbol("R", positive=True) >>> z = Symbol("z") >>> X = WignerSemicircle("x", R) >>> density(X)(z) 2*sqrt(R**2 - z**2)/(pi*R**2) >>> E(X) 0 References ========== .. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution .. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html """ return rv(name, WignerSemicircleDistribution, (R,))
c6926e2cd10b015e3b25193d377201dfecd821a3cd6b301cb45026c2738c7403
""" Finite Discrete Random Variables - Prebuilt variable types Contains ======== FiniteRV DiscreteUniform Die Bernoulli Coin Binomial BetaBinomial Hypergeometric Rademacher """ from __future__ import print_function, division import random from sympy import (S, sympify, Rational, binomial, cacheit, Integer, Dummy, Eq, Intersection, Interval, Symbol, Lambda, Piecewise, Or, Gt, Lt, Ge, Le, Contains) from sympy import beta as beta_fn from sympy.external import import_module from sympy.core.compatibility import range from sympy.tensor.array import ArrayComprehensionMap from sympy.stats.frv import (SingleFiniteDistribution, SingleFinitePSpace) from sympy.stats.rv import _value_check, Density, RandomSymbol numpy = import_module('numpy') scipy = import_module('scipy') pymc3 = import_module('pymc3') __all__ = ['FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial', 'BetaBinomial', 'Hypergeometric', 'Rademacher' ] def rv(name, cls, *args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) return SingleFinitePSpace(name, dist).value class FiniteDistributionHandmade(SingleFiniteDistribution): @property def dict(self): return self.args[0] def pmf(self, x): x = Symbol('x') return Lambda(x, Piecewise(*( [(v, Eq(k, x)) for k, v in self.dict.items()] + [(0, True)]))) @property def set(self): return set(self.dict.keys()) @staticmethod def check(density): for p in density.values(): _value_check((p >= 0, p <= 1), "Probability at a point must be between 0 and 1.") _value_check(Eq(sum(density.values()), 1), "Total Probability must be 1.") def FiniteRV(name, density): """ Create a Finite Random Variable given a dict representing the density. Returns a RandomSymbol. >>> from sympy.stats import FiniteRV, P, E >>> density = {0: .1, 1: .2, 2: .3, 3: .4} >>> X = FiniteRV('X', density) >>> E(X) 2.00000000000000 >>> P(X >= 2) 0.700000000000000 """ return rv(name, FiniteDistributionHandmade, density) class DiscreteUniformDistribution(SingleFiniteDistribution): @property def p(self): return Rational(1, len(self.args)) @property @cacheit def dict(self): return dict((k, self.p) for k in self.set) @property def set(self): return set(self.args) def pmf(self, x): if x in self.args: return self.p else: return S.Zero def _sample_random(self, size): x = Symbol('x') return ArrayComprehensionMap(lambda: self.args[random.randint(0, len(self.args)-1)], (x, 0, size)).doit() def DiscreteUniform(name, items): """ Create a Finite Random Variable representing a uniform distribution over the input set. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import DiscreteUniform, density >>> from sympy import symbols >>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c >>> density(X).dict {a: 1/3, b: 1/3, c: 1/3} >>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range >>> density(Y).dict {0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5} References ========== .. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution .. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html """ return rv(name, DiscreteUniformDistribution, *items) class DieDistribution(SingleFiniteDistribution): _argnames = ('sides',) @staticmethod def check(sides): _value_check((sides.is_positive, sides.is_integer), "number of sides must be a positive integer.") @property def is_symbolic(self): return not self.sides.is_number @property def high(self): return self.sides @property def low(self): return S(1) @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.sides)) return set(map(Integer, list(range(1, self.sides + 1)))) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers) return Piecewise((S(1)/self.sides, cond), (S.Zero, True)) def Die(name, sides=6): """ Create a Finite Random Variable representing a fair die. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Die, density >>> from sympy import Symbol >>> D6 = Die('D6', 6) # Six sided Die >>> density(D6).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> D4 = Die('D4', 4) # Four sided Die >>> density(D4).dict {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} >>> n = Symbol('n', positive=True, integer=True) >>> Dn = Die('Dn', n) # n sided Die >>> density(Dn).dict Density(DieDistribution(n)) >>> density(Dn).dict.subs(n, 4).doit() {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} """ return rv(name, DieDistribution, sides) class BernoulliDistribution(SingleFiniteDistribution): _argnames = ('p', 'succ', 'fail') @staticmethod def check(p, succ, fail): _value_check((p >= 0, p <= 1), "p should be in range [0, 1].") @property def set(self): return set([self.succ, self.fail]) def pmf(self, x): return Piecewise((self.p, x == self.succ), (1 - self.p, x == self.fail), (0, True)) def Bernoulli(name, p, succ=1, fail=0): """ Create a Finite Random Variable representing a Bernoulli process. Returns a RandomSymbol Examples ======== >>> from sympy.stats import Bernoulli, density >>> from sympy import S >>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4 >>> density(X).dict {0: 1/4, 1: 3/4} >>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss >>> density(X).dict {Heads: 1/2, Tails: 1/2} References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution .. [2] http://mathworld.wolfram.com/BernoulliDistribution.html """ return rv(name, BernoulliDistribution, p, succ, fail) def Coin(name, p=S.Half): """ Create a Finite Random Variable representing a Coin toss. Probability p is the chance of gettings "Heads." Half by default Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Coin, density >>> from sympy import Rational >>> C = Coin('C') # A fair coin toss >>> density(C).dict {H: 1/2, T: 1/2} >>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin >>> density(C2).dict {H: 3/5, T: 2/5} See Also ======== sympy.stats.Binomial References ========== .. [1] https://en.wikipedia.org/wiki/Coin_flipping """ return rv(name, BernoulliDistribution, p, 'H', 'T') class BinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'p', 'succ', 'fail') @staticmethod def check(n, p, succ, fail): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer.") _value_check((p <= 1, p >= 0), "p should be in range [0, 1].") @property def high(self): return self.n @property def low(self): return S(0) @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(self.dict.keys()) def pmf(self, x): n, p = self.n, self.p x = sympify(x) if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers) return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True)) @property @cacheit def dict(self): if self.is_symbolic: return Density(self) return dict((k*self.succ + (self.n-k)*self.fail, self.pmf(k)) for k in range(0, self.n + 1)) def Binomial(name, n, p, succ=1, fail=0): """ Create a Finite Random Variable representing a binomial distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Binomial, density >>> from sympy import S, Symbol >>> X = Binomial('X', 4, S.Half) # Four "coin flips" >>> density(X).dict {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} >>> n = Symbol('n', positive=True, integer=True) >>> p = Symbol('p', positive=True) >>> X = Binomial('X', n, S.Half) # n "coin flips" >>> density(X).dict Density(BinomialDistribution(n, 1/2, 1, 0)) >>> density(X).dict.subs(n, 4).doit() {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} References ========== .. [1] https://en.wikipedia.org/wiki/Binomial_distribution .. [2] http://mathworld.wolfram.com/BinomialDistribution.html """ return rv(name, BinomialDistribution, n, p, succ, fail) #------------------------------------------------------------------------------- # Beta-binomial distribution ---------------------------------------------------------- class BetaBinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'alpha', 'beta') @staticmethod def check(n, alpha, beta): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((alpha > 0), "'alpha' must be: alpha > 0 . alpha = %s" % str(alpha)) _value_check((beta > 0), "'beta' must be: beta > 0 . beta = %s" % str(beta)) @property def high(self): return self.n @property def low(self): return S(0) @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(map(Integer, list(range(0, self.n + 1)))) def pmf(self, k): n, a, b = self.n, self.alpha, self.beta return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b) def _sample_pymc3(self, size): n, a, b = int(self.n), float(self.alpha), float(self.beta) with pymc3.Model(): pymc3.BetaBinomial('X', alpha=a, beta=b, n=n) return pymc3.sample(size, chains=1, progressbar=False)[:]['X'] def BetaBinomial(name, n, alpha, beta): """ Create a Finite Random Variable representing a Beta-binomial distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import BetaBinomial, density >>> from sympy import S >>> X = BetaBinomial('X', 2, 1, 1) >>> density(X).dict {0: beta(1, 3)/beta(1, 1), 1: 2*beta(2, 2)/beta(1, 1), 2: beta(3, 1)/beta(1, 1)} References ========== .. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution .. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html """ return rv(name, BetaBinomialDistribution, n, alpha, beta) class HypergeometricDistribution(SingleFiniteDistribution): _argnames = ('N', 'm', 'n') @staticmethod def check(n, N, m): _value_check((N.is_integer, N.is_nonnegative), "'N' must be nonnegative integer. N = %s." % str(n)) _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((m.is_integer, m.is_nonnegative), "'m' must be nonnegative integer. m = %s." % str(n)) @property def is_symbolic(self): return any(not x.is_number for x in (self.N, self.m, self.n)) @property def high(self): return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True)) @property def low(self): return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True)) @property def set(self): N, m, n = self.N, self.m, self.n if self.is_symbolic: return Intersection(S.Naturals0, Interval(self.low, self.high)) return set([i for i in range(max(0, n + m - N), min(n, m) + 1)]) def pmf(self, k): N, m, n = self.N, self.m, self.n return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n) def _sample_scipy(self, size): N, m, n = int(self.N), int(self.m), int(self.n) return scipy.stats.hypergeom.rvs(M=m, n=n, N=N, size=size) def Hypergeometric(name, N, m, n): """ Create a Finite Random Variable representing a hypergeometric distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Hypergeometric, density >>> from sympy import S >>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws >>> density(X).dict {0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12} References ========== .. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html """ return rv(name, HypergeometricDistribution, N, m, n) class RademacherDistribution(SingleFiniteDistribution): @property def set(self): return set([-1, 1]) @property def pmf(self): k = Dummy('k') return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (0, True))) def Rademacher(name): """ Create a Finite Random Variable representing a Rademacher distribution. Return a RandomSymbol. Examples ======== >>> from sympy.stats import Rademacher, density >>> X = Rademacher('X') >>> density(X).dict {-1: 1/2, 1: 1/2} See Also ======== sympy.stats.Bernoulli References ========== .. [1] https://en.wikipedia.org/wiki/Rademacher_distribution """ return rv(name, RademacherDistribution)
b5010da0723f9028c5ed05eb483ea0a7bc37f7b48666d378c220ba94884d8483
from __future__ import print_function, division from sympy import (Matrix, MatrixSymbol, S, Indexed, Basic, Set, And, Eq, FiniteSet, ImmutableMatrix, Lambda, Mul, Dummy, IndexedBase, linsolve, eye, Or, Not, Intersection, Union, Expr, Function, exp, cacheit, Ge) from sympy.core.relational import Relational from sympy.logic.boolalg import Boolean from sympy.stats.joint_rv import JointDistributionHandmade, JointDistribution from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol, _symbol_converter) from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.symbolic_probability import Probability, Expectation __all__ = [ 'StochasticProcess', 'DiscreteTimeStochasticProcess', 'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf', 'GeneratorMatrixOf', 'ContinuousMarkovChain' ] def _set_converter(itr): """ Helper function for converting list/tuple/set to Set. If parameter is not an instance of list/tuple/set then no operation is performed. Returns ======= Set The argument converted to Set. Raises ====== TypeError If the argument is not an instance of list/tuple/set. """ if isinstance(itr, (list, tuple, set)): itr = FiniteSet(*itr) if not isinstance(itr, Set): raise TypeError("%s is not an instance of list/tuple/set."%(itr)) return itr def _matrix_checks(matrix): if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)): raise TypeError("Transition probabilities either should " "be a Matrix or a MatrixSymbol.") if matrix.shape[0] != matrix.shape[1]: raise ValueError("%s is not a square matrix"%(matrix)) if isinstance(matrix, Matrix): matrix = ImmutableMatrix(matrix.tolist()) return matrix class StochasticProcess(Basic): """ Base class for all the stochastic processes whether discrete or continuous. Parameters ========== sym: Symbol or string_types state_space: Set The state space of the stochastic process, by default S.Reals. For discrete sets it is zero indexed. See Also ======== DiscreteTimeStochasticProcess """ index_set = S.Reals def __new__(cls, sym, state_space=S.Reals, **kwargs): sym = _symbol_converter(sym) state_space = _set_converter(state_space) return Basic.__new__(cls, sym, state_space) @property def symbol(self): return self.args[0] @property def state_space(self): return self.args[1] def __call__(self, time): """ Overridden in ContinuousTimeStochasticProcess. """ raise NotImplementedError("Use [] for indexing discrete time stochastic process.") def __getitem__(self, time): """ Overridden in DiscreteTimeStochasticProcess. """ raise NotImplementedError("Use () for indexing continuous time stochastic process.") def probability(self, condition): raise NotImplementedError() def joint_distribution(self, *args): """ Computes the joint distribution of the random indexed variables. Parameters ========== args: iterable The finite list of random indexed variables/the key of a stochastic process whose joint distribution has to be computed. Returns ======= JointDistribution The joint distribution of the list of random indexed variables. An unevaluated object is returned if it is not possible to compute the joint distribution. Raises ====== ValueError: When the arguments passed are not of type RandomIndexSymbol or Number. """ args = list(args) for i, arg in enumerate(args): if S(arg).is_Number: if self.index_set.is_subset(S.Integers): args[i] = self.__getitem__(arg) else: args[i] = self.__call__(arg) elif not isinstance(arg, RandomIndexedSymbol): raise ValueError("Expected a RandomIndexedSymbol or " "key not %s"%(type(arg))) if args[0].pspace.distribution == None: # checks if there is any distribution available return JointDistribution(*args) # TODO: Add tests for the below part of the method, when implementation of Bernoulli Process # is completed pdf = Lambda(*[arg.name for arg in args], expr=Mul.fromiter(arg.pspace.distribution.pdf(arg) for arg in args)) return JointDistributionHandmade(pdf) def expectation(self, condition, given_condition): raise NotImplementedError("Abstract method for expectation queries.") class DiscreteTimeStochasticProcess(StochasticProcess): """ Base class for all discrete stochastic processes. """ def __getitem__(self, time): """ For indexing discrete time stochastic processes. Returns ======= RandomIndexedSymbol """ if time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) idx_obj = Indexed(self.symbol, time) pspace_obj = StochasticPSpace(self.symbol, self) return RandomIndexedSymbol(idx_obj, pspace_obj) class ContinuousTimeStochasticProcess(StochasticProcess): """ Base class for all continuous time stochastic process. """ def __call__(self, time): """ For indexing continuous time stochastic processes. Returns ======= RandomIndexedSymbol """ if time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) func_obj = Function(self.symbol)(time) pspace_obj = StochasticPSpace(self.symbol, self) return RandomIndexedSymbol(func_obj, pspace_obj) class TransitionMatrixOf(Boolean): """ Assumes that the matrix is the transition matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, DiscreteMarkovChain): raise ValueError("Currently only DiscreteMarkovChain " "support TransitionMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) process = property(lambda self: self.args[0]) matrix = property(lambda self: self.args[1]) class GeneratorMatrixOf(TransitionMatrixOf): """ Assumes that the matrix is the generator matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, ContinuousMarkovChain): raise ValueError("Currently only ContinuousMarkovChain " "support GeneratorMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) class StochasticStateSpaceOf(Boolean): def __new__(cls, process, state_space): if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)): raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain " "support StochasticStateSpaceOf.") state_space = _set_converter(state_space) return Basic.__new__(cls, process, state_space) process = property(lambda self: self.args[0]) state_space = property(lambda self: self.args[1]) class MarkovProcess(StochasticProcess): """ Contains methods that handle queries common to Markov processes. """ def _extract_information(self, given_condition): """ Helper function to extract information, like, transition matrix/generator matrix, state space, etc. """ if isinstance(self, DiscreteMarkovChain): trans_probs = self.transition_probabilities elif isinstance(self, ContinuousMarkovChain): trans_probs = self.generator_matrix state_space = self.state_space if isinstance(given_condition, And): gcs = given_condition.args given_condition = S.true for gc in gcs: if isinstance(gc, TransitionMatrixOf): trans_probs = gc.matrix if isinstance(gc, StochasticStateSpaceOf): state_space = gc.state_space if isinstance(gc, Relational): given_condition = given_condition & gc if isinstance(given_condition, TransitionMatrixOf): trans_probs = given_condition.matrix given_condition = S.true if isinstance(given_condition, StochasticStateSpaceOf): state_space = given_condition.state_space given_condition = S.true return trans_probs, state_space, given_condition def _check_trans_probs(self, trans_probs, row_sum=1): """ Helper function for checking the validity of transition probabilities. """ if not isinstance(trans_probs, MatrixSymbol): rows = trans_probs.tolist() for row in rows: if (sum(row) - row_sum) != 0: raise ValueError("Values in a row must sum to %s. " "If you are using Float or floats then please use Rational."%(row_sum)) def _work_out_state_space(self, state_space, given_condition, trans_probs): """ Helper function to extract state space if there is a random symbol in the given condition. """ # if given condition is None, then there is no need to work out # state_space from random variables if given_condition != None: rand_var = list(given_condition.atoms(RandomSymbol) - given_condition.atoms(RandomIndexedSymbol)) if len(rand_var) == 1: state_space = rand_var[0].pspace.set if not FiniteSet(*[i for i in range(trans_probs.shape[0])]).is_subset(state_space): raise ValueError("state space is not compatible with the transition probabilites.") state_space = FiniteSet(*[i for i in range(trans_probs.shape[0])]) return state_space @cacheit def _preprocess(self, given_condition, evaluate): """ Helper function for pre-processing the information. """ is_insufficient = False if not evaluate: # avoid pre-processing if the result is not to be evaluated return (True, None, None, None) # extracting transition matrix and state space trans_probs, state_space, given_condition = self._extract_information(given_condition) # given_condition does not have sufficient information # for computations if trans_probs == None or \ given_condition == None: is_insufficient = True else: # checking transition probabilities if isinstance(self, DiscreteMarkovChain): self._check_trans_probs(trans_probs, row_sum=1) elif isinstance(self, ContinuousMarkovChain): self._check_trans_probs(trans_probs, row_sum=0) # working out state space state_space = self._work_out_state_space(state_space, given_condition, trans_probs) return is_insufficient, trans_probs, state_space, given_condition def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Handles probability queries for Markov process. Parameters ========== condition: Relational given_condition: Relational/And Returns ======= Probability If the information is not sufficient. Expr In all other cases. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_space, new_given_condition = \ self._preprocess(given_condition, evaluate) if check: return Probability(condition, new_given_condition) if isinstance(self, ContinuousMarkovChain): trans_probs = self.transition_probabilities(mat) elif isinstance(self, DiscreteMarkovChain): trans_probs = mat if isinstance(condition, Relational): rv, states = (list(condition.atoms(RandomIndexedSymbol))[0], condition.as_set()) if isinstance(new_given_condition, And): gcs = new_given_condition.args else: gcs = (new_given_condition, ) grvs = new_given_condition.atoms(RandomIndexedSymbol) min_key_rv = None for grv in grvs: if grv.key <= rv.key: min_key_rv = grv if min_key_rv == None: return Probability(condition) prob, gstate = dict(), None for gc in gcs: if gc.has(min_key_rv): if gc.has(Probability): p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \ else (gc.lhs, gc.rhs) gr = gp.args[0] gset = Intersection(gr.as_set(), state_space) gstate = list(gset)[0] prob[gset] = p else: _, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \ else (gc.rhs.key, gc.lhs) if any((k not in self.index_set) for k in (rv.key, min_key_rv.key)): raise IndexError("The timestamps of the process are not in it's index set.") states = Intersection(states, state_space) for state in Union(states, FiniteSet(gstate)): if Ge(state, mat.shape[0]) == True: raise IndexError("No information is available for (%s, %s) in " "transition probabilities of shape, (%s, %s). " "State space is zero indexed." %(gstate, state, mat.shape[0], mat.shape[1])) if prob: gstates = Union(*prob.keys()) if len(gstates) == 1: gstate = list(gstates)[0] gprob = list(prob.values())[0] prob[gstates] = gprob elif len(gstates) == len(state_space) - 1: gstate = list(state_space - gstates)[0] gprob = S(1) - sum(prob.values()) prob[state_space - gstates] = gprob else: raise ValueError("Conflicting information.") else: gprob = S(1) if min_key_rv == rv: return sum([prob[FiniteSet(state)] for state in states]) if isinstance(self, ContinuousMarkovChain): return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state)) for state in states]) if isinstance(self, DiscreteMarkovChain): return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state)) for state in states]) if isinstance(condition, Not): expr = condition.args[0] return S(1) - self.probability(expr, given_condition, evaluate, **kwargs) if isinstance(condition, And): compute_later, state2cond, conds = [], dict(), condition.args for expr in conds: if isinstance(expr, Relational): ris = list(expr.atoms(RandomIndexedSymbol))[0] if state2cond.get(ris, None) is None: state2cond[ris] = S.true state2cond[ris] &= expr else: compute_later.append(expr) ris = [] for ri in state2cond: ris.append(ri) cset = Intersection(state2cond[ri].as_set(), state_space) if len(cset) == 0: return S.Zero state2cond[ri] = cset.as_relational(ri) sorted_ris = sorted(ris, key=lambda ri: ri.key) prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs) for i in range(1, len(sorted_ris)): ri, prev_ri = sorted_ris[i], sorted_ris[i-1] if not isinstance(state2cond[ri], Eq): raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) prod *= self.probability(state2cond[ri], state2cond[prev_ri] & mat_of & StochasticStateSpaceOf(self, state_space), evaluate, **kwargs) for expr in compute_later: prod *= self.probability(expr, given_condition, evaluate, **kwargs) return prod if isinstance(condition, Or): return sum([self.probability(expr, given_condition, evaluate, **kwargs) for expr in condition.args]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(expr, condition)) def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Handles expectation queries for markov process. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation Unevaluated object if computations cannot be done due to insufficient information. Expr In all other cases when the computations are successful. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_space, condition = \ self._preprocess(condition, evaluate) if check: return Expectation(expr, condition) rvs = random_symbols(expr) if isinstance(expr, Expr) and isinstance(condition, Eq) \ and len(rvs) == 1: # handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>)) rv = list(rvs)[0] lhsg, rhsg = condition.lhs, condition.rhs if not isinstance(lhsg, RandomIndexedSymbol): lhsg, rhsg = (rhsg, lhsg) if rhsg not in self.state_space: raise ValueError("%s state is not in the state space."%(rhsg)) if rv.key < lhsg.key: raise ValueError("Incorrect given condition is given, expectation " "time %s < time %s"%(rv.key, rv.key)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) cond = condition & mat_of & \ StochasticStateSpaceOf(self, state_space) func = lambda s: self.probability(Eq(rv, s), cond)*expr.subs(rv, s) return sum([func(s) for s in state_space]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(expr, condition)) class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess): """ Represents discrete time Markov chain. Parameters ========== sym: Symbol/string_types state_space: Set Optional, by default, S.Reals trans_probs: Matrix/ImmutableMatrix/MatrixSymbol Optional, by default, None Examples ======== >>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf >>> from sympy import Matrix, MatrixSymbol, Eq >>> from sympy.stats import P >>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> YS = DiscreteMarkovChain("Y") >>> Y.state_space {0, 1, 2} >>> Y.transition_probabilities Matrix([ [0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]]) >>> TS = MatrixSymbol('T', 3, 3) >>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS)) T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2] >>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) 0.36 References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain .. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf """ index_set = S.Naturals0 def __new__(cls, sym, state_space=S.Reals, trans_probs=None): sym = _symbol_converter(sym) state_space = _set_converter(state_space) if trans_probs != None: trans_probs = _matrix_checks(trans_probs) return Basic.__new__(cls, sym, state_space, trans_probs) @property def transition_probabilities(self): """ Transition probabilities of discrete Markov chain, either an instance of Matrix or MatrixSymbol. """ return self.args[2] def _transient2transient(self): """ Computes the one step probabilities of transient states to transient states. Used in finding fundamental matrix, absorbing probabilties. """ trans_probs = self.transition_probabilities if not isinstance(trans_probs, ImmutableMatrix): return None m = trans_probs.shape[0] trans_states = [i for i in range(m) if trans_probs[i, i] != 1] t2t = [[trans_probs[si, sj] for sj in trans_states] for si in trans_states] return ImmutableMatrix(t2t) def _transient2absorbing(self): """ Computes the one step probabilities of transient states to absorbing states. Used in finding fundamental matrix, absorbing probabilties. """ trans_probs = self.transition_probabilities if not isinstance(trans_probs, ImmutableMatrix): return None m, trans_states, absorb_states = \ trans_probs.shape[0], [], [] for i in range(m): if trans_probs[i, i] == 1: absorb_states.append(i) else: trans_states.append(i) if not absorb_states or not trans_states: return None t2a = [[trans_probs[si, sj] for sj in absorb_states] for si in trans_states] return ImmutableMatrix(t2a) def fundamental_matrix(self): Q = self._transient2transient() if Q == None: return None I = eye(Q.shape[0]) if (I - Q).det() == 0: raise ValueError("Fundamental matrix doesn't exists.") return ImmutableMatrix((I - Q).inv().tolist()) def absorbing_probabilites(self): """ Computes the absorbing probabilities, i.e., the ij-th entry of the matrix denotes the probability of Markov chain being absorbed in state j starting from state i. """ R = self._transient2absorbing() N = self.fundamental_matrix() if R == None or N == None: return None return N*R def is_regular(self): w = self.fixed_row_vector() if w is None or isinstance(w, (Lambda)): return None return all((wi > 0) == True for wi in w.row(0)) def is_absorbing_state(self, state): trans_probs = self.transition_probabilities if isinstance(trans_probs, ImmutableMatrix) and \ state < trans_probs.shape[0]: return S(trans_probs[state, state]) == S.One def is_absorbing_chain(self): trans_probs = self.transition_probabilities return any(self.is_absorbing_state(state) == True for state in range(trans_probs.shape[0])) def fixed_row_vector(self): trans_probs = self.transition_probabilities if trans_probs == None: return None if isinstance(trans_probs, MatrixSymbol): wm = MatrixSymbol('wm', 1, trans_probs.shape[0]) return Lambda((wm, trans_probs), Eq(wm*trans_probs, wm)) w = IndexedBase('w') wi = [w[i] for i in range(trans_probs.shape[0])] wm = Matrix([wi]) eqs = (wm*trans_probs - wm).tolist()[0] eqs.append(sum(wi) - 1) soln = list(linsolve(eqs, wi))[0] return ImmutableMatrix([[sol for sol in soln]]) @property def limiting_distribution(self): """ The fixed row vector is the limiting distribution of a discrete Markov chain. """ return self.fixed_row_vector() class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess): """ Represents continuous time Markov chain. Parameters ========== sym: Symbol/string_types state_space: Set Optional, by default, S.Reals gen_mat: Matrix/ImmutableMatrix/MatrixSymbol Optional, by default, None Examples ======== >>> from sympy.stats import ContinuousMarkovChain >>> from sympy import Matrix, S, MatrixSymbol >>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G) >>> C.limiting_distribution() Matrix([[1/2, 1/2]]) References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain .. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf """ index_set = S.Reals def __new__(cls, sym, state_space=S.Reals, gen_mat=None): sym = _symbol_converter(sym) state_space = _set_converter(state_space) if gen_mat != None: gen_mat = _matrix_checks(gen_mat) return Basic.__new__(cls, sym, state_space, gen_mat) @property def generator_matrix(self): return self.args[2] @cacheit def transition_probabilities(self, gen_mat=None): t = Dummy('t') if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \ gen_mat.is_diagonalizable(): # for faster computation use diagonalized generator matrix Q, D = gen_mat.diagonalize() return Lambda(t, Q*exp(t*D)*Q.inv()) if gen_mat != None: return Lambda(t, exp(t*gen_mat)) def limiting_distribution(self): gen_mat = self.generator_matrix if gen_mat == None: return None if isinstance(gen_mat, MatrixSymbol): wm = MatrixSymbol('wm', 1, gen_mat.shape[0]) return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm)) w = IndexedBase('w') wi = [w[i] for i in range(gen_mat.shape[0])] wm = Matrix([wi]) eqs = (wm*gen_mat).tolist()[0] eqs.append(sum(wi) - 1) soln = list(linsolve(eqs, wi))[0] return ImmutableMatrix([[sol for sol in soln]])
bf996f78e1e5ad2c5210d6a3cbf9748094e09e1fc083af0892d2147c90d5299f
""" SymPy statistics module Introduces a random variable type into the SymPy language. Random variables may be declared using prebuilt functions such as Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV. Queries on random expressions can be made using the functions ========================= ============================= Expression Meaning ------------------------- ----------------------------- ``P(condition)`` Probability ``E(expression)`` Expected value ``H(expression)`` Entropy ``variance(expression)`` Variance ``density(expression)`` Probability Density Function ``sample(expression)`` Produce a realization ``where(condition)`` Where the condition is true ========================= ============================= Examples ======== >>> from sympy.stats import P, E, variance, Die, Normal >>> from sympy import Eq, simplify >>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice >>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1 >>> P(X>3) # Probability X is greater than 3 1/2 >>> E(X+Y) # Expectation of the sum of two dice 7 >>> variance(X+Y) # Variance of the sum of two dice 35/6 >>> simplify(P(Z>1)) # Probability of Z being greater than 1 1/2 - erf(sqrt(2)/2)/2 """ __all__ = [] from . import rv_interface from .rv_interface import ( cdf, characteristic_function, covariance, density, dependent, E, given, independent, P, pspace, random_symbols, sample, sample_iter, skewness, kurtosis, std, variance, where, factorial_moment, correlation, moment, cmoment, smoment, sampling_density, moment_generating_function, entropy, H, quantile ) __all__.extend(rv_interface.__all__) from . import frv_types from .frv_types import ( Bernoulli, Binomial, BetaBinomial, Coin, Die, DiscreteUniform, FiniteRV, Hypergeometric, Rademacher, ) __all__.extend(frv_types.__all__) from . import crv_types from .crv_types import ( ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiNoncentral, ChiSquared, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gumbel, Gompertz, Kumaraswamy, Laplace, Logistic, LogLogistic, LogNormal, Maxwell, Nakagami, Normal, GaussianInverse, Pareto, QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, WignerSemicircle, Wald ) __all__.extend(crv_types.__all__) from . import drv_types from .drv_types import (Geometric, Logarithmic, NegativeBinomial, Poisson, Skellam, YuleSimon, Zeta) __all__.extend(drv_types.__all__) from . import joint_rv_types from .joint_rv_types import ( JointRV, Dirichlet, GeneralizedMultivariateLogGamma, GeneralizedMultivariateLogGammaOmega, Multinomial, MultivariateBeta, MultivariateEwens, MultivariateT, NegativeMultinomial, NormalGamma ) __all__.extend(joint_rv_types.__all__) from . import stochastic_process_types from .stochastic_process_types import ( StochasticProcess, ContinuousTimeStochasticProcess, DiscreteTimeStochasticProcess, DiscreteMarkovChain, TransitionMatrixOf, StochasticStateSpaceOf, ContinuousMarkovChain, GeneratorMatrixOf ) __all__.extend(stochastic_process_types.__all__) from . import random_matrix_models from .random_matrix_models import ( CircularEnsemble, CircularUnitaryEnsemble, CircularOrthogonalEnsemble, CircularSymplecticEnsemble, GaussianEnsemble, GaussianUnitaryEnsemble, GaussianOrthogonalEnsemble, GaussianSymplecticEnsemble, JointEigenDistribution, joint_eigen_distribution, level_spacing_distribution ) __all__.extend(random_matrix_models.__all__) from . import symbolic_probability from .symbolic_probability import Probability, Expectation, Variance, Covariance __all__.extend(symbolic_probability.__all__)
fe8c8464e2ec56fd83e4ceee69444a912644ca58f56c7c5154d65ffabc3984d3
from sympy import (sympify, S, pi, sqrt, exp, Lambda, Indexed, besselk, gamma, Interval, Range, factorial, Mul, Integer, Add, rf, Eq, Piecewise, ones, Symbol, Pow, Rational, Sum, Intersection, Matrix, symbols, Product, IndexedBase) from sympy.matrices import ImmutableMatrix, MatrixSymbol from sympy.matrices.expressions.determinant import det from sympy.stats.joint_rv import (JointDistribution, JointPSpace, JointDistributionHandmade, MarginalDistribution) from sympy.stats.rv import _value_check, random_symbols __all__ = ['JointRV', 'Dirichlet', 'GeneralizedMultivariateLogGamma', 'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta', 'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial', 'NormalGamma' ] def multivariate_rv(cls, sym, *args): args = list(map(sympify, args)) dist = cls(*args) args = dist.args dist.check(*args) return JointPSpace(sym, dist).value def JointRV(symbol, pdf, _set=None): """ Create a Joint Random Variable where each of its component is conitinuous, given the following: -- a symbol -- a PDF in terms of indexed symbols of the symbol given as the first argument NOTE: As of now, the set for each component for a `JointRV` is equal to the set of all integers, which can not be changed. Returns a RandomSymbol. Examples ======== >>> from sympy import symbols, exp, pi, Indexed, S >>> from sympy.stats import density >>> from sympy.stats.joint_rv_types import JointRV >>> x1, x2 = (Indexed('x', i) for i in (1, 2)) >>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi) >>> N1 = JointRV('x', pdf) #Multivariate Normal distribution >>> density(N1)(1, 2) exp(-2)/(2*pi) """ #TODO: Add support for sets provided by the user symbol = sympify(symbol) syms = list(i for i in pdf.free_symbols if isinstance(i, Indexed) and i.base == IndexedBase(symbol)) syms = tuple(sorted(syms, key = lambda index: index.args[1])) _set = S.Reals**len(syms) pdf = Lambda(syms, pdf) dist = JointDistributionHandmade(pdf, _set) jrv = JointPSpace(symbol, dist).value rvs = random_symbols(pdf) if len(rvs) != 0: dist = MarginalDistribution(dist, (jrv,)) return JointPSpace(symbol, dist).value return jrv #------------------------------------------------------------------------------- # Multivariate Normal distribution --------------------------------------------------------- class MultivariateNormalDistribution(JointDistribution): _argnames = ['mu', 'sigma'] is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") #check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The covariance matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma k = mu.shape[0] args = ImmutableMatrix(args) x = args - mu return S(1)/sqrt((2*pi)**(k)*det(sigma))*exp( -S(1)/2*x.transpose()*(sigma.inv()*\ x))[0] def marginal_distribution(self, indices, sym): sym = ImmutableMatrix([Indexed(sym, i) for i in indices]) _mu, _sigma = self.mu, self.sigma k = self.mu.shape[0] for i in range(k): if i not in indices: _mu = _mu.row_del(i) _sigma = _sigma.col_del(i) _sigma = _sigma.row_del(i) return Lambda(tuple(sym), S(1)/sqrt((2*pi)**(len(_mu))*det(_sigma))*exp( -S(1)/2*(_mu - sym).transpose()*(_sigma.inv()*\ (_mu - sym)))[0]) #------------------------------------------------------------------------------- # Multivariate Laplace distribution --------------------------------------------------------- class MultivariateLaplaceDistribution(JointDistribution): _argnames = ['mu', 'sigma'] is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The covariance matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma mu_T = mu.transpose() k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) args_T = args.transpose() x = (mu_T*sigma_inv*mu)[0] y = (args_T*sigma_inv*args)[0] v = 1 - k/2 return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\ *(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\ *exp((args_T*sigma_inv*mu)[0]) #------------------------------------------------------------------------------- # Multivariate StudentT distribution --------------------------------------------------------- class MultivariateTDistribution(JointDistribution): _argnames = ['mu', 'shape_mat', 'dof'] is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma, v): _value_check(mu.shape[0] == sigma.shape[0], "Size of the location vector and shape matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The shape matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.shape_mat v = S(self.dof) k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) x = args - mu return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\ *(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2) def MultivariateT(syms, mu, sigma, v): """ Creates a joint random variable with multivariate T-distribution. Parameters ========== syms: list/tuple/set of symbols for identifying each component mu: A list/tuple/set consisting of k means,represents a k dimensional location vector sigma: The shape matrix for the distribution Returns ======= A random symbol """ return multivariate_rv(MultivariateTDistribution, syms, mu, sigma, v) #------------------------------------------------------------------------------- # Multivariate Normal Gamma distribution --------------------------------------------------------- class NormalGammaDistribution(JointDistribution): _argnames = ['mu', 'lamda', 'alpha', 'beta'] is_Continuous=True @staticmethod def check(mu, lamda, alpha, beta): _value_check(mu.is_real, "Location must be real.") _value_check(lamda > 0, "Lambda must be positive") _value_check(alpha > 0, "alpha must be positive") _value_check(beta > 0, "beta must be positive") @property def set(self): return S.Reals*Interval(0, S.Infinity) def pdf(self, x, tau): beta, alpha, lamda = self.beta, self.alpha, self.lamda mu = self.mu return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\ tau**(alpha - S(1)/2)*exp(-1*beta*tau)*\ exp(-1*(lamda*tau*(x - mu)**2)/S(2)) def marginal_distribution(self, indices, *sym): if len(indices) == 2: return self.pdf(*sym) if indices[0] == 0: #For marginal over `x`, return non-standardized Student-T's #distribution x = sym[0] v, mu, sigma = self.alpha - S(1)/2, self.mu, \ S(self.beta)/(self.lamda * self.alpha) return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\ (1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2)) #For marginal over `tau`, return Gamma distribution as per construction from sympy.stats.crv_types import GammaDistribution return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0])) def NormalGamma(syms, mu, lamda, alpha, beta): """ Creates a bivariate joint random variable with multivariate Normal gamma distribution. Parameters ========== syms: list/tuple/set of two symbols for identifying each component mu: A real number, as the mean of the normal distribution alpha: a positive integer beta: a positive integer lamda: a positive integer Returns ======= A random symbol """ return multivariate_rv(NormalGammaDistribution, syms, mu, lamda, alpha, beta) #------------------------------------------------------------------------------- # Multivariate Beta/Dirichlet distribution --------------------------------------------------------- class MultivariateBetaDistribution(JointDistribution): _argnames = ['alpha'] is_Continuous = True @staticmethod def check(alpha): _value_check(len(alpha) >= 2, "At least two categories should be passed.") for a_k in alpha: _value_check((a_k > 0) != False, "Each concentration parameter" " should be positive.") @property def set(self): k = len(self.alpha) return Interval(0, 1)**k def pdf(self, *syms): alpha = self.alpha B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha)) return Mul.fromiter([sym**(a_k - 1) for a_k, sym in zip(alpha, syms)])/B def MultivariateBeta(syms, *alpha): """ Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution. The density of the dirichlet distribution can be found at [1]. Parameters ========== alpha: positive real numbers signifying concentration numbers. Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import MultivariateBeta >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> B = MultivariateBeta('B', [a1, a2]) >>> C = MultivariateBeta('C', a1, a2) >>> x = Symbol('x') >>> y = Symbol('y') >>> density(B)(x, y) x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2)) >>> marginal_distribution(C, C[0])(x) x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2)) References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_distribution .. [2] http://mathworld.wolfram.com/DirichletDistribution.html """ if not isinstance(alpha[0], list): alpha = (list(alpha),) return multivariate_rv(MultivariateBetaDistribution, syms, alpha[0]) Dirichlet = MultivariateBeta #------------------------------------------------------------------------------- # Multivariate Ewens distribution --------------------------------------------------------- class MultivariateEwensDistribution(JointDistribution): _argnames = ['n', 'theta'] is_Discrete = True is_Continuous = False @staticmethod def check(n, theta): _value_check((n > 0), "sample size should be positive integer.") _value_check(theta.is_positive, "mutation rate should be positive.") @property def set(self): if not isinstance(self.n, Integer): i = Symbol('i', integer=True, positive=True) return Product(Intersection(S.Naturals0, Interval(0, self.n//i)), (i, 1, self.n)) prod_set = Range(0, self.n + 1) for i in range(2, self.n + 1): prod_set *= Range(0, self.n//i + 1) return prod_set.flatten() def pdf(self, *syms): n, theta = self.n, self.theta condi = isinstance(self.n, Integer) if not (isinstance(syms[0], IndexedBase) or condi): raise ValueError("Please use IndexedBase object for syms as " "the dimension is symbolic") term_1 = factorial(n)/rf(theta, n) if condi: term_2 = Mul.fromiter([theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])) for j in range(n)]) cond = Eq(sum([(k + 1)*syms[k] for k in range(n)]), n) return Piecewise((term_1 * term_2, cond), (0, True)) syms = syms[0] j, k = symbols('j, k', positive=True, integer=True) term_2 = Product(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])), (j, 0, n - 1)) cond = Eq(Sum((k + 1)*syms[k], (k, 0, n - 1)), n) return Piecewise((term_1 * term_2, cond), (0, True)) def MultivariateEwens(syms, n, theta): """ Creates a discrete random variable with Multivariate Ewens Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: positive integer of class Integer, size of the sample or the integer whose partitions are considered theta: mutation rate, must be positive real number. Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import MultivariateEwens >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> ed = MultivariateEwens('E', 2, 1) >>> density(ed)(a1, a2) Piecewise((2**(-a2)/(factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True)) >>> marginal_distribution(ed, ed[0])(a1) Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Ewens%27s_sampling_formula .. [2] http://www.stat.rutgers.edu/home/hcrane/Papers/STS529.pdf """ return multivariate_rv(MultivariateEwensDistribution, syms, n, theta) #------------------------------------------------------------------------------- # Generalized Multivariate Log Gamma distribution --------------------------------------------------------- class GeneralizedMultivariateLogGammaDistribution(JointDistribution): _argnames = ['delta', 'v', 'lamda', 'mu'] is_Continuous=True def check(self, delta, v, l, mu): _value_check((delta >= 0, delta <= 1), "delta must be in range [0, 1].") _value_check((v > 0), "v must be positive") for lk in l: _value_check((lk > 0), "lamda must be a positive vector.") for muk in mu: _value_check((muk > 0), "mu must be a positive vector.") _value_check(len(l) > 1,"the distribution should have at least" " two random variables.") @property def set(self): return S.Reals**len(self.lamda) def pdf(self, *y): from sympy.functions.special.gamma_functions import gamma d, v, l, mu = self.delta, self.v, self.lamda, self.mu n = Symbol('n', negative=False, integer=True) k = len(l) sterm1 = Pow((1 - d), n)/\ ((gamma(v + n)**(k - 1))*gamma(v)*gamma(n + 1)) sterm2 = Mul.fromiter([mui*li**(-v - n) for mui, li in zip(mu, l)]) term1 = sterm1 * sterm2 sterm3 = (v + n) * sum([mui * yi for mui, yi in zip(mu, y)]) sterm4 = sum([exp(mui * yi)/li for (mui, yi, li) in zip(mu, y, l)]) term2 = exp(sterm3 - sterm4) return Pow(d, v) * Sum(term1 * term2, (n, 0, S.Infinity)) def GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu): """ Creates a joint random variable with generalized multivariate log gamma distribution. The joint pdf can be found at [1]. Parameters ========== syms: list/tuple/set of symbols for identifying each component delta: A constant in range [0, 1] v: positive real lamda: a list of positive reals mu: a list of positive reals Returns ======= A Random Symbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma >>> from sympy import symbols, S >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> d = S.Half >>> y = symbols('y_1:4', positive=True) >>> Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu) >>> density(Gd)(y[0], y[1], y[2]) Sum(2**(-n)*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2 References ========== .. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution .. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis Note ==== If the GeneralizedMultivariateLogGamma is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG` If you want to pass the matrix omega instead of the constant delta, then use, GeneralizedMultivariateLogGammaOmega. """ return multivariate_rv(GeneralizedMultivariateLogGammaDistribution, syms, delta, v, lamda, mu) def GeneralizedMultivariateLogGammaOmega(syms, omega, v, lamda, mu): """ Extends GeneralizedMultivariateLogGamma. Parameters ========== syms: list/tuple/set of symbols for identifying each component omega: A square matrix Every element of square matrix must be absolute value of square root of correlation coefficient v: positive real lamda: a list of positive reals mu: a list of positive reals Returns ======= A Random Symbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega >>> from sympy import Matrix, symbols, S >>> omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]]) >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> G = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu) >>> y = symbols('y_1:4', positive=True) >>> density(G)(y[0], y[1], y[2]) sqrt(2)*Sum((1 - sqrt(2)/2)**n*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2 References ========== See references of GeneralizedMultivariateLogGamma. Notes ===== If the GeneralizedMultivariateLogGammaOmega is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO` """ _value_check((omega.is_square, isinstance(omega, Matrix)), "omega must be a" " square matrix") for val in omega.values(): _value_check((val >= 0, val <= 1), "all values in matrix must be between 0 and 1(both inclusive).") _value_check(omega.diagonal().equals(ones(1, omega.shape[0])), "all the elements of diagonal should be 1.") _value_check((omega.shape[0] == len(lamda), len(lamda) == len(mu)), "lamda, mu should be of same length and omega should " " be of shape (length of lamda, length of mu)") _value_check(len(lamda) > 1,"the distribution should have at least" " two random variables.") delta = Pow(Rational(omega.det()), Rational(1, len(lamda) - 1)) return GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu) #------------------------------------------------------------------------------- # Multinomial distribution --------------------------------------------------------- class MultinomialDistribution(JointDistribution): _argnames = ['n', 'p'] is_Continuous=False is_Discrete = True @staticmethod def check(n, p): _value_check(n > 0, "number of trials must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1]") _value_check(Eq(sum(p), 1), "probabilities must sum to 1") @property def set(self): return Intersection(S.Naturals0, Interval(0, self.n))**len(self.p) def pdf(self, *x): n, p = self.n, self.p term_1 = factorial(n)/Mul.fromiter([factorial(x_k) for x_k in x]) term_2 = Mul.fromiter([p_k**x_k for p_k, x_k in zip(p, x)]) return Piecewise((term_1 * term_2, Eq(sum(x), n)), (0, True)) def Multinomial(syms, n, *p): """ Creates a discrete random variable with Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: positive integer of class Integer, number of trials p: event probabilites, >= 0 and <= 1 Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import Multinomial >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> M = Multinomial('M', 3, p1, p2, p3) >>> density(M)(x1, x2, x3) Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)), Eq(x1 + x2 + x3, 3)), (0, True)) >>> marginal_distribution(M, M[0])(x1).subs(x1, 1) 3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2 References ========== .. [1] https://en.wikipedia.org/wiki/Multinomial_distribution .. [2] http://mathworld.wolfram.com/MultinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(MultinomialDistribution, syms, n, p[0]) #------------------------------------------------------------------------------- # Negative Multinomial Distribution --------------------------------------------------------- class NegativeMultinomialDistribution(JointDistribution): _argnames = ['k0', 'p'] is_Continuous=False is_Discrete = True @staticmethod def check(k0, p): _value_check(k0 > 0, "number of failures must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1].") _value_check(sum(p) <= 1, "success probabilities must not be greater than 1.") @property def set(self): return Range(0, S.Infinity)**len(self.p) def pdf(self, *k): k0, p = self.k0, self.p term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0) term_2 = Mul.fromiter([pi**ki/factorial(ki) for pi, ki in zip(p, k)]) return term_1 * term_2 def NegativeMultinomial(syms, k0, *p): """ Creates a discrete random variable with Negative Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== k0: positive integer of class Integer, number of failures before the experiment is stopped p: event probabilites, >= 0 and <= 1 Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv import marginal_distribution >>> from sympy.stats.joint_rv_types import NegativeMultinomial >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> N = NegativeMultinomial('M', 3, p1, p2, p3) >>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1) >>> density(N)(x1, x2, x3) p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 + x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3)) >>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2) 0.25 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_multinomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(NegativeMultinomialDistribution, syms, k0, p[0])
e2838ba9b268d9ecb1ce85a41bbc38ee6406483869f4ddec0f350d267c912016
from __future__ import print_function, division from sympy import Basic from sympy.stats.rv import PSpace, _symbol_converter, RandomMatrixSymbol class RandomMatrixPSpace(PSpace): """ Represents probability space for random matrices. It contains the mechanics for handling the API calls for random matrices. """ def __new__(cls, sym, model=None): sym = _symbol_converter(sym) return Basic.__new__(cls, sym, model) model = property(lambda self: self.args[1]) def compute_density(self, expr, *args): rms = expr.atoms(RandomMatrixSymbol) if len(rms) > 2 or (not isinstance(expr, RandomMatrixSymbol)): raise NotImplementedError("Currently, no algorithm has been " "implemented to handle general expressions containing " "multiple random matrices.") return self.model.density(expr)
15a579816f6c18e52c2f7f0b64dfc0ce7f443e1717c1ff9204e7542f48aa223e
from __future__ import print_function, division from sympy import sqrt, log, exp, FallingFactorial from .rv import (probability, expectation, density, where, given, pspace, cdf, characteristic_function, sample, sample_iter, random_symbols, independent, dependent, sampling_density, moment_generating_function, quantile) __all__ = ['P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf', 'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std', 'skewness', 'kurtosis', 'covariance', 'dependent', 'independent', 'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment', 'sampling_density', 'moment_generating_function', 'quantile'] def moment(X, n, c=0, condition=None, **kwargs): """ Return the nth moment of a random expression about c i.e. E((X-c)**n) Default value of c is 0. Examples ======== >>> from sympy.stats import Die, moment, E >>> X = Die('X', 6) >>> moment(X, 1, 6) -5/2 >>> moment(X, 2) 91/6 >>> moment(X, 1) == E(X) True """ return expectation((X - c)**n, condition, **kwargs) def variance(X, condition=None, **kwargs): """ Variance of a random expression Expectation of (X-E(X))**2 Examples ======== >>> from sympy.stats import Die, E, Bernoulli, variance >>> from sympy import simplify, Symbol >>> X = Die('X', 6) >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> variance(2*X) 35/3 >>> simplify(variance(B)) p*(1 - p) """ return cmoment(X, 2, condition, **kwargs) def standard_deviation(X, condition=None, **kwargs): """ Standard Deviation of a random expression Square root of the Expectation of (X-E(X))**2 Examples ======== >>> from sympy.stats import Bernoulli, std >>> from sympy import Symbol, simplify >>> p = Symbol('p') >>> B = Bernoulli('B', p, 1, 0) >>> simplify(std(B)) sqrt(p*(1 - p)) """ return sqrt(variance(X, condition, **kwargs)) std = standard_deviation def entropy(expr, condition=None, **kwargs): """ Calculuates entropy of a probability distribution Parameters ========== expression : the random expression whose entropy is to be calculated condition : optional, to specify conditions on random expression b: base of the logarithm, optional By default, it is taken as Euler's number Returns ======= result : Entropy of the expression, a constant Examples ======== >>> from sympy.stats import Normal, Die, entropy >>> X = Normal('X', 0, 1) >>> entropy(X) log(2)/2 + 1/2 + log(pi)/2 >>> D = Die('D', 4) >>> entropy(D) log(4) References ========== .. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory) .. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf .. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf """ pdf = density(expr, condition, **kwargs) base = kwargs.get('b', exp(1)) if hasattr(pdf, 'dict'): return sum([-prob*log(prob, base) for prob in pdf.dict.values()]) return expectation(-log(pdf(expr), base)) def covariance(X, Y, condition=None, **kwargs): """ Covariance of two random expressions The expectation that the two variables will rise and fall together Covariance(X,Y) = E( (X-E(X)) * (Y-E(Y)) ) Examples ======== >>> from sympy.stats import Exponential, covariance >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> covariance(X, X) lambda**(-2) >>> covariance(X, Y) 0 >>> covariance(X, Y + rate*X) 1/lambda """ return expectation( (X - expectation(X, condition, **kwargs)) * (Y - expectation(Y, condition, **kwargs)), condition, **kwargs) def correlation(X, Y, condition=None, **kwargs): """ Correlation of two random expressions, also known as correlation coefficient or Pearson's correlation The normalized expectation that the two variables will rise and fall together Correlation(X,Y) = E( (X-E(X)) * (Y-E(Y)) / (sigma(X) * sigma(Y)) ) Examples ======== >>> from sympy.stats import Exponential, correlation >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> X = Exponential('X', rate) >>> Y = Exponential('Y', rate) >>> correlation(X, X) 1 >>> correlation(X, Y) 0 >>> correlation(X, Y + rate*X) 1/sqrt(1 + lambda**(-2)) """ return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs) * std(Y, condition, **kwargs)) def cmoment(X, n, condition=None, **kwargs): """ Return the nth central moment of a random expression about its mean i.e. E((X - E(X))**n) Examples ======== >>> from sympy.stats import Die, cmoment, variance >>> X = Die('X', 6) >>> cmoment(X, 3) 0 >>> cmoment(X, 2) 35/12 >>> cmoment(X, 2) == variance(X) True """ mu = expectation(X, condition, **kwargs) return moment(X, n, mu, condition, **kwargs) def smoment(X, n, condition=None, **kwargs): """ Return the nth Standardized moment of a random expression i.e. E(((X - mu)/sigma(X))**n) Examples ======== >>> from sympy.stats import skewness, Exponential, smoment >>> from sympy import Symbol >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> smoment(Y, 4) 9 >>> smoment(Y, 4) == smoment(3*Y, 4) True >>> smoment(Y, 3) == skewness(Y) True """ sigma = std(X, condition, **kwargs) return (1/sigma)**n*cmoment(X, n, condition, **kwargs) def skewness(X, condition=None, **kwargs): """ Measure of the asymmetry of the probability distribution. Positive skew indicates that most of the values lie to the right of the mean. skewness(X) = E(((X - E(X))/sigma)**3) Parameters ========== condition : Expr containing RandomSymbols A conditional expression. skewness(X, X>0) is skewness of X given X > 0 Examples ======== >>> from sympy.stats import skewness, Exponential, Normal >>> from sympy import Symbol >>> X = Normal('X', 0, 1) >>> skewness(X) 0 >>> skewness(X, X > 0) # find skewness given X > 0 (-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2) >>> rate = Symbol('lambda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> skewness(Y) 2 """ return smoment(X, 3, condition=condition, **kwargs) def kurtosis(X, condition=None, **kwargs): """ Characterizes the tails/outliers of a probability distribution. Kurtosis of any univariate normal distribution is 3. Kurtosis less than 3 means that the distribution produces fewer and less extreme outliers than the normal distribution. kurtosis(X) = E(((X - E(X))/sigma)**4) Parameters ========== condition : Expr containing RandomSymbols A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0 Examples ======== >>> from sympy.stats import kurtosis, Exponential, Normal >>> from sympy import Symbol >>> X = Normal('X', 0, 1) >>> kurtosis(X) 3 >>> kurtosis(X, X > 0) # find kurtosis given X > 0 (-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2 >>> rate = Symbol('lamda', positive=True, real=True, finite=True) >>> Y = Exponential('Y', rate) >>> kurtosis(Y) 9 References ========== .. [1] https://en.wikipedia.org/wiki/Kurtosis .. [2] http://mathworld.wolfram.com/Kurtosis.html """ return smoment(X, 4, condition=condition, **kwargs) def factorial_moment(X, n, condition=None, **kwargs): """ The factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. factorial_moment(X, n) = E(X*(X - 1)*(X - 2)*...*(X - n + 1)) Parameters ========== n: A natural number, n-th factorial moment. condition : Expr containing RandomSymbols A conditional expression. Examples ======== >>> from sympy.stats import factorial_moment, Poisson, Binomial >>> from sympy import Symbol, S >>> lamda = Symbol('lamda') >>> X = Poisson('X', lamda) >>> factorial_moment(X, 2) lamda**2 >>> Y = Binomial('Y', 2, S.Half) >>> factorial_moment(Y, 2) 1/2 >>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1 2 References ========== .. [1] https://en.wikipedia.org/wiki/Factorial_moment .. [2] http://mathworld.wolfram.com/FactorialMoment.html """ return expectation(FallingFactorial(X, n), condition=condition, **kwargs) P = probability E = expectation H = entropy
5d74465edd755fbafcac08fb307864147235f012bc5d38b04a3fe51ac01f2731
""" Main Random Variables Module Defines abstract random variable type. Contains interfaces for probability space object (PSpace) as well as standard operators, P, E, sample, density, where, quantile See Also ======== sympy.stats.crv sympy.stats.frv sympy.stats.rv_interface """ from __future__ import print_function, division from sympy import (Basic, S, Expr, Symbol, Tuple, And, Add, Eq, lambdify, Equality, Lambda, sympify, Dummy, Ne, KroneckerDelta, DiracDelta, Mul, Indexed, MatrixSymbol, Function) from sympy.core.compatibility import string_types from sympy.core.relational import Relational from sympy.core.sympify import _sympify from sympy.logic.boolalg import Boolean from sympy.sets.sets import FiniteSet, ProductSet, Intersection from sympy.solvers.solveset import solveset x = Symbol('x') class RandomDomain(Basic): """ Represents a set of variables and the values which they can take See Also ======== sympy.stats.crv.ContinuousDomain sympy.stats.frv.FiniteDomain """ is_ProductDomain = False is_Finite = False is_Continuous = False is_Discrete = False def __new__(cls, symbols, *args): symbols = FiniteSet(*symbols) return Basic.__new__(cls, symbols, *args) @property def symbols(self): return self.args[0] @property def set(self): return self.args[1] def __contains__(self, other): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SingleDomain(RandomDomain): """ A single variable and its domain See Also ======== sympy.stats.crv.SingleContinuousDomain sympy.stats.frv.SingleFiniteDomain """ def __new__(cls, symbol, set): assert symbol.is_Symbol return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) def __contains__(self, other): if len(other) != 1: return False sym, val = tuple(other)[0] return self.symbol == sym and val in self.set class ConditionalDomain(RandomDomain): """ A RandomDomain with an attached condition See Also ======== sympy.stats.crv.ConditionalContinuousDomain sympy.stats.frv.ConditionalFiniteDomain """ def __new__(cls, fulldomain, condition): condition = condition.xreplace(dict((rs, rs.symbol) for rs in random_symbols(condition))) return Basic.__new__(cls, fulldomain, condition) @property def symbols(self): return self.fulldomain.symbols @property def fulldomain(self): return self.args[0] @property def condition(self): return self.args[1] @property def set(self): raise NotImplementedError("Set of Conditional Domain not Implemented") def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) class PSpace(Basic): """ A Probability Space Probability Spaces encode processes that equal different values probabilistically. These underly Random Symbols which occur in SymPy expressions and contain the mechanics to evaluate statistical statements. See Also ======== sympy.stats.crv.ContinuousPSpace sympy.stats.frv.FinitePSpace """ is_Finite = None is_Continuous = None is_Discrete = None is_real = None @property def domain(self): return self.args[0] @property def density(self): return self.args[1] @property def values(self): return frozenset(RandomSymbol(sym, self) for sym in self.symbols) @property def symbols(self): return self.domain.symbols def where(self, condition): raise NotImplementedError() def compute_density(self, expr): raise NotImplementedError() def sample(self): raise NotImplementedError() def probability(self, condition): raise NotImplementedError() def compute_expectation(self, expr): raise NotImplementedError() class SinglePSpace(PSpace): """ Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. """ def __new__(cls, s, distribution): if isinstance(s, string_types): s = Symbol(s) if not isinstance(s, Symbol): raise TypeError("s should have been string or Symbol") return Basic.__new__(cls, s, distribution) @property def value(self): return RandomSymbol(self.symbol, self) @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[1] @property def pdf(self): return self.distribution.pdf(self.symbol) class RandomSymbol(Expr): """ Random Symbols represent ProbabilitySpaces in SymPy Expressions In principle they can take on any value that their symbol can take on within the associated PSpace with probability determined by the PSpace Density. Random Symbols contain pspace and symbol properties. The pspace property points to the represented Probability Space The symbol is a standard SymPy Symbol that is used in that probability space for example in defining a density. You can form normal SymPy expressions using RandomSymbols and operate on those expressions with the Functions E - Expectation of a random expression P - Probability of a condition density - Probability Density of an expression given - A new random expression (with new random symbols) given a condition An object of the RandomSymbol type should almost never be created by the user. They tend to be created instead by the PSpace class's value method. Traditionally a user doesn't even do this but instead calls one of the convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc.... """ def __new__(cls, symbol, pspace=None): from sympy.stats.joint_rv import JointRandomSymbol if pspace is None: # Allow single arg, representing pspace == PSpace() pspace = PSpace() if not isinstance(symbol, Symbol): raise TypeError("symbol should be of type Symbol") if not isinstance(pspace, PSpace): raise TypeError("pspace variable should be of type PSpace") if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace): cls = RandomSymbol return Basic.__new__(cls, symbol, pspace) is_finite = True is_symbol = True is_Atom = True _diff_wrt = True pspace = property(lambda self: self.args[1]) symbol = property(lambda self: self.args[0]) name = property(lambda self: self.symbol.name) def _eval_is_positive(self): return self.symbol.is_positive def _eval_is_integer(self): return self.symbol.is_integer def _eval_is_real(self): return self.symbol.is_real or self.pspace.is_real @property def is_commutative(self): return self.symbol.is_commutative @property def free_symbols(self): return {self} class RandomIndexedSymbol(RandomSymbol): def __new__(cls, idx_obj, pspace=None): if not isinstance(idx_obj, (Indexed, Function)): raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj)) return Basic.__new__(cls, idx_obj, pspace) symbol = property(lambda self: self.args[0]) name = property(lambda self: str(self.args[0])) @property def key(self): if isinstance(self.symbol, Indexed): return self.symbol.args[1] elif isinstance(self.symbol, Function): return self.symbol.args[0] class RandomMatrixSymbol(MatrixSymbol): def __new__(cls, symbol, n, m, pspace=None): n, m = _sympify(n), _sympify(m) symbol = _symbol_converter(symbol) return Basic.__new__(cls, symbol, n, m, pspace) symbol = property(lambda self: self.args[0]) pspace = property(lambda self: self.args[3]) class ProductPSpace(PSpace): """ Abstract class for representing probability spaces with multiple random variables. See Also ======== sympy.stats.rv.IndependentProductPSpace sympy.stats.joint_rv.JointPSpace """ pass class IndependentProductPSpace(ProductPSpace): """ A probability space resulting from the merger of two independent probability spaces. Often created using the function, pspace """ def __new__(cls, *spaces): rs_space_dict = {} for space in spaces: for value in space.values: rs_space_dict[value] = space symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()]) # Overlapping symbols from sympy.stats.joint_rv import MarginalDistribution, CompoundDistribution if len(symbols) < sum(len(space.symbols) for space in spaces if not isinstance(space.distribution, ( CompoundDistribution, MarginalDistribution))): raise ValueError("Overlapping Random Variables") if all(space.is_Finite for space in spaces): from sympy.stats.frv import ProductFinitePSpace cls = ProductFinitePSpace obj = Basic.__new__(cls, *FiniteSet(*spaces)) return obj @property def pdf(self): p = Mul(*[space.pdf for space in self.spaces]) return p.subs(dict((rv, rv.symbol) for rv in self.values)) @property def rs_space_dict(self): d = {} for space in self.spaces: for value in space.values: d[value] = space return d @property def symbols(self): return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()]) @property def spaces(self): return FiniteSet(*self.args) @property def values(self): return sumsets(space.values for space in self.spaces) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or self.values rvs = frozenset(rvs) for space in self.spaces: expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs) if evaluate and hasattr(expr, 'doit'): return expr.doit(**kwargs) return expr @property def domain(self): return ProductDomain(*[space.domain for space in self.spaces]) @property def density(self): raise NotImplementedError("Density not available for ProductSpaces") def sample(self): return {k: v for space in self.spaces for k, v in space.sample().items()} def probability(self, condition, **kwargs): cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True expr = condition.lhs - condition.rhs rvs = random_symbols(expr) dens = self.compute_density(expr) if any([pspace(rv).is_Continuous for rv in rvs]): from sympy.stats.crv import (ContinuousDistributionHandmade, SingleContinuousPSpace) if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.integrate(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) dens = ContinuousDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) else: from sympy.stats.drv import (DiscreteDistributionHandmade, SingleDiscretePSpace) dens = DiscreteDistributionHandmade(dens) z = Dummy('z', integer=True) space = SingleDiscretePSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) return result if not cond_inv else S.One - result def compute_density(self, expr, **kwargs): rvs = random_symbols(expr) if any(pspace(rv).is_Continuous for rv in rvs): z = Dummy('z', real=True) expr = self.compute_expectation(DiracDelta(expr - z), **kwargs) else: z = Dummy('z', integer=True) expr = self.compute_expectation(KroneckerDelta(expr, z), **kwargs) return Lambda(z, expr) def compute_cdf(self, expr, **kwargs): raise ValueError("CDF not well defined on multivariate expressions") def conditional_space(self, condition, normalize=True, **kwargs): rvs = random_symbols(condition) condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values)) if any([pspace(rv).is_Continuous for rv in rvs]): from sympy.stats.crv import (ConditionalContinuousDomain, ContinuousPSpace) space = ContinuousPSpace domain = ConditionalContinuousDomain(self.domain, condition) elif any([pspace(rv).is_Discrete for rv in rvs]): from sympy.stats.drv import (ConditionalDiscreteDomain, DiscretePSpace) space = DiscretePSpace domain = ConditionalDiscreteDomain(self.domain, condition) elif all([pspace(rv).is_Finite for rv in rvs]): from sympy.stats.frv import FinitePSpace return FinitePSpace.conditional_space(self, condition) if normalize: replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting symbols from set to tuple. The order matters to # Lambda though so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return space(domain, density) class ProductDomain(RandomDomain): """ A domain resulting from the merger of two independent domains See Also ======== sympy.stats.crv.ProductContinuousDomain sympy.stats.frv.ProductFiniteDomain """ is_ProductDomain = True def __new__(cls, *domains): # Flatten any product of products domains2 = [] for domain in domains: if not domain.is_ProductDomain: domains2.append(domain) else: domains2.extend(domain.domains) domains2 = FiniteSet(*domains2) if all(domain.is_Finite for domain in domains2): from sympy.stats.frv import ProductFiniteDomain cls = ProductFiniteDomain if all(domain.is_Continuous for domain in domains2): from sympy.stats.crv import ProductContinuousDomain cls = ProductContinuousDomain if all(domain.is_Discrete for domain in domains2): from sympy.stats.drv import ProductDiscreteDomain cls = ProductDiscreteDomain return Basic.__new__(cls, *domains2) @property def sym_domain_dict(self): return dict((symbol, domain) for domain in self.domains for symbol in domain.symbols) @property def symbols(self): return FiniteSet(*[sym for domain in self.domains for sym in domain.symbols]) @property def domains(self): return self.args @property def set(self): return ProductSet(*(domain.set for domain in self.domains)) def __contains__(self, other): # Split event into each subdomain for domain in self.domains: # Collect the parts of this event which associate to this domain elem = frozenset([item for item in other if sympify(domain.symbols.contains(item[0])) is S.true]) # Test this sub-event if elem not in domain: return False # All subevents passed return True def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) def random_symbols(expr): """ Returns all RandomSymbols within a SymPy Expression. """ atoms = getattr(expr, 'atoms', None) if atoms is not None: comp = lambda rv: rv.symbol.name l = list(atoms(RandomSymbol)) return sorted(l, key=comp) else: return [] def pspace(expr): """ Returns the underlying Probability Space of a random expression. For internal use. Examples ======== >>> from sympy.stats import pspace, Normal >>> from sympy.stats.rv import IndependentProductPSpace >>> X = Normal('X', 0, 1) >>> pspace(2*X + 1) == X.pspace True """ expr = sympify(expr) if isinstance(expr, RandomSymbol) and expr.pspace is not None: return expr.pspace if expr.has(RandomMatrixSymbol): rm = list(expr.atoms(RandomMatrixSymbol))[0] return rm.pspace rvs = random_symbols(expr) if not rvs: raise ValueError("Expression containing Random Variable expected, not %s" % (expr)) # If only one space present if all(rv.pspace == rvs[0].pspace for rv in rvs): return rvs[0].pspace # Otherwise make a product space return IndependentProductPSpace(*[rv.pspace for rv in rvs]) def sumsets(sets): """ Union of sets """ return frozenset().union(*sets) def rs_swap(a, b): """ Build a dictionary to swap RandomSymbols based on their underlying symbol. i.e. if ``X = ('x', pspace1)`` and ``Y = ('x', pspace2)`` then ``X`` and ``Y`` match and the key, value pair ``{X:Y}`` will appear in the result Inputs: collections a and b of random variables which share common symbols Output: dict mapping RVs in a to RVs in b """ d = {} for rsa in a: d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0] return d def given(expr, condition=None, **kwargs): r""" Conditional Random Expression From a random expression and a condition on that expression creates a new probability space from the condition and returns the same expression on that conditional probability space. Examples ======== >>> from sympy.stats import given, density, Die >>> X = Die('X', 6) >>> Y = given(X, X > 3) >>> density(Y).dict {4: 1/3, 5: 1/3, 6: 1/3} Following convention, if the condition is a random symbol then that symbol is considered fixed. >>> from sympy.stats import Normal >>> from sympy import pprint >>> from sympy.abc import z >>> X = Normal('X', 0, 1) >>> Y = Normal('Y', 0, 1) >>> pprint(density(X + Y, Y)(z), use_unicode=False) 2 -(-Y + z) ----------- ___ 2 \/ 2 *e ------------------ ____ 2*\/ pi """ if not random_symbols(condition) or pspace_independent(expr, condition): return expr if isinstance(condition, RandomSymbol): condition = Eq(condition, condition.symbol) condsymbols = random_symbols(condition) if (isinstance(condition, Equality) and len(condsymbols) == 1 and not isinstance(pspace(expr).domain, ConditionalDomain)): rv = tuple(condsymbols)[0] results = solveset(condition, rv) if isinstance(results, Intersection) and S.Reals in results.args: results = list(results.args[1]) sums = 0 for res in results: temp = expr.subs(rv, res) if temp == True: return True if temp != False: sums += expr.subs(rv, res) if sums == 0: return False return sums # Get full probability space of both the expression and the condition fullspace = pspace(Tuple(expr, condition)) # Build new space given the condition space = fullspace.conditional_space(condition, **kwargs) # Dictionary to swap out RandomSymbols in expr with new RandomSymbols # That point to the new conditional space swapdict = rs_swap(fullspace.values, space.values) # Swap random variables in the expression expr = expr.xreplace(swapdict) return expr def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs): """ Returns the expected value of a random expression Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the expectation value given : Expr containing RandomSymbols A conditional expression. E(X, X>0) is expectation of X given X > 0 numsamples : int Enables sampling and approximates the expectation with this many samples evalf : Bool (defaults to True) If sampling return a number rather than a complex expression evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import E, Die >>> X = Die('X', 6) >>> E(X) 7/2 >>> E(2*X + 1) 8 >>> E(X, X > 3) # Expectation of X given that it is above 3 5 """ if not random_symbols(expr): # expr isn't random? return expr if numsamples: # Computing by monte carlo sampling? return sampling_E(expr, condition, numsamples=numsamples) if expr.has(RandomIndexedSymbol): return pspace(expr).compute_expectation(expr, condition, evaluate, **kwargs) # Create new expr and recompute E if condition is not None: # If there is a condition return expectation(given(expr, condition), evaluate=evaluate) # A few known statements for efficiency if expr.is_Add: # We know that E is Linear return Add(*[expectation(arg, evaluate=evaluate) for arg in expr.args]) # Otherwise case is simple, pass work off to the ProbabilitySpace result = pspace(expr).compute_expectation(expr, evaluate=evaluate, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit(**kwargs) else: return result def probability(condition, given_condition=None, numsamples=None, evaluate=True, **kwargs): """ Probability that a condition is true, optionally given a second condition Parameters ========== condition : Combination of Relationals containing RandomSymbols The condition of which you want to compute the probability given_condition : Combination of Relationals containing RandomSymbols A conditional expression. P(X > 1, X > 0) is expectation of X > 1 given X > 0 numsamples : int Enables sampling and approximates the probability with this many samples evaluate : Bool (defaults to True) In case of continuous systems return unevaluated integral Examples ======== >>> from sympy.stats import P, Die >>> from sympy import Eq >>> X, Y = Die('X', 6), Die('Y', 6) >>> P(X > 3) 1/2 >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2 1/4 >>> P(X > Y) 5/12 """ condition = sympify(condition) given_condition = sympify(given_condition) if condition.has(RandomIndexedSymbol): return pspace(condition).probability(condition, given_condition, evaluate, **kwargs) if isinstance(given_condition, RandomSymbol): condrv = random_symbols(condition) if len(condrv) == 1 and condrv[0] == given_condition: from sympy.stats.frv_types import BernoulliDistribution return BernoulliDistribution(probability(condition), 0, 1) if any([dependent(rv, given_condition) for rv in condrv]): from sympy.stats.symbolic_probability import Probability return Probability(condition, given_condition) else: return probability(condition) if given_condition is not None and \ not isinstance(given_condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (given_condition)) if given_condition == False: return S.Zero if not isinstance(condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (condition)) if condition is S.true: return S.One if condition is S.false: return S.Zero if numsamples: return sampling_P(condition, given_condition, numsamples=numsamples, **kwargs) if given_condition is not None: # If there is a condition # Recompute on new conditional expr return probability(given(condition, given_condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace result = pspace(condition).probability(condition, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result class Density(Basic): expr = property(lambda self: self.args[0]) @property def condition(self): if len(self.args) > 1: return self.args[1] else: return None def doit(self, evaluate=True, **kwargs): from sympy.stats.joint_rv import JointPSpace from sympy.stats.frv import SingleFiniteDistribution expr, condition = self.expr, self.condition if _sympify(expr).has(RandomMatrixSymbol): return pspace(expr).compute_density(expr) if isinstance(expr, SingleFiniteDistribution): return expr.dict if condition is not None: # Recompute on new conditional expr expr = given(expr, condition, **kwargs) if isinstance(expr, RandomSymbol) and \ isinstance(expr.pspace, JointPSpace): return expr.pspace.distribution if not random_symbols(expr): return Lambda(x, DiracDelta(x - expr)) if (isinstance(expr, RandomSymbol) and hasattr(expr.pspace, 'distribution') and isinstance(pspace(expr), (SinglePSpace))): return expr.pspace.distribution result = pspace(expr).compute_density(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs): """ Probability density of a random expression, optionally given a second condition. This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Parameters ========== expr : Expr containing RandomSymbols The expression of which you want to compute the density value condition : Relational containing RandomSymbols A conditional expression. density(X > 1, X > 0) is density of X > 1 given X > 0 numsamples : int Enables sampling and approximates the density with this many samples Examples ======== >>> from sympy.stats import density, Die, Normal >>> from sympy import Symbol >>> x = Symbol('x') >>> D = Die('D', 6) >>> X = Normal(x, 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> density(2*D).dict {2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6} >>> density(X)(x) sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) """ if numsamples: return sampling_density(expr, condition, numsamples=numsamples, **kwargs) return Density(expr, condition).doit(evaluate=evaluate, **kwargs) def cdf(expr, condition=None, evaluate=True, **kwargs): """ Cumulative Distribution Function of a random expression. optionally given a second condition This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas. Examples ======== >>> from sympy.stats import density, Die, Normal, cdf >>> D = Die('D', 6) >>> X = Normal('X', 0, 1) >>> density(D).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> cdf(D) {1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1} >>> cdf(3*D, D > 2) {9: 1/4, 12: 1/2, 15: 3/4, 18: 1} >>> cdf(X) Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2) """ if condition is not None: # If there is a condition # Recompute on new conditional expr return cdf(given(expr, condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace result = pspace(expr).compute_cdf(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def characteristic_function(expr, condition=None, evaluate=True, **kwargs): """ Characteristic function of a random expression, optionally given a second condition Returns a Lambda Examples ======== >>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function >>> X = Normal('X', 0, 1) >>> characteristic_function(X) Lambda(_t, exp(-_t**2/2)) >>> Y = DiscreteUniform('Y', [1, 2, 7]) >>> characteristic_function(Y) Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3) >>> Z = Poisson('Z', 2) >>> characteristic_function(Z) Lambda(_t, exp(2*exp(_t*I) - 2)) """ if condition is not None: return characteristic_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_characteristic_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def moment_generating_function(expr, condition=None, evaluate=True, **kwargs): if condition is not None: return moment_generating_function(given(expr, condition, **kwargs), **kwargs) result = pspace(expr).compute_moment_generating_function(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def where(condition, given_condition=None, **kwargs): """ Returns the domain where a condition is True. Examples ======== >>> from sympy.stats import where, Die, Normal >>> from sympy import symbols, And >>> D1, D2 = Die('a', 6), Die('b', 6) >>> a, b = D1.symbol, D2.symbol >>> X = Normal('x', 0, 1) >>> where(X**2<1) Domain: (-1 < x) & (x < 1) >>> where(X**2<1).set Interval.open(-1, 1) >>> where(And(D1<=D2 , D2<3)) Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2)) """ if given_condition is not None: # If there is a condition # Recompute on new conditional expr return where(given(condition, given_condition, **kwargs), **kwargs) # Otherwise pass work off to the ProbabilitySpace return pspace(condition).where(condition, **kwargs) def sample(expr, condition=None, **kwargs): """ A realization of the random expression Examples ======== >>> from sympy.stats import Die, sample >>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) >>> die_roll = sample(X + Y + Z) # A random realization of three dice """ return next(sample_iter(expr, condition, numsamples=1)) def sample_iter(expr, condition=None, numsamples=S.Infinity, **kwargs): """ Returns an iterator of realizations from the expression given a condition Parameters ========== expr: Expr Random expression to be realized condition: Expr, optional A conditional expression numsamples: integer, optional Length of the iterator (defaults to infinity) Examples ======== >>> from sympy.stats import Normal, sample_iter >>> X = Normal('X', 0, 1) >>> expr = X*X + 3 >>> iterator = sample_iter(expr, numsamples=3) >>> list(iterator) # doctest: +SKIP [12, 4, 7] See Also ======== sample sampling_P sampling_E sample_iter_lambdify sample_iter_subs """ # lambdify is much faster but not as robust try: return sample_iter_lambdify(expr, condition, numsamples, **kwargs) # use subs when lambdify fails except TypeError: return sample_iter_subs(expr, condition, numsamples, **kwargs) def quantile(expr, evaluate=True, **kwargs): r""" Return the :math:`p^{th}` order quantile of a probability distribution. Quantile is defined as the value at which the probability of the random variable is less than or equal to the given probability. ..math:: Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)} Examples ======== >>> from sympy.stats import quantile, Die, Exponential >>> from sympy import Symbol, pprint >>> p = Symbol("p") >>> l = Symbol("lambda", positive=True) >>> X = Exponential("x", l) >>> quantile(X)(p) -log(1 - p)/lambda >>> D = Die("d", 6) >>> pprint(quantile(D)(p), use_unicode=False) /nan for Or(p > 1, p < 0) | | 1 for p <= 1/6 | | 2 for p <= 1/3 | < 3 for p <= 1/2 | | 4 for p <= 2/3 | | 5 for p <= 5/6 | \ 6 for p <= 1 """ result = pspace(expr).compute_quantile(expr, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def sample_iter_lambdify(expr, condition=None, numsamples=S.Infinity, **kwargs): """ See sample_iter Uses lambdify for computation. This is fast but does not always work. """ if condition: ps = pspace(Tuple(expr, condition)) else: ps = pspace(expr) rvs = list(ps.values) fn = lambdify(rvs, expr, **kwargs) if condition: given_fn = lambdify(rvs, condition, **kwargs) # Check that lambdify can handle the expression # Some operations like Sum can prove difficult try: d = ps.sample() # a dictionary that maps RVs to values args = [d[rv] for rv in rvs] fn(*args) if condition: given_fn(*args) except Exception: raise TypeError("Expr/condition too complex for lambdify") def return_generator(): count = 0 while count < numsamples: d = ps.sample() # a dictionary that maps RVs to values args = [d[rv] for rv in rvs] if condition: # Check that these values satisfy the condition gd = given_fn(*args) if gd != True and gd != False: raise ValueError( "Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again continue yield fn(*args) count += 1 return return_generator() def sample_iter_subs(expr, condition=None, numsamples=S.Infinity, **kwargs): """ See sample_iter Uses subs for computation. This is slow but almost always works. """ if condition is not None: ps = pspace(Tuple(expr, condition)) else: ps = pspace(expr) count = 0 while count < numsamples: d = ps.sample() # a dictionary that maps RVs to values if condition is not None: # Check that these values satisfy the condition gd = condition.xreplace(d) if gd != True and gd != False: raise ValueError("Conditions must not contain free symbols") if not gd: # If the values don't satisfy then try again continue yield expr.xreplace(d) count += 1 def sampling_P(condition, given_condition=None, numsamples=1, evalf=True, **kwargs): """ Sampling version of P See Also ======== P sampling_E sampling_density """ count_true = 0 count_false = 0 samples = sample_iter(condition, given_condition, numsamples=numsamples, **kwargs) for sample in samples: if sample != True and sample != False: raise ValueError("Conditions must not contain free symbols") if sample: count_true += 1 else: count_false += 1 result = S(count_true) / numsamples if evalf: return result.evalf() else: return result def sampling_E(expr, given_condition=None, numsamples=1, evalf=True, **kwargs): """ Sampling version of E See Also ======== P sampling_P sampling_density """ samples = sample_iter(expr, given_condition, numsamples=numsamples, **kwargs) result = Add(*list(samples)) / numsamples if evalf: return result.evalf() else: return result def sampling_density(expr, given_condition=None, numsamples=1, **kwargs): """ Sampling version of density See Also ======== density sampling_P sampling_E """ results = {} for result in sample_iter(expr, given_condition, numsamples=numsamples, **kwargs): results[result] = results.get(result, 0) + 1 return results def dependent(a, b): """ Dependence of two random expressions Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, dependent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> dependent(X, Y) False >>> dependent(2*X + Y, -Y) True >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> dependent(X, Y) True See Also ======== independent """ if pspace_independent(a, b): return False z = Symbol('z', real=True) # Dependent if density is unchanged when one is given information about # the other return (density(a, Eq(b, z)) != density(a) or density(b, Eq(a, z)) != density(b)) def independent(a, b): """ Independence of two random expressions Two expressions are independent if knowledge of one does not change computations on the other. Examples ======== >>> from sympy.stats import Normal, independent, given >>> from sympy import Tuple, Eq >>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) >>> independent(X, Y) True >>> independent(2*X + Y, -Y) False >>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3)) >>> independent(X, Y) False See Also ======== dependent """ return not dependent(a, b) def pspace_independent(a, b): """ Tests for independence between a and b by checking if their PSpaces have overlapping symbols. This is a sufficient but not necessary condition for independence and is intended to be used internally. Notes ===== pspace_independent(a, b) implies independent(a, b) independent(a, b) does not imply pspace_independent(a, b) """ a_symbols = set(pspace(b).symbols) b_symbols = set(pspace(a).symbols) if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0: return False if len(a_symbols.intersection(b_symbols)) == 0: return True return None def rv_subs(expr, symbols=None): """ Given a random expression replace all random variables with their symbols. If symbols keyword is given restrict the swap to only the symbols listed. """ if symbols is None: symbols = random_symbols(expr) if not symbols: return expr swapdict = {rv: rv.symbol for rv in symbols} return expr.subs(swapdict) class NamedArgsMixin(object): _argnames = () def __getattr__(self, attr): try: return self.args[self._argnames.index(attr)] except ValueError: raise AttributeError("'%s' object has no attribute '%s'" % ( type(self).__name__, attr)) def _value_check(condition, message): """ Raise a ValueError with message if condition is False, else return True if all conditions were True, else False. Examples ======== >>> from sympy.stats.rv import _value_check >>> from sympy.abc import a, b, c >>> from sympy import And, Dummy >>> _value_check(2 < 3, '') True Here, the condition is not False, but it doesn't evaluate to True so False is returned (but no error is raised). So checking if the return value is True or False will tell you if all conditions were evaluated. >>> _value_check(a < b, '') False In this case the condition is False so an error is raised: >>> r = Dummy(real=True) >>> _value_check(r < r - 1, 'condition is not true') Traceback (most recent call last): ... ValueError: condition is not true If no condition of many conditions must be False, they can be checked by passing them as an iterable: >>> _value_check((a < 0, b < 0, c < 0), '') False The iterable can be a generator, too: >>> _value_check((i < 0 for i in (a, b, c)), '') False The following are equivalent to the above but do not pass an iterable: >>> all(_value_check(i < 0, '') for i in (a, b, c)) False >>> _value_check(And(a < 0, b < 0, c < 0), '') False """ from sympy.core.compatibility import iterable from sympy.core.logic import fuzzy_and if not iterable(condition): condition = [condition] truth = fuzzy_and(condition) if truth == False: raise ValueError(message) return truth == True def _symbol_converter(sym): """ Casts the parameter to Symbol if it is of string_types otherwise no operation is performed on it. Parameters ========== sym The parameter to be converted. Returns ======= Symbol the parameter converted to Symbol. Raises ====== TypeError If the parameter is not an instance of both string_types and Symbol. Examples ======== >>> from sympy import Symbol >>> from sympy.stats.rv import _symbol_converter >>> s = _symbol_converter('s') >>> isinstance(s, Symbol) True >>> _symbol_converter(1) Traceback (most recent call last): ... TypeError: 1 is neither a Symbol nor a string >>> r = Symbol('r') >>> isinstance(r, Symbol) True """ if isinstance(sym, string_types): sym = Symbol(sym) if not isinstance(sym, Symbol): raise TypeError("%s is neither a Symbol nor a string"%(sym)) return sym
44019f97477b0114a1e527aaf9d25acf29205a72ad97b59ef79f079ada7f9e47
""" Joint Random Variables Module See Also ======== sympy.stats.rv sympy.stats.frv sympy.stats.crv sympy.stats.drv """ from __future__ import print_function, division from sympy import (Basic, Lambda, sympify, Indexed, Symbol, ProductSet, S, Dummy) from sympy.concrete.products import Product from sympy.concrete.summations import Sum, summation from sympy.core.compatibility import string_types, iterable from sympy.core.containers import Tuple from sympy.integrals.integrals import Integral, integrate from sympy.matrices import ImmutableMatrix from sympy.stats.crv import (ContinuousDistribution, SingleContinuousDistribution, SingleContinuousPSpace) from sympy.stats.drv import (DiscreteDistribution, SingleDiscreteDistribution, SingleDiscretePSpace) from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, ProductDomain, RandomSymbol, random_symbols, SingleDomain) from sympy.utilities.misc import filldedent # __all__ = ['marginal_distribution'] class JointPSpace(ProductPSpace): """ Represents a joint probability space. Represented using symbols for each component and a distribution. """ def __new__(cls, sym, dist): if isinstance(dist, SingleContinuousDistribution): return SingleContinuousPSpace(sym, dist) if isinstance(dist, SingleDiscreteDistribution): return SingleDiscretePSpace(sym, dist) if isinstance(sym, string_types): sym = Symbol(sym) if not isinstance(sym, Symbol): raise TypeError("s should have been string or Symbol") return Basic.__new__(cls, sym, dist) @property def set(self): return self.domain.set @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[1] @property def value(self): return JointRandomSymbol(self.symbol, self) @property def component_count(self): _set = self.distribution.set if isinstance(_set, ProductSet): return S(len(_set.args)) elif isinstance(_set, Product): return _set.limits[0][-1] return S(1) @property def pdf(self): sym = [Indexed(self.symbol, i) for i in range(self.component_count)] return self.distribution(*sym) @property def domain(self): rvs = random_symbols(self.distribution) if not rvs: return SingleDomain(self.symbol, self.distribution.set) return ProductDomain(*[rv.pspace.domain for rv in rvs]) def component_domain(self, index): return self.set.args[index] def marginal_distribution(self, *indices): count = self.component_count if count.atoms(Symbol): raise ValueError("Marginal distributions cannot be computed " "for symbolic dimensions. It is a work under progress.") orig = [Indexed(self.symbol, i) for i in range(count)] all_syms = [Symbol(str(i)) for i in orig] replace_dict = dict(zip(all_syms, orig)) sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices) limits = list([i,] for i in all_syms if i not in sym) index = 0 for i in range(count): if i not in indices: limits[index].append(self.distribution.set.args[i]) limits[index] = tuple(limits[index]) index += 1 if self.distribution.is_Continuous: f = Lambda(sym, integrate(self.distribution(*all_syms), *limits)) elif self.distribution.is_Discrete: f = Lambda(sym, summation(self.distribution(*all_syms), *limits)) return f.xreplace(replace_dict) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): syms = tuple(self.value[i] for i in range(self.component_count)) rvs = rvs or syms if not any([i in rvs for i in syms]): return expr expr = expr*self.pdf for rv in rvs: if isinstance(rv, Indexed): expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])}) elif isinstance(rv, RandomSymbol): expr = expr.xreplace({rv: rv.symbol}) if self.value in random_symbols(expr): raise NotImplementedError(filldedent(''' Expectations of expression with unindexed joint random symbols cannot be calculated yet.''')) limits = tuple((Indexed(str(rv.base),rv.args[1]), self.distribution.set.args[rv.args[1]]) for rv in syms) return Integral(expr, *limits) def where(self, condition): raise NotImplementedError() def compute_density(self, expr): raise NotImplementedError() def sample(self): raise NotImplementedError() def probability(self, condition): raise NotImplementedError() class JointDistribution(Basic, NamedArgsMixin): """ Represented by the random variables part of the joint distribution. Contains methods for PDF, CDF, sampling, marginal densities, etc. """ _argnames = ('pdf', ) def __new__(cls, *args): args = list(map(sympify, args)) for i in range(len(args)): if isinstance(args[i], list): args[i] = ImmutableMatrix(args[i]) return Basic.__new__(cls, *args) @property def domain(self): return ProductDomain(self.symbols) @property def pdf(self, *args): return self.density.args[1] def cdf(self, other): if not isinstance(other, dict): raise ValueError("%s should be of type dict, got %s"%(other, type(other))) rvs = other.keys() _set = self.domain.set.sets expr = self.pdf(tuple(i.args[0] for i in self.symbols)) for i in range(len(other)): if rvs[i].is_Continuous: density = Integral(expr, (rvs[i], _set[i].inf, other[rvs[i]])) elif rvs[i].is_Discrete: density = Sum(expr, (rvs[i], _set[i].inf, other[rvs[i]])) return density def __call__(self, *args): return self.pdf(*args) class JointRandomSymbol(RandomSymbol): """ Representation of random symbols with joint probability distributions to allow indexing." """ def __getitem__(self, key): if isinstance(self.pspace, JointPSpace): if (self.pspace.component_count <= key) == True: raise ValueError("Index keys for %s can only up to %s." % (self.name, self.pspace.component_count - 1)) return Indexed(self, key) class JointDistributionHandmade(JointDistribution, NamedArgsMixin): _argnames = ('pdf',) is_Continuous = True @property def set(self): return self.args[1] def marginal_distribution(rv, *indices): """ Marginal distribution function of a joint random variable. Parameters ========== rv: A random variable with a joint probability distribution. indices: component indices or the indexed random symbol for whom the joint distribution is to be calculated Returns ======= A Lambda expression n `sym`. Examples ======== >>> from sympy.stats.crv_types import Normal >>> from sympy.stats.joint_rv import marginal_distribution >>> m = Normal('X', [1, 2], [[2, 1], [1, 2]]) >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) """ indices = list(indices) for i in range(len(indices)): if isinstance(indices[i], Indexed): indices[i] = indices[i].args[1] prob_space = rv.pspace if not indices: raise ValueError( "At least one component for marginal density is needed.") if hasattr(prob_space.distribution, 'marginal_distribution'): return prob_space.distribution.marginal_distribution(indices, rv.symbol) return prob_space.marginal_distribution(*indices) class CompoundDistribution(Basic, NamedArgsMixin): """ Represents a compound probability distribution. Constructed using a single probability distribution with a parameter distributed according to some given distribution. """ def __new__(cls, dist): if not isinstance(dist, (ContinuousDistribution, DiscreteDistribution)): raise ValueError(filldedent('''CompoundDistribution can only be initialized from ContinuousDistribution or DiscreteDistribution ''')) _args = dist.args if not any([isinstance(i, RandomSymbol) for i in _args]): return dist return Basic.__new__(cls, dist) @property def latent_distributions(self): return random_symbols(self.args[0]) def pdf(self, *x): dist = self.args[0] z = Dummy('z') if isinstance(dist, ContinuousDistribution): rv = SingleContinuousPSpace(z, dist).value elif isinstance(dist, DiscreteDistribution): rv = SingleDiscretePSpace(z, dist).value return MarginalDistribution(self, (rv,)).pdf(*x) def set(self): return self.args[0].set def __call__(self, *args): return self.pdf(*args) class MarginalDistribution(Basic): """ Represents the marginal distribution of a joint probability space. Initialised using a probability distribution and random variables(or their indexed components) which should be a part of the resultant distribution. """ def __new__(cls, dist, *rvs): if len(rvs) == 1 and iterable(rvs[0]): rvs = tuple(rvs[0]) if not all([isinstance(rv, (Indexed, RandomSymbol))] for rv in rvs): raise ValueError(filldedent('''Marginal distribution can be intitialised only in terms of random variables or indexed random variables''')) rvs = Tuple.fromiter(rv for rv in rvs) if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0: return dist return Basic.__new__(cls, dist, rvs) def check(self): pass @property def set(self): rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)] return ProductSet(*[rv.pspace.set for rv in rvs]) @property def symbols(self): rvs = self.args[1] return set([rv.pspace.symbol for rv in rvs]) def pdf(self, *x): expr, rvs = self.args[0], self.args[1] marginalise_out = [i for i in random_symbols(expr) if i not in rvs] if isinstance(expr, CompoundDistribution): syms = Dummy('x', real=True) expr = expr.args[0].pdf(syms) elif isinstance(expr, JointDistribution): count = len(expr.domain.args) x = Dummy('x', real=True, finite=True) syms = tuple(Indexed(x, i) for i in count) expr = expr.pdf(syms) else: syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs) return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x) def compute_pdf(self, expr, rvs): for rv in rvs: lpdf = 1 if isinstance(rv, RandomSymbol): lpdf = rv.pspace.pdf expr = self.marginalise_out(expr*lpdf, rv) return expr def marginalise_out(self, expr, rv): from sympy.concrete.summations import Sum if isinstance(rv, RandomSymbol): dom = rv.pspace.set elif isinstance(rv, Indexed): dom = rv.base.component_domain( rv.pspace.component_domain(rv.args[1])) expr = expr.xreplace({rv: rv.pspace.symbol}) if rv.pspace.is_Continuous: #TODO: Modify to support integration #for all kinds of sets. expr = Integral(expr, (rv.pspace.symbol, dom)) elif rv.pspace.is_Discrete: #incorporate this into `Sum`/`summation` if dom in (S.Integers, S.Naturals, S.Naturals0): dom = (dom.inf, dom.sup) expr = Sum(expr, (rv.pspace.symbol, dom)) return expr def __call__(self, *args): return self.pdf(*args)
98c372bcd13fa37502756c292e074fd38b7a3ee16ddef12281263264c1b7d3c2
from __future__ import print_function, division from sympy import (Basic, sympify, symbols, Dummy, Lambda, summation, Piecewise, S, cacheit, Sum, exp, I, Ne, Eq, poly, series, factorial, And) from sympy.polys.polyerrors import PolynomialError from sympy.solvers.solveset import solveset from sympy.stats.crv import reduce_rational_inequalities_wrap from sympy.stats.rv import (NamedArgsMixin, SinglePSpace, SingleDomain, random_symbols, PSpace, ConditionalDomain, RandomDomain, ProductDomain) from sympy.stats.symbolic_probability import Probability from sympy.functions.elementary.integers import floor from sympy.sets.fancysets import Range, FiniteSet from sympy.sets.sets import Union from sympy.sets.contains import Contains from sympy.utilities import filldedent import random class DiscreteDistribution(Basic): def __call__(self, *args): return self.pdf(*args) class SingleDiscreteDistribution(DiscreteDistribution, NamedArgsMixin): """ Discrete distribution of a single variable Serves as superclass for PoissonDistribution etc.... Provides methods for pdf, cdf, and sampling See Also: sympy.stats.crv_types.* """ set = S.Integers def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass def sample(self): """ A random realization from the distribution """ icdf = self._inverse_cdf_expression() while True: sample_ = floor(list(icdf(random.uniform(0, 1)))[0]) if sample_ >= self.set.inf: return sample_ @cacheit def _inverse_cdf_expression(self): """ Inverse of the CDF Used by sample """ x = Dummy('x', positive=True, integer=True) z = Dummy('z', positive=True) cdf_temp = self.cdf(x) # Invert CDF try: inverse_cdf = solveset(cdf_temp - z, x, domain=S.Reals) except NotImplementedError: inverse_cdf = None if not inverse_cdf or len(inverse_cdf.free_symbols) != 1: raise NotImplementedError("Could not invert CDF") return Lambda(z, inverse_cdf) @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF Returns a Lambda """ x, z = symbols('x, z', integer=True, cls=Dummy) left_bound = self.set.inf # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if not kwargs: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = summation(exp(I*t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if not kwargs: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): t = Dummy('t', real=True) x = Dummy('x', integer=True) pdf = self.pdf(x) mgf = summation(exp(t*x)*pdf, (x, self.set.inf, self.set.sup)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): if not kwargs: mgf = self._moment_generating_function(t) if mgf is not None: return mgf return self.compute_moment_generating_function(**kwargs)(t) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF Returns a Lambda """ x = Dummy('x', integer=True) p = Dummy('p', real=True) left_bound = self.set.inf pdf = self.pdf(x) cdf = summation(pdf, (x, left_bound, x), **kwargs) set = ((x, p <= cdf), ) return Lambda(p, Piecewise(*set)) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if not kwargs: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ # TODO: support discrete sets with non integer stepsizes if evaluate: try: p = poly(expr, var) t = Dummy('t', real=True) mgf = self.moment_generating_function(t) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return summation(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) else: return Sum(expr * self.pdf(var), (var, self.set.inf, self.set.sup), **kwargs) def __call__(self, *args): return self.pdf(*args) class DiscreteDistributionHandmade(SingleDiscreteDistribution): _argnames = ('pdf',) @property def set(self): return self.args[1] def __new__(cls, pdf, set=S.Integers): return Basic.__new__(cls, pdf, set) class DiscreteDomain(RandomDomain): """ A domain with discrete support with step size one. Represented using symbols and Range. """ is_Discrete = True class SingleDiscreteDomain(DiscreteDomain, SingleDomain): def as_boolean(self): return Contains(self.symbol, self.set) class ConditionalDiscreteDomain(DiscreteDomain, ConditionalDomain): """ Domain with discrete support of step size one, that is restricted by some condition. """ @property def set(self): rv = self.symbols if len(self.symbols) > 1: raise NotImplementedError(filldedent(''' Multivariate conditional domains are not yet implemented.''')) rv = list(rv)[0] return reduce_rational_inequalities_wrap(self.condition, rv).intersect(self.fulldomain.set) class DiscretePSpace(PSpace): is_real = True is_Discrete = True @property def pdf(self): return self.density(*self.symbols) def where(self, condition): rvs = random_symbols(condition) assert all(r.symbol in self.symbols for r in rvs) if len(rvs) > 1: raise NotImplementedError(filldedent('''Multivariate discrete random variables are not yet supported.''')) conditional_domain = reduce_rational_inequalities_wrap(condition, rvs[0]) conditional_domain = conditional_domain.intersect(self.domain.set) return SingleDiscreteDomain(rvs[0].symbol, conditional_domain) def probability(self, condition): complement = isinstance(condition, Ne) if complement: condition = Eq(condition.args[0], condition.args[1]) try: _domain = self.where(condition).set if condition == False or _domain is S.EmptySet: return S.Zero if condition == True or _domain == self.domain.set: return S.One prob = self.eval_prob(_domain) except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs dens = density(expr) if not isinstance(dens, DiscreteDistribution): dens = DiscreteDistributionHandmade(dens) z = Dummy('z', real=True) space = SingleDiscretePSpace(z, dens) prob = space.probability(condition.__class__(space.value, 0)) if prob is None: prob = Probability(condition) return prob if not complement else S.One - prob def eval_prob(self, _domain): sym = list(self.symbols)[0] if isinstance(_domain, Range): n = symbols('n', integer=True) inf, sup, step = (r for r in _domain.args) summand = ((self.pdf).replace( sym, n*step)) rv = summation(summand, (n, inf/step, (sup)/step - 1)).doit() return rv elif isinstance(_domain, FiniteSet): pdf = Lambda(sym, self.pdf) rv = sum(pdf(x) for x in _domain) return rv elif isinstance(_domain, Union): rv = sum(self.eval_prob(x) for x in _domain.args) return rv def conditional_space(self, condition): # XXX: Converting from set to tuple. The order matters to Lambda # though so we should be starting with a set... density = Lambda(tuple(self.symbols), self.pdf/self.probability(condition)) condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values)) domain = ConditionalDiscreteDomain(self.domain, condition) return DiscretePSpace(domain, density) class ProductDiscreteDomain(ProductDomain, DiscreteDomain): def as_boolean(self): return And(*[domain.as_boolean for domain in self.domains]) class SingleDiscretePSpace(DiscretePSpace, SinglePSpace): """ Discrete probability space over a single univariate variable """ is_real = True @property def set(self): return self.distribution.set @property def domain(self): return SingleDiscreteDomain(self.symbol, self.set) def sample(self): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample()} def compute_expectation(self, expr, rvs=None, evaluate=True, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs)) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except NotImplementedError: return Sum(expr * self.pdf, (x, self.set.inf, self.set.sup), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: x = Dummy("x", real=True) return Lambda(x, self.distribution.cdf(x, **kwargs)) else: raise NotImplementedError() def compute_density(self, expr, **kwargs): if expr == self.value: return self.distribution raise NotImplementedError() def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: raise NotImplementedError() def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: raise NotImplementedError() def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: raise NotImplementedError()
209cb649165315b4cd90086a616dbca36775771655e1bd5d7c11a053a03f434a
""" Continuous Random Variables Module See Also ======== sympy.stats.crv_types sympy.stats.rv sympy.stats.frv """ from __future__ import print_function, division from sympy import (Interval, Intersection, symbols, sympify, Dummy, nan, Integral, And, Or, Piecewise, cacheit, integrate, oo, Lambda, Basic, S, exp, I, FiniteSet, Ne, Eq, Union, poly, series, factorial) from sympy.functions.special.delta_functions import DiracDelta from sympy.polys.polyerrors import PolynomialError from sympy.solvers.solveset import solveset from sympy.solvers.inequalities import reduce_rational_inequalities from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain, ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin) import random class ContinuousDomain(RandomDomain): """ A domain with continuous support Represented using symbols and Intervals. """ is_Continuous = True def as_boolean(self): raise NotImplementedError("Not Implemented for generic Domains") class SingleContinuousDomain(ContinuousDomain, SingleDomain): """ A univariate domain with continuous support Represented using a single symbol and interval. """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr if frozenset(variables) != frozenset(self.symbols): raise ValueError("Values should be equal") # assumes only intervals return Integral(expr, (self.symbol, self.set), **kwargs) def as_boolean(self): return self.set.as_relational(self.symbol) class ProductContinuousDomain(ProductDomain, ContinuousDomain): """ A collection of independent domains with continuous support """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols for domain in self.domains: domain_vars = frozenset(variables) & frozenset(domain.symbols) if domain_vars: expr = domain.compute_expectation(expr, domain_vars, **kwargs) return expr def as_boolean(self): return And(*[domain.as_boolean() for domain in self.domains]) class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain): """ A domain with continuous support that has been further restricted by a condition such as x > 3 """ def compute_expectation(self, expr, variables=None, **kwargs): if variables is None: variables = self.symbols if not variables: return expr # Extract the full integral fullintgrl = self.fulldomain.compute_expectation(expr, variables) # separate into integrand and limits integrand, limits = fullintgrl.function, list(fullintgrl.limits) conditions = [self.condition] while conditions: cond = conditions.pop() if cond.is_Boolean: if isinstance(cond, And): conditions.extend(cond.args) elif isinstance(cond, Or): raise NotImplementedError("Or not implemented here") elif cond.is_Relational: if cond.is_Equality: # Add the appropriate Delta to the integrand integrand *= DiracDelta(cond.lhs - cond.rhs) else: symbols = cond.free_symbols & set(self.symbols) if len(symbols) != 1: # Can't handle x > y raise NotImplementedError( "Multivariate Inequalities not yet implemented") # Can handle x > 0 symbol = symbols.pop() # Find the limit with x, such as (x, -oo, oo) for i, limit in enumerate(limits): if limit[0] == symbol: # Make condition into an Interval like [0, oo] cintvl = reduce_rational_inequalities_wrap( cond, symbol) # Make limit into an Interval like [-oo, oo] lintvl = Interval(limit[1], limit[2]) # Intersect them to get [0, oo] intvl = cintvl.intersect(lintvl) # Put back into limits list limits[i] = (symbol, intvl.left, intvl.right) else: raise TypeError( "Condition %s is not a relational or Boolean" % cond) return Integral(integrand, *limits, **kwargs) def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition) @property def set(self): if len(self.symbols) == 1: return (self.fulldomain.set & reduce_rational_inequalities_wrap( self.condition, tuple(self.symbols)[0])) else: raise NotImplementedError( "Set of Conditional Domain not Implemented") class ContinuousDistribution(Basic): def __call__(self, *args): return self.pdf(*args) class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin): """ Continuous distribution of a single variable Serves as superclass for Normal/Exponential/UniformDistribution etc.... Represented by parameters for each of the specific classes. E.g NormalDistribution is represented by a mean and standard deviation. Provides methods for pdf, cdf, and sampling See Also ======== sympy.stats.crv_types.* """ set = Interval(-oo, oo) def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass def sample(self): """ A random realization from the distribution """ icdf = self._inverse_cdf_expression() return icdf(random.uniform(0, 1)) @cacheit def _inverse_cdf_expression(self): """ Inverse of the CDF Used by sample """ x, z = symbols('x, z', positive=True, cls=Dummy) # Invert CDF try: inverse_cdf = solveset(self.cdf(x) - z, x, S.Reals) if isinstance(inverse_cdf, Intersection) and S.Reals in inverse_cdf.args: inverse_cdf = list(inverse_cdf.args[1]) except NotImplementedError: inverse_cdf = None if not inverse_cdf or len(inverse_cdf) != 1: raise NotImplementedError("Could not invert CDF") (icdf,) = inverse_cdf return Lambda(z, icdf) @cacheit def compute_cdf(self, **kwargs): """ Compute the CDF from the PDF Returns a Lambda """ x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.set.start # CDF is integral of PDF from left bound to z pdf = self.pdf(x) cdf = integrate(pdf, (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) def _cdf(self, x): return None def cdf(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: cdf = self._cdf(x) if cdf is not None: return cdf return self.compute_cdf(**kwargs)(x) @cacheit def compute_characteristic_function(self, **kwargs): """ Compute the characteristic function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) cf = integrate(exp(I*t*x)*pdf, (x, -oo, oo)) return Lambda(t, cf) def _characteristic_function(self, t): return None def characteristic_function(self, t, **kwargs): """ Characteristic function """ if len(kwargs) == 0: cf = self._characteristic_function(t) if cf is not None: return cf return self.compute_characteristic_function(**kwargs)(t) @cacheit def compute_moment_generating_function(self, **kwargs): """ Compute the moment generating function from the PDF Returns a Lambda """ x, t = symbols('x, t', real=True, cls=Dummy) pdf = self.pdf(x) mgf = integrate(exp(t * x) * pdf, (x, -oo, oo)) return Lambda(t, mgf) def _moment_generating_function(self, t): return None def moment_generating_function(self, t, **kwargs): """ Moment generating function """ if len(kwargs) == 0: try: mgf = self._moment_generating_function(t) if mgf is not None: return mgf except NotImplementedError: return None return self.compute_moment_generating_function(**kwargs)(t) def expectation(self, expr, var, evaluate=True, **kwargs): """ Expectation of expression over distribution """ if evaluate: try: p = poly(expr, var) t = Dummy('t', real=True) mgf = self._moment_generating_function(t) if mgf is None: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) deg = p.degree() taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) result = 0 for k in range(deg+1): result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) return result except PolynomialError: return integrate(expr * self.pdf(var), (var, self.set), **kwargs) else: return Integral(expr * self.pdf(var), (var, self.set), **kwargs) @cacheit def compute_quantile(self, **kwargs): """ Compute the Quantile from the PDF Returns a Lambda """ x, p = symbols('x, p', real=True, cls=Dummy) left_bound = self.set.start pdf = self.pdf(x) cdf = integrate(pdf, (x, left_bound, x), **kwargs) quantile = solveset(cdf - p, x, S.Reals) return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True))) def _quantile(self, x): return None def quantile(self, x, **kwargs): """ Cumulative density function """ if len(kwargs) == 0: quantile = self._quantile(x) if quantile is not None: return quantile return self.compute_quantile(**kwargs)(x) class ContinuousDistributionHandmade(SingleContinuousDistribution): _argnames = ('pdf',) @property def set(self): return self.args[1] def __new__(cls, pdf, set=Interval(-oo, oo)): return Basic.__new__(cls, pdf, set) class ContinuousPSpace(PSpace): """ Continuous Probability Space Represents the likelihood of an event space defined over a continuum. Represented with a ContinuousDomain and a PDF (Lambda-Like) """ is_Continuous = True is_real = True @property def pdf(self): return self.density(*self.domain.symbols) def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): if rvs is None: rvs = self.values else: rvs = frozenset(rvs) expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs)) domain_symbols = frozenset(rv.symbol for rv in rvs) return self.domain.compute_expectation(self.pdf * expr, domain_symbols, **kwargs) def compute_density(self, expr, **kwargs): # Common case Density(X) where X in self.values if expr in self.values: # Marginalize all other random symbols out of the density randomsymbols = tuple(set(self.values) - frozenset([expr])) symbols = tuple(rs.symbol for rs in randomsymbols) pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs) return Lambda(expr.symbol, pdf) z = Dummy('z', real=True) return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs)) @cacheit def compute_cdf(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "CDF not well defined on multivariate expressions") d = self.compute_density(expr, **kwargs) x, z = symbols('x, z', real=True, cls=Dummy) left_bound = self.domain.set.start # CDF is integral of PDF from left bound to z cdf = integrate(d(x), (x, left_bound, z), **kwargs) # CDF Ensure that CDF left of left_bound is zero cdf = Piecewise((cdf, z >= left_bound), (0, True)) return Lambda(z, cdf) @cacheit def compute_characteristic_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Characteristic function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs) return Lambda(t, cf) @cacheit def compute_moment_generating_function(self, expr, **kwargs): if not self.domain.set.is_Interval: raise NotImplementedError("Moment generating function of multivariate expressions not implemented") d = self.compute_density(expr, **kwargs) x, t = symbols('x, t', real=True, cls=Dummy) mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs) return Lambda(t, mgf) @cacheit def compute_quantile(self, expr, **kwargs): if not self.domain.set.is_Interval: raise ValueError( "Quantile not well defined on multivariate expressions") d = self.compute_cdf(expr, **kwargs) x = Dummy('x', real=True) p = Dummy('p', positive=True) quantile = solveset(d(x) - p, x, self.set) return Lambda(p, quantile) def probability(self, condition, **kwargs): z = Dummy('z', real=True) cond_inv = False if isinstance(condition, Ne): condition = Eq(condition.args[0], condition.args[1]) cond_inv = True # Univariate case can be handled by where try: domain = self.where(condition) rv = [rv for rv in self.values if rv.symbol == domain.symbol][0] # Integrate out all other random variables pdf = self.compute_density(rv, **kwargs) # return S.Zero if `domain` is empty set if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet): return S.Zero if not cond_inv else S.One if isinstance(domain.set, Union): return sum( Integral(pdf(z), (z, subset), **kwargs) for subset in domain.set.args if isinstance(subset, Interval)) # Integrate out the last variable over the special domain return Integral(pdf(z), (z, domain.set), **kwargs) # Other cases can be turned into univariate case # by computing a density handled by density computation except NotImplementedError: from sympy.stats.rv import density expr = condition.lhs - condition.rhs dens = density(expr, **kwargs) if not isinstance(dens, ContinuousDistribution): dens = ContinuousDistributionHandmade(dens) # Turn problem into univariate case space = SingleContinuousPSpace(z, dens) result = space.probability(condition.__class__(space.value, 0)) return result if not cond_inv else S.One - result def where(self, condition): rvs = frozenset(random_symbols(condition)) if not (len(rvs) == 1 and rvs.issubset(self.values)): raise NotImplementedError( "Multiple continuous random variables not supported") rv = tuple(rvs)[0] interval = reduce_rational_inequalities_wrap(condition, rv) interval = interval.intersect(self.domain.set) return SingleContinuousDomain(rv.symbol, interval) def conditional_space(self, condition, normalize=True, **kwargs): condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values)) domain = ConditionalContinuousDomain(self.domain, condition) if normalize: # create a clone of the variable to # make sure that variables in nested integrals are different # from the variables outside the integral # this makes sure that they are evaluated separately # and in the correct order replacement = {rv: Dummy(str(rv)) for rv in self.symbols} norm = domain.compute_expectation(self.pdf, **kwargs) pdf = self.pdf / norm.xreplace(replacement) # XXX: Converting set to tuple. The order matters to Lambda though # so we shouldn't be starting with a set here... density = Lambda(tuple(domain.symbols), pdf) return ContinuousPSpace(domain, density) class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace): """ A continuous probability space over a single univariate variable These consist of a Symbol and a SingleContinuousDistribution This class is normally accessed through the various random variable functions, Normal, Exponential, Uniform, etc.... """ @property def set(self): return self.distribution.set @property def domain(self): return SingleContinuousDomain(sympify(self.symbol), self.set) def sample(self): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ return {self.value: self.distribution.sample()} def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): rvs = rvs or (self.value,) if self.value not in rvs: return expr expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs)) x = self.value.symbol try: return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) except Exception: return Integral(expr * self.pdf, (x, self.set), **kwargs) def compute_cdf(self, expr, **kwargs): if expr == self.value: z = Dummy("z", real=True) return Lambda(z, self.distribution.cdf(z, **kwargs)) else: return ContinuousPSpace.compute_cdf(self, expr, **kwargs) def compute_characteristic_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) else: return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs) def compute_moment_generating_function(self, expr, **kwargs): if expr == self.value: t = Dummy("t", real=True) return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) else: return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs) def compute_density(self, expr, **kwargs): # https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables if expr == self.value: return self.density y = Dummy('y', real=True) gs = solveset(expr - y, self.value, S.Reals) if isinstance(gs, Intersection) and S.Reals in gs.args: gs = list(gs.args[1]) if not gs: raise ValueError("Can not solve %s for %s"%(expr, self.value)) fx = self.compute_density(self.value) fy = sum(fx(g) * abs(g.diff(y)) for g in gs) return Lambda(y, fy) def compute_quantile(self, expr, **kwargs): if expr == self.value: p = Dummy("p", real=True) return Lambda(p, self.distribution.quantile(p, **kwargs)) else: return ContinuousPSpace.compute_quantile(self, expr, **kwargs) def _reduce_inequalities(conditions, var, **kwargs): try: return reduce_rational_inequalities(conditions, var, **kwargs) except PolynomialError: raise ValueError("Reduction of condition failed %s\n" % conditions[0]) def reduce_rational_inequalities_wrap(condition, var): if condition.is_Relational: return _reduce_inequalities([[condition]], var, relational=False) if isinstance(condition, Or): return Union(*[_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args]) if isinstance(condition, And): intervals = [_reduce_inequalities([[arg]], var, relational=False) for arg in condition.args] I = intervals[0] for i in intervals: I = I.intersect(i) return I
d214b73153f4de46083dbfa32fcc7143fe4a3eeda6a4d9d72390fa5e78091f48
from __future__ import print_function, division from sympy import (Basic, exp, pi, Lambda, Trace, S, MatrixSymbol, Integral, gamma, Product, Dummy, Sum, Abs, IndexedBase, I) from sympy.core.sympify import _sympify from sympy.stats.rv import (_symbol_converter, Density, RandomMatrixSymbol, RandomSymbol) from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.tensor.array import ArrayComprehension __all__ = [ 'CircularEnsemble', 'CircularUnitaryEnsemble', 'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble', 'GaussianEnsemble', 'GaussianUnitaryEnsemble', 'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble', 'joint_eigen_distribution', 'JointEigenDistribution', 'level_spacing_distribution' ] class RandomMatrixEnsemble(Basic): """ Base class for random matrix ensembles. It acts as an umbrella and contains the methods common to all the ensembles defined in sympy.stats.random_matrix_models. """ def __new__(cls, sym, dim=None): sym, dim = _symbol_converter(sym), _sympify(dim) if dim.is_integer == False: raise ValueError("Dimension of the random matrices must be " "integers, received %s instead."%(dim)) self = Basic.__new__(cls, sym, dim) rmp = RandomMatrixPSpace(sym, model=self) return RandomMatrixSymbol(sym, dim, dim, pspace=rmp) symbol = property(lambda self: self.args[0]) dimension = property(lambda self: self.args[1]) def density(self, expr): return Density(expr) class GaussianEnsemble(RandomMatrixEnsemble): """ Abstract class for Gaussian ensembles. Contains the properties common to all the gaussian ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Random_matrix#Gaussian_ensembles .. [2] https://arxiv.org/pdf/1712.07903.pdf """ def _compute_normalization_constant(self, beta, n): """ Helper function for computing normalization constant for joint probability density of eigen values of Gaussian ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Selberg_integral#Mehta's_integral """ n = S(n) prod_term = lambda j: gamma(1 + beta*S(j)/2)/gamma(S(1) + beta/S(2)) j = Dummy('j', integer=True, positive=True) term1 = Product(prod_term(j), (j, 1, n)).doit() term2 = (2/(beta*n))**(beta*n*(n - 1)/4 + n/2) term3 = (2*pi)**(n/2) return term1 * term2 * term3 def _compute_joint_eigen_distribution(self, beta): """ Helper function for computing the joint probability distribution of eigen values of the random matrix. """ n = self.dimension Zbn = self._compute_normalization_constant(beta, n) l = IndexedBase('l') i = Dummy('i', integer=True, positive=True) j = Dummy('j', integer=True, positive=True) k = Dummy('k', integer=True, positive=True) term1 = exp((-S(n)/2) * Sum(l[k]**2, (k, 1, n)).doit()) sub_term = Lambda(i, Product(Abs(l[j] - l[i])**beta, (j, i + 1, n))) term2 = Product(sub_term(i).doit(), (i, 1, n - 1)).doit() syms = ArrayComprehension(l[k], (k, 1, n)).doit() return Lambda(tuple(syms), (term1 * term2)/Zbn) class GaussianUnitaryEnsemble(GaussianEnsemble): """ Represents Gaussian Unitary Ensembles. Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE, density >>> G = GUE('U', 2) >>> density(G) Lambda(H, exp(-Trace(H**2))/(2*pi**2)) """ @property def normalization_constant(self): n = self.dimension return 2**(S(n)/2) * pi**(S(n**2)/2) def density(self, expr): n, ZGUE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n)/2 * Trace(H**2))/ZGUE) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(2)) def level_spacing_distribution(self): s = Dummy('s') f = (32/pi**2)*(s**2)*exp((-4/pi)*s**2) return Lambda(s, f) class GaussianOrthogonalEnsemble(GaussianEnsemble): """ Represents Gaussian Orthogonal Ensembles. Examples ======== >>> from sympy.stats import GaussianOrthogonalEnsemble as GOE, density >>> G = GOE('U', 2) >>> density(G) Lambda(H, exp(-Trace(H**2)/2)/Integral(exp(-Trace(_H**2)/2), _H)) """ @property def normalization_constant(self): n = self.dimension _H = MatrixSymbol('_H', n, n) return Integral(exp(-S(n)/4 * Trace(_H**2))) def density(self, expr): n, ZGOE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n)/4 * Trace(H**2))/ZGOE) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(1)) def level_spacing_distribution(self): s = Dummy('s') f = (pi/2)*s*exp((-pi/4)*s**2) return Lambda(s, f) class GaussianSymplecticEnsemble(GaussianEnsemble): """ Represents Gaussian Symplectic Ensembles. Examples ======== >>> from sympy.stats import GaussianSymplecticEnsemble as GSE, density >>> G = GSE('U', 2) >>> density(G) Lambda(H, exp(-2*Trace(H**2))/Integral(exp(-2*Trace(_H**2)), _H)) """ @property def normalization_constant(self): n = self.dimension _H = MatrixSymbol('_H', n, n) return Integral(exp(-S(n) * Trace(_H**2))) def density(self, expr): n, ZGSE = self.dimension, self.normalization_constant h_pspace = RandomMatrixPSpace('P', model=self) H = RandomMatrixSymbol('H', n, n, pspace=h_pspace) return Lambda(H, exp(-S(n) * Trace(H**2))/ZGSE) def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(4)) def level_spacing_distribution(self): s = Dummy('s') f = ((S(2)**18)/((S(3)**6)*(pi**3)))*(s**4)*exp((-64/(9*pi))*s**2) return Lambda(s, f) class CircularEnsemble(RandomMatrixEnsemble): """ Abstract class for Circular ensembles. Contains the properties and methods common to all the circular ensembles. References ========== .. [1] https://en.wikipedia.org/wiki/Circular_ensemble """ def density(self, expr): # TODO : Add support for Lie groups(as extensions of sympy.diffgeom) # and define measures on them raise NotImplementedError("Support for Haar measure hasn't been " "implemented yet, therefore the density of " "%s cannot be computed."%(self)) def _compute_joint_eigen_distribution(self, beta): """ Helper function to compute the joint distribution of phases of the complex eigen values of matrices belonging to any circular ensembles. """ n = self.dimension Zbn = ((2*pi)**n)*(gamma(beta*n/2 + 1)/S((gamma(beta/2 + 1)))**n) t = IndexedBase('t') i, j, k = (Dummy('i', integer=True), Dummy('j', integer=True), Dummy('k', integer=True)) syms = ArrayComprehension(t[i], (i, 1, n)).doit() f = Product(Product(Abs(exp(I*t[k]) - exp(I*t[j]))**beta, (j, k + 1, n)).doit(), (k, 1, n - 1)).doit() return Lambda(tuple(syms), f/Zbn) class CircularUnitaryEnsemble(CircularEnsemble): """ Represents Cicular Unitary Ensembles. Examples ======== >>> from sympy.stats import CircularUnitaryEnsemble as CUE, density >>> from sympy.stats import joint_eigen_distribution >>> C = CUE('U', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**2, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarUnitaryEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(2)) class CircularOrthogonalEnsemble(CircularEnsemble): """ Represents Cicular Orthogonal Ensembles. Examples ======== >>> from sympy.stats import CircularOrthogonalEnsemble as COE, density >>> from sympy.stats import joint_eigen_distribution >>> C = COE('O', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k])), (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarOrthogonalEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(1)) class CircularSymplecticEnsemble(CircularEnsemble): """ Represents Cicular Symplectic Ensembles. Examples ======== >>> from sympy.stats import CircularSymplecticEnsemble as CSE, density >>> from sympy.stats import joint_eigen_distribution >>> C = CSE('S', 1) >>> joint_eigen_distribution(C) Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**4, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi)) Note ==== As can be seen above in the example, density of CiruclarSymplecticEnsemble is not evaluated becuase the exact definition is based on haar measure of unitary group which is not unique. """ def joint_eigen_distribution(self): return self._compute_joint_eigen_distribution(S(4)) def joint_eigen_distribution(mat): """ For obtaining joint probability distribution of eigen values of random matrix. Parameters ========== mat: RandomMatrixSymbol The matrix symbol whose eigen values are to be considered. Returns ======= Lambda Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE >>> from sympy.stats import joint_eigen_distribution >>> U = GUE('U', 2) >>> joint_eigen_distribution(U) Lambda((l[1], l[2]), exp(-l[1]**2 - l[2]**2)*Product(Abs(l[_i] - l[_j])**2, (_j, _i + 1, 2), (_i, 1, 1))/pi) """ if not isinstance(mat, RandomMatrixSymbol): raise ValueError("%s is not of type, RandomMatrixSymbol."%(mat)) return mat.pspace.model.joint_eigen_distribution() def JointEigenDistribution(mat): """ Creates joint distribution of eigen values of matrices with random expressions. Parameters ========== mat: Matrix The matrix under consideration Returns ======= JointDistributionHandmade Examples ======== >>> from sympy.stats import Normal, JointEigenDistribution >>> from sympy import Matrix >>> A = [[Normal('A00', 0, 1), Normal('A01', 0, 1)], ... [Normal('A10', 0, 1), Normal('A11', 0, 1)]] >>> JointEigenDistribution(Matrix(A)) JointDistributionHandmade(-sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2 + A00/2 + A11/2, sqrt(A00**2 - 2*A00*A11 + 4*A01*A10 + A11**2)/2 + A00/2 + A11/2) """ eigenvals = mat.eigenvals(multiple=True) if any(not eigenval.has(RandomSymbol) for eigenval in set(eigenvals)): raise ValueError("Eigen values don't have any random expression, " "joint distribution cannot be generated.") return JointDistributionHandmade(*eigenvals) def level_spacing_distribution(mat): """ For obtaining distribution of level spacings. Parameters ========== mat: RandomMatrixSymbol The random matrix symbol whose eigen values are to be considered for finding the level spacings. Returns ======= Lambda Examples ======== >>> from sympy.stats import GaussianUnitaryEnsemble as GUE >>> from sympy.stats import level_spacing_distribution >>> U = GUE('U', 2) >>> level_spacing_distribution(U) Lambda(_s, 32*_s**2*exp(-4*_s**2/pi)/pi**2) References ========== .. [1] https://en.wikipedia.org/wiki/Random_matrix#Distribution_of_level_spacings """ return mat.pspace.model.level_spacing_distribution()
fe77a6c64922de1b69527ec601e39390696b2cf63262b429ec4d8d61950c3d52
""" Finite Discrete Random Variables Module See Also ======== sympy.stats.frv_types sympy.stats.rv sympy.stats.crv """ from __future__ import print_function, division import random from itertools import product from sympy import (Basic, Symbol, cacheit, sympify, Mul, And, Or, Tuple, Piecewise, Eq, Lambda, exp, I, Dummy, nan, Sum, Intersection) from sympy.core.containers import Dict from sympy.core.logic import Logic from sympy.core.relational import Relational from sympy.sets.sets import FiniteSet from sympy.stats.rv import (RandomDomain, ProductDomain, ConditionalDomain, PSpace, IndependentProductPSpace, SinglePSpace, random_symbols, sumsets, rv_subs, NamedArgsMixin, Density) class FiniteDensity(dict): """ A domain with Finite Density. """ def __call__(self, item): """ Make instance of a class callable. If item belongs to current instance of a class, return it. Otherwise, return 0. """ item = sympify(item) if item in self: return self[item] else: return 0 @property def dict(self): """ Return item as dictionary. """ return dict(self) class FiniteDomain(RandomDomain): """ A domain with discrete finite support Represented using a FiniteSet. """ is_Finite = True @property def symbols(self): return FiniteSet(sym for sym, val in self.elements) @property def elements(self): return self.args[0] @property def dict(self): return FiniteSet(*[Dict(dict(el)) for el in self.elements]) def __contains__(self, other): return other in self.elements def __iter__(self): return self.elements.__iter__() def as_boolean(self): return Or(*[And(*[Eq(sym, val) for sym, val in item]) for item in self]) class SingleFiniteDomain(FiniteDomain): """ A FiniteDomain over a single symbol/set Example: The possibilities of a *single* die roll. """ def __new__(cls, symbol, set): if not isinstance(set, FiniteSet) and \ not isinstance(set, Intersection): set = FiniteSet(*set) return Basic.__new__(cls, symbol, set) @property def symbol(self): return self.args[0] @property def symbols(self): return FiniteSet(self.symbol) @property def set(self): return self.args[1] @property def elements(self): return FiniteSet(*[frozenset(((self.symbol, elem), )) for elem in self.set]) def __iter__(self): return (frozenset(((self.symbol, elem),)) for elem in self.set) def __contains__(self, other): sym, val = tuple(other)[0] return sym == self.symbol and val in self.set class ProductFiniteDomain(ProductDomain, FiniteDomain): """ A Finite domain consisting of several other FiniteDomains Example: The possibilities of the rolls of three independent dice """ def __iter__(self): proditer = product(*self.domains) return (sumsets(items) for items in proditer) @property def elements(self): return FiniteSet(*self) class ConditionalFiniteDomain(ConditionalDomain, ProductFiniteDomain): """ A FiniteDomain that has been restricted by a condition Example: The possibilities of a die roll under the condition that the roll is even. """ def __new__(cls, domain, condition): """ Create a new instance of ConditionalFiniteDomain class """ if condition is True: return domain cond = rv_subs(condition) return Basic.__new__(cls, domain, cond) def _test(self, elem): """ Test the value. If value is boolean, return it. If value is equality relational (two objects are equal), return it with left-hand side being equal to right-hand side. Otherwise, raise ValueError exception. """ val = self.condition.xreplace(dict(elem)) if val in [True, False]: return val elif val.is_Equality: return val.lhs == val.rhs raise ValueError("Undecidable if %s" % str(val)) def __contains__(self, other): return other in self.fulldomain and self._test(other) def __iter__(self): return (elem for elem in self.fulldomain if self._test(elem)) @property def set(self): if isinstance(self.fulldomain, SingleFiniteDomain): return FiniteSet(*[elem for elem in self.fulldomain.set if frozenset(((self.fulldomain.symbol, elem),)) in self]) else: raise NotImplementedError( "Not implemented on multi-dimensional conditional domain") def as_boolean(self): return FiniteDomain.as_boolean(self) class SingleFiniteDistribution(Basic, NamedArgsMixin): def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass @property @cacheit def dict(self): if self.is_symbolic: return Density(self) return dict((k, self.pmf(k)) for k in self.set) def pmf(self, *args): # to be overridden by specific distribution raise NotImplementedError() @property def set(self): # to be overridden by specific distribution raise NotImplementedError() values = property(lambda self: self.dict.values) items = property(lambda self: self.dict.items) is_symbolic = property(lambda self: False) __iter__ = property(lambda self: self.dict.__iter__) __getitem__ = property(lambda self: self.dict.__getitem__) def __call__(self, *args): return self.pmf(*args) def __contains__(self, other): return other in self.set #============================================= #========= Probability Space =============== #============================================= class FinitePSpace(PSpace): """ A Finite Probability Space Represents the probabilities of a finite number of events. """ is_Finite = True def __new__(cls, domain, density): density = dict((sympify(key), sympify(val)) for key, val in density.items()) public_density = Dict(density) obj = PSpace.__new__(cls, domain, public_density) obj._density = density return obj def prob_of(self, elem): elem = sympify(elem) density = self._density if isinstance(list(density.keys())[0], FiniteSet): return density.get(elem, 0) return density.get(tuple(elem)[0][1], 0) def where(self, condition): assert all(r.symbol in self.symbols for r in random_symbols(condition)) return ConditionalFiniteDomain(self.domain, condition) def compute_density(self, expr): expr = rv_subs(expr, self.values) d = FiniteDensity() for elem in self.domain: val = expr.xreplace(dict(elem)) prob = self.prob_of(elem) d[val] = d.get(val, 0) + prob return d @cacheit def compute_cdf(self, expr): d = self.compute_density(expr) cum_prob = 0 cdf = [] for key in sorted(d): prob = d[key] cum_prob += prob cdf.append((key, cum_prob)) return dict(cdf) @cacheit def sorted_cdf(self, expr, python_float=False): cdf = self.compute_cdf(expr) items = list(cdf.items()) sorted_items = sorted(items, key=lambda val_cumprob: val_cumprob[1]) if python_float: sorted_items = [(v, float(cum_prob)) for v, cum_prob in sorted_items] return sorted_items @cacheit def compute_characteristic_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(I*k*t)*v for k,v in d.items())) @cacheit def compute_moment_generating_function(self, expr): d = self.compute_density(expr) t = Dummy('t', real=True) return Lambda(t, sum(exp(k*t)*v for k,v in d.items())) def compute_expectation(self, expr, rvs=None, **kwargs): rvs = rvs or self.values expr = rv_subs(expr, rvs) probs = [self.prob_of(elem) for elem in self.domain] if isinstance(expr, (Logic, Relational)): parse_domain = [tuple(elem)[0][1] for elem in self.domain] bools = [expr.xreplace(dict(elem)) for elem in self.domain] else: parse_domain = [expr.xreplace(dict(elem)) for elem in self.domain] bools = [True for elem in self.domain] return sum([Piecewise((prob * elem, blv), (0, True)) for prob, elem, blv in zip(probs, parse_domain, bools)]) def compute_quantile(self, expr): cdf = self.compute_cdf(expr) p = Dummy('p', real=True) set = ((nan, (p < 0) | (p > 1)),) for key, value in cdf.items(): set = set + ((key, p <= value), ) return Lambda(p, Piecewise(*set)) def probability(self, condition): cond_symbols = frozenset(rs.symbol for rs in random_symbols(condition)) cond = rv_subs(condition) if not cond_symbols.issubset(self.symbols): raise ValueError("Cannot compare foreign random symbols, %s" %(str(cond_symbols - self.symbols))) if isinstance(condition, Relational) and \ (not cond.free_symbols.issubset(self.domain.free_symbols)): rv = condition.lhs if isinstance(condition.rhs, Symbol) else condition.rhs return sum(Piecewise( (self.prob_of(elem), condition.subs(rv, list(elem)[0][1])), (0, True)) for elem in self.domain) return sum(self.prob_of(elem) for elem in self.where(condition)) def conditional_space(self, condition): domain = self.where(condition) prob = self.probability(condition) density = dict((key, val / prob) for key, val in self._density.items() if domain._test(key)) return FinitePSpace(domain, density) def sample(self): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ expr = Tuple(*self.values) cdf = self.sorted_cdf(expr, python_float=True) x = random.uniform(0, 1) # Find first occurrence with cumulative probability less than x # This should be replaced with binary search for value, cum_prob in cdf: if x < cum_prob: # return dictionary mapping RandomSymbols to values return dict(list(zip(expr, value))) assert False, "We should never have gotten to this point" class SingleFinitePSpace(SinglePSpace, FinitePSpace): """ A single finite probability space Represents the probabilities of a set of random events that can be attributed to a single variable/symbol. This class is implemented by many of the standard FiniteRV types such as Die, Bernoulli, Coin, etc.... """ @property def domain(self): return SingleFiniteDomain(self.symbol, self.distribution.set) @property def _is_symbolic(self): """ Helper property to check if the distribution of the random variable is having symbolic dimension. """ return self.distribution.is_symbolic @property def distribution(self): return self.args[1] def pmf(self, expr): return self.distribution.pmf(expr) @property @cacheit def _density(self): return dict((FiniteSet((self.symbol, val)), prob) for val, prob in self.distribution.dict.items()) @cacheit def compute_characteristic_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(I*ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_characteristic_function(expr) @cacheit def compute_moment_generating_function(self, expr): if self._is_symbolic: d = self.compute_density(expr) t = Dummy('t', real=True) ki = Dummy('ki') return Lambda(t, Sum(d(ki)*exp(ki*t), (ki, self.args[1].low, self.args[1].high))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_moment_generating_function(expr) def compute_quantile(self, expr): if self._is_symbolic: raise NotImplementedError("Computing quantile for random variables " "with symbolic dimension because the bounds of searching the required " "value is undetermined.") expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_quantile(expr) def compute_density(self, expr): if self._is_symbolic: rv = list(random_symbols(expr))[0] k = Dummy('k', integer=True) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr.subs(rv, k) return Lambda(k, Piecewise((self.pmf(k), And(k >= self.args[1].low, k <= self.args[1].high, cond)), (0, True))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_density(expr) def compute_cdf(self, expr): if self._is_symbolic: d = self.compute_density(expr) k = Dummy('k') ki = Dummy('ki') return Lambda(k, Sum(d(ki), (ki, self.args[1].low, k))) expr = rv_subs(expr, self.values) return FinitePSpace(self.domain, self.distribution).compute_cdf(expr) def compute_expectation(self, expr, rvs=None, **kwargs): if self._is_symbolic: rv = random_symbols(expr)[0] k = Dummy('k', integer=True) expr = expr.subs(rv, k) cond = True if not isinstance(expr, (Relational, Logic)) \ else expr func = self.pmf(k) * k if cond != True else self.pmf(k) * expr return Sum(Piecewise((func, cond), (0, True)), (k, self.distribution.low, self.distribution.high)).doit() expr = rv_subs(expr, rvs) return FinitePSpace(self.domain, self.distribution).compute_expectation(expr, rvs, **kwargs) def probability(self, condition): if self._is_symbolic: #TODO: Implement the mechanism for handling queries for symbolic sized distributions. raise NotImplementedError("Currently, probability queries are not " "supported for random variables with symbolic sized distributions.") condition = rv_subs(condition) return FinitePSpace(self.domain, self.distribution).probability(condition) def conditional_space(self, condition): """ This method is used for transferring the computation to probability method because conditional space of random variables with symbolic dimensions is currently not possible. """ if self._is_symbolic: self domain = self.where(condition) prob = self.probability(condition) density = dict((key, val / prob) for key, val in self._density.items() if domain._test(key)) return FinitePSpace(domain, density) class ProductFinitePSpace(IndependentProductPSpace, FinitePSpace): """ A collection of several independent finite probability spaces """ @property def domain(self): return ProductFiniteDomain(*[space.domain for space in self.spaces]) @property @cacheit def _density(self): proditer = product(*[iter(space._density.items()) for space in self.spaces]) d = {} for items in proditer: elems, probs = list(zip(*items)) elem = sumsets(elems) prob = Mul(*probs) d[elem] = d.get(elem, 0) + prob return Dict(d) @property @cacheit def density(self): return Dict(self._density) def probability(self, condition): return FinitePSpace.probability(self, condition) def compute_density(self, expr): return FinitePSpace.compute_density(self, expr)
2bc8c0339f1e6cc98ad89f149f5f7e2e8303f8c327fee11b7b75d05cfd9a98ba
from sympy.core.numbers import Integer, Rational from sympy.core.singleton import S from sympy.core.sympify import _sympify def continued_fraction(a): """Return the continued fraction representation of a Rational or quadratic irrational. Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction >>> from sympy import sqrt >>> continued_fraction((1 + 2*sqrt(3))/5) [0, 1, [8, 3, 34, 3]] See Also ======== continued_fraction_periodic, continued_fraction_reduce, continued_fraction_convergents """ e = _sympify(a) if all(i.is_Rational for i in e.atoms()): if e.is_Integer: return continued_fraction_periodic(e, 1, 0) elif e.is_Rational: return continued_fraction_periodic(e.p, e.q, 0) elif e.is_Pow and e.exp is S.Half and e.base.is_Integer: return continued_fraction_periodic(0, 1, e.base) elif e.is_Mul and len(e.args) == 2 and ( e.args[0].is_Rational and e.args[1].is_Pow and e.args[1].base.is_Integer and e.args[1].exp is S.Half): a, b = e.args return continued_fraction_periodic(0, a.q, b.base, a.p) else: # this should not have to work very hard- no # simplification, cancel, etc... which should be # done by the user. e.g. This is a fancy 1 but # the user should simplify it first: # sqrt(2)*(1 + sqrt(2))/(sqrt(2) + 2) p, d = e.expand().as_numer_denom() if d.is_Integer: if p.is_Rational: return continued_fraction_periodic(p, d) # look for a + b*c # with c = sqrt(s) if p.is_Add and len(p.args) == 2: a, bc = p.args else: a = S.Zero bc = p if a.is_Integer: b = S.NaN if bc.is_Mul and len(bc.args) == 2: b, c = bc.args elif bc.is_Pow: b = Integer(1) c = bc if b.is_Integer and ( c.is_Pow and c.exp is S.Half and c.base.is_Integer): # (a + b*sqrt(c))/d c = c.base return continued_fraction_periodic(a, d, c, b) raise ValueError( 'expecting a rational or quadratic irrational, not %s' % e) def continued_fraction_periodic(p, q, d=0, s=1): r""" Find the periodic continued fraction expansion of a quadratic irrational. Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. `\frac{p + s\sqrt{d}}{q}`, where `p`, `q \ne 0` and `d \ge 0` are integers. Returns the continued fraction representation (canonical form) as a list of integers, optionally ending (for quadratic irrationals) with list of integers representing the repeating digits. Parameters ========== p : int the rational part of the number's numerator q : int the denominator of the number d : int, optional the irrational part (discriminator) of the number's numerator s : int, optional the coefficient of the irrational part Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic >>> continued_fraction_periodic(3, 2, 7) [2, [1, 4, 1, 1]] Golden ratio has the simplest continued fraction expansion: >>> continued_fraction_periodic(1, 2, 5) [[1]] If the discriminator is zero or a perfect square then the number will be a rational number: >>> continued_fraction_periodic(4, 3, 0) [1, 3] >>> continued_fraction_periodic(4, 3, 49) [3, 1, 2] See Also ======== continued_fraction_iterator, continued_fraction_reduce References ========== .. [1] https://en.wikipedia.org/wiki/Periodic_continued_fraction .. [2] K. Rosen. Elementary Number theory and its applications. Addison-Wesley, 3 Sub edition, pages 379-381, January 1992. """ from sympy.core.compatibility import as_int from sympy.functions import sqrt, floor p, q, d, s = list(map(as_int, [p, q, d, s])) if d < 0: raise ValueError("expected non-negative for `d` but got %s" % d) if q == 0: raise ValueError("The denominator cannot be 0.") if not s: d = 0 # check for rational case sd = sqrt(d) if sd.is_Integer: return list(continued_fraction_iterator(Rational(p + s*sd, q))) # irrational case with sd != Integer if q < 0: p, q, s = -p, -q, -s n = (p + s*sd)/q if n < 0: w = floor(-n) f = -n - w one_f = continued_fraction(1 - f) # 1-f < 1 so cf is [0 ... [...]] one_f[0] -= w + 1 return one_f d *= s**2 sd *= s if (d - p**2)%q: d *= q**2 sd *= q p *= q q *= q terms = [] pq = {} while (p, q) not in pq: pq[(p, q)] = len(terms) terms.append((p + sd)//q) p = terms[-1]*q - p q = (d - p**2)//q i = pq[(p, q)] return terms[:i] + [terms[i:]] def continued_fraction_reduce(cf): """ Reduce a continued fraction to a rational or quadratic irrational. Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The continued fraction expansion (cf) should be supplied as a terminating iterator supplying the terms of the expansion. For terminating continued fractions, this is equivalent to ``list(continued_fraction_convergents(cf))[-1]``, only a little more efficient. If the expansion has a repeating part, a list of the repeating terms should be returned as the last element from the iterator. This is the format returned by continued_fraction_periodic. For quadratic irrationals, returns the largest solution found, which is generally the one sought, if the fraction is in canonical form (all terms positive except possibly the first). Examples ======== >>> from sympy.ntheory.continued_fraction import continued_fraction_reduce >>> continued_fraction_reduce([1, 2, 3, 4, 5]) 225/157 >>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2]) -256/233 >>> continued_fraction_reduce([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]).n(10) 2.718281835 >>> continued_fraction_reduce([1, 4, 2, [3, 1]]) (sqrt(21) + 287)/238 >>> continued_fraction_reduce([[1]]) (1 + sqrt(5))/2 >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic >>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13)) (sqrt(13) + 8)/5 See Also ======== continued_fraction_periodic """ from sympy.core.exprtools import factor_terms from sympy.core.symbol import Dummy from sympy.solvers import solve period = [] x = Dummy('x') def untillist(cf): for nxt in cf: if isinstance(nxt, list): period.extend(nxt) yield x break yield nxt a = Integer(0) for a in continued_fraction_convergents(untillist(cf)): pass if period: y = Dummy('y') solns = solve(continued_fraction_reduce(period + [y]) - y, y) solns.sort() pure = solns[-1] rv = a.subs(x, pure).radsimp() else: rv = a if rv.is_Add: rv = factor_terms(rv) if rv.is_Mul and rv.args[0] == -1: rv = rv.func(*rv.args) return rv def continued_fraction_iterator(x): """ Return continued fraction expansion of x as iterator. Examples ======== >>> from sympy.core import Rational, pi >>> from sympy.ntheory.continued_fraction import continued_fraction_iterator >>> list(continued_fraction_iterator(Rational(3, 8))) [0, 2, 1, 2] >>> list(continued_fraction_iterator(Rational(-3, 8))) [-1, 1, 1, 1, 2] >>> for i, v in enumerate(continued_fraction_iterator(pi)): ... if i > 7: ... break ... print(v) 3 7 15 1 292 1 1 1 References ========== .. [1] https://en.wikipedia.org/wiki/Continued_fraction """ from sympy.functions import floor while True: i = floor(x) yield i x -= i if not x: break x = 1/x def continued_fraction_convergents(cf): """ Return an iterator over the convergents of a continued fraction (cf). The parameter should be an iterable returning successive partial quotients of the continued fraction, such as might be returned by continued_fraction_iterator. In computing the convergents, the continued fraction need not be strictly in canonical form (all integers, all but the first positive). Rational and negative elements may be present in the expansion. Examples ======== >>> from sympy.core import Rational, pi >>> from sympy import S >>> from sympy.ntheory.continued_fraction import \ continued_fraction_convergents, continued_fraction_iterator >>> list(continued_fraction_convergents([0, 2, 1, 2])) [0, 1/2, 1/3, 3/8] >>> list(continued_fraction_convergents([1, S('1/2'), -7, S('1/4')])) [1, 3, 19/5, 7] >>> it = continued_fraction_convergents(continued_fraction_iterator(pi)) >>> for n in range(7): ... print(next(it)) 3 22/7 333/106 355/113 103993/33102 104348/33215 208341/66317 See Also ======== continued_fraction_iterator """ p_2, q_2 = Integer(0), Integer(1) p_1, q_1 = Integer(1), Integer(0) for a in cf: p, q = a*p_1 + p_2, a*q_1 + q_2 p_2, q_2 = p_1, q_1 p_1, q_1 = p, q yield p/q
f210d0d271b8de4cff1e1a42001a9b211c6b5f403026d2dbc4e3a13cb8c344af
""" Integer factorization """ from __future__ import print_function, division import random import math from sympy.core import sympify from sympy.core.compatibility import as_int, SYMPY_INTS, range, string_types from sympy.core.containers import Dict from sympy.core.evalf import bitcount from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.logic import fuzzy_and from sympy.core.mul import Mul from sympy.core.numbers import igcd, ilcm, Rational from sympy.core.power import integer_nthroot, Pow from sympy.core.singleton import S from .primetest import isprime from .generate import sieve, primerange, nextprime # Note: This list should be updated whenever new Mersenne primes are found. # Refer: https://www.mersenne.org/ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933) small_trailing = [0] * 256 for j in range(1,8): small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j)) def smoothness(n): """ Return the B-smooth and B-power smooth values of n. The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity. Examples ======== >>> from sympy.ntheory.factor_ import smoothness >>> smoothness(2**7*3**2) (3, 128) >>> smoothness(2**4*13) (13, 16) >>> smoothness(2) (2, 2) See Also ======== factorint, smoothness_p """ if n == 1: return (1, 1) # not prime, but otherwise this causes headaches facs = factorint(n) return max(facs), max(m**facs[m] for m in facs) def smoothness_p(n, m=-1, power=0, visual=None): """ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...] where: 1. p**M is the base-p divisor of n 2. sm(p + m) is the smoothness of p + m (m = -1 by default) 3. psm(p + m) is the power smoothness of p + m The list is sorted according to smoothness (default) or by power smoothness if power=1. The smoothness of the numbers to the left (m = -1) or right (m = 1) of a factor govern the results that are obtained from the p +/- 1 type factoring methods. >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> smoothness_p(10431, m=1) (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) >>> smoothness_p(10431) (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) >>> smoothness_p(10431, power=1) (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) If visual=True then an annotated string will be returned: >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 This string can also be generated directly from a factorization dictionary and vice versa: >>> factorint(17*9) {3: 2, 17: 1} >>> smoothness_p(_) 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16' >>> smoothness_p(_) {3: 2, 17: 1} The table of the output logic is: ====== ====== ======= ======= | Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict str tuple str str str tuple dict tuple str tuple str n str tuple tuple mul str tuple tuple ====== ====== ======= ======= See Also ======== factorint, smoothness """ from sympy.utilities import flatten # visual must be True, False or other (stored as None) if visual in (1, 0): visual = bool(visual) elif visual not in (True, False): visual = None if isinstance(n, string_types): if visual: return n d = {} for li in n.splitlines(): k, v = [int(i) for i in li.split('has')[0].split('=')[1].split('**')] d[k] = v if visual is not True and visual is not False: return d return smoothness_p(d, visual=False) elif type(n) is not tuple: facs = factorint(n, visual=False) if power: k = -1 else: k = 1 if type(n) is not tuple: rv = (m, sorted([(f, tuple([M] + list(smoothness(f + m)))) for f, M in [i for i in facs.items()]], key=lambda x: (x[1][k], x[0]))) else: rv = n if visual is False or (visual is not True) and (type(n) in [int, Mul]): return rv lines = [] for dat in rv[1]: dat = flatten(dat) dat.insert(2, m) lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat)) return '\n'.join(lines) def trailing(n): """Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n. Examples ======== >>> from sympy import trailing >>> trailing(128) 7 >>> trailing(63) 0 """ n = abs(int(n)) if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] # 2**m is quick for z up through 2**30 z = bitcount(n) - 1 if isinstance(z, SYMPY_INTS): if n == 1 << z: return z if z < 300: # fixed 8-byte reduction t = 8 n >>= 8 while not n & 0xff: n >>= 8 t += 8 return t + small_trailing[n & 0xff] # binary reduction important when there might be a large # number of trailing 0s t = 0 p = 8 while not n & 1: while not n & ((1 << p) - 1): n >>= p t += p p *= 2 p //= 2 return t def multiplicity(p, n): """ Find the greatest integer m such that p**m divides n. Examples ======== >>> from sympy.ntheory import multiplicity >>> from sympy.core.numbers import Rational as R >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]] [0, 1, 2, 3, 3] >>> multiplicity(3, R(1, 9)) -2 """ try: p, n = as_int(p), as_int(n) except ValueError: if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)): p = Rational(p) n = Rational(n) if p.q == 1: if n.p == 1: return -multiplicity(p.p, n.q) return multiplicity(p.p, n.p) - multiplicity(p.p, n.q) elif p.p == 1: return multiplicity(p.q, n.q) else: like = min( multiplicity(p.p, n.p), multiplicity(p.q, n.q)) cross = min( multiplicity(p.q, n.p), multiplicity(p.p, n.q)) return like - cross raise ValueError('expecting ints or fractions, got %s and %s' % (p, n)) if n == 0: raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n)) if p == 2: return trailing(n) if p < 2: raise ValueError('p must be an integer, 2 or larger, but got %s' % p) if p == n: return 1 m = 0 n, rem = divmod(n, p) while not rem: m += 1 if m > 5: # The multiplicity could be very large. Better # to increment in powers of two e = 2 while 1: ppow = p**e if ppow < n: nnew, rem = divmod(n, ppow) if not rem: m += e e *= 2 n = nnew continue return m + multiplicity(p, n) n, rem = divmod(n, p) return m def perfect_power(n, candidates=None, big=True, factor=True): """ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a perfect power with ``e > 1``, else ``False``. A ValueError is raised if ``n`` is not an integer or is not positive. By default, the base is recursively decomposed and the exponents collected so the largest possible ``e`` is sought. If ``big=False`` then the smallest possible ``e`` (thus prime) will be chosen. If ``factor=True`` then simultaneous factorization of ``n`` is attempted since finding a factor indicates the only possible root for ``n``. This is True by default since only a few small factors will be tested in the course of searching for the perfect power. The use of ``candidates`` is primarily for internal use; if provided, False will be returned if ``n`` cannot be written as a power with one of the candidates as an exponent and factoring (beyond testing for a factor of 2) will not be attempted. Examples ======== >>> from sympy import perfect_power >>> perfect_power(16) (2, 4) >>> perfect_power(16, big=False) (4, 2) Notes ===== To know whether an integer is a perfect power of 2 use >>> is2pow = lambda n: bool(n and not n & (n - 1)) >>> [(i, is2pow(i)) for i in range(5)] [(0, False), (1, True), (2, True), (3, False), (4, True)] It is not necessary to provide ``candidates``. When provided it will be assumed that they are ints. The first one that is larger than the computed maximum possible exponent will signal failure for the routine. >>> perfect_power(3**8, [9]) False >>> perfect_power(3**8, [2, 4, 8]) (3, 8) >>> perfect_power(3**8, [4, 8], big=False) (9, 4) See Also ======== sympy.core.power.integer_nthroot primetest.is_square """ from sympy.core.power import integer_nthroot n = as_int(n) if n < 3: if n < 1: raise ValueError('expecting positive n') return False logn = math.log(n, 2) max_possible = int(logn) + 2 # only check values less than this not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8 min_possible = 2 + not_square if not candidates: candidates = primerange(min_possible, max_possible) else: candidates = sorted([i for i in candidates if min_possible <= i < max_possible]) if n%2 == 0: e = trailing(n) candidates = [i for i in candidates if e%i == 0] if big: candidates = reversed(candidates) for e in candidates: r, ok = integer_nthroot(n, e) if ok: return (r, e) return False def _factors(): rv = 2 + n % 2 while True: yield rv rv = nextprime(rv) for fac, e in zip(_factors(), candidates): # see if there is a factor present if factor and n % fac == 0: # find what the potential power is if fac == 2: e = trailing(n) else: e = multiplicity(fac, n) # if it's a trivial power we are done if e == 1: return False # maybe the e-th root of n is exact r, exact = integer_nthroot(n, e) if not exact: # Having a factor, we know that e is the maximal # possible value for a root of n. # If n = fac**e*m can be written as a perfect # power then see if m can be written as r**E where # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E m = n//fac**e rE = perfect_power(m, candidates=divisors(e, generator=True)) if not rE: return False else: r, E = rE r, e = fac**(e//E)*r, E if not big: e0 = primefactors(e) if e0[0] != e: r, e = r**(e//e0[0]), e0[0] return r, e # Weed out downright impossible candidates if logn/e < 40: b = 2.0**(logn/e) if abs(int(b + 0.5) - b) > 0.01: continue # now see if the plausible e makes a perfect power r, exact = integer_nthroot(n, e) if exact: if big: m = perfect_power(r, big=big, factor=factor) if m: r, e = m[0], e*m[1] return int(r), e return False def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None): r""" Use Pollard's rho method to try to extract a nontrivial factor of ``n``. The returned factor may be a composite number. If no factor is found, ``None`` is returned. The algorithm generates pseudo-random values of x with a generator function, replacing x with F(x). If F is not supplied then the function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``. Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be supplied; the ``a`` will be ignored if F was supplied. The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'. For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries: >>> from sympy.ntheory.generate import cycle_length >>> n = 16843009 >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n >>> for s in range(5): ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s))) ... loop length = 2489; leader length = 42 loop length = 78; leader length = 120 loop length = 1482; leader length = 99 loop length = 1482; leader length = 285 loop length = 1482; leader length = 100 Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat: >>> x=2 >>> for i in range(9): ... x=(x**2+12)%17 ... print(x) ... 16 13 11 14 4 11 14 4 11 >>> next(cycle_length(lambda x: (x**2+12)%17, 2)) (3, 2) >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True)) [16, 13, 11, 14, 4] Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If ``max_steps`` is specified, the iteration is cancelled with a failure after the specified number of steps. Examples ======== >>> from sympy import pollard_rho >>> n=16843009 >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n >>> pollard_rho(n, F=F) 257 Use the default setting with a bad value of ``a`` and no retries: >>> pollard_rho(n, a=n-2, retries=0) If retries is > 0 then perhaps the problem will correct itself when new values are generated for a: >>> pollard_rho(n, a=n-2, retries=1) 257 References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231 """ n = int(n) if n < 5: raise ValueError('pollard_rho should receive n > 4') prng = random.Random(seed + retries) V = s for i in range(retries + 1): U = V if not F: F = lambda x: (pow(x, 2, n) + a) % n j = 0 while 1: if max_steps and (j > max_steps): break j += 1 U = F(U) V = F(F(V)) # V is 2x further along than U g = igcd(U - V, n) if g == 1: continue if g == n: break return int(g) V = prng.randint(0, n - 1) a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2 F = None return None def pollard_pm1(n, B=10, a=2, retries=0, seed=1234): """ Use Pollard's p-1 method to try to extract a nontrivial factor of ``n``. Either a divisor (perhaps composite) or ``None`` is returned. The value of ``a`` is the base that is used in the test gcd(a**M - 1, n). The default is 2. If ``retries`` > 0 then if no factor is found after the first attempt, a new ``a`` will be generated randomly (using the ``seed``) and the process repeated. Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)). A search is made for factors next to even numbers having a power smoothness less than ``B``. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on ``a`` and the power smoothness of the even number just less than the factor p (hence the name p - 1). Although some discussion of what constitutes a good ``a`` some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1 for every prime power divisor of N. But consider the following: >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1 >>> n=257*1009 >>> smoothness_p(n) (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))]) So we should (and can) find a root with B=16: >>> pollard_pm1(n, B=16, a=3) 1009 If we attempt to increase B to 256 we find that it doesn't work: >>> pollard_pm1(n, B=256) >>> But if the value of ``a`` is changed we find that only multiples of 257 work, e.g.: >>> pollard_pm1(n, B=256, a=257) 1009 Checking different ``a`` values shows that all the ones that didn't work had a gcd value not equal to ``n`` but equal to one of the factors: >>> from sympy.core.numbers import ilcm, igcd >>> from sympy import factorint, Pow >>> M = 1 >>> for i in range(2, 256): ... M = ilcm(M, i) ... >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if ... igcd(pow(a, M, n) - 1, n) != n]) {1009} But does aM % d for every divisor of n give 1? >>> aM = pow(255, M, n) >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args] [(257**1, 1), (1009**1, 1)] No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that: 1) the power smoothness of the p - 1 value next to the root does not exceed B 2) a**M % p != 1 for any of the divisors of n. By trying more than one ``a`` it is possible that one of them will yield a factor. Examples ======== With the default smoothness bound, this number can't be cracked: >>> from sympy.ntheory import pollard_pm1, primefactors >>> pollard_pm1(21477639576571) Increasing the smoothness bound helps: >>> pollard_pm1(21477639576571, B=2000) 4410317 Looking at the smoothness of the factors of this number we find: >>> from sympy.utilities import flatten >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor: >>> factorint(4410317 - 1) {2: 2, 617: 1, 1787: 1} >>> factorint(4869863-1) {2: 1, 2434931: 1} Note that until B reaches the B-pow value of 1787, the number is not cracked; >>> pollard_pm1(21477639576571, B=1786) >>> pollard_pm1(21477639576571, B=1787) 4410317 The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we don't know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the percentages are nearly reversed...but in that range the simple trial division is quite fast. References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238 .. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf """ n = int(n) if n < 4 or B < 3: raise ValueError('pollard_pm1 should receive n > 3 and B > 2') prng = random.Random(seed + B) # computing a**lcm(1,2,3,..B) % n for B > 2 # it looks weird, but it's right: primes run [2, B] # and the answer's not right until the loop is done. for i in range(retries + 1): aM = a for p in sieve.primerange(2, B + 1): e = int(math.log(B, p)) aM = pow(aM, pow(p, e), n) g = igcd(aM - 1, n) if 1 < g < n: return int(g) # get a new a: # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1' # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will # give a zero, too, so we set the range as [2, n-2]. Some references # say 'a' should be coprime to n, but either will detect factors. a = prng.randint(2, n - 2) def _trial(factors, n, candidates, verbose=False): """ Helper function for integer factorization. Trial factors ``n` against all integers given in the sequence ``candidates`` and updates the dict ``factors`` in-place. Returns the reduced value of ``n`` and a flag indicating whether any factors were found. """ if verbose: factors0 = list(factors.keys()) nfactors = len(factors) for d in candidates: if n % d == 0: m = multiplicity(d, n) n //= d**m factors[d] = m if verbose: for k in sorted(set(factors).difference(set(factors0))): print(factor_msg % (k, factors[k])) return int(n), len(factors) != nfactors def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1, verbose): """ Helper function for integer factorization. Checks if ``n`` is a prime or a perfect power, and in those cases updates the factorization and raises ``StopIteration``. """ if verbose: print('Check for termination') # since we've already been factoring there is no need to do # simultaneous factoring with the power check p = perfect_power(n, factor=False) if p is not False: base, exp = p if limitp1: limit = limitp1 - 1 else: limit = limitp1 facs = factorint(base, limit, use_trial, use_rho, use_pm1, verbose=False) for b, e in facs.items(): if verbose: print(factor_msg % (b, e)) factors[b] = exp*e raise StopIteration if isprime(n): factors[int(n)] = 1 raise StopIteration if n == 1: raise StopIteration trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i" trial_msg = "Trial division with primes [%i ... %i]" rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i" pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i" factor_msg = '\t%i ** %i' fermat_msg = 'Close factors satisying Fermat condition found.' complete_msg = 'Factorization is complete.' def _factorint_small(factors, n, limit, fail_max): """ Return the value of n and either a 0 (indicating that factorization up to the limit was complete) or else the next near-prime that would have been tested. Factoring stops if there are fail_max unsuccessful tests in a row. If factors of n were found they will be in the factors dictionary as {factor: multiplicity} and the returned value of n will have had those factors removed. The factors dictionary is modified in-place. """ def done(n, d): """return n, d if the sqrt(n) wasn't reached yet, else n, 0 indicating that factoring is done. """ if d*d <= n: return n, d return n, 0 d = 2 m = trailing(n) if m: factors[d] = m n >>= m d = 3 if limit < d: if n > 1: factors[n] = 1 return done(n, d) # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m # when d*d exceeds maxx or n we are done; if limit**2 is greater # than n then maxx is set to zero so the value of n will flag the finish if limit*limit > n: maxx = 0 else: maxx = limit*limit dd = maxx or n d = 5 fails = 0 while fails < fail_max: if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 d += 2 if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 # d = 6*(i + 1) - 1 d += 4 return done(n, d) def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a positive integer ``n``, ``factorint(n)`` returns a dict containing the prime factors of ``n`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorint >>> factorint(2000) # 2000 = (2**4) * (5**3) {2: 4, 5: 3} >>> factorint(65537) # This number is prime {65537: 1} For input less than 2, factorint behaves as follows: - ``factorint(1)`` returns the empty factorization, ``{}`` - ``factorint(0)`` returns ``{0:1}`` - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n`` Partial Factorization: If ``limit`` (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting. This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily: >>> from sympy.ntheory import isprime >>> from sympy.core.compatibility import long >>> a = 1407633717262338957430697921446883 >>> f = factorint(a, limit=10000) >>> f == {991: 1, long(202916782076162456022877024859): 1, 7: 1} True >>> isprime(max(f)) False This number has a small factor and a residual perfect power whose base is greater than the limit: >>> factorint(3*101**7, limit=5) {3: 1, 101: 7} List of Factors: If ``multiple`` is set to ``True`` then a list containing the prime factors including multiplicities is returned. >>> factorint(24, multiple=True) [2, 2, 2, 3] Visual Factorization: If ``visual`` is set to ``True``, then it will return a visual factorization of the integer. For example: >>> from sympy import pprint >>> pprint(factorint(4200, visual=True)) 3 1 2 1 2 *3 *5 *7 Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors. You can easily switch between the two forms by sending them back to factorint: >>> from sympy import Mul, Pow >>> regular = factorint(1764); regular {2: 2, 3: 2, 7: 2} >>> pprint(factorint(regular)) 2 2 2 2 *3 *7 >>> visual = factorint(1764, visual=True); pprint(visual) 2 2 2 2 *3 *7 >>> print(factorint(visual)) {2: 2, 3: 2, 7: 2} If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression: >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form {2: 10, 3: 3} >>> factorint(Mul(4, 12, evaluate=False)) {2: 4, 3: 1} The table of the output logic is: ====== ====== ======= ======= Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict mul dict mul n mul dict dict mul mul dict dict ====== ====== ======= ======= Notes ===== Algorithm: The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds: >>> factors = factorint(12345678910111213141516) >>> for base, exp in sorted(factors.items()): ... print('%s %s' % (base, exp)) ... 2 2 2507191691 1 1231026625769 1 Any of these methods can optionally be disabled with the following boolean parameters: - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method ``factorint`` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops. For unevaluated factorial, it uses Legendre's formula(theorem). If ``verbose`` is set to ``True``, detailed progress is printed. See Also ======== smoothness, smoothness_p, divisors """ if isinstance(n, Dict): n = dict(n) if multiple: fac = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S(1)/p]*(-fac[p]) for p in sorted(fac)), []) return factorlist factordict = {} if visual and not isinstance(n, Mul) and not isinstance(n, dict): factordict = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) elif isinstance(n, Mul): factordict = {int(k): int(v) for k, v in n.as_powers_dict().items()} elif isinstance(n, dict): factordict = n if factordict and (isinstance(n, Mul) or isinstance(n, dict)): # check it for key in list(factordict.keys()): if isprime(key): continue e = factordict.pop(key) d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) for k, v in d.items(): if k in factordict: factordict[k] += v*e else: factordict[k] = v*e if visual or (type(n) is dict and visual is not True and visual is not False): if factordict == {}: return S.One if -1 in factordict: factordict.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(factordict.items())]) return Mul(*args, evaluate=False) elif isinstance(n, dict) or isinstance(n, Mul): return factordict assert use_trial or use_rho or use_pm1 from sympy.functions.combinatorial.factorials import factorial if isinstance(n, factorial): x = as_int(n.args[0]) if x >= 20: factors = {} m = 2 # to initialize the if condition below for p in sieve.primerange(2, x + 1): if m > 1: m, q = 0, x // p while q != 0: m += q q //= p factors[p] = m if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if verbose: print(complete_msg) return factors else: # if n < 20!, direct computation is faster # since it uses a lookup table n = n.func(x) n = as_int(n) if limit: limit = int(limit) # special cases if n < 0: factors = factorint( -n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) factors[-1] = 1 return factors if limit and limit < 2: if n == 1: return {} return {n: 1} elif n < 10: # doing this we are assured of getting a limit > 2 # when we have to compute it later return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1}, {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n] factors = {} # do simplistic factorization if verbose: sn = str(n) if len(sn) > 50: print('Factoring %s' % sn[:5] + \ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:]) else: print('Factoring', n) if use_trial: # this is the preliminary factorization for small factors small = 2**15 fail_max = 600 small = min(small, limit or small) if verbose: print(trial_int_msg % (2, small, fail_max)) n, next_p = _factorint_small(factors, n, small, fail_max) else: next_p = 2 if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if next_p == 0: if n > 1: factors[int(n)] = 1 if verbose: print(complete_msg) return factors # continue with more advanced factorization methods # first check if the simplistic run didn't finish # because of the limit and check for a perfect # power before exiting try: if limit and next_p > limit: if verbose: print('Exceeded limit:', limit) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) if n > 1: factors[int(n)] = 1 return factors else: # Before quitting (or continuing on)... # ...do a Fermat test since it's so easy and we need the # square root anyway. Finding 2 factors is easy if they are # "close enough." This is the big root equivalent of dividing by # 2, 3, 5. sqrt_n = integer_nthroot(n, 2)[0] a = sqrt_n + 1 a2 = a**2 b2 = a2 - n for i in range(3): b, fermat = integer_nthroot(b2, 2) if fermat: break b2 += 2*a + 1 # equiv to (a + 1)**2 - n a += 1 if fermat: if verbose: print(fermat_msg) if limit: limit -= 1 for r in [a - b, a + b]: facs = factorint(r, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) factors.update(facs) raise StopIteration # ...see if factorization can be terminated _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors # these are the limits for trial division which will # be attempted in parallel with pollard methods low, high = next_p, 2*next_p limit = limit or sqrt_n # add 1 to make sure limit is reached in primerange calls limit += 1 while 1: try: high_ = high if limit < high_: high_ = limit # Trial division if use_trial: if verbose: print(trial_msg % (low, high_)) ps = sieve.primerange(low, high_) n, found_trial = _trial(factors, n, ps, verbose) if found_trial: _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) else: found_trial = False if high > limit: if verbose: print('Exceeded limit:', limit) if n > 1: factors[int(n)] = 1 raise StopIteration # Only used advanced methods when no small factors were found if not found_trial: if (use_pm1 or use_rho): high_root = max(int(math.log(high_**0.7)), low, 3) # Pollard p-1 if use_pm1: if verbose: print(pm1_msg % (high_root, high_)) c = pollard_pm1(n, B=high_root, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) # Pollard rho if use_rho: max_steps = high_root if verbose: print(rho_msg % (1, max_steps, high_)) c = pollard_rho(n, retries=1, max_steps=max_steps, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors low, high = high, high*2 def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a Rational ``r``, ``factorrat(r)`` returns a dict containing the prime factors of ``r`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorrat >>> from sympy.core.symbol import S >>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2) {2: 3, 3: -2} >>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1) {-1: 1, 3: -1, 7: -1, 47: -1} Please see the docstring for ``factorint`` for detailed explanations and examples of the following keywords: - ``limit``: Integer limit up to which trial division is done - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method - ``verbose``: Toggle detailed printing of progress - ``multiple``: Toggle returning a list of factors or dict - ``visual``: Toggle product form of output """ from collections import defaultdict if multiple: fac = factorrat(rat, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S(1)/p]*(-fac[p]) for p, _ in sorted(fac.items(), key=lambda elem: elem[0] if elem[1] > 0 else 1/elem[0])), []) return factorlist f = factorint(rat.p, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() f = defaultdict(int, f) for p, e in factorint(rat.q, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).items(): f[p] += -e if len(f) > 1 and 1 in f: del f[1] if not visual: return dict(f) else: if -1 in f: f.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(f.items())]) return Mul(*args, evaluate=False) def primefactors(n, limit=None, verbose=False): """Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0. Examples ======== >>> from sympy.ntheory import primefactors, factorint, isprime >>> primefactors(6) [2, 3] >>> primefactors(-5) [5] >>> sorted(factorint(123456).items()) [(2, 6), (3, 1), (643, 1)] >>> primefactors(123456) [2, 3, 643] >>> sorted(factorint(10000000001, limit=200).items()) [(101, 1), (99009901, 1)] >>> isprime(99009901) False >>> primefactors(10000000001, limit=300) [101] See Also ======== divisors """ n = int(n) factors = sorted(factorint(n, limit=limit, verbose=verbose).keys()) s = [f for f in factors[:-1:] if f not in [-1, 0, 1]] if factors and isprime(factors[-1]): s += [factors[-1]] return s def _divisors(n): """Helper function for divisors which generates the divisors.""" factordict = factorint(n) ps = sorted(factordict.keys()) def rec_gen(n=0): if n == len(ps): yield 1 else: pows = [1] for j in range(factordict[ps[n]]): pows.append(pows[-1] * ps[n]) for q in rec_gen(n + 1): for p in pows: yield p * q for p in rec_gen(): yield p def divisors(n, generator=False): r""" Return all divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n). Examples ======== >>> from sympy import divisors, divisor_count >>> divisors(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> divisor_count(24) 8 >>> list(divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120] Notes ===== This is a slightly modified version of Tim Peters referenced at: https://stackoverflow.com/questions/1010381/python-factorization See Also ======== primefactors, factorint, divisor_count """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _divisors(n) if not generator: return sorted(rv) return rv def divisor_count(n, modulus=1): """ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only those that are divisible by ``modulus`` are counted. Examples ======== >>> from sympy import divisor_count >>> divisor_count(6) 4 See Also ======== factorint, divisors, totient """ if not modulus: return 0 elif modulus != 1: n, r = divmod(n, modulus) if r: return 0 if n == 0: return 0 return Mul(*[v + 1 for k, v in factorint(n).items() if k > 1]) def _udivisors(n): """Helper function for udivisors which generates the unitary divisors.""" factorpows = [p**e for p, e in factorint(n).items()] for i in range(2**len(factorpows)): d, j, k = 1, i, 0 while j: if (j & 1): d *= factorpows[k] j >>= 1 k += 1 yield d def udivisors(n, generator=False): r""" Return all unitary divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of unitary divisors of n can be quite large if there are many prime factors. If only the number of unitary divisors is desired use udivisor_count(n). Examples ======== >>> from sympy.ntheory.factor_ import udivisors, udivisor_count >>> udivisors(15) [1, 3, 5, 15] >>> udivisor_count(15) 4 >>> sorted(udivisors(120, generator=True)) [1, 3, 5, 8, 15, 24, 40, 120] See Also ======== primefactors, factorint, divisors, divisor_count, udivisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_divisor .. [2] http://mathworld.wolfram.com/UnitaryDivisor.html """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _udivisors(n) if not generator: return sorted(rv) return rv def udivisor_count(n): """ Return the number of unitary divisors of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import udivisor_count >>> udivisor_count(120) 8 See Also ======== factorint, divisors, udivisors, divisor_count, totient References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ if n == 0: return 0 return 2**len([p for p in factorint(n) if p > 1]) def _antidivisors(n): """Helper function for antidivisors which generates the antidivisors.""" for d in _divisors(n): y = 2*d if n > y and n % y: yield y for d in _divisors(2*n-1): if n > d >= 2 and n % d: yield d for d in _divisors(2*n+1): if n > d >= 2 and n % d: yield d def antidivisors(n, generator=False): r""" Return all antidivisors of n sorted from 1..n by default. Antidivisors [1]_ of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned. Examples ======== >>> from sympy.ntheory.factor_ import antidivisors >>> antidivisors(24) [7, 16] >>> sorted(antidivisors(128, generator=True)) [3, 5, 15, 17, 51, 85] See Also ======== primefactors, factorint, divisors, divisor_count, antidivisor_count References ========== .. [1] definition is described in https://oeis.org/A066272/a066272a.html """ n = as_int(abs(n)) if n <= 2: return [] rv = _antidivisors(n) if not generator: return sorted(rv) return rv def antidivisor_count(n): """ Return the number of antidivisors [1]_ of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import antidivisor_count >>> antidivisor_count(13) 4 >>> antidivisor_count(27) 5 See Also ======== factorint, divisors, antidivisors, divisor_count, totient References ========== .. [1] formula from https://oeis.org/A066272 """ n = as_int(abs(n)) if n <= 2: return 0 return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \ divisor_count(n) - divisor_count(n, 2) - 5 class totient(Function): r""" Calculate the Euler totient function phi(n) ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n that are relatively prime to n. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory import totient >>> totient(1) 1 >>> totient(25) 20 See Also ======== divisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function .. [2] http://mathworld.wolfram.com/TotientFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False): raise ValueError("n must be a positive integer") def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_distinct_primes(5, 7) 24 """ from functools import reduce return reduce(lambda i, j: i * (j-1), args, 1) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_factors({5: 2}) 20 """ t = 1 for p, k in factors.items(): t *= (p - 1) * p**(k - 1) return t class reduced_totient(Function): r""" Calculate the Carmichael reduced totient function lambda(n) ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that `k^m \equiv 1 \mod n` for all k relatively prime to n. Examples ======== >>> from sympy.ntheory import reduced_totient >>> reduced_totient(1) 1 >>> reduced_totient(8) 2 >>> reduced_totient(30) 4 See Also ======== totient References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_function .. [2] http://mathworld.wolfram.com/CarmichaelFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors """ t = 1 for p, k in factors.items(): if p == 2 and k > 2: t = ilcm(t, 2**(k - 2)) else: t = ilcm(t, (p - 1) * p**(k - 1)) return t @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes """ args = [p - 1 for p in args] return ilcm(*args) def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) class divisor_sigma(Function): r""" Calculate the divisor function `\sigma_k(n)` for positive integer n ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots + p_i^{m_ik}). Parameters ========== n : integer k : integer, optional power of divisors in the sum for k = 0, 1: ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)`` ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory import divisor_sigma >>> divisor_sigma(18, 0) 6 >>> divisor_sigma(39, 1) 56 >>> divisor_sigma(12, 2) 210 >>> divisor_sigma(37) 38 See Also ======== divisor_count, totient, divisors, factorint References ========== .. [1] https://en.wikipedia.org/wiki/Divisor_function """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items()]) def core(n, t=2): r""" Calculate core(n, t) = `core_t(n)` of a positive integer n ``core_2(n)`` is equal to the squarefree part of n If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}. Parameters ========== n : integer t : integer core(n, t) calculates the t-th power free part of n ``core(n, 2)`` is the squarefree part of ``n`` ``core(n, 3)`` is the cubefree part of ``n`` Default for t is 2. Examples ======== >>> from sympy.ntheory.factor_ import core >>> core(24, 2) 6 >>> core(9424, 3) 1178 >>> core(379238) 379238 >>> core(15**11, 10) 15 See Also ======== factorint, sympy.solvers.diophantine.square_factor References ========== .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core """ n = as_int(n) t = as_int(t) if n <= 0: raise ValueError("n must be a positive integer") elif t <= 1: raise ValueError("t must be >= 2") else: y = 1 for p, e in factorint(n).items(): y *= p**(e % t) return y def digits(n, b=10): """ Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative). Examples ======== >>> from sympy.ntheory.factor_ import digits >>> digits(35) [10, 3, 5] >>> digits(27, 2) [2, 1, 1, 0, 1, 1] >>> digits(65536, 256) [256, 1, 0, 0] >>> digits(-3958, 27) [-27, 5, 11, 16] """ b = as_int(b) n = as_int(n) if b <= 1: raise ValueError("b must be >= 2") else: x, y = abs(n), [] while x >= b: x, r = divmod(x, b) y.append(r) y.append(x) y.append(-b if n < 0 else b) y.reverse() return y class udivisor_sigma(Function): r""" Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}). Parameters ========== k : power of divisors in the sum for k = 0, 1: ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)`` ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory.factor_ import udivisor_sigma >>> udivisor_sigma(18, 0) 4 >>> udivisor_sigma(74, 1) 114 >>> udivisor_sigma(36, 3) 47450 >>> udivisor_sigma(111) 152 See Also ======== divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma, factorint References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[1+p**(k*e) for p, e in factorint(n).items()]) class primenu(Function): r""" Calculate the number of distinct prime factors for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primenu(n)`` or `\nu(n)` is: .. math :: \nu(n) = k. Examples ======== >>> from sympy.ntheory.factor_ import primenu >>> primenu(1) 0 >>> primenu(30) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return len(factorint(n).keys()) class primeomega(Function): r""" Calculate the number of prime factors counting multiplicities for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primeomega(n)`` or `\Omega(n)` is: .. math :: \Omega(n) = \sum_{i=1}^k m_i. Examples ======== >>> from sympy.ntheory.factor_ import primeomega >>> primeomega(1) 0 >>> primeomega(20) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return sum(factorint(n).values()) def mersenne_prime_exponent(nth): """Returns the exponent ``i`` for the nth Mersenne prime (which has the form `2^i - 1`). Examples ======== >>> from sympy.ntheory.factor_ import mersenne_prime_exponent >>> mersenne_prime_exponent(1) 2 >>> mersenne_prime_exponent(20) 4423 """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2") if n > 51: raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51") return MERSENNE_PRIME_EXPONENTS[n - 1] def is_perfect(n): """Returns True if ``n`` is a perfect number, else False. A perfect number is equal to the sum of its positive, proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_perfect, divisors >>> is_perfect(20) False >>> is_perfect(6) True >>> sum(divisors(6)[:-1]) 6 References ========== .. [1] http://mathworld.wolfram.com/PerfectNumber.html """ from sympy.core.power import integer_log r, b = integer_nthroot(1 + 8*n, 2) if not b: return False n, x = divmod(1 + r, 4) if x: return False e, b = integer_log(n, 2) return b and (e + 1) in MERSENNE_PRIME_EXPONENTS def is_mersenne_prime(n): """Returns True if ``n`` is a Mersenne prime, else False. A Mersenne prime is a prime number having the form `2^i - 1`. Examples ======== >>> from sympy.ntheory.factor_ import is_mersenne_prime >>> is_mersenne_prime(6) False >>> is_mersenne_prime(127) True References ========== .. [1] http://mathworld.wolfram.com/MersennePrime.html """ from sympy.core.power import integer_log r, b = integer_log(n + 1, 2) return b and r in MERSENNE_PRIME_EXPONENTS def abundance(n): """Returns the difference between the sum of the positive proper divisors of a number and the number. Examples ======== >>> from sympy.ntheory import abundance, is_perfect, is_abundant >>> abundance(6) 0 >>> is_perfect(6) True >>> abundance(10) -2 >>> is_abundant(10) False """ return divisor_sigma(n, 1) - 2 * n def is_abundant(n): """Returns True if ``n`` is an abundant number, else False. A abundant number is smaller than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_abundant >>> is_abundant(20) True >>> is_abundant(15) False References ========== .. [1] http://mathworld.wolfram.com/AbundantNumber.html """ n = as_int(n) if is_perfect(n): return False return n % 6 == 0 or bool(abundance(n) > 0) def is_deficient(n): """Returns True if ``n`` is a deficient number, else False. A deficient number is greater than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_deficient >>> is_deficient(20) False >>> is_deficient(15) True References ========== .. [1] http://mathworld.wolfram.com/DeficientNumber.html """ n = as_int(n) if is_perfect(n): return False return bool(abundance(n) < 0) def is_amicable(m, n): """Returns True if the numbers `m` and `n` are "amicable", else False. Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other. Examples ======== >>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma >>> is_amicable(220, 284) True >>> divisor_sigma(220) == divisor_sigma(284) True References ========== .. [1] https://en.wikipedia.org/wiki/Amicable_numbers """ if m == n: return False a, b = map(lambda i: divisor_sigma(i), (m, n)) return a == b == (m + n)
5670c58b5f18e2a15df1dc214ad9de333b400ddf839a07fb791df61a355bb2f2
from __future__ import print_function, division from random import randrange, choice from math import log from sympy.ntheory import primefactors from sympy import multiplicity, factorint from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, _af_rmul, _af_rmuln, _af_pow, Cycle) from sympy.combinatorics.util import (_check_cycles_alt_sym, _distribute_gens_by_base, _orbits_transversals_from_bsgs, _handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, _strip, _strip_af) from sympy.core import Basic from sympy.core.compatibility import range from sympy.functions.combinatorial.factorials import factorial from sympy.ntheory import sieve from sympy.utilities.iterables import has_variety, is_sequence, uniq from sympy.utilities.randtest import _randrange from itertools import islice rmul = Permutation.rmul_with_af _af_new = Permutation._af_new class PermutationGroup(Basic): """The class defining a Permutation group. PermutationGroup([p1, p2, ..., pn]) returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.permutations import Cycle >>> from sympy.combinatorics.polyhedron import Polyhedron >>> from sympy.combinatorics.perm_groups import PermutationGroup The permutations corresponding to motion of the front, right and bottom face of a 2x2 Rubik's cube are defined: >>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) >>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) >>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) These are passed as permutations to PermutationGroup: >>> G = PermutationGroup(F, R, D) >>> G.order() 3674160 The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the 2x2 Rubik's cube is given there, but here is a simple demonstration: >>> a = Permutation(2, 1) >>> b = Permutation(1, 0) >>> G = PermutationGroup(a, b) >>> P = Polyhedron(list('ABC'), pgroup=G) >>> P.corners (A, B, C) >>> P.rotate(0) # apply permutation 0 >>> P.corners (A, C, B) >>> P.reset() >>> P.corners (A, B, C) Or one can make a permutation as a product of selected permutations and apply them to an iterable directly: >>> P10 = G.make_perm([0, 1]) >>> P10('ABC') ['C', 'A', 'B'] See Also ======== sympy.combinatorics.polyhedron.Polyhedron, sympy.combinatorics.permutations.Permutation References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" .. [2] Seress, A. "Permutation Group Algorithms" .. [3] https://en.wikipedia.org/wiki/Schreier_vector .. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm .. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O'Brien. "Generating Random Elements of a Finite Group" .. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 .. [7] http://www.algorithmist.com/index.php/Union_Find .. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups .. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 .. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer .. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup .. [12] https://en.wikipedia.org/wiki/Nilpotent_group .. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf .. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf """ is_group = True def __new__(cls, *args, **kwargs): """The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless ``dups`` keyword is ``False``. """ if not args: args = [Permutation()] else: args = list(args[0] if is_sequence(args[0]) else args) if not args: args = [Permutation()] if any(isinstance(a, Cycle) for a in args): args = [Permutation(a) for a in args] if has_variety(a.size for a in args): degree = kwargs.pop('degree', None) if degree is None: degree = max(a.size for a in args) for i in range(len(args)): if args[i].size != degree: args[i] = Permutation(args[i], size=degree) if kwargs.pop('dups', True): args = list(uniq([_af_new(list(a)) for a in args])) if len(args) > 1: args = [g for g in args if not g.is_identity] obj = Basic.__new__(cls, *args, **kwargs) obj._generators = args obj._order = None obj._center = [] obj._is_abelian = None obj._is_transitive = None obj._is_sym = None obj._is_alt = None obj._is_primitive = None obj._is_nilpotent = None obj._is_solvable = None obj._is_trivial = None obj._transitivity_degree = None obj._max_div = None obj._is_perfect = None obj._is_cyclic = None obj._r = len(obj._generators) obj._degree = obj._generators[0].size # these attributes are assigned after running schreier_sims obj._base = [] obj._strong_gens = [] obj._strong_gens_slp = [] obj._basic_orbits = [] obj._transversals = [] obj._transversal_slp = [] # these attributes are assigned after running _random_pr_init obj._random_gens = [] # finite presentation of the group as an instance of `FpGroup` obj._fp_presentation = None return obj def __getitem__(self, i): return self._generators[i] def __contains__(self, i): """Return ``True`` if `i` is contained in PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = Permutation(1, 2, 3) >>> Permutation(3) in PermutationGroup(p) True """ if not isinstance(i, Permutation): raise TypeError("A PermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return self.contains(i) def __len__(self): return len(self._generators) def __eq__(self, other): """Return ``True`` if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G = PermutationGroup([p, p**2]) >>> H = PermutationGroup([p**2, p]) >>> G.generators == H.generators False >>> G == H True """ if not isinstance(other, PermutationGroup): return False set_self_gens = set(self.generators) set_other_gens = set(other.generators) # before reaching the general case there are also certain # optimisation and obvious cases requiring less or no actual # computation. if set_self_gens == set_other_gens: return True # in the most general case it will check that each generator of # one group belongs to the other PermutationGroup and vice-versa for gen1 in set_self_gens: if not other.contains(gen1): return False for gen2 in set_other_gens: if not self.contains(gen2): return False return True def __hash__(self): return super(PermutationGroup, self).__hash__() def __mul__(self, other): """Return the direct product of two permutation groups as a permutation group. This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have `G` acting on `n1` points and `H` acting on `n2` points, `G*H` acts on `n1 + n2` points. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(5) >>> H = G*G >>> H PermutationGroup([ (9)(0 1 2 3 4), (5 6 7 8 9)]) >>> H.order() 25 """ gens1 = [perm._array_form for perm in self.generators] gens2 = [perm._array_form for perm in other.generators] n1 = self._degree n2 = other._degree start = list(range(n1)) end = list(range(n1, n1 + n2)) for i in range(len(gens2)): gens2[i] = [x + n1 for x in gens2[i]] gens2 = [start + gen for gen in gens2] gens1 = [gen + end for gen in gens1] together = gens1 + gens2 gens = [_af_new(x) for x in together] return PermutationGroup(gens) def _random_pr_init(self, r, n, _random_prec_n=None): r"""Initialize random generators for the product replacement algorithm. The implementation uses a modification of the original product replacement algorithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical analysis of the original product replacement algorithm, and [4]. The product replacement algorithm is used for producing random, uniformly distributed elements of a group `G` with a set of generators `S`. For the initialization ``_random_pr_init``, a list ``R`` of `\max\{r, |S|\}` group generators is created as the attribute ``G._random_gens``, repeating elements of `S` if necessary, and the identity element of `G` is appended to ``R`` - we shall refer to this last element as the accumulator. Then the function ``random_pr()`` is called ``n`` times, randomizing the list ``R`` while preserving the generation of `G` by ``R``. The function ``random_pr()`` itself takes two random elements ``g, h`` among all elements of ``R`` but the accumulator and replaces ``g`` with a randomly chosen element from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied by whatever ``g`` was replaced by. The new value of the accumulator is then returned by ``random_pr()``. The elements returned will eventually (for ``n`` large enough) become uniformly distributed across `G` ([5]). For practical purposes however, the values ``n = 50, r = 11`` are suggested in [1]. Notes ===== THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute self._random_gens See Also ======== random_pr """ deg = self.degree random_gens = [x._array_form for x in self.generators] k = len(random_gens) if k < r: for i in range(k, r): random_gens.append(random_gens[i - k]) acc = list(range(deg)) random_gens.append(acc) self._random_gens = random_gens # handle randomized input for testing purposes if _random_prec_n is None: for i in range(n): self.random_pr() else: for i in range(n): self.random_pr(_random_prec=_random_prec_n[i]) def _union_find_merge(self, first, second, ranks, parents, not_rep): """Merges two classes in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7]) Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, the list of class sizes, ``ranks``, and the list of elements that are not representatives, ``not_rep``, are changed due to class merging. See Also ======== minimal_block, _union_find_rep References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep_first = self._union_find_rep(first, parents) rep_second = self._union_find_rep(second, parents) if rep_first != rep_second: # union by rank if ranks[rep_first] >= ranks[rep_second]: new_1, new_2 = rep_first, rep_second else: new_1, new_2 = rep_second, rep_first total_rank = ranks[new_1] + ranks[new_2] if total_rank > self.max_div: return -1 parents[new_2] = new_1 ranks[new_1] = total_rank not_rep.append(new_2) return 1 return 0 def _union_find_rep(self, num, parents): """Find representative of a class in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which ``num`` belongs is found, path compression is performed as an optimization ([7]). Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, is altered due to path compression. See Also ======== minimal_block, _union_find_merge References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep, parent = num, parents[num] while parent != rep: rep = parent parent = parents[rep] # path compression temp, parent = num, parents[num] while parent != rep: parents[temp] = rep temp = parent parent = parents[temp] return rep @property def base(self): """Return a base from the Schreier-Sims algorithm. For a permutation group `G`, a base is a sequence of points `B = (b_1, b_2, ..., b_k)` such that no element of `G` apart from the identity fixes all the points in `B`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. An alternative way to think of `B` is that it gives the indices of the stabilizer cosets that contain more than the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) >>> G.base [0, 2] See Also ======== strong_gens, basic_transversals, basic_orbits, basic_stabilizers """ if self._base == []: self.schreier_sims() return self._base def baseswap(self, base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None): r"""Swap two consecutive base points in base and strong generating set. If a base for a group `G` is given by `(b_1, b_2, ..., b_k)`, this function returns a base `(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)`, where `i` is given by ``pos``, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type. Parameters ========== base, strong_gens The base and strong generating set. pos The position at which swapping is performed. randomized A switch between randomized and deterministic version. transversals The transversals for the basic orbits, if known. basic_orbits The basic orbits, if known. strong_gens_distr The strong generators distributed by basic stabilizers, if known. Returns ======= (base, strong_gens) ``base`` is the new base, and ``strong_gens`` is a generating set relative to it. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> S.base [0, 1, 2] >>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) >>> base, gens ([0, 2, 1], [(0 1 2 3), (3)(0 1), (1 3 2), (2 3), (1 3)]) check that base, gens is a BSGS >>> S1 = PermutationGroup(gens) >>> _verify_bsgs(S1, base, gens) True See Also ======== schreier_sims Notes ===== The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, `|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by `|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the discussion of the algorithm. """ # construct the basic orbits, generators for the stabilizer chain # and transversal elements from whatever was provided transversals, basic_orbits, strong_gens_distr = \ _handle_precomputed_bsgs(base, strong_gens, transversals, basic_orbits, strong_gens_distr) base_len = len(base) degree = self.degree # size of orbit of base[pos] under the stabilizer we seek to insert # in the stabilizer chain at position pos + 1 size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ //len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) # initialize the wanted stabilizer by a subgroup if pos + 2 > base_len - 1: T = [] else: T = strong_gens_distr[pos + 2][:] # randomized version if randomized is True: stab_pos = PermutationGroup(strong_gens_distr[pos]) schreier_vector = stab_pos.schreier_vector(base[pos + 1]) # add random elements of the stabilizer until they generate it while len(_orbit(degree, T, base[pos])) != size: new = stab_pos.random_stab(base[pos + 1], schreier_vector=schreier_vector) T.append(new) # deterministic version else: Gamma = set(basic_orbits[pos]) Gamma.remove(base[pos]) if base[pos + 1] in Gamma: Gamma.remove(base[pos + 1]) # add elements of the stabilizer until they generate it by # ruling out member of the basic orbit of base[pos] along the way while len(_orbit(degree, T, base[pos])) != size: gamma = next(iter(Gamma)) x = transversals[pos][gamma] temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) if temp not in basic_orbits[pos + 1]: Gamma = Gamma - _orbit(degree, T, gamma) else: y = transversals[pos + 1][temp] el = rmul(x, y) if el(base[pos]) not in _orbit(degree, T, base[pos]): T.append(el) Gamma = Gamma - _orbit(degree, T, base[pos]) # build the new base and strong generating set strong_gens_new_distr = strong_gens_distr[:] strong_gens_new_distr[pos + 1] = T base_new = base[:] base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) for gen in T: if gen not in strong_gens_new: strong_gens_new.append(gen) return base_new, strong_gens_new @property def basic_orbits(self): """ Return the basic orbits relative to a base and strong generating set. If `(b_1, b_2, ..., b_k)` is a base for a group `G`, and `G^{(i)} = G_{b_1, b_2, ..., b_{i-1}}` is the ``i``-th basic stabilizer (so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(4) >>> S.basic_orbits [[0, 1, 2, 3], [1, 2, 3], [2, 3]] See Also ======== base, strong_gens, basic_transversals, basic_stabilizers """ if self._basic_orbits == []: self.schreier_sims() return self._basic_orbits @property def basic_stabilizers(self): """ Return a chain of stabilizers relative to a base and strong generating set. The ``i``-th basic stabilizer `G^{(i)}` relative to a base `(b_1, b_2, ..., b_k)` is `G_{b_1, b_2, ..., b_{i-1}}`. For more information, see [1], pp. 87-89. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> A.base [0, 1] >>> for g in A.basic_stabilizers: ... print(g) ... PermutationGroup([ (3)(0 1 2), (1 2 3)]) PermutationGroup([ (1 2 3)]) See Also ======== base, strong_gens, basic_orbits, basic_transversals """ if self._transversals == []: self.schreier_sims() strong_gens = self._strong_gens base = self._base if not base: # e.g. if self is trivial return [] strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_stabilizers = [] for gens in strong_gens_distr: basic_stabilizers.append(PermutationGroup(gens)) return basic_stabilizers @property def basic_transversals(self): """ Return basic transversals relative to a base and strong generating set. The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.basic_transversals [{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] See Also ======== strong_gens, base, basic_orbits, basic_stabilizers """ if self._transversals == []: self.schreier_sims() return self._transversals def composition_series(self): r""" Return the composition series for a group as a list of permutation groups. The composition series for a group `G` is defined as a subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition series is a subnormal series such that each factor group `H(i+1) / H(i)` is simple. A subnormal series is a composition series only if it is of maximum length. The algorithm works as follows: Starting with the derived series the idea is to fill the gap between `G = der[i]` and `H = der[i+1]` for each `i` independently. Since, all subgroups of the abelian group `G/H` are normal so, first step is to take the generators `g` of `G` and add them to generators of `H` one by one. The factor groups formed are not simple in general. Each group is obtained from the previous one by adding one generator `g`, if the previous group is denoted by `H` then the next group `K` is generated by `g` and `H`. The factor group `K/H` is cyclic and it's order is `K.order()//G.order()`. The series is then extended between `K` and `H` by groups generated by powers of `g` and `H`. The series formed is then prepended to the already existing series. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> S = SymmetricGroup(12) >>> G = S.sylow_subgroup(2) >>> C = G.composition_series() >>> [H.order() for H in C] [1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] >>> G = S.sylow_subgroup(3) >>> C = G.composition_series() >>> [H.order() for H in C] [243, 81, 27, 9, 3, 1] >>> G = CyclicGroup(12) >>> C = G.composition_series() >>> [H.order() for H in C] [12, 6, 3, 1] """ der = self.derived_series() if not (all(g.is_identity for g in der[-1].generators)): raise NotImplementedError('Group should be solvable') series = [] for i in range(len(der)-1): H = der[i+1] up_seg = [] for g in der[i].generators: K = PermutationGroup([g] + H.generators) order = K.order() // H.order() down_seg = [] for p, e in factorint(order).items(): for j in range(e): down_seg.append(PermutationGroup([g] + H.generators)) g = g**p up_seg = down_seg + up_seg H = K up_seg[0] = der[i] series.extend(up_seg) series.append(der[-1]) return series def coset_transversal(self, H): """Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7 """ if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") if H.order() == 1: return self._elements self._schreier_sims(base=H.base) # make G.base an extension of H.base base = self.base base_ordering = _base_ordering(base, self.degree) identity = Permutation(self.degree - 1) transversals = self.basic_transversals[:] # transversals is a list of dictionaries. Get rid of the keys # so that it is a list of lists and sort each list in # the increasing order of base[l]^x for l, t in enumerate(transversals): transversals[l] = sorted(t.values(), key = lambda x: base_ordering[base[l]^x]) orbits = H.basic_orbits h_stabs = H.basic_stabilizers g_stabs = self.basic_stabilizers indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] # T^(l) should be a right transversal of H^(l) in G^(l) for # 1<=l<=len(base). While H^(l) is the trivial group, T^(l) # contains all the elements of G^(l) so we might just as well # start with l = len(h_stabs)-1 if len(g_stabs) > len(h_stabs): T = g_stabs[len(h_stabs)]._elements else: T = [identity] l = len(h_stabs)-1 t_len = len(T) while l > -1: T_next = [] for u in transversals[l]: if u == identity: continue b = base_ordering[base[l]^u] for t in T: p = t*u if all([base_ordering[h^p] >= b for h in orbits[l]]): T_next.append(p) if t_len + len(T_next) == indices[l]: break if t_len + len(T_next) == indices[l]: break T += T_next t_len += len(T_next) l -= 1 T.remove(identity) T = [identity] + T return T def _coset_representative(self, g, H): """Return the representative of Hg from the transversal that would be computed by `self.coset_transversal(H)`. """ if H.order() == 1: return g # The base of self must be an extension of H.base. if not(self.base[:len(H.base)] == H.base): self._schreier_sims(base=H.base) orbits = H.basic_orbits[:] h_transversals = [list(_.values()) for _ in H.basic_transversals] transversals = [list(_.values()) for _ in self.basic_transversals] base = self.base base_ordering = _base_ordering(base, self.degree) def step(l, x): gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0] i = [base[l]^h for h in h_transversals[l]].index(gamma) x = h_transversals[l][i]*x if l < len(orbits)-1: for u in transversals[l]: if base[l]^u == base[l]^x: break x = step(l+1, x*u**-1)*u return x return step(0, g) def coset_table(self, H): """Return the standardised (right) coset table of self in H as a list of lists. """ # Maybe this should be made to return an instance of CosetTable # from fp_groups.py but the class would need to be changed first # to be compatible with PermutationGroups from itertools import chain, product if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") T = self.coset_transversal(H) n = len(T) A = list(chain.from_iterable((gen, gen**-1) for gen in self.generators)) table = [] for i in range(n): row = [self._coset_representative(T[i]*x, H) for x in A] row = [T.index(r) for r in row] table.append(row) # standardize (this is the same as the algorithm used in coset_table) # If CosetTable is made compatible with PermutationGroups, this # should be replaced by table.standardize() A = range(len(A)) gamma = 1 for alpha, a in product(range(n), A): beta = table[alpha][a] if beta >= gamma: if beta > gamma: for x in A: z = table[gamma][x] table[gamma][x] = table[beta][x] table[beta][x] = z for i in range(n): if table[i][x] == beta: table[i][x] = gamma elif table[i][x] == gamma: table[i][x] = beta gamma += 1 if gamma >= n-1: return table def center(self): r""" Return the center of a permutation group. The center for a group `G` is defined as `Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, the set of elements of `G` that commute with all elements of `G`. It is equal to the centralizer of `G` inside `G`, and is naturally a subgroup of `G` ([9]). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> G = D.center() >>> G.order() 2 See Also ======== centralizer Notes ===== This is a naive implementation that is a straightforward application of ``.centralizer()`` """ return self.centralizer(self) def centralizer(self, other): r""" Return the centralizer of a group/set/element. The centralizer of a set of permutations ``S`` inside a group ``G`` is the set of elements of ``G`` that commute with all elements of ``S``:: `C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of the full symmetric group, we allow for ``S`` to have elements outside ``G``. It is naturally a subgroup of ``G``; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators. Parameters ========== other a permutation group/list of permutations/single permutation Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> S = SymmetricGroup(6) >>> C = CyclicGroup(6) >>> H = S.centralizer(C) >>> H.is_subgroup(C) True See Also ======== subgroup_search Notes ===== The implementation is an application of ``.subgroup_search()`` with tests using a specific base for the group ``G``. """ if hasattr(other, 'generators'): if other.is_trivial or self.is_trivial: return self degree = self.degree identity = _af_new(list(range(degree))) orbits = other.orbits() num_orbits = len(orbits) orbits.sort(key=lambda x: -len(x)) long_base = [] orbit_reps = [None]*num_orbits orbit_reps_indices = [None]*num_orbits orbit_descr = [None]*degree for i in range(num_orbits): orbit = list(orbits[i]) orbit_reps[i] = orbit[0] orbit_reps_indices[i] = len(long_base) for point in orbit: orbit_descr[point] = i long_base = long_base + orbit base, strong_gens = self.schreier_sims_incremental(base=long_base) strong_gens_distr = _distribute_gens_by_base(base, strong_gens) i = 0 for i in range(len(base)): if strong_gens_distr[i] == [identity]: break base = base[:i] base_len = i for j in range(num_orbits): if base[base_len - 1] in orbits[j]: break rel_orbits = orbits[: j + 1] num_rel_orbits = len(rel_orbits) transversals = [None]*num_rel_orbits for j in range(num_rel_orbits): rep = orbit_reps[j] transversals[j] = dict( other.orbit_transversal(rep, pairs=True)) trivial_test = lambda x: True tests = [None]*base_len for l in range(base_len): if base[l] in orbit_reps: tests[l] = trivial_test else: def test(computed_words, l=l): g = computed_words[l] rep_orb_index = orbit_descr[base[l]] rep = orbit_reps[rep_orb_index] im = g._array_form[base[l]] im_rep = g._array_form[rep] tr_el = transversals[rep_orb_index][base[l]] # using the definition of transversal, # base[l]^g = rep^(tr_el*g); # if g belongs to the centralizer, then # base[l]^g = (rep^g)^tr_el return im == tr_el._array_form[im_rep] tests[l] = test def prop(g): return [rmul(g, gen) for gen in other.generators] == \ [rmul(gen, g) for gen in other.generators] return self.subgroup_search(prop, base=base, strong_gens=strong_gens, tests=tests) elif hasattr(other, '__getitem__'): gens = list(other) return self.centralizer(PermutationGroup(gens)) elif hasattr(other, 'array_form'): return self.centralizer(PermutationGroup([other])) def commutator(self, G, H): """ Return the commutator of two subgroups. For a permutation group ``K`` and subgroups ``G``, ``H``, the commutator of ``G`` and ``H`` is defined as the group generated by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and ``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> G = S.commutator(S, A) >>> G.is_subgroup(A) True See Also ======== derived_subgroup Notes ===== The commutator of two subgroups `H, G` is equal to the normal closure of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` a generator of `H` and `g` a generator of `G` ([1], p.28) """ ggens = G.generators hgens = H.generators commutators = [] for ggen in ggens: for hgen in hgens: commutator = rmul(hgen, ggen, ~hgen, ~ggen) if commutator not in commutators: commutators.append(commutator) res = self.normal_closure(commutators) return res def coset_factor(self, g, factor_index=False): """Return ``G``'s (self's) coset factorization of ``g`` If ``g`` is an element of ``G`` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition, The permutations returned in ``f`` are those for which the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` and ``B = G.base``. f[i] is one of the permutations in ``self._basic_orbits[i]``. If factor_index==True, returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` belongs to ``self._basic_orbits[i]`` Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> Permutation.print_cyclic = True >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) Define g: >>> g = Permutation(7)(1, 2, 4)(3, 6, 5) Confirm that it is an element of G: >>> G.contains(g) True Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used: >>> f = G.coset_factor(g) >>> f[2]*f[1]*f[0] == g True >>> f1 = G.coset_factor(g, True); f1 [0, 4, 4] >>> tr = G.basic_transversals >>> f[0] == tr[0][f1[0]] True If g is not an element of G then [] is returned: >>> c = Permutation(5, 6, 7) >>> G.coset_factor(c) [] See Also ======== util._strip """ if isinstance(g, (Cycle, Permutation)): g = g.list() if len(g) != self._degree: # this could either adjust the size or return [] immediately # but we don't choose between the two and just signal a possible # error raise ValueError('g should be the same size as permutations of G') I = list(range(self._degree)) basic_orbits = self.basic_orbits transversals = self._transversals factors = [] base = self.base h = g for i in range(len(base)): beta = h[base[i]] if beta == base[i]: factors.append(beta) continue if beta not in basic_orbits[i]: return [] u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) factors.append(beta) if h != I: return [] if factor_index: return factors tr = self.basic_transversals factors = [tr[i][factors[i]] for i in range(len(base))] return factors def generator_product(self, g, original=False): ''' Return a list of strong generators `[s1, ..., sn]` s.t `g = sn*...*s1`. If `original=True`, make the list contain only the original group generators ''' product = [] if g.is_identity: return [] if g in self.strong_gens: if not original or g in self.generators: return [g] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) return product elif g**-1 in self.strong_gens: g = g**-1 if not original or g in self.generators: return [g**-1] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) l = len(product) product = [product[l-i-1]**-1 for i in range(l)] return product f = self.coset_factor(g, True) for i, j in enumerate(f): slp = self._transversal_slp[i][j] for s in slp: if not original: product.append(self.strong_gens[s]) else: s = self.strong_gens[s] product.extend(self.generator_product(s, original=True)) return product def coset_rank(self, g): """rank using Schreier-Sims representation The coset rank of ``g`` is the ordering number in which it appears in the lexicographic listing according to the coset decomposition The ordering is the same as in G.generate(method='coset'). If ``g`` does not belong to the group it returns None. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) >>> c = Permutation(7)(2, 4)(3, 5) >>> G.coset_rank(c) 16 >>> G.coset_unrank(16) (7)(2 4)(3 5) See Also ======== coset_factor """ factors = self.coset_factor(g, True) if not factors: return None rank = 0 b = 1 transversals = self._transversals base = self._base basic_orbits = self._basic_orbits for i in range(len(base)): k = factors[i] j = basic_orbits[i].index(k) rank += b*j b = b*len(transversals[i]) return rank def coset_unrank(self, rank, af=False): """unrank using Schreier-Sims representation coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None. """ if rank < 0 or rank >= self.order(): return None base = self.base transversals = self.basic_transversals basic_orbits = self.basic_orbits m = len(base) v = [0]*m for i in range(m): rank, c = divmod(rank, len(transversals[i])) v[i] = basic_orbits[i][c] a = [transversals[i][v[i]]._array_form for i in range(m)] h = _af_rmuln(*a) if af: return h else: return _af_new(h) @property def degree(self): """Returns the size of the permutations in the group. The number of permutations comprising the group is given by ``len(group)``; the number of permutations that can be generated by the group is given by ``group.order()``. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] See Also ======== order """ return self._degree @property def identity(self): ''' Return the identity element of the permutation group. ''' return _af_new(list(range(self.degree))) @property def elements(self): """Returns all the elements of the permutation group as a set Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p.elements {(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)} """ return set(self._elements) @property def _elements(self): """Returns all the elements of the permutation group as a list Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p._elements [(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] """ return list(islice(self.generate(), None)) def derived_series(self): r"""Return the derived series for the group. The derived series for a group `G` is defined as `G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, i.e. `G_i` is the derived subgroup of `G_{i-1}`, for `i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some `k\in\mathbb{N}`, the series terminates. Returns ======= A list of permutation groups containing the members of the derived series in the order `G = G_0, G_1, G_2, \ldots`. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup, DihedralGroup) >>> A = AlternatingGroup(5) >>> len(A.derived_series()) 1 >>> S = SymmetricGroup(4) >>> len(S.derived_series()) 4 >>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) True >>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) True See Also ======== derived_subgroup """ res = [self] current = self next = self.derived_subgroup() while not current.is_subgroup(next): res.append(next) current = next next = next.derived_subgroup() return res def derived_subgroup(self): r"""Compute the derived subgroup. The derived subgroup, or commutator subgroup is the subgroup generated by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2, 4, 3]) >>> b = Permutation([0, 1, 3, 2, 4]) >>> G = PermutationGroup([a, b]) >>> C = G.derived_subgroup() >>> list(C.generate(af=True)) [[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] See Also ======== derived_series """ r = self._r gens = [p._array_form for p in self.generators] set_commutators = set() degree = self._degree rng = list(range(degree)) for i in range(r): for j in range(r): p1 = gens[i] p2 = gens[j] c = list(range(degree)) for k in rng: c[p2[p1[k]]] = p1[p2[k]] ct = tuple(c) if not ct in set_commutators: set_commutators.add(ct) cms = [_af_new(p) for p in set_commutators] G2 = self.normal_closure(cms) return G2 def generate(self, method="coset", af=False): """Return iterator to generate the elements of the group Iteration is done with one of these methods:: method='coset' using the Schreier-Sims coset representation method='dimino' using the Dimino method If af = True it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics import PermutationGroup >>> from sympy.combinatorics.polyhedron import tetrahedron The permutation group given in the tetrahedron object is also true groups: >>> G = tetrahedron.pgroup >>> G.is_group True Also the group generated by the permutations in the tetrahedron pgroup -- even the first two -- is a proper group: >>> H = PermutationGroup(G[0], G[1]) >>> J = PermutationGroup(list(H.generate())); J PermutationGroup([ (0 1)(2 3), (1 2 3), (1 3 2), (0 3 1), (0 2 3), (0 3)(1 2), (0 1 3), (3)(0 2 1), (0 3 2), (3)(0 1 2), (0 2)(1 3)]) >>> _.is_group True """ if method == "coset": return self.generate_schreier_sims(af) elif method == "dimino": return self.generate_dimino(af) else: raise NotImplementedError('No generation defined for %s' % method) def generate_dimino(self, af=False): """Yield group elements using Dimino's algorithm If af == True it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_dimino(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] References ========== .. [1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis """ idn = list(range(self.degree)) order = 0 element_list = [idn] set_element_list = {tuple(idn)} if af: yield idn else: yield _af_new(idn) gens = [p._array_form for p in self.generators] for i in range(len(gens)): # D elements of the subgroup G_i generated by gens[:i] D = element_list[:] N = [idn] while N: A = N N = [] for a in A: for g in gens[:i + 1]: ag = _af_rmul(a, g) if tuple(ag) not in set_element_list: # produce G_i*g for d in D: order += 1 ap = _af_rmul(d, ag) if af: yield ap else: p = _af_new(ap) yield p element_list.append(ap) set_element_list.add(tuple(ap)) N.append(ap) self._order = len(element_list) def generate_schreier_sims(self, af=False): """Yield group elements using the Schreier-Sims representation in coset_rank order If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] """ n = self._degree u = self.basic_transversals basic_orbits = self._basic_orbits if len(u) == 0: for x in self.generators: if af: yield x._array_form else: yield x return if len(u) == 1: for i in basic_orbits[0]: if af: yield u[0][i]._array_form else: yield u[0][i] return u = list(reversed(u)) basic_orbits = basic_orbits[::-1] # stg stack of group elements stg = [list(range(n))] posmax = [len(x) for x in u] n1 = len(posmax) - 1 pos = [0]*n1 h = 0 while 1: # backtrack when finished iterating over coset if pos[h] >= posmax[h]: if h == 0: return pos[h] = 0 h -= 1 stg.pop() continue p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) pos[h] += 1 stg.append(p) h += 1 if h == n1: if af: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) yield p else: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) p1 = _af_new(p) yield p1 stg.pop() h -= 1 @property def generators(self): """Returns the generators of the group. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.generators [(1 2), (2)(0 1)] """ return self._generators def contains(self, g, strict=True): """Test if permutation ``g`` belong to self, ``G``. If ``g`` is an element of ``G`` it can be written as a product of factors drawn from the cosets of ``G``'s stabilizers. To see if ``g`` is one of the actual generators defining the group use ``G.has(g)``. If ``strict`` is not ``True``, ``g`` will be resized, if necessary, to match the size of permutations in ``self``. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 2) >>> b = Permutation(2, 3, 1) >>> G = PermutationGroup(a, b, degree=5) >>> G.contains(G[0]) # trivial check True >>> elem = Permutation([[2, 3]], size=5) >>> G.contains(elem) True >>> G.contains(Permutation(4)(0, 1, 2, 3)) False If strict is False, a permutation will be resized, if necessary: >>> H = PermutationGroup(Permutation(5)) >>> H.contains(Permutation(3)) False >>> H.contains(Permutation(3), strict=False) True To test if a given permutation is present in the group: >>> elem in G.generators False >>> G.has(elem) False See Also ======== coset_factor, has, in """ if not isinstance(g, Permutation): return False if g.size != self.degree: if strict: return False g = Permutation(g, size=self.degree) if g in self.generators: return True return bool(self.coset_factor(g.array_form, True)) @property def is_perfect(self): """Return ``True`` if the group is perfect. A group is perfect if it equals to its derived subgroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3)(4,5) >>> b = Permutation(1,2,3,4,5) >>> G = PermutationGroup([a, b]) >>> G.is_perfect False """ if self._is_perfect is None: self._is_perfect = self == self.derived_subgroup() return self._is_perfect @property def is_abelian(self): """Test if the group is Abelian. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.is_abelian False >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_abelian True """ if self._is_abelian is not None: return self._is_abelian self._is_abelian = True gens = [p._array_form for p in self.generators] for x in gens: for y in gens: if y <= x: continue if not _af_commutes_with(x, y): self._is_abelian = False return False return True def abelian_invariants(self): """ Returns the abelian invariants for the given group. Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of prime-power order. The prime-powers that occur as the orders of the factors are uniquely determined by G. More precisely, the primes that occur in the orders of the factors in any such decomposition of ``G`` are exactly the primes that divide ``|G|`` and for any such prime ``p``, if the orders of the factors that are p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, then the orders of the factors that are p-groups in any such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken for all primes that divide ``|G|`` are called the invariants of the nontrivial group ``G`` as suggested in ([14], p. 542). Notes ===== We adopt the convention that the invariants of a trivial group are []. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.abelian_invariants() [2] >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(7) >>> G.abelian_invariants() [7] """ if self.is_trivial: return [] gns = self.generators inv = [] G = self H = G.derived_subgroup() Hgens = H.generators for p in primefactors(G.order()): ranks = [] while True: pows = [] for g in gns: elm = g**p if not H.contains(elm): pows.append(elm) K = PermutationGroup(Hgens + pows) if pows else H r = G.order()//K.order() G = K gns = pows if r == 1: break; ranks.append(multiplicity(p, r)) if ranks: pows = [1]*ranks[0] for i in ranks: for j in range(0, i): pows[j] = pows[j]*p inv.extend(pows) inv.sort() return inv def is_elementary(self, p): """Return ``True`` if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order `p`, where `p` is a prime. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_elementary(2) True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([3, 1, 2, 0]) >>> G = PermutationGroup([a, b]) >>> G.is_elementary(2) True >>> G.is_elementary(3) False """ return self.is_abelian and all(g.order() == p for g in self.generators) def is_alt_sym(self, eps=0.05, _random_prec=None): r"""Monte Carlo test for the symmetric/alternating group for degrees >= 8. More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps. For degree < 8, the order of the group is checked so the test is deterministic. Notes ===== The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group ``G`` of degree ``n`` contains an element with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately `\log(2)/\log(n)` ([1], p.82; [2], pp. 226-227). The helper function ``_check_cycles_alt_sym`` is used to go over the cycles in a permutation and look for ones satisfying 1). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_alt_sym() False See Also ======== _check_cycles_alt_sym """ if _random_prec is None: if self._is_sym or self._is_alt: return True n = self.degree if n < 8: sym_order = 1 for i in range(2, n+1): sym_order *= i order = self.order() if order == sym_order: self._is_sym = True return True elif 2*order == sym_order: self._is_alt = True return True return False if not self.is_transitive(): return False if n < 17: c_n = 0.34 else: c_n = 0.57 d_n = (c_n*log(2))/log(n) N_eps = int(-log(eps)/d_n) for i in range(N_eps): perm = self.random_pr() if _check_cycles_alt_sym(perm): return True return False else: for i in range(_random_prec['N_eps']): perm = _random_prec[i] if _check_cycles_alt_sym(perm): return True return False @property def is_nilpotent(self): """Test if the group is nilpotent. A group `G` is nilpotent if it has a central series of finite length. Alternatively, `G` is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> C = CyclicGroup(6) >>> C.is_nilpotent True >>> S = SymmetricGroup(5) >>> S.is_nilpotent False See Also ======== lower_central_series, is_solvable """ if self._is_nilpotent is None: lcs = self.lower_central_series() terminator = lcs[len(lcs) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True self._is_nilpotent = True return True else: self._is_nilpotent = False return False else: return self._is_nilpotent def is_normal(self, gr, strict=True): """Test if ``G=self`` is a normal subgroup of ``gr``. G is normal in gr if for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G It is sufficient to check this for each g1 in gr.generators and g2 in G.generators. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) >>> G1.is_normal(G) True """ if not self.is_subgroup(gr, strict=strict): return False d_self = self.degree d_gr = gr.degree if self.is_trivial and (d_self == d_gr or not strict): return True if self._is_abelian: return True new_self = self.copy() if not strict and d_self != d_gr: if d_self < d_gr: new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) else: gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) gens2 = [p._array_form for p in new_self.generators] gens1 = [p._array_form for p in gr.generators] for g1 in gens1: for g2 in gens2: p = _af_rmuln(g1, g2, _af_invert(g1)) if not new_self.coset_factor(p, True): return False return True def is_primitive(self, randomized=True): r"""Test if a group is primitive. A permutation group ``G`` acting on a set ``S`` is called primitive if ``S`` contains no nontrivial block under the action of ``G`` (a block is nontrivial if its cardinality is more than ``1``). Notes ===== The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form `\{0, k\}` for ``k`` ranging over representatives for the orbits of `G_0`, the stabilizer of ``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree of the group, and will perform badly if `G_0` is small. There are two implementations offered: one finds `G_0` deterministically using the function ``stabilizer``, and the other (default) produces random elements of `G_0` using ``random_stab``, hoping that they generate a subgroup of `G_0` with not too many more orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed by the ``randomized`` flag. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_primitive() False See Also ======== minimal_block, random_stab """ if self._is_primitive is not None: return self._is_primitive if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): self._is_primitive = False return False self._is_primitive = True return True def minimal_blocks(self, randomized=True): ''' For a transitive group, return the list of all minimal block systems. If a group is intransitive, return `False`. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> DihedralGroup(6).minimal_blocks() [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] >>> G = PermutationGroup(Permutation(1,2,5)) >>> G.minimal_blocks() False See Also ======== minimal_block, is_transitive, is_primitive ''' def _number_blocks(blocks): # number the blocks of a block system # in order and return the number of # blocks and the tuple with the # reordering n = len(blocks) appeared = {} m = 0 b = [None]*n for i in range(n): if blocks[i] not in appeared: appeared[blocks[i]] = m b[i] = m m += 1 else: b[i] = appeared[blocks[i]] return tuple(b), m if not self.is_transitive(): return False blocks = [] num_blocks = [] rep_blocks = [] if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0: block = self.minimal_block([0, x]) num_block, m = _number_blocks(block) # a representative block (containing 0) rep = set(j for j in range(self.degree) if num_block[j] == 0) # check if the system is minimal with # respect to the already discovere ones minimal = True to_remove = [] for i, r in enumerate(rep_blocks): if len(r) > len(rep) and rep.issubset(r): # i-th block system is not minimal del num_blocks[i], blocks[i] to_remove.append(rep_blocks[i]) elif len(r) < len(rep) and r.issubset(rep): # the system being checked is not minimal minimal = False break # remove non-minimal representative blocks rep_blocks = [r for r in rep_blocks if r not in to_remove] if minimal and num_block not in num_blocks: blocks.append(block) num_blocks.append(num_block) rep_blocks.append(rep) return blocks @property def is_solvable(self): """Test if the group is solvable. ``G`` is solvable if its derived series terminates with the trivial group ([1], p.29). Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(3) >>> S.is_solvable True See Also ======== is_nilpotent, derived_series """ if self._is_solvable is None: if self.order() % 2 != 0: return True ds = self.derived_series() terminator = ds[len(ds) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True return True else: self._is_solvable = False return False else: return self._is_solvable def is_subgroup(self, G, strict=True): """Return ``True`` if all elements of ``self`` belong to ``G``. If ``strict`` is ``False`` then if ``self``'s degree is smaller than ``G``'s, the elements will be resized to have the same degree. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) Testing is strict by default: the degree of each group must be the same: >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) >>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) >>> G3 = PermutationGroup([p, p**2]) >>> assert G1.order() == G2.order() == G3.order() == 6 >>> G1.is_subgroup(G2) True >>> G1.is_subgroup(G3) False >>> G3.is_subgroup(PermutationGroup(G3[1])) False >>> G3.is_subgroup(PermutationGroup(G3[0])) True To ignore the size, set ``strict`` to ``False``: >>> S3 = SymmetricGroup(3) >>> S5 = SymmetricGroup(5) >>> S3.is_subgroup(S5, strict=False) True >>> C7 = CyclicGroup(7) >>> G = S5*C7 >>> S5.is_subgroup(G, False) True >>> C7.is_subgroup(G, 0) False """ if not isinstance(G, PermutationGroup): return False if self == G or self.generators[0]==Permutation(): return True if G.order() % self.order() != 0: return False if self.degree == G.degree or \ (self.degree < G.degree and not strict): gens = self.generators else: return False return all(G.contains(g, strict=strict) for g in gens) @property def is_polycyclic(self): """Return ``True`` if a group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups, this is the same as if the group is solvable. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G = PermutationGroup([a, b]) >>> G.is_polycyclic True """ return self.is_solvable def is_transitive(self, strict=True): """Test if the group is transitive. A group is transitive if it has a single orbit. If ``strict`` is ``False`` the group is transitive if it has a single orbit of length different from 1. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G1 = PermutationGroup([a, b]) >>> G1.is_transitive() False >>> G1.is_transitive(strict=False) True >>> c = Permutation([2, 3, 0, 1]) >>> G2 = PermutationGroup([a, c]) >>> G2.is_transitive() True >>> d = Permutation([1, 0, 2, 3]) >>> e = Permutation([0, 1, 3, 2]) >>> G3 = PermutationGroup([d, e]) >>> G3.is_transitive() or G3.is_transitive(strict=False) False """ if self._is_transitive: # strict or not, if True then True return self._is_transitive if strict: if self._is_transitive is not None: # we only store strict=True return self._is_transitive ans = len(self.orbit(0)) == self.degree self._is_transitive = ans return ans got_orb = False for x in self.orbits(): if len(x) > 1: if got_orb: return False got_orb = True return got_orb @property def is_trivial(self): """Test if the group is the trivial group. This is true if the group contains only the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 1, 2])]) >>> G.is_trivial True """ if self._is_trivial is None: self._is_trivial = len(self) == 1 and self[0].is_Identity return self._is_trivial def lower_central_series(self): r"""Return the lower central series for the group. The lower central series for a group `G` is the series `G = G_0 > G_1 > G_2 > \ldots` where `G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the commutator of `G` and the previous term in `G1` ([1], p.29). Returns ======= A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` Examples ======== >>> from sympy.combinatorics.named_groups import (AlternatingGroup, ... DihedralGroup) >>> A = AlternatingGroup(4) >>> len(A.lower_central_series()) 2 >>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) True See Also ======== commutator, derived_series """ res = [self] current = self next = self.commutator(self, current) while not current.is_subgroup(next): res.append(next) current = next next = self.commutator(self, current) return res @property def max_div(self): """Maximum proper divisor of the degree of a permutation group. Notes ===== Obviously, this is the degree divided by its minimal proper divisor (larger than ``1``, if one exists). As it is guaranteed to be prime, the ``sieve`` from ``sympy.ntheory`` is used. This function is also used as an optimization tool for the functions ``minimal_block`` and ``_union_find_merge``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) >>> G.max_div 2 See Also ======== minimal_block, _union_find_merge """ if self._max_div is not None: return self._max_div n = self.degree if n == 1: return 1 for x in sieve: if n % x == 0: d = n//x self._max_div = d return d def minimal_block(self, points): r"""For a transitive group, finds the block system generated by ``points``. If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` is called a block under the action of ``G`` if for all ``g`` in ``G`` we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` partition the set ``S`` and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides ``|S|`` ([1], p.23). A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. For a transitive group, the equivalence classes of a ``G``-congruence and the blocks of a block system are the same thing ([1], p.23). The algorithm below checks the group for transitivity, and then finds the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), ..., (p_0,p_{k-1})`` which is the same as finding the maximal block system (i.e., the one with minimum block size) such that ``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set ``S`` using a union-find data structure. The running time is just above `O(|points||S|)`. ([1], pp. 83-87; [7]). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.minimal_block([0, 5]) [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] >>> D.minimal_block([0, 1]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] See Also ======== _union_find_rep, _union_find_merge, is_transitive, is_primitive """ if not self.is_transitive(): return False n = self.degree gens = self.generators # initialize the list of equivalence class representatives parents = list(range(n)) ranks = [1]*n not_rep = [] k = len(points) # the block size must divide the degree of the group if k > self.max_div: return [0]*n for i in range(k - 1): parents[points[i + 1]] = points[0] not_rep.append(points[i + 1]) ranks[points[0]] = k i = 0 len_not_rep = k - 1 while i < len_not_rep: gamma = not_rep[i] i += 1 for gen in gens: # find has side effects: performs path compression on the list # of representatives delta = self._union_find_rep(gamma, parents) # union has side effects: performs union by rank on the list # of representatives temp = self._union_find_merge(gen(gamma), gen(delta), ranks, parents, not_rep) if temp == -1: return [0]*n len_not_rep += temp for i in range(n): # force path compression to get the final state of the equivalence # relation self._union_find_rep(i, parents) # rewrite result so that block representatives are minimal new_reps = {} return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] def normal_closure(self, other, k=10): r"""Return the normal closure of a subgroup/set of permutations. If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` is defined as the intersection of all normal subgroups of ``G`` that contain ``A`` ([1], p.14). Alternatively, it is the group generated by the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a generator of the subgroup ``\left\langle S\right\rangle`` generated by ``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) ([1], p.73). Parameters ========== other a subgroup/list of permutations/single permutation k an implementation-specific parameter that determines the number of conjugates that are adjoined to ``other`` at once Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup, AlternatingGroup) >>> S = SymmetricGroup(5) >>> C = CyclicGroup(5) >>> G = S.normal_closure(C) >>> G.order() 60 >>> G.is_subgroup(AlternatingGroup(5)) True See Also ======== commutator, derived_subgroup, random_pr Notes ===== The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm. """ if hasattr(other, 'generators'): degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in other.generators): return other Z = PermutationGroup(other.generators[:]) base, strong_gens = Z.schreier_sims_incremental() strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) self._random_pr_init(r=10, n=20) _loop = True while _loop: Z._random_pr_init(r=10, n=10) for i in range(k): g = self.random_pr() h = Z.random_pr() conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: gens = Z.generators gens.append(conj) Z = PermutationGroup(gens) strong_gens.append(conj) temp_base, temp_strong_gens = \ Z.schreier_sims_incremental(base, strong_gens) base, strong_gens = temp_base, temp_strong_gens strong_gens_distr = \ _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) _loop = False for g in self.generators: for h in Z.generators: conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: _loop = True break if _loop: break return Z elif hasattr(other, '__getitem__'): return self.normal_closure(PermutationGroup(other)) elif hasattr(other, 'array_form'): return self.normal_closure(PermutationGroup([other])) def orbit(self, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> G.orbit(0) {0, 1, 2} >>> G.orbit([0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit_transversal """ return _orbit(self.degree, self.generators, alpha, action) def orbit_rep(self, alpha, beta, schreier_vector=None): """Return a group element which sends ``alpha`` to ``beta``. If ``beta`` is not in the orbit of ``alpha``, the function returns ``False``. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> G = AlternatingGroup(5) >>> G.orbit_rep(0, 4) (0 4 1 2 3) See Also ======== schreier_vector """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if schreier_vector[beta] is None: return False k = schreier_vector[beta] gens = [x._array_form for x in self.generators] a = [] while k != -1: a.append(gens[k]) beta = gens[k].index(beta) # beta = (~gens[k])(beta) k = schreier_vector[beta] if a: return _af_new(_af_rmuln(*a)) else: return _af_new(list(range(self._degree))) def orbit_transversal(self, alpha, pairs=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. For a permutation group `G`, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.orbit_transversal(0) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] See Also ======== orbit """ return _orbit_transversal(self._degree, self.generators, alpha, pairs) def orbits(self, rep=False): """Return the orbits of ``self``, ordered according to lowest element in each orbit. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 5)(2, 3)(4, 0, 6) >>> b = Permutation(1, 5)(3, 4)(2, 6, 0) >>> G = PermutationGroup([a, b]) >>> G.orbits() [{0, 2, 3, 4, 6}, {1, 5}] """ return _orbits(self._degree, self._generators) def order(self): """Return the order of the group: the number of permutations that can be generated from elements of the group. The number of permutations comprising the group is given by ``len(group)``; the length of each permutation in the group is given by ``group.size``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.order() 6 See Also ======== degree """ if self._order is not None: return self._order if self._is_sym: n = self._degree self._order = factorial(n) return self._order if self._is_alt: n = self._degree self._order = factorial(n)/2 return self._order basic_transversals = self.basic_transversals m = 1 for x in basic_transversals: m *= len(x) self._order = m return m def index(self, H): """ Returns the index of a permutation group. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3) >>> b =Permutation(3) >>> G = PermutationGroup([a]) >>> H = PermutationGroup([b]) >>> G.index(H) 3 """ if H.is_subgroup(self): return self.order()//H.order() @property def is_cyclic(self): """ Return ``True`` if the group is Cyclic. Examples ======== >>> from sympy.combinatorics.named_groups import AbelianGroup >>> G = AbelianGroup(3, 4) >>> G.is_cyclic True >>> G = AbelianGroup(4, 4) >>> G.is_cyclic False """ if self._is_cyclic is not None: return self._is_cyclic self._is_cyclic = True if len(self.generators) == 1: return True if not self._is_abelian: self._is_cyclic = False return False for p in primefactors(self.order()): pgens = [] for g in self.generators: pgens.append(g**p) if self.index(self.subgroup(pgens)) != p: self._is_cyclic = False return False else: continue return True def pointwise_stabilizer(self, points, incremental=True): r"""Return the pointwise stabilizer for a set of points. For a permutation group `G` and a set of points `\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of `p_1, p_2, \ldots, p_k` is defined as `G_{p_1,\ldots, p_k} = \{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). It is a subgroup of `G`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(7) >>> Stab = S.pointwise_stabilizer([2, 3, 5]) >>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) True See Also ======== stabilizer, schreier_sims_incremental Notes ===== When incremental == True, rather than the obvious implementation using successive calls to ``.stabilizer()``, this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points. """ if incremental: base, strong_gens = self.schreier_sims_incremental(base=points) stab_gens = [] degree = self.degree for gen in strong_gens: if [gen(point) for point in points] == points: stab_gens.append(gen) if not stab_gens: stab_gens = _af_new(list(range(degree))) return PermutationGroup(stab_gens) else: gens = self._generators degree = self.degree for x in points: gens = _stabilizer(degree, gens, x) return PermutationGroup(gens) def make_perm(self, n, seed=None): """ Multiply ``n`` randomly selected permutations from pgroup together, starting with the identity permutation. If ``n`` is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation. ``seed`` is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] >>> G = PermutationGroup([a, b]) >>> G.make_perm(1, [0]) (0 1)(2 3) >>> G.make_perm(3, [0, 1, 0]) (0 2 3 1) >>> G.make_perm([0, 1, 0]) (0 2 3 1) See Also ======== random """ if is_sequence(n): if seed is not None: raise ValueError('If n is a sequence, seed should be None') n, seed = len(n), n else: try: n = int(n) except TypeError: raise ValueError('n must be an integer or a sequence.') randrange = _randrange(seed) # start with the identity permutation result = Permutation(list(range(self.degree))) m = len(self) for i in range(n): p = self[randrange(m)] result = rmul(result, p) return result def random(self, af=False): """Return a random group element """ rank = randrange(self.order()) return self.coset_unrank(rank, af) def random_pr(self, gen_count=11, iterations=50, _random_prec=None): """Return a random group element using product replacement. For the details of the product replacement algorithm, see ``_random_pr_init`` In ``random_pr`` the actual 'product replacement' is performed. Notice that if the attribute ``_random_gens`` is empty, it needs to be initialized by ``_random_pr_init``. See Also ======== _random_pr_init """ if self._random_gens == []: self._random_pr_init(gen_count, iterations) random_gens = self._random_gens r = len(random_gens) - 1 # handle randomized input for testing purposes if _random_prec is None: s = randrange(r) t = randrange(r - 1) if t == s: t = r - 1 x = choice([1, 2]) e = choice([-1, 1]) else: s = _random_prec['s'] t = _random_prec['t'] if t == s: t = r - 1 x = _random_prec['x'] e = _random_prec['e'] if x == 1: random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) else: random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) return _af_new(random_gens[r]) def random_stab(self, alpha, schreier_vector=None, _random_prec=None): """Random element from the stabilizer of ``alpha``. The schreier vector for ``alpha`` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81 See Also ======== random_pr, orbit_rep """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if _random_prec is None: rand = self.random_pr() else: rand = _random_prec['rand'] beta = rand(alpha) h = self.orbit_rep(alpha, beta, schreier_vector) return rmul(~h, rand) def schreier_sims(self): """Schreier-Sims algorithm. It computes the generators of the chain of stabilizers `G > G_{b_1} > .. > G_{b1,..,b_r} > 1` in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, and the corresponding ``s`` cosets. An element of the group can be written as the product `h_1*..*h_s`. We use the incremental Schreier-Sims algorithm. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_sims() >>> G.basic_transversals [{0: (2)(0 1), 1: (2), 2: (1 2)}, {0: (2), 2: (0 2)}] """ if self._transversals: return self._schreier_sims() return def _schreier_sims(self, base=None): schreier = self.schreier_sims_incremental(base=base, slp_dict=True) base, strong_gens = schreier[:2] self._base = base self._strong_gens = strong_gens self._strong_gens_slp = schreier[2] if not base: self._transversals = [] self._basic_orbits = [] return strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ strong_gens_distr, slp=True) # rewrite the indices stored in slps in terms of strong_gens for i, slp in enumerate(slps): gens = strong_gens_distr[i] for k in slp: slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] self._transversals = transversals self._basic_orbits = [sorted(x) for x in basic_orbits] self._transversal_slp = slps def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): """Extend a sequence of points and generating set to a base and strong generating set. Parameters ========== base The sequence of points to be extended to a base. Optional parameter with default value ``[]``. gens The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value ``self.generators``. slp_dict If `True`, return a dictionary `{g: gens}` for each strong generator `g` where `gens` is a list of strong generators coming before `g` in `strong_gens`, such that the product of the elements of `gens` is equal to `g`. Returns ======= (base, strong_gens) ``base`` is the base obtained, and ``strong_gens`` is the strong generating set relative to it. The original parameters ``base``, ``gens`` remain unchanged. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(7) >>> base = [2, 3] >>> seq = [2, 3] >>> base, strong_gens = A.schreier_sims_incremental(base=seq) >>> _verify_bsgs(A, base, strong_gens) True >>> base[:2] [2, 3] Notes ===== This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, ``base`` and ``gens`` are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators ``gens``, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93. See Also ======== schreier_sims, schreier_sims_random """ if base is None: base = [] if gens is None: gens = self.generators[:] degree = self.degree id_af = list(range(degree)) # handle the trivial group if len(gens) == 1 and gens[0].is_Identity: if slp_dict: return base, gens, {gens[0]: [gens[0]]} return base, gens # prevent side effects _base, _gens = base[:], gens[:] # remove the identity as a generator _gens = [x for x in _gens if not x.is_Identity] # make sure no generator fixes all base points for gen in _gens: if all(x == gen._array_form[x] for x in _base): for new in id_af: if gen._array_form[new] != new: break else: assert None # can this ever happen? _base.append(new) # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(_base, _gens) strong_gens_slp = [] # initialize the basic stabilizers, basic orbits and basic transversals orbs = {} transversals = {} slps = {} base_len = len(_base) for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], _base[i], pairs=True, af=True, slp=True) transversals[i] = dict(transversals[i]) orbs[i] = list(transversals[i].keys()) # main loop: amend the stabilizer chain until we have generators # for all stabilizers i = base_len - 1 while i >= 0: # this flag is used to continue with the main loop from inside # a nested loop continue_i = False # test the generators for being a strong generating set db = {} for beta, u_beta in list(transversals[i].items()): for j, gen in enumerate(strong_gens_distr[i]): gb = gen._array_form[beta] u1 = transversals[i][gb] g1 = _af_rmul(gen._array_form, u_beta) slp = [(i, g) for g in slps[i][beta]] slp = [(i, j)] + slp if g1 != u1: # test if the schreier generator is in the i+1-th # would-be basic stabilizer y = True try: u1_inv = db[gb] except KeyError: u1_inv = db[gb] = _af_invert(u1) schreier_gen = _af_rmul(u1_inv, g1) u1_inv_slp = slps[i][gb][:] u1_inv_slp.reverse() u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] slp = u1_inv_slp + slp h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) if j <= base_len: # new strong generator h at level j y = False elif h: # h fixes all base points y = False moved = 0 while h[moved] == moved: moved += 1 _base.append(moved) base_len += 1 strong_gens_distr.append([]) if y is False: # if a new strong generator is found, update the # data structures and start over h = _af_new(h) strong_gens_slp.append((h, slp)) for l in range(i + 1, j): strong_gens_distr[l].append(h) transversals[l], slps[l] =\ _orbit_transversal(degree, strong_gens_distr[l], _base[l], pairs=True, af=True, slp=True) transversals[l] = dict(transversals[l]) orbs[l] = list(transversals[l].keys()) i = j - 1 # continue main loop using the flag continue_i = True if continue_i is True: break if continue_i is True: break if continue_i is True: continue i -= 1 strong_gens = _gens[:] if slp_dict: # create the list of the strong generators strong_gens and # rewrite the indices of strong_gens_slp in terms of the # elements of strong_gens for k, slp in strong_gens_slp: strong_gens.append(k) for i in range(len(slp)): s = slp[i] if isinstance(s[1], tuple): slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 else: slp[i] = strong_gens_distr[s[0]][s[1]] strong_gens_slp = dict(strong_gens_slp) # add the original generators for g in _gens: strong_gens_slp[g] = [g] return (_base, strong_gens, strong_gens_slp) strong_gens.extend([k for k, _ in strong_gens_slp]) return _base, strong_gens def schreier_sims_random(self, base=None, gens=None, consec_succ=10, _random_prec=None): r"""Randomized Schreier-Sims algorithm. The randomized Schreier-Sims algorithm takes the sequence ``base`` and the generating set ``gens``, and extends ``base`` to a base, and ``gens`` to a strong generating set relative to that base with probability of a wrong answer at most `2^{-consec\_succ}`, provided the random generators are sufficiently random. Parameters ========== base The sequence to be extended to a base. gens The generating set to be extended to a strong generating set. consec_succ The parameter defining the probability of a wrong answer. _random_prec An internal parameter used for testing purposes. Returns ======= (base, strong_gens) ``base`` is the base and ``strong_gens`` is the strong generating set relative to it. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(5) >>> base, strong_gens = S.schreier_sims_random(consec_succ=5) >>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP True Notes ===== The algorithm is described in detail in [1], pp. 97-98. It extends the orbits ``orbs`` and the permutation groups ``stabs`` to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function ``_strip`` is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. The halting condition is for ``consec_succ`` consecutive successful sifts to pass. This makes sure that the current ``base`` and ``gens`` form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. See Also ======== schreier_sims """ if base is None: base = [] if gens is None: gens = self.generators base_len = len(base) n = self.degree # make sure no generator fixes all base points for gen in gens: if all(gen(x) == x for x in base): new = 0 while gen._array_form[new] == new: new += 1 base.append(new) base_len += 1 # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(base, gens) # initialize the basic stabilizers, basic transversals and basic orbits transversals = {} orbs = {} for i in range(base_len): transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], base[i], pairs=True)) orbs[i] = list(transversals[i].keys()) # initialize the number of consecutive elements sifted c = 0 # start sifting random elements while the number of consecutive sifts # is less than consec_succ while c < consec_succ: if _random_prec is None: g = self.random_pr() else: g = _random_prec['g'].pop() h, j = _strip(g, base, orbs, transversals) y = True # determine whether a new base point is needed if j <= base_len: y = False elif not h.is_Identity: y = False moved = 0 while h(moved) == moved: moved += 1 base.append(moved) base_len += 1 strong_gens_distr.append([]) # if the element doesn't sift, amend the strong generators and # associated stabilizers and orbits if y is False: for l in range(1, j): strong_gens_distr[l].append(h) transversals[l] = dict(_orbit_transversal(n, strong_gens_distr[l], base[l], pairs=True)) orbs[l] = list(transversals[l].keys()) c = 0 else: c += 1 # build the strong generating set strong_gens = strong_gens_distr[0][:] for gen in strong_gens_distr[1]: if gen not in strong_gens: strong_gens.append(gen) return base, strong_gens def schreier_vector(self, alpha): """Computes the schreier vector for ``alpha``. The Schreier vector efficiently stores information about the orbit of ``alpha``. It can later be used to quickly obtain elements of the group that send ``alpha`` to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) >>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_vector(0) [-1, None, 0, 1, None, 1, 0] See Also ======== orbit """ n = self.degree v = [None]*n v[alpha] = -1 orb = [alpha] used = [False]*n used[alpha] = True gens = self.generators r = len(gens) for b in orb: for i in range(r): temp = gens[i]._array_form[b] if used[temp] is False: orb.append(temp) used[temp] = True v[temp] = i return v def stabilizer(self, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.stabilizer(5) PermutationGroup([ (5)(0 4)(1 3)]) See Also ======== orbit """ return PermGroup(_stabilizer(self._degree, self._generators, alpha)) @property def strong_gens(self): r"""Return a strong generating set from the Schreier-Sims algorithm. A generating set `S = \{g_1, g_2, ..., g_t\}` for a permutation group `G` is a strong generating set relative to the sequence of points (referred to as a "base") `(b_1, b_2, ..., b_k)` if, for `1 \leq i \leq k` we have that the intersection of the pointwise stabilizer `G^{(i+1)} := G_{b_1, b_2, ..., b_i}` with `S` generates the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> D.strong_gens [(0 1 2 3), (0 3)(1 2), (1 3)] >>> D.base [0, 1] See Also ======== base, basic_transversals, basic_orbits, basic_stabilizers """ if self._strong_gens == []: self.schreier_sims() return self._strong_gens def subgroup(self, gens): """ Return the subgroup generated by `gens` which is a list of elements of the group """ if not all([g in self for g in gens]): raise ValueError("The group doesn't contain the supplied generators") G = PermutationGroup(gens) return G def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, init_subgroup=None): """Find the subgroup of all elements satisfying the property ``prop``. This is done by a depth-first search with respect to base images that uses several tests to prune the search tree. Parameters ========== prop The property to be used. Has to be callable on group elements and always return ``True`` or ``False``. It is assumed that all group elements satisfying ``prop`` indeed form a subgroup. base A base for the supergroup. strong_gens A strong generating set for the supergroup. tests A list of callables of length equal to the length of ``base``. These are used to rule out group elements by partial base images, so that ``tests[l](g)`` returns False if the element ``g`` is known not to satisfy prop base on where g sends the first ``l + 1`` base points. init_subgroup if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter. Returns ======= res The subgroup of all elements satisfying ``prop``. The generating set for this group is guaranteed to be a strong generating set relative to the base ``base``. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(7) >>> prop_even = lambda x: x.is_even >>> base, strong_gens = S.schreier_sims_incremental() >>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) >>> G.is_subgroup(AlternatingGroup(7)) True >>> _verify_bsgs(G, base, G.generators) True Notes ===== This function is extremely lengthy and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity. The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the ``tests`` parameter, so in practice, and for some computations, it's not terrible. A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using ``.baseswap(...)``, however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function ``.stabilizer(...)`` on the previous basic stabilizer. """ # initialize BSGS and basic group properties def get_reps(orbits): # get the minimal element in the base ordering return [min(orbit, key = lambda x: base_ordering[x]) \ for orbit in orbits] def update_nu(l): temp_index = len(basic_orbits[l]) + 1 -\ len(res_basic_orbits_init_base[l]) # this corresponds to the element larger than all points if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] if base is None: base, strong_gens = self.schreier_sims_incremental() base_len = len(base) degree = self.degree identity = _af_new(list(range(degree))) base_ordering = _base_ordering(base, degree) # add an element larger than all points base_ordering.append(degree) # add an element smaller than all points base_ordering.append(-1) # compute BSGS-related structures strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) # handle subgroup initialization and tests if init_subgroup is None: init_subgroup = PermutationGroup([identity]) if tests is None: trivial_test = lambda x: True tests = [] for i in range(base_len): tests.append(trivial_test) # line 1: more initializations. res = init_subgroup f = base_len - 1 l = base_len - 1 # line 2: set the base for K to the base for G res_base = base[:] # line 3: compute BSGS and related structures for K res_base, res_strong_gens = res.schreier_sims_incremental( base=res_base) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_generators = res.generators res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i])\ for i in range(base_len)] # initialize orbit representatives orbit_reps = [None]*base_len # line 4: orbit representatives for f-th basic stabilizer of K orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(orbits) # line 5: remove the base point from the representatives to avoid # getting the identity element as a generator for K orbit_reps[f].remove(base[f]) # line 6: more initializations c = [0]*base_len u = [identity]*base_len sorted_orbits = [None]*base_len for i in range(base_len): sorted_orbits[i] = basic_orbits[i][:] sorted_orbits[i].sort(key=lambda point: base_ordering[point]) # line 7: initializations mu = [None]*base_len nu = [None]*base_len # this corresponds to the element smaller than all points mu[l] = degree + 1 update_nu(l) # initialize computed words computed_words = [identity]*base_len # line 8: main loop while True: # apply all the tests while l < base_len - 1 and \ computed_words[l](base[l]) in orbit_reps[l] and \ base_ordering[mu[l]] < \ base_ordering[computed_words[l](base[l])] < \ base_ordering[nu[l]] and \ tests[l](computed_words): # line 11: change the (partial) base of K new_point = computed_words[l](base[l]) res_base[l] = new_point new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], new_point) res_strong_gens_distr[l + 1] = new_stab_gens # line 12: calculate minimal orbit representatives for the # l+1-th basic stabilizer orbits = _orbits(degree, new_stab_gens) orbit_reps[l + 1] = get_reps(orbits) # line 13: amend sorted orbits l += 1 temp_orbit = [computed_words[l - 1](point) for point in basic_orbits[l]] temp_orbit.sort(key=lambda point: base_ordering[point]) sorted_orbits[l] = temp_orbit # lines 14 and 15: update variables used minimality tests new_mu = degree + 1 for i in range(l): if base[l] in res_basic_orbits_init_base[i]: candidate = computed_words[i](base[i]) if base_ordering[candidate] > base_ordering[new_mu]: new_mu = candidate mu[l] = new_mu update_nu(l) # line 16: determine the new transversal element c[l] = 0 temp_point = sorted_orbits[l][c[l]] gamma = computed_words[l - 1]._array_form.index(temp_point) u[l] = transversals[l][gamma] # update computed words computed_words[l] = rmul(computed_words[l - 1], u[l]) # lines 17 & 18: apply the tests to the group element found g = computed_words[l] temp_point = g(base[l]) if l == base_len - 1 and \ base_ordering[mu[l]] < \ base_ordering[temp_point] < base_ordering[nu[l]] and \ temp_point in orbit_reps[l] and \ tests[l](computed_words) and \ prop(g): # line 19: reset the base of K res_generators.append(g) res_base = base[:] # line 20: recalculate basic orbits (and transversals) res_strong_gens.append(g) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ for i in range(base_len)] # line 21: recalculate orbit representatives # line 22: reset the search depth orbit_reps[f] = get_reps(orbits) l = f # line 23: go up the tree until in the first branch not fully # searched while l >= 0 and c[l] == len(basic_orbits[l]) - 1: l = l - 1 # line 24: if the entire tree is traversed, return K if l == -1: return PermutationGroup(res_generators) # lines 25-27: update orbit representatives if l < f: # line 26 f = l c[l] = 0 # line 27 temp_orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(temp_orbits) # line 28: update variables used for minimality testing mu[l] = degree + 1 temp_index = len(basic_orbits[l]) + 1 - \ len(res_basic_orbits_init_base[l]) if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] # line 29: set the next element from the current branch and update # accordingly c[l] += 1 if l == 0: gamma = sorted_orbits[l][c[l]] else: gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) u[l] = transversals[l][gamma] if l == 0: computed_words[l] = u[l] else: computed_words[l] = rmul(computed_words[l - 1], u[l]) @property def transitivity_degree(self): r"""Compute the degree of transitivity of the group. A permutation group `G` acting on `\Omega = \{0, 1, ..., n-1\}` is ``k``-fold transitive, if, for any k points `(a_1, a_2, ..., a_k)\in\Omega` and any k points `(b_1, b_2, ..., b_k)\in\Omega` there exists `g\in G` such that `g(a_1)=b_1, g(a_2)=b_2, ..., g(a_k)=b_k` The degree of transitivity of `G` is the maximum ``k`` such that `G` is ``k``-fold transitive. ([8]) Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.transitivity_degree 3 See Also ======== is_transitive, orbit """ if self._transitivity_degree is None: n = self.degree G = self # if G is k-transitive, a tuple (a_0,..,a_k) # can be brought to (b_0,...,b_(k-1), b_k) # where b_0,...,b_(k-1) are fixed points; # consider the group G_k which stabilizes b_0,...,b_(k-1) # if G_k is transitive on the subset excluding b_0,...,b_(k-1) # then G is (k+1)-transitive for i in range(n): orb = G.orbit((i)) if len(orb) != n - i: self._transitivity_degree = i return i G = G.stabilizer(i) self._transitivity_degree = n return n else: return self._transitivity_degree def _p_elements_group(G, p): ''' For an abelian p-group G return the subgroup consisting of all elements of order p (and the identity) ''' gens = G.generators[:] gens = sorted(gens, key=lambda x: x.order(), reverse=True) gens_p = [g**(g.order()/p) for g in gens] gens_r = [] for i in range(len(gens)): x = gens[i] x_order = x.order() # x_p has order p x_p = x**(x_order/p) if i > 0: P = PermutationGroup(gens_p[:i]) else: P = PermutationGroup(G.identity) if x**(x_order/p) not in P: gens_r.append(x**(x_order/p)) else: # replace x by an element of order (x.order()/p) # so that gens still generates G g = P.generator_product(x_p, original=True) for s in g: x = x*s**-1 x_order = x_order/p # insert x to gens so that the sorting is preserved del gens[i] del gens_p[i] j = i - 1 while j < len(gens) and gens[j].order() >= x_order: j += 1 gens = gens[:j] + [x] + gens[j:] gens_p = gens_p[:j] + [x] + gens_p[j:] return PermutationGroup(gens_r) def _sylow_alt_sym(self, p): ''' Return a p-Sylow subgroup of a symmetric or an alternating group. The algorithm for this is hinted at in [1], Chapter 4, Exercise 4. For Sym(n) with n = p^i, the idea is as follows. Partition the interval [0..n-1] into p equal parts, each of length p^(i-1): [0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup of `self`) acting on each of the parts. Call the subgroups P_1, P_2...P_p. The generators for the subgroups P_2...P_p can be obtained from those of P_1 by applying a "shifting" permutation to them, that is, a permutation mapping [0..p^(i-1)-1] to the second part (the other parts are obtained by using the shift multiple times). The union of this permutation and the generators of P_1 is a p-Sylow subgroup of `self`. For n not equal to a power of p, partition [0..n-1] in accordance with how n would be written in base p. E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, take the union of the generators for each of the parts. For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} from the first part, {(8 9)} from the second part and nothing from the third. This gives 4 generators in total, and the subgroup they generate is p-Sylow. Alternating groups are treated the same except when p=2. In this case, (0 1)(s s+1) should be added for an appropriate s (the start of a part) for each part in the partitions. See Also ======== sylow_subgroup, is_alt_sym ''' n = self.degree gens = [] identity = Permutation(n-1) # the case of 2-sylow subgroups of alternating groups # needs special treatment alt = p == 2 and all(g.is_even for g in self.generators) # find the presentation of n in base p coeffs = [] m = n while m > 0: coeffs.append(m % p) m = m // p power = len(coeffs)-1 # for a symmetric group, gens[:i] is the generating # set for a p-Sylow subgroup on [0..p**(i-1)-1]. For # alternating groups, the same is given by gens[:2*(i-1)] for i in range(1, power+1): if i == 1 and alt: # (0 1) shouldn't be added for alternating groups continue gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) gens.append(identity*gen) if alt: gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen gens.append(gen) # the first point in the current part (see the algorithm # description in the docstring) start = 0 while power > 0: a = coeffs[power] # make the permutation shifting the start of the first # part ([0..p^i-1] for some i) to the current one for s in range(a): shift = Permutation() if start > 0: for i in range(p**power): shift = shift(i, start + i) if alt: gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift gens.append(gen) j = 2*(power - 1) else: j = power for i, gen in enumerate(gens[:j]): if alt and i % 2 == 1: continue # shift the generator to the start of the # partition part gen = shift*gen*shift gens.append(gen) start += p**power power = power-1 return gens def sylow_subgroup(self, p): ''' Return a p-Sylow subgroup of the group. The algorithm is described in [1], Chapter 4, Section 7 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> D = DihedralGroup(6) >>> S = D.sylow_subgroup(2) >>> S.order() 4 >>> G = SymmetricGroup(6) >>> S = G.sylow_subgroup(5) >>> S.order() 5 >>> G1 = AlternatingGroup(3) >>> G2 = AlternatingGroup(5) >>> G3 = AlternatingGroup(9) >>> S1 = G1.sylow_subgroup(3) >>> S2 = G2.sylow_subgroup(3) >>> S3 = G3.sylow_subgroup(3) >>> len1 = len(S1.lower_central_series()) >>> len2 = len(S2.lower_central_series()) >>> len3 = len(S3.lower_central_series()) >>> len1 == len2 True >>> len1 < len3 True ''' from sympy.combinatorics.homomorphisms import ( orbit_homomorphism, block_homomorphism) from sympy.ntheory.primetest import isprime if not isprime(p): raise ValueError("p must be a prime") def is_p_group(G): # check if the order of G is a power of p # and return the power m = G.order() n = 0 while m % p == 0: m = m/p n += 1 if m == 1: return True, n return False, n def _sylow_reduce(mu, nu): # reduction based on two homomorphisms # mu and nu with trivially intersecting # kernels Q = mu.image().sylow_subgroup(p) Q = mu.invert_subgroup(Q) nu = nu.restrict_to(Q) R = nu.image().sylow_subgroup(p) return nu.invert_subgroup(R) order = self.order() if order % p != 0: return PermutationGroup([self.identity]) p_group, n = is_p_group(self) if p_group: return self if self.is_alt_sym(): return PermutationGroup(self._sylow_alt_sym(p)) # if there is a non-trivial orbit with size not divisible # by p, the sylow subgroup is contained in its stabilizer # (by orbit-stabilizer theorem) orbits = self.orbits() non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] if non_p_orbits: G = self.stabilizer(list(non_p_orbits[0]).pop()) return G.sylow_subgroup(p) if not self.is_transitive(): # apply _sylow_reduce to orbit actions orbits = sorted(orbits, key = lambda x: len(x)) omega1 = orbits.pop() omega2 = orbits[0].union(*orbits) mu = orbit_homomorphism(self, omega1) nu = orbit_homomorphism(self, omega2) return _sylow_reduce(mu, nu) blocks = self.minimal_blocks() if len(blocks) > 1: # apply _sylow_reduce to block system actions mu = block_homomorphism(self, blocks[0]) nu = block_homomorphism(self, blocks[1]) return _sylow_reduce(mu, nu) elif len(blocks) == 1: block = list(blocks)[0] if any(e != 0 for e in block): # self is imprimitive mu = block_homomorphism(self, block) if not is_p_group(mu.image())[0]: S = mu.image().sylow_subgroup(p) return mu.invert_subgroup(S).sylow_subgroup(p) # find an element of order p g = self.random() g_order = g.order() while g_order % p != 0 or g_order == 0: g = self.random() g_order = g.order() g = g**(g_order // p) if order % p**2 != 0: return PermutationGroup(g) C = self.centralizer(g) while C.order() % p**n != 0: S = C.sylow_subgroup(p) s_order = S.order() Z = S.center() P = Z._p_elements_group(p) h = P.random() C_h = self.centralizer(h) while C_h.order() % p*s_order != 0: h = P.random() C_h = self.centralizer(h) C = C_h return C.sylow_subgroup(p) def _block_verify(H, L, alpha): delta = sorted(list(H.orbit(alpha))) H_gens = H.generators # p[i] will be the number of the block # delta[i] belongs to p = [-1]*len(delta) blocks = [-1]*len(delta) B = [[]] # future list of blocks u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i] t = L.orbit_transversal(alpha, pairs=True) for a, beta in t: B[0].append(a) i_a = delta.index(a) p[i_a] = 0 blocks[i_a] = alpha u[i_a] = beta rho = 0 m = 0 # number of blocks - 1 while rho <= m: beta = B[rho][0] for g in H_gens: d = beta^g i_d = delta.index(d) sigma = p[i_d] if sigma < 0: # define a new block m += 1 sigma = m u[i_d] = u[delta.index(beta)]*g p[i_d] = sigma rep = d blocks[i_d] = rep newb = [rep] for gamma in B[rho][1:]: i_gamma = delta.index(gamma) d = gamma^g i_d = delta.index(d) if p[i_d] < 0: u[i_d] = u[i_gamma]*g p[i_d] = sigma blocks[i_d] = rep newb.append(d) else: # B[rho] is not a block s = u[i_gamma]*g*u[i_d]**(-1) return False, s B.append(newb) else: for h in B[rho][1:]: if not h^g in B[sigma]: # B[rho] is not a block s = u[delta.index(beta)]*g*u[i_d]**(-1) return False, s rho += 1 return True, blocks def _verify(H, K, phi, z, alpha): ''' Return a list of relators `rels` in generators `gens_h` that are mapped to `H.generators` by `phi` so that given a finite presentation <gens_k | rels_k> of `K` on a subset of `gens_h` <gens_h | rels_k + rels> is a finite presentation of `H`. `H` should be generated by the union of `K.generators` and `z` (a single generator), and `H.stabilizer(alpha) == K`; `phi` is a canonical injection from a free group into a permutation group containing `H`. The algorithm is described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.homomorphisms import homomorphism >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) >>> K = PermutationGroup(Permutation(5)(0, 2)) >>> F = free_group("x_0 x_1")[0] >>> gens = F.generators >>> phi = homomorphism(F, H, F.generators, H.generators) >>> rels_k = [gens[0]**2] # relators for presentation of K >>> z= Permutation(1, 5) >>> check, rels_h = H._verify(K, phi, z, 1) >>> check True >>> rels = rels_k + rels_h >>> G = FpGroup(F, rels) # presentation of H >>> G.order() == H.order() True See also ======== strong_presentation, presentation, stabilizer ''' orbit = H.orbit(alpha) beta = alpha^(z**-1) K_beta = K.stabilizer(beta) # orbit representatives of K_beta gammas = [alpha, beta] orbits = list(set(tuple(K_beta.orbit(o)) for o in orbit)) orbit_reps = [orb[0] for orb in orbits] for rep in orbit_reps: if rep not in gammas: gammas.append(rep) # orbit transversal of K betas = [alpha, beta] transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} for s, g in K.orbit_transversal(beta, pairs=True): if not s in transversal: transversal[s] = transversal[beta]*phi.invert(g) union = K.orbit(alpha).union(K.orbit(beta)) while (len(union) < len(orbit)): for gamma in gammas: if gamma in union: r = gamma^z if r not in union: betas.append(r) transversal[r] = transversal[gamma]*phi.invert(z) for s, g in K.orbit_transversal(r, pairs=True): if not s in transversal: transversal[s] = transversal[r]*phi.invert(g) union = union.union(K.orbit(r)) break # compute relators rels = [] for b in betas: k_gens = K.stabilizer(b).generators for y in k_gens: new_rel = transversal[b] gens = K.generator_product(y, original=True) for g in gens[::-1]: new_rel = new_rel*phi.invert(g) new_rel = new_rel*transversal[b]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) for gamma in gammas: new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) return True, rels def strong_presentation(G): ''' Return a strong finite presentation of `G`. The generators of the returned group are in the same order as the strong generators of `G`. The algorithm is based on Sims' Verify algorithm described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> P = DihedralGroup(4) >>> G = P.strong_presentation() >>> P.order() == G.order() True See Also ======== presentation, _verify ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import (block_homomorphism, homomorphism, GroupHomomorphism) strong_gens = G.strong_gens[:] stabs = G.basic_stabilizers[:] base = G.base[:] # injection from a free group on len(strong_gens) # generators into G gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] F = free_group(', '.join(gen_syms))[0] phi = homomorphism(F, G, F.generators, strong_gens) H = PermutationGroup(G.identity) while stabs: alpha = base.pop() K = H H = stabs.pop() new_gens = [g for g in H.generators if g not in K] if K.order() == 1: z = new_gens.pop() rels = [F.generators[-1]**z.order()] intermediate_gens = [z] K = PermutationGroup(intermediate_gens) # add generators one at a time building up from K to H while new_gens: z = new_gens.pop() intermediate_gens = [z] + intermediate_gens K_s = PermutationGroup(intermediate_gens) orbit = K_s.orbit(alpha) orbit_k = K.orbit(alpha) # split into cases based on the orbit of K_s if orbit_k == orbit: if z in K: rel = phi.invert(z) perm = z else: t = K.orbit_rep(alpha, alpha^z) rel = phi.invert(z)*phi.invert(t)**-1 perm = z*t**-1 for g in K.generator_product(perm, original=True): rel = rel*phi.invert(g)**-1 new_rels = [rel] elif len(orbit_k) == 1: # `success` is always true because `strong_gens` # and `base` are already a verified BSGS. Later # this could be changed to start with a randomly # generated (potential) BSGS, and then new elements # would have to be appended to it when `success` # is false. success, new_rels = K_s._verify(K, phi, z, alpha) else: # K.orbit(alpha) should be a block # under the action of K_s on K_s.orbit(alpha) check, block = K_s._block_verify(K, alpha) if check: # apply _verify to the action of K_s # on the block system; for convenience, # add the blocks as additional points # that K_s should act on t = block_homomorphism(K_s, block) m = t.codomain.degree # number of blocks d = K_s.degree # conjugating with p will shift # permutations in t.image() to # higher numbers, e.g. # p*(0 1)*p = (m m+1) p = Permutation() for i in range(m): p *= Permutation(i, i+d) t_img = t.images # combine generators of K_s with their # action on the block system images = {g: g*p*t_img[g]*p for g in t_img} for g in G.strong_gens[:-len(K_s.generators)]: images[g] = g K_s_act = PermutationGroup(list(images.values())) f = GroupHomomorphism(G, K_s_act, images) K_act = PermutationGroup([f(g) for g in K.generators]) success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) for n in new_rels: if not n in rels: rels.append(n) K = K_s group = FpGroup(F, rels) return simplify_presentation(group) def presentation(G, eliminate_gens=True): ''' Return an `FpGroup` presentation of the group. The algorithm is described in [1], Chapter 6.1. ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.coset_table import CosetTable from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import homomorphism from itertools import product if G._fp_presentation: return G._fp_presentation if G._fp_presentation: return G._fp_presentation def _factor_group_by_rels(G, rels): if isinstance(G, FpGroup): rels.extend(G.relators) return FpGroup(G.free_group, list(set(rels))) return FpGroup(G, rels) gens = G.generators len_g = len(gens) if len_g == 1: order = gens[0].order() # handle the trivial group if order == 1: return free_group([])[0] F, x = free_group('x') return FpGroup(F, [x**order]) if G.order() > 20: half_gens = G.generators[0:(len_g+1)//2] else: half_gens = [] H = PermutationGroup(half_gens) H_p = H.presentation() len_h = len(H_p.generators) C = G.coset_table(H) n = len(C) # subgroup index gen_syms = [('x_%d'%i) for i in range(len(gens))] F = free_group(', '.join(gen_syms))[0] # mapping generators of H_p to those of F images = [F.generators[i] for i in range(len_h)] R = homomorphism(H_p, F, H_p.generators, images, check=False) # rewrite relators rels = R(H_p.relators) G_p = FpGroup(F, rels) # injective homomorphism from G_p into G T = homomorphism(G_p, G, G_p.generators, gens) C_p = CosetTable(G_p, []) C_p.table = [[None]*(2*len_g) for i in range(n)] # initiate the coset transversal transversal = [None]*n transversal[0] = G_p.identity # fill in the coset table as much as possible for i in range(2*len_h): C_p.table[0][i] = 0 gamma = 1 for alpha, x in product(range(0, n), range(2*len_g)): beta = C[alpha][x] if beta == gamma: gen = G_p.generators[x//2]**((-1)**(x % 2)) transversal[beta] = transversal[alpha]*gen C_p.table[alpha][x] = beta C_p.table[beta][x + (-1)**(x % 2)] = alpha gamma += 1 if gamma == n: break C_p.p = list(range(n)) beta = x = 0 while not C_p.is_complete(): # find the first undefined entry while C_p.table[beta][x] == C[beta][x]: x = (x + 1) % (2*len_g) if x == 0: beta = (beta + 1) % n # define a new relator gen = G_p.generators[x//2]**((-1)**(x % 2)) new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 perm = T(new_rel) next = G_p.identity for s in H.generator_product(perm, original=True): next = next*T.invert(s)**-1 new_rel = new_rel*next # continue coset enumeration G_p = _factor_group_by_rels(G_p, [new_rel]) C_p.scan_and_fill(0, new_rel) C_p = G_p.coset_enumeration([], strategy="coset_table", draft=C_p, max_cosets=n, incomplete=True) G._fp_presentation = simplify_presentation(G_p) return G._fp_presentation def polycyclic_group(self): """ Return the PolycyclicGroup instance with below parameters: * ``pc_sequence`` : Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group. * ``pc_series`` : Polycyclic series is formed by adding all the missing generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents the derived series. * ``relative_order`` : A list, computed by the ratio of adjacent groups in pc_series. """ from sympy.combinatorics.pc_groups import PolycyclicGroup if not self.is_polycyclic: raise ValueError("The group must be solvable") der = self.derived_series() pc_series = [] pc_sequence = [] relative_order = [] pc_series.append(der[-1]) der.reverse() for i in range(len(der)-1): H = der[i] for g in der[i+1].generators: if g not in H: H = PermutationGroup([g] + H.generators) pc_series.insert(0, H) pc_sequence.insert(0, g) G1 = pc_series[0].order() G2 = pc_series[1].order() relative_order.insert(0, G1 // G2) return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) def _orbit(degree, generators, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> _orbit(G.degree, G.generators, 0) {0, 1, 2} >>> _orbit(G.degree, G.generators, [0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit, orbit_transversal """ if not hasattr(alpha, '__getitem__'): alpha = [alpha] gens = [x._array_form for x in generators] if len(alpha) == 1 or action == 'union': orb = alpha used = [False]*degree for el in alpha: used[el] = True for b in orb: for gen in gens: temp = gen[b] if used[temp] == False: orb.append(temp) used[temp] = True return set(orb) elif action == 'tuples': alpha = tuple(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = tuple([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return set(orb) elif action == 'sets': alpha = frozenset(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = frozenset([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return {tuple(x) for x in orb} def _orbits(degree, generators): """Compute the orbits of G. If ``rep=False`` it returns a list of sets else it returns a list of representatives of the orbits Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbits >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> _orbits(a.size, [a, b]) [{0, 1, 2}] """ orbs = [] sorted_I = list(range(degree)) I = set(sorted_I) while I: i = sorted_I[0] orb = _orbit(degree, generators, i) orbs.append(orb) # remove all indices that are in this orbit I -= orb sorted_I = [i for i in sorted_I if i not in orb] return orbs def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. generators generators of the group ``G`` For a permutation group ``G``, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 if ``af`` is ``True``, the transversal elements are given in array form. If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned for `\beta \in Orb` where `slp_beta` is a list of indices of the generators in `generators` s.t. if `slp_beta = [i_1 ... i_n]` `g_\beta = generators[i_n]*...*generators[i_1]`. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.perm_groups import _orbit_transversal >>> G = DihedralGroup(6) >>> _orbit_transversal(G.degree, G.generators, 0, False) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] """ tr = [(alpha, list(range(degree)))] slp_dict = {alpha: []} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] for x, px in tr: px_slp = slp_dict[x] for gen in gens: temp = gen[x] if used[temp] == False: slp_dict[temp] = [gens.index(gen)] + px_slp tr.append((temp, _af_rmul(gen, px))) used[temp] = True if pairs: if not af: tr = [(x, _af_new(y)) for x, y in tr] if not slp: return tr return tr, slp_dict if af: tr = [y for _, y in tr] if not slp: return tr return tr, slp_dict tr = [_af_new(y) for _, y in tr] if not slp: return tr return tr, slp_dict def _stabilizer(degree, generators, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. degree : degree of G generators : generators of G Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import _stabilizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> _stabilizer(G.degree, G.generators, 5) [(5)(0 4)(1 3), (5)] See Also ======== orbit """ orb = [alpha] table = {alpha: list(range(degree))} table_inv = {alpha: list(range(degree))} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] stab_gens = [] for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: gen_temp = _af_rmul(gen, table[b]) orb.append(temp) table[temp] = gen_temp table_inv[temp] = _af_invert(gen_temp) used[temp] = True else: schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) if schreier_gen not in stab_gens: stab_gens.append(schreier_gen) return [_af_new(x) for x in stab_gens] PermGroup = PermutationGroup
36439848980160b4704d829e8a09b65d0816598dd553f086a14f2a56fbfa7196
from __future__ import print_function, division import random from collections import defaultdict from sympy.core.basic import Atom from sympy.core.compatibility import is_sequence, reduce, range, as_int from sympy.matrices import zeros from sympy.polys.polytools import lcm from sympy.utilities.iterables import (flatten, has_variety, minlex, has_dups, runs) from mpmath.libmp.libintmath import ifac def _af_rmul(a, b): """ Return the product b*a; input and output are array forms. The ith value is a[b[i]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a) >>> b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmuln """ return [a[i] for i in b] def _af_rmuln(*abc): """ Given [a, b, c, ...] return the product of ...*c*b*a using array forms. The ith value is a[b[c[i]]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmul """ a = abc m = len(a) if m == 3: p0, p1, p2 = a return [p0[p1[i]] for i in p2] if m == 4: p0, p1, p2, p3 = a return [p0[p1[p2[i]]] for i in p3] if m == 5: p0, p1, p2, p3, p4 = a return [p0[p1[p2[p3[i]]]] for i in p4] if m == 6: p0, p1, p2, p3, p4, p5 = a return [p0[p1[p2[p3[p4[i]]]]] for i in p5] if m == 7: p0, p1, p2, p3, p4, p5, p6 = a return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6] if m == 8: p0, p1, p2, p3, p4, p5, p6, p7 = a return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7] if m == 1: return a[0][:] if m == 2: a, b = a return [a[i] for i in b] if m == 0: raise ValueError("String must not be empty") p0 = _af_rmuln(*a[:m//2]) p1 = _af_rmuln(*a[m//2:]) return [p0[i] for i in p1] def _af_parity(pi): """ Computes the parity of a permutation in array form. The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that x > y but p[x] < p[y]. Examples ======== >>> from sympy.combinatorics.permutations import _af_parity >>> _af_parity([0, 1, 2, 3]) 0 >>> _af_parity([3, 2, 0, 1]) 1 See Also ======== Permutation """ n = len(pi) a = [0] * n c = 0 for j in range(n): if a[j] == 0: c += 1 a[j] = 1 i = j while pi[i] != j: i = pi[i] a[i] = 1 return (n - c) % 2 def _af_invert(a): """ Finds the inverse, ~A, of a permutation, A, given in array form. Examples ======== >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul >>> A = [1, 2, 0, 3] >>> _af_invert(A) [2, 0, 1, 3] >>> _af_rmul(_, A) [0, 1, 2, 3] See Also ======== Permutation, __invert__ """ inv_form = [0] * len(a) for i, ai in enumerate(a): inv_form[ai] = i return inv_form def _af_pow(a, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation, _af_pow >>> Permutation.print_cyclic = False >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> _af_pow(p._array_form, 4) [0, 1, 2, 3] """ if n == 0: return list(range(len(a))) if n < 0: return _af_pow(_af_invert(a), -n) if n == 1: return a[:] elif n == 2: b = [a[i] for i in a] elif n == 3: b = [a[a[i]] for i in a] elif n == 4: b = [a[a[a[i]]] for i in a] else: # use binary multiplication b = list(range(len(a))) while 1: if n & 1: b = [b[i] for i in a] n -= 1 if not n: break if n % 4 == 0: a = [a[a[a[i]]] for i in a] n = n // 4 elif n % 2 == 0: a = [a[i] for i in a] n = n // 2 return b def _af_commutes_with(a, b): """ Checks if the two permutations with array forms given by ``a`` and ``b`` commute. Examples ======== >>> from sympy.combinatorics.permutations import _af_commutes_with >>> _af_commutes_with([1, 2, 0], [0, 2, 1]) False See Also ======== Permutation, commutes_with """ return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1)) class Cycle(dict): """ Wrapper around dict which provides the functionality of a disjoint cycle. A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons: >>> from sympy.combinatorics.permutations import Perm, Cycle A Cycle will automatically parse a cycle given as a tuple on the rhs: >>> Cycle(1, 2)(2, 3) (1 3 2) The identity cycle, Cycle(), can be used to start a product: >>> Cycle()(1, 2)(2, 3) (1 3 2) The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown: >>> a = Cycle(1, 2) >>> a.list() [0, 2, 1] >>> list(a) [0, 2, 1] If a larger (or smaller) range is desired use the list method and provide the desired size -- but the Cycle cannot be truncated to a size smaller than the largest element that is out of place: >>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3) >>> b.list() [0, 2, 1, 3, 4] >>> b.list(b.size + 1) [0, 2, 1, 3, 4, 5] >>> b.list(-1) [0, 2, 1] Singletons are not shown when printing with one exception: the largest element is always shown -- as a singleton if necessary: >>> Cycle(1, 4, 10)(4, 5) (1 5 4 10) >>> Cycle(1, 2)(4)(5)(10) (1 2)(10) The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated: >>> Perm(Cycle(1, 2)(3, 4).list()).transpositions() [(1, 2), (3, 4)] Notes ===== The underlying structure of the Cycle is a dictionary and although the __iter__ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items(): >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] See Also ======== Permutation """ def __missing__(self, arg): """Enter arg into dictionary and return arg.""" arg = as_int(arg) self[arg] = arg return arg def __iter__(self): for i in self.list(): yield i def __call__(self, *other): """Return product of cycles processed from R to L. Examples ======== >>> from sympy.combinatorics.permutations import Cycle as C >>> from sympy.combinatorics.permutations import Permutation as Perm >>> C(1, 2)(2, 3) (1 3 2) An instance of a Cycle will automatically parse list-like objects and Permutations that are on the right. It is more flexible than the Permutation in that all elements need not be present: >>> a = C(1, 2) >>> a(2, 3) (1 3 2) >>> a(2, 3)(4, 5) (1 3 2)(4 5) """ rv = Cycle(*other) for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]): rv[k] = v return rv def list(self, size=None): """Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size. Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Cycle(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Cycle(2, 4)(1, 2, 4).list(-1) [0, 2, 1] """ if not self and size is None: raise ValueError('must give size for empty Cycle') if size is not None: big = max([i for i in self.keys() if self[i] != i] + [0]) size = max(size, big + 1) else: size = self.size return [self[i] for i in range(size)] def __repr__(self): """We want it to print as a Cycle, not as a dict. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> print(_) (1 2) >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] """ if not self: return 'Cycle()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big return 'Cycle%s' % s def __str__(self): """We want it to be printed in a Cycle notation with no comma in-between. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> Cycle(1, 2, 4)(5, 6) (1 2 4)(5 6) """ if not self: return '()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big s = s.replace(',', '') return s def __init__(self, *args): """Load up a Cycle instance with the values for the cycle. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2, 6) (1 2 6) """ if not args: return if len(args) == 1: if isinstance(args[0], Permutation): for c in args[0].cyclic_form: self.update(self(*c)) return elif isinstance(args[0], Cycle): for k, v in args[0].items(): self[k] = v return args = [as_int(a) for a in args] if any(i < 0 for i in args): raise ValueError('negative integers are not allowed in a cycle.') if has_dups(args): raise ValueError('All elements must be unique in a cycle.') for i in range(-len(args), 0): self[args[i]] = args[i + 1] @property def size(self): if not self: return 0 return max(self.keys()) + 1 def copy(self): return Cycle(self) class Permutation(Atom): """ A permutation, alternatively known as an 'arrangement number' or 'ordering' is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement [2]_. For example, if one started with elements [x, y, a, b] (in that order) and they were reordered as [x, y, b, a] then the permutation would be [0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements (a, b, etc...) themselves. >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = False Permutations Notation ===================== Permutations are commonly represented in disjoint cycle or array forms. Array Notation and 2-line Form ------------------------------------ In the 2-line form, the elements and their final positions are shown as a matrix with 2 rows: [0 1 2 ... n-1] [p(0) p(1) p(2) ... p(n-1)] Since the first line is always range(n), where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the "array form" of the permutation. This is entered in brackets as the argument to the Permutation class: >>> p = Permutation([0, 2, 1]); p Permutation([0, 2, 1]) Given i in range(p.size), the permutation maps i to i^p >>> [i^p for i in range(p.size)] [0, 2, 1] The composite of two permutations p*q means first apply p, then q, so i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules: >>> q = Permutation([2, 1, 0]) >>> [i^p^q for i in range(3)] [2, 0, 1] >>> [i^(p*q) for i in range(3)] [2, 0, 1] One can use also the notation p(i) = i^p, but then the composition rule is (p*q)(i) = q(p(i)), not p(q(i)): >>> [(p*q)(i) for i in range(p.size)] [2, 0, 1] >>> [q(p(i)) for i in range(p.size)] [2, 0, 1] >>> [p(q(i)) for i in range(p.size)] [1, 2, 0] Disjoint Cycle Notation ----------------------- In disjoint cycle notation, only the elements that have shifted are indicated. In the above case, the 2 and 1 switched places. This can be entered in two ways: >>> Permutation(1, 2) == Permutation([[1, 2]]) == p True Only the relative ordering of elements in a cycle matter: >>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2) True The disjoint cycle notation is convenient when representing permutations that have several cycles in them: >>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]]) True It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation: >>> Permutation(1, 2)(1, 3)(2, 3) Permutation([0, 3, 2, 1]) >>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]]) True Caution: when the cycles have common elements between them then the order in which the permutations are applied matters. The convention is that the permutations are applied from *right to left*. In the following, the transposition of elements 2 and 3 is followed by the transposition of elements 1 and 2: >>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)]) True >>> Permutation(1, 2)(2, 3).list() [0, 3, 1, 2] If the first and second elements had been swapped first, followed by the swapping of the second and third, the result would have been [0, 2, 3, 1]. If, for some reason, you want to apply the cycles in the order they are entered, you can simply reverse the order of cycles: >>> Permutation([(1, 2), (2, 3)][::-1]).list() [0, 2, 3, 1] Entering a singleton in a permutation is a way to indicate the size of the permutation. The ``size`` keyword can also be used. Array-form entry: >>> Permutation([[1, 2], [9]]) Permutation([0, 2, 1], size=10) >>> Permutation([[1, 2]], size=10) Permutation([0, 2, 1], size=10) Cyclic-form entry: >>> Permutation(1, 2, size=10) Permutation([0, 2, 1], size=10) >>> Permutation(9)(1, 2) Permutation([0, 2, 1], size=10) Caution: no singleton containing an element larger than the largest in any previous cycle can be entered. This is an important difference in how Permutation and Cycle handle the __call__ syntax. A singleton argument at the start of a Permutation performs instantiation of the Permutation and is permitted: >>> Permutation(5) Permutation([], size=6) A singleton entered after instantiation is a call to the permutation -- a function call -- and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton: The following fails because there is is no element 3: >>> Permutation(1, 2)(3) Traceback (most recent call last): ... IndexError: list index out of range This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes: >>> Permutation(3)(1, 2) Permutation([0, 2, 1, 3]) >>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2) True Equality testing ---------------- The array forms must be the same in order for permutations to be equal: >>> Permutation([1, 0, 2, 3]) == Permutation([1, 0]) False Identity Permutation -------------------- The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4: >>> I = Permutation([0, 1, 2, 3]) >>> all(p == I for p in [ ... Permutation(3), ... Permutation(range(4)), ... Permutation([], size=4), ... Permutation(size=4)]) True Watch out for entering the range *inside* a set of brackets (which is cycle notation): >>> I == Permutation([range(4)]) False Permutation Printing ==================== There are a few things to note about how Permutations are printed. 1) If you prefer one form (array or cycle) over another, you can set that with the print_cyclic flag. >>> Permutation(1, 2)(4, 5)(3, 4) Permutation([0, 2, 1, 4, 5, 3]) >>> p = _ >>> Permutation.print_cyclic = True >>> p (1 2)(3 4 5) >>> Permutation.print_cyclic = False 2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to Permutation: >>> p.array_form [0, 2, 1, 4, 5, 3] >>> p.cyclic_form [[1, 2], [3, 4, 5]] >>> Permutation(_) == p True 3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation: >>> Permutation([1, 0, 2, 3]) Permutation([1, 0, 2, 3]) >>> Permutation([1, 0, 2, 3], size=20) Permutation([1, 0], size=20) >>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20) Permutation([1, 0, 2, 4, 3], size=20) >>> p = Permutation([1, 0, 2, 3]) >>> Permutation.print_cyclic = True >>> p (3)(0 1) >>> Permutation.print_cyclic = False The 2 was not printed but it is still there as can be seen with the array_form and size methods: >>> p.array_form [1, 0, 2, 3] >>> p.size 4 Short introduction to other methods =================================== The permutation can act as a bijective function, telling what element is located at a given position >>> q = Permutation([5, 2, 3, 4, 1, 0]) >>> q.array_form[1] # the hard way 2 >>> q(1) # the easy way 2 >>> {i: q(i) for i in range(q.size)} # showing the bijection {0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0} The full cyclic form (including singletons) can be obtained: >>> p.full_cyclic_form [[0, 1], [2], [3]] Any permutation can be factored into transpositions of pairs of elements: >>> Permutation([[1, 2], [3, 4, 5]]).transpositions() [(1, 2), (3, 5), (3, 4)] >>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form [[1, 2], [3, 4, 5]] The number of permutations on a set of n elements is given by n! and is called the cardinality. >>> p.size 4 >>> p.cardinality 24 A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction: >>> p.rank() 6 >>> p + 1 Permutation([1, 0, 3, 2]) >>> p.next_lex() Permutation([1, 0, 3, 2]) >>> _.rank() 7 >>> p.unrank_lex(p.size, rank=7) Permutation([1, 0, 3, 2]) The product of two permutations p and q is defined as their composition as functions, (p*q)(i) = q(p(i)) [6]_. >>> p = Permutation([1, 0, 2, 3]) >>> q = Permutation([2, 3, 1, 0]) >>> list(q*p) [2, 3, 0, 1] >>> list(p*q) [3, 2, 1, 0] >>> [q(p(i)) for i in range(p.size)] [3, 2, 1, 0] The permutation can be 'applied' to any list-like object, not only Permutations: >>> p(['zero', 'one', 'four', 'two']) ['one', 'zero', 'four', 'two'] >>> p('zo42') ['o', 'z', '4', '2'] If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method: >>> Permutation.from_sequence('SymPy') Permutation([1, 3, 2, 0, 4]) See Also ======== Cycle References ========== .. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 3-16, 1990. .. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011. .. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001), 281-284. DOI=10.1016/S0020-0190(01)00141-7 .. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms' CRC Press, 1999 .. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994. .. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse .. [7] https://en.wikipedia.org/wiki/Lehmer_code """ is_Permutation = True _array_form = None _cyclic_form = None _cycle_structure = None _size = None _rank = None def __new__(cls, *args, **kwargs): """ Constructor for the Permutation object from a list or a list of lists in which all elements of the permutation may appear only once. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False Permutations entered in array-form are left unaltered: >>> Permutation([0, 2, 1]) Permutation([0, 2, 1]) Permutations entered in cyclic form are converted to array form; singletons need not be entered, but can be entered to indicate the largest element: >>> Permutation([[4, 5, 6], [0, 1]]) Permutation([1, 0, 2, 3, 5, 6, 4]) >>> Permutation([[4, 5, 6], [0, 1], [19]]) Permutation([1, 0, 2, 3, 5, 6, 4], size=20) All manipulation of permutations assumes that the smallest element is 0 (in keeping with 0-based indexing in Python) so if the 0 is missing when entering a permutation in array form, an error will be raised: >>> Permutation([2, 1]) Traceback (most recent call last): ... ValueError: Integers 0 through 2 must be present. If a permutation is entered in cyclic form, it can be entered without singletons and the ``size`` specified so those values can be filled in, otherwise the array form will only extend to the maximum value in the cycles: >>> Permutation([[1, 4], [3, 5, 2]], size=10) Permutation([0, 4, 3, 5, 1, 2], size=10) >>> _.array_form [0, 4, 3, 5, 1, 2, 6, 7, 8, 9] """ size = kwargs.pop('size', None) if size is not None: size = int(size) #a) () #b) (1) = identity #c) (1, 2) = cycle #d) ([1, 2, 3]) = array form #e) ([[1, 2]]) = cyclic form #f) (Cycle) = conversion to permutation #g) (Permutation) = adjust size or return copy ok = True if not args: # a return cls._af_new(list(range(size or 0))) elif len(args) > 1: # c return cls._af_new(Cycle(*args).list(size)) if len(args) == 1: a = args[0] if isinstance(a, cls): # g if size is None or size == a.size: return a return cls(a.array_form, size=size) if isinstance(a, Cycle): # f return cls._af_new(a.list(size)) if not is_sequence(a): # b return cls._af_new(list(range(a + 1))) if has_variety(is_sequence(ai) for ai in a): ok = False else: ok = False if not ok: raise ValueError("Permutation argument must be a list of ints, " "a list of lists, Permutation or Cycle.") # safe to assume args are valid; this also makes a copy # of the args args = list(args[0]) is_cycle = args and is_sequence(args[0]) if is_cycle: # e args = [[int(i) for i in c] for c in args] else: # d args = [int(i) for i in args] # if there are n elements present, 0, 1, ..., n-1 should be present # unless a cycle notation has been provided. A 0 will be added # for convenience in case one wants to enter permutations where # counting starts from 1. temp = flatten(args) if has_dups(temp) and not is_cycle: raise ValueError('there were repeated elements.') temp = set(temp) if not is_cycle and \ any(i not in temp for i in range(len(temp))): raise ValueError("Integers 0 through %s must be present." % max(temp)) if is_cycle: # it's not necessarily canonical so we won't store # it -- use the array form instead c = Cycle() for ci in args: c = c(*ci) aform = c.list() else: aform = list(args) if size and size > len(aform): # don't allow for truncation of permutation which # might split a cycle and lead to an invalid aform # but do allow the permutation size to be increased aform.extend(list(range(len(aform), size))) return cls._af_new(aform) @classmethod def _af_new(cls, perm): """A method to produce a Permutation object from a list; the list is bound to the _array_form attribute, so it must not be modified; this method is meant for internal use only; the list ``a`` is supposed to be generated as a temporary value in a method, so p = Perm._af_new(a) is the only object to hold a reference to ``a``:: Examples ======== >>> from sympy.combinatorics.permutations import Perm >>> Perm.print_cyclic = False >>> a = [2,1,3,0] >>> p = Perm._af_new(a) >>> p Permutation([2, 1, 3, 0]) """ p = super(Permutation, cls).__new__(cls) p._array_form = perm p._size = len(perm) return p def _hashable_content(self): # the array_form (a list) is the Permutation arg, so we need to # return a tuple, instead return tuple(self.array_form) @property def array_form(self): """ Return a copy of the attribute _array_form Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> Permutation([[2, 0, 3, 1]]).array_form [3, 2, 0, 1] >>> Permutation([2, 0, 3, 1]).array_form [2, 0, 3, 1] >>> Permutation([[1, 2], [4, 5]]).array_form [0, 2, 1, 3, 5, 4] """ return self._array_form[:] def __repr__(self): if Permutation.print_cyclic: if not self.size: return 'Permutation()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(self)(self.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] return 'Permutation%s' %s else: s = self.support() if not s: if self.size < 5: return 'Permutation(%s)' % str(self.array_form) return 'Permutation([], size=%s)' % self.size trim = str(self.array_form[:s[-1] + 1]) + ', size=%s' % self.size use = full = str(self.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def list(self, size=None): """Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Permutation(2, 4)(1, 2, 4).list(-1) [0, 2, 1] >>> Permutation(3).list(-1) [] """ if not self and size is None: raise ValueError('must give size for empty Cycle') rv = self.array_form if size is not None: if size > self.size: rv.extend(list(range(self.size, size))) else: # find first value from rhs where rv[i] != i i = self.size - 1 while rv: if rv[-1] != i: break rv.pop() i -= 1 return rv @property def cyclic_form(self): """ This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([0, 3, 1, 2]) >>> p.cyclic_form [[1, 3, 2]] >>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form [[0, 1], [3, 4]] See Also ======== array_form, full_cyclic_form """ if self._cyclic_form is not None: return list(self._cyclic_form) array_form = self.array_form unchecked = [True] * len(array_form) cyclic_form = [] for i in range(len(array_form)): if unchecked[i]: cycle = [] cycle.append(i) unchecked[i] = False j = i while unchecked[array_form[j]]: j = array_form[j] cycle.append(j) unchecked[j] = False if len(cycle) > 1: cyclic_form.append(cycle) assert cycle == list(minlex(cycle, is_set=True)) cyclic_form.sort() self._cyclic_form = cyclic_form[:] return cyclic_form @property def full_cyclic_form(self): """Return permutation in cyclic form including singletons. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation([0, 2, 1]).full_cyclic_form [[0], [1, 2]] """ need = set(range(self.size)) - set(flatten(self.cyclic_form)) rv = self.cyclic_form rv.extend([[i] for i in need]) rv.sort() return rv @property def size(self): """ Returns the number of elements in the permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([[3, 2], [0, 1]]).size 4 See Also ======== cardinality, length, order, rank """ return self._size def support(self): """Return the elements in permutation, P, for which P[i] != i. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation([[3, 2], [0, 1], [4]]) >>> p.array_form [1, 0, 3, 2, 4] >>> p.support() [0, 1, 2, 3] """ a = self.array_form return [i for i, e in enumerate(a) if a[i] != i] def __add__(self, other): """Return permutation that is other higher in rank than self. The rank is the lexicographical rank, with the identity permutation having rank of 0. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> I = Permutation([0, 1, 2, 3]) >>> a = Permutation([2, 1, 3, 0]) >>> I + a.rank() == a True See Also ======== __sub__, inversion_vector """ rank = (self.rank() + other) % self.cardinality rv = self.unrank_lex(self.size, rank) rv._rank = rank return rv def __sub__(self, other): """Return the permutation that is other lower in rank than self. See Also ======== __add__ """ return self.__add__(-other) @staticmethod def rmul(*args): """ Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is a(b(c(i))). a, b, c, ... can be Permutation objects or tuples. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(Permutation.rmul(a, b)) [1, 2, 0] >>> [a(b(i)) for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] Notes ===== All items in the sequence will be parsed by Permutation as necessary as long as the first item is a Permutation: >>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b) True The reverse order of arguments will raise a TypeError. """ rv = args[0] for i in range(1, len(args)): rv = args[i]*rv return rv @classmethod def rmul_with_af(cls, *args): """ same as rmul, but the elements of args are Permutation objects which have _array_form """ a = [x._array_form for x in args] rv = cls._af_new(_af_rmuln(*a)) return rv def mul_inv(self, other): """ other*~self, self and other have _array_form """ a = _af_invert(self._array_form) b = other._array_form return self._af_new(_af_rmul(a, b)) def __rmul__(self, other): """This is needed to coerce other to Permutation in rmul.""" cls = type(self) return cls(other)*self def __mul__(self, other): """ Return the product a*b as a Permutation; the ith value is b(a(i)). Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] This handles operands in reverse order compared to _af_rmul and rmul: >>> al = list(a); bl = list(b) >>> _af_rmul(al, bl) [1, 2, 0] >>> [al[bl[i]] for i in range(3)] [1, 2, 0] It is acceptable for the arrays to have different lengths; the shorter one will be padded to match the longer one: >>> b*Permutation([1, 0]) Permutation([1, 2, 0]) >>> Permutation([1, 0])*b Permutation([2, 0, 1]) It is also acceptable to allow coercion to handle conversion of a single list to the left of a Permutation: >>> [0, 1]*a # no change: 2-element identity Permutation([1, 0, 2]) >>> [[0, 1]]*a # exchange first two elements Permutation([0, 1, 2]) You cannot use more than 1 cycle notation in a product of cycles since coercion can only handle one argument to the left. To handle multiple cycles it is convenient to use Cycle instead of Permutation: >>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2)(2, 3) (1 3 2) """ a = self.array_form # __rmul__ makes sure the other is a Permutation b = other.array_form if not b: perm = a else: b.extend(list(range(len(b), len(a)))) perm = [b[i] for i in a] + b[len(a):] return self._af_new(perm) def commutes_with(self, other): """ Checks if the elements are commuting. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 4, 3, 0, 2, 5]) >>> b = Permutation([0, 1, 2, 3, 4, 5]) >>> a.commutes_with(b) True >>> b = Permutation([2, 3, 5, 4, 1, 0]) >>> a.commutes_with(b) False """ a = self.array_form b = other.array_form return _af_commutes_with(a, b) def __pow__(self, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([2,0,3,1]) >>> p.order() 4 >>> p**4 Permutation([0, 1, 2, 3]) """ if isinstance(n, Permutation): raise NotImplementedError( 'p**p is not defined; do you mean p^p (conjugate)?') n = int(n) return self._af_new(_af_pow(self.array_form, n)) def __rxor__(self, i): """Return self(i) when ``i`` is an int. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation(1, 2, 9) >>> 2^p == p(2) == 9 True """ if int(i) == i: return self(i) else: raise NotImplementedError( "i^p = p(i) when i is an integer, not %s." % i) def __xor__(self, h): """Return the conjugate permutation ``~h*self*h` `. If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and ``b = ~h*a*h`` and both have the same cycle structure. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = True >>> p = Permutation(1, 2, 9) >>> q = Permutation(6, 9, 8) >>> p*q != q*p True Calculate and check properties of the conjugate: >>> c = p^q >>> c == ~q*p*q and p == q*c*~q True The expression q^p^r is equivalent to q^(p*r): >>> r = Permutation(9)(4, 6, 8) >>> q^p^r == q^(p*r) True If the term to the left of the conjugate operator, i, is an integer then this is interpreted as selecting the ith element from the permutation to the right: >>> all(i^p == p(i) for i in range(p.size)) True Note that the * operator as higher precedence than the ^ operator: >>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4) True Notes ===== In Python the precedence rule is p^q^r = (p^q)^r which differs in general from p^(q^r) >>> q^p^r (9)(1 4 8) >>> q^(p^r) (9)(1 8 6) For a given r and p, both of the following are conjugates of p: ~r*p*r and r*p*~r. But these are not necessarily the same: >>> ~r*p*r == r*p*~r True >>> p = Permutation(1, 2, 9)(5, 6) >>> ~r*p*r == r*p*~r False The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to this method: >>> p^~r == r*p*~r True """ if self.size != h.size: raise ValueError("The permutations must be of equal size.") a = [None]*self.size h = h._array_form p = self._array_form for i in range(self.size): a[h[i]] = h[p[i]] return self._af_new(a) def transpositions(self): """ Return the permutation decomposed into a list of transpositions. It is always possible to express a permutation as the product of transpositions, see [1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]]) >>> t = p.transpositions() >>> t [(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)] >>> print(''.join(str(c) for c in t)) (0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2) >>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p True References ========== .. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties """ a = self.cyclic_form res = [] for x in a: nx = len(x) if nx == 2: res.append(tuple(x)) elif nx > 2: first = x[0] for y in x[nx - 1:0:-1]: res.append((first, y)) return res @classmethod def from_sequence(self, i, key=None): """Return the permutation needed to obtain ``i`` from the sorted elements of ``i``. If custom sorting is desired, a key can be given. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> Permutation.from_sequence('SymPy') (4)(0 1 3) >>> _(sorted("SymPy")) ['S', 'y', 'm', 'P', 'y'] >>> Permutation.from_sequence('SymPy', key=lambda x: x.lower()) (4)(0 2)(1 3) """ ic = list(zip(i, list(range(len(i))))) if key: ic.sort(key=lambda x: key(x[0])) else: ic.sort() return ~Permutation([i[1] for i in ic]) def __invert__(self): """ Return the inverse of the permutation. A permutation multiplied by its inverse is the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([[2,0], [3,1]]) >>> ~p Permutation([2, 3, 0, 1]) >>> _ == p**-1 True >>> p*~p == ~p*p == Permutation([0, 1, 2, 3]) True """ return self._af_new(_af_invert(self._array_form)) def __iter__(self): """Yield elements from array form. Examples ======== >>> from sympy.combinatorics import Permutation >>> list(Permutation(range(3))) [0, 1, 2] """ for i in self.array_form: yield i def __call__(self, *i): """ Allows applying a permutation instance as a bijective function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> [p(i) for i in range(4)] [2, 3, 0, 1] If an array is given then the permutation selects the items from the array (i.e. the permutation is applied to the array): >>> from sympy.abc import x >>> p([x, 1, 0, x**2]) [0, x**2, x, 1] """ # list indices can be Integer or int; leave this # as it is (don't test or convert it) because this # gets called a lot and should be fast if len(i) == 1: i = i[0] try: # P(1) return self._array_form[i] except TypeError: try: # P([a, b, c]) return [i[j] for j in self._array_form] except Exception: raise TypeError('unrecognized argument') else: # P(1, 2, 3) return self*Permutation(Cycle(*i), size=self.size) def atoms(self): """ Returns all the elements of a permutation Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2, 3, 4, 5]).atoms() {0, 1, 2, 3, 4, 5} >>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms() {0, 1, 2, 3, 4, 5} """ return set(self.array_form) def next_lex(self): """ Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 3, 1, 0]) >>> p = Permutation([2, 3, 1, 0]); p.rank() 17 >>> p = p.next_lex(); p.rank() 18 See Also ======== rank, unrank_lex """ perm = self.array_form[:] n = len(perm) i = n - 2 while perm[i + 1] < perm[i]: i -= 1 if i == -1: return None else: j = n - 1 while perm[j] < perm[i]: j -= 1 perm[j], perm[i] = perm[i], perm[j] i += 1 j = n - 1 while i < j: perm[j], perm[i] = perm[i], perm[j] i += 1 j -= 1 return self._af_new(perm) @classmethod def unrank_nonlex(self, n, r): """ This is a linear time unranking algorithm that does not respect lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> Permutation.unrank_nonlex(4, 5) Permutation([2, 0, 3, 1]) >>> Permutation.unrank_nonlex(4, -1) Permutation([0, 1, 2, 3]) See Also ======== next_nonlex, rank_nonlex """ def _unrank1(n, r, a): if n > 0: a[n - 1], a[r % n] = a[r % n], a[n - 1] _unrank1(n - 1, r//n, a) id_perm = list(range(n)) n = int(n) r = r % ifac(n) _unrank1(n, r, id_perm) return self._af_new(id_perm) def rank_nonlex(self, inv_perm=None): """ This is a linear time ranking algorithm that does not enforce lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_nonlex() 23 See Also ======== next_nonlex, unrank_nonlex """ def _rank1(n, perm, inv_perm): if n == 1: return 0 s = perm[n - 1] t = inv_perm[n - 1] perm[n - 1], perm[t] = perm[t], s inv_perm[n - 1], inv_perm[s] = inv_perm[s], t return s + n*_rank1(n - 1, perm, inv_perm) if inv_perm is None: inv_perm = (~self).array_form if not inv_perm: return 0 perm = self.array_form[:] r = _rank1(len(perm), perm, inv_perm) return r def next_nonlex(self): """ Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex() 5 >>> p = p.next_nonlex(); p Permutation([3, 0, 1, 2]) >>> p.rank_nonlex() 6 See Also ======== rank_nonlex, unrank_nonlex """ r = self.rank_nonlex() if r == ifac(self.size) - 1: return None return self.unrank_nonlex(self.size, r + 1) def rank(self): """ Returns the lexicographic rank of the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank() 0 >>> p = Permutation([3, 2, 1, 0]) >>> p.rank() 23 See Also ======== next_lex, unrank_lex, cardinality, length, order, size """ if not self._rank is None: return self._rank rank = 0 rho = self.array_form[:] n = self.size - 1 size = n + 1 psize = int(ifac(n)) for j in range(size - 1): rank += rho[j]*psize for i in range(j + 1, size): if rho[i] > rho[j]: rho[i] -= 1 psize //= n n -= 1 self._rank = rank return rank @property def cardinality(self): """ Returns the number of all possible permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.cardinality 24 See Also ======== length, order, rank, size """ return int(ifac(self.size)) def parity(self): """ Computes the parity of a permutation. The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.parity() 0 >>> p = Permutation([3, 2, 0, 1]) >>> p.parity() 1 See Also ======== _af_parity """ if self._cyclic_form is not None: return (self.size - self.cycles) % 2 return _af_parity(self.array_form) @property def is_even(self): """ Checks if a permutation is even. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_even True >>> p = Permutation([3, 2, 1, 0]) >>> p.is_even True See Also ======== is_odd """ return not self.is_odd @property def is_odd(self): """ Checks if a permutation is odd. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_odd False >>> p = Permutation([3, 2, 0, 1]) >>> p.is_odd True See Also ======== is_even """ return bool(self.parity() % 2) @property def is_Singleton(self): """ Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0]).is_Singleton True >>> Permutation([0, 1]).is_Singleton False See Also ======== is_Empty """ return self.size == 1 @property def is_Empty(self): """ Checks to see if the permutation is a set with zero elements Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([]).is_Empty True >>> Permutation([0]).is_Empty False See Also ======== is_Singleton """ return self.size == 0 @property def is_identity(self): return self.is_Identity @property def is_Identity(self): """ Returns True if the Permutation is an identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([]) >>> p.is_Identity True >>> p = Permutation([[0], [1], [2]]) >>> p.is_Identity True >>> p = Permutation([0, 1, 2]) >>> p.is_Identity True >>> p = Permutation([0, 2, 1]) >>> p.is_Identity False See Also ======== order """ af = self.array_form return not af or all(i == af[i] for i in range(self.size)) def ascents(self): """ Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.ascents() [1, 2] See Also ======== descents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]] return pos def descents(self): """ Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.descents() [0, 3] See Also ======== ascents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]] return pos def max(self): """ The maximum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([1, 0, 2, 3, 4]) >>> p.max() 1 See Also ======== min, descents, ascents, inversions """ max = 0 a = self.array_form for i in range(len(a)): if a[i] != i and a[i] > max: max = a[i] return max def min(self): """ The minimum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 4, 3, 2]) >>> p.min() 2 See Also ======== max, descents, ascents, inversions """ a = self.array_form min = len(a) for i in range(len(a)): if a[i] != i and a[i] < min: min = a[i] return min def inversions(self): """ Computes the number of inversions of a permutation. An inversion is where i > j but p[i] < p[j]. For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3, 4, 5]) >>> p.inversions() 0 >>> Permutation([3, 2, 1, 0]).inversions() 6 See Also ======== descents, ascents, min, max References ========== .. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm """ inversions = 0 a = self.array_form n = len(a) if n < 130: for i in range(n - 1): b = a[i] for c in a[i + 1:]: if b > c: inversions += 1 else: k = 1 right = 0 arr = a[:] temp = a[:] while k < n: i = 0 while i + k < n: right = i + k * 2 - 1 if right >= n: right = n - 1 inversions += _merge(arr, temp, i, i + k, right) i = i + k * 2 k = k * 2 return inversions def commutator(self, x): """Return the commutator of self and x: ``~x*~self*x*self`` If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([0, 2, 3, 1]) >>> x = Permutation([2, 0, 3, 1]) >>> c = p.commutator(x); c Permutation([2, 1, 3, 0]) >>> c == ~x*~p*x*p True >>> I = Permutation(3) >>> p = [I + i for i in range(6)] >>> for i in range(len(p)): ... for j in range(len(p)): ... c = p[i].commutator(p[j]) ... if p[i]*p[j] == p[j]*p[i]: ... assert c == I ... else: ... assert c != I ... References ========== https://en.wikipedia.org/wiki/Commutator """ a = self.array_form b = x.array_form n = len(a) if len(b) != n: raise ValueError("The permutations must be of equal size.") inva = [None]*n for i in range(n): inva[a[i]] = i invb = [None]*n for i in range(n): invb[b[i]] = i return self._af_new([a[b[inva[i]]] for i in invb]) def signature(self): """ Gives the signature of the permutation needed to place the elements of the permutation in canonical order. The signature is calculated as (-1)^<number of inversions> Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2]) >>> p.inversions() 0 >>> p.signature() 1 >>> q = Permutation([0,2,1]) >>> q.inversions() 1 >>> q.signature() -1 See Also ======== inversions """ if self.is_even: return 1 return -1 def order(self): """ Computes the order of a permutation. When the permutation is raised to the power of its order it equals the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([3, 1, 5, 2, 4, 0]) >>> p.order() 4 >>> (p**(p.order())) Permutation([], size=6) See Also ======== identity, cardinality, length, rank, size """ return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1) def length(self): """ Returns the number of integers moved by a permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 3, 2, 1]).length() 2 >>> Permutation([[0, 1], [2, 3]]).length() 4 See Also ======== min, max, support, cardinality, order, rank, size """ return len(self.support()) @property def cycle_structure(self): """Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> Permutation(3).cycle_structure {1: 4} >>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure {2: 2, 3: 1} """ if self._cycle_structure: rv = self._cycle_structure else: rv = defaultdict(int) singletons = self.size for c in self.cyclic_form: rv[len(c)] += 1 singletons -= len(c) if singletons: rv[1] = singletons self._cycle_structure = rv return dict(rv) # make a copy @property def cycles(self): """ Returns the number of cycles contained in the permutation (including singletons). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2]).cycles 3 >>> Permutation([0, 1, 2]).full_cyclic_form [[0], [1], [2]] >>> Permutation(0, 1)(2, 3).cycles 2 See Also ======== sympy.functions.combinatorial.numbers.stirling """ return len(self.full_cyclic_form) def index(self): """ Returns the index of a permutation. The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([3, 0, 2, 1, 4]) >>> p.index() 2 """ a = self.array_form return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]]) def runs(self): """ Returns the runs of a permutation. An ascending sequence in a permutation is called a run [5]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8]) >>> p.runs() [[2, 5, 7], [3, 6], [0, 1, 4, 8]] >>> q = Permutation([1,3,2,0]) >>> q.runs() [[1, 3], [2], [0]] """ return runs(self.array_form) def inversion_vector(self): """Return the inversion vector of the permutation. The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side. The inversion vector is the same as the Lehmer encoding of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2]) >>> p.inversion_vector() [4, 7, 0, 5, 0, 2, 1, 1] >>> p = Permutation([3, 2, 1, 0]) >>> p.inversion_vector() [3, 2, 1] The inversion vector increases lexicographically with the rank of the permutation, the -ith element cycling through 0..i. >>> p = Permutation(2) >>> while p: ... print('%s %s %s' % (p, p.inversion_vector(), p.rank())) ... p = p.next_lex() ... Permutation([0, 1, 2]) [0, 0] 0 Permutation([0, 2, 1]) [0, 1] 1 Permutation([1, 0, 2]) [1, 0] 2 Permutation([1, 2, 0]) [1, 1] 3 Permutation([2, 0, 1]) [2, 0] 4 Permutation([2, 1, 0]) [2, 1] 5 See Also ======== from_inversion_vector """ self_array_form = self.array_form n = len(self_array_form) inversion_vector = [0] * (n - 1) for i in range(n - 1): val = 0 for j in range(i + 1, n): if self_array_form[j] < self_array_form[i]: val += 1 inversion_vector[i] = val return inversion_vector def rank_trotterjohnson(self): """ Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_trotterjohnson() 0 >>> p = Permutation([0, 2, 1, 3]) >>> p.rank_trotterjohnson() 7 See Also ======== unrank_trotterjohnson, next_trotterjohnson """ if self.array_form == [] or self.is_Identity: return 0 if self.array_form == [1, 0]: return 1 perm = self.array_form n = self.size rank = 0 for j in range(1, n): k = 1 i = 0 while perm[i] != j: if perm[i] < j: k += 1 i += 1 j1 = j + 1 if rank % 2 == 0: rank = j1*rank + j1 - k else: rank = j1*rank + k - 1 return rank @classmethod def unrank_trotterjohnson(cls, size, rank): """ Trotter Johnson permutation unranking. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.unrank_trotterjohnson(5, 10) Permutation([0, 3, 1, 2, 4]) See Also ======== rank_trotterjohnson, next_trotterjohnson """ perm = [0]*size r2 = 0 n = ifac(size) pj = 1 for j in range(2, size + 1): pj *= j r1 = (rank * pj) // n k = r1 - j*r2 if r2 % 2 == 0: for i in range(j - 1, j - k - 1, -1): perm[i] = perm[i - 1] perm[j - k - 1] = j - 1 else: for i in range(j - 1, k, -1): perm[i] = perm[i - 1] perm[k] = j - 1 r2 = r1 return cls._af_new(perm) def next_trotterjohnson(self): """ Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such permutations, they can be generated in order more quickly with the ``generate_bell`` function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([3, 0, 2, 1]) >>> p.rank_trotterjohnson() 4 >>> p = p.next_trotterjohnson(); p Permutation([0, 3, 2, 1]) >>> p.rank_trotterjohnson() 5 See Also ======== rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell """ pi = self.array_form[:] n = len(pi) st = 0 rho = pi[:] done = False m = n-1 while m > 0 and not done: d = rho.index(m) for i in range(d, m): rho[i] = rho[i + 1] par = _af_parity(rho[:m]) if par == 1: if d == m: m -= 1 else: pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d] done = True else: if d == 0: m -= 1 st += 1 else: pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d] done = True if m == 0: return None return self._af_new(pi) def get_precedence_matrix(self): """ Gets the precedence matrix. This is used for computing the distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation.josephus(3, 6, 1) >>> p Permutation([2, 5, 3, 1, 4, 0]) >>> p.get_precedence_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0]]) See Also ======== get_precedence_distance, get_adjacency_matrix, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(m.rows): for j in range(i + 1, m.cols): m[perm[i], perm[j]] = 1 return m def get_precedence_distance(self, other): """ Computes the precedence distance between two permutations. Suppose p and p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p'. This metric is commutative. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 0, 4, 3, 1]) >>> q = Permutation([3, 1, 2, 4, 0]) >>> p.get_precedence_distance(q) 7 >>> q.get_precedence_distance(p) 7 See Also ======== get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance """ if self.size != other.size: raise ValueError("The permutations must be of equal size.") self_prec_mat = self.get_precedence_matrix() other_prec_mat = other.get_precedence_matrix() n_prec = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_prec_mat[i, j] * other_prec_mat[i, j] == 1: n_prec += 1 d = self.size * (self.size - 1)//2 - n_prec return d def get_adjacency_matrix(self): """ Computes the adjacency matrix of a permutation. If job i is adjacent to job j in a permutation p then we set m[i, j] = 1 where m is the adjacency matrix of p. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation.josephus(3, 6, 1) >>> p.get_adjacency_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) >>> q = Permutation([0, 1, 2, 3]) >>> q.get_adjacency_matrix() Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(self.size - 1): m[perm[i], perm[i + 1]] = 1 return m def get_adjacency_distance(self, other): """ Computes the adjacency distance between two permutations. This metric counts the number of times a pair i,j of jobs is adjacent in both p and p'. If n_adj is this quantity then the adjacency distance is n - n_adj - 1 [1] [1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals of Operational Research, 86, pp 473-490. (1999) Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> p.get_adjacency_distance(q) 3 >>> r = Permutation([0, 2, 1, 4, 3]) >>> p.get_adjacency_distance(r) 4 See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_matrix """ if self.size != other.size: raise ValueError("The permutations must be of the same size.") self_adj_mat = self.get_adjacency_matrix() other_adj_mat = other.get_adjacency_matrix() n_adj = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_adj_mat[i, j] * other_adj_mat[i, j] == 1: n_adj += 1 d = self.size - n_adj - 1 return d def get_positional_distance(self, other): """ Computes the positional distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> r = Permutation([3, 1, 4, 0, 2]) >>> p.get_positional_distance(q) 12 >>> p.get_positional_distance(r) 12 See Also ======== get_precedence_distance, get_adjacency_distance """ a = self.array_form b = other.array_form if len(a) != len(b): raise ValueError("The permutations must be of the same size.") return sum([abs(a[i] - b[i]) for i in range(len(a))]) @classmethod def josephus(cls, m, n, s=1): """Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected. The parameter ``s`` stops the selection process when there are ``s`` items remaining and these are selected by continuing the selection, counting by 1 rather than by ``m``. Consider selecting every 3rd item from 6 until only 2 remain:: choices chosen ======== ====== 012345 01 345 2 01 34 25 01 4 253 0 4 2531 0 25314 253140 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.josephus(3, 6, 2).array_form [2, 5, 3, 1, 4, 0] References ========== .. [1] https://en.wikipedia.org/wiki/Flavius_Josephus .. [2] https://en.wikipedia.org/wiki/Josephus_problem .. [3] http://www.wou.edu/~burtonl/josephus.html """ from collections import deque m -= 1 Q = deque(list(range(n))) perm = [] while len(Q) > max(s, 1): for dp in range(m): Q.append(Q.popleft()) perm.append(Q.popleft()) perm.extend(list(Q)) return cls(perm) @classmethod def from_inversion_vector(cls, inversion): """ Calculates the permutation from the inversion vector. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> Permutation.from_inversion_vector([3, 2, 1, 0, 0]) Permutation([3, 2, 1, 0, 4, 5]) """ size = len(inversion) N = list(range(size + 1)) perm = [] try: for k in range(size): val = N[inversion[k]] perm.append(val) N.remove(val) except IndexError: raise ValueError("The inversion vector is not valid.") perm.extend(N) return cls._af_new(perm) @classmethod def random(cls, n): """ Generates a random permutation of length ``n``. Uses the underlying Python pseudo-random number generator. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) True """ perm_array = list(range(n)) random.shuffle(perm_array) return cls._af_new(perm_array) @classmethod def unrank_lex(cls, size, rank): """ Lexicographic permutation unranking. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> a = Permutation.unrank_lex(5, 10) >>> a.rank() 10 >>> a Permutation([0, 2, 4, 1, 3]) See Also ======== rank, next_lex """ perm_array = [0] * size psize = 1 for i in range(size): new_psize = psize*(i + 1) d = (rank % new_psize) // psize rank -= d*psize perm_array[size - i - 1] = d for j in range(size - i, size): if perm_array[j] > d - 1: perm_array[j] += 1 psize = new_psize return cls._af_new(perm_array) # global flag to control how permutations are printed # when True, Permutation([0, 2, 1, 3]) -> Cycle(1, 2) # when False, Permutation([0, 2, 1, 3]) -> Permutation([0, 2, 1]) print_cyclic = True def _merge(arr, temp, left, mid, right): """ Merges two sorted arrays and calculates the inversion count. Helper function for calculating inversions. This method is for internal use only. """ i = k = left j = mid inv_count = 0 while i < mid and j <= right: if arr[i] < arr[j]: temp[k] = arr[i] k += 1 i += 1 else: temp[k] = arr[j] k += 1 j += 1 inv_count += (mid -i) while i < mid: temp[k] = arr[i] k += 1 i += 1 if j <= right: k += right - j + 1 j += right - j + 1 arr[left:k + 1] = temp[left:k + 1] else: arr[left:right + 1] = temp[left:right + 1] return inv_count Perm = Permutation _af_new = Perm._af_new
bc527f49458daee54384e4c1f5d53840a387c2cee24948c74628050976335f07
from sympy import isprime from sympy.combinatorics.perm_groups import PermutationGroup from sympy.printing.defaults import DefaultPrinting from sympy.combinatorics.free_groups import free_group class PolycyclicGroup(DefaultPrinting): is_group = True is_solvable = True def __init__(self, pc_sequence, pc_series, relative_order, collector=None): """ Parameters ========== pc_sequence : list A sequence of elements whose classes generate the cyclic factor groups of pc_series. pc_series : list A subnormal sequence of subgroups where each factor group is cyclic. relative_order : list The orders of factor groups of pc_series. collector : Collector By default, it is None. Collector class provides the polycyclic presentation with various other functionalities. """ self.pcgs = pc_sequence self.pc_series = pc_series self.relative_order = relative_order self.collector = Collector(self.pcgs, pc_series, relative_order) if not collector else collector def is_prime_order(self): return all(isprime(order) for order in self.relative_order) def length(self): return len(self.pcgs) class Collector(DefaultPrinting): """ References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 8.1.3 """ def __init__(self, pcgs, pc_series, relative_order, free_group_=None, pc_presentation=None): """ Most of the parameters for the Collector class are the same as for PolycyclicGroup. Others are described below. Parameters ========== free_group_ : tuple free_group_ provides the mapping of polycyclic generating sequence with the free group elements. pc_presentation : dict Provides the presentation of polycyclic groups with the help of power and conjugate relators. See Also ======== PolycyclicGroup """ self.pcgs = pcgs self.pc_series = pc_series self.relative_order = relative_order self.free_group = free_group('x:{0}'.format(len(pcgs)))[0] if not free_group_ else free_group_ self.index = {s: i for i, s in enumerate(self.free_group.symbols)} self.pc_presentation = self.pc_relators() def minimal_uncollected_subword(self, word): r""" Returns the minimal uncollected subwords. A word ``v`` defined on generators in ``X`` is a minimal uncollected subword of the word ``w`` if ``v`` is a subword of ``w`` and it has one of the following form * `v = {x_{i+1}}^{a_j}x_i` * `v = {x_{i+1}}^{a_j}{x_i}^{-1}` * `v = {x_i}^{a_j}` for `a_j` not in `\{1, \ldots, s-1\}`. Where, ``s`` is the power exponent of the corresponding generator. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.free_groups import free_group >>> G = SymmetricGroup(4) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> F, x1, x2 = free_group("x1, x2") >>> word = x2**2*x1**7 >>> collector.minimal_uncollected_subword(word) ((x2, 2),) """ # To handle the case word = <identity> if not word: return None array = word.array_form re = self.relative_order index = self.index for i in range(len(array)): s1, e1 = array[i] if re[index[s1]] and (e1 < 0 or e1 > re[index[s1]]-1): return ((s1, e1), ) for i in range(len(array)-1): s1, e1 = array[i] s2, e2 = array[i+1] if index[s1] > index[s2]: e = 1 if e2 > 0 else -1 return ((s1, e1), (s2, e)) return None def relations(self): """ Separates the given relators of pc presentation in power and conjugate relations. Returns ======= (power_rel, conj_rel) Separates pc presentation into power and conjugate relations. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> G = SymmetricGroup(3) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> power_rel, conj_rel = collector.relations() >>> power_rel {x0**2: (), x1**3: ()} >>> conj_rel {x0**-1*x1*x0: x1**2} See Also ======== pc_relators """ power_relators = {} conjugate_relators = {} for key, value in self.pc_presentation.items(): if len(key.array_form) == 1: power_relators[key] = value else: conjugate_relators[key] = value return power_relators, conjugate_relators def subword_index(self, word, w): """ Returns the start and ending index of a given subword in a word. Parameters ========== word : FreeGroupElement word defined on free group elements for a polycyclic group. w : FreeGroupElement subword of a given word, whose starting and ending index to be computed. Returns ======= (i, j) A tuple containing starting and ending index of ``w`` in the given word. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.free_groups import free_group >>> G = SymmetricGroup(4) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> F, x1, x2 = free_group("x1, x2") >>> word = x2**2*x1**7 >>> w = x2**2*x1 >>> collector.subword_index(word, w) (0, 3) >>> w = x1**7 >>> collector.subword_index(word, w) (2, 9) """ low = -1 high = -1 for i in range(len(word)-len(w)+1): if word.subword(i, i+len(w)) == w: low = i high = i+len(w) break if low == high == -1: return -1, -1 return low, high def map_relation(self, w): """ Return a conjugate relation. Given a word formed by two free group elements, the corresponding conjugate relation with those free group elements is formed and mapped with the collected word in the polycyclic presentation. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.free_groups import free_group >>> G = SymmetricGroup(3) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> F, x0, x1 = free_group("x0, x1") >>> w = x1*x0 >>> collector.map_relation(w) x1**2 See Also ======== pc_presentation """ array = w.array_form s1 = array[0][0] s2 = array[1][0] key = ((s2, -1), (s1, 1), (s2, 1)) key = self.free_group.dtype(key) return self.pc_presentation[key] def collected_word(self, word): r""" Return the collected form of a word. A word ``w`` is called collected, if `w = {x_{i_1}}^{a_1} * \ldots * {x_{i_r}}^{a_r}` with `i_1 < i_2< \ldots < i_r` and `a_j` is in `\{1, \ldots, {s_j}-1\}`. Otherwise w is uncollected. Parameters ========== word : FreeGroupElement An uncollected word. Returns ======= word A collected word of form `w = {x_{i_1}}^{a_1}, \ldots, {x_{i_r}}^{a_r}` with `i_1, i_2, \ldots, i_r` and `a_j \in \{1, \ldots, {s_j}-1\}`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.free_groups import free_group >>> G = SymmetricGroup(4) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> F, x0, x1, x2, x3 = free_group("x0, x1, x2, x3") >>> word = x3*x2*x1*x0 >>> collected_word = collector.collected_word(word) >>> free_to_perm = {} >>> free_group = collector.free_group >>> for sym, gen in zip(free_group.symbols, collector.pcgs): ... free_to_perm[sym] = gen >>> G1 = PermutationGroup() >>> for w in word: ... sym = w[0] ... perm = free_to_perm[sym] ... G1 = PermutationGroup([perm] + G1.generators) >>> G2 = PermutationGroup() >>> for w in collected_word: ... sym = w[0] ... perm = free_to_perm[sym] ... G2 = PermutationGroup([perm] + G2.generators) >>> G1 == G2 True See Also ======== minimal_uncollected_subword """ free_group = self.free_group while True: w = self.minimal_uncollected_subword(word) if not w: break low, high = self.subword_index(word, free_group.dtype(w)) if low == -1: continue s1, e1 = w[0] if len(w) == 1: re = self.relative_order[self.index[s1]] q = e1 // re r = e1-q*re key = ((w[0][0], re), ) key = free_group.dtype(key) if self.pc_presentation[key]: word_ = ((w[0][0], r), (self.pc_presentation[key], q)) word_ = free_group.dtype(word_) else: if r != 0: word_ = ((w[0][0], r), ) word_ = free_group.dtype(word_) else: word_ = None word = word.eliminate_word(free_group.dtype(w), word_) if len(w) == 2 and w[1][1] > 0: s2, e2 = w[1] s2 = ((s2, 1), ) s2 = free_group.dtype(s2) word_ = self.map_relation(free_group.dtype(w)) word_ = s2*word_**e1 word_ = free_group.dtype(word_) word = word.substituted_word(low, high, word_) elif len(w) == 2 and w[1][1] < 0: s2, e2 = w[1] s2 = ((s2, 1), ) s2 = free_group.dtype(s2) word_ = self.map_relation(free_group.dtype(w)) word_ = s2**-1*word_**e1 word_ = free_group.dtype(word_) word = word.substituted_word(low, high, word_) return word def pc_relators(self): r""" Return the polycyclic presentation. There are two types of relations used in polycyclic presentation. * ``Power relations`` : Power relators are of the form `x_i^{re_i}`, where `i \in \{0, \ldots, \mathrm{len(pcgs)}\}`, ``x`` represents polycyclic generator and ``re`` is the corresponding relative order. * ``Conjugate relations`` : Conjugate relators are of the form `x_j^-1x_ix_j`, where `j < i \in \{0, \ldots, \mathrm{len(pcgs)}\}`. Returns ======= A dictionary with power and conjugate relations as key and their collected form as corresponding values. Notes ===== Identity Permutation is mapped with empty ``()``. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.permutations import Permutation >>> S = SymmetricGroup(49).sylow_subgroup(7) >>> der = S.derived_series() >>> G = der[len(der)-2] >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> pcgs = PcGroup.pcgs >>> len(pcgs) 6 >>> free_group = collector.free_group >>> pc_resentation = collector.pc_presentation >>> free_to_perm = {} >>> for s, g in zip(free_group.symbols, pcgs): ... free_to_perm[s] = g >>> for k, v in pc_resentation.items(): ... k_array = k.array_form ... if v != (): ... v_array = v.array_form ... lhs = Permutation() ... for gen in k_array: ... s = gen[0] ... e = gen[1] ... lhs = lhs*free_to_perm[s]**e ... if v == (): ... assert lhs.is_identity ... continue ... rhs = Permutation() ... for gen in v_array: ... s = gen[0] ... e = gen[1] ... rhs = rhs*free_to_perm[s]**e ... assert lhs == rhs """ free_group = self.free_group rel_order = self.relative_order pc_relators = {} perm_to_free = {} pcgs = self.pcgs for gen, s in zip(pcgs, free_group.generators): perm_to_free[gen**-1] = s**-1 perm_to_free[gen] = s pcgs = pcgs[::-1] series = self.pc_series[::-1] rel_order = rel_order[::-1] collected_gens = [] for i, gen in enumerate(pcgs): re = rel_order[i] relation = perm_to_free[gen]**re G = series[i] l = G.generator_product(gen**re, original = True) l.reverse() word = free_group.identity for g in l: word = word*perm_to_free[g] word = self.collected_word(word) pc_relators[relation] = word if word else () self.pc_presentation = pc_relators collected_gens.append(gen) if len(collected_gens) > 1: conj = collected_gens[len(collected_gens)-1] conjugator = perm_to_free[conj] for j in range(len(collected_gens)-1): conjugated = perm_to_free[collected_gens[j]] relation = conjugator**-1*conjugated*conjugator gens = conj**-1*collected_gens[j]*conj l = G.generator_product(gens, original = True) l.reverse() word = free_group.identity for g in l: word = word*perm_to_free[g] word = self.collected_word(word) pc_relators[relation] = word if word else () self.pc_presentation = pc_relators return pc_relators def exponent_vector(self, element): r""" Return the exponent vector of length equal to the length of polycyclic generating sequence. For a given generator/element ``g`` of the polycyclic group, it can be represented as `g = {x_1}^{e_1}, \ldots, {x_n}^{e_n}`, where `x_i` represents polycyclic generators and ``n`` is the number of generators in the free_group equal to the length of pcgs. Parameters ========== element : Permutation Generator of a polycyclic group. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.permutations import Permutation >>> G = SymmetricGroup(4) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> pcgs = PcGroup.pcgs >>> collector.exponent_vector(G[0]) [1, 0, 0, 0] >>> exp = collector.exponent_vector(G[1]) >>> g = Permutation() >>> for i in range(len(exp)): ... g = g*pcgs[i]**exp[i] if exp[i] else g >>> assert g == G[1] References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 8.1.1, Definition 8.4 """ free_group = self.free_group G = PermutationGroup() for g in self.pcgs: G = PermutationGroup([g] + G.generators) gens = G.generator_product(element, original = True) gens.reverse() perm_to_free = {} for sym, g in zip(free_group.generators, self.pcgs): perm_to_free[g**-1] = sym**-1 perm_to_free[g] = sym w = free_group.identity for g in gens: w = w*perm_to_free[g] word = self.collected_word(w) index = self.index exp_vector = [0]*len(free_group) word = word.array_form for t in word: exp_vector[index[t[0]]] = t[1] return exp_vector def depth(self, element): r""" Return the depth of a given element. The depth of a given element ``g`` is defined by `\mathrm{dep}[g] = i` if `e_1 = e_2 = \ldots = e_{i-1} = 0` and `e_i != 0`, where ``e`` represents the exponent-vector. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> G = SymmetricGroup(3) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> collector.depth(G[0]) 2 >>> collector.depth(G[1]) 1 References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 8.1.1, Definition 8.5 """ exp_vector = self.exponent_vector(element) return next((i+1 for i, x in enumerate(exp_vector) if x), len(self.pcgs)+1) def leading_exponent(self, element): r""" Return the leading non-zero exponent. The leading exponent for a given element `g` is defined by `\mathrm{leading\_exponent}[g]` `= e_i`, if `\mathrm{depth}[g] = i`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> G = SymmetricGroup(3) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> collector.leading_exponent(G[1]) 1 """ exp_vector = self.exponent_vector(element) depth = self.depth(element) if depth != len(self.pcgs)+1: return exp_vector[depth-1] return None def _sift(self, z, g): h = g d = self.depth(h) while d < len(self.pcgs) and z[d-1] != 1: k = z[d-1] e = self.leading_exponent(h)*self.leading_exponent(k**-1) e = e % self.relative_order[d-1] h = k**-e*h d = self.depth(h) return h def induced_pcgs(self, gens): """ Parameters ========== gens : list A list of generators on which polycyclic subgroup is to be defined. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(8) >>> G = S.sylow_subgroup(2) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> gens = [G[0], G[1]] >>> ipcgs = collector.induced_pcgs(gens) >>> [gen.order() for gen in ipcgs] [2, 2, 2] >>> G = S.sylow_subgroup(3) >>> PcGroup = G.polycyclic_group() >>> collector = PcGroup.collector >>> gens = [G[0], G[1]] >>> ipcgs = collector.induced_pcgs(gens) >>> [gen.order() for gen in ipcgs] [3] """ z = [1]*len(self.pcgs) G = gens while G: g = G.pop(0) h = self._sift(z, g) d = self.depth(h) if d < len(self.pcgs): for gen in z: if gen != 1: G.append(h**-1*gen**-1*h*gen) z[d-1] = h; z = [gen for gen in z if gen != 1] return z def constructive_membership_test(self, ipcgs, g): """ Return the exponent vector for induced pcgs. """ e = [0]*len(ipcgs) h = g d = self.depth(h) for i, gen in enumerate(ipcgs): while self.depth(gen) == d: f = self.leading_exponent(h)*self.leading_exponent(gen) f = f % self.relative_order[d-1] h = gen**(-f)*h e[i] = f d = self.depth(h) if h == 1: return e return False
0900f005ae4fa795d42e1b2c9d383d49fa3e010c49415c4beb76ddeefb57099d
from __future__ import print_function, division from sympy.core import Basic, Dict, sympify from sympy.core.compatibility import as_int, default_sort_key, range from sympy.core.sympify import _sympify from sympy.functions.combinatorial.numbers import bell from sympy.matrices import zeros from sympy.sets.sets import FiniteSet, Union from sympy.utilities.iterables import flatten, group from collections import defaultdict class Partition(FiniteSet): """ This class represents an abstract partition. A partition is a set of disjoint sets whose union equals a given set. See Also ======== sympy.utilities.iterables.partitions, sympy.utilities.iterables.multiset_partitions """ _rank = None _partition = None def __new__(cls, *partition): """ Generates a new partition object. This method also verifies if the arguments passed are valid and raises a ValueError if they are not. Examples ======== Creating Partition from Python lists: >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3]) >>> a {{3}, {1, 2}} >>> a.partition [[1, 2], [3]] >>> len(a) 2 >>> a.members (1, 2, 3) Creating Partition from Python sets: >>> Partition({1, 2, 3}, {4, 5}) {{4, 5}, {1, 2, 3}} Creating Partition from SymPy finite sets: >>> from sympy.sets.sets import FiniteSet >>> a = FiniteSet(1, 2, 3) >>> b = FiniteSet(4, 5) >>> Partition(a, b) {{4, 5}, {1, 2, 3}} """ args = [] dups = False for arg in partition: if isinstance(arg, list): as_set = set(arg) if len(as_set) < len(arg): dups = True break # error below arg = as_set args.append(_sympify(arg)) if not all(isinstance(part, FiniteSet) for part in args): raise ValueError( "Each argument to Partition should be " \ "a list, set, or a FiniteSet") # sort so we have a canonical reference for RGS U = Union(*args) if dups or len(U) < sum(len(arg) for arg in args): raise ValueError("Partition contained duplicate elements.") obj = FiniteSet.__new__(cls, *args) obj.members = tuple(U) obj.size = len(U) return obj def sort_key(self, order=None): """Return a canonical key that can be used for sorting. Ordering is based on the size and sorted elements of the partition and ties are broken with the rank. Examples ======== >>> from sympy.utilities.iterables import default_sort_key >>> from sympy.combinatorics.partitions import Partition >>> from sympy.abc import x >>> a = Partition([1, 2]) >>> b = Partition([3, 4]) >>> c = Partition([1, x]) >>> d = Partition(list(range(4))) >>> l = [d, b, a + 1, a, c] >>> l.sort(key=default_sort_key); l [{{1, 2}}, {{1}, {2}}, {{1, x}}, {{3, 4}}, {{0, 1, 2, 3}}] """ if order is None: members = self.members else: members = tuple(sorted(self.members, key=lambda w: default_sort_key(w, order))) return tuple(map(default_sort_key, (self.size, members, self.rank))) @property def partition(self): """Return partition as a sorted list of lists. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> Partition([1], [2, 3]).partition [[1], [2, 3]] """ if self._partition is None: self._partition = sorted([sorted(p, key=default_sort_key) for p in self.args]) return self._partition def __add__(self, other): """ Return permutation whose rank is ``other`` greater than current rank, (mod the maximum rank for the set). Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3]) >>> a.rank 1 >>> (a + 1).rank 2 >>> (a + 100).rank 1 """ other = as_int(other) offset = self.rank + other result = RGS_unrank((offset) % RGS_enum(self.size), self.size) return Partition.from_rgs(result, self.members) def __sub__(self, other): """ Return permutation whose rank is ``other`` less than current rank, (mod the maximum rank for the set). Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3]) >>> a.rank 1 >>> (a - 1).rank 0 >>> (a - 100).rank 1 """ return self.__add__(-other) def __le__(self, other): """ Checks if a partition is less than or equal to the other based on rank. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3, 4, 5]) >>> b = Partition([1], [2, 3], [4], [5]) >>> a.rank, b.rank (9, 34) >>> a <= a True >>> a <= b True """ return self.sort_key() <= sympify(other).sort_key() def __lt__(self, other): """ Checks if a partition is less than the other. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3, 4, 5]) >>> b = Partition([1], [2, 3], [4], [5]) >>> a.rank, b.rank (9, 34) >>> a < b True """ return self.sort_key() < sympify(other).sort_key() @property def rank(self): """ Gets the rank of a partition. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3], [4, 5]) >>> a.rank 13 """ if self._rank is not None: return self._rank self._rank = RGS_rank(self.RGS) return self._rank @property def RGS(self): """ Returns the "restricted growth string" of the partition. The RGS is returned as a list of indices, L, where L[i] indicates the block in which element i appears. For example, in a partition of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is [1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> a = Partition([1, 2], [3], [4, 5]) >>> a.members (1, 2, 3, 4, 5) >>> a.RGS (0, 0, 1, 2, 2) >>> a + 1 {{3}, {4}, {5}, {1, 2}} >>> _.RGS (0, 0, 1, 2, 3) """ rgs = {} partition = self.partition for i, part in enumerate(partition): for j in part: rgs[j] = i return tuple([rgs[i] for i in sorted( [i for p in partition for i in p], key=default_sort_key)]) @classmethod def from_rgs(self, rgs, elements): """ Creates a set partition from a restricted growth string. The indices given in rgs are assumed to be the index of the element as given in elements *as provided* (the elements are not sorted by this routine). Block numbering starts from 0. If any block was not referenced in ``rgs`` an error will be raised. Examples ======== >>> from sympy.combinatorics.partitions import Partition >>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde')) {{c}, {a, d}, {b, e}} >>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead')) {{e}, {a, c}, {b, d}} >>> a = Partition([1, 4], [2], [3, 5]) >>> Partition.from_rgs(a.RGS, a.members) {{2}, {1, 4}, {3, 5}} """ if len(rgs) != len(elements): raise ValueError('mismatch in rgs and element lengths') max_elem = max(rgs) + 1 partition = [[] for i in range(max_elem)] j = 0 for i in rgs: partition[i].append(elements[j]) j += 1 if not all(p for p in partition): raise ValueError('some blocks of the partition were empty.') return Partition(*partition) class IntegerPartition(Basic): """ This class represents an integer partition. In number theory and combinatorics, a partition of a positive integer, ``n``, also called an integer partition, is a way of writing ``n`` as a list of positive integers that sum to n. Two partitions that differ only in the order of summands are considered to be the same partition; if order matters then the partitions are referred to as compositions. For example, 4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1]; the compositions [1, 2, 1] and [1, 1, 2] are the same as partition [2, 1, 1]. See Also ======== sympy.utilities.iterables.partitions, sympy.utilities.iterables.multiset_partitions Reference: https://en.wikipedia.org/wiki/Partition_%28number_theory%29 """ _dict = None _keys = None def __new__(cls, partition, integer=None): """ Generates a new IntegerPartition object from a list or dictionary. The partition can be given as a list of positive integers or a dictionary of (integer, multiplicity) items. If the partition is preceded by an integer an error will be raised if the partition does not sum to that given integer. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> a = IntegerPartition([5, 4, 3, 1, 1]) >>> a IntegerPartition(14, (5, 4, 3, 1, 1)) >>> print(a) [5, 4, 3, 1, 1] >>> IntegerPartition({1:3, 2:1}) IntegerPartition(5, (2, 1, 1, 1)) If the value that the partition should sum to is given first, a check will be made to see n error will be raised if there is a discrepancy: >>> IntegerPartition(10, [5, 4, 3, 1]) Traceback (most recent call last): ... ValueError: The partition is not valid """ if integer is not None: integer, partition = partition, integer if isinstance(partition, (dict, Dict)): _ = [] for k, v in sorted(list(partition.items()), reverse=True): if not v: continue k, v = as_int(k), as_int(v) _.extend([k]*v) partition = tuple(_) else: partition = tuple(sorted(map(as_int, partition), reverse=True)) sum_ok = False if integer is None: integer = sum(partition) sum_ok = True else: integer = as_int(integer) if not sum_ok and sum(partition) != integer: raise ValueError("Partition did not add to %s" % integer) if any(i < 1 for i in partition): raise ValueError("The summands must all be positive.") obj = Basic.__new__(cls, integer, partition) obj.partition = list(partition) obj.integer = integer return obj def prev_lex(self): """Return the previous partition of the integer, n, in lexical order, wrapping around to [1, ..., 1] if the partition is [n]. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> p = IntegerPartition([4]) >>> print(p.prev_lex()) [3, 1] >>> p.partition > p.prev_lex().partition True """ d = defaultdict(int) d.update(self.as_dict()) keys = self._keys if keys == [1]: return IntegerPartition({self.integer: 1}) if keys[-1] != 1: d[keys[-1]] -= 1 if keys[-1] == 2: d[1] = 2 else: d[keys[-1] - 1] = d[1] = 1 else: d[keys[-2]] -= 1 left = d[1] + keys[-2] new = keys[-2] d[1] = 0 while left: new -= 1 if left - new >= 0: d[new] += left//new left -= d[new]*new return IntegerPartition(self.integer, d) def next_lex(self): """Return the next partition of the integer, n, in lexical order, wrapping around to [n] if the partition is [1, ..., 1]. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> p = IntegerPartition([3, 1]) >>> print(p.next_lex()) [4] >>> p.partition < p.next_lex().partition True """ d = defaultdict(int) d.update(self.as_dict()) key = self._keys a = key[-1] if a == self.integer: d.clear() d[1] = self.integer elif a == 1: if d[a] > 1: d[a + 1] += 1 d[a] -= 2 else: b = key[-2] d[b + 1] += 1 d[1] = (d[b] - 1)*b d[b] = 0 else: if d[a] > 1: if len(key) == 1: d.clear() d[a + 1] = 1 d[1] = self.integer - a - 1 else: a1 = a + 1 d[a1] += 1 d[1] = d[a]*a - a1 d[a] = 0 else: b = key[-2] b1 = b + 1 d[b1] += 1 need = d[b]*b + d[a]*a - b1 d[a] = d[b] = 0 d[1] = need return IntegerPartition(self.integer, d) def as_dict(self): """Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict() {1: 3, 2: 1, 3: 4} """ if self._dict is None: groups = group(self.partition, multiple=False) self._keys = [g[0] for g in groups] self._dict = dict(groups) return self._dict @property def conjugate(self): """ Computes the conjugate partition of itself. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> a = IntegerPartition([6, 3, 3, 2, 1]) >>> a.conjugate [5, 4, 3, 1, 1, 1] """ j = 1 temp_arr = list(self.partition) + [0] k = temp_arr[0] b = [0]*k while k > 0: while k > temp_arr[j]: b[k - 1] = j k -= 1 j += 1 return b def __lt__(self, other): """Return True if self is less than other when the partition is listed from smallest to biggest. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> a = IntegerPartition([3, 1]) >>> a < a False >>> b = a.next_lex() >>> a < b True >>> a == b False """ return list(reversed(self.partition)) < list(reversed(other.partition)) def __le__(self, other): """Return True if self is less than other when the partition is listed from smallest to biggest. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> a = IntegerPartition([4]) >>> a <= a True """ return list(reversed(self.partition)) <= list(reversed(other.partition)) def as_ferrers(self, char='#'): """ Prints the ferrer diagram of a partition. Examples ======== >>> from sympy.combinatorics.partitions import IntegerPartition >>> print(IntegerPartition([1, 1, 5]).as_ferrers()) ##### # # """ return "\n".join([char*i for i in self.partition]) def __str__(self): return str(list(self.partition)) def random_integer_partition(n, seed=None): """ Generates a random integer partition summing to ``n`` as a list of reverse-sorted integers. Examples ======== >>> from sympy.combinatorics.partitions import random_integer_partition For the following, a seed is given so a known value can be shown; in practice, the seed would not be given. >>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1]) [85, 12, 2, 1] >>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1]) [5, 3, 1, 1] >>> random_integer_partition(1) [1] """ from sympy.utilities.randtest import _randint n = as_int(n) if n < 1: raise ValueError('n must be a positive integer') randint = _randint(seed) partition = [] while (n > 0): k = randint(1, n) mult = randint(1, n//k) partition.append((k, mult)) n -= k*mult partition.sort(reverse=True) partition = flatten([[k]*m for k, m in partition]) return partition def RGS_generalized(m): """ Computes the m + 1 generalized unrestricted growth strings and returns them as rows in matrix. Examples ======== >>> from sympy.combinatorics.partitions import RGS_generalized >>> RGS_generalized(6) Matrix([ [ 1, 1, 1, 1, 1, 1, 1], [ 1, 2, 3, 4, 5, 6, 0], [ 2, 5, 10, 17, 26, 0, 0], [ 5, 15, 37, 77, 0, 0, 0], [ 15, 52, 151, 0, 0, 0, 0], [ 52, 203, 0, 0, 0, 0, 0], [203, 0, 0, 0, 0, 0, 0]]) """ d = zeros(m + 1) for i in range(0, m + 1): d[0, i] = 1 for i in range(1, m + 1): for j in range(m): if j <= m - i: d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1] else: d[i, j] = 0 return d def RGS_enum(m): """ RGS_enum computes the total number of restricted growth strings possible for a superset of size m. Examples ======== >>> from sympy.combinatorics.partitions import RGS_enum >>> from sympy.combinatorics.partitions import Partition >>> RGS_enum(4) 15 >>> RGS_enum(5) 52 >>> RGS_enum(6) 203 We can check that the enumeration is correct by actually generating the partitions. Here, the 15 partitions of 4 items are generated: >>> a = Partition(list(range(4))) >>> s = set() >>> for i in range(20): ... s.add(a) ... a += 1 ... >>> assert len(s) == 15 """ if (m < 1): return 0 elif (m == 1): return 1 else: return bell(m) def RGS_unrank(rank, m): """ Gives the unranked restricted growth string for a given superset size. Examples ======== >>> from sympy.combinatorics.partitions import RGS_unrank >>> RGS_unrank(14, 4) [0, 1, 2, 3] >>> RGS_unrank(0, 4) [0, 0, 0, 0] """ if m < 1: raise ValueError("The superset size must be >= 1") if rank < 0 or RGS_enum(m) <= rank: raise ValueError("Invalid arguments") L = [1] * (m + 1) j = 1 D = RGS_generalized(m) for i in range(2, m + 1): v = D[m - i, j] cr = j*v if cr <= rank: L[i] = j + 1 rank -= cr j += 1 else: L[i] = int(rank / v + 1) rank %= v return [x - 1 for x in L[1:]] def RGS_rank(rgs): """ Computes the rank of a restricted growth string. Examples ======== >>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank >>> RGS_rank([0, 1, 2, 1, 3]) 42 >>> RGS_rank(RGS_unrank(4, 7)) 4 """ rgs_size = len(rgs) rank = 0 D = RGS_generalized(rgs_size) for i in range(1, rgs_size): n = len(rgs[(i + 1):]) m = max(rgs[0:i]) rank += D[n, m + 1] * rgs[i] return rank
c22bb578622eb471f4a9a7684cb107a2bd3536c248020ecbb8c28672094a0e93
from __future__ import print_function, division from sympy.core.compatibility import range from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.concrete.expr_with_intlimits import ExprWithIntLimits from sympy.core.exprtools import factor_terms from sympy.functions.elementary.exponential import exp, log from sympy.polys import quo, roots from sympy.simplify import powsimp class Product(ExprWithIntLimits): r"""Represents unevaluated products. ``Product`` represents a finite or infinite product, with the first argument being the general form of terms in the series, and the second argument being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking all integer values from ``start`` through ``end``. In accordance with long-standing mathematical convention, the end term is included in the product. Finite products =============== For finite products (and products with symbolic limits assumed to be finite) we follow the analogue of the summation convention described by Karr [1], especially definition 3 of section 1.4. The product: .. math:: \prod_{m \leq i < n} f(i) has *the obvious meaning* for `m < n`, namely: .. math:: \prod_{m \leq i < n} f(i) = f(m) f(m+1) \cdot \ldots \cdot f(n-2) f(n-1) with the upper limit value `f(n)` excluded. The product over an empty set is one if and only if `m = n`: .. math:: \prod_{m \leq i < n} f(i) = 1 \quad \mathrm{for} \quad m = n Finally, for all other products over empty sets we assume the following definition: .. math:: \prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \quad \mathrm{for} \quad m > n It is important to note that above we define all products with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the product convention. Indeed we have: .. math:: \prod_{m \leq i < n} f(i) = \prod_{i = m}^{n - 1} f(i) where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive. Examples ======== >>> from sympy.abc import a, b, i, k, m, n, x >>> from sympy import Product, factorial, oo >>> Product(k, (k, 1, m)) Product(k, (k, 1, m)) >>> Product(k, (k, 1, m)).doit() factorial(m) >>> Product(k**2,(k, 1, m)) Product(k**2, (k, 1, m)) >>> Product(k**2,(k, 1, m)).doit() factorial(m)**2 Wallis' product for pi: >>> W = Product(2*i/(2*i-1) * 2*i/(2*i+1), (i, 1, oo)) >>> W Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo)) Direct computation currently fails: >>> W.doit() Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo)) But we can approach the infinite product by a limit of finite products: >>> from sympy import limit >>> W2 = Product(2*i/(2*i-1)*2*i/(2*i+1), (i, 1, n)) >>> W2 Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n)) >>> W2e = W2.doit() >>> W2e 2**(-2*n)*4**n*factorial(n)**2/(RisingFactorial(1/2, n)*RisingFactorial(3/2, n)) >>> limit(W2e, n, oo) pi/2 By the same formula we can compute sin(pi/2): >>> from sympy import pi, gamma, simplify >>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n)) >>> P = P.subs(x, pi/2) >>> P pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2 >>> Pe = P.doit() >>> Pe pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/(2*factorial(n)**2) >>> Pe = Pe.rewrite(gamma) >>> Pe pi**2*gamma(n + 1 + pi/2)*gamma(n - pi/2 + 1)/(2*gamma(1 - pi/2)*gamma(1 + pi/2)*gamma(n + 1)**2) >>> Pe = simplify(Pe) >>> Pe sin(pi**2/2)*gamma(n + 1 + pi/2)*gamma(n - pi/2 + 1)/gamma(n + 1)**2 >>> limit(Pe, n, oo) sin(pi**2/2) Products with the lower limit being larger than the upper one: >>> Product(1/i, (i, 6, 1)).doit() 120 >>> Product(i, (i, 2, 5)).doit() 120 The empty product: >>> Product(i, (i, n, n-1)).doit() 1 An example showing that the symbolic result of a product is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those products by interchanging the limits according to the above rules: >>> P = Product(2, (i, 10, n)).doit() >>> P 2**(n - 9) >>> P.subs(n, 5) 1/16 >>> Product(2, (i, 10, 5)).doit() 1/16 >>> 1/Product(2, (i, 6, 9)).doit() 1/16 An explicit example of the Karr summation convention applied to products: >>> P1 = Product(x, (i, a, b)).doit() >>> P1 x**(-a + b + 1) >>> P2 = Product(x, (i, b+1, a-1)).doit() >>> P2 x**(a - b - 1) >>> simplify(P1 * P2) 1 And another one: >>> P1 = Product(i, (i, b, a)).doit() >>> P1 RisingFactorial(b, a - b + 1) >>> P2 = Product(i, (i, a+1, b-1)).doit() >>> P2 RisingFactorial(a + 1, -a + b - 1) >>> P1 * P2 RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1) >>> simplify(P1 * P2) 1 See Also ======== Sum, summation product References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 .. [2] https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation .. [3] https://en.wikipedia.org/wiki/Empty_product """ __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): obj = ExprWithIntLimits.__new__(cls, function, *symbols, **assumptions) return obj def _eval_rewrite_as_Sum(self, *args, **kwargs): from sympy.concrete.summations import Sum return exp(Sum(log(self.function), *self.limits)) @property def term(self): return self._args[0] function = term def _eval_is_zero(self): if self.has_empty_sequence: return False z = self.term.is_zero if z is True: return True if self.has_finite_limits: # A Product is zero only if its term is zero assuming finite limits. return z def _eval_is_extended_real(self): if self.has_empty_sequence: return True return self.function.is_extended_real def _eval_is_positive(self): if self.has_empty_sequence: return True if self.function.is_positive and self.has_finite_limits: return True def _eval_is_nonnegative(self): if self.has_empty_sequence: return True if self.function.is_nonnegative and self.has_finite_limits: return True def _eval_is_extended_nonnegative(self): if self.has_empty_sequence: return True if self.function.is_extended_nonnegative: return True def _eval_is_extended_nonpositive(self): if self.has_empty_sequence: return True def _eval_is_finite(self): if self.has_finite_limits and self.function.is_finite: return True def doit(self, **hints): # first make sure any definite limits have product # variables with matching assumptions reps = {} for xab in self.limits: # Must be imported here to avoid circular imports from .summations import _dummy_with_inherited_properties_concrete d = _dummy_with_inherited_properties_concrete(xab) if d: reps[xab[0]] = d if reps: undo = dict([(v, k) for k, v in reps.items()]) did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did f = self.function for index, limit in enumerate(self.limits): i, a, b = limit dif = b - a if dif.is_integer and dif.is_negative: a, b = b + 1, a - 1 f = 1 / f g = self._eval_product(f, (i, a, b)) if g in (None, S.NaN): return self.func(powsimp(f), *self.limits[index:]) else: f = g if hints.get('deep', True): return f.doit(**hints) else: return powsimp(f) def _eval_adjoint(self): if self.is_commutative: return self.func(self.function.adjoint(), *self.limits) return None def _eval_conjugate(self): return self.func(self.function.conjugate(), *self.limits) def _eval_product(self, term, limits): from sympy.concrete.delta import deltaproduct, _has_simple_delta from sympy.concrete.summations import summation from sympy.functions import KroneckerDelta, RisingFactorial (k, a, n) = limits if k not in term.free_symbols: if (term - 1).is_zero: return S.One return term**(n - a + 1) if a == n: return term.subs(k, a) if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]): return deltaproduct(term, limits) dif = n - a definite = dif.is_Integer if definite and (dif < 100): return self._eval_product_direct(term, limits) elif term.is_polynomial(k): poly = term.as_poly(k) A = B = Q = S.One all_roots = roots(poly) M = 0 for r, m in all_roots.items(): M += m A *= RisingFactorial(a - r, n - a + 1)**m Q *= (n - r)**m if M < poly.degree(): arg = quo(poly, Q.as_poly(k)) B = self.func(arg, (k, a, n)).doit() return poly.LC()**(n - a + 1) * A * B elif term.is_Add: factored = factor_terms(term, fraction=True) if factored.is_Mul: return self._eval_product(factored, (k, a, n)) elif term.is_Mul: # Factor in part without the summation variable and part with without_k, with_k = term.as_coeff_mul(k) if len(with_k) >= 2: # More than one term including k, so still a multiplication exclude, include = [], [] for t in with_k: p = self._eval_product(t, (k, a, n)) if p is not None: exclude.append(p) else: include.append(t) if not exclude: return None else: arg = term._new_rawargs(*include) A = Mul(*exclude) B = self.func(arg, (k, a, n)).doit() return without_k**(n - a + 1)*A * B else: # Just a single term p = self._eval_product(with_k[0], (k, a, n)) if p is None: p = self.func(with_k[0], (k, a, n)).doit() return without_k**(n - a + 1)*p elif term.is_Pow: if not term.base.has(k): s = summation(term.exp, (k, a, n)) return term.base**s elif not term.exp.has(k): p = self._eval_product(term.base, (k, a, n)) if p is not None: return p**term.exp elif isinstance(term, Product): evaluated = term.doit() f = self._eval_product(evaluated, limits) if f is None: return self.func(evaluated, limits) else: return f if definite: return self._eval_product_direct(term, limits) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import product_simplify rv = product_simplify(self) return rv.doit() if kwargs['doit'] else rv def _eval_transpose(self): if self.is_commutative: return self.func(self.function.transpose(), *self.limits) return None def _eval_product_direct(self, term, limits): (k, a, n) = limits return Mul(*[term.subs(k, a + i) for i in range(n - a + 1)]) def is_convergent(self): r""" See docs of Sum.is_convergent() for explanation of convergence in SymPy. The infinite product: .. math:: \prod_{1 \leq i < \infty} f(i) is defined by the sequence of partial products: .. math:: \prod_{i=1}^{n} f(i) = f(1) f(2) \cdots f(n) as n increases without bound. The product converges to a non-zero value if and only if the sum: .. math:: \sum_{1 \leq i < \infty} \log{f(n)} converges. Examples ======== >>> from sympy import Interval, S, Product, Symbol, cos, pi, exp, oo >>> n = Symbol('n', integer=True) >>> Product(n/(n + 1), (n, 1, oo)).is_convergent() False >>> Product(1/n**2, (n, 1, oo)).is_convergent() False >>> Product(cos(pi/n), (n, 1, oo)).is_convergent() True >>> Product(exp(-n**2), (n, 1, oo)).is_convergent() False References ========== .. [1] https://en.wikipedia.org/wiki/Infinite_product """ from sympy.concrete.summations import Sum sequence_term = self.function log_sum = log(sequence_term) lim = self.limits try: is_conv = Sum(log_sum, *lim).is_convergent() except NotImplementedError: if Sum(sequence_term - 1, *lim).is_absolutely_convergent() is S.true: return S.true raise NotImplementedError("The algorithm to find the product convergence of %s " "is not yet implemented" % (sequence_term)) return is_conv def reverse_order(expr, *indices): """ Reverse the order of a limit in a Product. Usage ===== ``reverse_order(expr, *indices)`` reverses some limits in the expression ``expr`` which can be either a ``Sum`` or a ``Product``. The selectors in the argument ``indices`` specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple. Examples ======== >>> from sympy import Product, simplify, RisingFactorial, gamma, Sum >>> from sympy.abc import x, y, a, b, c, d >>> P = Product(x, (x, a, b)) >>> Pr = P.reverse_order(x) >>> Pr Product(1/x, (x, b + 1, a - 1)) >>> Pr = Pr.doit() >>> Pr 1/RisingFactorial(b + 1, a - b - 1) >>> simplify(Pr) gamma(b + 1)/gamma(a) >>> P = P.doit() >>> P RisingFactorial(a, -a + b + 1) >>> simplify(P) gamma(b + 1)/gamma(a) While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name. >>> S = Sum(x*y, (x, a, b), (y, c, d)) >>> S Sum(x*y, (x, a, b), (y, c, d)) >>> S0 = S.reverse_order(0) >>> S0 Sum(-x*y, (x, b + 1, a - 1), (y, c, d)) >>> S1 = S0.reverse_order(1) >>> S1 Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1)) Of course we can mix both notations: >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) See Also ======== index, reorder_limit, reorder References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 """ l_indices = list(indices) for i, indx in enumerate(l_indices): if not isinstance(indx, int): l_indices[i] = expr.index(indx) e = 1 limits = [] for i, limit in enumerate(expr.limits): l = limit if i in l_indices: e = -e l = (limit[0], limit[2] + 1, limit[1] - 1) limits.append(l) return Product(expr.function ** e, *limits) def product(*args, **kwargs): r""" Compute the product. The notation for symbols is similar to the notation used in Sum or Integral. product(f, (i, a, b)) computes the product of f with respect to i from a to b, i.e., :: b _____ product(f(n), (i, a, b)) = | | f(n) | | i = a If it cannot compute the product, it returns an unevaluated Product object. Repeated products can be computed by introducing additional symbols tuples:: >>> from sympy import product, symbols >>> i, n, m, k = symbols('i n m k', integer=True) >>> product(i, (i, 1, k)) factorial(k) >>> product(m, (i, 1, k)) m**k >>> product(i, (i, 1, k), (k, 1, n)) Product(factorial(k), (k, 1, n)) """ prod = Product(*args, **kwargs) if isinstance(prod, Product): return prod.doit(deep=False) else: return prod
c0d25fc5e7df7297da9f19c2d8b6e0a4d5a3d19cf27355617c3daf6b724bfb8a
from __future__ import print_function, division from sympy.concrete.expr_with_limits import ExprWithLimits from sympy.core.singleton import S from sympy.core.relational import Eq class ReorderError(NotImplementedError): """ Exception raised when trying to reorder dependent limits. """ def __init__(self, expr, msg): super(ReorderError, self).__init__( "%s could not be reordered: %s." % (expr, msg)) class ExprWithIntLimits(ExprWithLimits): def change_index(self, var, trafo, newvar=None): r""" Change index of a Sum or Product. Perform a linear transformation `x \mapsto a x + b` on the index variable `x`. For `a` the only values allowed are `\pm 1`. A new variable to be used after the change of index can also be specified. Usage ===== ``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the index variable `x` to transform. The transformation ``trafo`` must be linear and given in terms of ``var``. If the optional argument ``newvar`` is provided then ``var`` gets replaced by ``newvar`` in the final expression. Examples ======== >>> from sympy import Sum, Product, simplify >>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l >>> S = Sum(x, (x, a, b)) >>> S.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, x + 1, y) >>> Sn Sum(y - 1, (y, a + 1, b + 1)) >>> Sn.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, -x, y) >>> Sn Sum(-y, (y, -b, -a)) >>> Sn.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, x+u) >>> Sn Sum(-u + x, (x, a + u, b + u)) >>> Sn.doit() -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u >>> simplify(Sn.doit()) -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, -x - u, y) >>> Sn Sum(-u - y, (y, -b - u, -a - u)) >>> Sn.doit() -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u >>> simplify(Sn.doit()) -a**2/2 + a/2 + b**2/2 + b/2 >>> P = Product(i*j**2, (i, a, b), (j, c, d)) >>> P Product(i*j**2, (i, a, b), (j, c, d)) >>> P2 = P.change_index(i, i+3, k) >>> P2 Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d)) >>> P3 = P2.change_index(j, -j, l) >>> P3 Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c)) When dealing with symbols only, we can make a general linear transformation: >>> Sn = S.change_index(x, u*x+v, y) >>> Sn Sum((-v + y)/u, (y, b*u + v, a*u + v)) >>> Sn.doit() -v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u >>> simplify(Sn.doit()) a**2*u/2 + a/2 - b**2*u/2 + b/2 However, the last result can be inconsistent with usual summation where the index increment is always 1. This is obvious as we get back the original value only for ``u`` equal +1 or -1. See Also ======== sympy.concrete.simplification.index, sympy.concrete.simplification.reorder_limit, sympy.concrete.simplification.reorder, sympy.concrete.simplification.reverse_order """ if newvar is None: newvar = var limits = [] for limit in self.limits: if limit[0] == var: p = trafo.as_poly(var) if p.degree() != 1: raise ValueError("Index transformation is not linear") alpha = p.coeff_monomial(var) beta = p.coeff_monomial(S.One) if alpha.is_number: if alpha == S.One: limits.append((newvar, alpha*limit[1] + beta, alpha*limit[2] + beta)) elif alpha == S.NegativeOne: limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta)) else: raise ValueError("Linear transformation results in non-linear summation stepsize") else: # Note that the case of alpha being symbolic can give issues if alpha < 0. limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta)) else: limits.append(limit) function = self.function.subs(var, (var - beta)/alpha) function = function.subs(var, newvar) return self.func(function, *limits) def index(expr, x): """ Return the index of a dummy variable in the list of limits. Usage ===== ``index(expr, x)`` returns the index of the dummy variable ``x`` in the limits of ``expr``. Note that we start counting with 0 at the inner-most limits tuple. Examples ======== >>> from sympy.abc import x, y, a, b, c, d >>> from sympy import Sum, Product >>> Sum(x*y, (x, a, b), (y, c, d)).index(x) 0 >>> Sum(x*y, (x, a, b), (y, c, d)).index(y) 1 >>> Product(x*y, (x, a, b), (y, c, d)).index(x) 0 >>> Product(x*y, (x, a, b), (y, c, d)).index(y) 1 See Also ======== reorder_limit, reorder, reverse_order """ variables = [limit[0] for limit in expr.limits] if variables.count(x) != 1: raise ValueError(expr, "Number of instances of variable not equal to one") else: return variables.index(x) def reorder(expr, *arg): """ Reorder limits in a expression containing a Sum or a Product. Usage ===== ``expr.reorder(*arg)`` reorders the limits in the expression ``expr`` according to the list of tuples given by ``arg``. These tuples can contain numerical indices or index variable names or involve both. Examples ======== >>> from sympy import Sum, Product >>> from sympy.abc import x, y, z, a, b, c, d, e, f >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y)) Sum(x*y, (y, c, d), (x, a, b)) >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z)) Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b)) >>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)) >>> P.reorder((x, y), (x, z), (y, z)) Product(x*y*z, (z, e, f), (y, c, d), (x, a, b)) We can also select the index variables by counting them, starting with the inner-most one: >>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1)) Sum(x**2, (x, c, d), (x, a, b)) And of course we can mix both schemes: >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) Sum(x*y, (y, c, d), (x, a, b)) >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0)) Sum(x*y, (y, c, d), (x, a, b)) See Also ======== reorder_limit, index, reverse_order """ new_expr = expr for r in arg: if len(r) != 2: raise ValueError(r, "Invalid number of arguments") index1 = r[0] index2 = r[1] if not isinstance(r[0], int): index1 = expr.index(r[0]) if not isinstance(r[1], int): index2 = expr.index(r[1]) new_expr = new_expr.reorder_limit(index1, index2) return new_expr def reorder_limit(expr, x, y): """ Interchange two limit tuples of a Sum or Product expression. Usage ===== ``expr.reorder_limit(x, y)`` interchanges two limit tuples. The arguments ``x`` and ``y`` are integers corresponding to the index variables of the two limits which are to be interchanged. The expression ``expr`` has to be either a Sum or a Product. Examples ======== >>> from sympy.abc import x, y, z, a, b, c, d, e, f >>> from sympy import Sum, Product >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2) Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b)) >>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0) Sum(x**2, (x, c, d), (x, a, b)) >>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2) Product(x*y*z, (z, e, f), (y, c, d), (x, a, b)) See Also ======== index, reorder, reverse_order """ var = {limit[0] for limit in expr.limits} limit_x = expr.limits[x] limit_y = expr.limits[y] if (len(set(limit_x[1].free_symbols).intersection(var)) == 0 and len(set(limit_x[2].free_symbols).intersection(var)) == 0 and len(set(limit_y[1].free_symbols).intersection(var)) == 0 and len(set(limit_y[2].free_symbols).intersection(var)) == 0): limits = [] for i, limit in enumerate(expr.limits): if i == x: limits.append(limit_y) elif i == y: limits.append(limit_x) else: limits.append(limit) return type(expr)(expr.function, *limits) else: raise ReorderError(expr, "could not interchange the two limits specified") @property def has_empty_sequence(self): """ Returns True if the Sum or Product is computed for an empty sequence. Examples ======== >>> from sympy import Sum, Product, Symbol >>> m = Symbol('m') >>> Sum(m, (m, 1, 0)).has_empty_sequence True >>> Sum(m, (m, 1, 1)).has_empty_sequence False >>> M = Symbol('M', integer=True, positive=True) >>> Product(m, (m, 1, M)).has_empty_sequence False >>> Product(m, (m, 2, M)).has_empty_sequence >>> Product(m, (m, M + 1, M)).has_empty_sequence True >>> N = Symbol('N', integer=True, positive=True) >>> Sum(m, (m, N, M)).has_empty_sequence >>> N = Symbol('N', integer=True, negative=True) >>> Sum(m, (m, N, M)).has_empty_sequence False See Also ======== has_reversed_limits has_finite_limits """ ret_None = False for lim in self.limits: dif = lim[1] - lim[2] eq = Eq(dif, 1) if eq == True: return True elif eq == False: continue else: ret_None = True if ret_None: return None return False
ae14bd41b74257b28ac6418cd8de77be162c479be64e02970f224ab1ecc11b76
""" This module implements sums and products containing the Kronecker Delta function. References ========== - http://mathworld.wolfram.com/KroneckerDelta.html """ from __future__ import print_function, division from sympy.core import Add, Mul, S, Dummy from sympy.core.cache import cacheit from sympy.core.compatibility import default_sort_key, range from sympy.functions import KroneckerDelta, Piecewise, piecewise_fold from sympy.sets import Interval @cacheit def _expand_delta(expr, index): """ Expand the first Add containing a simple KroneckerDelta. """ if not expr.is_Mul: return expr delta = None func = Add terms = [S(1)] for h in expr.args: if delta is None and h.is_Add and _has_simple_delta(h, index): delta = True func = h.func terms = [terms[0]*t for t in h.args] else: terms = [t*h for t in terms] return func(*terms) @cacheit def _extract_delta(expr, index): """ Extract a simple KroneckerDelta from the expression. Returns the tuple ``(delta, newexpr)`` where: - ``delta`` is a simple KroneckerDelta expression if one was found, or ``None`` if no simple KroneckerDelta expression was found. - ``newexpr`` is a Mul containing the remaining terms; ``expr`` is returned unchanged if no simple KroneckerDelta expression was found. Examples ======== >>> from sympy import KroneckerDelta >>> from sympy.concrete.delta import _extract_delta >>> from sympy.abc import x, y, i, j, k >>> _extract_delta(4*x*y*KroneckerDelta(i, j), i) (KroneckerDelta(i, j), 4*x*y) >>> _extract_delta(4*x*y*KroneckerDelta(i, j), k) (None, 4*x*y*KroneckerDelta(i, j)) See Also ======== sympy.functions.special.tensor_functions.KroneckerDelta deltaproduct deltasummation """ if not _has_simple_delta(expr, index): return (None, expr) if isinstance(expr, KroneckerDelta): return (expr, S(1)) if not expr.is_Mul: raise ValueError("Incorrect expr") delta = None terms = [] for arg in expr.args: if delta is None and _is_simple_delta(arg, index): delta = arg else: terms.append(arg) return (delta, expr.func(*terms)) @cacheit def _has_simple_delta(expr, index): """ Returns True if ``expr`` is an expression that contains a KroneckerDelta that is simple in the index ``index``, meaning that this KroneckerDelta is nonzero for a single value of the index ``index``. """ if expr.has(KroneckerDelta): if _is_simple_delta(expr, index): return True if expr.is_Add or expr.is_Mul: for arg in expr.args: if _has_simple_delta(arg, index): return True return False @cacheit def _is_simple_delta(delta, index): """ Returns True if ``delta`` is a KroneckerDelta and is nonzero for a single value of the index ``index``. """ if isinstance(delta, KroneckerDelta) and delta.has(index): p = (delta.args[0] - delta.args[1]).as_poly(index) if p: return p.degree() == 1 return False @cacheit def _remove_multiple_delta(expr): """ Evaluate products of KroneckerDelta's. """ from sympy.solvers import solve if expr.is_Add: return expr.func(*list(map(_remove_multiple_delta, expr.args))) if not expr.is_Mul: return expr eqs = [] newargs = [] for arg in expr.args: if isinstance(arg, KroneckerDelta): eqs.append(arg.args[0] - arg.args[1]) else: newargs.append(arg) if not eqs: return expr solns = solve(eqs, dict=True) if len(solns) == 0: return S.Zero elif len(solns) == 1: for key in solns[0].keys(): newargs.append(KroneckerDelta(key, solns[0][key])) expr2 = expr.func(*newargs) if expr != expr2: return _remove_multiple_delta(expr2) return expr @cacheit def _simplify_delta(expr): """ Rewrite a KroneckerDelta's indices in its simplest form. """ from sympy.solvers import solve if isinstance(expr, KroneckerDelta): try: slns = solve(expr.args[0] - expr.args[1], dict=True) if slns and len(slns) == 1: return Mul(*[KroneckerDelta(*(key, value)) for key, value in slns[0].items()]) except NotImplementedError: pass return expr @cacheit def deltaproduct(f, limit): """ Handle products containing a KroneckerDelta. See Also ======== deltasummation sympy.functions.special.tensor_functions.KroneckerDelta sympy.concrete.products.product """ from sympy.concrete.products import product if ((limit[2] - limit[1]) < 0) == True: return S.One if not f.has(KroneckerDelta): return product(f, limit) if f.is_Add: # Identify the term in the Add that has a simple KroneckerDelta delta = None terms = [] for arg in sorted(f.args, key=default_sort_key): if delta is None and _has_simple_delta(arg, limit[0]): delta = arg else: terms.append(arg) newexpr = f.func(*terms) k = Dummy("kprime", integer=True) if isinstance(limit[1], int) and isinstance(limit[2], int): result = deltaproduct(newexpr, limit) + sum([ deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) * delta.subs(limit[0], ik) * deltaproduct(newexpr, (limit[0], ik + 1, limit[2])) for ik in range(int(limit[1]), int(limit[2] + 1))] ) else: result = deltaproduct(newexpr, limit) + deltasummation( deltaproduct(newexpr, (limit[0], limit[1], k - 1)) * delta.subs(limit[0], k) * deltaproduct(newexpr, (limit[0], k + 1, limit[2])), (k, limit[1], limit[2]), no_piecewise=_has_simple_delta(newexpr, limit[0]) ) return _remove_multiple_delta(result) delta, _ = _extract_delta(f, limit[0]) if not delta: g = _expand_delta(f, limit[0]) if f != g: from sympy import factor try: return factor(deltaproduct(g, limit)) except AssertionError: return deltaproduct(g, limit) return product(f, limit) return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \ S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1)) @cacheit def deltasummation(f, limit, no_piecewise=False): """ Handle summations containing a KroneckerDelta. The idea for summation is the following: - If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j), we try to simplify it. If we could simplify it, then we sum the resulting expression. We already know we can sum a simplified expression, because only simple KroneckerDelta expressions are involved. If we couldn't simplify it, there are two cases: 1) The expression is a simple expression: we return the summation, taking care if we are dealing with a Derivative or with a proper KroneckerDelta. 2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do nothing at all. - If the expr is a multiplication expr having a KroneckerDelta term: First we expand it. If the expansion did work, then we try to sum the expansion. If not, we try to extract a simple KroneckerDelta term, then we have two cases: 1) We have a simple KroneckerDelta term, so we return the summation. 2) We didn't have a simple term, but we do have an expression with simplified KroneckerDelta terms, so we sum this expression. Examples ======== >>> from sympy import oo, symbols >>> from sympy.abc import k >>> i, j = symbols('i, j', integer=True, finite=True) >>> from sympy.concrete.delta import deltasummation >>> from sympy import KroneckerDelta, Piecewise >>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo)) 1 >>> deltasummation(KroneckerDelta(i, k), (k, 0, oo)) Piecewise((1, i >= 0), (0, True)) >>> deltasummation(KroneckerDelta(i, k), (k, 1, 3)) Piecewise((1, (i >= 1) & (i <= 3)), (0, True)) >>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo)) j*KroneckerDelta(i, j) >>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo)) i >>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo)) j See Also ======== deltaproduct sympy.functions.special.tensor_functions.KroneckerDelta sympy.concrete.sums.summation """ from sympy.concrete.summations import summation from sympy.solvers import solve if ((limit[2] - limit[1]) < 0) == True: return S.Zero if not f.has(KroneckerDelta): return summation(f, limit) x = limit[0] g = _expand_delta(f, x) if g.is_Add: return piecewise_fold( g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args])) # try to extract a simple KroneckerDelta term delta, expr = _extract_delta(g, x) if (delta is not None) and (delta.delta_range is not None): dinf, dsup = delta.delta_range if (limit[1] - dinf <= 0) == True and (limit[2] - dsup >= 0) == True: no_piecewise = True if not delta: return summation(f, limit) solns = solve(delta.args[0] - delta.args[1], x) if len(solns) == 0: return S.Zero elif len(solns) != 1: from sympy.concrete.summations import Sum return Sum(f, limit) value = solns[0] if no_piecewise: return expr.subs(x, value) return Piecewise( (expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)), (S.Zero, True) )
6b4f19387e01dc545481eab1b9a62153ad5abc089fb215a1e05e3b2e7eba9eba
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.relational import Equality, Relational from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import sympify from sympy.functions.elementary.piecewise import (piecewise_fold, Piecewise) from sympy.logic.boolalg import BooleanFunction from sympy.tensor.indexed import Idx from sympy.sets.sets import Interval from sympy.sets.fancysets import Range from sympy.utilities import flatten from sympy.utilities.iterables import sift def _common_new(cls, function, *symbols, **assumptions): """Return either a special return value or the tuple, (function, limits, orientation). This code is common to both ExprWithLimits and AddWithLimits.""" function = sympify(function) if hasattr(function, 'func') and isinstance(function, Equality): lhs = function.lhs rhs = function.rhs return Equality(cls(lhs, *symbols, **assumptions), \ cls(rhs, *symbols, **assumptions)) if function is S.NaN: return S.NaN if symbols: limits, orientation = _process_limits(*symbols) for i, li in enumerate(limits): if len(li) == 4: function = function.subs(li[0], li[-1]) limits[i] = Tuple(*li[:-1]) else: # symbol not provided -- we can still try to compute a general form free = function.free_symbols if len(free) != 1: raise ValueError( "specify dummy variables for %s" % function) limits, orientation = [Tuple(s) for s in free], 1 # denest any nested calls while cls == type(function): limits = list(function.limits) + limits function = function.function # Any embedded piecewise functions need to be brought out to the # top level. We only fold Piecewise that contain the integration # variable. reps = {} symbols_of_integration = set([i[0] for i in limits]) for p in function.atoms(Piecewise): if not p.has(*symbols_of_integration): reps[p] = Dummy() # mask off those that don't function = function.xreplace(reps) # do the fold function = piecewise_fold(function) # remove the masking function = function.xreplace({v: k for k, v in reps.items()}) return function, limits, orientation def _process_limits(*symbols): """Process the list of symbols and convert them to canonical limits, storing them as Tuple(symbol, lower, upper). The orientation of the function is also returned when the upper limit is missing so (x, 1, None) becomes (x, None, 1) and the orientation is changed. """ limits = [] orientation = 1 for V in symbols: if isinstance(V, (Relational, BooleanFunction)): variable = V.atoms(Symbol).pop() V = (variable, V.as_set()) if isinstance(V, Symbol) or getattr(V, '_diff_wrt', False): if isinstance(V, Idx): if V.lower is None or V.upper is None: limits.append(Tuple(V)) else: limits.append(Tuple(V, V.lower, V.upper)) else: limits.append(Tuple(V)) continue elif is_sequence(V, Tuple): if len(V) == 2 and isinstance(V[1], Range): lo = V[1].inf hi = V[1].sup dx = abs(V[1].step) V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo] V = sympify(flatten(V)) # a list of sympified elements if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False): newsymbol = V[0] if len(V) == 2 and isinstance(V[1], Interval): # 2 -> 3 # Interval V[1:] = [V[1].start, V[1].end] elif len(V) == 3: # general case if V[2] is None and not V[1] is None: orientation *= -1 V = [newsymbol] + [i for i in V[1:] if i is not None] if not isinstance(newsymbol, Idx) or len(V) == 3: if len(V) == 4: limits.append(Tuple(*V)) continue if len(V) == 3: if isinstance(newsymbol, Idx): # Idx represents an integer which may have # specified values it can take on; if it is # given such a value, an error is raised here # if the summation would try to give it a larger # or smaller value than permitted. None and Symbolic # values will not raise an error. lo, hi = newsymbol.lower, newsymbol.upper try: if lo is not None and not bool(V[1] >= lo): raise ValueError("Summation will set Idx value too low.") except TypeError: pass try: if hi is not None and not bool(V[2] <= hi): raise ValueError("Summation will set Idx value too high.") except TypeError: pass limits.append(Tuple(*V)) continue if len(V) == 1 or (len(V) == 2 and V[1] is None): limits.append(Tuple(newsymbol)) continue elif len(V) == 2: limits.append(Tuple(newsymbol, V[1])) continue raise ValueError('Invalid limits given: %s' % str(symbols)) return limits, orientation class ExprWithLimits(Expr): __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): pre = _common_new(cls, function, *symbols, **assumptions) if type(pre) is tuple: function, limits, _ = pre else: return pre # limits must have upper and lower bounds; the indefinite form # is not supported. This restriction does not apply to AddWithLimits if any(len(l) != 3 or None in l for l in limits): raise ValueError('ExprWithLimits requires values for lower and upper bounds.') obj = Expr.__new__(cls, **assumptions) arglist = [function] arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj @property def function(self): """Return the function applied across limits. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x >>> Integral(x**2, (x,)).function x**2 See Also ======== limits, variables, free_symbols """ return self._args[0] @property def limits(self): """Return the limits of expression. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i >>> Integral(x**i, (i, 1, 3)).limits ((i, 1, 3),) See Also ======== function, variables, free_symbols """ return self._args[1:] @property def variables(self): """Return a list of the limit variables. >>> from sympy import Sum >>> from sympy.abc import x, i >>> Sum(x**i, (i, 1, 3)).variables [i] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits] @property def bound_symbols(self): """Return only variables that are dummy variables. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i, j, k >>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols [i, j] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits if len(l) != 1] @property def free_symbols(self): """ This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols). Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y >>> Sum(x, (x, y, 1)).free_symbols {y} """ # don't test for any special values -- nominal free symbols # should be returned, e.g. don't return set() if the # function is zero -- treat it like an unevaluated expression. function, limits = self.function, self.limits isyms = function.free_symbols for xab in limits: if len(xab) == 1: isyms.add(xab[0]) continue # take out the target symbol if xab[0] in isyms: isyms.remove(xab[0]) # add in the new symbols for i in xab[1:]: isyms.update(i.free_symbols) return isyms @property def is_number(self): """Return True if the Sum has no free symbols, else False.""" return not self.free_symbols def _eval_interval(self, x, a, b): limits = [(i if i[0] != x else (x, a, b)) for i in self.limits] integrand = self.function return self.func(integrand, *limits) def _eval_subs(self, old, new): """ Perform substitutions over non-dummy variables of an expression with limits. Also, can be used to specify point-evaluation of an abstract antiderivative. Examples ======== >>> from sympy import Sum, oo >>> from sympy.abc import s, n >>> Sum(1/n**s, (n, 1, oo)).subs(s, 2) Sum(n**(-2), (n, 1, oo)) >>> from sympy import Integral >>> from sympy.abc import x, a >>> Integral(a*x**2, x).subs(x, 4) Integral(a*x**2, (x, 4)) See Also ======== variables : Lists the integration variables transform : Perform mapping on the dummy variable for integrals change_index : Perform mapping on the sum and product dummy variables """ from sympy.core.function import AppliedUndef, UndefinedFunction func, limits = self.function, list(self.limits) # If one of the expressions we are replacing is used as a func index # one of two things happens. # - the old variable first appears as a free variable # so we perform all free substitutions before it becomes # a func index. # - the old variable first appears as a func index, in # which case we ignore. See change_index. # Reorder limits to match standard mathematical practice for scoping limits.reverse() if not isinstance(old, Symbol) or \ old.free_symbols.intersection(self.free_symbols): sub_into_func = True for i, xab in enumerate(limits): if 1 == len(xab) and old == xab[0]: if new._diff_wrt: xab = (new,) else: xab = (old, old) limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0: sub_into_func = False break if isinstance(old, AppliedUndef) or isinstance(old, UndefinedFunction): sy2 = set(self.variables).intersection(set(new.atoms(Symbol))) sy1 = set(self.variables).intersection(set(old.args)) if not sy2.issubset(sy1): raise ValueError( "substitution can not create dummy dependencies") sub_into_func = True if sub_into_func: func = func.subs(old, new) else: # old is a Symbol and a dummy variable of some limit for i, xab in enumerate(limits): if len(xab) == 3: limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if old == xab[0]: break # simplify redundant limits (x, x) to (x, ) for i, xab in enumerate(limits): if len(xab) == 2 and (xab[0] - xab[1]).is_zero: limits[i] = Tuple(xab[0], ) # Reorder limits back to representation-form limits.reverse() return self.func(func, *limits) @property def has_finite_limits(self): """ Returns True if the limits are known to be finite, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be infinite, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 1, 8)).has_finite_limits True >>> Integral(x, (x, 1, oo)).has_finite_limits False >>> M = Symbol('M') >>> Sum(x, (x, 1, M)).has_finite_limits >>> N = Symbol('N', integer=True) >>> Product(x, (x, 1, N)).has_finite_limits True See Also ======== has_reversed_limits """ ret_None = False for lim in self.limits: if len(lim) == 3: if any(l.is_infinite for l in lim[1:]): # Any of the bounds are +/-oo return False elif any(l.is_infinite is None for l in lim[1:]): # Maybe there are assumptions on the variable? if lim[0].is_infinite is None: ret_None = True else: if lim[0].is_infinite is None: ret_None = True if ret_None: return None return True @property def has_reversed_limits(self): """ Returns True if the limits are known to be in reversed order, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be in normal order, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 8, 1)).has_reversed_limits True >>> Sum(x, (x, 1, oo)).has_reversed_limits False >>> M = Symbol('M') >>> Integral(x, (x, 1, M)).has_reversed_limits >>> N = Symbol('N', integer=True, positive=True) >>> Sum(x, (x, 1, N)).has_reversed_limits False >>> Product(x, (x, 2, N)).has_reversed_limits >>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits False See Also ======== ExprWithIntLimits.has_empty_sequence """ ret_None = False for lim in self.limits: if len(lim) == 3: var, a, b = lim dif = b - a if dif.is_extended_negative: return True elif dif.is_extended_nonnegative: continue else: ret_None = True else: return None if ret_None: return None return False class AddWithLimits(ExprWithLimits): r"""Represents unevaluated oriented additions. Parent class for Integral and Sum. """ def __new__(cls, function, *symbols, **assumptions): pre = _common_new(cls, function, *symbols, **assumptions) if type(pre) is tuple: function, limits, orientation = pre else: return pre obj = Expr.__new__(cls, **assumptions) arglist = [orientation*function] # orientation not used in ExprWithLimits arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj def _eval_adjoint(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.adjoint(), *self.limits) return None def _eval_conjugate(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.conjugate(), *self.limits) return None def _eval_transpose(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.transpose(), *self.limits) return None def _eval_factor(self, **hints): if 1 == len(self.limits): summand = self.function.factor(**hints) if summand.is_Mul: out = sift(summand.args, lambda w: w.is_commutative \ and not set(self.variables) & w.free_symbols) return Mul(*out[True])*self.func(Mul(*out[False]), \ *self.limits) else: summand = self.func(self.function, *self.limits[0:-1]).factor() if not summand.has(self.variables[-1]): return self.func(1, [self.limits[-1]]).doit()*summand elif isinstance(summand, Mul): return self.func(summand, self.limits[-1]).factor() return self def _eval_expand_basic(self, **hints): from sympy.matrices.matrices import MatrixBase summand = self.function.expand(**hints) if summand.is_Add and summand.is_commutative: return Add(*[self.func(i, *self.limits) for i in summand.args]) elif isinstance(summand, MatrixBase): return summand.applyfunc(lambda x: self.func(x, *self.limits)) elif summand != self.function: return self.func(summand, *self.limits) return self
8c6213aaaa252f540231ef7b2f2c1ef9181d43ed04385edc6afae4d55b795595
from __future__ import print_function, division from sympy.calculus.singularities import is_decreasing from sympy.calculus.util import AccumulationBounds from sympy.concrete.expr_with_limits import AddWithLimits from sympy.concrete.expr_with_intlimits import ExprWithIntLimits from sympy.concrete.gosper import gosper_sum from sympy.core.add import Add from sympy.core.compatibility import range from sympy.core.function import Derivative from sympy.core.mul import Mul from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Dummy, Wild, Symbol from sympy.functions.special.zeta_functions import zeta from sympy.functions.elementary.piecewise import Piecewise from sympy.logic.boolalg import And from sympy.polys import apart, PolynomialError, together from sympy.series.limitseq import limit_seq from sympy.series.order import O from sympy.sets.sets import FiniteSet from sympy.simplify import denom from sympy.simplify.combsimp import combsimp from sympy.simplify.powsimp import powsimp from sympy.solvers import solve from sympy.solvers.solveset import solveset import itertools class Sum(AddWithLimits, ExprWithIntLimits): r"""Represents unevaluated summation. ``Sum`` represents a finite or infinite series, with the first argument being the general form of terms in the series, and the second argument being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking all integer values from ``start`` through ``end``. In accordance with long-standing mathematical convention, the end term is included in the summation. Finite sums =========== For finite sums (and sums with symbolic limits assumed to be finite) we follow the summation convention described by Karr [1], especially definition 3 of section 1.4. The sum: .. math:: \sum_{m \leq i < n} f(i) has *the obvious meaning* for `m < n`, namely: .. math:: \sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1) with the upper limit value `f(n)` excluded. The sum over an empty set is zero if and only if `m = n`: .. math:: \sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n Finally, for all other sums over empty sets we assume the following definition: .. math:: \sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n It is important to note that Karr defines all sums with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the summation convention. Indeed we have: .. math:: \sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i) where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive. Examples ======== >>> from sympy.abc import i, k, m, n, x >>> from sympy import Sum, factorial, oo, IndexedBase, Function >>> Sum(k, (k, 1, m)) Sum(k, (k, 1, m)) >>> Sum(k, (k, 1, m)).doit() m**2/2 + m/2 >>> Sum(k**2, (k, 1, m)) Sum(k**2, (k, 1, m)) >>> Sum(k**2, (k, 1, m)).doit() m**3/3 + m**2/2 + m/6 >>> Sum(x**k, (k, 0, oo)) Sum(x**k, (k, 0, oo)) >>> Sum(x**k, (k, 0, oo)).doit() Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True)) >>> Sum(x**k/factorial(k), (k, 0, oo)).doit() exp(x) Here are examples to do summation with symbolic indices. You can use either Function of IndexedBase classes: >>> f = Function('f') >>> Sum(f(n), (n, 0, 3)).doit() f(0) + f(1) + f(2) + f(3) >>> Sum(f(n), (n, 0, oo)).doit() Sum(f(n), (n, 0, oo)) >>> f = IndexedBase('f') >>> Sum(f[n]**2, (n, 0, 3)).doit() f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2 An example showing that the symbolic result of a summation is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those sums by interchanging the limits according to the above rules: >>> S = Sum(i, (i, 1, n)).doit() >>> S n**2/2 + n/2 >>> S.subs(n, -4) 6 >>> Sum(i, (i, 1, -4)).doit() 6 >>> Sum(-i, (i, -3, 0)).doit() 6 An explicit example of the Karr summation convention: >>> S1 = Sum(i**2, (i, m, m+n-1)).doit() >>> S1 m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6 >>> S2 = Sum(i**2, (i, m+n, m-1)).doit() >>> S2 -m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6 >>> S1 + S2 0 >>> S3 = Sum(i, (i, m, m-1)).doit() >>> S3 0 See Also ======== summation Product, product References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 .. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation .. [3] https://en.wikipedia.org/wiki/Empty_sum """ __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) if not hasattr(obj, 'limits'): return obj if any(len(l) != 3 or None in l for l in obj.limits): raise ValueError('Sum requires values for lower and upper bounds.') return obj def _eval_is_zero(self): # a Sum is only zero if its function is zero or if all terms # cancel out. This only answers whether the summand is zero; if # not then None is returned since we don't analyze whether all # terms cancel out. if self.function.is_zero or self.has_empty_sequence: return True def _eval_is_extended_real(self): if self.has_empty_sequence: return True return self.function.is_extended_real def _eval_is_positive(self): if self.has_finite_limits and self.has_reversed_limits is False: return self.function.is_positive def _eval_is_negative(self): if self.has_finite_limits and self.has_reversed_limits is False: return self.function.is_negative def _eval_is_finite(self): if self.has_finite_limits and self.function.is_finite: return True def doit(self, **hints): if hints.get('deep', True): f = self.function.doit(**hints) else: f = self.function # first make sure any definite limits have summation # variables with matching assumptions reps = {} for xab in self.limits: d = _dummy_with_inherited_properties_concrete(xab) if d: reps[xab[0]] = d if reps: undo = dict([(v, k) for k, v in reps.items()]) did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) elif did is not None: did = did.xreplace(undo) else: did = self return did if self.function.is_Matrix: expanded = self.expand() if self != expanded: return expanded.doit() return _eval_matrix_sum(self) for n, limit in enumerate(self.limits): i, a, b = limit dif = b - a if dif == -1: # Any summation over an empty set is zero return S.Zero if dif.is_integer and dif.is_negative: a, b = b + 1, a - 1 f = -f newf = eval_sum(f, (i, a, b)) if newf is None: if f == self.function: zeta_function = self.eval_zeta_function(f, (i, a, b)) if zeta_function is not None: return zeta_function return self else: return self.func(f, *self.limits[n:]) f = newf if hints.get('deep', True): # eval_sum could return partially unevaluated # result with Piecewise. In this case we won't # doit() recursively. if not isinstance(f, Piecewise): return f.doit(**hints) return f def eval_zeta_function(self, f, limits): """ Check whether the function matches with the zeta function. If it matches, then return a `Piecewise` expression because zeta function does not converge unless `s > 1` and `q > 0` """ i, a, b = limits w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i]) result = f.match((w * i + y) ** (-z)) if result is not None and b == S.Infinity: coeff = 1 / result[w] ** result[z] s = result[z] q = result[y] / result[w] + a return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True)) def _eval_derivative(self, x): """ Differentiate wrt x as long as x is not in the free symbols of any of the upper or lower limits. Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a` since the value of the sum is discontinuous in `a`. In a case involving a limit variable, the unevaluated derivative is returned. """ # diff already confirmed that x is in the free symbols of self, but we # don't want to differentiate wrt any free symbol in the upper or lower # limits # XXX remove this test for free_symbols when the default _eval_derivative is in if isinstance(x, Symbol) and x not in self.free_symbols: return S.Zero # get limits and the function f, limits = self.function, list(self.limits) limit = limits.pop(-1) if limits: # f is the argument to a Sum f = self.func(f, *limits) _, a, b = limit if x in a.free_symbols or x in b.free_symbols: return None df = Derivative(f, x, evaluate=True) rv = self.func(df, limit) return rv def _eval_difference_delta(self, n, step): k, _, upper = self.args[-1] new_upper = upper.subs(n, n + step) if len(self.args) == 2: f = self.args[0] else: f = self.func(*self.args[:-1]) return Sum(f, (k, upper + 1, new_upper)).doit() def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import factor_sum, sum_combine from sympy.core.function import expand from sympy.core.mul import Mul # split the function into adds terms = Add.make_args(expand(self.function)) s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: if term.has(Sum): # if there is an embedded sum here # it is of the form x * (Sum(whatever)) # hence we make a Mul out of it, and simplify all interior sum terms subterms = Mul.make_args(expand(term)) out_terms = [] for subterm in subterms: # go through each term if isinstance(subterm, Sum): # if it's a sum, simplify it out_terms.append(subterm._eval_simplify()) else: # otherwise, add it as is out_terms.append(subterm) # turn it back into a Mul s_t.append(Mul(*out_terms)) else: o_t.append(term) # next try to combine any interior sums for further simplification result = Add(sum_combine(s_t), *o_t) return factor_sum(result, limits=self.limits) def is_convergent(self): r"""Checks for the convergence of a Sum. We divide the study of convergence of infinite sums and products in two parts. First Part: One part is the question whether all the terms are well defined, i.e., they are finite in a sum and also non-zero in a product. Zero is the analogy of (minus) infinity in products as :math:`e^{-\infty} = 0`. Second Part: The second part is the question of convergence after infinities, and zeros in products, have been omitted assuming that their number is finite. This means that we only consider the tail of the sum or product, starting from some point after which all terms are well defined. For example, in a sum of the form: .. math:: \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b} where a and b are numbers. The routine will return true, even if there are infinities in the term sequence (at most two). An analogous product would be: .. math:: \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}} This is how convergence is interpreted. It is concerned with what happens at the limit. Finding the bad terms is another independent matter. Note: It is responsibility of user to see that the sum or product is well defined. There are various tests employed to check the convergence like divergence test, root test, integral test, alternating series test, comparison tests, Dirichlet tests. It returns true if Sum is convergent and false if divergent and NotImplementedError if it can not be checked. References ========== .. [1] https://en.wikipedia.org/wiki/Convergence_tests Examples ======== >>> from sympy import factorial, S, Sum, Symbol, oo >>> n = Symbol('n', integer=True) >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent() True >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() False >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() False >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() True See Also ======== Sum.is_absolutely_convergent() Product.is_convergent() """ from sympy import Interval, Integral, log, symbols, simplify p, q, r = symbols('p q r', cls=Wild) sym = self.limits[0][0] lower_limit = self.limits[0][1] upper_limit = self.limits[0][2] sequence_term = self.function if len(sequence_term.free_symbols) > 1: raise NotImplementedError("convergence checking for more than one symbol " "containing series is not handled") if lower_limit.is_finite and upper_limit.is_finite: return S.true # transform sym -> -sym and swap the upper_limit = S.Infinity # and lower_limit = - upper_limit if lower_limit is S.NegativeInfinity: if upper_limit is S.Infinity: return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \ Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent() sequence_term = simplify(sequence_term.xreplace({sym: -sym})) lower_limit = -upper_limit upper_limit = S.Infinity sym_ = Dummy(sym.name, integer=True, positive=True) sequence_term = sequence_term.xreplace({sym: sym_}) sym = sym_ interval = Interval(lower_limit, upper_limit) # Piecewise function handle if sequence_term.is_Piecewise: for func, cond in sequence_term.args: # see if it represents something going to oo if cond == True or cond.as_set().sup is S.Infinity: s = Sum(func, (sym, lower_limit, upper_limit)) return s.is_convergent() return S.true ### -------- Divergence test ----------- ### try: lim_val = limit_seq(sequence_term, sym) if lim_val is not None and lim_val.is_zero is False: return S.false except NotImplementedError: pass try: lim_val_abs = limit_seq(abs(sequence_term), sym) if lim_val_abs is not None and lim_val_abs.is_zero is False: return S.false except NotImplementedError: pass order = O(sequence_term, (sym, S.Infinity)) ### --------- p-series test (1/n**p) ---------- ### p_series_test = order.expr.match(sym**p) if p_series_test is not None: if p_series_test[p] < -1: return S.true if p_series_test[p] >= -1: return S.false ### ------------- comparison test ------------- ### # 1/(n**p*log(n)**q*log(log(n))**r) comparison n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r)) if n_log_test is not None: if (n_log_test[p] > 1 or (n_log_test[p] == 1 and n_log_test[q] > 1) or (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)): return S.true return S.false ### ------------- Limit comparison test -----------### # (1/n) comparison try: lim_comp = limit_seq(sym*sequence_term, sym) if lim_comp is not None and lim_comp.is_number and lim_comp > 0: return S.false except NotImplementedError: pass ### ----------- ratio test ---------------- ### next_sequence_term = sequence_term.xreplace({sym: sym + 1}) ratio = combsimp(powsimp(next_sequence_term/sequence_term)) try: lim_ratio = limit_seq(ratio, sym) if lim_ratio is not None and lim_ratio.is_number: if abs(lim_ratio) > 1: return S.false if abs(lim_ratio) < 1: return S.true except NotImplementedError: pass ### ----------- root test ---------------- ### # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity) try: lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym) if lim_evaluated is not None and lim_evaluated.is_number: if lim_evaluated < 1: return S.true if lim_evaluated > 1: return S.false except NotImplementedError: pass ### ------------- alternating series test ----------- ### dict_val = sequence_term.match((-1)**(sym + p)*q) if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval): return S.true ### ------------- integral test -------------- ### check_interval = None maxima = solveset(sequence_term.diff(sym), sym, interval) if not maxima: check_interval = interval elif isinstance(maxima, FiniteSet) and maxima.sup.is_number: check_interval = Interval(maxima.sup, interval.sup) if (check_interval is not None and (is_decreasing(sequence_term, check_interval) or is_decreasing(-sequence_term, check_interval))): integral_val = Integral( sequence_term, (sym, lower_limit, upper_limit)) try: integral_val_evaluated = integral_val.doit() if integral_val_evaluated.is_number: return S(integral_val_evaluated.is_finite) except NotImplementedError: pass ### ----- Dirichlet and bounded times convergent tests ----- ### # TODO # # Dirichlet_test # https://en.wikipedia.org/wiki/Dirichlet%27s_test # # Bounded times convergent test # It is based on comparison theorems for series. # In particular, if the general term of a series can # be written as a product of two terms a_n and b_n # and if a_n is bounded and if Sum(b_n) is absolutely # convergent, then the original series Sum(a_n * b_n) # is absolutely convergent and so convergent. # # The following code can grows like 2**n where n is the # number of args in order.expr # Possibly combined with the potentially slow checks # inside the loop, could make this test extremely slow # for larger summation expressions. if order.expr.is_Mul: args = order.expr.args argset = set(args) ### -------------- Dirichlet tests -------------- ### m = Dummy('m', integer=True) def _dirichlet_test(g_n): try: ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m) if ing_val is not None and ing_val.is_finite: return S.true except NotImplementedError: pass ### -------- bounded times convergent test ---------### def _bounded_convergent_test(g1_n, g2_n): try: lim_val = limit_seq(g1_n, sym) if lim_val is not None and (lim_val.is_finite or ( isinstance(lim_val, AccumulationBounds) and (lim_val.max - lim_val.min).is_finite)): if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent(): return S.true except NotImplementedError: pass for n in range(1, len(argset)): for a_tuple in itertools.combinations(args, n): b_set = argset - set(a_tuple) a_n = Mul(*a_tuple) b_n = Mul(*b_set) if is_decreasing(a_n, interval): dirich = _dirichlet_test(b_n) if dirich is not None: return dirich bc_test = _bounded_convergent_test(a_n, b_n) if bc_test is not None: return bc_test _sym = self.limits[0][0] sequence_term = sequence_term.xreplace({sym: _sym}) raise NotImplementedError("The algorithm to find the Sum convergence of %s " "is not yet implemented" % (sequence_term)) def is_absolutely_convergent(self): """ Checks for the absolute convergence of an infinite series. Same as checking convergence of absolute value of sequence_term of an infinite series. References ========== .. [1] https://en.wikipedia.org/wiki/Absolute_convergence Examples ======== >>> from sympy import Sum, Symbol, sin, oo >>> n = Symbol('n', integer=True) >>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() False >>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() True See Also ======== Sum.is_convergent() """ return Sum(abs(self.function), self.limits).is_convergent() def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): """ Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail. With m = n = 0, this is simply the corresponding integral plus a first-order endpoint correction. Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail): >>> from sympy.abc import k, a, b >>> from sympy import Sum >>> Sum(1/k, (k, 2, 5)).doit().evalf() 1.28333333333333 >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() >>> s -log(2) + 7/20 + log(5) >>> from sympy import sstr >>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) (1.26629073187415, 0.0175000000000000) The endpoints may be symbolic: >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() >>> s -log(a) + log(b) + 1/(2*b) + 1/(2*a) >>> e Abs(1/(12*b**2) - 1/(12*a**2)) If the function is a polynomial of degree at most 2n+1, the Euler-Maclaurin formula becomes exact (and e = 0 is returned): >>> Sum(k, (k, 2, b)).euler_maclaurin() (b**2/2 + b/2 - 1, 0) >>> Sum(k, (k, 2, b)).doit() b**2/2 + b/2 - 1 With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon. """ from sympy.functions import bernoulli, factorial from sympy.integrals import Integral m = int(m) n = int(n) f = self.function if len(self.limits) != 1: raise ValueError("More than 1 limit") i, a, b = self.limits[0] if (a > b) == True: if a - b == 1: return S.Zero, S.Zero a, b = b + 1, a - 1 f = -f s = S.Zero if m: if b.is_Integer and a.is_Integer: m = min(m, b - a + 1) if not eps or f.is_polynomial(i): for k in range(m): s += f.subs(i, a + k) else: term = f.subs(i, a) if term: test = abs(term.evalf(3)) < eps if test == True: return s, abs(term) elif not (test == False): # a symbolic Relational class, can't go further return term, S.Zero s += term for k in range(1, m): term = f.subs(i, a + k) if abs(term.evalf(3)) < eps and term != 0: return s, abs(term) s += term if b - a + 1 == m: return s, S.Zero a += m x = Dummy('x') I = Integral(f.subs(i, x), (x, a, b)) if eval_integral: I = I.doit() s += I def fpoint(expr): if b is S.Infinity: return expr.subs(i, a), 0 return expr.subs(i, a), expr.subs(i, b) fa, fb = fpoint(f) iterm = (fa + fb)/2 g = f.diff(i) for k in range(1, n + 2): ga, gb = fpoint(g) term = bernoulli(2*k)/factorial(2*k)*(gb - ga) if (eps and term and abs(term.evalf(3)) < eps) or (k > n): break s += term g = g.diff(i, 2, simplify=False) return s + iterm, abs(term) def reverse_order(self, *indices): """ Reverse the order of a limit in a Sum. Usage ===== ``reverse_order(self, *indices)`` reverses some limits in the expression ``self`` which can be either a ``Sum`` or a ``Product``. The selectors in the argument ``indices`` specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple. Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y, a, b, c, d >>> Sum(x, (x, 0, 3)).reverse_order(x) Sum(-x, (x, 4, -1)) >>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y) Sum(x*y, (x, 6, 0), (y, 7, -1)) >>> Sum(x, (x, a, b)).reverse_order(x) Sum(-x, (x, b + 1, a - 1)) >>> Sum(x, (x, a, b)).reverse_order(0) Sum(-x, (x, b + 1, a - 1)) While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name. >>> S = Sum(x**2, (x, a, b), (x, c, d)) >>> S Sum(x**2, (x, a, b), (x, c, d)) >>> S0 = S.reverse_order(0) >>> S0 Sum(-x**2, (x, b + 1, a - 1), (x, c, d)) >>> S1 = S0.reverse_order(1) >>> S1 Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1)) Of course we can mix both notations: >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) See Also ======== index, reorder_limit, reorder References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 """ l_indices = list(indices) for i, indx in enumerate(l_indices): if not isinstance(indx, int): l_indices[i] = self.index(indx) e = 1 limits = [] for i, limit in enumerate(self.limits): l = limit if i in l_indices: e = -e l = (limit[0], limit[2] + 1, limit[1] - 1) limits.append(l) return Sum(e * self.function, *limits) def summation(f, *symbols, **kwargs): r""" Compute the summation of f with respect to symbols. The notation for symbols is similar to the notation used in Integral. summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, i.e., :: b ____ \ ` summation(f, (i, a, b)) = ) f /___, i = a If it cannot compute the sum, it returns an unevaluated Sum object. Repeated sums can be computed by introducing additional symbols tuples:: >>> from sympy import summation, oo, symbols, log >>> i, n, m = symbols('i n m', integer=True) >>> summation(2*i - 1, (i, 1, n)) n**2 >>> summation(1/2**i, (i, 0, oo)) 2 >>> summation(1/log(n)**n, (n, 2, oo)) Sum(log(n)**(-n), (n, 2, oo)) >>> summation(i, (i, 0, n), (n, 0, m)) m**3/6 + m**2/2 + m/3 >>> from sympy.abc import x >>> from sympy import factorial >>> summation(x**n/factorial(n), (n, 0, oo)) exp(x) See Also ======== Sum Product, product """ return Sum(f, *symbols, **kwargs).doit(deep=False) def telescopic_direct(L, R, n, limits): """Returns the direct summation of the terms of a telescopic sum L is the term with lower index R is the term with higher index n difference between the indexes of L and R For example: >>> from sympy.concrete.summations import telescopic_direct >>> from sympy.abc import k, a, b >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b)) -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a """ (i, a, b) = limits s = 0 for m in range(n): s += L.subs(i, a + m) + R.subs(i, b - m) return s def telescopic(L, R, limits): '''Tries to perform the summation using the telescopic property return None if not possible ''' (i, a, b) = limits if L.is_Add or R.is_Add: return None # We want to solve(L.subs(i, i + m) + R, m) # First we try a simple match since this does things that # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails k = Wild("k") sol = (-R).match(L.subs(i, i + k)) s = None if sol and k in sol: s = sol[k] if not (s.is_Integer and L.subs(i, i + s) == -R): # sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x})) s = None # But there are things that match doesn't do that solve # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1 if s is None: m = Dummy('m') try: sol = solve(L.subs(i, i + m) + R, m) or [] except NotImplementedError: return None sol = [si for si in sol if si.is_Integer and (L.subs(i, i + si) + R).expand().is_zero] if len(sol) != 1: return None s = sol[0] if s < 0: return telescopic_direct(R, L, abs(s), (i, a, b)) elif s > 0: return telescopic_direct(L, R, s, (i, a, b)) def eval_sum(f, limits): from sympy.concrete.delta import deltasummation, _has_simple_delta from sympy.functions import KroneckerDelta (i, a, b) = limits if f is S.Zero: return S.Zero if i not in f.free_symbols: return f*(b - a + 1) if a == b: return f.subs(i, a) if isinstance(f, Piecewise): if not any(i in arg.args[1].free_symbols for arg in f.args): # Piecewise conditions do not depend on the dummy summation variable, # therefore we can fold: Sum(Piecewise((e, c), ...), limits) # --> Piecewise((Sum(e, limits), c), ...) newargs = [] for arg in f.args: newexpr = eval_sum(arg.expr, limits) if newexpr is None: return None newargs.append((newexpr, arg.cond)) return f.func(*newargs) if f.has(KroneckerDelta): f = f.replace( lambda x: isinstance(x, Sum), lambda x: x.factor() ) if _has_simple_delta(f, limits[0]): return deltasummation(f, limits) dif = b - a definite = dif.is_Integer # Doing it directly may be faster if there are very few terms. if definite and (dif < 100): return eval_sum_direct(f, (i, a, b)) if isinstance(f, Piecewise): return None # Try to do it symbolically. Even when the number of terms is known, # this can save time when b-a is big. # We should try to transform to partial fractions value = eval_sum_symbolic(f.expand(), (i, a, b)) if value is not None: return value # Do it directly if definite: return eval_sum_direct(f, (i, a, b)) def eval_sum_direct(expr, limits): """ Evaluate expression directly, but perform some simple checks first to possibly result in a smaller expression and faster execution. """ from sympy.core import Add (i, a, b) = limits dif = b - a # Linearity if expr.is_Mul: # Try factor out everything not including i without_i, with_i = expr.as_independent(i) if without_i != 1: s = eval_sum_direct(with_i, (i, a, b)) if s: r = without_i*s if r is not S.NaN: return r else: # Try term by term L, R = expr.as_two_terms() if not L.has(i): sR = eval_sum_direct(R, (i, a, b)) if sR: return L*sR if not R.has(i): sL = eval_sum_direct(L, (i, a, b)) if sL: return sL*R try: expr = apart(expr, i) # see if it becomes an Add except PolynomialError: pass if expr.is_Add: # Try factor out everything not including i without_i, with_i = expr.as_independent(i) if without_i != 0: s = eval_sum_direct(with_i, (i, a, b)) if s: r = without_i*(dif + 1) + s if r is not S.NaN: return r else: # Try term by term L, R = expr.as_two_terms() lsum = eval_sum_direct(L, (i, a, b)) rsum = eval_sum_direct(R, (i, a, b)) if None not in (lsum, rsum): r = lsum + rsum if r is not S.NaN: return r return Add(*[expr.subs(i, a + j) for j in range(dif + 1)]) def eval_sum_symbolic(f, limits): from sympy.functions import harmonic, bernoulli f_orig = f (i, a, b) = limits if not f.has(i): return f*(b - a + 1) # Linearity if f.is_Mul: # Try factor out everything not including i without_i, with_i = f.as_independent(i) if without_i != 1: s = eval_sum_symbolic(with_i, (i, a, b)) if s: r = without_i*s if r is not S.NaN: return r else: # Try term by term L, R = f.as_two_terms() if not L.has(i): sR = eval_sum_symbolic(R, (i, a, b)) if sR: return L*sR if not R.has(i): sL = eval_sum_symbolic(L, (i, a, b)) if sL: return sL*R try: f = apart(f, i) # see if it becomes an Add except PolynomialError: pass if f.is_Add: L, R = f.as_two_terms() lrsum = telescopic(L, R, (i, a, b)) if lrsum: return lrsum # Try factor out everything not including i without_i, with_i = f.as_independent(i) if without_i != 0: s = eval_sum_symbolic(with_i, (i, a, b)) if s: r = without_i*(b - a + 1) + s if r is not S.NaN: return r else: # Try term by term lsum = eval_sum_symbolic(L, (i, a, b)) rsum = eval_sum_symbolic(R, (i, a, b)) if None not in (lsum, rsum): r = lsum + rsum if r is not S.NaN: return r # Polynomial terms with Faulhaber's formula n = Wild('n') result = f.match(i**n) if result is not None: n = result[n] if n.is_Integer: if n >= 0: if (b is S.Infinity and not a is S.NegativeInfinity) or \ (a is S.NegativeInfinity and not b is S.Infinity): return S.Infinity return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand() elif a.is_Integer and a >= 1: if n == -1: return harmonic(b) - harmonic(a - 1) else: return harmonic(b, abs(n)) - harmonic(a - 1, abs(n)) if not (a.has(S.Infinity, S.NegativeInfinity) or b.has(S.Infinity, S.NegativeInfinity)): # Geometric terms c1 = Wild('c1', exclude=[i]) c2 = Wild('c2', exclude=[i]) c3 = Wild('c3', exclude=[i]) wexp = Wild('wexp') # Here we first attempt powsimp on f for easier matching with the # exponential pattern, and attempt expansion on the exponent for easier # matching with the linear pattern. e = f.powsimp().match(c1 ** wexp) if e is not None: e_exp = e.pop(wexp).expand().match(c2*i + c3) if e_exp is not None: e.update(e_exp) if e is not None: p = (c1**c3).subs(e) q = (c1**c2).subs(e) r = p*(q**a - q**(b + 1))/(1 - q) l = p*(b - a + 1) return Piecewise((l, Eq(q, S.One)), (r, True)) r = gosper_sum(f, (i, a, b)) if isinstance(r, (Mul,Add)): from sympy import ordered, Tuple non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols den = denom(together(r)) den_sym = non_limit & den.free_symbols args = [] for v in ordered(den_sym): try: s = solve(den, v) m = Eq(v, s[0]) if s else S.false if m != False: args.append((Sum(f_orig.subs(*m.args), limits).doit(), m)) break except NotImplementedError: continue args.append((r, True)) return Piecewise(*args) if not r in (None, S.NaN): return r h = eval_sum_hyper(f_orig, (i, a, b)) if h is not None: return h factored = f_orig.factor() if factored != f_orig: return eval_sum_symbolic(factored, (i, a, b)) def _eval_sum_hyper(f, i, a): """ Returns (res, cond). Sums from a to oo. """ from sympy.functions import hyper from sympy.simplify import hyperexpand, hypersimp, fraction, simplify from sympy.polys.polytools import Poly, factor from sympy.core.numbers import Float if a != 0: return _eval_sum_hyper(f.subs(i, i + a), i, 0) if f.subs(i, 0) == 0: if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: return S(0), True return _eval_sum_hyper(f.subs(i, i + 1), i, 0) hs = hypersimp(f, i) if hs is None: return None if isinstance(hs, Float): from sympy.simplify.simplify import nsimplify hs = nsimplify(hs) numer, denom = fraction(factor(hs)) top, topl = numer.as_coeff_mul(i) bot, botl = denom.as_coeff_mul(i) ab = [top, bot] factors = [topl, botl] params = [[], []] for k in range(2): for fac in factors[k]: mul = 1 if fac.is_Pow: mul = fac.exp fac = fac.base if not mul.is_Integer: return None p = Poly(fac, i) if p.degree() != 1: return None m, n = p.all_coeffs() ab[k] *= m**mul params[k] += [n/m]*mul # Add "1" to numerator parameters, to account for implicit n! in # hypergeometric series. ap = params[0] + [1] bq = params[1] x = ab[0]/ab[1] h = hyper(ap, bq, x) f = combsimp(f) return f.subs(i, 0)*hyperexpand(h), h.convergence_statement def eval_sum_hyper(f, i_a_b): from sympy.logic.boolalg import And i, a, b = i_a_b if (b - a).is_Integer: # We are never going to do better than doing the sum in the obvious way return None old_sum = Sum(f, (i, a, b)) if b != S.Infinity: if a == S.NegativeInfinity: res = _eval_sum_hyper(f.subs(i, -i), i, -b) if res is not None: return Piecewise(res, (old_sum, True)) else: res1 = _eval_sum_hyper(f, i, a) res2 = _eval_sum_hyper(f, i, b + 1) if res1 is None or res2 is None: return None (res1, cond1), (res2, cond2) = res1, res2 cond = And(cond1, cond2) if cond == False: return None return Piecewise((res1 - res2, cond), (old_sum, True)) if a == S.NegativeInfinity: res1 = _eval_sum_hyper(f.subs(i, -i), i, 1) res2 = _eval_sum_hyper(f, i, 0) if res1 is None or res2 is None: return None res1, cond1 = res1 res2, cond2 = res2 cond = And(cond1, cond2) if cond == False or cond.as_set() == S.EmptySet: return None return Piecewise((res1 + res2, cond), (old_sum, True)) # Now b == oo, a != -oo res = _eval_sum_hyper(f, i, a) if res is not None: r, c = res if c == False: if r.is_number: f = f.subs(i, Dummy('i', integer=True, positive=True) + a) if f.is_positive or f.is_zero: return S.Infinity elif f.is_negative: return S.NegativeInfinity return None return Piecewise(res, (old_sum, True)) def _eval_matrix_sum(expression): f = expression.function for n, limit in enumerate(expression.limits): i, a, b = limit dif = b - a if dif.is_Integer: if (dif < 0) == True: a, b = b + 1, a - 1 f = -f newf = eval_sum_direct(f, (i, a, b)) if newf is not None: return newf.doit() def _dummy_with_inherited_properties_concrete(limits): """ Return a Dummy symbol that inherits as much assumptions based on the provided symbol and limits as possible. If the symbol already has all possible assumptions, return None. """ x, a, b = limits l = [a, b] assumptions_to_consider = ['extended_nonnegative', 'nonnegative', 'extended_nonpositive', 'nonpositive', 'extended_positive', 'positive', 'extended_negative', 'negative', 'integer', 'rational', 'finite', 'zero', 'real', 'extended_real'] assumptions_to_keep = {} assumptions_to_add = {} for assum in assumptions_to_consider: assum_true = x._assumptions.get(assum, None) if assum_true: assumptions_to_keep[assum] = True elif all([getattr(i, 'is_' + assum) for i in l]): assumptions_to_add[assum] = True if assumptions_to_add: assumptions_to_keep.update(assumptions_to_add) return Dummy('d', **assumptions_to_keep) else: return None
7d6dc5758676496018651309f5ad01acf2ddd1bbf728b0740190379323720e96
from __future__ import print_function, division from sympy.core.sympify import sympify def aseries(expr, x=None, n=6, bound=0, hir=False): """ See the docstring of Expr.aseries() for complete details of this wrapper. """ expr = sympify(expr) return expr.aseries(x, n, bound, hir)
3b69884ced44c3f605445105f5b17b08108a1cca9a4a2d2e73455dc7d50eabf9
from __future__ import print_function, division from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul from sympy.core.compatibility import string_types from sympy.core.exprtools import factor_terms from sympy.core.numbers import GoldenRatio from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import factorial from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.special.gamma_functions import gamma from sympy.polys import PolynomialError, factor from sympy.series.order import Order from sympy.simplify.ratsimp import ratsimp from sympy.simplify.simplify import together from .gruntz import gruntz def limit(e, z, z0, dir="+"): """Computes the limit of ``e(z)`` at the point ``z0``. Parameters ========== e : expression, the limit of which is to be taken z : symbol representing the variable in the limit. Other symbols are treated as constants. Multivariate limits are not supported. z0 : the value toward which ``z`` tends. Can be any expression, including ``oo`` and ``-oo``. dir : string, optional (default: "+") The limit is bi-directional if ``dir="+-"``, from the right (z->z0+) if ``dir="+"``, and from the left (z->z0-) if ``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). Examples ======== >>> from sympy import limit, sin, Symbol, oo >>> from sympy.abc import x >>> limit(sin(x)/x, x, 0) 1 >>> limit(1/x, x, 0) # default dir='+' oo >>> limit(1/x, x, 0, dir="-") -oo >>> limit(1/x, x, 0, dir='+-') Traceback (most recent call last): ... ValueError: The limit does not exist since left hand limit = -oo and right hand limit = oo >>> limit(1/x, x, oo) 0 Notes ===== First we try some heuristics for easy and frequent cases like "x", "1/x", "x**2" and similar, so that it's fast. For all other cases, we use the Gruntz algorithm (see the gruntz() function). See Also ======== limit_seq : returns the limit of a sequence. """ return Limit(e, z, z0, dir).doit(deep=False) def heuristics(e, z, z0, dir): """Computes the limit of an expression term-wise. Parameters are the same as for the ``limit`` function. Works with the arguments of expression ``e`` one by one, computing the limit of each and then combining the results. This approach works only for simple limits, but it is fast. """ from sympy.calculus.util import AccumBounds rv = None if abs(z0) is S.Infinity: rv = limit(e.subs(z, 1/z), z, S.Zero, "+" if z0 is S.Infinity else "-") if isinstance(rv, Limit): return elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function: r = [] for a in e.args: l = limit(a, z, z0, dir) if l.has(S.Infinity) and l.is_finite is None: if isinstance(e, Add): m = factor_terms(e) if not isinstance(m, Mul): # try together m = together(m) if not isinstance(m, Mul): # try factor if the previous methods failed m = factor(e) if isinstance(m, Mul): return heuristics(m, z, z0, dir) return return elif isinstance(l, Limit): return elif l is S.NaN: return else: r.append(l) if r: rv = e.func(*r) if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r): r2 = [] e2 = [] for ii in range(len(r)): if isinstance(r[ii], AccumBounds): r2.append(r[ii]) else: e2.append(e.args[ii]) if len(e2) > 0: e3 = Mul(*e2).simplify() l = limit(e3, z, z0, dir) rv = l * Mul(*r2) if rv is S.NaN: try: rat_e = ratsimp(e) except PolynomialError: return if rat_e is S.NaN or rat_e == e: return return limit(rat_e, z, z0, dir) return rv class Limit(Expr): """Represents an unevaluated limit. Examples ======== >>> from sympy import Limit, sin, Symbol >>> from sympy.abc import x >>> Limit(sin(x)/x, x, 0) Limit(sin(x)/x, x, 0) >>> Limit(1/x, x, 0, dir="-") Limit(1/x, x, 0, dir='-') """ def __new__(cls, e, z, z0, dir="+"): e = sympify(e) z = sympify(z) z0 = sympify(z0) if z0 is S.Infinity: dir = "-" elif z0 is S.NegativeInfinity: dir = "+" if isinstance(dir, string_types): dir = Symbol(dir) elif not isinstance(dir, Symbol): raise TypeError("direction must be of type basestring or " "Symbol, not %s" % type(dir)) if str(dir) not in ('+', '-', '+-'): raise ValueError("direction must be one of '+', '-' " "or '+-', not %s" % dir) obj = Expr.__new__(cls) obj._args = (e, z, z0, dir) return obj @property def free_symbols(self): e = self.args[0] isyms = e.free_symbols isyms.difference_update(self.args[1].free_symbols) isyms.update(self.args[2].free_symbols) return isyms def doit(self, **hints): """Evaluates the limit. Parameters ========== deep : bool, optional (default: True) Invoke the ``doit`` method of the expressions involved before taking the limit. hints : optional keyword arguments To be passed to ``doit`` methods; only used if deep is True. """ from sympy.functions import RisingFactorial e, z, z0, dir = self.args if z0 is S.ComplexInfinity: raise NotImplementedError("Limits at complex " "infinity are not implemented") if hints.get('deep', True): e = e.doit(**hints) z = z.doit(**hints) z0 = z0.doit(**hints) if e == z: return z0 if not e.has(z): return e # gruntz fails on factorials but works with the gamma function # If no factorial term is present, e should remain unchanged. # factorial is defined to be zero for negative inputs (which # differs from gamma) so only rewrite for positive z0. if z0.is_extended_positive: e = e.rewrite([factorial, RisingFactorial], gamma) if e.is_Mul: if abs(z0) is S.Infinity: e = factor_terms(e) e = e.rewrite(fibonacci, GoldenRatio) ok = lambda w: (z in w.free_symbols and any(a.is_polynomial(z) or any(z in m.free_symbols and m.is_polynomial(z) for m in Mul.make_args(a)) for a in Add.make_args(w))) if all(ok(w) for w in e.as_numer_denom()): u = Dummy(positive=True) if z0 is S.NegativeInfinity: inve = e.subs(z, -1/u) else: inve = e.subs(z, 1/u) try: r = limit(inve.as_leading_term(u), u, S.Zero, "+") if isinstance(r, Limit): return self else: return r except ValueError: pass if e.is_Order: return Order(limit(e.expr, z, z0), *e.args[1:]) l = None try: if str(dir) == '+-': r = gruntz(e, z, z0, '+') l = gruntz(e, z, z0, '-') if l != r: raise ValueError("The limit does not exist since " "left hand limit = %s and right hand limit = %s" % (l, r)) else: r = gruntz(e, z, z0, dir) if r is S.NaN or l is S.NaN: raise PoleError() except (PoleError, ValueError): if l is not None: raise r = heuristics(e, z, z0, dir) if r is None: return self return r
0091f21b6bd5f41ba56fb1c6918c29245e20c673c738bb4e34eed21f0bb8833d
"""Formal Power Series""" from __future__ import print_function, division from collections import defaultdict from sympy import oo, zoo, nan from sympy.core.add import Add from sympy.core.compatibility import iterable from sympy.core.expr import Expr from sympy.core.function import Derivative, Function, expand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.relational import Eq from sympy.sets.sets import Interval from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy, symbols, Symbol from sympy.core.sympify import sympify from sympy.discrete.convolutions import convolution from sympy.functions.combinatorial.factorials import binomial, factorial, rf from sympy.functions.combinatorial.numbers import bell from sympy.functions.elementary.integers import floor, frac, ceiling from sympy.functions.elementary.miscellaneous import Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.series.limits import Limit from sympy.series.order import Order from sympy.simplify.powsimp import powsimp from sympy.series.sequences import sequence from sympy.series.series_class import SeriesBase def rational_algorithm(f, x, k, order=4, full=False): """Rational algorithm for computing formula of coefficients of Formal Power Series of a function. Applicable when f(x) or some derivative of f(x) is a rational function in x. :func:`rational_algorithm` uses :func:`apart` function for partial fraction decomposition. :func:`apart` by default uses 'undetermined coefficients method'. By setting ``full=True``, 'Bronstein's algorithm' can be used instead. Looks for derivative of a function up to 4'th order (by default). This can be overridden using order option. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import log, atan, I >>> from sympy.series.formal import rational_algorithm as ra >>> from sympy.abc import x, k >>> ra(1 / (1 - x), x, k) (1, 0, 0) >>> ra(log(1 + x), x, k) (-(-1)**(-k)/k, 0, 1) >>> ra(atan(x), x, k, full=True) ((-I*(-I)**(-k)/2 + I*I**(-k)/2)/k, 0, 1) Notes ===== By setting ``full=True``, range of admissible functions to be solved using ``rational_algorithm`` can be increased. This option should be used carefully as it can significantly slow down the computation as ``doit`` is performed on the :class:`RootSum` object returned by the ``apart`` function. Use ``full=False`` whenever possible. See Also ======== sympy.polys.partfrac.apart References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ from sympy.polys import RootSum, apart from sympy.integrals import integrate diff = f ds = [] # list of diff for i in range(order + 1): if i: diff = diff.diff(x) if diff.is_rational_function(x): coeff, sep = S.Zero, S.Zero terms = apart(diff, x, full=full) if terms.has(RootSum): terms = terms.doit() for t in Add.make_args(terms): num, den = t.as_numer_denom() if not den.has(x): sep += t else: if isinstance(den, Mul): # m*(n*x - a)**j -> (n*x - a)**j ind = den.as_independent(x) den = ind[1] num /= ind[0] # (n*x - a)**j -> (x - b) den, j = den.as_base_exp() a, xterm = den.as_coeff_add(x) # term -> m/x**n if not a: sep += t continue xc = xterm[0].coeff(x) a /= -xc num /= xc**j ak = ((-1)**j * num * binomial(j + k - 1, k).rewrite(factorial) / a**(j + k)) coeff += ak # Hacky, better way? if coeff is S.Zero: return None if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or coeff.has(nan)): return None for j in range(i): coeff = (coeff / (k + j + 1)) sep = integrate(sep, x) sep += (ds.pop() - sep).limit(x, 0) # constant of integration return (coeff.subs(k, k - i), sep, i) else: ds.append(diff) return None def rational_independent(terms, x): """Returns a list of all the rationally independent terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.series.formal import rational_independent >>> from sympy.abc import x >>> rational_independent([cos(x), sin(x)], x) [cos(x), sin(x)] >>> rational_independent([x**2, sin(x), x*sin(x), x**3], x) [x**3 + x**2, x*sin(x) + sin(x)] """ if not terms: return [] ind = terms[0:1] for t in terms[1:]: n = t.as_independent(x)[1] for i, term in enumerate(ind): d = term.as_independent(x)[1] q = (n / d).cancel() if q.is_rational_function(x): ind[i] += t break else: ind.append(t) return ind def simpleDE(f, x, g, order=4): r"""Generates simple DE. DE is of the form .. math:: f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0 where :math:`A_j` should be rational function in x. Generates DE's upto order 4 (default). DE's can also have free parameters. By increasing order, higher order DE's can be found. Yields a tuple of (DE, order). """ from sympy.solvers.solveset import linsolve a = symbols('a:%d' % (order)) def _makeDE(k): eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)]) DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)]) return eq, DE found = False for k in range(1, order + 1): eq, DE = _makeDE(k) eq = eq.expand() terms = eq.as_ordered_terms() ind = rational_independent(terms, x) if found or len(ind) == k: sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s))) if sol: found = True DE = DE.subs(sol) DE = DE.as_numer_denom()[0] DE = DE.factor().as_coeff_mul(Derivative)[1][0] yield DE.collect(Derivative(g(x))), k def exp_re(DE, r, k): """Converts a DE with constant coefficients (explike) into a RE. Performs the substitution: .. math:: f^j(x) \\to r(k + j) Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import exp_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> exp_re(-f(x) + Derivative(f(x)), r, k) -r(k) + r(k + 1) >>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k) r(k) + r(k + 1) See Also ======== sympy.series.formal.hyper_re """ RE = S.Zero g = DE.atoms(Function).pop() mini = None for t in Add.make_args(DE): coeff, d = t.as_independent(g) if isinstance(d, Derivative): j = d.derivative_count else: j = 0 if mini is None or j < mini: mini = j RE += coeff * r(k + j) if mini: RE = RE.subs(k, k - mini) return RE def hyper_re(DE, r, k): """Converts a DE into a RE. Performs the substitution: .. math:: x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l} Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import hyper_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> hyper_re(-f(x) + Derivative(f(x)), r, k) (k + 1)*r(k + 1) - r(k) >>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k) (k + 2)*(k + 3)*r(k + 3) - r(k) See Also ======== sympy.series.formal.exp_re """ RE = S.Zero g = DE.atoms(Function).pop() x = g.atoms(Symbol).pop() mini = None for t in Add.make_args(DE.expand()): coeff, d = t.as_independent(g) c, v = coeff.as_independent(x) l = v.as_coeff_exponent(x)[1] if isinstance(d, Derivative): j = d.derivative_count else: j = 0 RE += c * rf(k + 1 - l, j) * r(k + j - l) if mini is None or j - l < mini: mini = j - l RE = RE.subs(k, k - mini) m = Wild('m') return RE.collect(r(k + m)) def _transformation_a(f, x, P, Q, k, m, shift): f *= x**(-shift) P = P.subs(k, k + shift) Q = Q.subs(k, k + shift) return f, P, Q, m def _transformation_c(f, x, P, Q, k, m, scale): f = f.subs(x, x**scale) P = P.subs(k, k / scale) Q = Q.subs(k, k / scale) m *= scale return f, P, Q, m def _transformation_e(f, x, P, Q, k, m): f = f.diff(x) P = P.subs(k, k + 1) * (k + m + 1) Q = Q.subs(k, k + 1) * (k + 1) return f, P, Q, m def _apply_shift(sol, shift): return [(res, cond + shift) for res, cond in sol] def _apply_scale(sol, scale): return [(res, cond / scale) for res, cond in sol] def _apply_integrate(sol, x, k): return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1) for res, cond in sol] def _compute_formula(f, x, P, Q, k, m, k_max): """Computes the formula for f.""" from sympy.polys import roots sol = [] for i in range(k_max + 1, k_max + m + 1): if (i < 0) == True: continue r = f.diff(x, i).limit(x, 0) / factorial(i) if r is S.Zero: continue kterm = m*k + i res = r p = P.subs(k, kterm) q = Q.subs(k, kterm) c1 = p.subs(k, 1/k).leadterm(k)[0] c2 = q.subs(k, 1/k).leadterm(k)[0] res *= (-c1 / c2)**k for r, mul in roots(p, k).items(): res *= rf(-r, k)**mul for r, mul in roots(q, k).items(): res /= rf(-r, k)**mul sol.append((res, kterm)) return sol def _rsolve_hypergeometric(f, x, P, Q, k, m): """Recursive wrapper to rsolve_hypergeometric. Returns a Tuple of (formula, series independent terms, maximum power of x in independent terms) if successful otherwise ``None``. See :func:`rsolve_hypergeometric` for details. """ from sympy.polys import lcm, roots from sympy.integrals import integrate # transformation - c proots, qroots = roots(P, k), roots(Q, k) all_roots = dict(proots) all_roots.update(qroots) scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items() if r.is_rational]) f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale) # transformation - a qroots = roots(Q, k) if qroots: k_min = Min(*qroots.keys()) else: k_min = S.Zero shift = k_min + m f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift) l = (x*f).limit(x, 0) if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0 return None qroots = roots(Q, k) if qroots: k_max = Max(*qroots.keys()) else: k_max = S.Zero ind, mp = S.Zero, -oo for i in range(k_max + m + 1): r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_finite is False: old_f = f f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i) f, P, Q, m = _transformation_e(f, x, P, Q, k, m) sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m) sol = _apply_integrate(sol, x, k) sol = _apply_shift(sol, i) ind = integrate(ind, x) ind += (old_f - ind).limit(x, 0) # constant of integration mp += 1 return sol, ind, mp elif r: ind += r*x**(i + shift) pow_x = Rational((i + shift), scale) if pow_x > mp: mp = pow_x # maximum power of x ind = ind.subs(x, x**(1/scale)) sol = _compute_formula(f, x, P, Q, k, m, k_max) sol = _apply_shift(sol, shift) sol = _apply_scale(sol, scale) return sol, ind, mp def rsolve_hypergeometric(f, x, P, Q, k, m): """Solves RE of hypergeometric type. Attempts to solve RE of the form Q(k)*a(k + m) - P(k)*a(k) Transformations that preserve Hypergeometric type: a. x**n*f(x): b(k + m) = R(k - n)*b(k) b. f(A*x): b(k + m) = A**m*R(k)*b(k) c. f(x**n): b(k + n*m) = R(k/n)*b(k) d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k) e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k) Some of these transformations have been used to solve the RE. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import exp, ln, S >>> from sympy.series.formal import rsolve_hypergeometric as rh >>> from sympy.abc import x, k >>> rh(exp(x), x, -S.One, (k + 1), k, 1) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ result = _rsolve_hypergeometric(f, x, P, Q, k, m) if result is None: return None sol_list, ind, mp = result sol_dict = defaultdict(lambda: S.Zero) for res, cond in sol_list: j, mk = cond.as_coeff_Add() c = mk.coeff(k) if j.is_integer is False: res *= x**frac(j) j = floor(j) res = res.subs(k, (k - j) / c) cond = Eq(k % c, j % c) sol_dict[cond] += res # Group together formula for same conditions sol = [] for cond, res in sol_dict.items(): sol.append((res, cond)) sol.append((S.Zero, True)) sol = Piecewise(*sol) if mp is -oo: s = S.Zero elif mp.is_integer is False: s = ceiling(mp) else: s = mp + 1 # save all the terms of # form 1/x**k in ind if s < 0: ind += sum(sequence(sol * x**k, (k, s, -1))) s = S.Zero return (sol, ind, s) def _solve_hyper_RE(f, x, RE, g, k): """See docstring of :func:`rsolve_hypergeometric` for details.""" terms = Add.make_args(RE) if len(terms) == 2: gs = list(RE.atoms(Function)) P, Q = map(RE.coeff, gs) m = gs[1].args[0] - gs[0].args[0] if m < 0: P, Q = Q, P m = abs(m) return rsolve_hypergeometric(f, x, P, Q, k, m) def _solve_explike_DE(f, x, DE, g, k): """Solves DE with constant coefficients.""" from sympy.solvers import rsolve for t in Add.make_args(DE): coeff, d = t.as_independent(g) if coeff.free_symbols: return RE = exp_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) sol = rsolve(RE, g(k), init) if sol: return (sol / factorial(k), S.Zero, S.Zero) def _solve_simple(f, x, DE, g, k): """Converts DE into RE and solves using :func:`rsolve`.""" from sympy.solvers import rsolve RE = hyper_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i) sol = rsolve(RE, g(k), init) if sol: return (sol, S.Zero, S.Zero) def _transform_explike_DE(DE, g, x, order, syms): """Converts DE with free parameters into DE with constant coefficients.""" from sympy.solvers.solveset import linsolve eq = [] highest_coeff = DE.coeff(Derivative(g(x), x, order)) for i in range(order): coeff = DE.coeff(Derivative(g(x), x, i)) coeff = (coeff / highest_coeff).expand().collect(x) for t in Add.make_args(coeff): eq.append(t) temp = [] for e in eq: if e.has(x): break elif e.has(Symbol): temp.append(e) else: eq = temp if eq: sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: DE = DE.subs(sol) DE = DE.factor().as_coeff_mul(Derivative)[1][0] DE = DE.collect(Derivative(g(x))) return DE def _transform_DE_RE(DE, g, k, order, syms): """Converts DE with free parameters into RE of hypergeometric type.""" from sympy.solvers.solveset import linsolve RE = hyper_re(DE, g, k) eq = [] for i in range(1, order): coeff = RE.coeff(g(k + i)) eq.append(coeff) sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: m = Wild('m') RE = RE.subs(sol) RE = RE.factor().as_numer_denom()[0].collect(g(k + m)) RE = RE.as_coeff_mul(g)[1][0] for i in range(order): # smallest order should be g(k) if RE.coeff(g(k + i)) and i: RE = RE.subs(k, k - i) break return RE def solve_de(f, x, DE, order, g, k): """Solves the DE. Tries to solve DE by either converting into a RE containing two terms or converting into a DE having constant coefficients. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import Derivative as D, Function >>> from sympy import exp, ln >>> from sympy.series.formal import solve_de >>> from sympy.abc import x, k >>> f = Function('f') >>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) """ sol = None syms = DE.free_symbols.difference({g, x}) if syms: RE = _transform_DE_RE(DE, g, k, order, syms) else: RE = hyper_re(DE, g, k) if not RE.free_symbols.difference({k}): sol = _solve_hyper_RE(f, x, RE, g, k) if sol: return sol if syms: DE = _transform_explike_DE(DE, g, x, order, syms) if not DE.free_symbols.difference({x}): sol = _solve_explike_DE(f, x, DE, g, k) if sol: return sol def hyper_algorithm(f, x, k, order=4): """Hypergeometric algorithm for computing Formal Power Series. Steps: * Generates DE * Convert the DE into RE * Solves the RE Examples ======== >>> from sympy import exp, ln >>> from sympy.series.formal import hyper_algorithm >>> from sympy.abc import x, k >>> hyper_algorithm(exp(x), x, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> hyper_algorithm(ln(1 + x), x, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) See Also ======== sympy.series.formal.simpleDE sympy.series.formal.solve_de """ g = Function('g') des = [] # list of DE's sol = None for DE, i in simpleDE(f, x, g, order): if DE is not None: sol = solve_de(f, x, DE, i, g, k) if sol: return sol if not DE.free_symbols.difference({x}): des.append(DE) # If nothing works # Try plain rsolve for DE in des: sol = _solve_simple(f, x, DE, g, k) if sol: return sol def _compute_fps(f, x, x0, dir, hyper, order, rational, full): """Recursive wrapper to compute fps. See :func:`compute_fps` for details. """ if x0 in [S.Infinity, -S.Infinity]: dir = S.One if x0 is S.Infinity else -S.One temp = f.subs(x, 1/x) result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x)) elif x0 or dir == -S.One: if dir == -S.One: rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 temp = f.subs(x, rep) result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, rep2 + rep2b), result[2].subs(x, rep2 + rep2b)) if f.is_polynomial(x): k = Dummy('k') ak = sequence(Coeff(f, x, k), (k, 1, oo)) xk = sequence(x**k, (k, 0, oo)) ind = f.coeff(x, 0) return ak, xk, ind # Break instances of Add # this allows application of different # algorithms on different terms increasing the # range of admissible functions. if isinstance(f, Add): result = False ak = sequence(S.Zero, (0, oo)) ind, xk = S.Zero, None for t in Add.make_args(f): res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full) if res: if not result: result = True xk = res[1] if res[0].start > ak.start: seq = ak s, f = ak.start, res[0].start else: seq = res[0] s, f = res[0].start, ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])]) ak += res[0] ind += res[2] + save else: ind += t if result: return ak, xk, ind return None # The symbolic term - symb, if present, is being separated from the function # Otherwise symb is being set to S.One syms = f.free_symbols.difference({x}) (f, symb) = expand(f).as_independent(*syms) if symb is S.Zero: symb = S.One symb = powsimp(symb) result = None # from here on it's x0=0 and dir=1 handling k = Dummy('k') if rational: result = rational_algorithm(f, x, k, order, full) if result is None and hyper: result = hyper_algorithm(f, x, k, order) if result is None: return None ak = sequence(result[0], (k, result[2], oo)) xk_formula = powsimp(x**k * symb) xk = sequence(xk_formula, (k, 0, oo)) ind = powsimp(result[1] * symb) return ak, xk, ind def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """Computes the formula for Formal Power Series of a function. Tries to compute the formula by applying the following techniques (in order): * rational_algorithm * Hypergeometric algorithm Parameters ========== x : Symbol x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Returns ======= ak : sequence Sequence of coefficients. xk : sequence Sequence of powers of x. ind : Expr Independent terms. mul : Pow Common terms. See Also ======== sympy.series.formal.rational_algorithm sympy.series.formal.hyper_algorithm """ f = sympify(f) x = sympify(x) if not f.has(x): return None x0 = sympify(x0) if dir == '+': dir = S.One elif dir == '-': dir = -S.One elif dir not in [S.One, -S.One]: raise ValueError("Dir must be '+' or '-'") else: dir = sympify(dir) return _compute_fps(f, x, x0, dir, hyper, order, rational, full) class Coeff(Function): """ Coeff(p, x, n) represents the nth coefficient of the polynomial p in x """ @classmethod def eval(cls, p, x, n): if p.is_polynomial(x) and n.is_integer: return p.coeff(x, n) class FormalPowerSeries(SeriesBase): """Represents Formal Power Series of a function. No computation is performed. This class should only to be used to represent a series. No checks are performed. For computing a series use :func:`fps`. See Also ======== sympy.series.formal.fps """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) def __init__(self, *args): ak = args[4][0] k = ak.variables[0] self.ak_seq = sequence(ak.formula, (k, 1, oo)) self.fact_seq = sequence(factorial(k), (k, 1, oo)) self.bell_coeff_seq = self.ak_seq * self.fact_seq self.sign_seq = sequence((-1, 1), (k, 1, oo)) @property def function(self): return self.args[0] @property def x(self): return self.args[1] @property def x0(self): return self.args[2] @property def dir(self): return self.args[3] @property def ak(self): return self.args[4][0] @property def xk(self): return self.args[4][1] @property def ind(self): return self.args[4][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo @property def infinite(self): """Returns an infinite representation of the series""" from sympy.concrete import Sum ak, xk = self.ak, self.xk k = ak.variables[0] inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop)) return self.ind + inf_sum def _get_pow_x(self, term): """Returns the power of x in a term.""" xterm, pow_x = term.as_independent(self.x)[1].as_base_exp() if not xterm.has(self.x): return S.Zero return pow_x def polynomial(self, n=6): """Truncated series as polynomial. Returns series expansion of ``f`` upto order ``O(x**n)`` as a polynomial(without ``O`` term). """ terms = [] sym = self.free_symbols for i, t in enumerate(self): xp = self._get_pow_x(t) if xp.has(*sym): xp = xp.as_coeff_add(*sym)[0] if xp >= n: break elif xp.is_integer is True and i == n + 1: break elif t is not S.Zero: terms.append(t) return Add(*terms) def truncate(self, n=6): """Truncated series. Returns truncated series expansion of f upto order ``O(x**n)``. If n is ``None``, returns an infinite iterator. """ if n is None: return iter(self) x, x0 = self.x, self.x0 pt_xk = self.xk.coeff(n) if x0 is S.NegativeInfinity: x0 = S.Infinity return self.polynomial(n) + Order(pt_xk, (x, x0)) def zero_coeff(self): return self._eval_term(0) def _eval_term(self, pt): try: pt_xk = self.xk.coeff(pt) pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients except IndexError: term = S.Zero else: term = (pt_ak * pt_xk) if self.ind: ind = S.Zero sym = self.free_symbols for t in Add.make_args(self.ind): pow_x = self._get_pow_x(t) if pow_x.has(*sym): pow_x = pow_x.as_coeff_add(*sym)[0] if pt == 0 and pow_x < 1: ind += t elif pow_x >= pt and pow_x < pt + 1: ind += t term += ind return term.collect(self.x) def _eval_subs(self, old, new): x = self.x if old.has(x): return self def _eval_as_leading_term(self, x): for t in self: if t is not S.Zero: return t def _eval_derivative(self, x): f = self.function.diff(x) ind = self.ind.diff(x) pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t * (pow_xk + pow_x) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop)) else: ak = sequence((ak.formula * pow_xk).subs(k, k + 1), (k, ak.start - 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def integrate(self, x=None, **kwargs): """Integrate Formal Power Series. Examples ======== >>> from sympy import fps, sin, integrate >>> from sympy.abc import x >>> f = fps(sin(x)) >>> f.integrate(x).truncate() -1 + x**2/2 - x**4/24 + O(x**6) >>> integrate(f, (x, 0, 1)) 1 - cos(1) """ from sympy.integrals import integrate if x is None: x = self.x elif iterable(x): return integrate(self.function, x) f = integrate(self.function, x) ind = integrate(self.ind, x) ind += (f - ind).limit(x, 0) # constant of integration pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t / (pow_xk + pow_x + 1) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop)) else: ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1), (k, ak.start + 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def product(self, other, x=None, n=6): """Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order. Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp, convolution >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> f1.product(f2, x).truncate(4) x + x**2 + x**3/3 + O(x**4) See Also ======== sympy.discrete.convolutions sympy.series.formal.FormalPowerSeriesProduct """ if x is None: x = self.x if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") return FormalPowerSeriesProduct(self, other) def coeff_bell(self, n): r""" self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that ``n`` should be a integer. The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. See Also ======== sympy.functions.combinatorial.numbers.bell """ inner_coeffs = [bell(n, j, tuple(self.bell_coeff_seq[:n-j+1])) for j in range(1, n+1)] k = Dummy('k') return sequence(tuple(inner_coeffs), (k, 1, oo)) def compose(self, other, x=None, n=6): r""" Returns the truncated terms of the formal power series of the composed function, up to specified `n`. If `f` and `g` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series `fp` will be as follows. .. math:: \sum\limits_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp, bell >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> f1.compose(f2, x).truncate() 1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6) >>> f1.compose(f2, x).truncate(8) 1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesCompose References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if x is None: x = self.x if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") if other._eval_term(0).as_coeff_mul(other.x)[0] is not S.Zero: raise ValueError("The formal power series of the inner function should not have any " "constant coefficient term.") return FormalPowerSeriesCompose(self, other) def inverse(self, x=None, n=6): r""" Returns the truncated terms of the inverse of the formal power series, up to specified `n`. If `f` and `g` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series `fp` will be as follows. .. math:: \sum\limits_{k=0}^{n} (-1)^{k} x_0^{-k-1} B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, exp, cos, bell >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> f1.inverse(x).truncate() 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6) >>> f2.inverse(x).truncate(8) 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesInverse References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if x is None: x = self.x if n is None: return iter(self) if self._eval_term(0) is S.Zero: raise ValueError("Constant coefficient should exist for an inverse of a formal" " power series to exist.") return FormalPowerSeriesInverse(self) def __add__(self, other): other = sympify(other) if isinstance(other, FormalPowerSeries): if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") x, y = self.x, other.x f = self.function + other.function.subs(y, x) if self.x not in f.free_symbols: return f ak = self.ak + other.ak if self.ak.start > other.ak.start: seq = other.ak s, e = other.ak.start, self.ak.start else: seq = self.ak s, e = self.ak.start, other.ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])]) ind = self.ind + other.ind + save return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind)) elif not other.has(self.x): f = self.function + other ind = self.ind + other return self.func(f, self.x, self.x0, self.dir, (self.ak, self.xk, ind)) return Add(self, other) def __radd__(self, other): return self.__add__(other) def __neg__(self): return self.func(-self.function, self.x, self.x0, self.dir, (-self.ak, self.xk, -self.ind)) def __sub__(self, other): return self.__add__(-other) def __rsub__(self, other): return (-self).__add__(other) def __mul__(self, other): other = sympify(other) if other.has(self.x): return Mul(self, other) f = self.function * other ak = self.ak.coeff_mul(other) ind = self.ind * other return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def __rmul__(self, other): return self.__mul__(other) class FiniteFormalPowerSeries(FormalPowerSeries): """Base Class for Product, Compose and Inverse classes""" def __init__(self, *args): pass @property def ffps(self): return self.args[0] @property def gfps(self): return self.args[1] @property def f(self): return self.ffps.function @property def g(self): return self.gfps.function @property def infinite(self): raise NotImplementedError("No infinite version for an object of" " FiniteFormalPowerSeries class.") def _eval_terms(self, n): raise NotImplementedError("(%s)._eval_terms()" % self) def _eval_term(self, pt): raise NotImplementedError("By the current logic, one can get terms" "upto a certain order, instead of getting term by term.") def polynomial(self, n): return self._eval_terms(n) def truncate(self, n=6): ffps = self.ffps pt_xk = ffps.xk.coeff(n) x, x0 = ffps.x, ffps.x0 return self.polynomial(n) + Order(pt_xk, (x, x0)) def _eval_derivative(self, x): raise NotImplementedError def integrate(self, x): raise NotImplementedError class FormalPowerSeriesProduct(FiniteFormalPowerSeries): """Represents the product of two formal power series of two functions. No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a `FormalPowerSeries` object and a `FormalPowerSeriesProduct` object. The first argument contains the two functions involved in the product. Also, the coefficient sequence contains both the coefficient sequence of the formal power series of the involved functions. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps, gfps = self.ffps, self.gfps k = ffps.ak.variables[0] self.coeff1 = sequence(ffps.ak.formula, (k, 0, oo)) k = gfps.ak.variables[0] self.coeff2 = sequence(gfps.ak.formula, (k, 0, oo)) @property def function(self): """Function of the product of two formal power series.""" return self.f * self.g def _eval_terms(self, n): """ Returns the first `n` terms of the product formal power series. Term by term logic is implemented here. Examples ======== >>> from sympy import fps, sin, exp, convolution >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> fprod = f1.product(f2, x) >>> fprod._eval_terms(4) x**3/3 + x**2 + x See Also ======== sympy.series.formal.FormalPowerSeries.product """ coeff1, coeff2 = self.coeff1, self.coeff2 aks = convolution(coeff1[:n], coeff2[:n]) terms = [] for i in range(0, n): terms.append(aks[i] * self.ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesCompose(FiniteFormalPowerSeries): """Represents the composed formal power series of two functions. No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a `FormalPowerSeries` object and a `FormalPowerSeriesCompose` object. The first argument contains the outer function and the inner function involved in the omposition. Also, the coefficient sequence contains the generic sequence which is to be multiplied by a custom `bell_seq` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ @property def function(self): """Function for the composed formal power series.""" f, g, x = self.f, self.g, self.ffps.x return f.subs(x, g) def _eval_terms(self, n): """ Returns the first `n` terms of the composed formal power series. Term by term logic is implemented here. The coefficient sequence of the `FormalPowerSeriesCompose` object is the generic sequence. It is multiplied by `bell_seq` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, sin, exp, bell >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> fcomp = f1.compose(f2, x) >>> fcomp._eval_terms(6) -x**5/15 - x**4/8 + x**2/2 + x + 1 >>> fcomp._eval_terms(8) x**7/90 - x**6/240 - x**5/15 - x**4/8 + x**2/2 + x + 1 See Also ======== sympy.series.formal.FormalPowerSeries.compose sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps, gfps = self.ffps, self.gfps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = gfps.coeff_bell(i) seq = (ffps.bell_coeff_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesInverse(FiniteFormalPowerSeries): """Represents the Inverse of a formal power series. No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There is a single difference between a `FormalPowerSeries` object and a `FormalPowerSeriesInverse` object. The coefficient sequence contains the generic sequence which is to be multiplied by a custom `bell_seq` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps = self.ffps k = ffps.xk.variables[0] inv = ffps.zero_coeff() inv_seq = sequence(inv ** (-(k + 1)), (k, 1, oo)) self.aux_seq = ffps.sign_seq * ffps.fact_seq * inv_seq @property def function(self): """Function for the inverse of a formal power series.""" f = self.f return 1 / f @property def g(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") @property def gfps(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") def _eval_terms(self, n): """ Returns the first `n` terms of the composed formal power series. Term by term logic is implemented here. The coefficient sequence of the `FormalPowerSeriesInverse` object is the generic sequence. It is multiplied by `bell_seq` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, exp, cos, bell >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> finv1, finv2 = f1.inverse(), f2.inverse() >>> finv1._eval_terms(6) -x**5/120 + x**4/24 - x**3/6 + x**2/2 - x + 1 >>> finv2._eval_terms(8) 61*x**6/720 + 5*x**4/24 + x**2/2 + 1 See Also ======== sympy.series.formal.FormalPowerSeries.inverse sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps = self.ffps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = ffps.coeff_bell(i) seq = (self.aux_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """Generates Formal Power Series of f. Returns the formal series expansion of ``f`` around ``x = x0`` with respect to ``x`` in the form of a ``FormalPowerSeries`` object. Formal Power Series is represented using an explicit formula computed using different algorithms. See :func:`compute_fps` for the more details regarding the computation of formula. Parameters ========== x : Symbol, optional If x is None and ``f`` is univariate, the univariate symbols will be supplied, otherwise an error will be raised. x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Examples ======== >>> from sympy import fps, O, ln, atan, sin >>> from sympy.abc import x, n Rational Functions >>> fps(ln(1 + x)).truncate() x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) >>> fps(atan(x), full=True).truncate() x - x**3/3 + x**5/5 + O(x**6) Symbolic Functions >>> fps(x**n*sin(x**2), x).truncate(8) -x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8)) See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.compute_fps """ f = sympify(f) if x is None: free = f.free_symbols if len(free) == 1: x = free.pop() elif not free: return f else: raise NotImplementedError("multivariate formal power series") result = compute_fps(f, x, x0, dir, hyper, order, rational, full) if result is None: return f return FormalPowerSeries(f, x, x0, dir, result)
1e2ade923c0523e39506ee915f8650386593ac5a828e68bcc474279d6538b5b5
from __future__ import print_function, division from sympy.core import S, sympify, Expr, Rational, Dummy from sympy.core import Add, Mul, expand_power_base, expand_log from sympy.core.cache import cacheit from sympy.core.compatibility import default_sort_key, is_sequence from sympy.core.containers import Tuple from sympy.sets.sets import Complement from sympy.utilities.iterables import uniq class Order(Expr): r""" Represents the limiting behavior of some function The order of a function characterizes the function based on the limiting behavior of the function as it goes to some limit. Only taking the limit point to be a number is currently supported. This is expressed in big O notation [1]_. The formal definition for the order of a function `g(x)` about a point `a` is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if for any `\delta > 0` there exists a `M > 0` such that `|g(x)| \leq M|f(x)|` for `|x-a| < \delta`. This is equivalent to `\lim_{x \rightarrow a} \sup |g(x)/f(x)| < \infty`. Let's illustrate it on the following example by taking the expansion of `\sin(x)` about 0: .. math :: \sin(x) = x - x^3/3! + O(x^5) where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition of `O`, for any `\delta > 0` there is an `M` such that: .. math :: |x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta or by the alternate definition: .. math :: \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty which surely is true, because .. math :: \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5! As it is usually used, the order of a function can be intuitively thought of representing all terms of powers greater than the one specified. For example, `O(x^3)` corresponds to any terms proportional to `x^3, x^4,\ldots` and any higher power. For a polynomial, this leaves terms proportional to `x^2`, `x` and constants. Examples ======== >>> from sympy import O, oo, cos, pi >>> from sympy.abc import x, y >>> O(x + x**2) O(x) >>> O(x + x**2, (x, 0)) O(x) >>> O(x + x**2, (x, oo)) O(x**2, (x, oo)) >>> O(1 + x*y) O(1, x, y) >>> O(1 + x*y, (x, 0), (y, 0)) O(1, x, y) >>> O(1 + x*y, (x, oo), (y, oo)) O(x*y, (x, oo), (y, oo)) >>> O(1) in O(1, x) True >>> O(1, x) in O(1) False >>> O(x) in O(1, x) True >>> O(x**2) in O(x) True >>> O(x)*x O(x**2) >>> O(x) - O(x) O(x) >>> O(cos(x)) O(1) >>> O(cos(x), (x, pi/2)) O(x - pi/2, (x, pi/2)) References ========== .. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_ Notes ===== In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading term. ``O(f(x), x)`` is automatically transformed to ``O(f(x).as_leading_term(x),x)``. ``O(expr*f(x), x)`` is ``O(f(x), x)`` ``O(expr, x)`` is ``O(1)`` ``O(0, x)`` is 0. Multivariate O is also supported: ``O(f(x, y), x, y)`` is transformed to ``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)`` In the multivariate case, it is assumed the limits w.r.t. the various symbols commute. If no symbols are passed then all symbols in the expression are used and the limit point is assumed to be zero. """ is_Order = True __slots__ = [] @cacheit def __new__(cls, expr, *args, **kwargs): expr = sympify(expr) if not args: if expr.is_Order: variables = expr.variables point = expr.point else: variables = list(expr.free_symbols) point = [S.Zero]*len(variables) else: args = list(args if is_sequence(args) else [args]) variables, point = [], [] if is_sequence(args[0]): for a in args: v, p = list(map(sympify, a)) variables.append(v) point.append(p) else: variables = list(map(sympify, args)) point = [S.Zero]*len(variables) if not all(v.is_symbol for v in variables): raise TypeError('Variables are not symbols, got %s' % variables) if len(list(uniq(variables))) != len(variables): raise ValueError('Variables are supposed to be unique symbols, got %s' % variables) if expr.is_Order: expr_vp = dict(expr.args[1:]) new_vp = dict(expr_vp) vp = dict(zip(variables, point)) for v, p in vp.items(): if v in new_vp.keys(): if p != new_vp[v]: raise NotImplementedError( "Mixing Order at different points is not supported.") else: new_vp[v] = p if set(expr_vp.keys()) == set(new_vp.keys()): return expr else: variables = list(new_vp.keys()) point = [new_vp[v] for v in variables] if expr is S.NaN: return S.NaN if any(x in p.free_symbols for x in variables for p in point): raise ValueError('Got %s as a point.' % point) if variables: if any(p != point[0] for p in point): raise NotImplementedError( "Multivariable orders at different points are not supported.") if point[0] is S.Infinity: s = {k: 1/Dummy() for k in variables} rs = {1/v: 1/k for k, v in s.items()} elif point[0] is S.NegativeInfinity: s = {k: -1/Dummy() for k in variables} rs = {-1/v: -1/k for k, v in s.items()} elif point[0] is not S.Zero: s = dict((k, Dummy() + point[0]) for k in variables) rs = dict((v - point[0], k - point[0]) for k, v in s.items()) else: s = () rs = () expr = expr.subs(s) if expr.is_Add: from sympy import expand_multinomial expr = expand_multinomial(expr) if s: args = tuple([r[0] for r in rs.items()]) else: args = tuple(variables) if len(variables) > 1: # XXX: better way? We need this expand() to # workaround e.g: expr = x*(x + y). # (x*(x + y)).as_leading_term(x, y) currently returns # x*y (wrong order term!). That's why we want to deal with # expand()'ed expr (handled in "if expr.is_Add" branch below). expr = expr.expand() old_expr = None while old_expr != expr: old_expr = expr if expr.is_Add: lst = expr.extract_leading_order(args) expr = Add(*[f.expr for (e, f) in lst]) elif expr: expr = expr.as_leading_term(*args) expr = expr.as_independent(*args, as_Add=False)[1] expr = expand_power_base(expr) expr = expand_log(expr) if len(args) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = args[0] margs = list(Mul.make_args( expr.as_independent(x, as_Add=False)[1])) for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) expr = Mul(*margs) expr = expr.subs(rs) if expr is S.Zero: return expr if expr.is_Order: expr = expr.expr if not expr.has(*variables): expr = S.One # create Order instance: vp = dict(zip(variables, point)) variables.sort(key=default_sort_key) point = [vp[v] for v in variables] args = (expr,) + Tuple(*zip(variables, point)) obj = Expr.__new__(cls, *args) return obj def _eval_nseries(self, x, n, logx): return self @property def expr(self): return self.args[0] @property def variables(self): if self.args[1:]: return tuple(x[0] for x in self.args[1:]) else: return () @property def point(self): if self.args[1:]: return tuple(x[1] for x in self.args[1:]) else: return () @property def free_symbols(self): return self.expr.free_symbols | set(self.variables) def _eval_power(b, e): if e.is_Number and e.is_nonnegative: return b.func(b.expr ** e, *b.args[1:]) if e == O(1): return b return def as_expr_variables(self, order_symbols): if order_symbols is None: order_symbols = self.args[1:] else: if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and not all(p == self.point[0] for p in self.point)): # pragma: no cover raise NotImplementedError('Order at points other than 0 ' 'or oo not supported, got %s as a point.' % self.point) if order_symbols and order_symbols[0][1] != self.point[0]: raise NotImplementedError( "Multiplying Order at different points is not supported.") order_symbols = dict(order_symbols) for s, p in dict(self.args[1:]).items(): if s not in order_symbols.keys(): order_symbols[s] = p order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0])) return self.expr, tuple(order_symbols) def removeO(self): return S.Zero def getO(self): return self @cacheit def contains(self, expr): r""" Return True if expr belongs to Order(self.expr, \*self.variables). Return False if self belongs to expr. Return None if the inclusion relation cannot be determined (e.g. when self and expr have different symbols). """ from sympy import powsimp if expr is S.Zero: return True if expr is S.NaN: return False point = self.point[0] if self.point else S.Zero if expr.is_Order: if (any(p != point for p in expr.point) or any(p != point for p in self.point)): return None if expr.expr == self.expr: # O(1) + O(1), O(1) + O(1, x), etc. return all([x in self.args[1:] for x in expr.args[1:]]) if expr.expr.is_Add: return all([self.contains(x) for x in expr.expr.args]) if self.expr.is_Add and point == S.Zero: return any([self.func(x, *self.args[1:]).contains(expr) for x in self.expr.args]) if self.variables and expr.variables: common_symbols = tuple( [s for s in self.variables if s in expr.variables]) elif self.variables: common_symbols = self.variables else: common_symbols = expr.variables if not common_symbols: return None if (self.expr.is_Pow and len(self.variables) == 1 and self.variables == expr.variables): symbol = self.variables[0] other = expr.expr.as_independent(symbol, as_Add=False)[1] if (other.is_Pow and other.base == symbol and self.expr.base == symbol): if point == S.Zero: rv = (self.expr.exp - other.exp).is_nonpositive if point.is_infinite: rv = (self.expr.exp - other.exp).is_nonnegative if rv is not None: return rv r = None ratio = self.expr/expr.expr ratio = powsimp(ratio, deep=True, combine='exp') for s in common_symbols: from sympy.series.limits import Limit l = Limit(ratio, s, point).doit(heuristics=False) if not isinstance(l, Limit): l = l != 0 else: l = None if r is None: r = l else: if r != l: return return r if self.expr.is_Pow and len(self.variables) == 1: symbol = self.variables[0] other = expr.as_independent(symbol, as_Add=False)[1] if (other.is_Pow and other.base == symbol and self.expr.base == symbol): if point == S.Zero: rv = (self.expr.exp - other.exp).is_nonpositive if point.is_infinite: rv = (self.expr.exp - other.exp).is_nonnegative if rv is not None: return rv obj = self.func(expr, *self.args[1:]) return self.contains(obj) def __contains__(self, other): result = self.contains(other) if result is None: raise TypeError('contains did not evaluate to a bool') return result def _eval_subs(self, old, new): if old in self.variables: newexpr = self.expr.subs(old, new) i = self.variables.index(old) newvars = list(self.variables) newpt = list(self.point) if new.is_symbol: newvars[i] = new else: syms = new.free_symbols if len(syms) == 1 or old in syms: if old in syms: var = self.variables[i] else: var = syms.pop() # First, try to substitute self.point in the "new" # expr to see if this is a fixed point. # E.g. O(y).subs(y, sin(x)) point = new.subs(var, self.point[i]) if point != self.point[i]: from sympy.solvers.solveset import solveset d = Dummy() sol = solveset(old - new.subs(var, d), d) if isinstance(sol, Complement): e1 = sol.args[0] e2 = sol.args[1] sol = set(e1) - set(e2) res = [dict(zip((d, ), sol))] point = d.subs(res[0]).limit(old, self.point[i]) newvars[i] = var newpt[i] = point elif old not in syms: del newvars[i], newpt[i] if not syms and new == self.point[i]: newvars.extend(syms) newpt.extend([S.Zero]*len(syms)) else: return return Order(newexpr, *zip(newvars, newpt)) def _eval_conjugate(self): expr = self.expr._eval_conjugate() if expr is not None: return self.func(expr, *self.args[1:]) def _eval_derivative(self, x): return self.func(self.expr.diff(x), *self.args[1:]) or self def _eval_transpose(self): expr = self.expr._eval_transpose() if expr is not None: return self.func(expr, *self.args[1:]) def _sage_(self): #XXX: SAGE doesn't have Order yet. Let's return 0 instead. return Rational(0)._sage_() def __neg__(self): return self O = Order
f35a040471f0a5064f86a22061cf6e0f08efa7af0a0a4a2141ffcf8dc1453e1f
""" Expand Hypergeometric (and Meijer G) functions into named special functions. The algorithm for doing this uses a collection of lookup tables of hypergeometric functions, and various of their properties, to expand many hypergeometric functions in terms of special functions. It is based on the following paper: Kelly B. Roach. Meijer G Function Representations. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 205-211, New York, 1997. ACM. It is described in great(er) detail in the Sphinx documentation. """ # SUMMARY OF EXTENSIONS FOR MEIJER G FUNCTIONS # # o z**rho G(ap, bq; z) = G(ap + rho, bq + rho; z) # # o denote z*d/dz by D # # o It is helpful to keep in mind that ap and bq play essentially symmetric # roles: G(1/z) has slightly altered parameters, with ap and bq interchanged. # # o There are four shift operators: # A_J = b_J - D, J = 1, ..., n # B_J = 1 - a_j + D, J = 1, ..., m # C_J = -b_J + D, J = m+1, ..., q # D_J = a_J - 1 - D, J = n+1, ..., p # # A_J, C_J increment b_J # B_J, D_J decrement a_J # # o The corresponding four inverse-shift operators are defined if there # is no cancellation. Thus e.g. an index a_J (upper or lower) can be # incremented if a_J != b_i for i = 1, ..., q. # # o Order reduction: if b_j - a_i is a non-negative integer, where # j <= m and i > n, the corresponding quotient of gamma functions reduces # to a polynomial. Hence the G function can be expressed using a G-function # of lower order. # Similarly if j > m and i <= n. # # Secondly, there are paired index theorems [Adamchik, The evaluation of # integrals of Bessel functions via G-function identities]. Suppose there # are three parameters a, b, c, where a is an a_i, i <= n, b is a b_j, # j <= m and c is a denominator parameter (i.e. a_i, i > n or b_j, j > m). # Suppose further all three differ by integers. # Then the order can be reduced. # TODO work this out in detail. # # o An index quadruple is called suitable if its order cannot be reduced. # If there exists a sequence of shift operators transforming one index # quadruple into another, we say one is reachable from the other. # # o Deciding if one index quadruple is reachable from another is tricky. For # this reason, we use hand-built routines to match and instantiate formulas. # from __future__ import print_function, division from collections import defaultdict from itertools import product from sympy import SYMPY_DEBUG from sympy.core import (S, Dummy, symbols, sympify, Tuple, expand, I, pi, Mul, EulerGamma, oo, zoo, expand_func, Add, nan, Expr) from sympy.core.compatibility import default_sort_key, range, reduce from sympy.core.mod import Mod from sympy.functions import (exp, sqrt, root, log, lowergamma, cos, besseli, gamma, uppergamma, expint, erf, sin, besselj, Ei, Ci, Si, Shi, sinh, cosh, Chi, fresnels, fresnelc, polar_lift, exp_polar, floor, ceiling, rf, factorial, lerchphi, Piecewise, re, elliptic_k, elliptic_e) from sympy.functions.elementary.complexes import polarify, unpolarify from sympy.functions.special.hyper import (hyper, HyperRep_atanh, HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1, HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2, HyperRep_cosasin, HyperRep_sinasin, meijerg) from sympy.polys import poly, Poly from sympy.series import residue from sympy.simplify import simplify from sympy.simplify.powsimp import powdenest from sympy.utilities.iterables import sift # function to define "buckets" def _mod1(x): # TODO see if this can work as Mod(x, 1); this will require # different handling of the "buckets" since these need to # be sorted and that fails when there is a mixture of # integers and expressions with parameters. With the current # Mod behavior, Mod(k, 1) == Mod(1, 1) == 0 if k is an integer. # Although the sorting can be done with Basic.compare, this may # still require different handling of the sorted buckets. if x.is_Number: return Mod(x, 1) c, x = x.as_coeff_Add() return Mod(c, 1) + x # leave add formulae at the top for easy reference def add_formulae(formulae): """ Create our knowledge base. """ from sympy.matrices import Matrix a, b, c, z = symbols('a b c, z', cls=Dummy) def add(ap, bq, res): func = Hyper_Function(ap, bq) formulae.append(Formula(func, z, res, (a, b, c))) def addb(ap, bq, B, C, M): func = Hyper_Function(ap, bq) formulae.append(Formula(func, z, None, (a, b, c), B, C, M)) # Luke, Y. L. (1969), The Special Functions and Their Approximations, # Volume 1, section 6.2 # 0F0 add((), (), exp(z)) # 1F0 add((a, ), (), HyperRep_power1(-a, z)) # 2F1 addb((a, a - S.Half), (2*a, ), Matrix([HyperRep_power2(a, z), HyperRep_power2(a + S(1)/2, z)/2]), Matrix([[1, 0]]), Matrix([[(a - S.Half)*z/(1 - z), (S.Half - a)*z/(1 - z)], [a/(1 - z), a*(z - 2)/(1 - z)]])) addb((1, 1), (2, ), Matrix([HyperRep_log1(z), 1]), Matrix([[-1/z, 0]]), Matrix([[0, z/(z - 1)], [0, 0]])) addb((S.Half, 1), (S('3/2'), ), Matrix([HyperRep_atanh(z), 1]), Matrix([[1, 0]]), Matrix([[-S(1)/2, 1/(1 - z)/2], [0, 0]])) addb((S.Half, S.Half), (S('3/2'), ), Matrix([HyperRep_asin1(z), HyperRep_power1(-S(1)/2, z)]), Matrix([[1, 0]]), Matrix([[-S(1)/2, S(1)/2], [0, z/(1 - z)/2]])) addb((a, S.Half + a), (S.Half, ), Matrix([HyperRep_sqrts1(-a, z), -HyperRep_sqrts2(-a - S(1)/2, z)]), Matrix([[1, 0]]), Matrix([[0, -a], [z*(-2*a - 1)/2/(1 - z), S.Half - z*(-2*a - 1)/(1 - z)]])) # A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). # Integrals and Series: More Special Functions, Vol. 3,. # Gordon and Breach Science Publisher addb([a, -a], [S.Half], Matrix([HyperRep_cosasin(a, z), HyperRep_sinasin(a, z)]), Matrix([[1, 0]]), Matrix([[0, -a], [a*z/(1 - z), 1/(1 - z)/2]])) addb([1, 1], [3*S.Half], Matrix([HyperRep_asin2(z), 1]), Matrix([[1, 0]]), Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]])) # Complete elliptic integrals K(z) and E(z), both a 2F1 function addb([S.Half, S.Half], [S.One], Matrix([elliptic_k(z), elliptic_e(z)]), Matrix([[2/pi, 0]]), Matrix([[-S.Half, -1/(2*z-2)], [-S.Half, S.Half]])) addb([-S.Half, S.Half], [S.One], Matrix([elliptic_k(z), elliptic_e(z)]), Matrix([[0, 2/pi]]), Matrix([[-S.Half, -1/(2*z-2)], [-S.Half, S.Half]])) # 3F2 addb([-S.Half, 1, 1], [S.Half, 2], Matrix([z*HyperRep_atanh(z), HyperRep_log1(z), 1]), Matrix([[-S(2)/3, -S(1)/(3*z), S(2)/3]]), Matrix([[S(1)/2, 0, z/(1 - z)/2], [0, 0, z/(z - 1)], [0, 0, 0]])) # actually the formula for 3/2 is much nicer ... addb([-S.Half, 1, 1], [2, 2], Matrix([HyperRep_power1(S(1)/2, z), HyperRep_log2(z), 1]), Matrix([[S(4)/9 - 16/(9*z), 4/(3*z), 16/(9*z)]]), Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]])) # 1F1 addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]), Matrix([[b - 1, 0]]), Matrix([[1 - b + z, 1], [0, 0]])) addb([a], [2*a], Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2) * gamma(a + S.Half)/4**(S.Half - a), z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2) * gamma(a + S.Half)/4**(S.Half - a)]), Matrix([[1, 0]]), Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]])) mz = polar_lift(-1)*z addb([a], [a + 1], Matrix([mz**(-a)*a*lowergamma(a, mz), a*exp(z)]), Matrix([[1, 0]]), Matrix([[-a, 1], [0, z]])) # This one is redundant. add([-S.Half], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z))) # Added to get nice results for Laplace transform of Fresnel functions # http://functions.wolfram.com/07.22.03.6437.01 # Basic rule #add([1], [S(3)/4, S(5)/4], # sqrt(pi) * (cos(2*sqrt(polar_lift(-1)*z))*fresnelc(2*root(polar_lift(-1)*z,4)/sqrt(pi)) + # sin(2*sqrt(polar_lift(-1)*z))*fresnels(2*root(polar_lift(-1)*z,4)/sqrt(pi))) # / (2*root(polar_lift(-1)*z,4))) # Manually tuned rule addb([1], [S(3)/4, S(5)/4], Matrix([ sqrt(pi)*(I*sinh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)) + cosh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))) * exp(-I*pi/4)/(2*root(z, 4)), sqrt(pi)*root(z, 4)*(sinh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)) + I*cosh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))) *exp(-I*pi/4)/2, 1 ]), Matrix([[1, 0, 0]]), Matrix([[-S(1)/4, 1, S(1)/4], [ z, S(1)/4, 0 ], [ 0, 0, 0 ]])) # 2F2 addb([S.Half, a], [S(3)/2, a + 1], Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)), a/(2*a - 1)*(polar_lift(-1)*z)**(-a)* lowergamma(a, polar_lift(-1)*z), a/(2*a - 1)*exp(z)]), Matrix([[1, -1, 0]]), Matrix([[-S.Half, 0, 1], [0, -a, 1], [0, 0, z]])) # We make a "basis" of four functions instead of three, and give EulerGamma # an extra slot (it could just be a coefficient to 1). The advantage is # that this way Polys will not see multivariate polynomials (it treats # EulerGamma as an indeterminate), which is *way* faster. addb([1, 1], [2, 2], Matrix([Ei(z) - log(z), exp(z), 1, EulerGamma]), Matrix([[1/z, 0, 0, -1/z]]), Matrix([[0, 1, -1, 0], [0, z, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])) # 0F1 add((), (S.Half, ), cosh(2*sqrt(z))) addb([], [b], Matrix([gamma(b)*z**((1 - b)/2)*besseli(b - 1, 2*sqrt(z)), gamma(b)*z**(1 - b/2)*besseli(b, 2*sqrt(z))]), Matrix([[1, 0]]), Matrix([[0, 1], [z, (1 - b)]])) # 0F3 x = 4*z**(S(1)/4) def fp(a, z): return besseli(a, x) + besselj(a, x) def fm(a, z): return besseli(a, x) - besselj(a, x) # TODO branching addb([], [S.Half, a, a + S.Half], Matrix([fp(2*a - 1, z), fm(2*a, z)*z**(S(1)/4), fm(2*a - 1, z)*sqrt(z), fp(2*a, z)*z**(S(3)/4)]) * 2**(-2*a)*gamma(2*a)*z**((1 - 2*a)/4), Matrix([[1, 0, 0, 0]]), Matrix([[0, 1, 0, 0], [0, S(1)/2 - a, 1, 0], [0, 0, S(1)/2, 1], [z, 0, 0, 1 - a]])) x = 2*(4*z)**(S(1)/4)*exp_polar(I*pi/4) addb([], [a, a + S.Half, 2*a], (2*sqrt(polar_lift(-1)*z))**(1 - 2*a)*gamma(2*a)**2 * Matrix([besselj(2*a - 1, x)*besseli(2*a - 1, x), x*(besseli(2*a, x)*besselj(2*a - 1, x) - besseli(2*a - 1, x)*besselj(2*a, x)), x**2*besseli(2*a, x)*besselj(2*a, x), x**3*(besseli(2*a, x)*besselj(2*a - 1, x) + besseli(2*a - 1, x)*besselj(2*a, x))]), Matrix([[1, 0, 0, 0]]), Matrix([[0, S(1)/4, 0, 0], [0, (1 - 2*a)/2, -S(1)/2, 0], [0, 0, 1 - 2*a, S(1)/4], [-32*z, 0, 0, 1 - a]])) # 1F2 addb([a], [a - S.Half, 2*a], Matrix([z**(S.Half - a)*besseli(a - S.Half, sqrt(z))**2, z**(1 - a)*besseli(a - S.Half, sqrt(z)) *besseli(a - S(3)/2, sqrt(z)), z**(S(3)/2 - a)*besseli(a - S(3)/2, sqrt(z))**2]), Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a), 2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a), 0]]), Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]])) addb([S.Half], [b, 2 - b], pi*(1 - b)/sin(pi*b)* Matrix([besseli(1 - b, sqrt(z))*besseli(b - 1, sqrt(z)), sqrt(z)*(besseli(-b, sqrt(z))*besseli(b - 1, sqrt(z)) + besseli(1 - b, sqrt(z))*besseli(b, sqrt(z))), besseli(-b, sqrt(z))*besseli(b, sqrt(z))]), Matrix([[1, 0, 0]]), Matrix([[b - 1, S(1)/2, 0], [z, 0, z], [0, S(1)/2, -b]])) addb([S(1)/2], [S(3)/2, S(3)/2], Matrix([Shi(2*sqrt(z))/2/sqrt(z), sinh(2*sqrt(z))/2/sqrt(z), cosh(2*sqrt(z))]), Matrix([[1, 0, 0]]), Matrix([[-S.Half, S.Half, 0], [0, -S.Half, S.Half], [0, 2*z, 0]])) # FresnelS # Basic rule #add([S(3)/4], [S(3)/2,S(7)/4], 6*fresnels( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( pi * (exp(pi*I/4)*root(z,4)*2/sqrt(pi))**3 ) ) # Manually tuned rule addb([S(3)/4], [S(3)/2, S(7)/4], Matrix( [ fresnels( exp( pi*I/4)*root( z, 4)*2/sqrt( pi) ) / ( pi * (exp(pi*I/4)*root(z, 4)*2/sqrt(pi))**3 ), sinh(2*sqrt(z))/sqrt(z), cosh(2*sqrt(z)) ]), Matrix([[6, 0, 0]]), Matrix([[-S(3)/4, S(1)/16, 0], [ 0, -S(1)/2, 1], [ 0, z, 0]])) # FresnelC # Basic rule #add([S(1)/4], [S(1)/2,S(5)/4], fresnelc( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) ) # Manually tuned rule addb([S(1)/4], [S(1)/2, S(5)/4], Matrix( [ sqrt( pi)*exp( -I*pi/4)*fresnelc( 2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(2*root(z, 4)), cosh(2*sqrt(z)), sinh(2*sqrt(z))*sqrt(z) ]), Matrix([[1, 0, 0]]), Matrix([[-S(1)/4, S(1)/4, 0 ], [ 0, 0, 1 ], [ 0, z, S(1)/2]])) # 2F3 # XXX with this five-parameter formula is pretty slow with the current # Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000 # instantiations ... But it's not too bad. addb([a, a + S.Half], [2*a, b, 2*a - b + 1], gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1 - 2*a) * Matrix([besseli(b - 1, sqrt(z))*besseli(2*a - b, sqrt(z)), sqrt(z)*besseli(b, sqrt(z))*besseli(2*a - b, sqrt(z)), sqrt(z)*besseli(b - 1, sqrt(z))*besseli(2*a - b + 1, sqrt(z)), besseli(b, sqrt(z))*besseli(2*a - b + 1, sqrt(z))]), Matrix([[1, 0, 0, 0]]), Matrix([[0, S(1)/2, S(1)/2, 0], [z/2, 1 - b, 0, z/2], [z/2, 0, b - 2*a, z/2], [0, S(1)/2, S(1)/2, -2*a]])) # (C/f above comment about eulergamma in the basis). addb([1, 1], [2, 2, S(3)/2], Matrix([Chi(2*sqrt(z)) - log(2*sqrt(z)), cosh(2*sqrt(z)), sqrt(z)*sinh(2*sqrt(z)), 1, EulerGamma]), Matrix([[1/z, 0, 0, 0, -1/z]]), Matrix([[0, S(1)/2, 0, -S(1)/2, 0], [0, 0, 1, 0, 0], [0, z, S(1)/2, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])) # 3F3 # This is rule: http://functions.wolfram.com/07.31.03.0134.01 # Initial reason to add it was a nice solution for # integrate(erf(a*z)/z**2, z) and same for erfc and erfi. # Basic rule # add([1, 1, a], [2, 2, a+1], (a/(z*(a-1)**2)) * # (1 - (-z)**(1-a) * (gamma(a) - uppergamma(a,-z)) # - (a-1) * (EulerGamma + uppergamma(0,-z) + log(-z)) # - exp(z))) # Manually tuned rule addb([1, 1, a], [2, 2, a+1], Matrix([a*(log(-z) + expint(1, -z) + EulerGamma)/(z*(a**2 - 2*a + 1)), a*(-z)**(-a)*(gamma(a) - uppergamma(a, -z))/(a - 1)**2, a*exp(z)/(a**2 - 2*a + 1), a/(z*(a**2 - 2*a + 1))]), Matrix([[1-a, 1, -1/z, 1]]), Matrix([[-1,0,-1/z,1], [0,-a,1,0], [0,0,z,0], [0,0,0,-1]])) def add_meijerg_formulae(formulae): from sympy.matrices import Matrix a, b, c, z = list(map(Dummy, 'abcz')) rho = Dummy('rho') def add(an, ap, bm, bq, B, C, M, matcher): formulae.append(MeijerFormula(an, ap, bm, bq, z, [a, b, c, rho], B, C, M, matcher)) def detect_uppergamma(func): x = func.an[0] y, z = func.bm swapped = False if not _mod1((x - y).simplify()): swapped = True (y, z) = (z, y) if _mod1((x - z).simplify()) or x - z > 0: return None l = [y, x] if swapped: l = [x, y] return {rho: y, a: x - y}, G_Function([x], [], l, []) add([a + rho], [], [rho, a + rho], [], Matrix([gamma(1 - a)*z**rho*exp(z)*uppergamma(a, z), gamma(1 - a)*z**(a + rho)]), Matrix([[1, 0]]), Matrix([[rho + z, -1], [0, a + rho]]), detect_uppergamma) def detect_3113(func): """http://functions.wolfram.com/07.34.03.0984.01""" x = func.an[0] u, v, w = func.bm if _mod1((u - v).simplify()) == 0: if _mod1((v - w).simplify()) == 0: return sig = (S(1)/2, S(1)/2, S(0)) x1, x2, y = u, v, w else: if _mod1((x - u).simplify()) == 0: sig = (S(1)/2, S(0), S(1)/2) x1, y, x2 = u, v, w else: sig = (S(0), S(1)/2, S(1)/2) y, x1, x2 = u, v, w if (_mod1((x - x1).simplify()) != 0 or _mod1((x - x2).simplify()) != 0 or _mod1((x - y).simplify()) != S(1)/2 or x - x1 > 0 or x - x2 > 0): return return {a: x}, G_Function([x], [], [x - S(1)/2 + t for t in sig], []) s = sin(2*sqrt(z)) c_ = cos(2*sqrt(z)) S_ = Si(2*sqrt(z)) - pi/2 C = Ci(2*sqrt(z)) add([a], [], [a, a, a - S(1)/2], [], Matrix([sqrt(pi)*z**(a - S(1)/2)*(c_*S_ - s*C), sqrt(pi)*z**a*(s*S_ + c_*C), sqrt(pi)*z**a]), Matrix([[-2, 0, 0]]), Matrix([[a - S(1)/2, -1, 0], [z, a, S(1)/2], [0, 0, a]]), detect_3113) def make_simp(z): """ Create a function that simplifies rational functions in ``z``. """ def simp(expr): """ Efficiently simplify the rational function ``expr``. """ numer, denom = expr.as_numer_denom() numer = numer.expand() # denom = denom.expand() # is this needed? c, numer, denom = poly(numer, z).cancel(poly(denom, z)) return c * numer.as_expr() / denom.as_expr() return simp def debug(*args): if SYMPY_DEBUG: for a in args: print(a, end="") print() class Hyper_Function(Expr): """ A generalized hypergeometric function. """ def __new__(cls, ap, bq): obj = super(Hyper_Function, cls).__new__(cls) obj.ap = Tuple(*list(map(expand, ap))) obj.bq = Tuple(*list(map(expand, bq))) return obj @property def args(self): return (self.ap, self.bq) @property def sizes(self): return (len(self.ap), len(self.bq)) @property def gamma(self): """ Number of upper parameters that are negative integers This is a transformation invariant. """ return sum(bool(x.is_integer and x.is_negative) for x in self.ap) def _hashable_content(self): return super(Hyper_Function, self)._hashable_content() + (self.ap, self.bq) def __call__(self, arg): return hyper(self.ap, self.bq, arg) def build_invariants(self): """ Compute the invariant vector. The invariant vector is: (gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr))) where gamma is the number of integer a < 0, s1 < ... < sk nl is the number of parameters a_i congruent to sl mod 1 t1 < ... < tr ml is the number of parameters b_i congruent to tl mod 1 If the index pair contains parameters, then this is not truly an invariant, since the parameters cannot be sorted uniquely mod1. Examples ======== >>> from sympy.simplify.hyperexpand import Hyper_Function >>> from sympy import S >>> ap = (S(1)/2, S(1)/3, S(-1)/2, -2) >>> bq = (1, 2) Here gamma = 1, k = 3, s1 = 0, s2 = 1/3, s3 = 1/2 n1 = 1, n2 = 1, n2 = 2 r = 1, t1 = 0 m1 = 2: >>> Hyper_Function(ap, bq).build_invariants() (1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),)) """ abuckets, bbuckets = sift(self.ap, _mod1), sift(self.bq, _mod1) def tr(bucket): bucket = list(bucket.items()) if not any(isinstance(x[0], Mod) for x in bucket): bucket.sort(key=lambda x: default_sort_key(x[0])) bucket = tuple([(mod, len(values)) for mod, values in bucket if values]) return bucket return (self.gamma, tr(abuckets), tr(bbuckets)) def difficulty(self, func): """ Estimate how many steps it takes to reach ``func`` from self. Return -1 if impossible. """ if self.gamma != func.gamma: return -1 oabuckets, obbuckets, abuckets, bbuckets = [sift(params, _mod1) for params in (self.ap, self.bq, func.ap, func.bq)] diff = 0 for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]: for mod in set(list(bucket.keys()) + list(obucket.keys())): if (not mod in bucket) or (not mod in obucket) \ or len(bucket[mod]) != len(obucket[mod]): return -1 l1 = list(bucket[mod]) l2 = list(obucket[mod]) l1.sort() l2.sort() for i, j in zip(l1, l2): diff += abs(i - j) return diff def _is_suitable_origin(self): """ Decide if ``self`` is a suitable origin. A function is a suitable origin iff: * none of the ai equals bj + n, with n a non-negative integer * none of the ai is zero * none of the bj is a non-positive integer Note that this gives meaningful results only when none of the indices are symbolic. """ for a in self.ap: for b in self.bq: if (a - b).is_integer and (a - b).is_negative is False: return False for a in self.ap: if a == 0: return False for b in self.bq: if b.is_integer and b.is_nonpositive: return False return True class G_Function(Expr): """ A Meijer G-function. """ def __new__(cls, an, ap, bm, bq): obj = super(G_Function, cls).__new__(cls) obj.an = Tuple(*list(map(expand, an))) obj.ap = Tuple(*list(map(expand, ap))) obj.bm = Tuple(*list(map(expand, bm))) obj.bq = Tuple(*list(map(expand, bq))) return obj @property def args(self): return (self.an, self.ap, self.bm, self.bq) def _hashable_content(self): return super(G_Function, self)._hashable_content() + self.args def __call__(self, z): return meijerg(self.an, self.ap, self.bm, self.bq, z) def compute_buckets(self): """ Compute buckets for the fours sets of parameters. We guarantee that any two equal Mod objects returned are actually the same, and that the buckets are sorted by real part (an and bq descendending, bm and ap ascending). Examples ======== >>> from sympy.simplify.hyperexpand import G_Function >>> from sympy.abc import y >>> from sympy import S, symbols >>> a, b = [1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3] >>> G_Function(a, b, [2], [y]).compute_buckets() ({0: [3, 2, 1], 1/2: [3/2]}, {0: [2], y: [y, y + 1, y + 3]}, {0: [2]}, {y: [y]}) """ dicts = pan, pap, pbm, pbq = [defaultdict(list) for i in range(4)] for dic, lis in zip(dicts, (self.an, self.ap, self.bm, self.bq)): for x in lis: dic[_mod1(x)].append(x) for dic, flip in zip(dicts, (True, False, False, True)): for m, items in dic.items(): x0 = items[0] items.sort(key=lambda x: x - x0, reverse=flip) dic[m] = items return tuple([dict(w) for w in dicts]) @property def signature(self): return (len(self.an), len(self.ap), len(self.bm), len(self.bq)) # Dummy variable. _x = Dummy('x') class Formula(object): """ This class represents hypergeometric formulae. Its data members are: - z, the argument - closed_form, the closed form expression - symbols, the free symbols (parameters) in the formula - func, the function - B, C, M (see _compute_basis) Examples ======== >>> from sympy.abc import a, b, z >>> from sympy.simplify.hyperexpand import Formula, Hyper_Function >>> func = Hyper_Function((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7)) >>> f = Formula(func, z, None, [a, b]) """ def _compute_basis(self, closed_form): """ Compute a set of functions B=(f1, ..., fn), a nxn matrix M and a 1xn matrix C such that: closed_form = C B z d/dz B = M B. """ from sympy.matrices import Matrix, eye, zeros afactors = [_x + a for a in self.func.ap] bfactors = [_x + b - 1 for b in self.func.bq] expr = _x*Mul(*bfactors) - self.z*Mul(*afactors) poly = Poly(expr, _x) n = poly.degree() - 1 b = [closed_form] for _ in range(n): b.append(self.z*b[-1].diff(self.z)) self.B = Matrix(b) self.C = Matrix([[1] + [0]*n]) m = eye(n) m = m.col_insert(0, zeros(n, 1)) l = poly.all_coeffs()[1:] l.reverse() self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0]) def __init__(self, func, z, res, symbols, B=None, C=None, M=None): z = sympify(z) res = sympify(res) symbols = [x for x in sympify(symbols) if func.has(x)] self.z = z self.symbols = symbols self.B = B self.C = C self.M = M self.func = func # TODO with symbolic parameters, it could be advantageous # (for prettier answers) to compute a basis only *after* # instantiation if res is not None: self._compute_basis(res) @property def closed_form(self): return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero) def find_instantiations(self, func): """ Find substitutions of the free symbols that match ``func``. Return the substitution dictionaries as a list. Note that the returned instantiations need not actually match, or be valid! """ from sympy.solvers import solve ap = func.ap bq = func.bq if len(ap) != len(self.func.ap) or len(bq) != len(self.func.bq): raise TypeError('Cannot instantiate other number of parameters') symbol_values = [] for a in self.symbols: if a in self.func.ap.args: symbol_values.append(ap) elif a in self.func.bq.args: symbol_values.append(bq) else: raise ValueError("At least one of the parameters of the " "formula must be equal to %s" % (a,)) base_repl = [dict(list(zip(self.symbols, values))) for values in product(*symbol_values)] abuckets, bbuckets = [sift(params, _mod1) for params in [ap, bq]] a_inv, b_inv = [dict((a, len(vals)) for a, vals in bucket.items()) for bucket in [abuckets, bbuckets]] critical_values = [[0] for _ in self.symbols] result = [] _n = Dummy() for repl in base_repl: symb_a, symb_b = [sift(params, lambda x: _mod1(x.xreplace(repl))) for params in [self.func.ap, self.func.bq]] for bucket, obucket in [(abuckets, symb_a), (bbuckets, symb_b)]: for mod in set(list(bucket.keys()) + list(obucket.keys())): if (not mod in bucket) or (not mod in obucket) \ or len(bucket[mod]) != len(obucket[mod]): break for a, vals in zip(self.symbols, critical_values): if repl[a].free_symbols: continue exprs = [expr for expr in obucket[mod] if expr.has(a)] repl0 = repl.copy() repl0[a] += _n for expr in exprs: for target in bucket[mod]: n0, = solve(expr.xreplace(repl0) - target, _n) if n0.free_symbols: raise ValueError("Value should not be true") vals.append(n0) else: values = [] for a, vals in zip(self.symbols, critical_values): a0 = repl[a] min_ = floor(min(vals)) max_ = ceiling(max(vals)) values.append([a0 + n for n in range(min_, max_ + 1)]) result.extend(dict(list(zip(self.symbols, l))) for l in product(*values)) return result class FormulaCollection(object): """ A collection of formulae to use as origins. """ def __init__(self): """ Doing this globally at module init time is a pain ... """ self.symbolic_formulae = {} self.concrete_formulae = {} self.formulae = [] add_formulae(self.formulae) # Now process the formulae into a helpful form. # These dicts are indexed by (p, q). for f in self.formulae: sizes = f.func.sizes if len(f.symbols) > 0: self.symbolic_formulae.setdefault(sizes, []).append(f) else: inv = f.func.build_invariants() self.concrete_formulae.setdefault(sizes, {})[inv] = f def lookup_origin(self, func): """ Given the suitable target ``func``, try to find an origin in our knowledge base. Examples ======== >>> from sympy.simplify.hyperexpand import (FormulaCollection, ... Hyper_Function) >>> f = FormulaCollection() >>> f.lookup_origin(Hyper_Function((), ())).closed_form exp(_z) >>> f.lookup_origin(Hyper_Function([1], ())).closed_form HyperRep_power1(-1, _z) >>> from sympy import S >>> i = Hyper_Function([S('1/4'), S('3/4 + 4')], [S.Half]) >>> f.lookup_origin(i).closed_form HyperRep_sqrts1(-1/4, _z) """ inv = func.build_invariants() sizes = func.sizes if sizes in self.concrete_formulae and \ inv in self.concrete_formulae[sizes]: return self.concrete_formulae[sizes][inv] # We don't have a concrete formula. Try to instantiate. if not sizes in self.symbolic_formulae: return None # Too bad... possible = [] for f in self.symbolic_formulae[sizes]: repls = f.find_instantiations(func) for repl in repls: func2 = f.func.xreplace(repl) if not func2._is_suitable_origin(): continue diff = func2.difficulty(func) if diff == -1: continue possible.append((diff, repl, f, func2)) # find the nearest origin possible.sort(key=lambda x: x[0]) for _, repl, f, func2 in possible: f2 = Formula(func2, f.z, None, [], f.B.subs(repl), f.C.subs(repl), f.M.subs(repl)) if not any(e.has(S.NaN, oo, -oo, zoo) for e in [f2.B, f2.M, f2.C]): return f2 return None class MeijerFormula(object): """ This class represents a Meijer G-function formula. Its data members are: - z, the argument - symbols, the free symbols (parameters) in the formula - func, the function - B, C, M (c/f ordinary Formula) """ def __init__(self, an, ap, bm, bq, z, symbols, B, C, M, matcher): an, ap, bm, bq = [Tuple(*list(map(expand, w))) for w in [an, ap, bm, bq]] self.func = G_Function(an, ap, bm, bq) self.z = z self.symbols = symbols self._matcher = matcher self.B = B self.C = C self.M = M @property def closed_form(self): return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero) def try_instantiate(self, func): """ Try to instantiate the current formula to (almost) match func. This uses the _matcher passed on init. """ if func.signature != self.func.signature: return None res = self._matcher(func) if res is not None: subs, newfunc = res return MeijerFormula(newfunc.an, newfunc.ap, newfunc.bm, newfunc.bq, self.z, [], self.B.subs(subs), self.C.subs(subs), self.M.subs(subs), None) class MeijerFormulaCollection(object): """ This class holds a collection of meijer g formulae. """ def __init__(self): formulae = [] add_meijerg_formulae(formulae) self.formulae = defaultdict(list) for formula in formulae: self.formulae[formula.func.signature].append(formula) self.formulae = dict(self.formulae) def lookup_origin(self, func): """ Try to find a formula that matches func. """ if not func.signature in self.formulae: return None for formula in self.formulae[func.signature]: res = formula.try_instantiate(func) if res is not None: return res class Operator(object): """ Base class for operators to be applied to our functions. These operators are differential operators. They are by convention expressed in the variable D = z*d/dz (although this base class does not actually care). Note that when the operator is applied to an object, we typically do *not* blindly differentiate but instead use a different representation of the z*d/dz operator (see make_derivative_operator). To subclass from this, define a __init__ method that initializes a self._poly variable. This variable stores a polynomial. By convention the generator is z*d/dz, and acts to the right of all coefficients. Thus this poly x**2 + 2*z*x + 1 represents the differential operator (z*d/dz)**2 + 2*z**2*d/dz. This class is used only in the implementation of the hypergeometric function expansion algorithm. """ def apply(self, obj, op): """ Apply ``self`` to the object ``obj``, where the generator is ``op``. Examples ======== >>> from sympy.simplify.hyperexpand import Operator >>> from sympy.polys.polytools import Poly >>> from sympy.abc import x, y, z >>> op = Operator() >>> op._poly = Poly(x**2 + z*x + y, x) >>> op.apply(z**7, lambda f: f.diff(z)) y*z**7 + 7*z**7 + 42*z**5 """ coeffs = self._poly.all_coeffs() coeffs.reverse() diffs = [obj] for c in coeffs[1:]: diffs.append(op(diffs[-1])) r = coeffs[0]*diffs[0] for c, d in zip(coeffs[1:], diffs[1:]): r += c*d return r class MultOperator(Operator): """ Simply multiply by a "constant" """ def __init__(self, p): self._poly = Poly(p, _x) class ShiftA(Operator): """ Increment an upper index. """ def __init__(self, ai): ai = sympify(ai) if ai == 0: raise ValueError('Cannot increment zero upper index.') self._poly = Poly(_x/ai + 1, _x) def __str__(self): return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0]) class ShiftB(Operator): """ Decrement a lower index. """ def __init__(self, bi): bi = sympify(bi) if bi == 1: raise ValueError('Cannot decrement unit lower index.') self._poly = Poly(_x/(bi - 1) + 1, _x) def __str__(self): return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1) class UnShiftA(Operator): """ Decrement an upper index. """ def __init__(self, ap, bq, i, z): """ Note: i counts from zero! """ ap, bq, i = list(map(sympify, [ap, bq, i])) self._ap = ap self._bq = bq self._i = i ap = list(ap) bq = list(bq) ai = ap.pop(i) - 1 if ai == 0: raise ValueError('Cannot decrement unit upper index.') m = Poly(z*ai, _x) for a in ap: m *= Poly(_x + a, _x) A = Dummy('A') n = D = Poly(ai*A - ai, A) for b in bq: n *= (D + b - 1) b0 = -n.nth(0) if b0 == 0: raise ValueError('Cannot decrement upper index: ' 'cancels with lower') n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, _x/ai + 1), _x) self._poly = Poly((n - m)/b0, _x) def __str__(self): return '<Decrement upper index #%s of %s, %s.>' % (self._i, self._ap, self._bq) class UnShiftB(Operator): """ Increment a lower index. """ def __init__(self, ap, bq, i, z): """ Note: i counts from zero! """ ap, bq, i = list(map(sympify, [ap, bq, i])) self._ap = ap self._bq = bq self._i = i ap = list(ap) bq = list(bq) bi = bq.pop(i) + 1 if bi == 0: raise ValueError('Cannot increment -1 lower index.') m = Poly(_x*(bi - 1), _x) for b in bq: m *= Poly(_x + b - 1, _x) B = Dummy('B') D = Poly((bi - 1)*B - bi + 1, B) n = Poly(z, B) for a in ap: n *= (D + a) b0 = n.nth(0) if b0 == 0: raise ValueError('Cannot increment index: cancels with upper') n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs( B, _x/(bi - 1) + 1), _x) self._poly = Poly((m - n)/b0, _x) def __str__(self): return '<Increment lower index #%s of %s, %s.>' % (self._i, self._ap, self._bq) class MeijerShiftA(Operator): """ Increment an upper b index. """ def __init__(self, bi): bi = sympify(bi) self._poly = Poly(bi - _x, _x) def __str__(self): return '<Increment upper b=%s.>' % (self._poly.all_coeffs()[1]) class MeijerShiftB(Operator): """ Decrement an upper a index. """ def __init__(self, bi): bi = sympify(bi) self._poly = Poly(1 - bi + _x, _x) def __str__(self): return '<Decrement upper a=%s.>' % (1 - self._poly.all_coeffs()[1]) class MeijerShiftC(Operator): """ Increment a lower b index. """ def __init__(self, bi): bi = sympify(bi) self._poly = Poly(-bi + _x, _x) def __str__(self): return '<Increment lower b=%s.>' % (-self._poly.all_coeffs()[1]) class MeijerShiftD(Operator): """ Decrement a lower a index. """ def __init__(self, bi): bi = sympify(bi) self._poly = Poly(bi - 1 - _x, _x) def __str__(self): return '<Decrement lower a=%s.>' % (self._poly.all_coeffs()[1] + 1) class MeijerUnShiftA(Operator): """ Decrement an upper b index. """ def __init__(self, an, ap, bm, bq, i, z): """ Note: i counts from zero! """ an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i])) self._an = an self._ap = ap self._bm = bm self._bq = bq self._i = i an = list(an) ap = list(ap) bm = list(bm) bq = list(bq) bi = bm.pop(i) - 1 m = Poly(1, _x) for b in bm: m *= Poly(b - _x, _x) for b in bq: m *= Poly(_x - b, _x) A = Dummy('A') D = Poly(bi - A, A) n = Poly(z, A) for a in an: n *= (D + 1 - a) for a in ap: n *= (-D + a - 1) b0 = n.nth(0) if b0 == 0: raise ValueError('Cannot decrement upper b index (cancels)') n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, bi - _x), _x) self._poly = Poly((m - n)/b0, _x) def __str__(self): return '<Decrement upper b index #%s of %s, %s, %s, %s.>' % (self._i, self._an, self._ap, self._bm, self._bq) class MeijerUnShiftB(Operator): """ Increment an upper a index. """ def __init__(self, an, ap, bm, bq, i, z): """ Note: i counts from zero! """ an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i])) self._an = an self._ap = ap self._bm = bm self._bq = bq self._i = i an = list(an) ap = list(ap) bm = list(bm) bq = list(bq) ai = an.pop(i) + 1 m = Poly(z, _x) for a in an: m *= Poly(1 - a + _x, _x) for a in ap: m *= Poly(a - 1 - _x, _x) B = Dummy('B') D = Poly(B + ai - 1, B) n = Poly(1, B) for b in bm: n *= (-D + b) for b in bq: n *= (D - b) b0 = n.nth(0) if b0 == 0: raise ValueError('Cannot increment upper a index (cancels)') n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs( B, 1 - ai + _x), _x) self._poly = Poly((m - n)/b0, _x) def __str__(self): return '<Increment upper a index #%s of %s, %s, %s, %s.>' % (self._i, self._an, self._ap, self._bm, self._bq) class MeijerUnShiftC(Operator): """ Decrement a lower b index. """ # XXX this is "essentially" the same as MeijerUnShiftA. This "essentially" # can be made rigorous using the functional equation G(1/z) = G'(z), # where G' denotes a G function of slightly altered parameters. # However, sorting out the details seems harder than just coding it # again. def __init__(self, an, ap, bm, bq, i, z): """ Note: i counts from zero! """ an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i])) self._an = an self._ap = ap self._bm = bm self._bq = bq self._i = i an = list(an) ap = list(ap) bm = list(bm) bq = list(bq) bi = bq.pop(i) - 1 m = Poly(1, _x) for b in bm: m *= Poly(b - _x, _x) for b in bq: m *= Poly(_x - b, _x) C = Dummy('C') D = Poly(bi + C, C) n = Poly(z, C) for a in an: n *= (D + 1 - a) for a in ap: n *= (-D + a - 1) b0 = n.nth(0) if b0 == 0: raise ValueError('Cannot decrement lower b index (cancels)') n = Poly(Poly(n.all_coeffs()[:-1], C).as_expr().subs(C, _x - bi), _x) self._poly = Poly((m - n)/b0, _x) def __str__(self): return '<Decrement lower b index #%s of %s, %s, %s, %s.>' % (self._i, self._an, self._ap, self._bm, self._bq) class MeijerUnShiftD(Operator): """ Increment a lower a index. """ # XXX This is essentially the same as MeijerUnShiftA. # See comment at MeijerUnShiftC. def __init__(self, an, ap, bm, bq, i, z): """ Note: i counts from zero! """ an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i])) self._an = an self._ap = ap self._bm = bm self._bq = bq self._i = i an = list(an) ap = list(ap) bm = list(bm) bq = list(bq) ai = ap.pop(i) + 1 m = Poly(z, _x) for a in an: m *= Poly(1 - a + _x, _x) for a in ap: m *= Poly(a - 1 - _x, _x) B = Dummy('B') # - this is the shift operator `D_I` D = Poly(ai - 1 - B, B) n = Poly(1, B) for b in bm: n *= (-D + b) for b in bq: n *= (D - b) b0 = n.nth(0) if b0 == 0: raise ValueError('Cannot increment lower a index (cancels)') n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs( B, ai - 1 - _x), _x) self._poly = Poly((m - n)/b0, _x) def __str__(self): return '<Increment lower a index #%s of %s, %s, %s, %s.>' % (self._i, self._an, self._ap, self._bm, self._bq) class ReduceOrder(Operator): """ Reduce Order by cancelling an upper and a lower index. """ def __new__(cls, ai, bj): """ For convenience if reduction is not possible, return None. """ ai = sympify(ai) bj = sympify(bj) n = ai - bj if not n.is_Integer or n < 0: return None if bj.is_integer and bj.is_nonpositive: return None expr = Operator.__new__(cls) p = S(1) for k in range(n): p *= (_x + bj + k)/(bj + k) expr._poly = Poly(p, _x) expr._a = ai expr._b = bj return expr @classmethod def _meijer(cls, b, a, sign): """ Cancel b + sign*s and a + sign*s This is for meijer G functions. """ b = sympify(b) a = sympify(a) n = b - a if n.is_negative or not n.is_Integer: return None expr = Operator.__new__(cls) p = S(1) for k in range(n): p *= (sign*_x + a + k) expr._poly = Poly(p, _x) if sign == -1: expr._a = b expr._b = a else: expr._b = Add(1, a - 1, evaluate=False) expr._a = Add(1, b - 1, evaluate=False) return expr @classmethod def meijer_minus(cls, b, a): return cls._meijer(b, a, -1) @classmethod def meijer_plus(cls, a, b): return cls._meijer(1 - a, 1 - b, 1) def __str__(self): return '<Reduce order by cancelling upper %s with lower %s.>' % \ (self._a, self._b) def _reduce_order(ap, bq, gen, key): """ Order reduction algorithm used in Hypergeometric and Meijer G """ ap = list(ap) bq = list(bq) ap.sort(key=key) bq.sort(key=key) nap = [] # we will edit bq in place operators = [] for a in ap: op = None for i in range(len(bq)): op = gen(a, bq[i]) if op is not None: bq.pop(i) break if op is None: nap.append(a) else: operators.append(op) return nap, bq, operators def reduce_order(func): """ Given the hypergeometric function ``func``, find a sequence of operators to reduces order as much as possible. Return (newfunc, [operators]), where applying the operators to the hypergeometric function newfunc yields func. Examples ======== >>> from sympy.simplify.hyperexpand import reduce_order, Hyper_Function >>> reduce_order(Hyper_Function((1, 2), (3, 4))) (Hyper_Function((1, 2), (3, 4)), []) >>> reduce_order(Hyper_Function((1,), (1,))) (Hyper_Function((), ()), [<Reduce order by cancelling upper 1 with lower 1.>]) >>> reduce_order(Hyper_Function((2, 4), (3, 3))) (Hyper_Function((2,), (3,)), [<Reduce order by cancelling upper 4 with lower 3.>]) """ nap, nbq, operators = _reduce_order(func.ap, func.bq, ReduceOrder, default_sort_key) return Hyper_Function(Tuple(*nap), Tuple(*nbq)), operators def reduce_order_meijer(func): """ Given the Meijer G function parameters, ``func``, find a sequence of operators that reduces order as much as possible. Return newfunc, [operators]. Examples ======== >>> from sympy.simplify.hyperexpand import (reduce_order_meijer, ... G_Function) >>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 2]))[0] G_Function((4, 3), (5, 6), (3, 4), (2, 1)) >>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 8]))[0] G_Function((3,), (5, 6), (3, 4), (1,)) >>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [1, 5]))[0] G_Function((3,), (), (), (1,)) >>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [5, 3]))[0] G_Function((), (), (), ()) """ nan, nbq, ops1 = _reduce_order(func.an, func.bq, ReduceOrder.meijer_plus, lambda x: default_sort_key(-x)) nbm, nap, ops2 = _reduce_order(func.bm, func.ap, ReduceOrder.meijer_minus, default_sort_key) return G_Function(nan, nap, nbm, nbq), ops1 + ops2 def make_derivative_operator(M, z): """ Create a derivative operator, to be passed to Operator.apply. """ def doit(C): r = z*C.diff(z) + C*M r = r.applyfunc(make_simp(z)) return r return doit def apply_operators(obj, ops, op): """ Apply the list of operators ``ops`` to object ``obj``, substituting ``op`` for the generator. """ res = obj for o in reversed(ops): res = o.apply(res, op) return res def devise_plan(target, origin, z): """ Devise a plan (consisting of shift and un-shift operators) to be applied to the hypergeometric function ``target`` to yield ``origin``. Returns a list of operators. Examples ======== >>> from sympy.simplify.hyperexpand import devise_plan, Hyper_Function >>> from sympy.abc import z Nothing to do: >>> devise_plan(Hyper_Function((1, 2), ()), Hyper_Function((1, 2), ()), z) [] >>> devise_plan(Hyper_Function((), (1, 2)), Hyper_Function((), (1, 2)), z) [] Very simple plans: >>> devise_plan(Hyper_Function((2,), ()), Hyper_Function((1,), ()), z) [<Increment upper 1.>] >>> devise_plan(Hyper_Function((), (2,)), Hyper_Function((), (1,)), z) [<Increment lower index #0 of [], [1].>] Several buckets: >>> from sympy import S >>> devise_plan(Hyper_Function((1, S.Half), ()), ... Hyper_Function((2, S('3/2')), ()), z) #doctest: +NORMALIZE_WHITESPACE [<Decrement upper index #0 of [3/2, 1], [].>, <Decrement upper index #0 of [2, 3/2], [].>] A slightly more complicated plan: >>> devise_plan(Hyper_Function((1, 3), ()), Hyper_Function((2, 2), ()), z) [<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>] Another more complicated plan: (note that the ap have to be shifted first!) >>> devise_plan(Hyper_Function((1, -1), (2,)), Hyper_Function((3, -2), (4,)), z) [<Decrement lower 3.>, <Decrement lower 4.>, <Decrement upper index #1 of [-1, 2], [4].>, <Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>] """ abuckets, bbuckets, nabuckets, nbbuckets = [sift(params, _mod1) for params in (target.ap, target.bq, origin.ap, origin.bq)] if len(list(abuckets.keys())) != len(list(nabuckets.keys())) or \ len(list(bbuckets.keys())) != len(list(nbbuckets.keys())): raise ValueError('%s not reachable from %s' % (target, origin)) ops = [] def do_shifts(fro, to, inc, dec): ops = [] for i in range(len(fro)): if to[i] - fro[i] > 0: sh = inc ch = 1 else: sh = dec ch = -1 while to[i] != fro[i]: ops += [sh(fro, i)] fro[i] += ch return ops def do_shifts_a(nal, nbk, al, aother, bother): """ Shift us from (nal, nbk) to (al, nbk). """ return do_shifts(nal, al, lambda p, i: ShiftA(p[i]), lambda p, i: UnShiftA(p + aother, nbk + bother, i, z)) def do_shifts_b(nal, nbk, bk, aother, bother): """ Shift us from (nal, nbk) to (nal, bk). """ return do_shifts(nbk, bk, lambda p, i: UnShiftB(nal + aother, p + bother, i, z), lambda p, i: ShiftB(p[i])) for r in sorted(list(abuckets.keys()) + list(bbuckets.keys()), key=default_sort_key): al = () nal = () bk = () nbk = () if r in abuckets: al = abuckets[r] nal = nabuckets[r] if r in bbuckets: bk = bbuckets[r] nbk = nbbuckets[r] if len(al) != len(nal) or len(bk) != len(nbk): raise ValueError('%s not reachable from %s' % (target, origin)) al, nal, bk, nbk = [sorted(list(w), key=default_sort_key) for w in [al, nal, bk, nbk]] def others(dic, key): l = [] for k, value in dic.items(): if k != key: l += list(dic[k]) return l aother = others(nabuckets, r) bother = others(nbbuckets, r) if len(al) == 0: # there can be no complications, just shift the bs as we please ops += do_shifts_b([], nbk, bk, aother, bother) elif len(bk) == 0: # there can be no complications, just shift the as as we please ops += do_shifts_a(nal, [], al, aother, bother) else: namax = nal[-1] amax = al[-1] if nbk[0] - namax <= 0 or bk[0] - amax <= 0: raise ValueError('Non-suitable parameters.') if namax - amax > 0: # we are going to shift down - first do the as, then the bs ops += do_shifts_a(nal, nbk, al, aother, bother) ops += do_shifts_b(al, nbk, bk, aother, bother) else: # we are going to shift up - first do the bs, then the as ops += do_shifts_b(nal, nbk, bk, aother, bother) ops += do_shifts_a(nal, bk, al, aother, bother) nabuckets[r] = al nbbuckets[r] = bk ops.reverse() return ops def try_shifted_sum(func, z): """ Try to recognise a hypergeometric sum that starts from k > 0. """ abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1) if len(abuckets[S(0)]) != 1: return None r = abuckets[S(0)][0] if r <= 0: return None if not S(0) in bbuckets: return None l = list(bbuckets[S(0)]) l.sort() k = l[0] if k <= 0: return None nap = list(func.ap) nap.remove(r) nbq = list(func.bq) nbq.remove(k) k -= 1 nap = [x - k for x in nap] nbq = [x - k for x in nbq] ops = [] for n in range(r - 1): ops.append(ShiftA(n + 1)) ops.reverse() fac = factorial(k)/z**k for a in nap: fac /= rf(a, k) for b in nbq: fac *= rf(b, k) ops += [MultOperator(fac)] p = 0 for n in range(k): m = z**n/factorial(n) for a in nap: m *= rf(a, n) for b in nbq: m /= rf(b, n) p += m return Hyper_Function(nap, nbq), ops, -p def try_polynomial(func, z): """ Recognise polynomial cases. Returns None if not such a case. Requires order to be fully reduced. """ abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1) a0 = abuckets[S(0)] b0 = bbuckets[S(0)] a0.sort() b0.sort() al0 = [x for x in a0 if x <= 0] bl0 = [x for x in b0 if x <= 0] if bl0 and all(a < bl0[-1] for a in al0): return oo if not al0: return None a = al0[-1] fac = 1 res = S(1) for n in Tuple(*list(range(-a))): fac *= z fac /= n + 1 for a in func.ap: fac *= a + n for b in func.bq: fac /= b + n res += fac return res def try_lerchphi(func): """ Try to find an expression for Hyper_Function ``func`` in terms of Lerch Transcendents. Return None if no such expression can be found. """ # This is actually quite simple, and is described in Roach's paper, # section 18. # We don't need to implement the reduction to polylog here, this # is handled by expand_func. from sympy.matrices import Matrix, zeros from sympy.polys import apart # First we need to figure out if the summation coefficient is a rational # function of the summation index, and construct that rational function. abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1) paired = {} for key, value in abuckets.items(): if key != 0 and not key in bbuckets: return None bvalue = bbuckets[key] paired[key] = (list(value), list(bvalue)) bbuckets.pop(key, None) if bbuckets != {}: return None if not S(0) in abuckets: return None aints, bints = paired[S(0)] # Account for the additional n! in denominator paired[S(0)] = (aints, bints + [1]) t = Dummy('t') numer = S(1) denom = S(1) for key, (avalue, bvalue) in paired.items(): if len(avalue) != len(bvalue): return None # Note that since order has been reduced fully, all the b are # bigger than all the a they differ from by an integer. In particular # if there are any negative b left, this function is not well-defined. for a, b in zip(avalue, bvalue): if (a - b).is_positive: k = a - b numer *= rf(b + t, k) denom *= rf(b, k) else: k = b - a numer *= rf(a, k) denom *= rf(a + t, k) # Now do a partial fraction decomposition. # We assemble two structures: a list monomials of pairs (a, b) representing # a*t**b (b a non-negative integer), and a dict terms, where # terms[a] = [(b, c)] means that there is a term b/(t-a)**c. part = apart(numer/denom, t) args = Add.make_args(part) monomials = [] terms = {} for arg in args: numer, denom = arg.as_numer_denom() if not denom.has(t): p = Poly(numer, t) if not p.is_monomial: raise TypeError("p should be monomial") ((b, ), a) = p.LT() monomials += [(a/denom, b)] continue if numer.has(t): raise NotImplementedError('Need partial fraction decomposition' ' with linear denominators') indep, [dep] = denom.as_coeff_mul(t) n = 1 if dep.is_Pow: n = dep.exp dep = dep.base if dep == t: a == 0 elif dep.is_Add: a, tmp = dep.as_independent(t) b = 1 if tmp != t: b, _ = tmp.as_independent(t) if dep != b*t + a: raise NotImplementedError('unrecognised form %s' % dep) a /= b indep *= b**n else: raise NotImplementedError('unrecognised form of partial fraction') terms.setdefault(a, []).append((numer/indep, n)) # Now that we have this information, assemble our formula. All the # monomials yield rational functions and go into one basis element. # The terms[a] are related by differentiation. If the largest exponent is # n, we need lerchphi(z, k, a) for k = 1, 2, ..., n. # deriv maps a basis to its derivative, expressed as a C(z)-linear # combination of other basis elements. deriv = {} coeffs = {} z = Dummy('z') monomials.sort(key=lambda x: x[1]) mon = {0: 1/(1 - z)} if monomials: for k in range(monomials[-1][1]): mon[k + 1] = z*mon[k].diff(z) for a, n in monomials: coeffs.setdefault(S(1), []).append(a*mon[n]) for a, l in terms.items(): for c, k in l: coeffs.setdefault(lerchphi(z, k, a), []).append(c) l.sort(key=lambda x: x[1]) for k in range(2, l[-1][1] + 1): deriv[lerchphi(z, k, a)] = [(-a, lerchphi(z, k, a)), (1, lerchphi(z, k - 1, a))] deriv[lerchphi(z, 1, a)] = [(-a, lerchphi(z, 1, a)), (1/(1 - z), S(1))] trans = {} for n, b in enumerate([S(1)] + list(deriv.keys())): trans[b] = n basis = [expand_func(b) for (b, _) in sorted(list(trans.items()), key=lambda x:x[1])] B = Matrix(basis) C = Matrix([[0]*len(B)]) for b, c in coeffs.items(): C[trans[b]] = Add(*c) M = zeros(len(B)) for b, l in deriv.items(): for c, b2 in l: M[trans[b], trans[b2]] = c return Formula(func, z, None, [], B, C, M) def build_hypergeometric_formula(func): """ Create a formula object representing the hypergeometric function ``func``. """ # We know that no `ap` are negative integers, otherwise "detect poly" # would have kicked in. However, `ap` could be empty. In this case we can # use a different basis. # I'm not aware of a basis that works in all cases. from sympy import zeros, Matrix, eye z = Dummy('z') if func.ap: afactors = [_x + a for a in func.ap] bfactors = [_x + b - 1 for b in func.bq] expr = _x*Mul(*bfactors) - z*Mul(*afactors) poly = Poly(expr, _x) n = poly.degree() basis = [] M = zeros(n) for k in range(n): a = func.ap[0] + k basis += [hyper([a] + list(func.ap[1:]), func.bq, z)] if k < n - 1: M[k, k] = -a M[k, k + 1] = a B = Matrix(basis) C = Matrix([[1] + [0]*(n - 1)]) derivs = [eye(n)] for k in range(n): derivs.append(M*derivs[k]) l = poly.all_coeffs() l.reverse() res = [0]*n for k, c in enumerate(l): for r, d in enumerate(C*derivs[k]): res[r] += c*d for k, c in enumerate(res): M[n - 1, k] = -c/derivs[n - 1][0, n - 1]/poly.all_coeffs()[0] return Formula(func, z, None, [], B, C, M) else: # Since there are no `ap`, none of the `bq` can be non-positive # integers. basis = [] bq = list(func.bq[:]) for i in range(len(bq)): basis += [hyper([], bq, z)] bq[i] += 1 basis += [hyper([], bq, z)] B = Matrix(basis) n = len(B) C = Matrix([[1] + [0]*(n - 1)]) M = zeros(n) M[0, n - 1] = z/Mul(*func.bq) for k in range(1, n): M[k, k - 1] = func.bq[k - 1] M[k, k] = -func.bq[k - 1] return Formula(func, z, None, [], B, C, M) def hyperexpand_special(ap, bq, z): """ Try to find a closed-form expression for hyper(ap, bq, z), where ``z`` is supposed to be a "special" value, e.g. 1. This function tries various of the classical summation formulae (Gauss, Saalschuetz, etc). """ # This code is very ad-hoc. There are many clever algorithms # (notably Zeilberger's) related to this problem. # For now we just want a few simple cases to work. p, q = len(ap), len(bq) z_ = z z = unpolarify(z) if z == 0: return S.One if p == 2 and q == 1: # 2F1 a, b, c = ap + bq if z == 1: # Gauss return gamma(c - a - b)*gamma(c)/gamma(c - a)/gamma(c - b) if z == -1 and simplify(b - a + c) == 1: b, a = a, b if z == -1 and simplify(a - b + c) == 1: # Kummer if b.is_integer and b.is_negative: return 2*cos(pi*b/2)*gamma(-b)*gamma(b - a + 1) \ /gamma(-b/2)/gamma(b/2 - a + 1) else: return gamma(b/2 + 1)*gamma(b - a + 1) \ /gamma(b + 1)/gamma(b/2 - a + 1) # TODO tons of more formulae # investigate what algorithms exist return hyper(ap, bq, z_) _collection = None def _hyperexpand(func, z, ops0=[], z0=Dummy('z0'), premult=1, prem=0, rewrite='default'): """ Try to find an expression for the hypergeometric function ``func``. The result is expressed in terms of a dummy variable z0. Then it is multiplied by premult. Then ops0 is applied. premult must be a*z**prem for some a independent of z. """ if z is S.Zero: return S.One z = polarify(z, subs=False) if rewrite == 'default': rewrite = 'nonrepsmall' def carryout_plan(f, ops): C = apply_operators(f.C.subs(f.z, z0), ops, make_derivative_operator(f.M.subs(f.z, z0), z0)) from sympy import eye C = apply_operators(C, ops0, make_derivative_operator(f.M.subs(f.z, z0) + prem*eye(f.M.shape[0]), z0)) if premult == 1: C = C.applyfunc(make_simp(z0)) r = reduce(lambda s,m: s+m[0]*m[1], zip(C, f.B.subs(f.z, z0)), S.Zero)*premult res = r.subs(z0, z) if rewrite: res = res.rewrite(rewrite) return res # TODO # The following would be possible: # *) PFD Duplication (see Kelly Roach's paper) # *) In a similar spirit, try_lerchphi() can be generalised considerably. global _collection if _collection is None: _collection = FormulaCollection() debug('Trying to expand hypergeometric function ', func) # First reduce order as much as possible. func, ops = reduce_order(func) if ops: debug(' Reduced order to ', func) else: debug(' Could not reduce order.') # Now try polynomial cases res = try_polynomial(func, z0) if res is not None: debug(' Recognised polynomial.') p = apply_operators(res, ops, lambda f: z0*f.diff(z0)) p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0)) return unpolarify(simplify(p).subs(z0, z)) # Try to recognise a shifted sum. p = S(0) res = try_shifted_sum(func, z0) if res is not None: func, nops, p = res debug(' Recognised shifted sum, reduced order to ', func) ops += nops # apply the plan for poly p = apply_operators(p, ops, lambda f: z0*f.diff(z0)) p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0)) p = simplify(p).subs(z0, z) # Try special expansions early. if unpolarify(z) in [1, -1] and (len(func.ap), len(func.bq)) == (2, 1): f = build_hypergeometric_formula(func) r = carryout_plan(f, ops).replace(hyper, hyperexpand_special) if not r.has(hyper): return r + p # Try to find a formula in our collection formula = _collection.lookup_origin(func) # Now try a lerch phi formula if formula is None: formula = try_lerchphi(func) if formula is None: debug(' Could not find an origin. ', 'Will return answer in terms of ' 'simpler hypergeometric functions.') formula = build_hypergeometric_formula(func) debug(' Found an origin: ', formula.closed_form, ' ', formula.func) # We need to find the operators that convert formula into func. ops += devise_plan(func, formula.func, z0) # Now carry out the plan. r = carryout_plan(formula, ops) + p return powdenest(r, polar=True).replace(hyper, hyperexpand_special) def devise_plan_meijer(fro, to, z): """ Find operators to convert G-function ``fro`` into G-function ``to``. It is assumed that fro and to have the same signatures, and that in fact any corresponding pair of parameters differs by integers, and a direct path is possible. I.e. if there are parameters a1 b1 c1 and a2 b2 c2 it is assumed that a1 can be shifted to a2, etc. The only thing this routine determines is the order of shifts to apply, nothing clever will be tried. It is also assumed that fro is suitable. Examples ======== >>> from sympy.simplify.hyperexpand import (devise_plan_meijer, ... G_Function) >>> from sympy.abc import z Empty plan: >>> devise_plan_meijer(G_Function([1], [2], [3], [4]), ... G_Function([1], [2], [3], [4]), z) [] Very simple plans: >>> devise_plan_meijer(G_Function([0], [], [], []), ... G_Function([1], [], [], []), z) [<Increment upper a index #0 of [0], [], [], [].>] >>> devise_plan_meijer(G_Function([0], [], [], []), ... G_Function([-1], [], [], []), z) [<Decrement upper a=0.>] >>> devise_plan_meijer(G_Function([], [1], [], []), ... G_Function([], [2], [], []), z) [<Increment lower a index #0 of [], [1], [], [].>] Slightly more complicated plans: >>> devise_plan_meijer(G_Function([0], [], [], []), ... G_Function([2], [], [], []), z) [<Increment upper a index #0 of [1], [], [], [].>, <Increment upper a index #0 of [0], [], [], [].>] >>> devise_plan_meijer(G_Function([0], [], [0], []), ... G_Function([-1], [], [1], []), z) [<Increment upper b=0.>, <Decrement upper a=0.>] Order matters: >>> devise_plan_meijer(G_Function([0], [], [0], []), ... G_Function([1], [], [1], []), z) [<Increment upper a index #0 of [0], [], [1], [].>, <Increment upper b=0.>] """ # TODO for now, we use the following simple heuristic: inverse-shift # when possible, shift otherwise. Give up if we cannot make progress. def try_shift(f, t, shifter, diff, counter): """ Try to apply ``shifter`` in order to bring some element in ``f`` nearer to its counterpart in ``to``. ``diff`` is +/- 1 and determines the effect of ``shifter``. Counter is a list of elements blocking the shift. Return an operator if change was possible, else None. """ for idx, (a, b) in enumerate(zip(f, t)): if ( (a - b).is_integer and (b - a)/diff > 0 and all(a != x for x in counter)): sh = shifter(idx) f[idx] += diff return sh fan = list(fro.an) fap = list(fro.ap) fbm = list(fro.bm) fbq = list(fro.bq) ops = [] change = True while change: change = False op = try_shift(fan, to.an, lambda i: MeijerUnShiftB(fan, fap, fbm, fbq, i, z), 1, fbm + fbq) if op is not None: ops += [op] change = True continue op = try_shift(fap, to.ap, lambda i: MeijerUnShiftD(fan, fap, fbm, fbq, i, z), 1, fbm + fbq) if op is not None: ops += [op] change = True continue op = try_shift(fbm, to.bm, lambda i: MeijerUnShiftA(fan, fap, fbm, fbq, i, z), -1, fan + fap) if op is not None: ops += [op] change = True continue op = try_shift(fbq, to.bq, lambda i: MeijerUnShiftC(fan, fap, fbm, fbq, i, z), -1, fan + fap) if op is not None: ops += [op] change = True continue op = try_shift(fan, to.an, lambda i: MeijerShiftB(fan[i]), -1, []) if op is not None: ops += [op] change = True continue op = try_shift(fap, to.ap, lambda i: MeijerShiftD(fap[i]), -1, []) if op is not None: ops += [op] change = True continue op = try_shift(fbm, to.bm, lambda i: MeijerShiftA(fbm[i]), 1, []) if op is not None: ops += [op] change = True continue op = try_shift(fbq, to.bq, lambda i: MeijerShiftC(fbq[i]), 1, []) if op is not None: ops += [op] change = True continue if fan != list(to.an) or fap != list(to.ap) or fbm != list(to.bm) or \ fbq != list(to.bq): raise NotImplementedError('Could not devise plan.') ops.reverse() return ops _meijercollection = None def _meijergexpand(func, z0, allow_hyper=False, rewrite='default', place=None): """ Try to find an expression for the Meijer G function specified by the G_Function ``func``. If ``allow_hyper`` is True, then returning an expression in terms of hypergeometric functions is allowed. Currently this just does Slater's theorem. If expansions exist both at zero and at infinity, ``place`` can be set to ``0`` or ``zoo`` for the preferred choice. """ global _meijercollection if _meijercollection is None: _meijercollection = MeijerFormulaCollection() if rewrite == 'default': rewrite = None func0 = func debug('Try to expand Meijer G function corresponding to ', func) # We will play games with analytic continuation - rather use a fresh symbol z = Dummy('z') func, ops = reduce_order_meijer(func) if ops: debug(' Reduced order to ', func) else: debug(' Could not reduce order.') # Try to find a direct formula f = _meijercollection.lookup_origin(func) if f is not None: debug(' Found a Meijer G formula: ', f.func) ops += devise_plan_meijer(f.func, func, z) # Now carry out the plan. C = apply_operators(f.C.subs(f.z, z), ops, make_derivative_operator(f.M.subs(f.z, z), z)) C = C.applyfunc(make_simp(z)) r = C*f.B.subs(f.z, z) r = r[0].subs(z, z0) return powdenest(r, polar=True) debug(" Could not find a direct formula. Trying Slater's theorem.") # TODO the following would be possible: # *) Paired Index Theorems # *) PFD Duplication # (See Kelly Roach's paper for details on either.) # # TODO Also, we tend to create combinations of gamma functions that can be # simplified. def can_do(pbm, pap): """ Test if slater applies. """ for i in pbm: if len(pbm[i]) > 1: l = 0 if i in pap: l = len(pap[i]) if l + 1 < len(pbm[i]): return False return True def do_slater(an, bm, ap, bq, z, zfinal): # zfinal is the value that will eventually be substituted for z. # We pass it to _hyperexpand to improve performance. func = G_Function(an, bm, ap, bq) _, pbm, pap, _ = func.compute_buckets() if not can_do(pbm, pap): return S(0), False cond = len(an) + len(ap) < len(bm) + len(bq) if len(an) + len(ap) == len(bm) + len(bq): cond = abs(z) < 1 if cond is False: return S(0), False res = S(0) for m in pbm: if len(pbm[m]) == 1: bh = pbm[m][0] fac = 1 bo = list(bm) bo.remove(bh) for bj in bo: fac *= gamma(bj - bh) for aj in an: fac *= gamma(1 + bh - aj) for bj in bq: fac /= gamma(1 + bh - bj) for aj in ap: fac /= gamma(aj - bh) nap = [1 + bh - a for a in list(an) + list(ap)] nbq = [1 + bh - b for b in list(bo) + list(bq)] k = polar_lift(S(-1)**(len(ap) - len(bm))) harg = k*zfinal # NOTE even though k "is" +-1, this has to be t/k instead of # t*k ... we are using polar numbers for consistency! premult = (t/k)**bh hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops, t, premult, bh, rewrite=None) res += fac * hyp else: b_ = pbm[m][0] ki = [bi - b_ for bi in pbm[m][1:]] u = len(ki) li = [ai - b_ for ai in pap[m][:u + 1]] bo = list(bm) for b in pbm[m]: bo.remove(b) ao = list(ap) for a in pap[m][:u]: ao.remove(a) lu = li[-1] di = [l - k for (l, k) in zip(li, ki)] # We first work out the integrand: s = Dummy('s') integrand = z**s for b in bm: if not Mod(b, 1) and b.is_Number: b = int(round(b)) integrand *= gamma(b - s) for a in an: integrand *= gamma(1 - a + s) for b in bq: integrand /= gamma(1 - b + s) for a in ap: integrand /= gamma(a - s) # Now sum the finitely many residues: # XXX This speeds up some cases - is it a good idea? integrand = expand_func(integrand) for r in range(int(round(lu))): resid = residue(integrand, s, b_ + r) resid = apply_operators(resid, ops, lambda f: z*f.diff(z)) res -= resid # Now the hypergeometric term. au = b_ + lu k = polar_lift(S(-1)**(len(ao) + len(bo) + 1)) harg = k*zfinal premult = (t/k)**au nap = [1 + au - a for a in list(an) + list(ap)] + [1] nbq = [1 + au - b for b in list(bm) + list(bq)] hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops, t, premult, au, rewrite=None) C = S(-1)**(lu)/factorial(lu) for i in range(u): C *= S(-1)**di[i]/rf(lu - li[i] + 1, di[i]) for a in an: C *= gamma(1 - a + au) for b in bo: C *= gamma(b - au) for a in ao: C /= gamma(a - au) for b in bq: C /= gamma(1 - b + au) res += C*hyp return res, cond t = Dummy('t') slater1, cond1 = do_slater(func.an, func.bm, func.ap, func.bq, z, z0) def tr(l): return [1 - x for x in l] for op in ops: op._poly = Poly(op._poly.subs({z: 1/t, _x: -_x}), _x) slater2, cond2 = do_slater(tr(func.bm), tr(func.an), tr(func.bq), tr(func.ap), t, 1/z0) slater1 = powdenest(slater1.subs(z, z0), polar=True) slater2 = powdenest(slater2.subs(t, 1/z0), polar=True) if not isinstance(cond2, bool): cond2 = cond2.subs(t, 1/z) m = func(z) if m.delta > 0 or \ (m.delta == 0 and len(m.ap) == len(m.bq) and (re(m.nu) < -1) is not False and polar_lift(z0) == polar_lift(1)): # The condition delta > 0 means that the convergence region is # connected. Any expression we find can be continued analytically # to the entire convergence region. # The conditions delta==0, p==q, re(nu) < -1 imply that G is continuous # on the positive reals, so the values at z=1 agree. if cond1 is not False: cond1 = True if cond2 is not False: cond2 = True if cond1 is True: slater1 = slater1.rewrite(rewrite or 'nonrep') else: slater1 = slater1.rewrite(rewrite or 'nonrepsmall') if cond2 is True: slater2 = slater2.rewrite(rewrite or 'nonrep') else: slater2 = slater2.rewrite(rewrite or 'nonrepsmall') if cond1 is not False and cond2 is not False: # If one condition is False, there is no choice. if place == 0: cond2 = False if place == zoo: cond1 = False if not isinstance(cond1, bool): cond1 = cond1.subs(z, z0) if not isinstance(cond2, bool): cond2 = cond2.subs(z, z0) def weight(expr, cond): if cond is True: c0 = 0 elif cond is False: c0 = 1 else: c0 = 2 if expr.has(oo, zoo, -oo, nan): # XXX this actually should not happen, but consider # S('meijerg(((0, -1/2, 0, -1/2, 1/2), ()), ((0,), # (-1/2, -1/2, -1/2, -1)), exp_polar(I*pi))/4') c0 = 3 return (c0, expr.count(hyper), expr.count_ops()) w1 = weight(slater1, cond1) w2 = weight(slater2, cond2) if min(w1, w2) <= (0, 1, oo): if w1 < w2: return slater1 else: return slater2 if max(w1[0], w2[0]) <= 1 and max(w1[1], w2[1]) <= 1: return Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True)) # We couldn't find an expression without hypergeometric functions. # TODO it would be helpful to give conditions under which the integral # is known to diverge. r = Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True)) if r.has(hyper) and not allow_hyper: debug(' Could express using hypergeometric functions, ' 'but not allowed.') if not r.has(hyper) or allow_hyper: return r return func0(z0) def hyperexpand(f, allow_hyper=False, rewrite='default', place=None): """ Expand hypergeometric functions. If allow_hyper is True, allow partial simplification (that is a result different from input, but still containing hypergeometric functions). If a G-function has expansions both at zero and at infinity, ``place`` can be set to ``0`` or ``zoo`` to indicate the preferred choice. Examples ======== >>> from sympy.simplify.hyperexpand import hyperexpand >>> from sympy.functions import hyper >>> from sympy.abc import z >>> hyperexpand(hyper([], [], z)) exp(z) Non-hyperegeometric parts of the expression and hypergeometric expressions that are not recognised are left unchanged: >>> hyperexpand(1 + hyper([1, 1, 1], [], z)) hyper((1, 1, 1), (), z) + 1 """ f = sympify(f) def do_replace(ap, bq, z): r = _hyperexpand(Hyper_Function(ap, bq), z, rewrite=rewrite) if r is None: return hyper(ap, bq, z) else: return r def do_meijer(ap, bq, z): r = _meijergexpand(G_Function(ap[0], ap[1], bq[0], bq[1]), z, allow_hyper, rewrite=rewrite, place=place) if not r.has(nan, zoo, oo, -oo): return r return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
05d03ec130f108ad3679faa2651f2511be167a950cf5ac499f24c090f40af220
""" Optimizations of the expression tree representation for better CSE opportunities. """ from __future__ import print_function, division from sympy.core import Add, Basic, Mul from sympy.core.basic import preorder_traversal from sympy.core.singleton import S from sympy.utilities.iterables import default_sort_key def sub_pre(e): """ Replace y - x with -(x - y) if -1 can be extracted from y - x. """ # replacing Add, A, from which -1 can be extracted with -1*-A adds = [a for a in e.atoms(Add) if a.could_extract_minus_sign()] reps = dict((a, Mul._from_args([S.NegativeOne, -a])) for a in adds) e = e.xreplace(reps) # repeat again for persisting Adds but mark these with a leading 1, -1 # e.g. y - x -> 1*-1*(x - y) if isinstance(e, Basic): negs = {} for a in sorted(e.atoms(Add), key=default_sort_key): if a in reps: negs[a] = reps[a] elif a.could_extract_minus_sign(): negs[a] = Mul._from_args([S.One, S.NegativeOne, -a]) e = e.xreplace(negs) return e def sub_post(e): """ Replace 1*-1*x with -x. """ replacements = [] for node in preorder_traversal(e): if isinstance(node, Mul) and \ node.args[0] is S.One and node.args[1] is S.NegativeOne: replacements.append((node, -Mul._from_args(node.args[2:]))) for node, replacement in replacements: e = e.xreplace({node: replacement}) return e
fc0c209873643fc2bad75f30105fedbe103d62941f40bf75f20d63fea67ed943
from __future__ import print_function, division from collections import defaultdict from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify, expand_mul, expand_func, Function, Dummy, Expr, factor_terms, expand_power_exp, Eq) from sympy.core.compatibility import iterable, ordered, range, as_int from sympy.core.evaluate import global_evaluate from sympy.core.function import expand_log, count_ops, _mexpand, _coeff_isneg, nfloat from sympy.core.numbers import Float, I, pi, Rational, Integer from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions import gamma, exp, sqrt, log, exp_polar, piecewise_fold, re from sympy.functions.combinatorial.factorials import CombinatorialFunction from sympy.functions.elementary.complexes import unpolarify from sympy.functions.elementary.exponential import ExpBase from sympy.functions.elementary.hyperbolic import HyperbolicFunction from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.bessel import besselj, besseli, besselk, jn, bessely from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import together, cancel, factor from sympy.simplify.combsimp import combsimp from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import radsimp, fraction, collect_abs from sympy.simplify.sqrtdenest import sqrtdenest from sympy.simplify.trigsimp import trigsimp, exptrigsimp from sympy.utilities.iterables import has_variety, sift import mpmath def separatevars(expr, symbols=[], dict=False, force=False): """ Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols. If dict=True then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.) If force=True, then bases of powers will be separated regardless of assumptions on the symbols involved. Notes ===== The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together. Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored. Examples ======== >>> from sympy.abc import x, y, z, alpha >>> from sympy import separatevars, sin >>> separatevars((x*y)**y) (x*y)**y >>> separatevars((x*y)**y, force=True) x**y*y**y >>> e = 2*x**2*z*sin(y)+2*z*x**2 >>> separatevars(e) 2*x**2*z*(sin(y) + 1) >>> separatevars(e, symbols=(x, y), dict=True) {'coeff': 2*z, x: x**2, y: sin(y) + 1} >>> separatevars(e, [x, y, alpha], dict=True) {'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1} If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring. >>> separatevars(x + x*y - 3*x**2) -x*(3*x - y - 1) If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned. >>> eq = 2*x + y*sin(x) >>> separatevars(eq) == eq True >>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) == None True """ expr = sympify(expr) if dict: return _separatevars_dict(_separatevars(expr, force), symbols) else: return _separatevars(expr, force) def _separatevars(expr, force): from sympy.functions.elementary.complexes import Abs if isinstance(expr, Abs): arg = expr.args[0] if arg.is_Mul and not arg.is_number: s = separatevars(arg, dict=True, force=force) if s is not None: return Mul(*map(expr.func, s.values())) else: return expr if len(expr.free_symbols) < 2: return expr # don't destroy a Mul since much of the work may already be done if expr.is_Mul: args = list(expr.args) changed = False for i, a in enumerate(args): args[i] = separatevars(a, force) changed = changed or args[i] != a if changed: expr = expr.func(*args) return expr # get a Pow ready for expansion if expr.is_Pow: expr = Pow(separatevars(expr.base, force=force), expr.exp) # First try other expansion methods expr = expr.expand(mul=False, multinomial=False, force=force) _expr, reps = posify(expr) if force else (expr, {}) expr = factor(_expr).subs(reps) if not expr.is_Add: return expr # Find any common coefficients to pull out args = list(expr.args) commonc = args[0].args_cnc(cset=True, warn=False)[0] for i in args[1:]: commonc &= i.args_cnc(cset=True, warn=False)[0] commonc = Mul(*commonc) commonc = commonc.as_coeff_Mul()[1] # ignore constants commonc_set = commonc.args_cnc(cset=True, warn=False)[0] # remove them for i, a in enumerate(args): c, nc = a.args_cnc(cset=True, warn=False) c = c - commonc_set args[i] = Mul(*c)*Mul(*nc) nonsepar = Add(*args) if len(nonsepar.free_symbols) > 1: _expr = nonsepar _expr, reps = posify(_expr) if force else (_expr, {}) _expr = (factor(_expr)).subs(reps) if not _expr.is_Add: nonsepar = _expr return commonc*nonsepar def _separatevars_dict(expr, symbols): if symbols: if not all((t.is_Atom for t in symbols)): raise ValueError("symbols must be Atoms.") symbols = list(symbols) elif symbols is None: return {'coeff': expr} else: symbols = list(expr.free_symbols) if not symbols: return None ret = dict(((i, []) for i in symbols + ['coeff'])) for i in Mul.make_args(expr): expsym = i.free_symbols intersection = set(symbols).intersection(expsym) if len(intersection) > 1: return None if len(intersection) == 0: # There are no symbols, so it is part of the coefficient ret['coeff'].append(i) else: ret[intersection.pop()].append(i) # rebuild for k, v in ret.items(): ret[k] = Mul(*v) return ret def _is_sum_surds(p): args = p.args if p.is_Add else [p] for y in args: if not ((y**2).is_Rational and y.is_extended_real): return False return True def posify(eq): """Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols. Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms. A dictionary that can be sent to subs to restore eq to its original symbols is also returned. >>> from sympy import posify, Symbol, log, solve >>> from sympy.abc import x >>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True)) (_x + n + p, {_x: x}) >>> eq = 1/x >>> log(eq).expand() log(1/x) >>> log(posify(eq)[0]).expand() -log(_x) >>> p, rep = posify(eq) >>> log(p).expand().subs(rep) -log(x) It is possible to apply the same transformations to an iterable of expressions: >>> eq = x**2 - 4 >>> solve(eq, x) [-2, 2] >>> eq_x, reps = posify([eq, x]); eq_x [_x**2 - 4, _x] >>> solve(*eq_x) [2] """ eq = sympify(eq) if iterable(eq): f = type(eq) eq = list(eq) syms = set() for e in eq: syms = syms.union(e.atoms(Symbol)) reps = {} for s in syms: reps.update(dict((v, k) for k, v in posify(s)[1].items())) for i, e in enumerate(eq): eq[i] = e.subs(reps) return f(eq), {r: s for s, r in reps.items()} reps = {s: Dummy(s.name, positive=True, **s.assumptions0) for s in eq.free_symbols if s.is_positive is None} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def hypersimp(f, k): """Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function. The algorithm performs three basic steps: 1. Rewrite all functions in terms of gamma, if possible. 2. Rewrite all occurrences of gamma in terms of products of gamma and rising factorial with integer, absolute constant exponent. 3. Perform simplification of nested fractions, powers and if the resulting expression is a quotient of polynomials, reduce their total degree. If f(k) is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned. For more information on the implemented algorithm refer to: 1. W. Koepf, Algorithms for m-fold Hypergeometric Summation, Journal of Symbolic Computation (1995) 20, 399-417 """ f = sympify(f) g = f.subs(k, k + 1) / f g = g.rewrite(gamma) g = expand_func(g) g = powsimp(g, deep=True, combine='exp') if g.is_rational_function(k): return simplify(g, ratio=S.Infinity) else: return None def hypersimilar(f, g, k): """Returns True if 'f' and 'g' are hyper-similar. Similarity in hypergeometric sense means that a quotient of f(k) and g(k) is a rational function in k. This procedure is useful in solving recurrence relations. For more information see hypersimp(). """ f, g = list(map(sympify, (f, g))) h = (f/g).rewrite(gamma) h = h.expand(func=True, basic=False) return h.is_rational_function(k) def signsimp(expr, evaluate=None): """Make all Add sub-expressions canonical wrt sign. If an Add subexpression, ``a``, can have a sign extracted, as determined by could_extract_minus_sign, it is replaced with Mul(-1, a, evaluate=False). This allows signs to be extracted from powers and products. Examples ======== >>> from sympy import signsimp, exp, symbols >>> from sympy.abc import x, y >>> i = symbols('i', odd=True) >>> n = -1 + 1/x >>> n/x/(-n)**2 - 1/n/x (-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x)) >>> signsimp(_) 0 >>> x*n + x*-n x*(-1 + 1/x) + x*(1 - 1/x) >>> signsimp(_) 0 Since powers automatically handle leading signs >>> (-2)**i -2**i signsimp can be used to put the base of a power with an integer exponent into canonical form: >>> n**i (-1 + 1/x)**i By default, signsimp doesn't leave behind any hollow simplification: if making an Add canonical wrt sign didn't change the expression, the original Add is restored. If this is not desired then the keyword ``evaluate`` can be set to False: >>> e = exp(y - x) >>> signsimp(e) == e True >>> signsimp(e, evaluate=False) exp(-(x - y)) """ if evaluate is None: evaluate = global_evaluate[0] expr = sympify(expr) if not isinstance(expr, Expr) or expr.is_Atom: return expr e = sub_post(sub_pre(expr)) if not isinstance(e, Expr) or e.is_Atom: return e if e.is_Add: return e.func(*[signsimp(a, evaluate) for a in e.args]) if evaluate: e = e.xreplace({m: -(-m) for m in e.atoms(Mul) if -(-m) != m}) return e def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs): """Simplifies the given expression. Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of SymPy. If your algorithm relies on "simplification" (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust. Nonetheless, especially for interactive use, or when you don't know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression "simpler". For example: >>> from sympy import simplify, cos, sin >>> from sympy.abc import x, y >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2) >>> a (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2) >>> simplify(a) x + 1 Note that we could have obtained the same result by using specific simplification functions: >>> from sympy import trigsimp, cancel >>> trigsimp(a) (x**2 + x)/x >>> cancel(_) x + 1 In some cases, applying :func:`simplify` may actually result in some more complicated expression. The default ``ratio=1.7`` prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The ``measure`` parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression ``a`` is more complex than expression ``b``, then ``measure(a) > measure(b)``. The default measure function is :func:`count_ops`, which returns the total number of operations in the expression. For example, if ``ratio=1``, ``simplify`` output can't be longer than input. :: >>> from sympy import sqrt, simplify, count_ops, oo >>> root = 1/(sqrt(2)+3) Since ``simplify(root)`` would result in a slightly longer expression, root is returned unchanged instead:: >>> simplify(root, ratio=1) == root True If ``ratio=oo``, simplify will be applied anyway:: >>> count_ops(simplify(root, ratio=oo)) > count_ops(root) True Note that the shortest expression is not necessary the simplest, so setting ``ratio`` to 1 may not be a good idea. Heuristically, the default value ``ratio=1.7`` seems like a reasonable choice. You can easily define your own measure function based on what you feel should represent the "size" or "complexity" of the input expression. Note that some choices, such as ``lambda expr: len(str(expr))`` may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you don't know what a good metric would be, the default, ``count_ops``, is a good one. For example: >>> from sympy import symbols, log >>> a, b = symbols('a b', positive=True) >>> g = log(a) + log(b) + log(a)*log(1/b) >>> h = simplify(g) >>> h log(a*b**(1 - log(a))) >>> count_ops(g) 8 >>> count_ops(h) 5 So you can see that ``h`` is simpler than ``g`` using the count_ops metric. However, we may not like how ``simplify`` (in this case, using ``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way to reduce this would be to give more weight to powers as operations in ``count_ops``. We can do this by using the ``visual=True`` option: >>> print(count_ops(g, visual=True)) 2*ADD + DIV + 4*LOG + MUL >>> print(count_ops(h, visual=True)) 2*LOG + MUL + POW + SUB >>> from sympy import Symbol, S >>> def my_measure(expr): ... POW = Symbol('POW') ... # Discourage powers by giving POW a weight of 10 ... count = count_ops(expr, visual=True).subs(POW, 10) ... # Every other operation gets a weight of 1 (the default) ... count = count.replace(Symbol, type(S.One)) ... return count >>> my_measure(g) 8 >>> my_measure(h) 14 >>> 15./8 > 1.7 # 1.7 is the default ratio True >>> simplify(g, measure=my_measure) -log(a)*log(b) + log(a) + log(b) Note that because ``simplify()`` internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this. If rational=True, Floats will be recast as Rationals before simplification. If rational=None, Floats will be recast as Rationals but the result will be recast as Floats. If rational=False(default) then nothing will be done to the Floats. If inverse=True, it will be assumed that a composition of inverse functions, such as sin and asin, can be cancelled in any order. For example, ``asin(sin(x))`` will yield ``x`` without checking whether x belongs to the set where this relation is true. The default is False. Note that ``simplify()`` automatically calls ``doit()`` on the final expression. You can avoid this behavior by passing ``doit=False`` as an argument. """ def shorter(*choices): """ Return the choice that has the fewest ops. In case of a tie, the expression listed first is selected. """ if not has_variety(choices): return choices[0] return min(choices, key=measure) def done(e): rv = e.doit() if doit else e return shorter(rv, collect_abs(rv)) expr = sympify(expr) kwargs = dict( ratio=kwargs.get('ratio', ratio), measure=kwargs.get('measure', measure), rational=kwargs.get('rational', rational), inverse=kwargs.get('inverse', inverse), doit=kwargs.get('doit', doit)) # no routine for Expr needs to check for is_zero if isinstance(expr, Expr) and expr.is_zero and expr*0 is S.Zero: return S.Zero _eval_simplify = getattr(expr, '_eval_simplify', None) if _eval_simplify is not None: return _eval_simplify(**kwargs) original_expr = expr = collect_abs(signsimp(expr)) if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack return expr if inverse and expr.has(Function): expr = inversecombine(expr) if not expr.args: # simplified to atomic return expr # do deep simplification handled = Add, Mul, Pow, ExpBase expr = expr.replace( # here, checking for x.args is not enough because Basic has # args but Basic does not always play well with replace, e.g. # when simultaneous is True found expressions will be masked # off with a Dummy but not all Basic objects in an expression # can be replaced with a Dummy lambda x: isinstance(x, Expr) and x.args and not isinstance( x, handled), lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]), simultaneous=False) if not isinstance(expr, handled): return done(expr) if not expr.is_commutative: expr = nc_simplify(expr) # TODO: Apply different strategies, considering expression pattern: # is it a purely rational function? Is there any trigonometric function?... # See also https://github.com/sympy/sympy/pull/185. # rationalize Floats floats = False if rational is not False and expr.has(Float): floats = True expr = nsimplify(expr, rational=True) expr = bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)()) expr = Mul(*powsimp(expr).as_content_primitive()) _e = cancel(expr) expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829 expr2 = shorter(together(expr, deep=True), together(expr1, deep=True)) if ratio is S.Infinity: expr = expr2 else: expr = shorter(expr2, expr1, expr) if not isinstance(expr, Basic): # XXX: temporary hack return expr expr = factor_terms(expr, sign=False) from sympy.simplify.hyperexpand import hyperexpand from sympy.functions.special.bessel import BesselBase from sympy import Sum, Product, Integral # hyperexpand automatically only works on hypergeometric terms expr = hyperexpand(expr) # Deal with Piecewise separately to avoid recursive growth of expressions if expr.has(Piecewise): # Fold into a single Piecewise expr = piecewise_fold(expr) # Apply doit, if doit=True expr = done(expr) # Still a Piecewise? if expr.has(Piecewise): # Fold into a single Piecewise, in case doit lead to some # expressions being Piecewise expr = piecewise_fold(expr) # kroneckersimp also affects Piecewise if expr.has(KroneckerDelta): expr = kroneckersimp(expr) # Still a Piecewise? if expr.has(Piecewise): from sympy.functions.elementary.piecewise import piecewise_simplify # Do not apply doit on the segments as it has already # been done above, but simplify expr = piecewise_simplify(expr, deep=True, doit=False) # Still a Piecewise? if expr.has(Piecewise): # Try factor common terms expr = shorter(expr, factor_terms(expr)) # As all expressions have been simplified above with the # complete simplify, nothing more needs to be done here return expr if expr.has(KroneckerDelta): expr = kroneckersimp(expr) if expr.has(BesselBase): expr = besselsimp(expr) if expr.has(TrigonometricFunction, HyperbolicFunction): expr = trigsimp(expr, deep=True) if expr.has(log): expr = shorter(expand_log(expr, deep=True), logcombine(expr)) if expr.has(CombinatorialFunction, gamma): # expression with gamma functions or non-integer arguments is # automatically passed to gammasimp expr = combsimp(expr) if expr.has(Sum): expr = sum_simplify(expr, **kwargs) if expr.has(Integral): expr = expr.xreplace(dict([ (i, factor_terms(i)) for i in expr.atoms(Integral)])) if expr.has(Product): expr = product_simplify(expr) from sympy.physics.units import Quantity from sympy.physics.units.util import quantity_simplify if expr.has(Quantity): expr = quantity_simplify(expr) short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr) short = shorter(short, cancel(short)) short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short))) if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase): short = exptrigsimp(short) # get rid of hollow 2-arg Mul factorization hollow_mul = Transform( lambda x: Mul(*x.args), lambda x: x.is_Mul and len(x.args) == 2 and x.args[0].is_Number and x.args[1].is_Add and x.is_commutative) expr = short.xreplace(hollow_mul) numer, denom = expr.as_numer_denom() if denom.is_Add: n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1)) if n is not S.One: expr = (numer*n).expand()/d if expr.could_extract_minus_sign(): n, d = fraction(expr) if d != 0: expr = signsimp(-n/(-d)) if measure(expr) > ratio*measure(original_expr): expr = original_expr # restore floats if floats and rational is None: expr = nfloat(expr, exponent=False) return done(expr) def sum_simplify(s, **kwargs): """Main function for Sum simplification""" from sympy.concrete.summations import Sum from sympy.core.function import expand if not isinstance(s, Add): s = s.xreplace(dict([(a, sum_simplify(a, **kwargs)) for a in s.atoms(Add) if a.has(Sum)])) s = expand(s) if not isinstance(s, Add): return s terms = s.args s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: sum_terms, other = sift(Mul.make_args(term), lambda i: isinstance(i, Sum), binary=True) if not sum_terms: o_t.append(term) continue other = [Mul(*other)] s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms]))) result = Add(sum_combine(s_t), *o_t) return result def sum_combine(s_t): """Helper function for Sum simplification Attempts to simplify a list of sums, by combining limits / sum function's returns the simplified sum """ from sympy.concrete.summations import Sum used = [False] * len(s_t) for method in range(2): for i, s_term1 in enumerate(s_t): if not used[i]: for j, s_term2 in enumerate(s_t): if not used[j] and i != j: temp = sum_add(s_term1, s_term2, method) if isinstance(temp, Sum) or isinstance(temp, Mul): s_t[i] = temp s_term1 = s_t[i] used[j] = True result = S.Zero for i, s_term in enumerate(s_t): if not used[i]: result = Add(result, s_term) return result def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True): """Return Sum with constant factors extracted. If ``limits`` is specified then ``self`` is the summand; the other keywords are passed to ``factor_terms``. Examples ======== >>> from sympy import Sum, Integral >>> from sympy.abc import x, y >>> from sympy.simplify.simplify import factor_sum >>> s = Sum(x*y, (x, 1, 3)) >>> factor_sum(s) y*Sum(x, (x, 1, 3)) >>> factor_sum(s.function, s.limits) y*Sum(x, (x, 1, 3)) """ # XXX deprecate in favor of direct call to factor_terms from sympy.concrete.summations import Sum kwargs = dict(radical=radical, clear=clear, fraction=fraction, sign=sign) expr = Sum(self, *limits) if limits else self return factor_terms(expr, **kwargs) def sum_add(self, other, method=0): """Helper function for Sum simplification""" from sympy.concrete.summations import Sum from sympy import Mul #we know this is something in terms of a constant * a sum #so we temporarily put the constants inside for simplification #then simplify the result def __refactor(val): args = Mul.make_args(val) sumv = next(x for x in args if isinstance(x, Sum)) constant = Mul(*[x for x in args if x != sumv]) return Sum(constant * sumv.function, *sumv.limits) if isinstance(self, Mul): rself = __refactor(self) else: rself = self if isinstance(other, Mul): rother = __refactor(other) else: rother = other if type(rself) == type(rother): if method == 0: if rself.limits == rother.limits: return factor_sum(Sum(rself.function + rother.function, *rself.limits)) elif method == 1: if simplify(rself.function - rother.function) == 0: if len(rself.limits) == len(rother.limits) == 1: i = rself.limits[0][0] x1 = rself.limits[0][1] y1 = rself.limits[0][2] j = rother.limits[0][0] x2 = rother.limits[0][1] y2 = rother.limits[0][2] if i == j: if x2 == y1 + 1: return factor_sum(Sum(rself.function, (i, x1, y2))) elif x1 == y2 + 1: return factor_sum(Sum(rself.function, (i, x2, y1))) return Add(self, other) def product_simplify(s): """Main function for Product simplification""" from sympy.concrete.products import Product terms = Mul.make_args(s) p_t = [] # Product Terms o_t = [] # Other Terms for term in terms: if isinstance(term, Product): p_t.append(term) else: o_t.append(term) used = [False] * len(p_t) for method in range(2): for i, p_term1 in enumerate(p_t): if not used[i]: for j, p_term2 in enumerate(p_t): if not used[j] and i != j: if isinstance(product_mul(p_term1, p_term2, method), Product): p_t[i] = product_mul(p_term1, p_term2, method) used[j] = True result = Mul(*o_t) for i, p_term in enumerate(p_t): if not used[i]: result = Mul(result, p_term) return result def product_mul(self, other, method=0): """Helper function for Product simplification""" from sympy.concrete.products import Product if type(self) == type(other): if method == 0: if self.limits == other.limits: return Product(self.function * other.function, *self.limits) elif method == 1: if simplify(self.function - other.function) == 0: if len(self.limits) == len(other.limits) == 1: i = self.limits[0][0] x1 = self.limits[0][1] y1 = self.limits[0][2] j = other.limits[0][0] x2 = other.limits[0][1] y2 = other.limits[0][2] if i == j: if x2 == y1 + 1: return Product(self.function, (i, x1, y2)) elif x1 == y2 + 1: return Product(self.function, (i, x2, y1)) return Mul(self, other) def _nthroot_solve(p, n, prec): """ helper function for ``nthroot`` It denests ``p**Rational(1, n)`` using its minimal polynomial """ from sympy.polys.numberfields import _minimal_polynomial_sq from sympy.solvers import solve while n % 2 == 0: p = sqrtdenest(sqrt(p)) n = n // 2 if n == 1: return p pn = p**Rational(1, n) x = Symbol('x') f = _minimal_polynomial_sq(p, n, x) if f is None: return None sols = solve(f, x) for sol in sols: if abs(sol - pn).n() < 1./10**prec: sol = sqrtdenest(sol) if _mexpand(sol**n) == p: return sol def logcombine(expr, force=False): """ Takes logarithms and combines them using the following rules: - log(x) + log(y) == log(x*y) if both are positive - a*log(x) == log(x**a) if x is positive and a is real If ``force`` is True then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if ``a`` is imaginary or the argument negative, force will not perform a combination but if ``a`` is a symbol with no assumptions the change will take place. Examples ======== >>> from sympy import Symbol, symbols, log, logcombine, I >>> from sympy.abc import a, x, y, z >>> logcombine(a*log(x) + log(y) - log(z)) a*log(x) + log(y) - log(z) >>> logcombine(a*log(x) + log(y) - log(z), force=True) log(x**a*y/z) >>> x,y,z = symbols('x,y,z', positive=True) >>> a = Symbol('a', real=True) >>> logcombine(a*log(x) + log(y) - log(z)) log(x**a*y/z) The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion: >>> eq = (2 + 3*I)*log(x) >>> logcombine(eq, force=True) == eq True >>> logcombine(eq.expand(), force=True) log(x**2) + I*log(x**3) See Also ======== posify: replace all symbols with symbols having positive assumptions sympy.core.function.expand_log: expand the logarithms of products and powers; the opposite of logcombine """ def f(rv): if not (rv.is_Add or rv.is_Mul): return rv def gooda(a): # bool to tell whether the leading ``a`` in ``a*log(x)`` # could appear as log(x**a) return (a is not S.NegativeOne and # -1 *could* go, but we disallow (a.is_extended_real or force and a.is_extended_real is not False)) def goodlog(l): # bool to tell whether log ``l``'s argument can combine with others a = l.args[0] return a.is_positive or force and a.is_nonpositive is not False other = [] logs = [] log1 = defaultdict(list) for a in Add.make_args(rv): if isinstance(a, log) and goodlog(a): log1[()].append(([], a)) elif not a.is_Mul: other.append(a) else: ot = [] co = [] lo = [] for ai in a.args: if ai.is_Rational and ai < 0: ot.append(S.NegativeOne) co.append(-ai) elif isinstance(ai, log) and goodlog(ai): lo.append(ai) elif gooda(ai): co.append(ai) else: ot.append(ai) if len(lo) > 1: logs.append((ot, co, lo)) elif lo: log1[tuple(ot)].append((co, lo[0])) else: other.append(a) # if there is only one log in other, put it with the # good logs if len(other) == 1 and isinstance(other[0], log): log1[()].append(([], other.pop())) # if there is only one log at each coefficient and none have # an exponent to place inside the log then there is nothing to do if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1): return rv # collapse multi-logs as far as possible in a canonical way # TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))? # -- in this case, it's unambiguous, but if it were were a log(c) in # each term then it's arbitrary whether they are grouped by log(a) or # by log(c). So for now, just leave this alone; it's probably better to # let the user decide for o, e, l in logs: l = list(ordered(l)) e = log(l.pop(0).args[0]**Mul(*e)) while l: li = l.pop(0) e = log(li.args[0]**e) c, l = Mul(*o), e if isinstance(l, log): # it should be, but check to be sure log1[(c,)].append(([], l)) else: other.append(c*l) # logs that have the same coefficient can multiply for k in list(log1.keys()): log1[Mul(*k)] = log(logcombine(Mul(*[ l.args[0]**Mul(*c) for c, l in log1.pop(k)]), force=force), evaluate=False) # logs that have oppositely signed coefficients can divide for k in ordered(list(log1.keys())): if not k in log1: # already popped as -k continue if -k in log1: # figure out which has the minus sign; the one with # more op counts should be the one num, den = k, -k if num.count_ops() > den.count_ops(): num, den = den, num other.append( num*log(log1.pop(num).args[0]/log1.pop(den).args[0], evaluate=False)) else: other.append(k*log1.pop(k)) return Add(*other) return bottom_up(expr, f) def inversecombine(expr): """Simplify the composition of a function and its inverse. No attention is paid to whether the inverse is a left inverse or a right inverse; thus, the result will in general not be equivalent to the original expression. Examples ======== >>> from sympy.simplify.simplify import inversecombine >>> from sympy import asin, sin, log, exp >>> from sympy.abc import x >>> inversecombine(asin(sin(x))) x >>> inversecombine(2*log(exp(3*x))) 6*x """ def f(rv): if rv.is_Function and hasattr(rv, "inverse"): if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and isinstance(rv.args[0], rv.inverse(argindex=1))): rv = rv.args[0].args[0] return rv return bottom_up(expr, f) def walk(e, *target): """iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed. Examples ======== >>> from sympy.simplify.simplify import walk >>> from sympy import Min, Max >>> from sympy.abc import x, y, z >>> list(walk(Min(x, Max(y, Min(1, z))), Min)) [Min(x, Max(y, Min(1, z)))] >>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max)) [Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)] See Also ======== bottom_up """ if isinstance(e, target): yield e for i in e.args: for w in walk(i, *target): yield w def bottom_up(rv, F, atoms=False, nonbasic=False): """Apply ``F`` to all expressions in an expression tree from the bottom up. If ``atoms`` is True, apply ``F`` even if there are no args; if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects. """ args = getattr(rv, 'args', None) if args is not None: if args: args = tuple([bottom_up(a, F, atoms, nonbasic) for a in args]) if args != rv.args: rv = rv.func(*args) rv = F(rv) elif atoms: rv = F(rv) else: if nonbasic: try: rv = F(rv) except TypeError: pass return rv def kroneckersimp(expr): """ Simplify expressions with KroneckerDelta. The only simplification currently attempted is to identify multiplicative cancellation: >>> from sympy import KroneckerDelta, kroneckersimp >>> from sympy.abc import i, j >>> kroneckersimp(1 + KroneckerDelta(0, j) * KroneckerDelta(1, j)) 1 """ def args_cancel(args1, args2): for i1 in range(2): for i2 in range(2): a1 = args1[i1] a2 = args2[i2] a3 = args1[(i1 + 1) % 2] a4 = args2[(i2 + 1) % 2] if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false: return True return False def cancel_kronecker_mul(m): from sympy.utilities.iterables import subsets args = m.args deltas = [a for a in args if isinstance(a, KroneckerDelta)] for delta1, delta2 in subsets(deltas, 2): args1 = delta1.args args2 = delta2.args if args_cancel(args1, args2): return 0*m return m if not expr.has(KroneckerDelta): return expr if expr.has(Piecewise): expr = expr.rewrite(KroneckerDelta) newexpr = expr expr = None while newexpr != expr: expr = newexpr newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul) return expr def besselsimp(expr): """ Simplify bessel-type functions. This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using strigonometric functions and functions of integer order (> 1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor(). >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S >>> from sympy.abc import z, nu >>> besselsimp(besselj(nu, z*polar_lift(-1))) exp(I*pi*nu)*besselj(nu, z) >>> besselsimp(besseli(nu, z*polar_lift(-I))) exp(-I*pi*nu/2)*besselj(nu, z) >>> besselsimp(besseli(S(-1)/2, z)) sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z)) 3*z*besseli(0, z)/2 """ # TODO # - better algorithm? # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ... # - use contiguity relations? def replacer(fro, to, factors): factors = set(factors) def repl(nu, z): if factors.intersection(Mul.make_args(z)): return to(nu, z) return fro(nu, z) return repl def torewrite(fro, to): def tofunc(nu, z): return fro(nu, z).rewrite(to) return tofunc def tominus(fro): def tofunc(nu, z): return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z) return tofunc orig_expr = expr ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)] expr = expr.replace( besselj, replacer(besselj, torewrite(besselj, besseli), ifactors)) expr = expr.replace( besseli, replacer(besseli, torewrite(besseli, besselj), ifactors)) minusfactors = [-1, exp_polar(I*pi)] expr = expr.replace( besselj, replacer(besselj, tominus(besselj), minusfactors)) expr = expr.replace( besseli, replacer(besseli, tominus(besseli), minusfactors)) z0 = Dummy('z') def expander(fro): def repl(nu, z): if (nu % 1) == S(1)/2: return simplify(trigsimp(unpolarify( fro(nu, z0).rewrite(besselj).rewrite(jn).expand( func=True)).subs(z0, z))) elif nu.is_Integer and nu > 1: return fro(nu, z).expand(func=True) return fro(nu, z) return repl expr = expr.replace(besselj, expander(besselj)) expr = expr.replace(bessely, expander(bessely)) expr = expr.replace(besseli, expander(besseli)) expr = expr.replace(besselk, expander(besselk)) def _bessel_simp_recursion(expr): def _use_recursion(bessel, expr): while True: bessels = expr.find(lambda x: isinstance(x, bessel)) try: for ba in sorted(bessels, key=lambda x: re(x.args[0])): a, x = ba.args bap1 = bessel(a+1, x) bap2 = bessel(a+2, x) if expr.has(bap1) and expr.has(bap2): expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2) break else: return expr except (ValueError, TypeError): return expr if expr.has(besselj): expr = _use_recursion(besselj, expr) if expr.has(bessely): expr = _use_recursion(bessely, expr) return expr expr = _bessel_simp_recursion(expr) if expr != orig_expr: expr = expr.factor() return expr def nthroot(expr, n, max_len=4, prec=15): """ compute a real nth-root of a sum of surds Parameters ========== expr : sum of surds n : integer max_len : maximum number of surds passed as constants to ``nsimplify`` Algorithm ========= First ``nsimplify`` is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots. Examples ======== >>> from sympy.simplify.simplify import nthroot >>> from sympy import Rational, sqrt >>> nthroot(90 + 34*sqrt(7), 3) sqrt(7) + 3 """ expr = sympify(expr) n = sympify(n) p = expr**Rational(1, n) if not n.is_integer: return p if not _is_sum_surds(expr): return p surds = [] coeff_muls = [x.as_coeff_Mul() for x in expr.args] for x, y in coeff_muls: if not x.is_rational: return p if y is S.One: continue if not (y.is_Pow and y.exp == S.Half and y.base.is_integer): return p surds.append(y) surds.sort() surds = surds[:max_len] if expr < 0 and n % 2 == 1: p = (-expr)**Rational(1, n) a = nsimplify(p, constants=surds) res = a if _mexpand(a**n) == _mexpand(-expr) else p return -res a = nsimplify(p, constants=surds) if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr): return _mexpand(a) expr = _nthroot_solve(expr, n, prec) if expr is None: return p return expr def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational_conversion='base10'): """ Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals. For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evalf to a precision of at least 30 digits). Optionally, a list of (rationally independent) constants to include in the formula may be given. A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance=10**-15). With full=True, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low). When converting to rational, if rational_conversion='base10' (the default), then convert floats to rationals using their base-10 (string) representation. When rational_conversion='exact' it uses the exact, base-2 representation. Examples ======== >>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, exp, pi >>> nsimplify(4/(1+sqrt(5)), [GoldenRatio]) -2 + 2*GoldenRatio >>> nsimplify((1/(exp(3*pi*I/5)+1))) 1/2 - I*sqrt(sqrt(5)/10 + 1/4) >>> nsimplify(I**I, [pi]) exp(-pi/2) >>> nsimplify(pi, tolerance=0.01) 22/7 >>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact') 6004799503160655/18014398509481984 >>> nsimplify(0.333333333333333, rational=True) 1/3 See Also ======== sympy.core.function.nfloat """ try: return sympify(as_int(expr)) except (TypeError, ValueError): pass expr = sympify(expr).xreplace({ Float('inf'): S.Infinity, Float('-inf'): S.NegativeInfinity, }) if expr is S.Infinity or expr is S.NegativeInfinity: return expr if rational or expr.free_symbols: return _real_to_rational(expr, tolerance, rational_conversion) # SymPy's default tolerance for Rationals is 15; other numbers may have # lower tolerances set, so use them to pick the largest tolerance if None # was given if tolerance is None: tolerance = 10**-min([15] + [mpmath.libmp.libmpf.prec_to_dps(n._prec) for n in expr.atoms(Float)]) # XXX should prec be set independent of tolerance or should it be computed # from tolerance? prec = 30 bprec = int(prec*3.33) constants_dict = {} for constant in constants: constant = sympify(constant) v = constant.evalf(prec) if not v.is_Float: raise ValueError("constants must be real-valued") constants_dict[str(constant)] = v._to_mpmath(bprec) exprval = expr.evalf(prec, chop=True) re, im = exprval.as_real_imag() # safety check to make sure that this evaluated to a number if not (re.is_Number and im.is_Number): return expr def nsimplify_real(x): orig = mpmath.mp.dps xv = x._to_mpmath(bprec) try: # We'll be happy with low precision if a simple fraction if not (tolerance or full): mpmath.mp.dps = 15 rat = mpmath.pslq([xv, 1]) if rat is not None: return Rational(-int(rat[1]), int(rat[0])) mpmath.mp.dps = prec newexpr = mpmath.identify(xv, constants=constants_dict, tol=tolerance, full=full) if not newexpr: raise ValueError if full: newexpr = newexpr[0] expr = sympify(newexpr) if x and not expr: # don't let x become 0 raise ValueError if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]: raise ValueError return expr finally: # even though there are returns above, this is executed # before leaving mpmath.mp.dps = orig try: if re: re = nsimplify_real(re) if im: im = nsimplify_real(im) except ValueError: if rational is None: return _real_to_rational(expr, rational_conversion=rational_conversion) return expr rv = re + im*S.ImaginaryUnit # if there was a change or rational is explicitly not wanted # return the value, else return the Rational representation if rv != expr or rational is False: return rv return _real_to_rational(expr, rational_conversion=rational_conversion) def _real_to_rational(expr, tolerance=None, rational_conversion='base10'): """ Replace all reals in expr with rationals. Examples ======== >>> from sympy import Rational >>> from sympy.simplify.simplify import _real_to_rational >>> from sympy.abc import x >>> _real_to_rational(.76 + .1*x**.5) sqrt(x)/10 + 19/25 If rational_conversion='base10', this uses the base-10 string. If rational_conversion='exact', the exact, base-2 representation is used. >>> _real_to_rational(0.333333333333333, rational_conversion='exact') 6004799503160655/18014398509481984 >>> _real_to_rational(0.333333333333333) 1/3 """ expr = _sympify(expr) inf = Float('inf') p = expr reps = {} reduce_num = None if tolerance is not None and tolerance < 1: reduce_num = ceiling(1/tolerance) for fl in p.atoms(Float): key = fl if reduce_num is not None: r = Rational(fl).limit_denominator(reduce_num) elif (tolerance is not None and tolerance >= 1 and fl.is_Integer is False): r = Rational(tolerance*round(fl/tolerance) ).limit_denominator(int(tolerance)) else: if rational_conversion == 'exact': r = Rational(fl) reps[key] = r continue elif rational_conversion != 'base10': raise ValueError("rational_conversion must be 'base10' or 'exact'") r = nsimplify(fl, rational=False) # e.g. log(3).n() -> log(3) instead of a Rational if fl and not r: r = Rational(fl) elif not r.is_Rational: if fl == inf or fl == -inf: r = S.ComplexInfinity elif fl < 0: fl = -fl d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = -Rational(str(fl/d))*d elif fl > 0: d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = Rational(str(fl/d))*d else: r = Integer(0) reps[key] = r return p.subs(reps, simultaneous=True) def clear_coefficients(expr, rhs=S.Zero): """Return `p, r` where `p` is the expression obtained when Rational additive and multiplicative coefficients of `expr` have been stripped away in a naive fashion (i.e. without simplification). The operations needed to remove the coefficients will be applied to `rhs` and returned as `r`. Examples ======== >>> from sympy.simplify.simplify import clear_coefficients >>> from sympy.abc import x, y >>> from sympy import Dummy >>> expr = 4*y*(6*x + 3) >>> clear_coefficients(expr - 2) (y*(2*x + 1), 1/6) When solving 2 or more expressions like `expr = a`, `expr = b`, etc..., it is advantageous to provide a Dummy symbol for `rhs` and simply replace it with `a`, `b`, etc... in `r`. >>> rhs = Dummy('rhs') >>> clear_coefficients(expr, rhs) (y*(2*x + 1), _rhs/12) >>> _[1].subs(rhs, 2) 1/6 """ was = None free = expr.free_symbols if expr.is_Rational: return (S.Zero, rhs - expr) while expr and was != expr: was = expr m, expr = ( expr.as_content_primitive() if free else factor_terms(expr).as_coeff_Mul(rational=True)) rhs /= m c, expr = expr.as_coeff_Add(rational=True) rhs -= c expr = signsimp(expr, evaluate = False) if _coeff_isneg(expr): expr = -expr rhs = -rhs return expr, rhs def nc_simplify(expr, deep=True): ''' Simplify a non-commutative expression composed of multiplication and raising to a power by grouping repeated subterms into one power. Priority is given to simplifications that give the fewest number of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3). If `expr` is a sum of such terms, the sum of the simplified terms is returned. Keyword argument `deep` controls whether or not subexpressions nested deeper inside the main expression are simplified. See examples below. Setting `deep` to `False` can save time on nested expressions that don't need simplifying on all levels. Examples ======== >>> from sympy import symbols >>> from sympy.simplify.simplify import nc_simplify >>> a, b, c = symbols("a b c", commutative=False) >>> nc_simplify(a*b*a*b*c*a*b*c) a*b*(a*b*c)**2 >>> expr = a**2*b*a**4*b*a**4 >>> nc_simplify(expr) a**2*(b*a**4)**2 >>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2) ((a*b)**2*c**2)**2 >>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a) (a*b)**2 + 2*(a*c*a)**3 >>> nc_simplify(b**-1*a**-1*(a*b)**2) a*b >>> nc_simplify(a**-1*b**-1*c*a) (b*a)**(-1)*c*a >>> expr = (a*b*a*b)**2*a*c*a*c >>> nc_simplify(expr) (a*b)**4*(a*c)**2 >>> nc_simplify(expr, deep=False) (a*b*a*b)**2*(a*c)**2 ''' from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul, MatPow, MatrixSymbol) from sympy.core.exprtools import factor_nc if isinstance(expr, MatrixExpr): expr = expr.doit(inv_expand=False) _Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol else: _Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol # =========== Auxiliary functions ======================== def _overlaps(args): # Calculate a list of lists m such that m[i][j] contains the lengths # of all possible overlaps between args[:i+1] and args[i+1+j:]. # An overlap is a suffix of the prefix that matches a prefix # of the suffix. # For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains # the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps # are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0]. # All overlaps rather than only the longest one are recorded # because this information helps calculate other overlap lengths. m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]] for i in range(1, len(args)): overlaps = [] j = 0 for j in range(len(args) - i - 1): overlap = [] for v in m[i-1][j+1]: if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]: overlap.append(v + 1) overlap += [0] overlaps.append(overlap) m.append(overlaps) return m def _reduce_inverses(_args): # replace consecutive negative powers by an inverse # of a product of positive powers, e.g. a**-1*b**-1*c # will simplify to (a*b)**-1*c; # return that new args list and the number of negative # powers in it (inv_tot) inv_tot = 0 # total number of inverses inverses = [] args = [] for arg in _args: if isinstance(arg, _Pow) and arg.args[1] < 0: inverses = [arg**-1] + inverses inv_tot += 1 else: if len(inverses) == 1: args.append(inverses[0]**-1) elif len(inverses) > 1: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 inverses = [] args.append(arg) if inverses: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 return inv_tot, tuple(args) def get_score(s): # compute the number of arguments of s # (including in nested expressions) overall # but ignore exponents if isinstance(s, _Pow): return get_score(s.args[0]) elif isinstance(s, (_Add, _Mul)): return sum([get_score(a) for a in s.args]) return 1 def compare(s, alt_s): # compare two possible simplifications and return a # "better" one if s != alt_s and get_score(alt_s) < get_score(s): return alt_s return s # ======================================================== if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative: return expr args = expr.args[:] if isinstance(expr, _Pow): if deep: return _Pow(nc_simplify(args[0]), args[1]).doit() else: return expr elif isinstance(expr, _Add): return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit() else: # get the non-commutative part c_args, args = expr.args_cnc() com_coeff = Mul(*c_args) if com_coeff != 1: return com_coeff*nc_simplify(expr/com_coeff, deep=deep) inv_tot, args = _reduce_inverses(args) # if most arguments are negative, work with the inverse # of the expression, e.g. a**-1*b*a**-1*c**-1 will become # (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a invert = False if inv_tot > len(args)/2: invert = True args = [a**-1 for a in args[::-1]] if deep: args = tuple(nc_simplify(a) for a in args) m = _overlaps(args) # simps will be {subterm: end} where `end` is the ending # index of a sequence of repetitions of subterm; # this is for not wasting time with subterms that are part # of longer, already considered sequences simps = {} post = 1 pre = 1 # the simplification coefficient is the number of # arguments by which contracting a given sequence # would reduce the word; e.g. in a*b*a*b*c*a*b*c, # contracting a*b*a*b to (a*b)**2 removes 3 arguments # while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's # better to contract the latter so simplification # with a maximum simplification coefficient will be chosen max_simp_coeff = 0 simp = None # information about future simplification for i in range(1, len(args)): simp_coeff = 0 l = 0 # length of a subterm p = 0 # the power of a subterm if i < len(args) - 1: rep = m[i][0] start = i # starting index of the repeated sequence end = i+1 # ending index of the repeated sequence if i == len(args)-1 or rep == [0]: # no subterm is repeated at this stage, at least as # far as the arguments are concerned - there may be # a repetition if powers are taken into account if (isinstance(args[i], _Pow) and not isinstance(args[i].args[0], _Symbol)): subterm = args[i].args[0].args l = len(subterm) if args[i-l:i] == subterm: # e.g. a*b in a*b*(a*b)**2 is not repeated # in args (= [a, b, (a*b)**2]) but it # can be matched here p += 1 start -= l if args[i+1:i+1+l] == subterm: # e.g. a*b in (a*b)**2*a*b p += 1 end += l if p: p += args[i].args[1] else: continue else: l = rep[0] # length of the longest repeated subterm at this point start -= l - 1 subterm = args[start:end] p = 2 end += l if subterm in simps and simps[subterm] >= start: # the subterm is part of a sequence that # has already been considered continue # count how many times it's repeated while end < len(args): if l in m[end-1][0]: p += 1 end += l elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm: # for cases like a*b*a*b*(a*b)**2*a*b p += args[end].args[1] end += 1 else: break # see if another match can be made, e.g. # for b*a**2 in b*a**2*b*a**3 or a*b in # a**2*b*a*b pre_exp = 0 pre_arg = 1 if start - l >= 0 and args[start-l+1:start] == subterm[1:]: if isinstance(subterm[0], _Pow): pre_arg = subterm[0].args[0] exp = subterm[0].args[1] else: pre_arg = subterm[0] exp = 1 if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg: pre_exp = args[start-l].args[1] - exp start -= l p += 1 elif args[start-l] == pre_arg: pre_exp = 1 - exp start -= l p += 1 post_exp = 0 post_arg = 1 if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]: if isinstance(subterm[-1], _Pow): post_arg = subterm[-1].args[0] exp = subterm[-1].args[1] else: post_arg = subterm[-1] exp = 1 if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg: post_exp = args[end+l-1].args[1] - exp end += l p += 1 elif args[end+l-1] == post_arg: post_exp = 1 - exp end += l p += 1 # Consider a*b*a**2*b*a**2*b*a: # b*a**2 is explicitly repeated, but note # that in this case a*b*a is also repeated # so there are two possible simplifications: # a*(b*a**2)**3*a**-1 or (a*b*a)**3 # The latter is obviously simpler. # But in a*b*a**2*b**2*a**2 the simplifications are # a*(b*a**2)**2 and (a*b*a)**3*a in which case # it's better to stick with the shorter subterm if post_exp and exp % 2 == 0 and start > 0: exp = exp/2 _pre_exp = 1 _post_exp = 1 if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg: _post_exp = post_exp + exp _pre_exp = args[start-1].args[1] - exp elif args[start-1] == post_arg: _post_exp = post_exp + exp _pre_exp = 1 - exp if _pre_exp == 0 or _post_exp == 0: if not pre_exp: start -= 1 post_exp = _post_exp pre_exp = _pre_exp pre_arg = post_arg subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,) simp_coeff += end-start if post_exp: simp_coeff -= 1 if pre_exp: simp_coeff -= 1 simps[subterm] = end if simp_coeff > max_simp_coeff: max_simp_coeff = simp_coeff simp = (start, _Mul(*subterm), p, end, l) pre = pre_arg**pre_exp post = post_arg**post_exp if simp: subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2]) pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep) post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep) simp = pre*subterm*post if pre != 1 or post != 1: # new simplifications may be possible but no need # to recurse over arguments simp = nc_simplify(simp, deep=False) else: simp = _Mul(*args) if invert: simp = _Pow(simp, -1) # see if factor_nc(expr) is simplified better if not isinstance(expr, MatrixExpr): f_expr = factor_nc(expr) if f_expr != expr: alt_simp = nc_simplify(f_expr, deep=deep) simp = compare(simp, alt_simp) else: simp = simp.doit(inv_expand=False) return simp
7b15ee54c3565a40a1a69b7ee4b8561932186f2292d5b0aa8e8d813ba5920db0
from __future__ import print_function, division from collections import defaultdict from sympy import SYMPY_DEBUG from sympy.core import expand_power_base, sympify, Add, S, Mul, Derivative, Pow, symbols, expand_mul from sympy.core.add import _unevaluated_Add from sympy.core.compatibility import iterable, ordered, default_sort_key from sympy.core.evaluate import global_evaluate from sympy.core.exprtools import Factors, gcd_terms from sympy.core.function import _mexpand from sympy.core.mul import _keep_coeff, _unevaluated_Mul from sympy.core.numbers import Rational from sympy.functions import exp, sqrt, log from sympy.functions.elementary.complexes import Abs from sympy.polys import gcd from sympy.simplify.sqrtdenest import sqrtdenest def collect(expr, syms, func=None, evaluate=None, exact=False, distribute_order_term=True): """ Collect additive terms of an expression. This function collects additive terms of an expression with respect to a list of expression up to powers with rational exponents. By the term symbol here are meant arbitrary expressions, which can contain powers, products, sums etc. In other words symbol is a pattern which will be searched for in the expression's terms. The input expression is not expanded by :func:`collect`, so user is expected to provide an expression is an appropriate form. This makes :func:`collect` more predictable as there is no magic happening behind the scenes. However, it is important to note, that powers of products are converted to products of powers using the :func:`expand_power_base` function. There are two possible types of output. First, if ``evaluate`` flag is set, this function will return an expression with collected terms or else it will return a dictionary with expressions up to rational powers as keys and collected coefficients as values. Examples ======== >>> from sympy import S, collect, expand, factor, Wild >>> from sympy.abc import a, b, c, x, y, z This function can collect symbolic coefficients in polynomials or rational expressions. It will manage to find all integer or rational powers of collection variable:: >>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x) c + x**2*(a + b) + x*(a - b) The same result can be achieved in dictionary form:: >>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False) >>> d[x**2] a + b >>> d[x] a - b >>> d[S.One] c You can also work with multivariate polynomials. However, remember that this function is greedy so it will care only about a single symbol at time, in specification order:: >>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y]) x**2*(y + 1) + x*y + y*(a + 1) Also more complicated expressions can be used as patterns:: >>> from sympy import sin, log >>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x)) (a + b)*sin(2*x) >>> collect(a*x*log(x) + b*(x*log(x)), x*log(x)) x*(a + b)*log(x) You can use wildcards in the pattern:: >>> w = Wild('w1') >>> collect(a*x**y - b*x**y, w**y) x**y*(a - b) It is also possible to work with symbolic powers, although it has more complicated behavior, because in this case power's base and symbolic part of the exponent are treated as a single symbol:: >>> collect(a*x**c + b*x**c, x) a*x**c + b*x**c >>> collect(a*x**c + b*x**c, x**c) x**c*(a + b) However if you incorporate rationals to the exponents, then you will get well known behavior:: >>> collect(a*x**(2*c) + b*x**(2*c), x**c) x**(2*c)*(a + b) Note also that all previously stated facts about :func:`collect` function apply to the exponential function, so you can get:: >>> from sympy import exp >>> collect(a*exp(2*x) + b*exp(2*x), exp(x)) (a + b)*exp(2*x) If you are interested only in collecting specific powers of some symbols then set ``exact`` flag in arguments:: >>> collect(a*x**7 + b*x**7, x, exact=True) a*x**7 + b*x**7 >>> collect(a*x**7 + b*x**7, x**7, exact=True) x**7*(a + b) You can also apply this function to differential equations, where derivatives of arbitrary order can be collected. Note that if you collect with respect to a function or a derivative of a function, all derivatives of that function will also be collected. Use ``exact=True`` to prevent this from happening:: >>> from sympy import Derivative as D, collect, Function >>> f = Function('f') (x) >>> collect(a*D(f,x) + b*D(f,x), D(f,x)) (a + b)*Derivative(f(x), x) >>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f) (a + b)*Derivative(f(x), (x, 2)) >>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True) a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2)) >>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f) (a + b)*f(x) + (a + b)*Derivative(f(x), x) Or you can even match both derivative order and exponent at the same time:: >>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x)) (a + b)*Derivative(f(x), (x, 2))**2 Finally, you can apply a function to each of the collected coefficients. For example you can factorize symbolic coefficients of polynomial:: >>> f = expand((x + a + 1)**3) >>> collect(f, x, factor) x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3 .. note:: Arguments are expected to be in expanded form, so you might have to call :func:`expand` prior to calling this function. See Also ======== collect_const, collect_sqrt, rcollect """ expr = sympify(expr) syms = list(syms) if iterable(syms) else [syms] if evaluate is None: evaluate = global_evaluate[0] def make_expression(terms): product = [] for term, rat, sym, deriv in terms: if deriv is not None: var, order = deriv while order > 0: term, order = Derivative(term, var), order - 1 if sym is None: if rat is S.One: product.append(term) else: product.append(Pow(term, rat)) else: product.append(Pow(term, rat*sym)) return Mul(*product) def parse_derivative(deriv): # scan derivatives tower in the input expression and return # underlying function and maximal differentiation order expr, sym, order = deriv.expr, deriv.variables[0], 1 for s in deriv.variables[1:]: if s == sym: order += 1 else: raise NotImplementedError( 'Improve MV Derivative support in collect') while isinstance(expr, Derivative): s0 = expr.variables[0] for s in expr.variables: if s != s0: raise NotImplementedError( 'Improve MV Derivative support in collect') if s0 == sym: expr, order = expr.expr, order + len(expr.variables) else: break return expr, (sym, Rational(order)) def parse_term(expr): """Parses expression expr and outputs tuple (sexpr, rat_expo, sym_expo, deriv) where: - sexpr is the base expression - rat_expo is the rational exponent that sexpr is raised to - sym_expo is the symbolic exponent that sexpr is raised to - deriv contains the derivatives the the expression for example, the output of x would be (x, 1, None, None) the output of 2**x would be (2, 1, x, None) """ rat_expo, sym_expo = S.One, None sexpr, deriv = expr, None if expr.is_Pow: if isinstance(expr.base, Derivative): sexpr, deriv = parse_derivative(expr.base) else: sexpr = expr.base if expr.exp.is_Number: rat_expo = expr.exp else: coeff, tail = expr.exp.as_coeff_Mul() if coeff.is_Number: rat_expo, sym_expo = coeff, tail else: sym_expo = expr.exp elif isinstance(expr, exp): arg = expr.args[0] if arg.is_Rational: sexpr, rat_expo = S.Exp1, arg elif arg.is_Mul: coeff, tail = arg.as_coeff_Mul(rational=True) sexpr, rat_expo = exp(tail), coeff elif isinstance(expr, Derivative): sexpr, deriv = parse_derivative(expr) return sexpr, rat_expo, sym_expo, deriv def parse_expression(terms, pattern): """Parse terms searching for a pattern. terms is a list of tuples as returned by parse_terms; pattern is an expression treated as a product of factors """ pattern = Mul.make_args(pattern) if len(terms) < len(pattern): # pattern is longer than matched product # so no chance for positive parsing result return None else: pattern = [parse_term(elem) for elem in pattern] terms = terms[:] # need a copy elems, common_expo, has_deriv = [], None, False for elem, e_rat, e_sym, e_ord in pattern: if elem.is_Number and e_rat == 1 and e_sym is None: # a constant is a match for everything continue for j in range(len(terms)): if terms[j] is None: continue term, t_rat, t_sym, t_ord = terms[j] # keeping track of whether one of the terms had # a derivative or not as this will require rebuilding # the expression later if t_ord is not None: has_deriv = True if (term.match(elem) is not None and (t_sym == e_sym or t_sym is not None and e_sym is not None and t_sym.match(e_sym) is not None)): if exact is False: # we don't have to be exact so find common exponent # for both expression's term and pattern's element expo = t_rat / e_rat if common_expo is None: # first time common_expo = expo else: # common exponent was negotiated before so # there is no chance for a pattern match unless # common and current exponents are equal if common_expo != expo: common_expo = 1 else: # we ought to be exact so all fields of # interest must match in every details if e_rat != t_rat or e_ord != t_ord: continue # found common term so remove it from the expression # and try to match next element in the pattern elems.append(terms[j]) terms[j] = None break else: # pattern element not found return None return [_f for _f in terms if _f], elems, common_expo, has_deriv if evaluate: if expr.is_Add: o = expr.getO() or 0 expr = expr.func(*[ collect(a, syms, func, True, exact, distribute_order_term) for a in expr.args if a != o]) + o elif expr.is_Mul: return expr.func(*[ collect(term, syms, func, True, exact, distribute_order_term) for term in expr.args]) elif expr.is_Pow: b = collect( expr.base, syms, func, True, exact, distribute_order_term) return Pow(b, expr.exp) syms = [expand_power_base(i, deep=False) for i in syms] order_term = None if distribute_order_term: order_term = expr.getO() if order_term is not None: if order_term.has(*syms): order_term = None else: expr = expr.removeO() summa = [expand_power_base(i, deep=False) for i in Add.make_args(expr)] collected, disliked = defaultdict(list), S.Zero for product in summa: c, nc = product.args_cnc(split_1=False) args = list(ordered(c)) + nc terms = [parse_term(i) for i in args] small_first = True for symbol in syms: if SYMPY_DEBUG: print("DEBUG: parsing of expression %s with symbol %s " % ( str(terms), str(symbol)) ) if isinstance(symbol, Derivative) and small_first: terms = list(reversed(terms)) small_first = not small_first result = parse_expression(terms, symbol) if SYMPY_DEBUG: print("DEBUG: returned %s" % str(result)) if result is not None: if not symbol.is_commutative: raise AttributeError("Can not collect noncommutative symbol") terms, elems, common_expo, has_deriv = result # when there was derivative in current pattern we # will need to rebuild its expression from scratch if not has_deriv: margs = [] for elem in elems: if elem[2] is None: e = elem[1] else: e = elem[1]*elem[2] margs.append(Pow(elem[0], e)) index = Mul(*margs) else: index = make_expression(elems) terms = expand_power_base(make_expression(terms), deep=False) index = expand_power_base(index, deep=False) collected[index].append(terms) break else: # none of the patterns matched disliked += product # add terms now for each key collected = {k: Add(*v) for k, v in collected.items()} if disliked is not S.Zero: collected[S.One] = disliked if order_term is not None: for key, val in collected.items(): collected[key] = val + order_term if func is not None: collected = dict( [(key, func(val)) for key, val in collected.items()]) if evaluate: return Add(*[key*val for key, val in collected.items()]) else: return collected def rcollect(expr, *vars): """ Recursively collect sums in an expression. Examples ======== >>> from sympy.simplify import rcollect >>> from sympy.abc import x, y >>> expr = (x**2*y + x*y + x + y)/(x + y) >>> rcollect(expr, y) (x + y*(x**2 + x + 1))/(x + y) See Also ======== collect, collect_const, collect_sqrt """ if expr.is_Atom or not expr.has(*vars): return expr else: expr = expr.__class__(*[rcollect(arg, *vars) for arg in expr.args]) if expr.is_Add: return collect(expr, vars) else: return expr def collect_sqrt(expr, evaluate=None): """Return expr with terms having common square roots collected together. If ``evaluate`` is False a count indicating the number of sqrt-containing terms will be returned and, if non-zero, the terms of the Add will be returned, else the expression itself will be returned as a single term. If ``evaluate`` is True, the expression with any collected terms will be returned. Note: since I = sqrt(-1), it is collected, too. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.radsimp import collect_sqrt >>> from sympy.abc import a, b >>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]] >>> collect_sqrt(a*r2 + b*r2) sqrt(2)*(a + b) >>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3) sqrt(2)*(a + b) + sqrt(3)*(a + b) >>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5) sqrt(3)*a + sqrt(5)*b + sqrt(2)*(a + b) If evaluate is False then the arguments will be sorted and returned as a list and a count of the number of sqrt-containing terms will be returned: >>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False) ((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3) >>> collect_sqrt(a*sqrt(2) + b, evaluate=False) ((b, sqrt(2)*a), 1) >>> collect_sqrt(a + b, evaluate=False) ((a + b,), 0) See Also ======== collect, collect_const, rcollect """ if evaluate is None: evaluate = global_evaluate[0] # this step will help to standardize any complex arguments # of sqrts coeff, expr = expr.as_content_primitive() vars = set() for a in Add.make_args(expr): for m in a.args_cnc()[0]: if m.is_number and ( m.is_Pow and m.exp.is_Rational and m.exp.q == 2 or m is S.ImaginaryUnit): vars.add(m) # we only want radicals, so exclude Number handling; in this case # d will be evaluated d = collect_const(expr, *vars, Numbers=False) hit = expr != d if not evaluate: nrad = 0 # make the evaluated args canonical args = list(ordered(Add.make_args(d))) for i, m in enumerate(args): c, nc = m.args_cnc() for ci in c: # XXX should this be restricted to ci.is_number as above? if ci.is_Pow and ci.exp.is_Rational and ci.exp.q == 2 or \ ci is S.ImaginaryUnit: nrad += 1 break args[i] *= coeff if not (hit or nrad): args = [Add(*args)] return tuple(args), nrad return coeff*d def collect_abs(expr): """Return ``expr`` with arguments of multiple Abs in a term collected under a single instance. Examples ======== >>> from sympy.simplify.radsimp import collect_abs >>> from sympy.abc import x >>> collect_abs(abs(x + 1)/abs(x**2 - 1)) Abs((x + 1)/(x**2 - 1)) >>> collect_abs(abs(1/x)) Abs(1/x) """ def _abs(mul): from sympy.core.mul import _mulsort c, nc = mul.args_cnc() a = [] o = [] for i in c: if isinstance(i, Abs): a.append(i.args[0]) elif isinstance(i, Pow) and isinstance(i.base, Abs) and i.exp.is_real: a.append(i.base.args[0]**i.exp) else: o.append(i) if len(a) < 2 and not any(i.exp.is_negative for i in a if isinstance(i, Pow)): return mul absarg = Mul(*a) A = Abs(absarg) args = [A] args.extend(o) if not A.has(Abs): args.extend(nc) return Mul(*args) if not isinstance(A, Abs): # reevaluate and make it unevaluated A = Abs(absarg, evaluate=False) args[0] = A _mulsort(args) args.extend(nc) # nc always go last return Mul._from_args(args, is_commutative=bool(nc)) return expr.replace( lambda x: isinstance(x, Mul), lambda x: _abs(x)).replace( lambda x: isinstance(x, Pow), lambda x: _abs(x)) def collect_const(expr, *vars, **kwargs): """A non-greedy collection of terms with similar number coefficients in an Add expr. If ``vars`` is given then only those constants will be targeted. Although any Number can also be targeted, if this is not desired set ``Numbers=False`` and no Float or Rational will be collected. Parameters ========== expr : sympy expression This parameter defines the expression the expression from which terms with similar coefficients are to be collected. A non-Add expression is returned as it is. vars : variable length collection of Numbers, optional Specifies the constants to target for collection. Can be multiple in number. kwargs : ``Numbers`` is the only possible argument to pass. Numbers (default=True) specifies to target all instance of :class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then no Float or Rational will be collected. Returns ======= expr : Expr Returns an expression with similar coefficient terms collected. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import a, s, x, y, z >>> from sympy.simplify.radsimp import collect_const >>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2))) sqrt(3)*(sqrt(2) + 2) >>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7)) (sqrt(3) + sqrt(7))*(s + 1) >>> s = sqrt(2) + 2 >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7)) (sqrt(2) + 3)*(sqrt(3) + sqrt(7)) >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3)) sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2) The collection is sign-sensitive, giving higher precedence to the unsigned values: >>> collect_const(x - y - z) x - (y + z) >>> collect_const(-y - z) -(y + z) >>> collect_const(2*x - 2*y - 2*z, 2) 2*(x - y - z) >>> collect_const(2*x - 2*y - 2*z, -2) 2*x - 2*(y + z) See Also ======== collect, collect_sqrt, rcollect """ if not expr.is_Add: return expr recurse = False Numbers = kwargs.get('Numbers', True) if not vars: recurse = True vars = set() for a in expr.args: for m in Mul.make_args(a): if m.is_number: vars.add(m) else: vars = sympify(vars) if not Numbers: vars = [v for v in vars if not v.is_Number] vars = list(ordered(vars)) for v in vars: terms = defaultdict(list) Fv = Factors(v) for m in Add.make_args(expr): f = Factors(m) q, r = f.div(Fv) if r.is_one: # only accept this as a true factor if # it didn't change an exponent from an Integer # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2) # -- we aren't looking for this sort of change fwas = f.factors.copy() fnow = q.factors if not any(k in fwas and fwas[k].is_Integer and not fnow[k].is_Integer for k in fnow): terms[v].append(q.as_expr()) continue terms[S.One].append(m) args = [] hit = False uneval = False for k in ordered(terms): v = terms[k] if k is S.One: args.extend(v) continue if len(v) > 1: v = Add(*v) hit = True if recurse and v != expr: vars.append(v) else: v = v[0] # be careful not to let uneval become True unless # it must be because it's going to be more expensive # to rebuild the expression as an unevaluated one if Numbers and k.is_Number and v.is_Add: args.append(_keep_coeff(k, v, sign=True)) uneval = True else: args.append(k*v) if hit: if uneval: expr = _unevaluated_Add(*args) else: expr = Add(*args) if not expr.is_Add: break return expr def radsimp(expr, symbolic=True, max_terms=4): r""" Rationalize the denominator by removing square roots. Note: the expression returned from radsimp must be used with caution since if the denominator contains symbols, it will be possible to make substitutions that violate the assumptions of the simplification process: that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If there are no symbols, this assumptions is made valid by collecting terms of sqrt(c) so the match variable ``a`` does not contain ``sqrt(c)``.) If you do not want the simplification to occur for symbolic denominators, set ``symbolic`` to False. If there are more than ``max_terms`` radical terms then the expression is returned unchanged. Examples ======== >>> from sympy import radsimp, sqrt, Symbol, denom, pprint, I >>> from sympy import factor_terms, fraction, signsimp >>> from sympy.simplify.radsimp import collect_sqrt >>> from sympy.abc import a, b, c >>> radsimp(1/(2 + sqrt(2))) (2 - sqrt(2))/2 >>> x,y = map(Symbol, 'xy') >>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2)) >>> radsimp(e) sqrt(2)*(x + y) No simplification beyond removal of the gcd is done. One might want to polish the result a little, however, by collecting square root terms: >>> r2 = sqrt(2) >>> r5 = sqrt(5) >>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5)); pprint(ans) ___ ___ ___ ___ \/ 5 *a + \/ 5 *b - \/ 2 *x - \/ 2 *y ------------------------------------------ 2 2 2 2 5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y >>> n, d = fraction(ans) >>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True)) ___ ___ \/ 5 *(a + b) - \/ 2 *(x + y) ------------------------------------------ 2 2 2 2 5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y If radicals in the denominator cannot be removed or there is no denominator, the original expression will be returned. >>> radsimp(sqrt(2)*x + sqrt(2)) sqrt(2)*x + sqrt(2) Results with symbols will not always be valid for all substitutions: >>> eq = 1/(a + b*sqrt(c)) >>> eq.subs(a, b*sqrt(c)) 1/(2*b*sqrt(c)) >>> radsimp(eq).subs(a, b*sqrt(c)) nan If symbolic=False, symbolic denominators will not be transformed (but numeric denominators will still be processed): >>> radsimp(eq, symbolic=False) 1/(a + b*sqrt(c)) """ from sympy.simplify.simplify import signsimp syms = symbols("a:d A:D") def _num(rterms): # return the multiplier that will simplify the expression described # by rterms [(sqrt arg, coeff), ... ] a, b, c, d, A, B, C, D = syms if len(rterms) == 2: reps = dict(list(zip([A, a, B, b], [j for i in rterms for j in i]))) return ( sqrt(A)*a - sqrt(B)*b).xreplace(reps) if len(rterms) == 3: reps = dict(list(zip([A, a, B, b, C, c], [j for i in rterms for j in i]))) return ( (sqrt(A)*a + sqrt(B)*b - sqrt(C)*c)*(2*sqrt(A)*sqrt(B)*a*b - A*a**2 - B*b**2 + C*c**2)).xreplace(reps) elif len(rterms) == 4: reps = dict(list(zip([A, a, B, b, C, c, D, d], [j for i in rterms for j in i]))) return ((sqrt(A)*a + sqrt(B)*b - sqrt(C)*c - sqrt(D)*d)*(2*sqrt(A)*sqrt(B)*a*b - A*a**2 - B*b**2 - 2*sqrt(C)*sqrt(D)*c*d + C*c**2 + D*d**2)*(-8*sqrt(A)*sqrt(B)*sqrt(C)*sqrt(D)*a*b*c*d + A**2*a**4 - 2*A*B*a**2*b**2 - 2*A*C*a**2*c**2 - 2*A*D*a**2*d**2 + B**2*b**4 - 2*B*C*b**2*c**2 - 2*B*D*b**2*d**2 + C**2*c**4 - 2*C*D*c**2*d**2 + D**2*d**4)).xreplace(reps) elif len(rterms) == 1: return sqrt(rterms[0][0]) else: raise NotImplementedError def ispow2(d, log2=False): if not d.is_Pow: return False e = d.exp if e.is_Rational and e.q == 2 or symbolic and denom(e) == 2: return True if log2: q = 1 if e.is_Rational: q = e.q elif symbolic: d = denom(e) if d.is_Integer: q = d if q != 1 and log(q, 2).is_Integer: return True return False def handle(expr): # Handle first reduces to the case # expr = 1/d, where d is an add, or d is base**p/2. # We do this by recursively calling handle on each piece. from sympy.simplify.simplify import nsimplify n, d = fraction(expr) if expr.is_Atom or (d.is_Atom and n.is_Atom): return expr elif not n.is_Atom: n = n.func(*[handle(a) for a in n.args]) return _unevaluated_Mul(n, handle(1/d)) elif n is not S.One: return _unevaluated_Mul(n, handle(1/d)) elif d.is_Mul: return _unevaluated_Mul(*[handle(1/d) for d in d.args]) # By this step, expr is 1/d, and d is not a mul. if not symbolic and d.free_symbols: return expr if ispow2(d): d2 = sqrtdenest(sqrt(d.base))**numer(d.exp) if d2 != d: return handle(1/d2) elif d.is_Pow and (d.exp.is_integer or d.base.is_positive): # (1/d**i) = (1/d)**i return handle(1/d.base)**d.exp if not (d.is_Add or ispow2(d)): return 1/d.func(*[handle(a) for a in d.args]) # handle 1/d treating d as an Add (though it may not be) keep = True # keep changes that are made # flatten it and collect radicals after checking for special # conditions d = _mexpand(d) # did it change? if d.is_Atom: return 1/d # is it a number that might be handled easily? if d.is_number: _d = nsimplify(d) if _d.is_Number and _d.equals(d): return 1/_d while True: # collect similar terms collected = defaultdict(list) for m in Add.make_args(d): # d might have become non-Add p2 = [] other = [] for i in Mul.make_args(m): if ispow2(i, log2=True): p2.append(i.base if i.exp is S.Half else i.base**(2*i.exp)) elif i is S.ImaginaryUnit: p2.append(S.NegativeOne) else: other.append(i) collected[tuple(ordered(p2))].append(Mul(*other)) rterms = list(ordered(list(collected.items()))) rterms = [(Mul(*i), Add(*j)) for i, j in rterms] nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0) if nrad < 1: break elif nrad > max_terms: # there may have been invalid operations leading to this point # so don't keep changes, e.g. this expression is troublesome # in collecting terms so as not to raise the issue of 2834: # r = sqrt(sqrt(5) + 5) # eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r) keep = False break if len(rterms) > 4: # in general, only 4 terms can be removed with repeated squaring # but other considerations can guide selection of radical terms # so that radicals are removed if all([x.is_Integer and (y**2).is_Rational for x, y in rterms]): nd, d = rad_rationalize(S.One, Add._from_args( [sqrt(x)*y for x, y in rterms])) n *= nd else: # is there anything else that might be attempted? keep = False break from sympy.simplify.powsimp import powsimp, powdenest num = powsimp(_num(rterms)) n *= num d *= num d = powdenest(_mexpand(d), force=symbolic) if d.is_Atom: break if not keep: return expr return _unevaluated_Mul(n, 1/d) coeff, expr = expr.as_coeff_Add() expr = expr.normal() old = fraction(expr) n, d = fraction(handle(expr)) if old != (n, d): if not d.is_Atom: was = (n, d) n = signsimp(n, evaluate=False) d = signsimp(d, evaluate=False) u = Factors(_unevaluated_Mul(n, 1/d)) u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()]) n, d = fraction(u) if old == (n, d): n, d = was n = expand_mul(n) if d.is_Number or d.is_Add: n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1/d))) if d2.is_Number or (d2.count_ops() <= d.count_ops()): n, d = [signsimp(i) for i in (n2, d2)] if n.is_Mul and n.args[0].is_Number: n = n.func(*n.args) return coeff + _unevaluated_Mul(n, 1/d) def rad_rationalize(num, den): """ Rationalize num/den by removing square roots in the denominator; num and den are sum of terms whose squares are positive rationals. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.radsimp import rad_rationalize >>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3) (-sqrt(3) + sqrt(6)/3, -7/9) """ if not den.is_Add: return num, den g, a, b = split_surds(den) a = a*sqrt(g) num = _mexpand((a - b)*num) den = _mexpand(a**2 - b**2) return rad_rationalize(num, den) def fraction(expr, exact=False): """Returns a pair with expression's numerator and denominator. If the given expression is not a fraction then this function will return the tuple (expr, 1). This function will not make any attempt to simplify nested fractions or to do any term rewriting at all. If only one of the numerator/denominator pair is needed then use numer(expr) or denom(expr) functions respectively. >>> from sympy import fraction, Rational, Symbol >>> from sympy.abc import x, y >>> fraction(x/y) (x, y) >>> fraction(x) (x, 1) >>> fraction(1/y**2) (1, y**2) >>> fraction(x*y/2) (x*y, 2) >>> fraction(Rational(1, 2)) (1, 2) This function will also work fine with assumptions: >>> k = Symbol('k', negative=True) >>> fraction(x * y**k) (x, y**(-k)) If we know nothing about sign of some exponent and 'exact' flag is unset, then structure this exponent's structure will be analyzed and pretty fraction will be returned: >>> from sympy import exp, Mul >>> fraction(2*x**(-y)) (2, x**y) >>> fraction(exp(-x)) (1, exp(x)) >>> fraction(exp(-x), exact=True) (exp(-x), 1) The `exact` flag will also keep any unevaluated Muls from being evaluated: >>> u = Mul(2, x + 1, evaluate=False) >>> fraction(u) (2*x + 2, 1) >>> fraction(u, exact=True) (2*(x + 1), 1) """ expr = sympify(expr) numer, denom = [], [] for term in Mul.make_args(expr): if term.is_commutative and (term.is_Pow or isinstance(term, exp)): b, ex = term.as_base_exp() if ex.is_negative: if ex is S.NegativeOne: denom.append(b) elif exact: if ex.is_constant(): denom.append(Pow(b, -ex)) else: numer.append(term) else: denom.append(Pow(b, -ex)) elif ex.is_positive: numer.append(term) elif not exact and ex.is_Mul: n, d = term.as_numer_denom() numer.append(n) denom.append(d) else: numer.append(term) elif term.is_Rational: n, d = term.as_numer_denom() numer.append(n) denom.append(d) else: numer.append(term) if exact: return Mul(*numer, evaluate=False), Mul(*denom, evaluate=False) else: return Mul(*numer), Mul(*denom) def numer(expr): return fraction(expr)[0] def denom(expr): return fraction(expr)[1] def fraction_expand(expr, **hints): return expr.expand(frac=True, **hints) def numer_expand(expr, **hints): a, b = fraction(expr) return a.expand(numer=True, **hints) / b def denom_expand(expr, **hints): a, b = fraction(expr) return a / b.expand(denom=True, **hints) expand_numer = numer_expand expand_denom = denom_expand expand_fraction = fraction_expand def split_surds(expr): """ Split an expression with terms whose squares are positive rationals into a sum of terms whose surds squared have gcd equal to g and a sum of terms with surds squared prime with g. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.radsimp import split_surds >>> split_surds(3*sqrt(3) + sqrt(5)/7 + sqrt(6) + sqrt(10) + sqrt(15)) (3, sqrt(2) + sqrt(5) + 3, sqrt(5)/7 + sqrt(10)) """ args = sorted(expr.args, key=default_sort_key) coeff_muls = [x.as_coeff_Mul() for x in args] surds = [x[1]**2 for x in coeff_muls if x[1].is_Pow] surds.sort(key=default_sort_key) g, b1, b2 = _split_gcd(*surds) g2 = g if not b2 and len(b1) >= 2: b1n = [x/g for x in b1] b1n = [x for x in b1n if x != 1] # only a common factor has been factored; split again g1, b1n, b2 = _split_gcd(*b1n) g2 = g*g1 a1v, a2v = [], [] for c, s in coeff_muls: if s.is_Pow and s.exp == S.Half: s1 = s.base if s1 in b1: a1v.append(c*sqrt(s1/g2)) else: a2v.append(c*s) else: a2v.append(c*s) a = Add(*a1v) b = Add(*a2v) return g2, a, b def _split_gcd(*a): """ split the list of integers ``a`` into a list of integers, ``a1`` having ``g = gcd(a1)``, and a list ``a2`` whose elements are not divisible by ``g``. Returns ``g, a1, a2`` Examples ======== >>> from sympy.simplify.radsimp import _split_gcd >>> _split_gcd(55, 35, 22, 14, 77, 10) (5, [55, 35, 10], [22, 14, 77]) """ g = a[0] b1 = [g] b2 = [] for x in a[1:]: g1 = gcd(g, x) if g1 == 1: b2.append(x) else: g = g1 b1.append(x) return g, b1, b2
924a0872717dc8e3f288831032eab69d03660e331dc86276689bab646f4ddb03
from __future__ import print_function, division from sympy.core import S, sympify, Mul, Add, Expr from sympy.core.compatibility import range from sympy.core.function import expand_mul, count_ops, _mexpand from sympy.core.symbol import Dummy from sympy.functions import sqrt, sign, root from sympy.polys import Poly, PolynomialError from sympy.utilities import default_sort_key def is_sqrt(expr): """Return True if expr is a sqrt, otherwise False.""" return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half def sqrt_depth(p): """Return the maximum depth of any square root argument of p. >>> from sympy.functions.elementary.miscellaneous import sqrt >>> from sympy.simplify.sqrtdenest import sqrt_depth Neither of these square roots contains any other square roots so the depth is 1: >>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3))) 1 The sqrt(3) is contained within a square root so the depth is 2: >>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3))) 2 """ if p.is_Atom: return 0 elif p.is_Add or p.is_Mul: return max([sqrt_depth(x) for x in p.args], key=default_sort_key) elif is_sqrt(p): return sqrt_depth(p.base) + 1 else: return 0 def is_algebraic(p): """Return True if p is comprised of only Rationals or square roots of Rationals and algebraic operations. Examples ======== >>> from sympy.functions.elementary.miscellaneous import sqrt >>> from sympy.simplify.sqrtdenest import is_algebraic >>> from sympy import cos >>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2)))) True >>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2)))) False """ if p.is_Rational: return True elif p.is_Atom: return False elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer: return is_algebraic(p.base) elif p.is_Add or p.is_Mul: return all(is_algebraic(x) for x in p.args) else: return False def _subsets(n): """ Returns all possible subsets of the set (0, 1, ..., n-1) except the empty set, listed in reversed lexicographical order according to binary representation, so that the case of the fourth root is treated last. Examples ======== >>> from sympy.simplify.sqrtdenest import _subsets >>> _subsets(2) [[1, 0], [0, 1], [1, 1]] """ if n == 1: a = [[1]] elif n == 2: a = [[1, 0], [0, 1], [1, 1]] elif n == 3: a = [[1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]] else: b = _subsets(n - 1) a0 = [x + [0] for x in b] a1 = [x + [1] for x in b] a = a0 + [[0]*(n - 1) + [1]] + a1 return a def sqrtdenest(expr, max_iter=3): """Denests sqrts in an expression that contain other square roots if possible, otherwise returns the expr unchanged. This is based on the algorithms of [1]. Examples ======== >>> from sympy.simplify.sqrtdenest import sqrtdenest >>> from sympy import sqrt >>> sqrtdenest(sqrt(5 + 2 * sqrt(6))) sqrt(2) + sqrt(3) See Also ======== sympy.solvers.solvers.unrad References ========== .. [1] http://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf .. [2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots by Denesting' (available at http://www.cybertester.com/data/denest.pdf) """ expr = expand_mul(sympify(expr)) for i in range(max_iter): z = _sqrtdenest0(expr) if expr == z: return expr expr = z return expr def _sqrt_match(p): """Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to matching, sqrt(r) also has then maximal sqrt_depth among addends of p. Examples ======== >>> from sympy.functions.elementary.miscellaneous import sqrt >>> from sympy.simplify.sqrtdenest import _sqrt_match >>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5))) [1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)] """ from sympy.simplify.radsimp import split_surds p = _mexpand(p) if p.is_Number: res = (p, S.Zero, S.Zero) elif p.is_Add: pargs = sorted(p.args, key=default_sort_key) sqargs = [x**2 for x in pargs] if all(sq.is_Rational and sq.is_positive for sq in sqargs): r, b, a = split_surds(p) res = a, b, r return list(res) # to make the process canonical, the argument is included in the tuple # so when the max is selected, it will be the largest arg having a # given depth v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)] nmax = max(v, key=default_sort_key) if nmax[0] == 0: res = [] else: # select r depth, _, i = nmax r = pargs.pop(i) v.pop(i) b = S.One if r.is_Mul: bv = [] rv = [] for x in r.args: if sqrt_depth(x) < depth: bv.append(x) else: rv.append(x) b = Mul._from_args(bv) r = Mul._from_args(rv) # collect terms comtaining r a1 = [] b1 = [b] for x in v: if x[0] < depth: a1.append(x[1]) else: x1 = x[1] if x1 == r: b1.append(1) else: if x1.is_Mul: x1args = list(x1.args) if r in x1args: x1args.remove(r) b1.append(Mul(*x1args)) else: a1.append(x[1]) else: a1.append(x[1]) a = Add(*a1) b = Add(*b1) res = (a, b, r**2) else: b, r = p.as_coeff_Mul() if is_sqrt(r): res = (S.Zero, b, r**2) else: res = [] return list(res) class SqrtdenestStopIteration(StopIteration): pass def _sqrtdenest0(expr): """Returns expr after denesting its arguments.""" if is_sqrt(expr): n, d = expr.as_numer_denom() if d is S.One: # n is a square root if n.base.is_Add: args = sorted(n.base.args, key=default_sort_key) if len(args) > 2 and all((x**2).is_Integer for x in args): try: return _sqrtdenest_rec(n) except SqrtdenestStopIteration: pass expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args]))) return _sqrtdenest1(expr) else: n, d = [_sqrtdenest0(i) for i in (n, d)] return n/d if isinstance(expr, Add): cs = [] args = [] for arg in expr.args: c, a = arg.as_coeff_Mul() cs.append(c) args.append(a) if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args): return _sqrt_ratcomb(cs, args) if isinstance(expr, Expr): args = expr.args if args: return expr.func(*[_sqrtdenest0(a) for a in args]) return expr def _sqrtdenest_rec(expr): """Helper that denests the square root of three or more surds. It returns the denested expression; if it cannot be denested it throws SqrtdenestStopIteration Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k)); split expr.base = a + b*sqrt(r_k), where `a` and `b` are on Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on. See [1], section 6. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec >>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498)) -sqrt(10) + sqrt(2) + 9 + 9*sqrt(5) >>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65 >>> _sqrtdenest_rec(sqrt(w)) -sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5) """ from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds if not expr.is_Pow: return sqrtdenest(expr) if expr.base < 0: return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base)) g, a, b = split_surds(expr.base) a = a*sqrt(g) if a < b: a, b = b, a c2 = _mexpand(a**2 - b**2) if len(c2.args) > 2: g, a1, b1 = split_surds(c2) a1 = a1*sqrt(g) if a1 < b1: a1, b1 = b1, a1 c2_1 = _mexpand(a1**2 - b1**2) c_1 = _sqrtdenest_rec(sqrt(c2_1)) d_1 = _sqrtdenest_rec(sqrt(a1 + c_1)) num, den = rad_rationalize(b1, d_1) c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2))) else: c = _sqrtdenest1(sqrt(c2)) if sqrt_depth(c) > 1: raise SqrtdenestStopIteration ac = a + c if len(ac.args) >= len(expr.args): if count_ops(ac) >= count_ops(expr.base): raise SqrtdenestStopIteration d = sqrtdenest(sqrt(ac)) if sqrt_depth(d) > 1: raise SqrtdenestStopIteration num, den = rad_rationalize(b, d) r = d/sqrt(2) + num/(den*sqrt(2)) r = radsimp(r) return _mexpand(r) def _sqrtdenest1(expr, denester=True): """Return denested expr after denesting with simpler methods or, that failing, using the denester.""" from sympy.simplify.simplify import radsimp if not is_sqrt(expr): return expr a = expr.base if a.is_Atom: return expr val = _sqrt_match(a) if not val: return expr a, b, r = val # try a quick numeric denesting d2 = _mexpand(a**2 - b**2*r) if d2.is_Rational: if d2.is_positive: z = _sqrt_numeric_denest(a, b, r, d2) if z is not None: return z else: # fourth root case # sqrtdenest(sqrt(3 + 2*sqrt(3))) = # sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2 dr2 = _mexpand(-d2*r) dr = sqrt(dr2) if dr.is_Rational: z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2) if z is not None: return z/root(r, 4) else: z = _sqrt_symbolic_denest(a, b, r) if z is not None: return z if not denester or not is_algebraic(expr): return expr res = sqrt_biquadratic_denest(expr, a, b, r, d2) if res: return res # now call to the denester av0 = [a, b, r, d2] z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0] if av0[1] is None: return expr if z is not None: if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr): return expr return z return expr def _sqrt_symbolic_denest(a, b, r): """Given an expression, sqrt(a + b*sqrt(b)), return the denested expression or None. Algorithm: If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with (y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and (cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2). Examples ======== >>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest >>> from sympy import sqrt, Symbol >>> from sympy.abc import x >>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55 >>> _sqrt_symbolic_denest(a, b, r) sqrt(11 - 2*sqrt(29)) + sqrt(5) If the expression is numeric, it will be simplified: >>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2) >>> sqrtdenest(sqrt((w**2).expand())) 1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3))) Otherwise, it will only be simplified if assumptions allow: >>> w = w.subs(sqrt(3), sqrt(x + 3)) >>> sqrtdenest(sqrt((w**2).expand())) sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2) Notice that the argument of the sqrt is a square. If x is made positive then the sqrt of the square is resolved: >>> _.subs(x, Symbol('x', positive=True)) sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2) """ a, b, r = map(sympify, (a, b, r)) rval = _sqrt_match(r) if not rval: return None ra, rb, rr = rval if rb: y = Dummy('y', positive=True) try: newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y) except PolynomialError: return None if newa.degree() == 2: ca, cb, cc = newa.all_coeffs() cb += b if _mexpand(cb**2 - 4*ca*cc).equals(0): z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2) if z.is_number: z = _mexpand(Mul._from_args(z.as_content_primitive())) return z def _sqrt_numeric_denest(a, b, r, d2): """Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0 or returns None if not denested. """ from sympy.simplify.simplify import radsimp depthr = sqrt_depth(r) d = sqrt(d2) vad = a + d # sqrt_depth(res) <= sqrt_depth(vad) + 1 # sqrt_depth(expr) = depthr + 2 # there is denesting if sqrt_depth(vad)+1 < depthr + 2 # if vad**2 is Number there is a fourth root if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational: vad1 = radsimp(1/vad) return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand() def sqrt_biquadratic_denest(expr, a, b, r, d2): """denest expr = sqrt(a + b*sqrt(r)) where a, b, r are linear combinations of square roots of positive rationals on the rationals (SQRR) and r > 0, b != 0, d2 = a**2 - b**2*r > 0 If it cannot denest it returns None. ALGORITHM Search for a solution A of type SQRR of the biquadratic equation 4*A**4 - 4*a*A**2 + b**2*r = 0 (1) sqd = sqrt(a**2 - b**2*r) Choosing the sqrt to be positive, the possible solutions are A = sqrt(a/2 +/- sqd/2) Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR, so if sqd can be denested, it is done by _sqrtdenest_rec, and the result is a SQRR. Similarly for A. Examples of solutions (in both cases a and sqd are positive): Example of expr with solution sqrt(a/2 + sqd/2) but not solution sqrt(a/2 - sqd/2): expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8) a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3) Example of expr with solution sqrt(a/2 - sqd/2) but not solution sqrt(a/2 + sqd/2): w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3) expr = sqrt((w**2).expand()) a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3) sqd = 29 + 20*sqrt(3) Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2 Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest >>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8) >>> a, b, r = _sqrt_match(z**2) >>> d2 = a**2 - b**2*r >>> sqrt_biquadratic_denest(z, a, b, r, d2) sqrt(2) + sqrt(sqrt(2) + 2) + 2 """ from sympy.simplify.radsimp import radsimp, rad_rationalize if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2: return None for x in (a, b, r): for y in x.args: y2 = y**2 if not y2.is_Integer or not y2.is_positive: return None sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2)))) if sqrt_depth(sqd) > 1: return None x1, x2 = [a/2 + sqd/2, a/2 - sqd/2] # look for a solution A with depth 1 for x in (x1, x2): A = sqrtdenest(sqrt(x)) if sqrt_depth(A) > 1: continue Bn, Bd = rad_rationalize(b, _mexpand(2*A)) B = Bn/Bd z = A + B*sqrt(r) if z < 0: z = -z return _mexpand(z) return None def _denester(nested, av0, h, max_depth_level): """Denests a list of expressions that contain nested square roots. Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>. It is assumed that all of the elements of 'nested' share the same bottom-level radicand. (This is stated in the paper, on page 177, in the paragraph immediately preceding the algorithm.) When evaluating all of the arguments in parallel, the bottom-level radicand only needs to be denested once. This means that calling _denester with x arguments results in a recursive invocation with x+1 arguments; hence _denester has polynomial complexity. However, if the arguments were evaluated separately, each call would result in two recursive invocations, and the algorithm would have exponential complexity. This is discussed in the paper in the middle paragraph of page 179. """ from sympy.simplify.simplify import radsimp if h > max_depth_level: return None, None if av0[1] is None: return None, None if (av0[0] is None and all(n.is_Number for n in nested)): # no arguments are nested for f in _subsets(len(nested)): # test subset 'f' of nested p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]])) if f.count(1) > 1 and f[-1]: p = -p sqp = sqrt(p) if sqp.is_Rational: return sqp, f # got a perfect square so return its square root. # Otherwise, return the radicand from the previous invocation. return sqrt(nested[-1]), [0]*len(nested) else: R = None if av0[0] is not None: values = [av0[:2]] R = av0[2] nested2 = [av0[3], R] av0[0] = None else: values = list(filter(None, [_sqrt_match(expr) for expr in nested])) for v in values: if v[2]: # Since if b=0, r is not defined if R is not None: if R != v[2]: av0[1] = None return None, None else: R = v[2] if R is None: # return the radicand from the previous invocation return sqrt(nested[-1]), [0]*len(nested) nested2 = [_mexpand(v[0]**2) - _mexpand(R*v[1]**2) for v in values] + [R] d, f = _denester(nested2, av0, h + 1, max_depth_level) if not f: return None, None if not any(f[i] for i in range(len(nested))): v = values[-1] return sqrt(v[0] + _mexpand(v[1]*d)), f else: p = Mul(*[nested[i] for i in range(len(nested)) if f[i]]) v = _sqrt_match(p) if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]: v[0] = -v[0] v[1] = -v[1] if not f[len(nested)]: # Solution denests with square roots vad = _mexpand(v[0] + d) if vad <= 0: # return the radicand from the previous invocation. return sqrt(nested[-1]), [0]*len(nested) if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or (vad**2).is_Number): av0[1] = None return None, None sqvad = _sqrtdenest1(sqrt(vad), denester=False) if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1): av0[1] = None return None, None sqvad1 = radsimp(1/sqvad) res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2))) return res, f # sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f else: # Solution requires a fourth root s2 = _mexpand(v[1]*R) + d if s2 <= 0: return sqrt(nested[-1]), [0]*len(nested) FR, s = root(_mexpand(R), 4), sqrt(s2) return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f def _sqrt_ratcomb(cs, args): """Denest rational combinations of radicals. Based on section 5 of [1]. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.sqrtdenest import sqrtdenest >>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3)) >>> sqrtdenest(z) 0 """ from sympy.simplify.radsimp import radsimp # check if there exists a pair of sqrt that can be denested def find(a): n = len(a) for i in range(n - 1): for j in range(i + 1, n): s1 = a[i].base s2 = a[j].base p = _mexpand(s1 * s2) s = sqrtdenest(sqrt(p)) if s != sqrt(p): return s, i, j indices = find(args) if indices is None: return Add(*[c * arg for c, arg in zip(cs, args)]) s, i1, i2 = indices c2 = cs.pop(i2) args.pop(i2) a1 = args[i1] # replace a2 by s/a1 cs[i1] += radsimp(c2 * s / a1.base) return _sqrt_ratcomb(cs, args)
2184e2cf3e81493868b912ad1255ae1dd86931249ab6edf5c398b2719640ba5b
from __future__ import print_function, division from collections import defaultdict from sympy.core.function import expand_log, count_ops from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms from sympy.core.compatibility import ordered, default_sort_key, reduce from sympy.core.numbers import Integer, Rational from sympy.core.mul import prod, _keep_coeff from sympy.core.rules import Transform from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify from sympy.polys import lcm, gcd from sympy.ntheory.factor_ import multiplicity def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops): """ reduces expression by combining powers with similar bases and exponents. Notes ===== If deep is True then powsimp() will also simplify arguments of functions. By default deep is set to False. If force is True then bases will be combined without checking for assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true if x and y are both negative. You can make powsimp() only combine bases or only combine exponents by changing combine='base' or combine='exp'. By default, combine='all', which does both. combine='base' will only combine:: a a a 2x x x * y => (x*y) as well as things like 2 => 4 and combine='exp' will only combine :: a b (a + b) x * x => x combine='exp' will strictly only combine exponents in the way that used to be automatic. Also use deep=True if you need the old behavior. When combine='all', 'exp' is evaluated first. Consider the first example below for when there could be an ambiguity relating to this. This is done so things like the second example can be completely combined. If you want 'base' combined first, do something like powsimp(powsimp(expr, combine='base'), combine='exp'). Examples ======== >>> from sympy import powsimp, exp, log, symbols >>> from sympy.abc import x, y, z, n >>> powsimp(x**y*x**z*y**z, combine='all') x**(y + z)*y**z >>> powsimp(x**y*x**z*y**z, combine='exp') x**(y + z)*y**z >>> powsimp(x**y*x**z*y**z, combine='base', force=True) x**y*(x*y)**z >>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True) (n*x)**(y + z) >>> powsimp(x**z*x**y*n**z*n**y, combine='exp') n**(y + z)*x**(y + z) >>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True) (n*x)**y*(n*x)**z >>> x, y = symbols('x y', positive=True) >>> powsimp(log(exp(x)*exp(y))) log(exp(x)*exp(y)) >>> powsimp(log(exp(x)*exp(y)), deep=True) x + y Radicals with Mul bases will be combined if combine='exp' >>> from sympy import sqrt, Mul >>> x, y = symbols('x y') Two radicals are automatically joined through Mul: >>> a=sqrt(x*sqrt(y)) >>> a*a**3 == a**4 True But if an integer power of that radical has been autoexpanded then Mul does not join the resulting factors: >>> a**4 # auto expands to a Mul, no longer a Pow x**2*y >>> _*a # so Mul doesn't combine them x**2*y*sqrt(x*sqrt(y)) >>> powsimp(_) # but powsimp will (x*sqrt(y))**(5/2) >>> powsimp(x*y*a) # but won't when doing so would violate assumptions x*y*sqrt(x*sqrt(y)) """ from sympy.matrices.expressions.matexpr import MatrixSymbol def recurse(arg, **kwargs): _deep = kwargs.get('deep', deep) _combine = kwargs.get('combine', combine) _force = kwargs.get('force', force) _measure = kwargs.get('measure', measure) return powsimp(arg, _deep, _combine, _force, _measure) expr = sympify(expr) if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or ( expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))): return expr if deep or expr.is_Add or expr.is_Mul and _y not in expr.args: expr = expr.func(*[recurse(w) for w in expr.args]) if expr.is_Pow: return recurse(expr*_y, deep=False)/_y if not expr.is_Mul: return expr # handle the Mul if combine in ('exp', 'all'): # Collect base/exp data, while maintaining order in the # non-commutative parts of the product c_powers = defaultdict(list) nc_part = [] newexpr = [] coeff = S.One for term in expr.args: if term.is_Rational: coeff *= term continue if term.is_Pow: term = _denest_pow(term) if term.is_commutative: b, e = term.as_base_exp() if deep: b, e = [recurse(i) for i in [b, e]] if b.is_Pow or isinstance(b, exp): # don't let smthg like sqrt(x**a) split into x**a, 1/2 # or else it will be joined as x**(a/2) later b, e = b**e, S.One c_powers[b].append(e) else: # This is the logic that combines exponents for equal, # but non-commutative bases: A**x*A**y == A**(x+y). if nc_part: b1, e1 = nc_part[-1].as_base_exp() b2, e2 = term.as_base_exp() if (b1 == b2 and e1.is_commutative and e2.is_commutative): nc_part[-1] = Pow(b1, Add(e1, e2)) continue nc_part.append(term) # add up exponents of common bases for b, e in ordered(iter(c_powers.items())): # allow 2**x/4 -> 2**(x - 2); don't do this when b and e are # Numbers since autoevaluation will undo it, e.g. # 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4 if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \ coeff is not S.One and b not in (S.One, S.NegativeOne)): m = multiplicity(abs(b), abs(coeff)) if m: e.append(m) coeff /= b**m c_powers[b] = Add(*e) if coeff is not S.One: if coeff in c_powers: c_powers[coeff] += S.One else: c_powers[coeff] = S.One # convert to plain dictionary c_powers = dict(c_powers) # check for base and inverted base pairs be = list(c_powers.items()) skip = set() # skip if we already saw them for b, e in be: if b in skip: continue bpos = b.is_positive or b.is_polar if bpos: binv = 1/b if b != binv and binv in c_powers: if b.as_numer_denom()[0] is S.One: c_powers.pop(b) c_powers[binv] -= e else: skip.add(binv) e = c_powers.pop(binv) c_powers[b] -= e # check for base and negated base pairs be = list(c_powers.items()) _n = S.NegativeOne for b, e in be: if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers: if (b.is_positive is not None or e.is_integer): if e.is_integer or b.is_negative: c_powers[-b] += c_powers.pop(b) else: # (-b).is_positive so use its e e = c_powers.pop(-b) c_powers[b] += e if _n in c_powers: c_powers[_n] += e else: c_powers[_n] = e # filter c_powers and convert to a list c_powers = [(b, e) for b, e in c_powers.items() if e] # ============================================================== # check for Mul bases of Rational powers that can be combined with # separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) -> # (x*sqrt(x*y))**(3/2) # ---------------- helper functions def ratq(x): '''Return Rational part of x's exponent as it appears in the bkey. ''' return bkey(x)[0][1] def bkey(b, e=None): '''Return (b**s, c.q), c.p where e -> c*s. If e is not given then it will be taken by using as_base_exp() on the input b. e.g. x**3/2 -> (x, 2), 3 x**y -> (x**y, 1), 1 x**(2*y/3) -> (x**y, 3), 2 exp(x/2) -> (exp(a), 2), 1 ''' if e is not None: # coming from c_powers or from below if e.is_Integer: return (b, S.One), e elif e.is_Rational: return (b, Integer(e.q)), Integer(e.p) else: c, m = e.as_coeff_Mul(rational=True) if c is not S.One: if m.is_integer: return (b, Integer(c.q)), m*Integer(c.p) return (b**m, Integer(c.q)), Integer(c.p) else: return (b**e, S.One), S.One else: return bkey(*b.as_base_exp()) def update(b): '''Decide what to do with base, b. If its exponent is now an integer multiple of the Rational denominator, then remove it and put the factors of its base in the common_b dictionary or update the existing bases if necessary. If it has been zeroed out, simply remove the base. ''' newe, r = divmod(common_b[b], b[1]) if not r: common_b.pop(b) if newe: for m in Mul.make_args(b[0]**newe): b, e = bkey(m) if b not in common_b: common_b[b] = 0 common_b[b] += e if b[1] != 1: bases.append(b) # ---------------- end of helper functions # assemble a dictionary of the factors having a Rational power common_b = {} done = [] bases = [] for b, e in c_powers: b, e = bkey(b, e) if b in common_b: common_b[b] = common_b[b] + e else: common_b[b] = e if b[1] != 1 and b[0].is_Mul: bases.append(b) bases.sort(key=default_sort_key) # this makes tie-breaking canonical bases.sort(key=measure, reverse=True) # handle longest first for base in bases: if base not in common_b: # it may have been removed already continue b, exponent = base last = False # True when no factor of base is a radical qlcm = 1 # the lcm of the radical denominators while True: bstart = b qstart = qlcm bb = [] # list of factors ee = [] # (factor's expo. and it's current value in common_b) for bi in Mul.make_args(b): bib, bie = bkey(bi) if bib not in common_b or common_b[bib] < bie: ee = bb = [] # failed break ee.append([bie, common_b[bib]]) bb.append(bib) if ee: # find the number of integral extractions possible # e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1 min1 = ee[0][1]//ee[0][0] for i in range(1, len(ee)): rat = ee[i][1]//ee[i][0] if rat < 1: break min1 = min(min1, rat) else: # update base factor counts # e.g. if ee = [(2, 5), (3, 6)] then min1 = 2 # and the new base counts will be 5-2*2 and 6-2*3 for i in range(len(bb)): common_b[bb[i]] -= min1*ee[i][0] update(bb[i]) # update the count of the base # e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y) # will increase by 4 to give bkey (x*sqrt(y), 2, 5) common_b[base] += min1*qstart*exponent if (last # no more radicals in base or len(common_b) == 1 # nothing left to join with or all(k[1] == 1 for k in common_b) # no rad's in common_b ): break # see what we can exponentiate base by to remove any radicals # so we know what to search for # e.g. if base were x**(1/2)*y**(1/3) then we should # exponentiate by 6 and look for powers of x and y in the ratio # of 2 to 3 qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)]) if qlcm == 1: break # we are done b = bstart**qlcm qlcm *= qstart if all(ratq(bi) == 1 for bi in Mul.make_args(b)): last = True # we are going to be done after this next pass # this base no longer can find anything to join with and # since it was longer than any other we are done with it b, q = base done.append((b, common_b.pop(base)*Rational(1, q))) # update c_powers and get ready to continue with powsimp c_powers = done # there may be terms still in common_b that were bases that were # identified as needing processing, so remove those, too for (b, q), e in common_b.items(): if (b.is_Pow or isinstance(b, exp)) and \ q is not S.One and not b.exp.is_Rational: b, be = b.as_base_exp() b = b**(be/q) else: b = root(b, q) c_powers.append((b, e)) check = len(c_powers) c_powers = dict(c_powers) assert len(c_powers) == check # there should have been no duplicates # ============================================================== # rebuild the expression newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()])) if combine == 'exp': return expr.func(newexpr, expr.func(*nc_part)) else: return recurse(expr.func(*nc_part), combine='base') * \ recurse(newexpr, combine='base') elif combine == 'base': # Build c_powers and nc_part. These must both be lists not # dicts because exp's are not combined. c_powers = [] nc_part = [] for term in expr.args: if term.is_commutative: c_powers.append(list(term.as_base_exp())) else: nc_part.append(term) # Pull out numerical coefficients from exponent if assumptions allow # e.g., 2**(2*x) => 4**x for i in range(len(c_powers)): b, e = c_powers[i] if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar): continue exp_c, exp_t = e.as_coeff_Mul(rational=True) if exp_c is not S.One and exp_t is not S.One: c_powers[i] = [Pow(b, exp_c), exp_t] # Combine bases whenever they have the same exponent and # assumptions allow # first gather the potential bases under the common exponent c_exp = defaultdict(list) for b, e in c_powers: if deep: e = recurse(e) c_exp[e].append(b) del c_powers # Merge back in the results of the above to form a new product c_powers = defaultdict(list) for e in c_exp: bases = c_exp[e] # calculate the new base for e if len(bases) == 1: new_base = bases[0] elif e.is_integer or force: new_base = expr.func(*bases) else: # see which ones can be joined unk = [] nonneg = [] neg = [] for bi in bases: if bi.is_negative: neg.append(bi) elif bi.is_nonnegative: nonneg.append(bi) elif bi.is_polar: nonneg.append( bi) # polar can be treated like non-negative else: unk.append(bi) if len(unk) == 1 and not neg or len(neg) == 1 and not unk: # a single neg or a single unk can join the rest nonneg.extend(unk + neg) unk = neg = [] elif neg: # their negative signs cancel in groups of 2*q if we know # that e = p/q else we have to treat them as unknown israt = False if e.is_Rational: israt = True else: p, d = e.as_numer_denom() if p.is_integer and d.is_integer: israt = True if israt: neg = [-w for w in neg] unk.extend([S.NegativeOne]*len(neg)) else: unk.extend(neg) neg = [] del israt # these shouldn't be joined for b in unk: c_powers[b].append(e) # here is a new joined base new_base = expr.func(*(nonneg + neg)) # if there are positive parts they will just get separated # again unless some change is made def _terms(e): # return the number of terms of this expression # when multiplied out -- assuming no joining of terms if e.is_Add: return sum([_terms(ai) for ai in e.args]) if e.is_Mul: return prod([_terms(mi) for mi in e.args]) return 1 xnew_base = expand_mul(new_base, deep=False) if len(Add.make_args(xnew_base)) < _terms(new_base): new_base = factor_terms(xnew_base) c_powers[new_base].append(e) # break out the powers from c_powers now c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e] # we're done return expr.func(*(c_part + nc_part)) else: raise ValueError("combine must be one of ('all', 'exp', 'base').") def powdenest(eq, force=False, polar=False): r""" Collect exponents on powers as assumptions allow. Given ``(bb**be)**e``, this can be simplified as follows: * if ``bb`` is positive, or * ``e`` is an integer, or * ``|be| < 1`` then this simplifies to ``bb**(be*e)`` Given a product of powers raised to a power, ``(bb1**be1 * bb2**be2...)**e``, simplification can be done as follows: - if e is positive, the gcd of all bei can be joined with e; - all non-negative bb can be separated from those that are negative and their gcd can be joined with e; autosimplification already handles this separation. - integer factors from powers that have integers in the denominator of the exponent can be removed from any term and the gcd of such integers can be joined with e Setting ``force`` to True will make symbols that are not explicitly negative behave as though they are positive, resulting in more denesting. Setting ``polar`` to True will do simplifications on the Riemann surface of the logarithm, also resulting in more denestings. When there are sums of logs in exp() then a product of powers may be obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``. Examples ======== >>> from sympy.abc import a, b, x, y, z >>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest >>> powdenest((x**(2*a/3))**(3*x)) (x**(2*a/3))**(3*x) >>> powdenest(exp(3*x*log(2))) 2**(3*x) Assumptions may prevent expansion: >>> powdenest(sqrt(x**2)) sqrt(x**2) >>> p = symbols('p', positive=True) >>> powdenest(sqrt(p**2)) p No other expansion is done. >>> i, j = symbols('i,j', integer=True) >>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j x**(x*(i + j)) But exp() will be denested by moving all non-log terms outside of the function; this may result in the collapsing of the exp to a power with a different base: >>> powdenest(exp(3*y*log(x))) x**(3*y) >>> powdenest(exp(y*(log(a) + log(b)))) (a*b)**y >>> powdenest(exp(3*(log(a) + log(b)))) a**3*b**3 If assumptions allow, symbols can also be moved to the outermost exponent: >>> i = Symbol('i', integer=True) >>> powdenest(((x**(2*i))**(3*y))**x) ((x**(2*i))**(3*y))**x >>> powdenest(((x**(2*i))**(3*y))**x, force=True) x**(6*i*x*y) >>> powdenest(((x**(2*a/3))**(3*y/i))**x) ((x**(2*a/3))**(3*y/i))**x >>> powdenest((x**(2*i)*y**(4*i))**z, force=True) (x*y**2)**(2*i*z) >>> n = Symbol('n', negative=True) >>> powdenest((x**i)**y, force=True) x**(i*y) >>> powdenest((n**i)**x, force=True) (n**i)**x """ from sympy.simplify.simplify import posify if force: eq, rep = posify(eq) return powdenest(eq, force=False).xreplace(rep) if polar: eq, rep = polarify(eq) return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep) new = powsimp(sympify(eq)) return new.xreplace(Transform( _denest_pow, filter=lambda m: m.is_Pow or isinstance(m, exp))) _y = Dummy('y') def _denest_pow(eq): """ Denest powers. This is a helper function for powdenest that performs the actual transformation. """ from sympy.simplify.simplify import logcombine b, e = eq.as_base_exp() if b.is_Pow or isinstance(b.func, exp) and e != 1: new = b._eval_power(e) if new is not None: eq = new b, e = new.as_base_exp() # denest exp with log terms in exponent if b is S.Exp1 and e.is_Mul: logs = [] other = [] for ei in e.args: if any(isinstance(ai, log) for ai in Add.make_args(ei)): logs.append(ei) else: other.append(ei) logs = logcombine(Mul(*logs)) return Pow(exp(logs), Mul(*other)) _, be = b.as_base_exp() if be is S.One and not (b.is_Mul or b.is_Rational and b.q != 1 or b.is_positive): return eq # denest eq which is either pos**e or Pow**e or Mul**e or # Mul(b1**e1, b2**e2) # handle polar numbers specially polars, nonpolars = [], [] for bb in Mul.make_args(b): if bb.is_polar: polars.append(bb.as_base_exp()) else: nonpolars.append(bb) if len(polars) == 1 and not polars[0][0].is_Mul: return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e) elif polars: return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \ *powdenest(Mul(*nonpolars)**e) if b.is_Integer: # use log to see if there is a power here logb = expand_log(log(b)) if logb.is_Mul: c, logb = logb.args e *= c base = logb.args[0] return Pow(base, e) # if b is not a Mul or any factor is an atom then there is nothing to do if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)): return eq # let log handle the case of the base of the argument being a Mul, e.g. # sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we # will take the log, expand it, and then factor out the common powers that # now appear as coefficient. We do this manually since terms_gcd pulls out # fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2; # gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but # we want 3*x. Neither work with noncommutatives. def nc_gcd(aa, bb): a, b = [i.as_coeff_Mul() for i in [aa, bb]] c = gcd(a[0], b[0]).as_numer_denom()[0] g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0])) return _keep_coeff(c, g) glogb = expand_log(log(b)) if glogb.is_Add: args = glogb.args g = reduce(nc_gcd, args) if g != 1: cg, rg = g.as_coeff_Mul() glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args])) # now put the log back together again if isinstance(glogb, log) or not glogb.is_Mul: if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp): glogb = _denest_pow(glogb.args[0]) if (abs(glogb.exp) < 1) == True: return Pow(glogb.base, glogb.exp*e) return eq # the log(b) was a Mul so join any adds with logcombine add = [] other = [] for a in glogb.args: if a.is_Add: add.append(a) else: other.append(a) return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
f8656eecc0badc5b1c0e23144335147bcdfe1215e28dfffbc939859a542d0dd8
# References : # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/ # https://en.wikipedia.org/wiki/Quaternion from __future__ import print_function from sympy import Rational from sympy import re, im, conjugate from sympy import sqrt, sin, cos, acos, exp, ln from sympy import trigsimp from sympy import integrate from sympy import Matrix from sympy import sympify from sympy.core.expr import Expr class Quaternion(Expr): """Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in (a + b*i + c*j + d*k). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q 1 + 2*i + 3*j + 4*k Quaternions over complex fields can be defined as : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, I >>> x = symbols('x') >>> q1 = Quaternion(x, x**3, x, x**2, real_field = False) >>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q1 x + x**3*i + x*j + x**2*k >>> q2 (3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k """ _op_priority = 11.0 is_commutative = False def __new__(cls, a=0, b=0, c=0, d=0, real_field=True): a = sympify(a) b = sympify(b) c = sympify(c) d = sympify(d) if any(i.is_commutative is False for i in [a, b, c, d]): raise ValueError("arguments have to be commutative") else: obj = Expr.__new__(cls, a, b, c, d) obj._a = a obj._b = b obj._c = c obj._d = d obj._real_field = real_field return obj @property def a(self): return self._a @property def b(self): return self._b @property def c(self): return self._c @property def d(self): return self._d @property def real_field(self): return self._real_field @classmethod def from_axis_angle(cls, vector, angle): """Returns a rotation quaternion given the axis and the angle of rotation. Parameters ========== vector : tuple of three numbers The vector representation of the given axis. angle : number The angle by which axis is rotated (in radians). Returns ======= Quaternion The normalized rotation quaternion calculated from the given axis and the angle of rotation. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import pi, sqrt >>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3) >>> q 1/2 + 1/2*i + 1/2*j + 1/2*k """ (x, y, z) = vector norm = sqrt(x**2 + y**2 + z**2) (x, y, z) = (x / norm, y / norm, z / norm) s = sin(angle * Rational(1, 2)) a = cos(angle * Rational(1, 2)) b = x * s c = y * s d = z * s return cls(a, b, c, d).normalize() @classmethod def from_rotation_matrix(cls, M): """Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1). Parameters ========== M : Matrix Input matrix to be converted to equivalent quaternion. M must be special orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized. Returns ======= Quaternion The quaternion equivalent to given matrix. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import Matrix, symbols, cos, sin, trigsimp >>> x = symbols('x') >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]]) >>> q = trigsimp(Quaternion.from_rotation_matrix(M)) >>> q sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))/2*k """ absQ = M.det()**Rational(1, 3) a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2 b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2 c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2 d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2 try: b = Quaternion.__copysign(b, M[2, 1] - M[1, 2]) c = Quaternion.__copysign(c, M[0, 2] - M[2, 0]) d = Quaternion.__copysign(d, M[1, 0] - M[0, 1]) except Exception: pass return Quaternion(a, b, c, d) @staticmethod def __copysign(x, y): # Takes the sign from the second term and sets the sign of the first # without altering the magnitude. if y == 0: return 0 return x if x*y > 0 else -x def __add__(self, other): return self.add(other) def __radd__(self, other): return self.add(other) def __sub__(self, other): return self.add(other*-1) def __mul__(self, other): return self._generic_mul(self, other) def __rmul__(self, other): return self._generic_mul(other, self) def __pow__(self, p): return self.pow(p) def __neg__(self): return Quaternion(-self._a, -self._b, -self._c, -self.d) def __truediv__(self, other): return self * sympify(other)**-1 __div__ = __truediv__ def __rtruediv__(self, other): return sympify(other) * self**-1 __rdiv__ = __rtruediv__ def _eval_Integral(self, *args): return self.integrate(*args) def diff(self, *symbols, **kwargs): kwargs.setdefault('evaluate', True) return self.func(*[a.diff(*symbols, **kwargs) for a in self.args]) def add(self, other): """Adds quaternions. Parameters ========== other : Quaternion The quaternion to add to current (self) quaternion. Returns ======= Quaternion The resultant quaternion after adding self to other Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> q1.add(q2) 6 + 8*i + 10*j + 12*k >>> q1 + 5 6 + 2*i + 3*j + 4*k >>> x = symbols('x', real = True) >>> q1.add(x) (x + 1) + 2*i + 3*j + 4*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q3.add(2 + 3*I) (5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k """ q1 = self q2 = sympify(other) # If q2 is a number or a sympy expression instead of a quaternion if not isinstance(q2, Quaternion): if q1.real_field and q2.is_complex: return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d) elif q2.is_commutative: return Quaternion(q1.a + q2, q1.b, q1.c, q1.d) else: raise ValueError("Only commutative expressions can be added with a Quaternion.") return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d + q2.d) def mul(self, other): """Multiplies quaternions. Parameters ========== other : Quaternion or symbol The quaternion to multiply to current (self) quaternion. Returns ======= Quaternion The resultant quaternion after multiplying self with other Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> q1.mul(q2) (-60) + 12*i + 30*j + 24*k >>> q1.mul(2) 2 + 4*i + 6*j + 8*k >>> x = symbols('x', real = True) >>> q1.mul(x) x + 2*x*i + 3*x*j + 4*x*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q3.mul(2 + 3*I) (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k """ return self._generic_mul(self, other) @staticmethod def _generic_mul(q1, q2): """Generic multiplication. Parameters ========== q1 : Quaternion or symbol q2 : Quaternion or symbol It's important to note that if neither q1 nor q2 is a Quaternion, this function simply returns q1 * q2. Returns ======= Quaternion The resultant quaternion after multiplying q1 and q2 Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import Symbol >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> Quaternion._generic_mul(q1, q2) (-60) + 12*i + 30*j + 24*k >>> Quaternion._generic_mul(q1, 2) 2 + 4*i + 6*j + 8*k >>> x = Symbol('x', real = True) >>> Quaternion._generic_mul(q1, x) x + 2*x*i + 3*x*j + 4*x*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> Quaternion._generic_mul(q3, 2 + 3*I) (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k """ q1 = sympify(q1) q2 = sympify(q2) # None is a Quaternion: if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion): return q1 * q2 # If q1 is a number or a sympy expression instead of a quaternion if not isinstance(q1, Quaternion): if q2.real_field and q1.is_complex: return Quaternion(re(q1), im(q1), 0, 0) * q2 elif q1.is_commutative: return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d) else: raise ValueError("Only commutative expressions can be multiplied with a Quaternion.") # If q2 is a number or a sympy expression instead of a quaternion if not isinstance(q2, Quaternion): if q1.real_field and q2.is_complex: return q1 * Quaternion(re(q2), im(q2), 0, 0) elif q2.is_commutative: return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d) else: raise ValueError("Only commutative expressions can be multiplied with a Quaternion.") return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a, q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b, -q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c, q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d) def _eval_conjugate(self): """Returns the conjugate of the quaternion.""" q = self return Quaternion(q.a, -q.b, -q.c, -q.d) def norm(self): """Returns the norm of the quaternion.""" q = self # trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms # arise when from_axis_angle is used). return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2)) def normalize(self): """Returns the normalized form of the quaternion.""" q = self return q * (1/q.norm()) def inverse(self): """Returns the inverse of the quaternion.""" q = self if not q.norm(): raise ValueError("Cannot compute inverse for a quaternion with zero norm") return conjugate(q) * (1/q.norm()**2) def pow(self, p): """Finds the pth power of the quaternion. Parameters ========== p : int Power to be applied on quaternion. Returns ======= Quaternion Returns the p-th power of the current quaternion. Returns the inverse if p = -1. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.pow(4) 668 + (-224)*i + (-336)*j + (-448)*k """ p = sympify(p) q = self if p == -1: return q.inverse() res = 1 if not p.is_Integer: return NotImplemented if p < 0: q, p = q.inverse(), -p while p > 0: if p % 2 == 1: res = q * res p = p//2 q = q * q return res def exp(self): """Returns the exponential of q (e^q). Returns ======= Quaternion Exponential of q (e^q). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.exp() E*cos(sqrt(29)) + 2*sqrt(29)*E*sin(sqrt(29))/29*i + 3*sqrt(29)*E*sin(sqrt(29))/29*j + 4*sqrt(29)*E*sin(sqrt(29))/29*k """ # exp(q) = e^a(cos||v|| + v/||v||*sin||v||) q = self vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2) a = exp(q.a) * cos(vector_norm) b = exp(q.a) * sin(vector_norm) * q.b / vector_norm c = exp(q.a) * sin(vector_norm) * q.c / vector_norm d = exp(q.a) * sin(vector_norm) * q.d / vector_norm return Quaternion(a, b, c, d) def _ln(self): """Returns the natural logarithm of the quaternion (_ln(q)). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q._ln() log(sqrt(30)) + 2*sqrt(29)*acos(sqrt(30)/30)/29*i + 3*sqrt(29)*acos(sqrt(30)/30)/29*j + 4*sqrt(29)*acos(sqrt(30)/30)/29*k """ # _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||) q = self vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2) q_norm = q.norm() a = ln(q_norm) b = q.b * acos(q.a / q_norm) / vector_norm c = q.c * acos(q.a / q_norm) / vector_norm d = q.d * acos(q.a / q_norm) / vector_norm return Quaternion(a, b, c, d) def pow_cos_sin(self, p): """Computes the pth power in the cos-sin form. Parameters ========== p : int Power to be applied on quaternion. Returns ======= Quaternion The p-th power in the cos-sin form. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.pow_cos_sin(4) 900*cos(4*acos(sqrt(30)/30)) + 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i + 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j + 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k """ # q = ||q||*(cos(a) + u*sin(a)) # q^p = ||q||^p * (cos(p*a) + u*sin(p*a)) q = self (v, angle) = q.to_axis_angle() q2 = Quaternion.from_axis_angle(v, p * angle) return q2 * (q.norm()**p) def integrate(self, *args): # TODO: is this expression correct? return Quaternion(integrate(self.a, *args), integrate(self.b, *args), integrate(self.c, *args), integrate(self.d, *args)) @staticmethod def rotate_point(pin, r): """Returns the coordinates of the point pin(a 3 tuple) after rotation. Parameters ========== pin : tuple A 3-element tuple of coordinates of a point. This point will be the axis of rotation. r Angle to be rotated. Returns ======= tuple The coordinates of the quaternion after rotation. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q)) (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1) >>> (axis, angle) = q.to_axis_angle() >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle))) (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1) """ if isinstance(r, tuple): # if r is of the form (vector, angle) q = Quaternion.from_axis_angle(r[0], r[1]) else: # if r is a quaternion q = r.normalize() pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q) return (pout.b, pout.c, pout.d) def to_axis_angle(self): """Returns the axis and angle of rotation of a quaternion Returns ======= tuple Tuple of (axis, angle) Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 1, 1, 1) >>> (axis, angle) = q.to_axis_angle() >>> axis (sqrt(3)/3, sqrt(3)/3, sqrt(3)/3) >>> angle 2*pi/3 """ q = self if q.a.is_negative: q = q * -1 q = q.normalize() angle = trigsimp(2 * acos(q.a)) # Since quaternion is normalised, q.a is less than 1. s = sqrt(1 - q.a*q.a) x = trigsimp(q.b / s) y = trigsimp(q.c / s) z = trigsimp(q.d / s) v = (x, y, z) t = (v, angle) return t def to_rotation_matrix(self, v=None): """Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed. Parameters ========== v : tuple or None Default value: None Returns ======= tuple Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(q.to_rotation_matrix()) Matrix([ [cos(x), -sin(x), 0], [sin(x), cos(x), 0], [ 0, 0, 1]]) Generates a 4x4 transformation matrix (used for rotation about a point other than the origin) if the point(v) is passed as an argument. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(q.to_rotation_matrix((1, 1, 1))) Matrix([ [cos(x), -sin(x), 0, sin(x) - cos(x) + 1], [sin(x), cos(x), 0, -sin(x) - cos(x) + 1], [ 0, 0, 1, 0], [ 0, 0, 0, 1]]) """ q = self s = q.norm()**-2 m00 = 1 - 2*s*(q.c**2 + q.d**2) m01 = 2*s*(q.b*q.c - q.d*q.a) m02 = 2*s*(q.b*q.d + q.c*q.a) m10 = 2*s*(q.b*q.c + q.d*q.a) m11 = 1 - 2*s*(q.b**2 + q.d**2) m12 = 2*s*(q.c*q.d - q.b*q.a) m20 = 2*s*(q.b*q.d - q.c*q.a) m21 = 2*s*(q.c*q.d + q.b*q.a) m22 = 1 - 2*s*(q.b**2 + q.c**2) if not v: return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]]) else: (x, y, z) = v m03 = x - x*m00 - y*m01 - z*m02 m13 = y - x*m10 - y*m11 - z*m12 m23 = z - x*m20 - y*m21 - z*m22 m30 = m31 = m32 = 0 m33 = 1 return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13], [m20, m21, m22, m23], [m30, m31, m32, m33]])
97363fe59e7baedc371a176ad27182255a9428fc25f307797fa899ad20fe00ce
import bisect import itertools from functools import reduce from collections import defaultdict from sympy import Indexed, IndexedBase, Tuple, Sum, Add, S, Integer, diagonalize_vector, DiagonalizeVector from sympy.combinatorics import Permutation from sympy.core.basic import Basic from sympy.core.compatibility import accumulate, default_sort_key from sympy.core.mul import Mul from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions import (MatAdd, MatMul, Trace, Transpose, MatrixSymbol) from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement from sympy.tensor.array import NDimArray class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayTensorProduct, CodegenArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = CodegenArrayTensorProduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = CodegenArrayContraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class CodegenArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) if len(contraction_indices) == 0: return expr if isinstance(expr, CodegenArrayContraction): return cls._flatten(expr, *contraction_indices) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all([i not in cind for cind in contraction_indices])} obj._free_indices_to_position = free_indices_to_position shape = expr.shape cls._validate(expr, *contraction_indices) if shape: shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape return obj @staticmethod def _validate(expr, *contraction_indices): shape = expr.shape if shape is None: return # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len(set(shape[j] for j in i if shape[j] != -1)) != 1: raise ValueError("contracting indices of different dimensions") @classmethod def _push_indices_down(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) def split_multiple_contractions(self): """ Recognize multiple contractions and attempt at rewriting them as paired-contractions. """ from sympy import ask, Q contraction_indices = self.contraction_indices if isinstance(self.expr, CodegenArrayTensorProduct): args = list(self.expr.args) else: args = [self.expr] # TODO: unify API, best location in CodegenArrayTensorProduct subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v:k for k, v in mapping.items()} new_contraction_indices = [] for indl, links in enumerate(contraction_indices): if len(links) <= 2: new_contraction_indices.append(links) continue # Check multiple contractions: # # Examples: # # * `A_ij b_j0 C_jk` ===> `A*DiagonalizeVector(b)*C` # # Care for: # - matrix being diagonalized (i.e. `A_ii`) # - vectors being diagonalized (i.e. `a_i0`) # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) args_updates = {} if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError not_vectors = [] vectors = [] for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] other_arg_pos = 1-arg_pos other_arg_abs = reverse_mapping[arg_ind, other_arg_pos] if (((1 not in mat.shape) and (not ask(Q.diagonal(mat)))) or ((current_dimension == 1) is True and mat.shape != (1, 1)) or any([other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl]) ): not_vectors.append((arg_ind, arg_pos)) continue args_updates[arg_ind] = diagonalize_vector(mat) vectors.append((arg_ind, arg_pos)) vectors.append((arg_ind, 1-arg_pos)) if len(not_vectors) > 2: new_contraction_indices.append(links) continue if len(not_vectors) == 0: new_sequence = vectors[:1] + vectors[2:] elif len(not_vectors) == 1: new_sequence = not_vectors[:1] + vectors[:-1] else: new_sequence = not_vectors[:1] + vectors + not_vectors[1:] for i in range(0, len(new_sequence) - 1, 2): arg1, pos1 = new_sequence[i] arg2, pos2 = new_sequence[i+1] if arg1 == arg2: raise NotImplementedError continue abspos1 = reverse_mapping[arg1, pos1] abspos2 = reverse_mapping[arg2, pos2] new_contraction_indices.append((abspos1, abspos2)) for ind, newarg in args_updates.items(): args[ind] = newarg return CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ) def flatten_contraction_of_diagonal(self): if not isinstance(self.expr, CodegenArrayDiagonal): return self contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices) new_contraction_indices = [] diagonal_indices = self.expr.diagonal_indices[:] for i in contraction_down: contraction_group = list(i) for j in i: diagonal_with = [k for k in diagonal_indices if j in k] contraction_group.extend([l for k in diagonal_with for l in k]) diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with] new_contraction_indices.append(sorted(set(contraction_group))) new_contraction_indices = CodegenArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices) return CodegenArrayContraction( CodegenArrayDiagonal( self.expr.expr, *diagonal_indices ), *new_contraction_indices ) @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occurs. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = CodegenArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return CodegenArrayContraction(expr.expr, *contraction_indices) def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = CodegenArrayContraction.from_MatMul(C*D*A*B) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(C, D, A, B), (1, 2), (3, 4), (5, 6)) >>> cg.sort_args_by_name() CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (0, 7), (1, 2), (5, 6)) """ expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = CodegenArrayTensorProduct(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return CodegenArrayContraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = CodegenArrayContraction.from_MatMul(A*B*C*D) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (3, 4), (5, 6)) >>> cg._get_contraction_links() {0: {1: (1, 0)}, 1: {0: (0, 1), 1: (2, 0)}, 2: {0: (1, 1), 1: (3, 0)}, 3: {0: (2, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices) return dlinks @staticmethod def from_MatMul(expr): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*args), *contractions ) def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () class CodegenArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] args = cls._flatten(args) ranks = [get_rank(arg) for arg in args] if len(args) == 1: return args[0] # If there are contraction objects inside, transform the whole # expression into `CodegenArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, CodegenArrayContraction)} if contractions: cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = cls(*[arg.expr if isinstance(arg, CodegenArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return CodegenArrayContraction(tp, *contraction_indices) #newargs = [i for i in args if hasattr(i, "shape")] #coeff = reduce(lambda x, y: x*y, [i for i in args if not hasattr(i, "shape")], S.One) #newargs[0] *= coeff obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) return obj @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args class CodegenArrayElementwiseAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] obj = Basic.__new__(cls, *args) ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") obj._subranks = ranks shapes = [arg.shape for arg in args] if len(set([i for i in shapes if i is not None])) > 1: raise ValueError("mismatching shapes in addition") if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] return obj class CodegenArrayPermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayPermuteDims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = CodegenArrayPermuteDims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.codegen.array_utils import recognize_matrix_expression >>> recognize_matrix_expression(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = CodegenArrayPermuteDims(N, [1, 0]) >>> cg.shape (2, 3) """ def __new__(cls, expr, permutation): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) plist = permutation.array_form if plist == sorted(plist): return expr obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = expr.shape if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) return obj @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] def nest_permutation(self): r""" Nest the permutation down the expression tree. Examples ======== >>> from sympy.codegen.array_utils import (CodegenArrayPermuteDims, CodegenArrayTensorProduct, nest_permutation) >>> from sympy import MatrixSymbol >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) >>> cg CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), (0 1)(2 3)) >>> nest_permutation(cg) CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, (0 1)), CodegenArrayPermuteDims(N, (0 1))) In ``cg`` both ``M`` and ``N`` are transposed. The cyclic representation of the permutation after the tensor product is `(0 1)(2 3)`. After nesting it down the expression tree, the usual transposition permutation `(0 1)` appears. """ expr = self.expr if isinstance(expr, CodegenArrayTensorProduct): # Check if the permutation keeps the subranks separated: subranks = expr.subranks subrank = expr.subrank() l = list(range(subrank)) p = [self.permutation(i) for i in l] dargs = {} counter = 0 for i, arg in zip(subranks, expr.args): p0 = p[counter:counter+i] counter += i s0 = sorted(p0) if not all([s0[j+1]-s0[j] == 1 for j in range(len(s0)-1)]): # Cross-argument permutations, impossible to nest the object: return self subpermutation = [p0.index(j) for j in s0] dargs[s0[0]] = CodegenArrayPermuteDims(arg, subpermutation) # Read the arguments sorting the according to the keys of the dict: args = [dargs[i] for i in sorted(dargs)] return CodegenArrayTensorProduct(*args) elif isinstance(expr, CodegenArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = self.permutation.cyclic_form newcycles = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return CodegenArrayContraction(CodegenArrayPermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayPermuteDims(arg, self.permutation) for arg in expr.args]) return self def nest_permutation(expr): if isinstance(expr, CodegenArrayPermuteDims): return expr.nest_permutation() else: return expr class CodegenArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] if isinstance(expr, CodegenArrayDiagonal): return cls._flatten(expr, *diagonal_indices) shape = expr.shape if shape is not None: diagonal_indices = [i for i in diagonal_indices if len(i) > 1] cls._validate(expr, *diagonal_indices) #diagonal_indices = cls._remove_trivial_dimensions(shape, *diagonal_indices) # Get new shape: shp1 = tuple(shp for i,shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) shp2 = tuple(shape[i[0]] for i in diagonal_indices) shape = shp1 + shp2 if len(diagonal_indices) == 0: return expr obj = Basic.__new__(cls, expr, *diagonal_indices) obj._subranks = _get_subranks(expr) obj._shape = shape return obj @staticmethod def _validate(expr, *diagonal_indices): # Check that no diagonalization happens on indices with mismatched # dimensions: shape = expr.shape for i in diagonal_indices: if len(set(shape[j] for j in i)) != 1: raise ValueError("diagonalizing indices of different dimensions") @staticmethod def _remove_trivial_dimensions(shape, *diagonal_indices): return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1] @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return CodegenArrayDiagonal(expr.expr, *diagonal_indices) @classmethod def _push_indices_down(cls, diagonal_indices, indices): flattened_contraction_indices = [j for i in diagonal_indices for j in i[1:]] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, diagonal_indices, indices): flattened_contraction_indices = [j for i in diagonal_indices for j in i[1:]] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) def transform_to_product(self): from sympy import ask, Q diagonal_indices = self.diagonal_indices if isinstance(self.expr, CodegenArrayContraction): # invert Diagonal and Contraction: diagonal_down = CodegenArrayContraction._push_indices_down( self.expr.contraction_indices, diagonal_indices ) newexpr = CodegenArrayDiagonal( self.expr.expr, *diagonal_down ).transform_to_product() contraction_up = newexpr._push_indices_up( diagonal_down, self.expr.contraction_indices ) return CodegenArrayContraction( newexpr, *contraction_up ) if not isinstance(self.expr, CodegenArrayTensorProduct): return self args = list(self.expr.args) # TODO: unify API subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) new_contraction_indices = [] drop_diagonal_indices = [] for indl, links in enumerate(diagonal_indices): if len(links) > 2: continue # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] if current_dimension == 1: drop_diagonal_indices.append(indl) continue tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError args_updates = {} count_nondiagonal = 0 last = None expression_is_square = False # Check that all args are vectors: for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] if 1 in mat.shape and mat.shape != (1, 1): args_updates[arg_ind] = DiagonalizeVector(mat) last = arg_ind else: expression_is_square = True if not ask(Q.diagonal(mat)): count_nondiagonal += 1 if count_nondiagonal > 1: break if count_nondiagonal > 1: continue # TODO: if count_nondiagonal == 0 then the sub-expression can be recognized as HadamardProduct. for arg_ind, newmat in args_updates.items(): if not expression_is_square and arg_ind == last: continue #pass args[arg_ind] = newmat drop_diagonal_indices.append(indl) new_contraction_indices.append(links) new_diagonal_indices = CodegenArrayContraction._push_indices_up( new_contraction_indices, [e for i, e in enumerate(diagonal_indices) if i not in drop_diagonal_indices] ) return CodegenArrayDiagonal( CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ), *new_diagonal_indices ) def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if isinstance(expr, _RecognizeMatOp): return expr.rank() if isinstance(expr, _RecognizeMatMulLines): return expr.rank() return 0 def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def _get_mapping_from_subranks(subranks): mapping = {} counter = 0 for i, rank in enumerate(subranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def _get_contraction_links(args, subranks, *contraction_indices): mapping = _get_mapping_from_subranks(subranks) contraction_tuples = [[mapping[j] for j in i] for i in contraction_indices] dlinks = defaultdict(dict) for links in contraction_tuples: if len(links) == 2: (arg1, pos1), (arg2, pos2) = links dlinks[arg1][pos1] = (arg2, pos2) dlinks[arg2][pos2] = (arg1, pos1) continue return args, dict(dlinks) def _sort_contraction_indices(pairing_indices): pairing_indices = [Tuple(*sorted(i)) for i in pairing_indices] pairing_indices.sort(key=lambda x: min(x)) return pairing_indices def _get_diagonal_indices(flattened_indices): axes_contraction = defaultdict(list) for i, ind in enumerate(flattened_indices): if isinstance(ind, (int, Integer)): # If the indices is a number, there can be no diagonal operation: continue axes_contraction[ind].append(i) axes_contraction = {k: v for k, v in axes_contraction.items() if len(v) > 1} # Put the diagonalized indices at the end: ret_indices = [i for i in flattened_indices if i not in axes_contraction] diag_indices = list(axes_contraction) diag_indices.sort(key=lambda x: flattened_indices.index(x)) diagonal_indices = [tuple(axes_contraction[i]) for i in diag_indices] ret_indices += diag_indices ret_indices = tuple(ret_indices) return diagonal_indices, ret_indices def _get_argindex(subindices, ind): for i, sind in enumerate(subindices): if ind == sind: return i if isinstance(sind, (set, frozenset)) and ind in sind: return i raise IndexError("%s not found in %s" % (ind, subindices)) def _codegen_array_parse(expr): if isinstance(expr, Sum): function = expr.function summation_indices = expr.variables subexpr, subindices = _codegen_array_parse(function) # Check dimensional consistency: shape = subexpr.shape if shape: for ind, istart, iend in expr.limits: i = _get_argindex(subindices, ind) if istart != 0 or iend+1 != shape[i]: raise ValueError("summation index and array dimension mismatch: %s" % ind) contraction_indices = [] subindices = list(subindices) if isinstance(subexpr, CodegenArrayDiagonal): diagonal_indices = list(subexpr.diagonal_indices) dindices = subindices[-len(diagonal_indices):] subindices = subindices[:-len(diagonal_indices)] for index in summation_indices: if index in dindices: position = dindices.index(index) contraction_indices.append(diagonal_indices[position]) diagonal_indices[position] = None diagonal_indices = [i for i in diagonal_indices if i is not None] for i, ind in enumerate(subindices): if ind in summation_indices: pass if diagonal_indices: subexpr = CodegenArrayDiagonal(subexpr.expr, *diagonal_indices) else: subexpr = subexpr.expr axes_contraction = defaultdict(list) for i, ind in enumerate(subindices): if ind in summation_indices: axes_contraction[ind].append(i) subindices[i] = None for k, v in axes_contraction.items(): contraction_indices.append(tuple(v)) free_indices = [i for i in subindices if i is not None] indices_ret = list(free_indices) indices_ret.sort(key=lambda x: free_indices.index(x)) return CodegenArrayContraction( subexpr, *contraction_indices, free_indices=free_indices ), tuple(indices_ret) if isinstance(expr, Mul): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) # Check if there are KroneckerDelta objects: kronecker_delta_repl = {} for arg in args: if not isinstance(arg, KroneckerDelta): continue # Diagonalize two indices: i, j = arg.indices kindices = set(arg.indices) if i in kronecker_delta_repl: kindices.update(kronecker_delta_repl[i]) if j in kronecker_delta_repl: kindices.update(kronecker_delta_repl[j]) kindices = frozenset(kindices) for index in kindices: kronecker_delta_repl[index] = kindices # Remove KroneckerDelta objects, their relations should be handled by # CodegenArrayDiagonal: newargs = [] newindices = [] for arg, loc_indices in zip(args, indices): if isinstance(arg, KroneckerDelta): continue newargs.append(arg) newindices.append(loc_indices) flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i] diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices) tp = CodegenArrayTensorProduct(*newargs) if diagonal_indices: return (CodegenArrayDiagonal(tp, *diagonal_indices), ret_indices) else: return tp, ret_indices if isinstance(expr, MatrixElement): indices = expr.args[1:] diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.args[0], *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, Indexed): indices = expr.indices diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.base, *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, IndexedBase): raise NotImplementedError if isinstance(expr, KroneckerDelta): return expr, expr.indices if isinstance(expr, Add): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) args = list(args) # Check if all indices are compatible. Otherwise expand the dimensions: index0set = set(indices[0]) index0 = indices[0] for i in range(1, len(args)): if set(indices[i]) != index0set: raise NotImplementedError("indices must be the same") permutation = Permutation([index0.index(j) for j in indices[i]]) # Perform index permutations: args[i] = CodegenArrayPermuteDims(args[i], permutation) return CodegenArrayElementwiseAdd(*args), index0 return expr, () raise NotImplementedError("could not recognize expression %s" % expr) def _parse_matrix_expression(expr): if isinstance(expr, MatMul): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*[_parse_matrix_expression(arg) for arg in args]), *contractions ) elif isinstance(expr, MatAdd): return CodegenArrayElementwiseAdd( *[_parse_matrix_expression(arg) for arg in expr.args] ) elif isinstance(expr, Transpose): return CodegenArrayPermuteDims( _parse_matrix_expression(expr.args[0]), [1, 0] ) else: return expr def parse_indexed_expression(expr, first_indices=None): r""" Parse indexed expression into a form useful for code generation. Examples ======== >>> from sympy.codegen.array_utils import parse_indexed_expression >>> from sympy import MatrixSymbol, Sum, symbols >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> i, j, k, d = symbols("i j k d") >>> M = MatrixSymbol("M", d, d) >>> N = MatrixSymbol("N", d, d) Recognize the trace in summation form: >>> expr = Sum(M[i, i], (i, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(M, (0, 1)) Recognize the extraction of the diagonal by using the same index `i` on both axes of the matrix: >>> expr = M[i, i] >>> parse_indexed_expression(expr) CodegenArrayDiagonal(M, (0, 1)) This function can help perform the transformation expressed in two different mathematical notations as: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Recognize the matrix multiplication in summation form: >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) Specify that ``k`` has to be the starting index: >>> parse_indexed_expression(expr, first_indices=[k]) CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (0 1)) """ result, indices = _codegen_array_parse(expr) if not first_indices: return result for i in first_indices: if i not in indices: first_indices.remove(i) #raise ValueError("index %s not found or not a free index" % i) first_indices.extend([i for i in indices if i not in first_indices]) permutation = [first_indices.index(i) for i in indices] return CodegenArrayPermuteDims(result, permutation) def _has_multiple_lines(expr): if isinstance(expr, _RecognizeMatMulLines): return True if isinstance(expr, _RecognizeMatOp): return expr.multiple_lines return False class _RecognizeMatOp(object): """ Class to help parsing matrix multiplication lines. """ def __init__(self, operator, args): self.operator = operator self.args = args if any(_has_multiple_lines(arg) for arg in args): multiple_lines = True else: multiple_lines = False self.multiple_lines = multiple_lines def rank(self): if self.operator == Trace: return 0 # TODO: check return 2 def __repr__(self): op = self.operator if op == MatMul: s = "*" elif op == MatAdd: s = "+" else: s = op.__name__ return "_RecognizeMatOp(%s, %s)" % (s, repr(self.args)) return "_RecognizeMatOp(%s)" % (s.join(repr(i) for i in self.args)) def __eq__(self, other): if not isinstance(other, type(self)): return False if self.operator != other.operator: return False if self.args != other.args: return False return True def __iter__(self): return iter(self.args) class _RecognizeMatMulLines(list): """ This class handles multiple parsed multiplication lines. """ def __new__(cls, args): if len(args) == 1: return args[0] return list.__new__(cls, args) def rank(self): return reduce(lambda x, y: x*y, [get_rank(i) for i in self], S.One) def __repr__(self): return "_RecognizeMatMulLines(%s)" % super(_RecognizeMatMulLines, self).__repr__() def _support_function_tp1_recognize(contraction_indices, args): if not isinstance(args, list): args = [args] subranks = [get_rank(i) for i in args] coeff = reduce(lambda x, y: x*y, [arg for arg, srank in zip(args, subranks) if srank == 0], S.One) mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v:k for k, v in mapping.items()} args, dlinks = _get_contraction_links(args, subranks, *contraction_indices) flatten_contractions = [j for i in contraction_indices for j in i] total_rank = sum(subranks) # TODO: turn `free_indices` into a list? free_indices = {i: i for i in range(total_rank) if i not in flatten_contractions} return_list = [] while dlinks: if free_indices: first_index, starting_argind = min(free_indices.items(), key=lambda x: x[1]) free_indices.pop(first_index) starting_argind, starting_pos = mapping[starting_argind] else: # Maybe a Trace first_index = None starting_argind = min(dlinks) starting_pos = 0 current_argind, current_pos = starting_argind, starting_pos matmul_args = [] last_index = None while True: elem = args[current_argind] if current_pos == 1: elem = _RecognizeMatOp(Transpose, [elem]) matmul_args.append(elem) other_pos = 1 - current_pos if current_argind not in dlinks: other_absolute = reverse_mapping[current_argind, other_pos] free_indices.pop(other_absolute, None) break link_dict = dlinks.pop(current_argind) if other_pos not in link_dict: if free_indices: last_index = [i for i, j in free_indices.items() if mapping[j] == (current_argind, other_pos)][0] else: last_index = None break if len(link_dict) > 2: raise NotImplementedError("not a matrix multiplication line") # Get the last element of `link_dict` as the next link. The last # element is the correct start for trace expressions: current_argind, current_pos = link_dict[other_pos] if current_argind == starting_argind: # This is a trace: if len(matmul_args) > 1: matmul_args = [_RecognizeMatOp(Trace, [_RecognizeMatOp(MatMul, matmul_args)])] elif args[current_argind].shape != (1, 1): matmul_args = [_RecognizeMatOp(Trace, matmul_args)] break dlinks.pop(starting_argind, None) free_indices.pop(last_index, None) return_list.append(_RecognizeMatOp(MatMul, matmul_args)) if coeff != 1: # Let's inject the coefficient: return_list[0].args.insert(0, coeff) return _RecognizeMatMulLines(return_list) def recognize_matrix_expression(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy.codegen.array_utils import recognize_matrix_expression, parse_indexed_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A*B).T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A.T*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A.T*B).T Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = CodegenArrayContraction.from_MatMul(expr) >>> recognize_matrix_expression(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors: >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (5, 6)) >>> recognize_matrix_expression(cg) [A*B, C*D] The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ # TODO: expr has to be a CodegenArray... type rec = _recognize_matrix_expression(expr) return _unfold_recognized_expr(rec) def _recognize_matrix_expression(expr): if isinstance(expr, CodegenArrayContraction): # Apply some transformations: expr = expr.flatten_contraction_of_diagonal() expr = expr.split_multiple_contractions() args = _recognize_matrix_expression(expr.expr) contraction_indices = expr.contraction_indices if isinstance(args, _RecognizeMatOp) and args.operator == MatAdd: addends = [] for arg in args.args: addends.append(_support_function_tp1_recognize(contraction_indices, arg)) return _RecognizeMatOp(MatAdd, addends) elif isinstance(args, _RecognizeMatMulLines): return _support_function_tp1_recognize(contraction_indices, args) return _support_function_tp1_recognize(contraction_indices, [args]) elif isinstance(expr, CodegenArrayElementwiseAdd): add_args = [] for arg in expr.args: add_args.append(_recognize_matrix_expression(arg)) return _RecognizeMatOp(MatAdd, add_args) elif isinstance(expr, (MatrixSymbol, IndexedBase)): return expr elif isinstance(expr, CodegenArrayPermuteDims): if expr.permutation.array_form == [1, 0]: return _RecognizeMatOp(Transpose, [_recognize_matrix_expression(expr.expr)]) elif isinstance(expr.expr, CodegenArrayTensorProduct): ranks = expr.expr.subranks newrange = [expr.permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] for pos, arg in zip(newpos, expr.expr.args): if pos == sorted(pos): newargs.append((_recognize_matrix_expression(arg), pos[0])) elif len(pos) == 2: newargs.append((_RecognizeMatOp(Transpose, [_recognize_matrix_expression(arg)]), pos[0])) else: raise NotImplementedError newargs.sort(key=lambda x: x[1]) newargs = [i[0] for i in newargs] return _RecognizeMatMulLines(newargs) else: raise NotImplementedError elif isinstance(expr, CodegenArrayTensorProduct): args = [_recognize_matrix_expression(arg) for arg in expr.args] multiple_lines = [_has_multiple_lines(arg) for arg in args] if any(multiple_lines): if any(a.operator != MatAdd for i, a in enumerate(args) if multiple_lines[i] and isinstance(a, _RecognizeMatOp)): raise NotImplementedError getargs = lambda x: x.args if isinstance(x, _RecognizeMatOp) else list(x) expand_args = [getargs(arg) if multiple_lines[i] else [arg] for i, arg in enumerate(args)] it = itertools.product(*expand_args) ret = _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([k for j in i for k in (j if isinstance(j, _RecognizeMatMulLines) else [j])]) for i in it]) return ret return _RecognizeMatMulLines(args) elif isinstance(expr, CodegenArrayDiagonal): pexpr = expr.transform_to_product() if expr == pexpr: return expr return _recognize_matrix_expression(pexpr) elif isinstance(expr, Transpose): return expr elif isinstance(expr, MatrixExpr): return expr return expr def _suppress_trivial_dims_in_tensor_product(mat_list): # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`. # The matrix expression has to be equivalent to the tensor product of the matrices, with trivial dimensions (i.e. dim=1) dropped. # That is, add contractions over trivial dimensions: mat_11 = [] mat_k1 = [] for mat in mat_list: if mat.shape == (1, 1): mat_11.append(mat) elif 1 in mat.shape: if mat.shape[0] == 1: mat_k1.append(mat.T) else: mat_k1.append(mat) else: return mat_list if len(mat_k1) > 2: return mat_list a = MatMul.fromiter(mat_k1[:1]) b = MatMul.fromiter(mat_k1[1:]) x = MatMul.fromiter(mat_11) return a*x*b.T def _unfold_recognized_expr(expr): if isinstance(expr, _RecognizeMatOp): return expr.operator(*[_unfold_recognized_expr(i) for i in expr.args]) elif isinstance(expr, _RecognizeMatMulLines): unfolded = [_unfold_recognized_expr(i) for i in expr] mat_list = [i for i in unfolded if isinstance(i, MatrixExpr)] scalar_list = [i for i in unfolded if i not in mat_list] scalar = Mul.fromiter(scalar_list) mat_list = [i.doit() for i in mat_list] mat_list = [i for i in mat_list if not (i.shape == (1, 1) and i.is_Identity)] if mat_list: mat_list[0] *= scalar if len(mat_list) == 1: return mat_list[0].doit() else: return _suppress_trivial_dims_in_tensor_product(mat_list) else: return scalar else: return expr def _apply_recursively_over_nested_lists(func, arr): if isinstance(arr, (tuple, list, Tuple)): return tuple(_apply_recursively_over_nested_lists(func, i) for i in arr) elif isinstance(arr, Tuple): return Tuple.fromiter(_apply_recursively_over_nested_lists(func, i) for i in arr) else: return func(arr) def _build_push_indices_up_func_transformation(flattened_contraction_indices): shifts = {0: 0} i = 0 cumulative = 0 while i < len(flattened_contraction_indices): j = 1 while i+j < len(flattened_contraction_indices): if flattened_contraction_indices[i] + j != flattened_contraction_indices[i+j]: break j += 1 cumulative += j shifts[flattened_contraction_indices[i]] = cumulative i += j shift_keys = sorted(shifts.keys()) def func(idx): return shifts[shift_keys[bisect.bisect_right(shift_keys, idx)-1]] def transform(j): if j in flattened_contraction_indices: return None else: return j - func(j) return transform def _build_push_indices_down_func_transformation(flattened_contraction_indices): N = flattened_contraction_indices[-1]+2 shifts = [i for i in range(N) if i not in flattened_contraction_indices] def transform(j): if j < len(shifts): return shifts[j] else: return j + shifts[-1] - len(shifts) + 1 return transform
61d5643a760126a626a4406d20b65163a9c6c442871fcb3f9c7a1f83ba432fb7
""" Types used to represent a full function/module as an Abstract Syntax Tree. Most types are small, and are merely used as tokens in the AST. A tree diagram has been included below to illustrate the relationships between the AST types. AST Type Tree ------------- :: *Basic* |--->AssignmentBase | |--->Assignment | |--->AugmentedAssignment | |--->AddAugmentedAssignment | |--->SubAugmentedAssignment | |--->MulAugmentedAssignment | |--->DivAugmentedAssignment | |--->ModAugmentedAssignment | |--->CodeBlock | | |--->Token | |--->Attribute | |--->For | |--->String | | |--->QuotedString | | |--->Comment | |--->Type | | |--->IntBaseType | | | |--->_SizedIntType | | | |--->SignedIntType | | | |--->UnsignedIntType | | |--->FloatBaseType | | |--->FloatType | | |--->ComplexBaseType | | |--->ComplexType | |--->Node | | |--->Variable | | | |---> Pointer | | |--->FunctionPrototype | | |--->FunctionDefinition | |--->Element | |--->Declaration | |--->While | |--->Scope | |--->Stream | |--->Print | |--->FunctionCall | |--->BreakToken | |--->ContinueToken | |--->NoneToken | |--->Statement |--->Return Predefined types ---------------- A number of ``Type`` instances are provided in the ``sympy.codegen.ast`` module for convenience. Perhaps the two most common ones for code-generation (of numeric codes) are ``float32`` and ``float64`` (known as single and double precision respectively). There are also precision generic versions of Types (for which the codeprinters selects the underlying data type at time of printing): ``real``, ``integer``, ``complex_``, ``bool_``. The other ``Type`` instances defined are: - ``intc``: Integer type used by C's "int". - ``intp``: Integer type used by C's "unsigned". - ``int8``, ``int16``, ``int32``, ``int64``: n-bit integers. - ``uint8``, ``uint16``, ``uint32``, ``uint64``: n-bit unsigned integers. - ``float80``: known as "extended precision" on modern x86/amd64 hardware. - ``complex64``: Complex number represented by two ``float32`` numbers - ``complex128``: Complex number represented by two ``float64`` numbers Using the nodes --------------- It is possible to construct simple algorithms using the AST nodes. Let's construct a loop applying Newton's method:: >>> from sympy import symbols, cos >>> from sympy.codegen.ast import While, Assignment, aug_assign, Print >>> t, dx, x = symbols('tol delta val') >>> expr = cos(x) - x**3 >>> whl = While(abs(dx) > t, [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx), ... Print([x]) ... ]) >>> from sympy.printing import pycode >>> py_str = pycode(whl) >>> print(py_str) while (abs(delta) > tol): delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val)) val += delta print(val) >>> import math >>> tol, val, delta = 1e-5, 0.5, float('inf') >>> exec(py_str) 1.1121416371 0.909672693737 0.867263818209 0.865477135298 0.865474033111 >>> print('%3.1g' % (math.cos(val) - val**3)) -3e-11 If we want to generate Fortran code for the same while loop we simple call ``fcode``:: >>> from sympy.printing.fcode import fcode >>> print(fcode(whl, standard=2003, source_format='free')) do while (abs(delta) > tol) delta = (val**3 - cos(val))/(-3*val**2 - sin(val)) val = val + delta print *, val end do There is a function constructing a loop (or a complete function) like this in :mod:`sympy.codegen.algorithms`. """ from __future__ import print_function, division from itertools import chain from collections import defaultdict from sympy.core import Symbol, Tuple, Dummy from sympy.core.basic import Basic from sympy.core.compatibility import string_types from sympy.core.expr import Expr from sympy.core.numbers import Float, Integer, oo from sympy.core.relational import Lt, Le, Ge, Gt from sympy.core.sympify import _sympify, sympify, SympifyError from sympy.utilities.iterables import iterable def _mk_Tuple(args): """ Create a Sympy Tuple object from an iterable, converting Python strings to AST strings. Parameters ========== args: iterable Arguments to :class:`sympy.Tuple`. Returns ======= sympy.Tuple """ args = [String(arg) if isinstance(arg, string_types) else arg for arg in args] return Tuple(*args) class Token(Basic): """ Base class for the AST types. Defining fields are set in ``__slots__``. Attributes (defined in __slots__) are only allowed to contain instances of Basic (unless atomic, see ``String``). The arguments to ``__new__()`` correspond to the attributes in the order defined in ``__slots__`. The ``defaults`` class attribute is a dictionary mapping attribute names to their default values. Subclasses should not need to override the ``__new__()`` method. They may define a class or static method named ``_construct_<attr>`` for each attribute to process the value passed to ``__new__()``. Attributes listed in the class attribute ``not_in_args`` are not passed to :class:`sympy.Basic`. """ __slots__ = [] defaults = {} not_in_args = [] indented_args = ['body'] @property def is_Atom(self): return len(self.__slots__) == 0 @classmethod def _get_constructor(cls, attr): """ Get the constructor function for an attribute by name. """ return getattr(cls, '_construct_%s' % attr, lambda x: x) @classmethod def _construct(cls, attr, arg): """ Construct an attribute value from argument passed to ``__new__()``. """ if arg == None: # Must be "== None", cannot be "is None" return cls.defaults.get(attr, none) else: if isinstance(arg, Dummy): # sympy's replace uses Dummy instances return arg else: return cls._get_constructor(attr)(arg) def __new__(cls, *args, **kwargs): # Pass through existing instances when given as sole argument if len(args) == 1 and not kwargs and isinstance(args[0], cls): return args[0] if len(args) > len(cls.__slots__): raise ValueError("Too many arguments (%d), expected at most %d" % (len(args), len(cls.__slots__))) attrvals = [] # Process positional arguments for attrname, argval in zip(cls.__slots__, args): if attrname in kwargs: raise TypeError('Got multiple values for attribute %r' % attrname) attrvals.append(cls._construct(attrname, argval)) # Process keyword arguments for attrname in cls.__slots__[len(args):]: if attrname in kwargs: argval = kwargs.pop(attrname) elif attrname in cls.defaults: argval = cls.defaults[attrname] else: raise TypeError('No value for %r given and attribute has no default' % attrname) attrvals.append(cls._construct(attrname, argval)) if kwargs: raise ValueError("Unknown keyword arguments: %s" % ' '.join(kwargs)) # Parent constructor basic_args = [ val for attr, val in zip(cls.__slots__, attrvals) if attr not in cls.not_in_args ] obj = Basic.__new__(cls, *basic_args) # Set attributes for attr, arg in zip(cls.__slots__, attrvals): setattr(obj, attr, arg) return obj def __eq__(self, other): if not isinstance(other, self.__class__): return False for attr in self.__slots__: if getattr(self, attr) != getattr(other, attr): return False return True def _hashable_content(self): return tuple([getattr(self, attr) for attr in self.__slots__]) def __hash__(self): return super(Token, self).__hash__() def _joiner(self, k, indent_level): return (',\n' + ' '*indent_level) if k in self.indented_args else ', ' def _indented(self, printer, k, v, *args, **kwargs): il = printer._context['indent_level'] def _print(arg): if isinstance(arg, Token): return printer._print(arg, *args, joiner=self._joiner(k, il), **kwargs) else: return printer._print(arg, *args, **kwargs) if isinstance(v, Tuple): joined = self._joiner(k, il).join([_print(arg) for arg in v.args]) if k in self.indented_args: return '(\n' + ' '*il + joined + ',\n' + ' '*(il - 4) + ')' else: return ('({0},)' if len(v.args) == 1 else '({0})').format(joined) else: return _print(v) def _sympyrepr(self, printer, *args, **kwargs): from sympy.printing.printer import printer_context exclude = kwargs.get('exclude', ()) values = [getattr(self, k) for k in self.__slots__] indent_level = printer._context.get('indent_level', 0) joiner = kwargs.pop('joiner', ', ') arg_reprs = [] for i, (attr, value) in enumerate(zip(self.__slots__, values)): if attr in exclude: continue # Skip attributes which have the default value if attr in self.defaults and value == self.defaults[attr]: continue ilvl = indent_level + 4 if attr in self.indented_args else 0 with printer_context(printer, indent_level=ilvl): indented = self._indented(printer, attr, value, *args, **kwargs) arg_reprs.append(('{1}' if i == 0 else '{0}={1}').format(attr, indented.lstrip())) return "{0}({1})".format(self.__class__.__name__, joiner.join(arg_reprs)) _sympystr = _sympyrepr def __repr__(self): # sympy.core.Basic.__repr__ uses sstr from sympy.printing import srepr return srepr(self) def kwargs(self, exclude=(), apply=None): """ Get instance's attributes as dict of keyword arguments. Parameters ========== exclude : collection of str Collection of keywords to exclude. apply : callable, optional Function to apply to all values. """ kwargs = {k: getattr(self, k) for k in self.__slots__ if k not in exclude} if apply is not None: return {k: apply(v) for k, v in kwargs.items()} else: return kwargs class BreakToken(Token): """ Represents 'break' in C/Python ('exit' in Fortran). Use the premade instance ``break_`` or instantiate manually. Examples ======== >>> from sympy.printing import ccode, fcode >>> from sympy.codegen.ast import break_ >>> ccode(break_) 'break' >>> fcode(break_, source_format='free') 'exit' """ break_ = BreakToken() class ContinueToken(Token): """ Represents 'continue' in C/Python ('cycle' in Fortran) Use the premade instance ``continue_`` or instantiate manually. Examples ======== >>> from sympy.printing import ccode, fcode >>> from sympy.codegen.ast import continue_ >>> ccode(continue_) 'continue' >>> fcode(continue_, source_format='free') 'cycle' """ continue_ = ContinueToken() class NoneToken(Token): """ The AST equivalence of Python's NoneType The corresponding instance of Python's ``None`` is ``none``. Examples ======== >>> from sympy.codegen.ast import none, Variable >>> from sympy.printing.pycode import pycode >>> print(pycode(Variable('x').as_Declaration(value=none))) x = None """ def __eq__(self, other): return other is None or isinstance(other, NoneToken) def _hashable_content(self): return () def __hash__(self): return super(NoneToken, self).__hash__() none = NoneToken() class AssignmentBase(Basic): """ Abstract base class for Assignment and AugmentedAssignment. Attributes: =========== op : str Symbol for assignment operator, e.g. "=", "+=", etc. """ def __new__(cls, lhs, rhs): lhs = _sympify(lhs) rhs = _sympify(rhs) cls._check_args(lhs, rhs) return super(AssignmentBase, cls).__new__(cls, lhs, rhs) @property def lhs(self): return self.args[0] @property def rhs(self): return self.args[1] @classmethod def _check_args(cls, lhs, rhs): """ Check arguments to __new__ and raise exception if any problems found. Derived classes may wish to override this. """ from sympy.matrices.expressions.matexpr import ( MatrixElement, MatrixSymbol) from sympy.tensor.indexed import Indexed # Tuple of things that can be on the lhs of an assignment assignable = (Symbol, MatrixSymbol, MatrixElement, Indexed, Element, Variable) if not isinstance(lhs, assignable): raise TypeError("Cannot assign to lhs of type %s." % type(lhs)) # Indexed types implement shape, but don't define it until later. This # causes issues in assignment validation. For now, matrices are defined # as anything with a shape that is not an Indexed lhs_is_mat = hasattr(lhs, 'shape') and not isinstance(lhs, Indexed) rhs_is_mat = hasattr(rhs, 'shape') and not isinstance(rhs, Indexed) # If lhs and rhs have same structure, then this assignment is ok if lhs_is_mat: if not rhs_is_mat: raise ValueError("Cannot assign a scalar to a matrix.") elif lhs.shape != rhs.shape: raise ValueError("Dimensions of lhs and rhs don't align.") elif rhs_is_mat and not lhs_is_mat: raise ValueError("Cannot assign a matrix to a scalar.") class Assignment(AssignmentBase): """ Represents variable assignment for code generation. Parameters ========== lhs : Expr Sympy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. rhs : Expr Sympy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols, MatrixSymbol, Matrix >>> from sympy.codegen.ast import Assignment >>> x, y, z = symbols('x, y, z') >>> Assignment(x, y) Assignment(x, y) >>> Assignment(x, 0) Assignment(x, 0) >>> A = MatrixSymbol('A', 1, 3) >>> mat = Matrix([x, y, z]).T >>> Assignment(A, mat) Assignment(A, Matrix([[x, y, z]])) >>> Assignment(A[0, 1], x) Assignment(A[0, 1], x) """ op = ':=' class AugmentedAssignment(AssignmentBase): """ Base class for augmented assignments. Attributes: =========== binop : str Symbol for binary operation being applied in the assignment, such as "+", "*", etc. """ @property def op(self): return self.binop + '=' class AddAugmentedAssignment(AugmentedAssignment): binop = '+' class SubAugmentedAssignment(AugmentedAssignment): binop = '-' class MulAugmentedAssignment(AugmentedAssignment): binop = '*' class DivAugmentedAssignment(AugmentedAssignment): binop = '/' class ModAugmentedAssignment(AugmentedAssignment): binop = '%' # Mapping from binary op strings to AugmentedAssignment subclasses augassign_classes = { cls.binop: cls for cls in [ AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment ] } def aug_assign(lhs, op, rhs): """ Create 'lhs op= rhs'. Represents augmented variable assignment for code generation. This is a convenience function. You can also use the AugmentedAssignment classes directly, like AddAugmentedAssignment(x, y). Parameters ========== lhs : Expr Sympy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. op : str Operator (+, -, /, \\*, %). rhs : Expr Sympy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import aug_assign >>> x, y = symbols('x, y') >>> aug_assign(x, '+', y) AddAugmentedAssignment(x, y) """ if op not in augassign_classes: raise ValueError("Unrecognized operator %s" % op) return augassign_classes[op](lhs, rhs) class CodeBlock(Basic): """ Represents a block of code For now only assignments are supported. This restriction will be lifted in the future. Useful attributes on this object are: ``left_hand_sides``: Tuple of left-hand sides of assignments, in order. ``left_hand_sides``: Tuple of right-hand sides of assignments, in order. ``free_symbols``: Free symbols of the expressions in the right-hand sides which do not appear in the left-hand side of an assignment. Useful methods on this object are: ``topological_sort``: Class method. Return a CodeBlock with assignments sorted so that variables are assigned before they are used. ``cse``: Return a new CodeBlock with common subexpressions eliminated and pulled out as assignments. Examples ======== >>> from sympy import symbols, ccode >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y = symbols('x y') >>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1)) >>> print(ccode(c)) x = 1; y = x + 1; """ def __new__(cls, *args): left_hand_sides = [] right_hand_sides = [] for i in args: if isinstance(i, Assignment): lhs, rhs = i.args left_hand_sides.append(lhs) right_hand_sides.append(rhs) obj = Basic.__new__(cls, *args) obj.left_hand_sides = Tuple(*left_hand_sides) obj.right_hand_sides = Tuple(*right_hand_sides) return obj def __iter__(self): return iter(self.args) def _sympyrepr(self, printer, *args, **kwargs): il = printer._context.get('indent_level', 0) joiner = ',\n' + ' '*il joined = joiner.join(map(printer._print, self.args)) return ('{0}(\n'.format(' '*(il-4) + self.__class__.__name__,) + ' '*il + joined + '\n' + ' '*(il - 4) + ')') _sympystr = _sympyrepr @property def free_symbols(self): return super(CodeBlock, self).free_symbols - set(self.left_hand_sides) @classmethod def topological_sort(cls, assignments): """ Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used. The existing order of assignments is preserved as much as possible. This function assumes that variables are assigned to only once. This is a class constructor so that the default constructor for CodeBlock can error when variables are used before they are assigned. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> assignments = [ ... Assignment(x, y + z), ... Assignment(y, z + 1), ... Assignment(z, 2), ... ] >>> CodeBlock.topological_sort(assignments) CodeBlock( Assignment(z, 2), Assignment(y, z + 1), Assignment(x, y + z) ) """ from sympy.utilities.iterables import topological_sort if not all(isinstance(i, Assignment) for i in assignments): # Will support more things later raise NotImplementedError("CodeBlock.topological_sort only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in assignments): raise NotImplementedError("CodeBlock.topological_sort doesn't yet work with AugmentedAssignments") # Create a graph where the nodes are assignments and there is a directed edge # between nodes that use a variable and nodes that assign that # variable, like # [(x := 1, y := x + 1), (x := 1, z := y + z), (y := x + 1, z := y + z)] # If we then topologically sort these nodes, they will be in # assignment order, like # x := 1 # y := x + 1 # z := y + z # A = The nodes # # enumerate keeps nodes in the same order they are already in if # possible. It will also allow us to handle duplicate assignments to # the same variable when those are implemented. A = list(enumerate(assignments)) # var_map = {variable: [nodes for which this variable is assigned to]} # like {x: [(1, x := y + z), (4, x := 2 * w)], ...} var_map = defaultdict(list) for node in A: i, a = node var_map[a.lhs].append(node) # E = Edges in the graph E = [] for dst_node in A: i, a = dst_node for s in a.rhs.free_symbols: for src_node in var_map[s]: E.append((src_node, dst_node)) ordered_assignments = topological_sort([A, E]) # De-enumerate the result return cls(*[a for i, a in ordered_assignments]) def cse(self, symbols=None, optimizations=None, postprocess=None, order='canonical'): """ Return a new code block with common subexpressions eliminated See the docstring of :func:`sympy.simplify.cse_main.cse` for more information. Examples ======== >>> from sympy import symbols, sin >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> c = CodeBlock( ... Assignment(x, 1), ... Assignment(y, sin(x) + 1), ... Assignment(z, sin(x) - 1), ... ) ... >>> c.cse() CodeBlock( Assignment(x, 1), Assignment(x0, sin(x)), Assignment(y, x0 + 1), Assignment(z, x0 - 1) ) """ from sympy.simplify.cse_main import cse from sympy.utilities.iterables import numbered_symbols, filter_symbols # Check that the CodeBlock only contains assignments to unique variables if not all(isinstance(i, Assignment) for i in self.args): # Will support more things later raise NotImplementedError("CodeBlock.cse only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in self.args): raise NotImplementedError("CodeBlock.cse doesn't yet work with AugmentedAssignments") for i, lhs in enumerate(self.left_hand_sides): if lhs in self.left_hand_sides[:i]: raise NotImplementedError("Duplicate assignments to the same " "variable are not yet supported (%s)" % lhs) # Ensure new symbols for subexpressions do not conflict with existing existing_symbols = self.atoms(Symbol) if symbols is None: symbols = numbered_symbols() symbols = filter_symbols(symbols, existing_symbols) replacements, reduced_exprs = cse(list(self.right_hand_sides), symbols=symbols, optimizations=optimizations, postprocess=postprocess, order=order) new_block = [Assignment(var, expr) for var, expr in zip(self.left_hand_sides, reduced_exprs)] new_assignments = [Assignment(var, expr) for var, expr in replacements] return self.topological_sort(new_assignments + new_block) class For(Token): """Represents a 'for-loop' in the code. Expressions are of the form: "for target in iter: body..." Parameters ========== target : symbol iter : iterable body : CodeBlock or iterable ! When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Range >>> from sympy.codegen.ast import aug_assign, For >>> x, i, j, k = symbols('x i j k') >>> for_i = For(i, Range(10), [aug_assign(x, '+', i*j*k)]) >>> for_i # doctest: -NORMALIZE_WHITESPACE For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) >>> for_ji = For(j, Range(7), [for_i]) >>> for_ji # doctest: -NORMALIZE_WHITESPACE For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) >>> for_kji =For(k, Range(5), [for_ji]) >>> for_kji # doctest: -NORMALIZE_WHITESPACE For(k, iterable=Range(0, 5, 1), body=CodeBlock( For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) )) """ __slots__ = ['target', 'iterable', 'body'] _construct_target = staticmethod(_sympify) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def _construct_iterable(cls, itr): if not iterable(itr): raise TypeError("iterable must be an iterable") if isinstance(itr, list): # _sympify errors on lists because they are mutable itr = tuple(itr) return _sympify(itr) class String(Token): """ SymPy object representing a string. Atomic object which is not an expression (as opposed to Symbol). Parameters ========== text : str Examples ======== >>> from sympy.codegen.ast import String >>> f = String('foo') >>> f foo >>> str(f) 'foo' >>> f.text 'foo' >>> print(repr(f)) String('foo') """ __slots__ = ['text'] not_in_args = ['text'] is_Atom = True @classmethod def _construct_text(cls, text): if not isinstance(text, string_types): raise TypeError("Argument text is not a string type.") return text def _sympystr(self, printer, *args, **kwargs): return self.text class QuotedString(String): """ Represents a string which should be printed with quotes. """ class Comment(String): """ Represents a comment. """ class Node(Token): """ Subclass of Token, carrying the attribute 'attrs' (Tuple) Examples ======== >>> from sympy.codegen.ast import Node, value_const, pointer_const >>> n1 = Node([value_const]) >>> n1.attr_params('value_const') # get the parameters of attribute (by name) () >>> from sympy.codegen.fnodes import dimension >>> n2 = Node([value_const, dimension(5, 3)]) >>> n2.attr_params(value_const) # get the parameters of attribute (by Attribute instance) () >>> n2.attr_params('dimension') # get the parameters of attribute (by name) (5, 3) >>> n2.attr_params(pointer_const) is None True """ __slots__ = ['attrs'] defaults = {'attrs': Tuple()} _construct_attrs = staticmethod(_mk_Tuple) def attr_params(self, looking_for): """ Returns the parameters of the Attribute with name ``looking_for`` in self.attrs """ for attr in self.attrs: if str(attr.name) == str(looking_for): return attr.parameters class Type(Token): """ Represents a type. The naming is a super-set of NumPy naming. Type has a classmethod ``from_expr`` which offer type deduction. It also has a method ``cast_check`` which casts the argument to its type, possibly raising an exception if rounding error is not within tolerances, or if the value is not representable by the underlying data type (e.g. unsigned integers). Parameters ========== name : str Name of the type, e.g. ``object``, ``int16``, ``float16`` (where the latter two would use the ``Type`` sub-classes ``IntType`` and ``FloatType`` respectively). If a ``Type`` instance is given, the said instance is returned. Examples ======== >>> from sympy.codegen.ast import Type >>> t = Type.from_expr(42) >>> t integer >>> print(repr(t)) IntBaseType(String('integer')) >>> from sympy.codegen.ast import uint8 >>> uint8.cast_check(-1) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> from sympy.codegen.ast import float32 >>> v6 = 0.123456 >>> float32.cast_check(v6) 0.123456 >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50') >>> from sympy import Symbol >>> from sympy.printing.cxxcode import cxxcode >>> from sympy.codegen.ast import Declaration, Variable >>> cxxcode(Declaration(Variable('x', type=boost_mp50))) 'boost::multiprecision::cpp_dec_float_50 x' References ========== .. [1] https://docs.scipy.org/doc/numpy/user/basics.types.html """ __slots__ = ['name'] _construct_name = String def _sympystr(self, printer, *args, **kwargs): return str(self.name) @classmethod def from_expr(cls, expr): """ Deduces type from an expression or a ``Symbol``. Parameters ========== expr : number or SymPy object The type will be deduced from type or properties. Examples ======== >>> from sympy.codegen.ast import Type, integer, complex_ >>> Type.from_expr(2) == integer True >>> from sympy import Symbol >>> Type.from_expr(Symbol('z', complex=True)) == complex_ True >>> Type.from_expr(sum) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Could not deduce type from expr. Raises ====== ValueError when type deduction fails. """ if isinstance(expr, (float, Float)): return real if isinstance(expr, (int, Integer)) or getattr(expr, 'is_integer', False): return integer if getattr(expr, 'is_real', False): return real if isinstance(expr, complex) or getattr(expr, 'is_complex', False): return complex_ if isinstance(expr, bool) or getattr(expr, 'is_Relational', False): return bool_ else: raise ValueError("Could not deduce type from expr.") def _check(self, value): pass def cast_check(self, value, rtol=None, atol=0, limits=None, precision_targets=None): """ Casts a value to the data type of the instance. Parameters ========== value : number rtol : floating point number Relative tolerance. (will be deduced if not given). atol : floating point number Absolute tolerance (in addition to ``rtol``). limits : dict Values given by ``limits.h``, x86/IEEE754 defaults if not given. Default: :attr:`default_limits`. type_aliases : dict Maps substitutions for Type, e.g. {integer: int64, real: float32} Examples ======== >>> from sympy.codegen.ast import Type, integer, float32, int8 >>> integer.cast_check(3.0) == 3 True >>> float32.cast_check(1e-40) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> int8.cast_check(256) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float64 >>> float64.cast_check(v10) 12345.67894 >>> from sympy import Float >>> v18 = Float('0.123456789012345646') >>> float64.cast_check(v18) Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float80 >>> float80.cast_check(v18) 0.123456789012345649 """ val = sympify(value) ten = Integer(10) exp10 = getattr(self, 'decimal_dig', None) if rtol is None: rtol = 1e-15 if exp10 is None else 2.0*ten**(-exp10) def tol(num): return atol + rtol*abs(num) new_val = self.cast_nocheck(value) self._check(new_val) delta = new_val - val if abs(delta) > tol(val): # rounding, e.g. int(3.5) != 3.5 raise ValueError("Casting gives a significantly different value.") return new_val class IntBaseType(Type): """ Integer base type, contains no size information. """ __slots__ = ['name'] cast_nocheck = lambda self, i: Integer(int(i)) class _SizedIntType(IntBaseType): __slots__ = ['name', 'nbits'] _construct_nbits = Integer def _check(self, value): if value < self.min: raise ValueError("Value is too small: %d < %d" % (value, self.min)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) class SignedIntType(_SizedIntType): """ Represents a signed integer type. """ @property def min(self): return -2**(self.nbits-1) @property def max(self): return 2**(self.nbits-1) - 1 class UnsignedIntType(_SizedIntType): """ Represents an unsigned integer type. """ @property def min(self): return 0 @property def max(self): return 2**self.nbits - 1 two = Integer(2) class FloatBaseType(Type): """ Represents a floating point number type. """ cast_nocheck = Float class FloatType(FloatBaseType): """ Represents a floating point type with fixed bit width. Base 2 & one sign bit is assumed. Parameters ========== name : str Name of the type. nbits : integer Number of bits used (storage). nmant : integer Number of bits used to represent the mantissa. nexp : integer Number of bits used to represent the mantissa. Examples ======== >>> from sympy import S, Float >>> from sympy.codegen.ast import FloatType >>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5) >>> half_precision.max 65504 >>> half_precision.tiny == S(2)**-14 True >>> half_precision.eps == S(2)**-10 True >>> half_precision.dig == 3 True >>> half_precision.decimal_dig == 5 True >>> half_precision.cast_check(1.0) 1.0 >>> half_precision.cast_check(1e5) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. """ __slots__ = ['name', 'nbits', 'nmant', 'nexp'] _construct_nbits = _construct_nmant = _construct_nexp = Integer @property def max_exponent(self): """ The largest positive number n, such that 2**(n - 1) is a representable finite value. """ # cf. C++'s ``std::numeric_limits::max_exponent`` return two**(self.nexp - 1) @property def min_exponent(self): """ The lowest negative number n, such that 2**(n - 1) is a valid normalized number. """ # cf. C++'s ``std::numeric_limits::min_exponent`` return 3 - self.max_exponent @property def max(self): """ Maximum value representable. """ return (1 - two**-(self.nmant+1))*two**self.max_exponent @property def tiny(self): """ The minimum positive normalized value. """ # See C macros: FLT_MIN, DBL_MIN, LDBL_MIN # or C++'s ``std::numeric_limits::min`` # or numpy.finfo(dtype).tiny return two**(self.min_exponent - 1) @property def eps(self): """ Difference between 1.0 and the next representable value. """ return two**(-self.nmant) @property def dig(self): """ Number of decimal digits that are guaranteed to be preserved in text. When converting text -> float -> text, you are guaranteed that at least ``dig`` number of digits are preserved with respect to rounding or overflow. """ from sympy.functions import floor, log return floor(self.nmant * log(2)/log(10)) @property def decimal_dig(self): """ Number of digits needed to store & load without loss. Number of decimal digits needed to guarantee that two consecutive conversions (float -> text -> float) to be idempotent. This is useful when one do not want to loose precision due to rounding errors when storing a floating point value as text. """ from sympy.functions import ceiling, log return ceiling((self.nmant + 1) * log(2)/log(10) + 1) def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ if value == oo: # float(oo) or oo return float(oo) elif value == -oo: # float(-oo) or -oo return float(-oo) return Float(str(sympify(value).evalf(self.decimal_dig)), self.decimal_dig) def _check(self, value): if value < -self.max: raise ValueError("Value is too small: %d < %d" % (value, -self.max)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) if abs(value) < self.tiny: raise ValueError("Smallest (absolute) value for data type bigger than new value.") class ComplexBaseType(FloatBaseType): def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ from sympy.functions import re, im return ( super(ComplexBaseType, self).cast_nocheck(re(value)) + super(ComplexBaseType, self).cast_nocheck(im(value))*1j ) def _check(self, value): from sympy.functions import re, im super(ComplexBaseType, self)._check(re(value)) super(ComplexBaseType, self)._check(im(value)) class ComplexType(ComplexBaseType, FloatType): """ Represents a complex floating point number. """ # NumPy types: intc = IntBaseType('intc') intp = IntBaseType('intp') int8 = SignedIntType('int8', 8) int16 = SignedIntType('int16', 16) int32 = SignedIntType('int32', 32) int64 = SignedIntType('int64', 64) uint8 = UnsignedIntType('uint8', 8) uint16 = UnsignedIntType('uint16', 16) uint32 = UnsignedIntType('uint32', 32) uint64 = UnsignedIntType('uint64', 64) float16 = FloatType('float16', 16, nexp=5, nmant=10) # IEEE 754 binary16, Half precision float32 = FloatType('float32', 32, nexp=8, nmant=23) # IEEE 754 binary32, Single precision float64 = FloatType('float64', 64, nexp=11, nmant=52) # IEEE 754 binary64, Double precision float80 = FloatType('float80', 80, nexp=15, nmant=63) # x86 extended precision (1 integer part bit), "long double" float128 = FloatType('float128', 128, nexp=15, nmant=112) # IEEE 754 binary128, Quadruple precision float256 = FloatType('float256', 256, nexp=19, nmant=236) # IEEE 754 binary256, Octuple precision complex64 = ComplexType('complex64', nbits=64, **float32.kwargs(exclude=('name', 'nbits'))) complex128 = ComplexType('complex128', nbits=128, **float64.kwargs(exclude=('name', 'nbits'))) # Generic types (precision may be chosen by code printers): untyped = Type('untyped') real = FloatBaseType('real') integer = IntBaseType('integer') complex_ = ComplexBaseType('complex') bool_ = Type('bool') class Attribute(Token): """ Attribute (possibly parametrized) For use with :class:`sympy.codegen.ast.Node` (which takes instances of ``Attribute`` as ``attrs``). Parameters ========== name : str parameters : Tuple Examples ======== >>> from sympy.codegen.ast import Attribute >>> volatile = Attribute('volatile') >>> volatile volatile >>> print(repr(volatile)) Attribute(String('volatile')) >>> a = Attribute('foo', [1, 2, 3]) >>> a foo(1, 2, 3) >>> a.parameters == (1, 2, 3) True """ __slots__ = ['name', 'parameters'] defaults = {'parameters': Tuple()} _construct_name = String _construct_parameters = staticmethod(_mk_Tuple) def _sympystr(self, printer, *args, **kwargs): result = str(self.name) if self.parameters: result += '(%s)' % ', '.join(map(lambda arg: printer._print( arg, *args, **kwargs), self.parameters)) return result value_const = Attribute('value_const') pointer_const = Attribute('pointer_const') class Variable(Node): """ Represents a variable Parameters ========== symbol : Symbol type : Type (optional) Type of the variable. attrs : iterable of Attribute instances Will be stored as a Tuple. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, float32, integer >>> x = Symbol('x') >>> v = Variable(x, type=float32) >>> v.attrs () >>> v == Variable('x') False >>> v == Variable('x', type=float32) True >>> v Variable(x, type=float32) One may also construct a ``Variable`` instance with the type deduced from assumptions about the symbol using the ``deduced`` classmethod: >>> i = Symbol('i', integer=True) >>> v = Variable.deduced(i) >>> v.type == integer True >>> v == Variable('i') False >>> from sympy.codegen.ast import value_const >>> value_const in v.attrs False >>> w = Variable('w', attrs=[value_const]) >>> w Variable(w, attrs=(value_const,)) >>> value_const in w.attrs True >>> w.as_Declaration(value=42) Declaration(Variable(w, value=42, attrs=(value_const,))) """ __slots__ = ['symbol', 'type', 'value'] + Node.__slots__ defaults = dict(chain(Node.defaults.items(), { 'type': untyped, 'value': none }.items())) _construct_symbol = staticmethod(sympify) _construct_value = staticmethod(sympify) @classmethod def deduced(cls, symbol, value=None, attrs=Tuple(), cast_check=True): """ Alt. constructor with type deduction from ``Type.from_expr``. Deduces type primarily from ``symbol``, secondarily from ``value``. Parameters ========== symbol : Symbol value : expr (optional) value of the variable. attrs : iterable of Attribute instances cast_check : bool Whether to apply ``Type.cast_check`` on ``value``. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, complex_ >>> n = Symbol('n', integer=True) >>> str(Variable.deduced(n).type) 'integer' >>> x = Symbol('x', real=True) >>> v = Variable.deduced(x) >>> v.type real >>> z = Symbol('z', complex=True) >>> Variable.deduced(z).type == complex_ True """ if isinstance(symbol, Variable): return symbol try: type_ = Type.from_expr(symbol) except ValueError: type_ = Type.from_expr(value) if value is not None and cast_check: value = type_.cast_check(value) return cls(symbol, type=type_, value=value, attrs=attrs) def as_Declaration(self, **kwargs): """ Convenience method for creating a Declaration instance. If the variable of the Declaration need to wrap a modified variable keyword arguments may be passed (overriding e.g. the ``value`` of the Variable instance). Examples ======== >>> from sympy.codegen.ast import Variable >>> x = Variable('x') >>> decl1 = x.as_Declaration() >>> decl1.variable.value == None True >>> decl2 = x.as_Declaration(value=42.0) >>> decl2.variable.value == 42 True """ kw = self.kwargs() kw.update(kwargs) return Declaration(self.func(**kw)) def _relation(self, rhs, op): try: rhs = _sympify(rhs) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, rhs)) return op(self, rhs, evaluate=False) __lt__ = lambda self, other: self._relation(other, Lt) __le__ = lambda self, other: self._relation(other, Le) __ge__ = lambda self, other: self._relation(other, Ge) __gt__ = lambda self, other: self._relation(other, Gt) class Pointer(Variable): """ Represents a pointer. See ``Variable``. Examples ======== Can create instances of ``Element``: >>> from sympy import Symbol >>> from sympy.codegen.ast import Pointer >>> i = Symbol('i', integer=True) >>> p = Pointer('x') >>> p[i+1] Element(x, indices=(i + 1,)) """ def __getitem__(self, key): try: return Element(self.symbol, key) except TypeError: return Element(self.symbol, (key,)) class Element(Token): """ Element in (a possibly N-dimensional) array. Examples ======== >>> from sympy.codegen.ast import Element >>> elem = Element('x', 'ijk') >>> elem.symbol.name == 'x' True >>> elem.indices (i, j, k) >>> from sympy import ccode >>> ccode(elem) 'x[i][j][k]' >>> ccode(Element('x', 'ijk', strides='lmn', offset='o')) 'x[i*l + j*m + k*n + o]' """ __slots__ = ['symbol', 'indices', 'strides', 'offset'] defaults = {'strides': none, 'offset': none} _construct_symbol = staticmethod(sympify) _construct_indices = staticmethod(lambda arg: Tuple(*arg)) _construct_strides = staticmethod(lambda arg: Tuple(*arg)) _construct_offset = staticmethod(sympify) class Declaration(Token): """ Represents a variable declaration Parameters ========== variable : Variable Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Declaration, Type, Variable, integer, untyped >>> z = Declaration('z') >>> z.variable.type == untyped True >>> z.variable.value == None True """ __slots__ = ['variable'] _construct_variable = Variable class While(Token): """ Represents a 'for-loop' in the code. Expressions are of the form: "while condition: body..." Parameters ========== condition : expression convertible to Boolean body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Gt, Abs >>> from sympy.codegen import aug_assign, Assignment, While >>> x, dx = symbols('x dx') >>> expr = 1 - x**2 >>> whl = While(Gt(Abs(dx), 1e-9), [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx) ... ]) """ __slots__ = ['condition', 'body'] _construct_condition = staticmethod(lambda cond: _sympify(cond)) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Scope(Token): """ Represents a scope in the code. Parameters ========== body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. """ __slots__ = ['body'] @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Stream(Token): """ Represents a stream. There are two predefined Stream instances ``stdout`` & ``stderr``. Parameters ========== name : str Examples ======== >>> from sympy import Symbol >>> from sympy.printing.pycode import pycode >>> from sympy.codegen.ast import Print, stderr, QuotedString >>> print(pycode(Print(['x'], file=stderr))) print(x, file=sys.stderr) >>> x = Symbol('x') >>> print(pycode(Print([QuotedString('x')], file=stderr))) # print literally "x" print("x", file=sys.stderr) """ __slots__ = ['name'] _construct_name = String stdout = Stream('stdout') stderr = Stream('stderr') class Print(Token): """ Represents print command in the code. Parameters ========== formatstring : str *args : Basic instances (or convertible to such through sympify) Examples ======== >>> from sympy.codegen.ast import Print >>> from sympy.printing.pycode import pycode >>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g"))) print("coordinate: %12.5g %12.5g" % (x, y)) """ __slots__ = ['print_args', 'format_string', 'file'] defaults = {'format_string': none, 'file': none} _construct_print_args = staticmethod(_mk_Tuple) _construct_format_string = QuotedString _construct_file = Stream class FunctionPrototype(Node): """ Represents a function prototype Allows the user to generate forward declaration in e.g. C/C++. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances attrs : iterable of Attribute instances Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> from sympy.printing.ccode import ccode >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' """ __slots__ = ['return_type', 'name', 'parameters', 'attrs'] _construct_return_type = Type _construct_name = String @staticmethod def _construct_parameters(args): def _var(arg): if isinstance(arg, Declaration): return arg.variable elif isinstance(arg, Variable): return arg else: return Variable.deduced(arg) return Tuple(*map(_var, args)) @classmethod def from_FunctionDefinition(cls, func_def): if not isinstance(func_def, FunctionDefinition): raise TypeError("func_def is not an instance of FunctionDefiniton") return cls(**func_def.kwargs(exclude=('body',))) class FunctionDefinition(FunctionPrototype): """ Represents a function definition in the code. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances body : CodeBlock or iterable attrs : iterable of Attribute instances Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> from sympy.printing.ccode import ccode >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' >>> from sympy.codegen.ast import FunctionDefinition, Return >>> body = [Return(x*y)] >>> fd = FunctionDefinition.from_FunctionPrototype(fp, body) >>> print(ccode(fd)) double foo(double x, double y){ return x*y; } """ __slots__ = FunctionPrototype.__slots__[:-1] + ['body', 'attrs'] @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def from_FunctionPrototype(cls, func_proto, body): if not isinstance(func_proto, FunctionPrototype): raise TypeError("func_proto is not an instance of FunctionPrototype") return cls(body=body, **func_proto.kwargs()) class Return(Basic): """ Represents a return command in the code. """ class FunctionCall(Token, Expr): """ Represents a call to a function in the code. Parameters ========== name : str function_args : Tuple Examples ======== >>> from sympy.codegen.ast import FunctionCall >>> from sympy.printing.pycode import pycode >>> fcall = FunctionCall('foo', 'bar baz'.split()) >>> print(pycode(fcall)) foo(bar, baz) """ __slots__ = ['name', 'function_args'] _construct_name = String _construct_function_args = staticmethod(lambda args: Tuple(*args))
e0424f44a2f4d3b4acfc0e946faa1aab8b32c47b52416dd0ff7db5d687784240
# -*- coding: utf-8 -*- """ This file contains some classical ciphers and routines implementing a linear-feedback shift register (LFSR) and the Diffie-Hellman key exchange. .. warning:: This module is intended for educational purposes only. Do not use the functions in this module for real cryptographic applications. If you wish to encrypt real data, we recommend using something like the `cryptography <https://cryptography.io/en/latest/>`_ module. """ from __future__ import print_function from string import whitespace, ascii_uppercase as uppercase, printable from functools import reduce import warnings from itertools import cycle from sympy import nextprime from sympy.core import Rational, Symbol from sympy.core.numbers import igcdex, mod_inverse, igcd from sympy.core.compatibility import range, as_int from sympy.matrices import Matrix from sympy.ntheory import isprime, primitive_root, factorint from sympy.polys.domains import FF from sympy.polys.polytools import gcd, Poly from sympy.utilities.misc import filldedent, translate from sympy.utilities.iterables import uniq, multiset from sympy.utilities.randtest import _randrange, _randint class NonInvertibleCipherWarning(RuntimeWarning): """A warning raised if the cipher is not invertible.""" def __init__(self, msg): self.fullMessage = msg def __str__(self): return '\n\t' + self.fullMessage def warn(self, stacklevel=2): warnings.warn(self, stacklevel=stacklevel) def AZ(s=None): """Return the letters of ``s`` in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned. Examples ======== >>> from sympy.crypto.crypto import AZ >>> AZ('Hello, world!') 'HELLOWORLD' >>> AZ('Hello, world!'.split()) ['HELLO', 'WORLD'] See Also ======== check_and_join """ if not s: return uppercase t = type(s) is str if t: s = [s] rv = [check_and_join(i.upper().split(), uppercase, filter=True) for i in s] if t: return rv[0] return rv bifid5 = AZ().replace('J', '') bifid6 = AZ() + '0123456789' bifid10 = printable def padded_key(key, symbols, filter=True): """Return a string of the distinct characters of ``symbols`` with those of ``key`` appearing first, omitting characters in ``key`` that are not in ``symbols``. A ValueError is raised if a) there are duplicate characters in ``symbols`` or b) there are characters in ``key`` that are not in ``symbols``. Examples ======== >>> from sympy.crypto.crypto import padded_key >>> padded_key('PUPPY', 'OPQRSTUVWXY') 'PUYOQRSTVWX' >>> padded_key('RSA', 'ARTIST') Traceback (most recent call last): ... ValueError: duplicate characters in symbols: T """ syms = list(uniq(symbols)) if len(syms) != len(symbols): extra = ''.join(sorted(set( [i for i in symbols if symbols.count(i) > 1]))) raise ValueError('duplicate characters in symbols: %s' % extra) extra = set(key) - set(syms) if extra: raise ValueError( 'characters in key but not symbols: %s' % ''.join( sorted(extra))) key0 = ''.join(list(uniq(key))) return key0 + ''.join([i for i in syms if i not in key0]) def check_and_join(phrase, symbols=None, filter=None): """ Joins characters of ``phrase`` and if ``symbols`` is given, raises an error if any character in ``phrase`` is not in ``symbols``. Parameters ========== phrase String or list of strings to be returned as a string. symbols Iterable of characters allowed in ``phrase``. If ``symbols`` is ``None``, no checking is performed. Examples ======== >>> from sympy.crypto.crypto import check_and_join >>> check_and_join('a phrase') 'a phrase' >>> check_and_join('a phrase'.upper().split()) 'APHRASE' >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True) 'ARAE' >>> check_and_join('a phrase!'.upper().split(), 'ARE') Traceback (most recent call last): ... ValueError: characters in phrase but not symbols: "!HPS" """ rv = ''.join(''.join(phrase)) if symbols is not None: symbols = check_and_join(symbols) missing = ''.join(list(sorted(set(rv) - set(symbols)))) if missing: if not filter: raise ValueError( 'characters in phrase but not symbols: "%s"' % missing) rv = translate(rv, None, missing) return rv def _prep(msg, key, alp, default=None): if not alp: if not default: alp = AZ() msg = AZ(msg) key = AZ(key) else: alp = default else: alp = ''.join(alp) key = check_and_join(key, alp, filter=True) msg = check_and_join(msg, alp, filter=True) return msg, key, alp def cycle_list(k, n): """ Returns the elements of the list ``range(n)`` shifted to the left by ``k`` (so the list starts with ``k`` (mod ``n``)). Examples ======== >>> from sympy.crypto.crypto import cycle_list >>> cycle_list(3, 10) [3, 4, 5, 6, 7, 8, 9, 0, 1, 2] """ k = k % n return list(range(k, n)) + list(range(k)) ######## shift cipher examples ############ def encipher_shift(msg, key, symbols=None): """ Performs shift cipher encryption on plaintext msg, and returns the ciphertext. Parameters ========== key : int The secret key. msg : str Plaintext of upper-case letters. Returns ======= str Ciphertext of upper-case letters. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' There is also a convenience function that does this with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by adding ``(k mod 26)`` to each element in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. The shift cipher is also called the Caesar cipher, after Julius Caesar, who, according to Suetonius, used it with a shift of three to protect messages of military significance. Caesar's nephew Augustus reportedly used a similar cipher, but with a right shift of 1. References ========== .. [1] https://en.wikipedia.org/wiki/Caesar_cipher .. [2] http://mathworld.wolfram.com/CaesarsMethod.html See Also ======== decipher_shift """ msg, _, A = _prep(msg, '', symbols) shift = len(A) - key % len(A) key = A[shift:] + A[:shift] return translate(msg, key, A) def decipher_shift(msg, key, symbols=None): """ Return the text by shifting the characters of ``msg`` to the left by the amount given by ``key``. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' Or use this function with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' """ return encipher_shift(msg, -key, symbols) def encipher_rot13(msg, symbols=None): """ Performs the ROT13 encryption on a given plaintext ``msg``. Notes ===== ROT13 is a substitution cipher which substitutes each letter in the plaintext message for the letter furthest away from it in the English alphabet. Equivalently, it is just a Caeser (shift) cipher with a shift key of 13 (midway point of the alphabet). References ========== .. [1] https://en.wikipedia.org/wiki/ROT13 See Also ======== decipher_rot13 encipher_shift """ return encipher_shift(msg, 13, symbols) def decipher_rot13(msg, symbols=None): """ Performs the ROT13 decryption on a given plaintext ``msg``. Notes ===== ``decipher_rot13`` is equivalent to ``encipher_rot13`` as both ``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a key of 13 will return the same results. Nonetheless, ``decipher_rot13`` has nonetheless been explicitly defined here for consistency. Examples ======== >>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13 >>> msg = 'GONAVYBEATARMY' >>> ciphertext = encipher_rot13(msg);ciphertext 'TBANILORNGNEZL' >>> decipher_rot13(ciphertext) 'GONAVYBEATARMY' >>> encipher_rot13(msg) == decipher_rot13(msg) True >>> msg == decipher_rot13(ciphertext) True """ return decipher_shift(msg, 13, symbols) ######## affine cipher examples ############ def encipher_affine(msg, key, symbols=None, _inverse=False): r""" Performs the affine cipher encryption on plaintext ``msg``, and returns the ciphertext. Encryption is based on the map `x \rightarrow ax+b` (mod `N`) where ``N`` is the number of characters in the alphabet. Decryption is based on the map `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). In particular, for the map to be invertible, we need `\mathrm{gcd}(a, N) = 1` and an error will be raised if this is not true. Parameters ========== msg : str Characters that appear in ``symbols``. a, b : int, int A pair integers, with ``gcd(a, N) = 1`` (the secret key). symbols String of characters (default = uppercase letters). When no symbols are given, ``msg`` is converted to upper case letters and all other characters are ignored. Returns ======= ct String of characters (the ciphertext message) Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by replacing ``x`` by ``a*x + b (mod N)``, for each element ``x`` in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. This is a straightforward generalization of the shift cipher with the added complexity of requiring 2 characters to be deciphered in order to recover the key. References ========== .. [1] https://en.wikipedia.org/wiki/Affine_cipher See Also ======== decipher_affine """ msg, _, A = _prep(msg, '', symbols) N = len(A) a, b = key assert gcd(a, N) == 1 if _inverse: c = mod_inverse(a, N) d = -b*c a, b = c, d B = ''.join([A[(a*i + b) % N] for i in range(N)]) return translate(msg, A, B) def decipher_affine(msg, key, symbols=None): r""" Return the deciphered text that was made from the mapping, `x \rightarrow ax+b` (mod `N`), where ``N`` is the number of characters in the alphabet. Deciphering is done by reciphering with a new key: `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). Examples ======== >>> from sympy.crypto.crypto import encipher_affine, decipher_affine >>> msg = "GO NAVY BEAT ARMY" >>> key = (3, 1) >>> encipher_affine(msg, key) 'TROBMVENBGBALV' >>> decipher_affine(_, key) 'GONAVYBEATARMY' See Also ======== encipher_affine """ return encipher_affine(msg, key, symbols, _inverse=True) def encipher_atbash(msg, symbols=None): r""" Enciphers a given ``msg`` into its Atbash ciphertext and returns it. Notes ===== Atbash is a substitution cipher originally used to encrypt the Hebrew alphabet. Atbash works on the principle of mapping each alphabet to its reverse / counterpart (i.e. a would map to z, b to y etc.) Atbash is functionally equivalent to the affine cipher with ``a = 25`` and ``b = 25`` See Also ======== decipher_atbash """ return encipher_affine(msg, (25,25), symbols) def decipher_atbash(msg, symbols=None): r""" Deciphers a given ``msg`` using Atbash cipher and returns it. Notes ===== ``decipher_atbash`` is functionally equivalent to ``encipher_atbash``. However, it has still been added as a separate function to maintain consistency. Examples ======== >>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash >>> msg = 'GONAVYBEATARMY' >>> encipher_atbash(msg) 'TLMZEBYVZGZINB' >>> decipher_atbash(msg) 'TLMZEBYVZGZINB' >>> encipher_atbash(msg) == decipher_atbash(msg) True >>> msg == encipher_atbash(encipher_atbash(msg)) True References ========== .. [1] https://en.wikipedia.org/wiki/Atbash See Also ======== encipher_atbash """ return decipher_affine(msg, (25,25), symbols) #################### substitution cipher ########################### def encipher_substitution(msg, old, new=None): r""" Returns the ciphertext obtained by replacing each character that appears in ``old`` with the corresponding character in ``new``. If ``old`` is a mapping, then new is ignored and the replacements defined by ``old`` are used. Notes ===== This is a more general than the affine cipher in that the key can only be recovered by determining the mapping for each symbol. Though in practice, once a few symbols are recognized the mappings for other characters can be quickly guessed. Examples ======== >>> from sympy.crypto.crypto import encipher_substitution, AZ >>> old = 'OEYAG' >>> new = '034^6' >>> msg = AZ("go navy! beat army!") >>> ct = encipher_substitution(msg, old, new); ct '60N^V4B3^T^RM4' To decrypt a substitution, reverse the last two arguments: >>> encipher_substitution(ct, new, old) 'GONAVYBEATARMY' In the special case where ``old`` and ``new`` are a permutation of order 2 (representing a transposition of characters) their order is immaterial: >>> old = 'NAVY' >>> new = 'ANYV' >>> encipher = lambda x: encipher_substitution(x, old, new) >>> encipher('NAVY') 'ANYV' >>> encipher(_) 'NAVY' The substitution cipher, in general, is a method whereby "units" (not necessarily single characters) of plaintext are replaced with ciphertext according to a regular system. >>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc'])) >>> print(encipher_substitution('abc', ords)) \97\98\99 References ========== .. [1] https://en.wikipedia.org/wiki/Substitution_cipher """ return translate(msg, old, new) ###################################################################### #################### Vigenère cipher examples ######################## ###################################################################### def encipher_vigenere(msg, key, symbols=None): """ Performs the Vigenère cipher encryption on plaintext ``msg``, and returns the ciphertext. Examples ======== >>> from sympy.crypto.crypto import encipher_vigenere, AZ >>> key = "encrypt" >>> msg = "meet me on monday" >>> encipher_vigenere(msg, key) 'QRGKKTHRZQEBPR' Section 1 of the Kryptos sculpture at the CIA headquarters uses this cipher and also changes the order of the the alphabet [2]_. Here is the first line of that section of the sculpture: >>> from sympy.crypto.crypto import decipher_vigenere, padded_key >>> alp = padded_key('KRYPTOS', AZ()) >>> key = 'PALIMPSEST' >>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ' >>> decipher_vigenere(msg, key, alp) 'BETWEENSUBTLESHADINGANDTHEABSENC' Notes ===== The Vigenère cipher is named after Blaise de Vigenère, a sixteenth century diplomat and cryptographer, by a historical accident. Vigenère actually invented a different and more complicated cipher. The so-called *Vigenère cipher* was actually invented by Giovan Batista Belaso in 1553. This cipher was used in the 1800's, for example, during the American Civil War. The Confederacy used a brass cipher disk to implement the Vigenère cipher (now on display in the NSA Museum in Fort Meade) [1]_. The Vigenère cipher is a generalization of the shift cipher. Whereas the shift cipher shifts each letter by the same amount (that amount being the key of the shift cipher) the Vigenère cipher shifts a letter by an amount determined by the key (which is a word or phrase known only to the sender and receiver). For example, if the key was a single letter, such as "C", then the so-called Vigenere cipher is actually a shift cipher with a shift of `2` (since "C" is the 2nd letter of the alphabet, if you start counting at `0`). If the key was a word with two letters, such as "CA", then the so-called Vigenère cipher will shift letters in even positions by `2` and letters in odd positions are left alone (shifted by `0`, since "A" is the 0th letter, if you start counting at `0`). ALGORITHM: INPUT: ``msg``: string of characters that appear in ``symbols`` (the plaintext) ``key``: a string of characters that appear in ``symbols`` (the secret key) ``symbols``: a string of letters defining the alphabet OUTPUT: ``ct``: string of characters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``key`` a list ``L1`` of corresponding integers. Let ``n1 = len(L1)``. 2. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 3. Break ``L2`` up sequentially into sublists of size ``n1``; the last sublist may be smaller than ``n1`` 4. For each of these sublists ``L`` of ``L2``, compute a new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)`` to the ``i``-th element in the sublist, for each ``i``. 5. Assemble these lists ``C`` by concatenation into a new list of length ``n2``. 6. Compute from the new list a string ``ct`` of corresponding letters. Once it is known that the key is, say, `n` characters long, frequency analysis can be applied to every `n`-th letter of the ciphertext to determine the plaintext. This method is called *Kasiski examination* (although it was first discovered by Babbage). If they key is as long as the message and is comprised of randomly selected characters -- a one-time pad -- the message is theoretically unbreakable. The cipher Vigenère actually discovered is an "auto-key" cipher described as follows. ALGORITHM: INPUT: ``key``: a string of letters (the secret key) ``msg``: string of letters (the plaintext message) OUTPUT: ``ct``: string of upper-case letters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 2. Let ``n1`` be the length of the key. Append to the string ``key`` the first ``n2 - n1`` characters of the plaintext message. Compute from this string (also of length ``n2``) a list ``L1`` of integers corresponding to the letter numbers in the first step. 3. Compute a new list ``C`` given by ``C[i] = L1[i] + L2[i] (mod N)``. 4. Compute from the new list a string ``ct`` of letters corresponding to the new integers. To decipher the auto-key ciphertext, the key is used to decipher the first ``n1`` characters and then those characters become the key to decipher the next ``n1`` characters, etc...: >>> m = AZ('go navy, beat army! yes you can'); m 'GONAVYBEATARMYYESYOUCAN' >>> key = AZ('gold bug'); n1 = len(key); n2 = len(m) >>> auto_key = key + m[:n2 - n1]; auto_key 'GOLDBUGGONAVYBEATARMYYE' >>> ct = encipher_vigenere(m, auto_key); ct 'MCYDWSHKOGAMKZCELYFGAYR' >>> n1 = len(key) >>> pt = [] >>> while ct: ... part, ct = ct[:n1], ct[n1:] ... pt.append(decipher_vigenere(part, key)) ... key = pt[-1] ... >>> ''.join(pt) == m True References ========== .. [1] https://en.wikipedia.org/wiki/Vigenere_cipher .. [2] http://web.archive.org/web/20071116100808/ .. [3] http://filebox.vt.edu/users/batman/kryptos.html (short URL: https://goo.gl/ijr22d) """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} key = [map[c] for c in key] N = len(map) k = len(key) rv = [] for i, m in enumerate(msg): rv.append(A[(map[m] + key[i % k]) % N]) rv = ''.join(rv) return rv def decipher_vigenere(msg, key, symbols=None): """ Decode using the Vigenère cipher. Examples ======== >>> from sympy.crypto.crypto import decipher_vigenere >>> key = "encrypt" >>> ct = "QRGK kt HRZQE BPR" >>> decipher_vigenere(ct, key) 'MEETMEONMONDAY' """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} N = len(A) # normally, 26 K = [map[c] for c in key] n = len(K) C = [map[c] for c in msg] rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)]) return rv #################### Hill cipher ######################## def encipher_hill(msg, key, symbols=None, pad="Q"): r""" Return the Hill cipher encryption of ``msg``. Notes ===== The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_, was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once. The following discussion assumes an elementary knowledge of matrices. First, each letter is first encoded as a number starting with 0. Suppose your message `msg` consists of `n` capital letters, with no spaces. This may be regarded an `n`-tuple M of elements of `Z_{26}` (if the letters are those of the English alphabet). A key in the Hill cipher is a `k x k` matrix `K`, all of whose entries are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k` is one-to-one). Parameters ========== msg Plaintext message of `n` upper-case letters. key A `k \times k` invertible matrix `K`, all of whose entries are in `Z_{26}` (or whatever number of symbols are being used). pad Character (default "Q") to use to make length of text be a multiple of ``k``. Returns ======= ct Ciphertext of upper-case letters. Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L`` of corresponding integers. Let ``n = len(L)``. 2. Break the list ``L`` up into ``t = ceiling(n/k)`` sublists ``L_1``, ..., ``L_t`` of size ``k`` (with the last list "padded" to ensure its size is ``k``). 3. Compute new list ``C_1``, ..., ``C_t`` given by ``C[i] = K*L_i`` (arithmetic is done mod N), for each ``i``. 4. Concatenate these into a list ``C = C_1 + ... + C_t``. 5. Compute from ``C`` a string ``ct`` of corresponding letters. This has length ``k*t``. References ========== .. [1] https://en.wikipedia.org/wiki/Hill_cipher .. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet, The American Mathematical Monthly Vol.36, June-July 1929, pp.306-312. See Also ======== decipher_hill """ assert key.is_square assert len(pad) == 1 msg, pad, A = _prep(msg, pad, symbols) map = {c: i for i, c in enumerate(A)} P = [map[c] for c in msg] N = len(A) k = key.cols n = len(P) m, r = divmod(n, k) if r: P = P + [map[pad]]*(k - r) m += 1 rv = ''.join([A[c % N] for j in range(m) for c in list(key*Matrix(k, 1, [P[i] for i in range(k*j, k*(j + 1))]))]) return rv def decipher_hill(msg, key, symbols=None): """ Deciphering is the same as enciphering but using the inverse of the key matrix. Examples ======== >>> from sympy.crypto.crypto import encipher_hill, decipher_hill >>> from sympy import Matrix >>> key = Matrix([[1, 2], [3, 5]]) >>> encipher_hill("meet me on monday", key) 'UEQDUEODOCTCWQ' >>> decipher_hill(_, key) 'MEETMEONMONDAY' When the length of the plaintext (stripped of invalid characters) is not a multiple of the key dimension, extra characters will appear at the end of the enciphered and deciphered text. In order to decipher the text, those characters must be included in the text to be deciphered. In the following, the key has a dimension of 4 but the text is 2 short of being a multiple of 4 so two characters will be added. >>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0], ... [2, 2, 3, 4], [1, 1, 0, 1]]) >>> msg = "ST" >>> encipher_hill(msg, key) 'HJEB' >>> decipher_hill(_, key) 'STQQ' >>> encipher_hill(msg, key, pad="Z") 'ISPK' >>> decipher_hill(_, key) 'STZZ' If the last two characters of the ciphertext were ignored in either case, the wrong plaintext would be recovered: >>> decipher_hill("HD", key) 'ORMV' >>> decipher_hill("IS", key) 'UIKY' See Also ======== encipher_hill """ assert key.is_square msg, _, A = _prep(msg, '', symbols) map = {c: i for i, c in enumerate(A)} C = [map[c] for c in msg] N = len(A) k = key.cols n = len(C) m, r = divmod(n, k) if r: C = C + [0]*(k - r) m += 1 key_inv = key.inv_mod(N) rv = ''.join([A[p % N] for j in range(m) for p in list(key_inv*Matrix( k, 1, [C[i] for i in range(k*j, k*(j + 1))]))]) return rv #################### Bifid cipher ######################## def encipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses an `n \times n` Polybius square. Parameters ========== msg Plaintext string. key Short string for key. Duplicate characters are ignored and then it is padded with the characters in ``symbols`` that were not in the short key. symbols `n \times n` characters defining the alphabet. (default is string.printable) Returns ======= ciphertext Ciphertext using Bifid5 cipher without spaces. See Also ======== decipher_bifid, encipher_bifid5, encipher_bifid6 References ========== .. [1] https://en.wikipedia.org/wiki/Bifid_cipher """ msg, key, A = _prep(msg, key, symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the fractionalization row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)} r, c = zip(*[row_col[x] for x in msg]) rc = r + c ch = {i: ch for ch, i in row_col.items()} rv = ''.join((ch[i] for i in zip(rc[::2], rc[1::2]))) return rv def decipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `n \times n` Polybius square. Parameters ========== msg Ciphertext string. key Short string for key. Duplicate characters are ignored and then it is padded with the characters in symbols that were not in the short key. symbols `n \times n` characters defining the alphabet. (default=string.printable, a `10 \times 10` matrix) Returns ======= deciphered Deciphered text. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid, decipher_bifid, AZ) Do an encryption using the bifid5 alphabet: >>> alp = AZ().replace('J', '') >>> ct = AZ("meet me on monday!") >>> key = AZ("gold bug") >>> encipher_bifid(ct, key, alp) 'IEILHHFSTSFQYE' When entering the text or ciphertext, spaces are ignored so it can be formatted as desired. Re-entering the ciphertext from the preceding, putting 4 characters per line and padding with an extra J, does not cause problems for the deciphering: >>> decipher_bifid(''' ... IEILH ... HFSTS ... FQYEJ''', key, alp) 'MEETMEONMONDAY' When no alphabet is given, all 100 printable characters will be used: >>> key = '' >>> encipher_bifid('hello world!', key) 'bmtwmg-bIo*w' >>> decipher_bifid(_, key) 'hello world!' If the key is changed, a different encryption is obtained: >>> key = 'gold bug' >>> encipher_bifid('hello world!', 'gold_bug') 'hg2sfuei7t}w' And if the key used to decrypt the message is not exact, the original text will not be perfectly obtained: >>> decipher_bifid(_, 'gold pug') 'heldo~wor6d!' """ msg, _, A = _prep(msg, '', symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the reverse fractionalization row_col = dict( [(ch, divmod(i, N)) for i, ch in enumerate(long_key)]) rc = [i for c in msg for i in row_col[c]] n = len(msg) rc = zip(*(rc[:n], rc[n:])) ch = {i: ch for ch, i in row_col.items()} rv = ''.join((ch[i] for i in rc)) return rv def bifid_square(key): """Return characters of ``key`` arranged in a square. Examples ======== >>> from sympy.crypto.crypto import ( ... bifid_square, AZ, padded_key, bifid5) >>> bifid_square(AZ().replace('J', '')) Matrix([ [A, B, C, D, E], [F, G, H, I, K], [L, M, N, O, P], [Q, R, S, T, U], [V, W, X, Y, Z]]) >>> bifid_square(padded_key(AZ('gold bug!'), bifid5)) Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) See Also ======== padded_key """ A = ''.join(uniq(''.join(key))) n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) n = int(n) f = lambda i, j: Symbol(A[n*i + j]) rv = Matrix(n, n, f) return rv def encipher_bifid5(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square. The letter "J" is ignored so it must be replaced with something else (traditionally an "I") before encryption. ALGORITHM: (5x5 case) STEPS: 0. Create the `5 \times 5` Polybius square ``S`` associated to ``key`` as follows: a) moving from left-to-right, top-to-bottom, place the letters of the key into a `5 \times 5` matrix, b) if the key has less than 25 letters, add the letters of the alphabet not in the key until the `5 \times 5` square is filled. 1. Create a list ``P`` of pairs of numbers which are the coordinates in the Polybius square of the letters in ``msg``. 2. Let ``L1`` be the list of all first coordinates of ``P`` (length of ``L1 = n``), let ``L2`` be the list of all second coordinates of ``P`` (so the length of ``L2`` is also ``n``). 3. Let ``L`` be the concatenation of ``L1`` and ``L2`` (length ``L = 2*n``), except that consecutive numbers are paired ``(L[2*i], L[2*i + 1])``. You can regard ``L`` as a list of pairs of length ``n``. 4. Let ``C`` be the list of all letters which are of the form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a string, this is the ciphertext of ``msg``. Parameters ========== msg : str Plaintext string. Converted to upper case and filtered of anything but all letters except J. key Short string for key; non-alphabetic letters, J and duplicated characters are ignored and then, if the length is less than 25 characters, it is padded with other letters of the alphabet (in alphabetical order). Returns ======= ct Ciphertext (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid5, decipher_bifid5) "J" will be omitted unless it is replaced with something else: >>> round_trip = lambda m, k: \ ... decipher_bifid5(encipher_bifid5(m, k), k) >>> key = 'a' >>> msg = "JOSIE" >>> round_trip(msg, key) 'OSIE' >>> round_trip(msg.replace("J", "I"), key) 'IOSIE' >>> j = "QIQ" >>> round_trip(msg.replace("J", j), key).replace(j, "J") 'JOSIE' Notes ===== The Bifid cipher was invented around 1901 by Felix Delastelle. It is a *fractional substitution* cipher, where letters are replaced by pairs of symbols from a smaller alphabet. The cipher uses a `5 \times 5` square filled with some ordering of the alphabet, except that "J" is replaced with "I" (this is a so-called Polybius square; there is a `6 \times 6` analog if you add back in "J" and also append onto the usual 26 letter alphabet, the digits 0, 1, ..., 9). According to Helen Gaines' book *Cryptanalysis*, this type of cipher was used in the field by the German Army during World War I. See Also ======== decipher_bifid5, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return encipher_bifid(msg, '', key) def decipher_bifid5(msg, key): r""" Return the Bifid cipher decryption of ``msg``. This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square; the letter "J" is ignored unless a ``key`` of length 25 is used. Parameters ========== msg Ciphertext string. key Short string for key; duplicated characters are ignored and if the length is less then 25 characters, it will be padded with other letters from the alphabet omitting "J". Non-alphabetic characters are ignored. Returns ======= plaintext Plaintext from Bifid5 cipher (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5 >>> key = "gold bug" >>> encipher_bifid5('meet me on friday', key) 'IEILEHFSTSFXEE' >>> encipher_bifid5('meet me on monday', key) 'IEILHHFSTSFQYE' >>> decipher_bifid5(_, key) 'MEETMEONMONDAY' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return decipher_bifid(msg, '', key) def bifid5_square(key=None): r""" 5x5 Polybius square. Produce the Polybius square for the `5 \times 5` Bifid cipher. Examples ======== >>> from sympy.crypto.crypto import bifid5_square >>> bifid5_square("gold bug") Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) """ if not key: key = bifid5 else: _, key, _ = _prep('', key.upper(), None, bifid5) key = padded_key(key, bifid5) return bifid_square(key) def encipher_bifid6(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. Parameters ========== msg Plaintext string (digits okay). key Short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. Returns ======= ciphertext Ciphertext from Bifid cipher (all caps, no spaces). See Also ======== decipher_bifid6, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return encipher_bifid(msg, '', key) def decipher_bifid6(msg, key): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. Parameters ========== msg Ciphertext string (digits okay); converted to upper case key Short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. All letters are converted to uppercase. Returns ======= plaintext Plaintext from Bifid cipher (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6 >>> key = "gold bug" >>> encipher_bifid6('meet me on monday at 8am', key) 'KFKLJJHF5MMMKTFRGPL' >>> decipher_bifid6(_, key) 'MEETMEONMONDAYAT8AM' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return decipher_bifid(msg, '', key) def bifid6_square(key=None): r""" 6x6 Polybius square. Produces the Polybius square for the `6 \times 6` Bifid cipher. Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9". Examples ======== >>> from sympy.crypto.crypto import bifid6_square >>> key = "gold bug" >>> bifid6_square(key) Matrix([ [G, O, L, D, B, U], [A, C, E, F, H, I], [J, K, M, N, P, Q], [R, S, T, V, W, X], [Y, Z, 0, 1, 2, 3], [4, 5, 6, 7, 8, 9]]) """ if not key: key = bifid6 else: _, key, _ = _prep('', key.upper(), None, bifid6) key = padded_key(key, bifid6) return bifid_square(key) #################### RSA ############################# def _decipher_rsa_crt(i, d, factors): """Decipher RSA using chinese remainder theorem from the information of the relatively-prime factors of the modulus. Parameters ========== i : integer Ciphertext d : integer The exponent component factors : list of relatively-prime integers The integers given must be coprime and the product must equal the modulus component of the original RSA key. Examples ======== How to decrypt RSA with CRT: >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key >>> primes = [61, 53] >>> e = 17 >>> args = primes + [e] >>> puk = rsa_public_key(*args) >>> prk = rsa_private_key(*args) >>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt >>> msg = 65 >>> crt_primes = primes >>> encrypted = encipher_rsa(msg, puk) >>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes) >>> decrypted 65 """ from sympy.ntheory.modular import crt moduluses = [pow(i, d, p) for p in factors] result = crt(factors, moduluses) if not result: raise ValueError("CRT failed") return result[0] def _rsa_key(*args, **kwargs): r"""A private subroutine to generate RSA key Parameters ========== public, private : bool, optional Flag to generate either a public key, a private key totient : 'Euler' or 'Carmichael' Different notation used for totient. multipower : bool, optional Flag to bypass warning for multipower RSA. """ from sympy.ntheory import totient as _euler from sympy.ntheory import reduced_totient as _carmichael public = kwargs.pop('public', True) private = kwargs.pop('private', True) totient = kwargs.pop('totient', 'Euler') index = kwargs.pop('index', None) multipower = kwargs.pop('multipower', None) if len(args) < 2: return False if totient not in ('Euler', 'Carmichael'): raise ValueError( "The argument totient={} should either be " \ "'Euler', 'Carmichalel'." \ .format(totient)) if totient == 'Euler': _totient = _euler else: _totient = _carmichael if index is not None: index = as_int(index) if totient != 'Carmichael': raise ValueError( "Setting the 'index' keyword argument requires totient" "notation to be specified as 'Carmichael'.") primes, e = args[:-1], args[-1] if any(not isprime(p) for p in primes): new_primes = [] for i in primes: new_primes.extend(factorint(i, multiple=True)) primes = new_primes n = reduce(lambda i, j: i*j, primes) tally = multiset(primes) if all(v == 1 for v in tally.values()): multiple = list(tally.keys()) phi = _totient._from_distinct_primes(*multiple) else: if not multipower: NonInvertibleCipherWarning( 'Non-distinctive primes found in the factors {}. ' 'The cipher may not be decryptable for some numbers ' 'in the complete residue system Z[{}], but the cipher ' 'can still be valid if you restrict the domain to be ' 'the reduced residue system Z*[{}]. You can pass ' 'the flag multipower=True if you want to suppress this ' 'warning.' .format(primes, n, n) ).warn() phi = _totient._from_factors(tally) if igcd(e, phi) == 1: if public and not private: if isinstance(index, int): e = e % phi e += index * phi return n, e if private and not public: d = mod_inverse(e, phi) if isinstance(index, int): d += index * phi return n, d return False def rsa_public_key(*args, **kwargs): r"""Return the RSA *public key* pair, `(n, e)` Parameters ========== args : naturals If specified as `p, q, e` where `p` and `q` are distinct primes and `e` is a desired public exponent of the RSA, `n = p q` and `e` will be verified against the totient `\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient) to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`. If specified as `p_1, p_2, ..., p_n, e` where `p_1, p_2, ..., p_n` are specified as primes, and `e` is specified as a desired public exponent of the RSA, it will be able to form a multi-prime RSA, which is a more generalized form of the popular 2-prime RSA. It can also be possible to form a single-prime RSA by specifying the argument as `p, e`, which can be considered a trivial case of a multiprime RSA. Furthermore, it can be possible to form a multi-power RSA by specifying two or more pairs of the primes to be same. However, unlike the two-distinct prime RSA or multi-prime RSA, not every numbers in the complete residue system (`\mathbb{Z}_n`) will be decryptable since the mapping `\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}` will not be bijective. (Only except for the trivial case when `e = 1` or more generally, .. math:: e \in \left \{ 1 + k \lambda(n) \mid k \in \mathbb{Z} \land k \geq 0 \right \} when RSA reduces to the identity.) However, the RSA can still be decryptable for the numbers in the reduced residue system (`\mathbb{Z}_n^{\times}`), since the mapping `\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}` can still be bijective. If you pass a non-prime integer to the arguments `p_1, p_2, ..., p_n`, the particular number will be prime-factored and it will become either a multi-prime RSA or a multi-power RSA in its canonical form, depending on whether the product equals its radical or not. `p_1 p_2 ... p_n = \text{rad}(p_1 p_2 ... p_n)` totient : bool, optional If ``'Euler'``, it uses Euler's totient `\phi(n)` which is :meth:`sympy.ntheory.factor_.totient` in SymPy. If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)` which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy. Unlike private key generation, this is a trivial keyword for public key generation because `\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`. index : nonnegative integer, optional Returns an arbitrary solution of a RSA public key at the index specified at `0, 1, 2, ...`. This parameter needs to be specified along with ``totient='Carmichael'``. Similarly to the non-uniquenss of a RSA private key as described in the ``index`` parameter documentation in :meth:`rsa_private_key`, RSA public key is also not unique and there is an infinite number of RSA public exponents which can behave in the same manner. From any given RSA public exponent `e`, there are can be an another RSA public exponent `e + k \lambda(n)` where `k` is an integer, `\lambda` is a Carmichael's totient function. However, considering only the positive cases, there can be a principal solution of a RSA public exponent `e_0` in `0 < e_0 < \lambda(n)`, and all the other solutions can be canonicalzed in a form of `e_0 + k \lambda(n)`. ``index`` specifies the `k` notation to yield any possible value an RSA public key can have. An example of computing any arbitrary RSA public key: >>> from sympy.crypto.crypto import rsa_public_key >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0) (3233, 17) >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1) (3233, 797) >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2) (3233, 1577) multipower : bool, optional Any pair of non-distinct primes found in the RSA specification will restrict the domain of the cryptosystem, as noted in the explaination of the parameter ``args``. SymPy RSA key generator may give a warning before dispatching it as a multi-power RSA, however, you can disable the warning if you pass ``True`` to this keyword. Returns ======= (n, e) : int, int `n` is a product of any arbitrary number of primes given as the argument. `e` is relatively prime (coprime) to the Euler totient `\phi(n)`. False Returned if less than two arguments are given, or `e` is not relatively prime to the modulus. Examples ======== >>> from sympy.crypto.crypto import rsa_public_key A public key of a two-prime RSA: >>> p, q, e = 3, 5, 7 >>> rsa_public_key(p, q, e) (15, 7) >>> rsa_public_key(p, q, 30) False A public key of a multiprime RSA: >>> primes = [2, 3, 5, 7, 11, 13] >>> e = 7 >>> args = primes + [e] >>> rsa_public_key(*args) (30030, 7) Notes ===== Although the RSA can be generalized over any modulus `n`, using two large primes had became the most popular specification because a product of two large primes is usually the hardest to factor relatively to the digits of `n` can have. However, it may need further understanding of the time complexities of each prime-factoring algorithms to verify the claim. See Also ======== rsa_private_key encipher_rsa decipher_rsa References ========== .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29 .. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf .. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf .. [4] http://www.itiis.org/digital-library/manuscript/1381 """ return _rsa_key(*args, public=True, private=False, **kwargs) def rsa_private_key(*args, **kwargs): r"""Return the RSA *private key* pair, `(n, d)` Parameters ========== args : naturals The keyword is identical to the ``args`` in :meth:`rsa_public_key`. totient : bool, optional If ``'Euler'``, it uses Euler's totient convention `\phi(n)` which is :meth:`sympy.ntheory.factor_.totient` in SymPy. If ``'Carmichael'``, it uses Carmichael's totient convention `\lambda(n)` which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy. There can be some output differences for private key generation as examples below. Example using Euler's totient: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Euler') (3233, 2753) Example using Carmichael's totient: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Carmichael') (3233, 413) index : nonnegative integer, optional Returns an arbitrary solution of a RSA private key at the index specified at `0, 1, 2, ...`. This parameter needs to be specified along with ``totient='Carmichael'``. RSA private exponent is a non-unique solution of `e d \mod \lambda(n) = 1` and it is possible in any form of `d + k \lambda(n)`, where `d` is an another already-computed private exponent, and `\lambda` is a Carmichael's totient function, and `k` is any integer. However, considering only the positive cases, there can be a principal solution of a RSA private exponent `d_0` in `0 < d_0 < \lambda(n)`, and all the other solutions can be canonicalzed in a form of `d_0 + k \lambda(n)`. ``index`` specifies the `k` notation to yield any possible value an RSA private key can have. An example of computing any arbitrary RSA private key: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0) (3233, 413) >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1) (3233, 1193) >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2) (3233, 1973) multipower : bool, optional The keyword is identical to the ``multipower`` in :meth:`rsa_public_key`. Returns ======= (n, d) : int, int `n` is a product of any arbitrary number of primes given as the argument. `d` is the inverse of `e` (mod `\phi(n)`) where `e` is the exponent given, and `\phi` is a Euler totient. False Returned if less than two arguments are given, or `e` is not relatively prime to the totient of the modulus. Examples ======== >>> from sympy.crypto.crypto import rsa_private_key A private key of a two-prime RSA: >>> p, q, e = 3, 5, 7 >>> rsa_private_key(p, q, e) (15, 7) >>> rsa_private_key(p, q, 30) False A private key of a multiprime RSA: >>> primes = [2, 3, 5, 7, 11, 13] >>> e = 7 >>> args = primes + [e] >>> rsa_private_key(*args) (30030, 823) See Also ======== rsa_public_key encipher_rsa decipher_rsa References ========== .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29 .. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf .. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf .. [4] http://www.itiis.org/digital-library/manuscript/1381 """ return _rsa_key(*args, public=False, private=True, **kwargs) def _encipher_decipher_rsa(i, key, factors=None): n, d = key if not factors: return pow(i, d, n) def _is_coprime_set(l): is_coprime_set = True for i in range(len(l)): for j in range(i+1, len(l)): if igcd(l[i], l[j]) != 1: is_coprime_set = False break return is_coprime_set prod = reduce(lambda i, j: i*j, factors) if prod == n and _is_coprime_set(factors): return _decipher_rsa_crt(i, d, factors) return _encipher_decipher_rsa(i, key, factors=None) def encipher_rsa(i, key, factors=None): r"""Encrypt the plaintext with RSA. Parameters ========== i : integer The plaintext to be encrypted for. key : (n, e) where n, e are integers `n` is the modulus of the key and `e` is the exponent of the key. The encryption is computed by `i^e \bmod n`. The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system. factors : list of coprime integers This is identical to the keyword ``factors`` in :meth:`decipher_rsa`. Notes ===== Some specifications may make the RSA not cryptographically meaningful. For example, `0`, `1` will remain always same after taking any number of exponentiation, thus, should be avoided. Furthermore, if `i^e < n`, `i` may easily be figured out by taking `e` th root. And also, specifying the exponent as `1` or in more generalized form as `1 + k \lambda(n)` where `k` is an nonnegative integer, `\lambda` is a carmichael totient, the RSA becomes an identity mapping. Examples ======== >>> from sympy.crypto.crypto import encipher_rsa >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key Public Key Encryption: >>> p, q, e = 3, 5, 7 >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> encipher_rsa(msg, puk) 3 Private Key Encryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> msg = 12 >>> encipher_rsa(msg, prk) 3 Encryption using chinese remainder theorem: >>> encipher_rsa(msg, prk, factors=[p, q]) 3 """ return _encipher_decipher_rsa(i, key, factors=factors) def decipher_rsa(i, key, factors=None): r"""Decrypt the ciphertext with RSA. Parameters ========== i : integer The ciphertext to be decrypted for. key : (n, d) where n, d are integers `n` is the modulus of the key and `d` is the exponent of the key. The decryption is computed by `i^d \bmod n`. The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system. factors : list of coprime integers As the modulus `n` created from RSA key generation is composed of arbitrary prime factors `n = {p_1}^{k_1}{p_2}^{k_2}...{p_n}^{k_n}` where `p_1, p_2, ..., p_n` are distinct primes and `k_1, k_2, ..., k_n` are positive integers, chinese remainder theorem can be used to compute `i^d \bmod n` from the fragmented modulo operations like .. math:: i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, ... , i^d \bmod {p_n}^{k_n} or like .. math:: i^d \bmod {p_1}^{k_1}{p_2}^{k_2}, i^d \bmod {p_3}^{k_3}, ... , i^d \bmod {p_n}^{k_n} as long as every moduli does not share any common divisor each other. The raw primes used in generating the RSA key pair can be a good option. Note that the speed advantage of using this is only viable for very large cases (Like 2048-bit RSA keys) since the overhead of using pure python implementation of :meth:`sympy.ntheory.modular.crt` may overcompensate the theoritical speed advantage. Notes ===== See the ``Notes`` section in the documentation of :meth:`encipher_rsa` Examples ======== >>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key Public Key Encryption and Decryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> new_msg = encipher_rsa(msg, prk) >>> new_msg 3 >>> decipher_rsa(new_msg, puk) 12 Private Key Encryption and Decryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> new_msg = encipher_rsa(msg, puk) >>> new_msg 3 >>> decipher_rsa(new_msg, prk) 12 Decryption using chinese remainder theorem: >>> decipher_rsa(new_msg, prk, factors=[p, q]) 12 """ return _encipher_decipher_rsa(i, key, factors=factors) #################### kid krypto (kid RSA) ############################# def kid_rsa_public_key(a, b, A, B): r""" Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation. Alice wants to talk to Bob. Bob generates keys as follows. Key generation: * Select positive integers `a, b, A, B` at random. * Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1)//M`. * The *public key* is `(n, e)`. Bob sends these to Alice. * The *private key* is `(n, d)`, which Bob keeps secret. Encryption: If `p` is the plaintext message then the ciphertext is `c = p e \pmod n`. Decryption: If `c` is the ciphertext message then the plaintext is `p = c d \pmod n`. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_public_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_public_key(a, b, A, B) (369, 58) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, e def kid_rsa_private_key(a, b, A, B): """ Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1) / M`. The *private key* is `d`, which Bob keeps secret. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_private_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_private_key(a, b, A, B) (369, 70) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, d def encipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the public key. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_kid_rsa, kid_rsa_public_key) >>> msg = 200 >>> a, b, A, B = 3, 4, 5, 6 >>> key = kid_rsa_public_key(a, b, A, B) >>> encipher_kid_rsa(msg, key) 161 """ n, e = key return (msg*e) % n def decipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the private key. Examples ======== >>> from sympy.crypto.crypto import ( ... kid_rsa_public_key, kid_rsa_private_key, ... decipher_kid_rsa, encipher_kid_rsa) >>> a, b, A, B = 3, 4, 5, 6 >>> d = kid_rsa_private_key(a, b, A, B) >>> msg = 200 >>> pub = kid_rsa_public_key(a, b, A, B) >>> pri = kid_rsa_private_key(a, b, A, B) >>> ct = encipher_kid_rsa(msg, pub) >>> decipher_kid_rsa(ct, pri) 200 """ n, d = key return (msg*d) % n #################### Morse Code ###################################### morse_char = { ".-": "A", "-...": "B", "-.-.": "C", "-..": "D", ".": "E", "..-.": "F", "--.": "G", "....": "H", "..": "I", ".---": "J", "-.-": "K", ".-..": "L", "--": "M", "-.": "N", "---": "O", ".--.": "P", "--.-": "Q", ".-.": "R", "...": "S", "-": "T", "..-": "U", "...-": "V", ".--": "W", "-..-": "X", "-.--": "Y", "--..": "Z", "-----": "0", ".----": "1", "..---": "2", "...--": "3", "....-": "4", ".....": "5", "-....": "6", "--...": "7", "---..": "8", "----.": "9", ".-.-.-": ".", "--..--": ",", "---...": ":", "-.-.-.": ";", "..--..": "?", "-....-": "-", "..--.-": "_", "-.--.": "(", "-.--.-": ")", ".----.": "'", "-...-": "=", ".-.-.": "+", "-..-.": "/", ".--.-.": "@", "...-..-": "$", "-.-.--": "!"} char_morse = {v: k for k, v in morse_char.items()} def encode_morse(msg, sep='|', mapping=None): """ Encodes a plaintext into popular Morse Code with letters separated by `sep` and words by a double `sep`. Examples ======== >>> from sympy.crypto.crypto import encode_morse >>> msg = 'ATTACK RIGHT FLANK' >>> encode_morse(msg) '.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-' References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code """ mapping = mapping or char_morse assert sep not in mapping word_sep = 2*sep mapping[" "] = word_sep suffix = msg and msg[-1] in whitespace # normalize whitespace msg = (' ' if word_sep else '').join(msg.split()) # omit unmapped chars chars = set(''.join(msg.split())) ok = set(mapping.keys()) msg = translate(msg, None, ''.join(chars - ok)) morsestring = [] words = msg.split() for word in words: morseword = [] for letter in word: morseletter = mapping[letter] morseword.append(morseletter) word = sep.join(morseword) morsestring.append(word) return word_sep.join(morsestring) + (word_sep if suffix else '') def decode_morse(msg, sep='|', mapping=None): """ Decodes a Morse Code with letters separated by `sep` (default is '|') and words by `word_sep` (default is '||) into plaintext. Examples ======== >>> from sympy.crypto.crypto import decode_morse >>> mc = '--|---|...-|.||.|.-|...|-' >>> decode_morse(mc) 'MOVE EAST' References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code """ mapping = mapping or morse_char word_sep = 2*sep characterstring = [] words = msg.strip(word_sep).split(word_sep) for word in words: letters = word.split(sep) chars = [mapping[c] for c in letters] word = ''.join(chars) characterstring.append(word) rv = " ".join(characterstring) return rv #################### LFSRs ########################################## def lfsr_sequence(key, fill, n): r""" This function creates an LFSR sequence. Parameters ========== key : list A list of finite field elements, `[c_0, c_1, \ldots, c_k].` fill : list The list of the initial terms of the LFSR sequence, `[x_0, x_1, \ldots, x_k].` n Number of terms of the sequence that the function returns. Returns ======= L The LFSR sequence defined by `x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for `n \leq k`. Notes ===== S. Golomb [G]_ gives a list of three statistical properties a sequence of numbers `a = \{a_n\}_{n=1}^\infty`, `a_n \in \{0,1\}`, should display to be considered "random". Define the autocorrelation of `a` to be .. math:: C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}. In the case where `a` is periodic with period `P` then this reduces to .. math:: C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}. Assume `a` is periodic with period `P`. - balance: .. math:: \left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1. - low autocorrelation: .. math:: C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right. (For sequences satisfying these first two properties, it is known that `\epsilon = -1/P` must hold.) - proportional runs property: In each period, half the runs have length `1`, one-fourth have length `2`, etc. Moreover, there are as many runs of `1`'s as there are of `0`'s. Examples ======== >>> from sympy.crypto.crypto import lfsr_sequence >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> lfsr_sequence(key, fill, 10) [1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2] References ========== .. [G] Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967 """ if not isinstance(key, list): raise TypeError("key must be a list") if not isinstance(fill, list): raise TypeError("fill must be a list") p = key[0].mod F = FF(p) s = fill k = len(fill) L = [] for i in range(n): s0 = s[:] L.append(s[0]) s = s[1:k] x = sum([int(key[i]*s0[i]) for i in range(k)]) s.append(F(x)) return L # use [x.to_int() for x in L] for int version def lfsr_autocorrelation(L, P, k): """ This function computes the LFSR autocorrelation function. Parameters ========== L A periodic sequence of elements of `GF(2)`. L must have length larger than P. P The period of L. k : int An integer `k` (`0 < k < P`). Returns ======= autocorrelation The k-th value of the autocorrelation of the LFSR L. Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_autocorrelation) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_autocorrelation(s, 15, 7) -1/15 >>> lfsr_autocorrelation(s, 15, 0) 1 """ if not isinstance(L, list): raise TypeError("L (=%s) must be a list" % L) P = int(P) k = int(k) L0 = L[:P] # slices makes a copy L1 = L0 + L0[:k] L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)] tot = sum(L2) return Rational(tot, P) def lfsr_connection_polynomial(s): """ This function computes the LFSR connection polynomial. Parameters ========== s A sequence of elements of even length, with entries in a finite field. Returns ======= C(x) The connection polynomial of a minimal LFSR yielding s. This implements the algorithm in section 3 of J. L. Massey's article [M]_. Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_connection_polynomial) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**4 + x + 1 >>> fill = [F(1), F(0), F(0), F(1)] >>> key = [F(1), F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(1), F(0)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x**2 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x + 1 References ========== .. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding." IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969. """ # Initialization: p = s[0].mod x = Symbol("x") C = 1*x**0 B = 1*x**0 m = 1 b = 1*x**0 L = 0 N = 0 while N < len(s): if L > 0: dC = Poly(C).degree() r = min(L + 1, dC + 1) coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int() for i in range(1, r)])) % p if L == 0: d = s[N].to_int()*x**0 if d == 0: m += 1 N += 1 if d > 0: if 2*L > N: C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() m += 1 N += 1 else: T = C C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() L = N + 1 - L m = 1 b = d B = T N += 1 dC = Poly(C).degree() coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] return sum([coeffsC[i] % p*x**i for i in range(dC + 1) if coeffsC[i] is not None]) #################### ElGamal ############################# def elgamal_private_key(digit=10, seed=None): r""" Return three number tuple as private key. Elgamal encryption is based on the mathmatical problem called the Discrete Logarithm Problem (DLP). For example, `a^{b} \equiv c \pmod p` In general, if ``a`` and ``b`` are known, ``ct`` is easily calculated. If ``b`` is unknown, it is hard to use ``a`` and ``ct`` to get ``b``. Parameters ========== digit : int Minimum number of binary digits for key. Returns ======= tuple : (p, r, d) p = prime number. r = primitive root. d = random number. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.ntheory import is_primitive_root, isprime >>> a, b, _ = elgamal_private_key() >>> isprime(a) True >>> is_primitive_root(b, a) True """ randrange = _randrange(seed) p = nextprime(2**digit) return p, primitive_root(p), randrange(2, p) def elgamal_public_key(key): r""" Return three number tuple as public key. Parameters ========== key : (p, r, e) Tuple generated by ``elgamal_private_key``. Returns ======= tuple : (p, r, e) `e = r**d \bmod p` `d` is a random number in private key. Examples ======== >>> from sympy.crypto.crypto import elgamal_public_key >>> elgamal_public_key((1031, 14, 636)) (1031, 14, 212) """ p, r, e = key return p, r, pow(r, e, p) def encipher_elgamal(i, key, seed=None): r""" Encrypt message with public key ``i`` is a plaintext message expressed as an integer. ``key`` is public key (p, r, e). In order to encrypt a message, a random number ``a`` in ``range(2, p)`` is generated and the encryped message is returned as `c_{1}` and `c_{2}` where: `c_{1} \equiv r^{a} \pmod p` `c_{2} \equiv m e^{a} \pmod p` Parameters ========== msg int of encoded message. key Public key. Returns ======= tuple : (c1, c2) Encipher into two number. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]); pri (37, 2, 3) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 36 >>> encipher_elgamal(msg, pub, seed=[3]) (8, 6) """ p, r, e = key if i < 0 or i >= p: raise ValueError( 'Message (%s) should be in range(%s)' % (i, p)) randrange = _randrange(seed) a = randrange(2, p) return pow(r, a, p), i*pow(e, a, p) % p def decipher_elgamal(msg, key): r""" Decrypt message with private key `msg = (c_{1}, c_{2})` `key = (p, r, d)` According to extended Eucliden theorem, `u c_{1}^{d} + p n = 1` `u \equiv 1/{{c_{1}}^d} \pmod p` `u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p` `\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p` Examples ======== >>> from sympy.crypto.crypto import decipher_elgamal >>> from sympy.crypto.crypto import encipher_elgamal >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.crypto.crypto import elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 17 >>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg True """ p, _, d = key c1, c2 = msg u = igcdex(c1**d, p)[0] return u * c2 % p ################ Diffie-Hellman Key Exchange ######################### def dh_private_key(digit=10, seed=None): r""" Return three integer tuple as private key. Diffie-Hellman key exchange is based on the mathematical problem called the Discrete Logarithm Problem (see ElGamal). Diffie-Hellman key exchange is divided into the following steps: * Alice and Bob agree on a base that consist of a prime ``p`` and a primitive root of ``p`` called ``g`` * Alice choses a number ``a`` and Bob choses a number ``b`` where ``a`` and ``b`` are random numbers in range `[2, p)`. These are their private keys. * Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends Alice `g^{b} \pmod p` * They both raise the received value to their secretly chosen number (``a`` or ``b``) and now have both as their shared key `g^{ab} \pmod p` Parameters ========== digit Minimum number of binary digits required in key. Returns ======= tuple : (p, g, a) p = prime number. g = primitive root of p. a = random number from 2 through p - 1. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import dh_private_key >>> from sympy.ntheory import isprime, is_primitive_root >>> p, g, _ = dh_private_key() >>> isprime(p) True >>> is_primitive_root(g, p) True >>> p, g, _ = dh_private_key(5) >>> isprime(p) True >>> is_primitive_root(g, p) True """ p = nextprime(2**digit) g = primitive_root(p) randrange = _randrange(seed) a = randrange(2, p) return p, g, a def dh_public_key(key): r""" Return three number tuple as public key. This is the tuple that Alice sends to Bob. Parameters ========== key : (p, g, a) A tuple generated by ``dh_private_key``. Returns ======= tuple : int, int, int A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as parameters.s Examples ======== >>> from sympy.crypto.crypto import dh_private_key, dh_public_key >>> p, g, a = dh_private_key(); >>> _p, _g, x = dh_public_key((p, g, a)) >>> p == _p and g == _g True >>> x == pow(g, a, p) True """ p, g, a = key return p, g, pow(g, a, p) def dh_shared_key(key, b): """ Return an integer that is the shared key. This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys. Parameters ========== key : (p, g, x) Tuple `(p, g, x)` generated by ``dh_public_key``. b Random number in the range of `2` to `p - 1` (Chosen by second key exchange member (Bob)). Returns ======= int A shared key. Examples ======== >>> from sympy.crypto.crypto import ( ... dh_private_key, dh_public_key, dh_shared_key) >>> prk = dh_private_key(); >>> p, g, x = dh_public_key(prk); >>> sk = dh_shared_key((p, g, x), 1000) >>> sk == pow(x, 1000, p) True """ p, _, x = key if 1 >= b or b >= p: raise ValueError(filldedent(''' Value of b should be greater 1 and less than prime %s.''' % p)) return pow(x, b, p) ################ Goldwasser-Micali Encryption ######################### def _legendre(a, p): """ Returns the legendre symbol of a and p assuming that p is a prime i.e. 1 if a is a quadratic residue mod p -1 if a is not a quadratic residue mod p 0 if a is divisible by p Parameters ========== a : int The number to test. p : prime The prime to test ``a`` against. Returns ======= int Legendre symbol (a / p). """ sig = pow(a, (p - 1)//2, p) if sig == 1: return 1 elif sig == 0: return 0 else: return -1 def _random_coprime_stream(n, seed=None): randrange = _randrange(seed) while True: y = randrange(n) if gcd(y, n) == 1: yield y def gm_private_key(p, q, a=None): """ Check if p and q can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows. Pick two large primes p ands q. Call their product N. Given a message as an integer i, write i in its bit representation b_0,...,b_n. For each k, if b_k = 0: let a_k be a random square (quadratic residue) modulo p * q such that jacobi_symbol(a, p * q) = 1 if b_k = 1: let a_k be a random non-square (non-quadratic residue) modulo p * q such that jacobi_symbol(a, p * q) = 1 return [a_1, a_2,...] b_k can be recovered by checking whether or not a_k is a residue. And from the b_k's, the message can be reconstructed. The idea is that, while jacobi_symbol(a, p * q) can be easily computed (and when it is equal to -1 will tell you that a is not a square mod p * q), quadratic residuosity modulo a composite number is hard to compute without knowing its factorization. Moreover, approximately half the numbers coprime to p * q have jacobi_symbol equal to 1. And among those, approximately half are residues and approximately half are not. This maximizes the entropy of the code. Parameters ========== p, q, a Initialization variables. Returns ======= tuple : (p, q) The input value ``p`` and ``q``. Raises ====== ValueError If ``p`` and ``q`` are not distinct odd primes. """ if p == q: raise ValueError("expected distinct primes, " "got two copies of %i" % p) elif not isprime(p) or not isprime(q): raise ValueError("first two arguments must be prime, " "got %i of %i" % (p, q)) elif p == 2 or q == 2: raise ValueError("first two arguments must not be even, " "got %i of %i" % (p, q)) return p, q def gm_public_key(p, q, a=None, seed=None): """ Compute public keys for p and q. Note that in Goldwasser-Micali Encryption, public keys are randomly selected. Parameters ========== p, q, a : int, int, int Initialization variables. Returns ======= tuple : (a, N) ``a`` is the input ``a`` if it is not ``None`` otherwise some random integer coprime to ``p`` and ``q``. ``N`` is the product of ``p`` and ``q``. """ p, q = gm_private_key(p, q) N = p * q if a is None: randrange = _randrange(seed) while True: a = randrange(N) if _legendre(a, p) == _legendre(a, q) == -1: break else: if _legendre(a, p) != -1 or _legendre(a, q) != -1: return False return (a, N) def encipher_gm(i, key, seed=None): """ Encrypt integer 'i' using public_key 'key' Note that gm uses random encryption. Parameters ========== i : int The message to encrypt. key : (a, N) The public key. Returns ======= list : list of int The randomized encrypted message. """ if i < 0: raise ValueError( "message must be a non-negative " "integer: got %d instead" % i) a, N = key bits = [] while i > 0: bits.append(i % 2) i //= 2 gen = _random_coprime_stream(N, seed) rev = reversed(bits) encode = lambda b: next(gen)**2*pow(a, b) % N return [ encode(b) for b in rev ] def decipher_gm(message, key): """ Decrypt message 'message' using public_key 'key'. Parameters ========== message : list of int The randomized encrypted message. key : (p, q) The private key. Returns ======= int The encrypted message. """ p, q = key res = lambda m, p: _legendre(m, p) > 0 bits = [res(m, p) * res(m, q) for m in message] m = 0 for b in bits: m <<= 1 m += not b return m ########### RailFence Cipher ############# def encipher_railfence(message,rails): """ Performs Railfence Encryption on plaintext and returns ciphertext Examples ======== >>> from sympy.crypto.crypto import encipher_railfence >>> message = "hello world" >>> encipher_railfence(message,3) 'horel ollwd' Parameters ========== message : string, the message to encrypt. rails : int, the number of rails. Returns ======= The Encrypted string message. References ========== .. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher """ r = list(range(rails)) p = cycle(r + r[-2:0:-1]) return ''.join(sorted(message, key=lambda i: next(p))) def decipher_railfence(ciphertext,rails): """ Decrypt the message using the given rails Examples ======== >>> from sympy.crypto.crypto import decipher_railfence >>> decipher_railfence("horel ollwd",3) 'hello world' Parameters ========== message : string, the message to encrypt. rails : int, the number of rails. Returns ======= The Decrypted string message. """ r = list(range(rails)) p = cycle(r + r[-2:0:-1]) idx = sorted(range(len(ciphertext)), key=lambda i: next(p)) res = [''] * len(ciphertext) for i, c in zip(idx, ciphertext): res[i] = c return ''.join(res) ################ Blum–Goldwasser cryptosystem ######################### def bg_private_key(p, q): """ Check if p and q can be used as private keys for the Blum–Goldwasser cryptosystem. The three necessary checks for p and q to pass so that they can be used as private keys: 1. p and q must both be prime 2. p and q must be distinct 3. p and q must be congruent to 3 mod 4 Parameters ========== p, q The keys to be checked. Returns ======= p, q Input values. Raises ====== ValueError If p and q do not pass the above conditions. """ if not isprime(p) or not isprime(q): raise ValueError("the two arguments must be prime, " "got %i and %i" %(p, q)) elif p == q: raise ValueError("the two arguments must be distinct, " "got two copies of %i. " %p) elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0: raise ValueError("the two arguments must be congruent to 3 mod 4, " "got %i and %i" %(p, q)) return p, q def bg_public_key(p, q): """ Calculates public keys from private keys. The function first checks the validity of private keys passed as arguments and then returns their product. Parameters ========== p, q The private keys. Returns ======= N The public key. """ p, q = bg_private_key(p, q) N = p * q return N def encipher_bg(i, key, seed=None): """ Encrypts the message using public key and seed. ALGORITHM: 1. Encodes i as a string of L bits, m. 2. Select a random element r, where 1 < r < key, and computes x = r^2 mod key. 3. Use BBS pseudo-random number generator to generate L random bits, b, using the initial seed as x. 4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L. 5. x_L = x^(2^L) mod key. 6. Return (c, x_L) Parameters ========== i Message, a non-negative integer key The public key Returns ======= Tuple (encrypted_message, x_L) Raises ====== ValueError If i is negative. """ if i < 0: raise ValueError( "message must be a non-negative " "integer: got %d instead" % i) enc_msg = [] while i > 0: enc_msg.append(i % 2) i //= 2 enc_msg.reverse() L = len(enc_msg) r = _randint(seed)(2, key - 1) x = r**2 % key x_L = pow(int(x), int(2**L), int(key)) rand_bits = [] for _ in range(L): rand_bits.append(x % 2) x = x**2 % key encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)] return (encrypt_msg, x_L) def decipher_bg(message, key): """ Decrypts the message using private keys. ALGORITHM: 1. Let, c be the encrypted message, y the second number received, and p and q be the private keys. 2. Compute, r_p = y^((p+1)/4 ^ L) mod p and r_q = y^((q+1)/4 ^ L) mod q. 3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N. 4. From, recompute the bits using the BBS generator, as in the encryption algorithm. 5. Compute original message by XORing c and b. Parameters ========== message Tuple of encrypted message and a non-negative integer. key Tuple of private keys. Returns ======= orig_msg The original message """ p, q = key encrypt_msg, y = message public_key = p * q L = len(encrypt_msg) p_t = ((p + 1)/4)**L q_t = ((q + 1)/4)**L r_p = pow(int(y), int(p_t), int(p)) r_q = pow(int(y), int(q_t), int(q)) x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key orig_bits = [] for _ in range(L): orig_bits.append(x % 2) x = x**2 % public_key orig_msg = 0 for (m, b) in zip(encrypt_msg, orig_bits): orig_msg = orig_msg * 2 orig_msg += (m ^ b) return orig_msg
e2f6d03104c1f3b0082e9c789d25dbc232e3c42dc2554ad4eaf0f939ce4322d9
from sympy.crypto.crypto import (cycle_list, encipher_shift, encipher_affine, encipher_substitution, check_and_join, encipher_vigenere, decipher_vigenere, bifid5_square, bifid6_square, encipher_hill, decipher_hill, encipher_bifid5, encipher_bifid6, decipher_bifid5, decipher_bifid6, encipher_kid_rsa, decipher_kid_rsa, kid_rsa_private_key, kid_rsa_public_key, decipher_rsa, rsa_private_key, rsa_public_key, encipher_rsa, lfsr_connection_polynomial, lfsr_autocorrelation, lfsr_sequence, encode_morse, decode_morse, elgamal_private_key, elgamal_public_key, decipher_elgamal, encipher_elgamal, dh_private_key, dh_public_key, dh_shared_key, padded_key, encipher_bifid, decipher_bifid, bifid_square, bifid5, bifid6, bifid10, decipher_gm, encipher_gm, gm_public_key, gm_private_key, bg_private_key, bg_public_key, encipher_bg, decipher_bg, encipher_rot13, decipher_rot13, encipher_atbash, decipher_atbash, encipher_railfence, decipher_railfence)
efc4e08aff8a511e5fb476a378f4fd9747c00f40a5bdbe07612e2682ab3e04b1
""" The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And from sympy.assumptions.cnf import Literal from sympy.assumptions.ask import Q # -{ Known facts as a set }- @cacheit def get_all_known_facts(): return { frozenset((Literal(Q.algebraic, False), Literal(Q.complex, True), Literal(Q.finite, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), frozenset((Literal(Q.algebraic, True), Literal(Q.complex, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.antihermitian, True), Literal(Q.hermitian, True))), frozenset((Literal(Q.complex, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.complex, False), Literal(Q.real, True))), frozenset((Literal(Q.complex, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.even, False), Literal(Q.integer, True), Literal(Q.odd, False))), frozenset((Literal(Q.even, False), Literal(Q.zero, True))), frozenset((Literal(Q.even, True), Literal(Q.integer, False))), frozenset((Literal(Q.even, True), Literal(Q.odd, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.infinite, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.real, True))), frozenset((Literal(Q.extended_real, True), Literal(Q.infinite, False), Literal(Q.real, False))), frozenset((Literal(Q.finite, False), Literal(Q.irrational, True))), frozenset((Literal(Q.finite, False), Literal(Q.rational, True))), frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), frozenset((Literal(Q.finite, True), Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.real, True))), frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.real, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.real, True))), frozenset((Literal(Q.integer, False), Literal(Q.odd, True))), frozenset((Literal(Q.integer, False), Literal(Q.prime, True))), frozenset((Literal(Q.integer, True), Literal(Q.rational, False))), frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), frozenset((Literal(Q.irrational, True), Literal(Q.real, False))), frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonpositive, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonzero, True), Literal(Q.positive, False))), frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.real, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonpositive, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonzero, False))), frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative, True), Literal(Q.real, False))), frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.positive, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, True), Literal(Q.positive, False), Literal(Q.zero, False))), frozenset((Literal(Q.nonpositive, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonzero, False), Literal(Q.positive, True))), frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), frozenset((Literal(Q.normal, True), Literal(Q.square, False))), frozenset((Literal(Q.orthogonal, False), Literal(Q.real, True), Literal(Q.unitary, True))), frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), frozenset((Literal(Q.positive, True), Literal(Q.real, False))), frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), frozenset((Literal(Q.rational, True), Literal(Q.real, False))), frozenset((Literal(Q.real, False), Literal(Q.zero, True))), frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) } # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( Q.invertible | Q.singular, Q.algebraic | ~Q.rational, Q.antihermitian | ~Q.imaginary, Q.complex | ~Q.algebraic, Q.complex | ~Q.imaginary, Q.complex | ~Q.real, Q.complex | ~Q.transcendental, Q.complex_elements | ~Q.real_elements, Q.even | ~Q.zero, Q.extended_real | ~Q.infinite, Q.extended_real | ~Q.real, Q.finite | ~Q.algebraic, Q.finite | ~Q.irrational, Q.finite | ~Q.rational, Q.finite | ~Q.transcendental, Q.fullrank | ~Q.invertible, Q.hermitian | ~Q.real, Q.integer | ~Q.even, Q.integer | ~Q.odd, Q.integer | ~Q.prime, Q.invertible | ~Q.positive_definite, Q.invertible | ~Q.unitary, Q.lower_triangular | ~Q.diagonal, Q.nonnegative | ~Q.positive, Q.nonnegative | ~Q.zero, Q.nonpositive | ~Q.negative, Q.nonpositive | ~Q.zero, Q.nonzero | ~Q.negative, Q.nonzero | ~Q.positive, Q.normal | ~Q.diagonal, Q.normal | ~Q.unitary, Q.positive | ~Q.prime, Q.positive_definite | ~Q.orthogonal, Q.rational | ~Q.integer, Q.real | ~Q.irrational, Q.real | ~Q.negative, Q.real | ~Q.positive, Q.real | ~Q.rational, Q.real | ~Q.zero, Q.real_elements | ~Q.integer_elements, Q.square | ~Q.invertible, Q.square | ~Q.normal, Q.square | ~Q.symmetric, Q.symmetric | ~Q.diagonal, Q.triangular | ~Q.lower_triangular, Q.triangular | ~Q.unit_triangular, Q.triangular | ~Q.upper_triangular, Q.unitary | ~Q.orthogonal, Q.upper_triangular | ~Q.diagonal, ~Q.algebraic | ~Q.transcendental, ~Q.antihermitian | ~Q.hermitian, ~Q.composite | ~Q.prime, ~Q.even | ~Q.odd, ~Q.finite | ~Q.infinite, ~Q.imaginary | ~Q.real, ~Q.invertible | ~Q.singular, ~Q.irrational | ~Q.rational, ~Q.negative | ~Q.positive, ~Q.negative | ~Q.zero, ~Q.positive | ~Q.zero, Q.even | Q.odd | ~Q.integer, Q.infinite | Q.real | ~Q.extended_real, Q.lower_triangular | Q.upper_triangular | ~Q.triangular, Q.negative | Q.positive | ~Q.nonzero, Q.negative | Q.zero | ~Q.nonpositive, Q.positive | Q.zero | ~Q.nonnegative, Q.diagonal | ~Q.lower_triangular | ~Q.upper_triangular, Q.invertible | ~Q.fullrank | ~Q.square, Q.orthogonal | ~Q.real | ~Q.unitary, Q.negative | Q.positive | Q.zero | ~Q.real, Q.algebraic | Q.transcendental | ~Q.complex | ~Q.finite, Q.irrational | Q.rational | ~Q.finite | ~Q.real ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { Q.algebraic: set([Q.algebraic, Q.complex, Q.finite]), Q.antihermitian: set([Q.antihermitian]), Q.commutative: set([Q.commutative]), Q.complex: set([Q.complex]), Q.complex_elements: set([Q.complex_elements]), Q.composite: set([Q.composite]), Q.diagonal: set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, Q.symmetric, Q.triangular, Q.upper_triangular]), Q.even: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.extended_real: set([Q.extended_real]), Q.finite: set([Q.finite]), Q.fullrank: set([Q.fullrank]), Q.hermitian: set([Q.hermitian]), Q.imaginary: set([Q.antihermitian, Q.complex, Q.imaginary]), Q.infinite: set([Q.extended_real, Q.infinite]), Q.integer: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.integer_elements: set([Q.complex_elements, Q.integer_elements, Q.real_elements]), Q.invertible: set([Q.fullrank, Q.invertible, Q.square]), Q.irrational: set([Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.irrational, Q.nonzero, Q.real]), Q.is_true: set([Q.is_true]), Q.lower_triangular: set([Q.lower_triangular, Q.triangular]), Q.negative: set([Q.complex, Q.extended_real, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, Q.real]), Q.nonnegative: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.real]), Q.nonpositive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonpositive, Q.real]), Q.nonzero: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonzero, Q.real]), Q.normal: set([Q.normal, Q.square]), Q.odd: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), Q.orthogonal: set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, Q.positive_definite, Q.square, Q.unitary]), Q.positive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, Q.real]), Q.positive_definite: set([Q.fullrank, Q.invertible, Q.positive_definite, Q.square]), Q.prime: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, Q.rational, Q.real]), Q.rational: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), Q.real: set([Q.complex, Q.extended_real, Q.hermitian, Q.real]), Q.real_elements: set([Q.complex_elements, Q.real_elements]), Q.singular: set([Q.singular]), Q.square: set([Q.square]), Q.symmetric: set([Q.square, Q.symmetric]), Q.transcendental: set([Q.complex, Q.finite, Q.transcendental]), Q.triangular: set([Q.triangular]), Q.unit_triangular: set([Q.triangular, Q.unit_triangular]), Q.unitary: set([Q.fullrank, Q.invertible, Q.normal, Q.square, Q.unitary]), Q.upper_triangular: set([Q.triangular, Q.upper_triangular]), Q.zero: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), }
ecd96b2226e91deca42a988bb596daab563cc95b292642d24c5becb2b18ff2da
"""Module for querying SymPy objects about assumptions.""" from __future__ import print_function, division from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.core import sympify from sympy.core.cache import cacheit from sympy.core.decorators import deprecated from sympy.core.relational import Relational from sympy.logic.boolalg import (to_cnf, And, Not, Or, Implies, Equivalent, BooleanFunction, BooleanAtom) from sympy.logic.inference import satisfiable from sympy.utilities.decorator import memoize_property from sympy.assumptions.cnf import CNF, EncodedCNF, Literal # Deprecated predicates should be added to this list deprecated_predicates = [ 'bounded', 'infinity', 'infinitesimal' ] # Memoization storage for predicates predicate_storage = {} predicate_memo = memoize_property(predicate_storage) # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys(object): """ This class contains all the supported keys by ``ask``. """ @predicate_memo def hermitian(self): """ Hermitian predicate. ``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of Hermitian operators. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('hermitian') @predicate_memo def antihermitian(self): """ Antihermitian predicate. ``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of antihermitian operators, i.e., operators in the form ``x*I``, where ``x`` is Hermitian. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('antihermitian') @predicate_memo def real(self): r""" Real number predicate. ``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the interval `(-\infty, \infty)`. Note that, in particular the infinities are not real. Use ``Q.extended_real`` if you want to consider those as well. A few important facts about reals: - Every real number is positive, negative, or zero. Furthermore, because these sets are pairwise disjoint, each real number is exactly one of those three. - Every real number is also complex. - Every real number is finite. - Every real number is either rational or irrational. - Every real number is either algebraic or transcendental. - The facts ``Q.negative``, ``Q.zero``, ``Q.positive``, ``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``, ``Q.integer``, ``Q.rational``, and ``Q.irrational`` all imply ``Q.real``, as do all facts that imply those facts. - The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply ``Q.real``; they imply ``Q.complex``. An algebraic or transcendental number may or may not be real. - The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``, ``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to not the fact, but rather, not the fact *and* ``Q.real``. For example, ``Q.nonnegative`` means ``~Q.negative & Q.real``. So for example, ``I`` is not nonnegative, nonzero, or nonpositive. Examples ======== >>> from sympy import Q, ask, symbols >>> x = symbols('x') >>> ask(Q.real(x), Q.positive(x)) True >>> ask(Q.real(0)) True References ========== .. [1] https://en.wikipedia.org/wiki/Real_number """ return Predicate('real') @predicate_memo def extended_real(self): r""" Extended real predicate. ``Q.extended_real(x)`` is true iff ``x`` is a real number or `\{-\infty, \infty\}`. See documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import ask, Q, oo, I >>> ask(Q.extended_real(1)) True >>> ask(Q.extended_real(I)) False >>> ask(Q.extended_real(oo)) True """ return Predicate('extended_real') @predicate_memo def imaginary(self): """ Imaginary number predicate. ``Q.imaginary(x)`` is true iff ``x`` can be written as a real number multiplied by the imaginary unit ``I``. Please note that ``0`` is not considered to be an imaginary number. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.imaginary(3*I)) True >>> ask(Q.imaginary(2 + 3*I)) False >>> ask(Q.imaginary(0)) False References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_number """ return Predicate('imaginary') @predicate_memo def complex(self): """ Complex number predicate. ``Q.complex(x)`` is true iff ``x`` belongs to the set of complex numbers. Note that every complex number is finite. Examples ======== >>> from sympy import Q, Symbol, ask, I, oo >>> x = Symbol('x') >>> ask(Q.complex(0)) True >>> ask(Q.complex(2 + 3*I)) True >>> ask(Q.complex(oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Complex_number """ return Predicate('complex') @predicate_memo def algebraic(self): r""" Algebraic number predicate. ``Q.algebraic(x)`` is true iff ``x`` belongs to the set of algebraic numbers. ``x`` is algebraic if there is some polynomial in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``. Examples ======== >>> from sympy import ask, Q, sqrt, I, pi >>> ask(Q.algebraic(sqrt(2))) True >>> ask(Q.algebraic(I)) True >>> ask(Q.algebraic(pi)) False References ========== .. [1] https://en.wikipedia.org/wiki/Algebraic_number """ return Predicate('algebraic') @predicate_memo def transcendental(self): """ Transcedental number predicate. ``Q.transcendental(x)`` is true iff ``x`` belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic. """ # TODO: Add examples return Predicate('transcendental') @predicate_memo def integer(self): """ Integer predicate. ``Q.integer(x)`` is true iff ``x`` belongs to the set of integer numbers. Examples ======== >>> from sympy import Q, ask, S >>> ask(Q.integer(5)) True >>> ask(Q.integer(S(1)/2)) False References ========== .. [1] https://en.wikipedia.org/wiki/Integer """ return Predicate('integer') @predicate_memo def rational(self): """ Rational number predicate. ``Q.rational(x)`` is true iff ``x`` belongs to the set of rational numbers. Examples ======== >>> from sympy import ask, Q, pi, S >>> ask(Q.rational(0)) True >>> ask(Q.rational(S(1)/2)) True >>> ask(Q.rational(pi)) False References ========== https://en.wikipedia.org/wiki/Rational_number """ return Predicate('rational') @predicate_memo def irrational(self): """ Irrational number predicate. ``Q.irrational(x)`` is true iff ``x`` is any real number that cannot be expressed as a ratio of integers. Examples ======== >>> from sympy import ask, Q, pi, S, I >>> ask(Q.irrational(0)) False >>> ask(Q.irrational(S(1)/2)) False >>> ask(Q.irrational(pi)) True >>> ask(Q.irrational(I)) False References ========== .. [1] https://en.wikipedia.org/wiki/Irrational_number """ return Predicate('irrational') @predicate_memo def finite(self): """ Finite predicate. ``Q.finite(x)`` is true if ``x`` is neither an infinity nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all ``x`` having a bounded absolute value. Examples ======== >>> from sympy import Q, ask, Symbol, S, oo, I >>> x = Symbol('x') >>> ask(Q.finite(S.NaN)) False >>> ask(Q.finite(oo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True References ========== .. [1] https://en.wikipedia.org/wiki/Finite """ return Predicate('finite') @predicate_memo @deprecated(useinstead="finite", issue=9425, deprecated_since_version="1.0") def bounded(self): """ See documentation of ``Q.finite``. """ return Predicate('finite') @predicate_memo def infinite(self): """ Infinite number predicate. ``Q.infinite(x)`` is true iff the absolute value of ``x`` is infinity. """ # TODO: Add examples return Predicate('infinite') @predicate_memo @deprecated(useinstead="infinite", issue=9426, deprecated_since_version="1.0") def infinity(self): """ See documentation of ``Q.infinite``. """ return Predicate('infinite') @predicate_memo @deprecated(useinstead="zero", issue=9675, deprecated_since_version="1.0") def infinitesimal(self): """ See documentation of ``Q.zero``. """ return Predicate('zero') @predicate_memo def positive(self): r""" Positive real number predicate. ``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x`` is in the interval `(0, \infty)`. In particular, infinity is not positive. A few important facts about positive numbers: - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) True >>> ask(Q.positive(1)) True >>> ask(Q.nonpositive(I)) False >>> ask(~Q.positive(I)) True """ return Predicate('positive') @predicate_memo def negative(self): r""" Negative number predicate. ``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is, it is in the interval :math:`(-\infty, 0)`. Note in particular that negative infinity is not negative. A few important facts about negative numbers: - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) True >>> ask(Q.negative(-1)) True >>> ask(Q.nonnegative(I)) False >>> ask(~Q.negative(I)) True """ return Predicate('negative') @predicate_memo def zero(self): """ Zero number predicate. ``ask(Q.zero(x))`` is true iff the value of ``x`` is zero. Examples ======== >>> from sympy import ask, Q, oo, symbols >>> x, y = symbols('x, y') >>> ask(Q.zero(0)) True >>> ask(Q.zero(1/oo)) True >>> ask(Q.zero(0*oo)) False >>> ask(Q.zero(1)) False >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) True """ return Predicate('zero') @predicate_memo def nonzero(self): """ Nonzero real number predicate. ``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use ``~Q.zero(x)`` if you want the negation of being zero without any real assumptions. A few important facts about nonzero numbers: - ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I, oo >>> x = symbols('x') >>> print(ask(Q.nonzero(x), ~Q.zero(x))) None >>> ask(Q.nonzero(x), Q.positive(x)) True >>> ask(Q.nonzero(x), Q.zero(x)) False >>> ask(Q.nonzero(0)) False >>> ask(Q.nonzero(I)) False >>> ask(~Q.zero(I)) True >>> ask(Q.nonzero(oo)) False """ return Predicate('nonzero') @predicate_memo def nonpositive(self): """ Nonpositive real number predicate. ``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of negative numbers including zero. - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonpositive(-1)) True >>> ask(Q.nonpositive(0)) True >>> ask(Q.nonpositive(1)) False >>> ask(Q.nonpositive(I)) False >>> ask(Q.nonpositive(-I)) False """ return Predicate('nonpositive') @predicate_memo def nonnegative(self): """ Nonnegative real number predicate. ``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of positive numbers including zero. - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonnegative(1)) True >>> ask(Q.nonnegative(0)) True >>> ask(Q.nonnegative(-1)) False >>> ask(Q.nonnegative(I)) False >>> ask(Q.nonnegative(-I)) False """ return Predicate('nonnegative') @predicate_memo def even(self): """ Even number predicate. ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even integers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.even(0)) True >>> ask(Q.even(2)) True >>> ask(Q.even(3)) False >>> ask(Q.even(pi)) False """ return Predicate('even') @predicate_memo def odd(self): """ Odd number predicate. ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.odd(0)) False >>> ask(Q.odd(2)) False >>> ask(Q.odd(3)) True >>> ask(Q.odd(pi)) False """ return Predicate('odd') @predicate_memo def prime(self): """ Prime number predicate. ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater than 1 that has no positive divisors other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.prime(0)) False >>> ask(Q.prime(1)) False >>> ask(Q.prime(2)) True >>> ask(Q.prime(20)) False >>> ask(Q.prime(-3)) False """ return Predicate('prime') @predicate_memo def composite(self): """ Composite number predicate. ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has at least one positive divisor other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.composite(0)) False >>> ask(Q.composite(1)) False >>> ask(Q.composite(2)) False >>> ask(Q.composite(20)) True """ return Predicate('composite') @predicate_memo def commutative(self): """ Commutative predicate. ``ask(Q.commutative(x))`` is true iff ``x`` commutes with any other object with respect to multiplication operation. """ # TODO: Add examples return Predicate('commutative') @predicate_memo def is_true(self): """ Generic predicate. ``ask(Q.is_true(x))`` is true iff ``x`` is true. This only makes sense if ``x`` is a predicate. Examples ======== >>> from sympy import ask, Q, symbols >>> x = symbols('x') >>> ask(Q.is_true(True)) True """ return Predicate('is_true') @predicate_memo def symmetric(self): """ Symmetric matrix predicate. ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix """ # TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. return Predicate('symmetric') @predicate_memo def invertible(self): """ Invertible matrix predicate. ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Invertible_matrix """ return Predicate('invertible') @predicate_memo def orthogonal(self): """ Orthogonal matrix predicate. ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix """ return Predicate('orthogonal') @predicate_memo def unitary(self): """ Unitary matrix predicate. ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_matrix """ return Predicate('unitary') @predicate_memo def positive_definite(self): r""" Positive definite matrix predicate. If ``M`` is a :math:``n \times n`` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector ``Z`` of ``n`` real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True References ========== .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix """ return Predicate('positive_definite') @predicate_memo def upper_triangular(self): """ Upper triangular matrix predicate. A matrix ``M`` is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i<j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html """ return Predicate('upper_triangular') @predicate_memo def lower_triangular(self): """ Lower triangular matrix predicate. A matrix ``M`` is called lower triangular matrix if :math:`a_{ij}=0` for :math:`i>j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html """ return Predicate('lower_triangular') @predicate_memo def diagonal(self): """ Diagonal matrix predicate. ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix """ return Predicate('diagonal') @predicate_memo def fullrank(self): """ Fullrank matrix predicate. ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True """ return Predicate('fullrank') @predicate_memo def square(self): """ Square matrix predicate. ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Square_matrix """ return Predicate('square') @predicate_memo def integer_elements(self): """ Integer elements matrix predicate. ``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True """ return Predicate('integer_elements') @predicate_memo def real_elements(self): """ Real elements matrix predicate. ``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True """ return Predicate('real_elements') @predicate_memo def complex_elements(self): """ Complex elements matrix predicate. ``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True """ return Predicate('complex_elements') @predicate_memo def singular(self): """ Singular matrix predicate. A matrix is singular iff the value of its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True References ========== .. [1] http://mathworld.wolfram.com/SingularMatrix.html """ return Predicate('singular') @predicate_memo def normal(self): """ Normal matrix predicate. A matrix is normal if it commutes with its conjugate transpose. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Normal_matrix """ return Predicate('normal') @predicate_memo def triangular(self): """ Triangular matrix predicate. ``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_matrix """ return Predicate('triangular') @predicate_memo def unit_triangular(self): """ Unit triangular matrix predicate. A unit triangular matrix is a triangular matrix with 1s on the diagonal. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True """ return Predicate('unit_triangular') Q = AssumptionKeys() def _extract_facts(expr, symbol, check_reversed_rel=True): """ Helper for ask(). Extracts the facts relevant to the symbol from an assumption. Returns None if there is nothing to extract. """ if isinstance(symbol, Relational): if check_reversed_rel: rev = _extract_facts(expr, symbol.reversed, False) if rev is not None: return rev if isinstance(expr, bool): return if not expr.has(symbol): return if isinstance(expr, AppliedPredicate): if expr.arg == symbol: return expr.func else: return if isinstance(expr, Not) and expr.args[0].func in (And, Or): cls = Or if expr.args[0] == And else And expr = cls(*[~arg for arg in expr.args[0].args]) args = [_extract_facts(arg, symbol) for arg in expr.args] if isinstance(expr, And): args = [x for x in args if x is not None] if args: return expr.func(*args) if args and all(x is not None for x in args): return expr.func(*args) def _extract_all_facts(expr, symbol): facts = set() if isinstance(symbol, Relational): symbols = (symbol, symbol.reversed) else: symbols = (symbol,) for clause in expr.clauses: args = [] for literal in clause: if isinstance(literal.lit, AppliedPredicate): if literal.lit.arg in symbols: # Add literal if it has 'symbol' in it args.append(Literal(literal.lit.func, literal.is_Not)) else: # If any of the literals doesn't have 'symbol' don't add the whole clause. break else: if args: facts.add(frozenset(args)) return CNF(facts) def ask(proposition, assumptions=True, context=global_assumptions): """ Method for inferring properties about objects. **Syntax** * ask(proposition) * ask(proposition, assumptions) where ``proposition`` is any boolean expression Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) It is however a work in progress. """ from sympy.assumptions.satask import satask if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("proposition must be a valid logical expression") if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, expr = proposition.func, sympify(proposition.arg) else: key, expr = Q.is_true, sympify(proposition) assump = CNF.from_prop(assumptions) assump.extend(context) local_facts = _extract_all_facts(assump, expr) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: local_facts_ = CNF.CNF_to_cnf(local_facts) # See if there's a straight-forward conclusion we can make for the inference if local_facts_.is_Atom: if key in known_facts_dict[local_facts_]: return True if Not(key) in known_facts_dict[local_facts_]: return False elif (isinstance(local_facts_, And) and all(k in known_facts_dict for k in local_facts_.args)): for assum in local_facts_.args: if assum.is_Atom: if key in known_facts_dict[assum]: return True if Not(key) in known_facts_dict[assum]: return False elif isinstance(assum, Not) and assum.args[0].is_Atom: if key in known_facts_dict[assum]: return False if Not(key) in known_facts_dict[assum]: return True elif (isinstance(key, Predicate) and isinstance(local_facts_, Not) and local_facts_.args[0].is_Atom): if local_facts_.args[0] in known_facts_dict[key]: return False # direct resolution method, no logic res = key(expr)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler:: >>> from sympy.assumptions import register_handler, ask, Q >>> from sympy.assumptions.handlers import AskHandler >>> class MersenneHandler(AskHandler): ... # Mersenne numbers are in the form 2**n - 1, n integer ... @staticmethod ... def Integer(expr, assumptions): ... from sympy import log ... return ask(Q.integer(log(expr + 1, 2))) >>> register_handler('mersenne', MersenneHandler) >>> ask(Q.mersenne(7)) True """ if type(key) is Predicate: key = key.name Qkey = getattr(Q, key, None) if Qkey is not None: Qkey.add_handler(handler) else: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """Removes a handler from the ask system. Same syntax as register_handler""" if type(key) is Predicate: key = key.name getattr(Q, key).remove_handler(handler) def single_fact_lookup(known_facts_keys, known_facts_cnf): # Compute the quick lookup for single facts mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) return mapping def compute_known_facts(known_facts, known_facts_keys): """Compute the various forms of knowledge compilation used by the assumptions system. This function is typically applied to the results of the ``get_known_facts`` and ``get_known_facts_keys`` functions defined at the bottom of this file. """ from textwrap import dedent, wrap fact_string = dedent('''\ """ The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And from sympy.assumptions.cnf import Literal from sympy.assumptions.ask import Q # -{ Known facts as a set }- @cacheit def get_all_known_facts(): return { %s } # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( %s ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { %s } ''') # Compute the known facts in CNF form for logical inference LINE = ",\n " HANG = ' '*8 cnf = to_cnf(known_facts) cnf_ = CNF.to_CNF(known_facts) c = LINE.join([str(a) for a in cnf.args]) p = LINE.join(sorted(['frozenset((' + ', '.join(str(lit) for lit in sorted(clause, key=str)) +'))' for clause in cnf_.clauses])) mapping = single_fact_lookup(known_facts_keys, cnf) items = sorted(mapping.items(), key=str) keys = [str(i[0]) for i in items] values = ['set(%s)' % sorted(i[1], key=str) for i in items] m = LINE.join(['\n'.join( wrap("%s: %s" % (k, v), subsequent_indent=HANG, break_long_words=False)) for k, v in zip(keys, values)]) + ',' return fact_string % (p, c, m) # handlers tells us what ask handler we should use # for a particular key _val_template = 'sympy.assumptions.handlers.%s' _handlers = [ ("antihermitian", "sets.AskAntiHermitianHandler"), ("finite", "calculus.AskFiniteHandler"), ("commutative", "AskCommutativeHandler"), ("complex", "sets.AskComplexHandler"), ("composite", "ntheory.AskCompositeHandler"), ("even", "ntheory.AskEvenHandler"), ("extended_real", "sets.AskExtendedRealHandler"), ("hermitian", "sets.AskHermitianHandler"), ("imaginary", "sets.AskImaginaryHandler"), ("integer", "sets.AskIntegerHandler"), ("irrational", "sets.AskIrrationalHandler"), ("rational", "sets.AskRationalHandler"), ("negative", "order.AskNegativeHandler"), ("nonzero", "order.AskNonZeroHandler"), ("nonpositive", "order.AskNonPositiveHandler"), ("nonnegative", "order.AskNonNegativeHandler"), ("zero", "order.AskZeroHandler"), ("positive", "order.AskPositiveHandler"), ("prime", "ntheory.AskPrimeHandler"), ("real", "sets.AskRealHandler"), ("odd", "ntheory.AskOddHandler"), ("algebraic", "sets.AskAlgebraicHandler"), ("is_true", "common.TautologicalHandler"), ("symmetric", "matrices.AskSymmetricHandler"), ("invertible", "matrices.AskInvertibleHandler"), ("orthogonal", "matrices.AskOrthogonalHandler"), ("unitary", "matrices.AskUnitaryHandler"), ("positive_definite", "matrices.AskPositiveDefiniteHandler"), ("upper_triangular", "matrices.AskUpperTriangularHandler"), ("lower_triangular", "matrices.AskLowerTriangularHandler"), ("diagonal", "matrices.AskDiagonalHandler"), ("fullrank", "matrices.AskFullRankHandler"), ("square", "matrices.AskSquareHandler"), ("integer_elements", "matrices.AskIntegerElementsHandler"), ("real_elements", "matrices.AskRealElementsHandler"), ("complex_elements", "matrices.AskComplexElementsHandler"), ] for name, value in _handlers: register_handler(name, _val_template % value) @cacheit def get_known_facts_keys(): return [ getattr(Q, attr) for attr in Q.__class__.__dict__ if not (attr.startswith('__') or attr in deprecated_predicates)] @cacheit def get_known_facts(): return And( Implies(Q.infinite, ~Q.finite), Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian), Equivalent(Q.extended_real, Q.real | Q.infinite), Equivalent(Q.even | Q.odd, Q.integer), Implies(Q.even, ~Q.odd), Implies(Q.prime, Q.integer & Q.positive & ~Q.composite), Implies(Q.integer, Q.rational), Implies(Q.rational, Q.algebraic), Implies(Q.algebraic, Q.complex), Implies(Q.algebraic, Q.finite), Equivalent(Q.transcendental | Q.algebraic, Q.complex & Q.finite), Implies(Q.transcendental, ~Q.algebraic), Implies(Q.transcendental, Q.finite), Implies(Q.imaginary, Q.complex & ~Q.real), Implies(Q.imaginary, Q.antihermitian), Implies(Q.antihermitian, ~Q.hermitian), Equivalent(Q.irrational | Q.rational, Q.real & Q.finite), Implies(Q.irrational, ~Q.rational), Implies(Q.zero, Q.even), Equivalent(Q.real, Q.negative | Q.zero | Q.positive), Implies(Q.zero, ~Q.negative & ~Q.positive), Implies(Q.negative, ~Q.positive), Equivalent(Q.nonnegative, Q.zero | Q.positive), Equivalent(Q.nonpositive, Q.zero | Q.negative), Equivalent(Q.nonzero, Q.negative | Q.positive), Implies(Q.orthogonal, Q.positive_definite), Implies(Q.orthogonal, Q.unitary), Implies(Q.unitary & Q.real, Q.orthogonal), Implies(Q.unitary, Q.normal), Implies(Q.unitary, Q.invertible), Implies(Q.normal, Q.square), Implies(Q.diagonal, Q.normal), Implies(Q.positive_definite, Q.invertible), Implies(Q.diagonal, Q.upper_triangular), Implies(Q.diagonal, Q.lower_triangular), Implies(Q.lower_triangular, Q.triangular), Implies(Q.upper_triangular, Q.triangular), Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular), Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal), Implies(Q.diagonal, Q.symmetric), Implies(Q.unit_triangular, Q.triangular), Implies(Q.invertible, Q.fullrank), Implies(Q.invertible, Q.square), Implies(Q.symmetric, Q.square), Implies(Q.fullrank & Q.square, Q.invertible), Equivalent(Q.invertible, ~Q.singular), Implies(Q.integer_elements, Q.real_elements), Implies(Q.real_elements, Q.complex_elements), ) from sympy.assumptions.ask_generated import ( get_known_facts_dict, get_known_facts_cnf, get_all_known_facts)
9ef21c45d588fdc93b636519d24551105e7d4155eb13a72b97bc236eedae0c70
from __future__ import print_function, division from sympy import Symbol, S from sympy.assumptions.ask_generated import get_all_known_facts from sympy.assumptions.assume import global_assumptions, AppliedPredicate from sympy.assumptions.sathandlers import fact_registry from sympy.core import oo from sympy.logic.inference import satisfiable from sympy.assumptions.cnf import CNF, EncodedCNF def satask(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): props = CNF.from_prop(proposition) _props = CNF.from_prop(~proposition) if context: tmp = CNF() context = tmp.extend(context) assumptions = CNF.from_prop(assumptions) sat = get_all_relevant_facts(props, assumptions, context, use_known_facts=use_known_facts, iterations=iterations) if context: sat.add_from_cnf(context) sat.add_from_cnf(assumptions) return check_satisfiability(props, _props, sat) def check_satisfiability(prop, _prop, factbase): sat_true = factbase.copy() sat_false = factbase.copy() sat_true.add_from_cnf(prop) sat_false.add_from_cnf(_prop) can_be_true = satisfiable(sat_true) can_be_false = satisfiable(sat_false) if can_be_true and can_be_false: return None if can_be_true and not can_be_false: return True if not can_be_true and can_be_false: return False if not can_be_true and not can_be_false: # TODO: Run additional checks to see which combination of the # assumptions, global_assumptions, and relevant_facts are # inconsistent. raise ValueError("Inconsistent assumptions") def get_relevant_facts(proposition, assumptions=None, context=None, exprs=None, relevant_facts=None): newexprs = set() if not assumptions: assumptions = CNF({S.true}) if not relevant_facts: relevant_facts = set() def find_symbols(pred): if isinstance(pred, CNF): symbols = set() for a in pred.all_predicates(): symbols |= find_symbols(a) return symbols if isinstance(pred.args, AppliedPredicate): return {pred.args[0]} return pred.atoms(Symbol) if not exprs: req_keys = find_symbols(proposition) keys = proposition.all_predicates() # XXX: We need this since True/False are not Basic lkeys = set() lkeys |= assumptions.all_predicates() if context: lkeys |= context.all_predicates() lkeys = lkeys - {S.true, S.false} tmp_keys = None while tmp_keys != set(): tmp = set() for l in lkeys: syms = find_symbols(l) if (syms & req_keys) != set(): tmp |= syms tmp_keys = tmp - req_keys req_keys |= tmp_keys keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()} exprs = {key.args[0] if isinstance(key, AppliedPredicate) else key for key in keys} return exprs, relevant_facts for expr in exprs: for fact in fact_registry[expr.func]: cnf_fact = CNF.to_CNF(fact) newfact = cnf_fact.rcall(expr) relevant_facts = relevant_facts._and(newfact) newexprs |= set([key.args[0] for key in newfact.all_predicates() if isinstance(key, AppliedPredicate)]) return newexprs - exprs, relevant_facts def get_all_relevant_facts(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = CNF() exprs = None all_exprs = set() while exprs != set(): exprs, relevant_facts = get_relevant_facts(proposition, assumptions, context, exprs=exprs, relevant_facts=relevant_facts) all_exprs |= exprs i += 1 if i >= iterations: break if use_known_facts: known_facts_CNF = CNF() known_facts_CNF.add_clauses(get_all_known_facts()) kf_encoded = EncodedCNF() kf_encoded.from_cnf(known_facts_CNF) def translate_literal(lit, delta): if lit > 0: return lit + delta else: return lit - delta def translate_data(data, delta): return [{translate_literal(i, delta) for i in clause} for clause in data] data = [] symbols = [] n_lit = len(kf_encoded.symbols) for i, expr in enumerate(all_exprs): symbols += [pred(expr) for pred in kf_encoded.symbols] data += translate_data(kf_encoded.data, i * n_lit) encoding = dict(list(zip(symbols, range(1, len(symbols)+1)))) ctx = EncodedCNF(data, encoding) else: ctx = EncodedCNF() ctx.add_from_cnf(relevant_facts) return ctx
71946cfba268020db91293aef3140eeb56bf88d60d81e5c7570aeb86931af4d9
""" The classes used here are for the internal use of assumptions system only and should not be used anywhere else as these don't possess the signatures common to SymPy objects. For general use of logic constructs please refer to sympy.logic classes And, Or, Not, etc. """ from itertools import combinations, product from sympy import S, Nor, Nand, Xor, Implies, Equivalent, ITE from sympy.logic.boolalg import Or, And, Not, Xnor from sympy.core.compatibility import zip_longest class Literal(object): """ The smallest element of a CNF object """ def __new__(cls, lit, is_Not=False): if isinstance(lit, Not): lit = lit.args[0] is_Not = True elif isinstance(lit, (AND, OR, Literal)): return ~lit if is_Not else lit obj = super(Literal, cls).__new__(cls) obj.lit = lit obj.is_Not = is_Not return obj @property def arg(self): return self.lit def rcall(self, expr): if callable(self.lit): lit = self.lit(expr) else: try: lit = self.lit.apply(expr) except AttributeError: lit = self.lit.rcall(expr) return type(self)(lit, self.is_Not) def __invert__(self): is_Not = not self.is_Not return Literal(self.lit, is_Not) def __str__(self): return '%s(%s, %s)' % (type(self).__name__, self.lit, self.is_Not) __repr__ = __str__ def __eq__(self, other): return self.arg == other.arg and self.is_Not == other.is_Not def __hash__(self): h = hash((type(self).__name__, self.arg, self.is_Not)) return h class OR(object): """ A low-level implementation for Or """ def __init__(self, *args): self._args = args @property def args(self): return sorted(self._args, key=str) def rcall(self, expr): return type(self)(*[arg.rcall(expr) for arg in self._args ]) def __invert__(self): return AND(*[~arg for arg in self._args]) def __hash__(self): return hash((type(self).__name__,) + tuple(self.args)) def __eq__(self, other): return self.args == other.args def __str__(self): s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')' return s __repr__ = __str__ class AND(object): """ A low-level implementation for And """ def __init__(self, *args): self._args = args def __invert__(self): return OR(*[~arg for arg in self._args]) @property def args(self): return sorted(self._args, key=str) def rcall(self, expr): return type(self)(*[arg.rcall(expr) for arg in self._args ]) def __hash__(self): return hash((type(self).__name__,) + tuple(self.args)) def __eq__(self, other): return self.args == other.args def __str__(self): s = '('+' & '.join([str(arg) for arg in self.args])+')' return s __repr__ = __str__ def to_NNF(expr): """ Generates the Negation Normal Form of any boolean expression in terms of AND, OR, and Literal objects. """ if isinstance(expr, Not): arg = expr.args[0] tmp = to_NNF(arg) # Strategy: negate the NNF of expr return ~tmp if isinstance(expr, Or): return OR(*[to_NNF(x) for x in Or.make_args(expr)]) if isinstance(expr, And): return AND(*[to_NNF(x) for x in And.make_args(expr)]) if isinstance(expr, Nand): tmp = AND(*[to_NNF(x) for x in expr.args]) return ~tmp if isinstance(expr, Nor): tmp = OR(*[to_NNF(x) for x in expr.args]) return ~tmp if isinstance(expr, Xor): cnfs = [] for i in range(0, len(expr.args) + 1, 2): for neg in combinations(expr.args, i): clause = [~to_NNF(s) if s in neg else to_NNF(s) for s in expr.args] cnfs.append(OR(*clause)) return AND(*cnfs) if isinstance(expr, Xnor): cnfs = [] for i in range(0, len(expr.args) + 1, 2): for neg in combinations(expr.args, i): clause = [~to_NNF(s) if s in neg else to_NNF(s) for s in expr.args] cnfs.append(OR(*clause)) return ~AND(*cnfs) if isinstance(expr, Implies): L, R = to_NNF(expr.args[0]), to_NNF(expr.args[1]) return OR(~L, R) if isinstance(expr, Equivalent): cnfs = [] for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]): a = to_NNF(a) b = to_NNF(b) cnfs.append(OR(~a, b)) return AND(*cnfs) if isinstance(expr, ITE): L = to_NNF(expr.args[0]) M = to_NNF(expr.args[1]) R = to_NNF(expr.args[2]) return AND(OR(~L, M), OR(L, R)) else: return Literal(expr) def distribute_AND_over_OR(expr): """ Distributes AND over OR in the NNF expression. Returns the result( Conjunctive Normal Form of expression) as a CNF object. """ if not isinstance(expr, (AND, OR)): tmp = set() tmp.add(frozenset((expr,))) return CNF(tmp) if isinstance(expr, OR): return CNF.all_or(*[distribute_AND_over_OR(arg) for arg in expr._args]) if isinstance(expr, AND): return CNF.all_and(*[distribute_AND_over_OR(arg) for arg in expr._args]) class CNF(object): """ Class to represent CNF of a Boolean expression. Consists of set of clauses, which themselves are stored as frozenset of Literal objects. """ def __init__(self, clauses=None): if not clauses: clauses = set() self.clauses = clauses def add(self, prop): clauses = CNF.to_CNF(prop).clauses self.add_clauses(clauses) def __str__(self): s = ' & '.join( ['(' + ' | '.join([str(lit) for lit in clause]) +')' for clause in self.clauses] ) return s def extend(self, props): for p in props: self.add(p) return self def copy(self): return CNF(set(self.clauses)) def add_clauses(self, clauses): self.clauses |= clauses @classmethod def from_prop(cls, prop): res = cls() res.add(prop) return res def __iand__(self, other): self.add_clauses(other.clauses) return self def all_predicates(self): predicates = set() for c in self.clauses: predicates |= {arg.lit for arg in c} return predicates def _or(self, cnf): clauses = set() for a, b in product(self.clauses, cnf.clauses): tmp = set(a) for t in b: tmp.add(t) clauses.add(frozenset(tmp)) return CNF(clauses) def _and(self, cnf): clauses = self.clauses.union(cnf.clauses) return CNF(clauses) def _not(self): clss = list(self.clauses) ll = set() for x in clss[-1]: ll.add(frozenset((~x,))) ll = CNF(ll) for rest in clss[:-1]: p = set() for x in rest: p.add(frozenset((~x,))) ll = ll._or(CNF(p)) return ll def rcall(self, expr): clause_list = list() for clause in self.clauses: lits = [arg.rcall(expr) for arg in clause] clause_list.append(OR(*lits)) expr = AND(*clause_list) return distribute_AND_over_OR(expr) @classmethod def all_or(cls, *cnfs): b = cnfs[0].copy() for rest in cnfs[1:]: b = b._or(rest) return b @classmethod def all_and(cls, *cnfs): b = cnfs[0].copy() for rest in cnfs[1:]: b = b._and(rest) return b @classmethod def to_CNF(cls, expr): expr = to_NNF(expr) expr = distribute_AND_over_OR(expr) return expr @classmethod def CNF_to_cnf(cls, cnf): """ Converts CNF object to SymPy's boolean expression retaining the form of expression. """ def remove_literal(arg): return Not(arg.lit) if arg.is_Not else arg.lit return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses)) class EncodedCNF(object): """ Class for encoding the CNF expression. """ def __init__(self, data=None, encoding=None): if not data and not encoding: data = list() encoding = dict() self.data = data self.encoding = encoding self._symbols = list(encoding.keys()) def from_cnf(self, cnf): self._symbols = list(cnf.all_predicates()) n = len(self._symbols) self.encoding = dict(list(zip(self._symbols, list(range(1, n + 1))))) self.data = [self.encode(clause) for clause in cnf.clauses] @property def symbols(self): return self._symbols @property def variables(self): return range(1, len(self._symbols) + 1) def copy(self): new_data = [set(clause) for clause in self.data] return EncodedCNF(new_data, dict(self.encoding)) def add_prop(self, prop): cnf = CNF.from_prop(prop) self.add_from_cnf(cnf) def add_from_cnf(self, cnf): clauses = [self.encode(clause) for clause in cnf.clauses] self.data += clauses def encode_arg(self, arg): literal = arg.lit value = self.encoding.get(literal, None) if value is None: n = len(self._symbols) self._symbols.append(literal) value = self.encoding[literal] = n + 1 if arg.is_Not: return -value else: return value def encode(self, clause): return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}
f0cbcafe160dbbc3fa8fcdac0737657c79141b1b4546e34dbfc04cbf6e02c397
from __future__ import print_function, division from collections import defaultdict from sympy.assumptions.ask import Q from sympy.assumptions.assume import Predicate, AppliedPredicate from sympy.assumptions.cnf import AND, OR, to_NNF from sympy.core import (Add, Mul, Pow, Integer, Number, NumberSymbol,) from sympy.core.compatibility import MutableMapping from sympy.core.numbers import ImaginaryUnit from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import Abs from sympy.logic.boolalg import (Equivalent, Implies, BooleanFunction) from sympy.matrices.expressions import MatMul # APIs here may be subject to change class UnevaluatedOnFree(BooleanFunction): """ Represents a Boolean function that remains unevaluated on free predicates This is intended to be a superclass of other classes, which define the behavior on singly applied predicates. A free predicate is a predicate that is not applied, or a combination thereof. For example, Q.zero or Or(Q.positive, Q.negative). A singly applied predicate is a free predicate applied everywhere to a single expression. For instance, Q.zero(x) and Or(Q.positive(x*y), Q.negative(x*y)) are singly applied, but Or(Q.positive(x), Q.negative(y)) and Or(Q.positive, Q.negative(y)) are not. The boolean literals True and False are considered to be both free and singly applied. This class raises ValueError unless the input is a free predicate or a singly applied predicate. On a free predicate, this class remains unevaluated. On a singly applied predicate, the method apply() is called and returned, or the original expression returned if apply() returns None. When apply() is called, self.expr is set to the unique expression that the predicates are applied at. self.pred is set to the free form of the predicate. The typical usage is to create this class with free predicates and evaluate it using .rcall(). """ def __new__(cls, arg): # Mostly type checking here arg = _sympify(arg) predicates = arg.atoms(Predicate) applied_predicates = arg.atoms(AppliedPredicate) if predicates and applied_predicates: raise ValueError("arg must be either completely free or singly applied") if not applied_predicates: obj = BooleanFunction.__new__(cls, arg) obj.pred = arg obj.expr = None return obj predicate_args = {pred.args[0] for pred in applied_predicates} if len(predicate_args) > 1: raise ValueError("The AppliedPredicates in arg must be applied to a single expression.") obj = BooleanFunction.__new__(cls, arg) obj.expr = predicate_args.pop() obj.pred = arg.xreplace(Transform(lambda e: e.func, lambda e: isinstance(e, AppliedPredicate))) applied = obj.apply(obj.expr) if applied is None: return obj return applied def apply(self, expr=None): if expr is None: return pred = to_NNF(self.pred) return self._eval_apply(expr, pred) def _eval_apply(self, expr, pred): return None class AllArgs(UnevaluatedOnFree): """ Class representing vectorizing a predicate over all the .args of an expression See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicates with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import AllArgs >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = AllArgs(Q.positive | Q.negative) >>> a AllArgs(Q.negative | Q.positive) >>> a.rcall(x*y) ((Literal(Q.negative(x), False) | Literal(Q.positive(x), False)) & (Literal(Q.negative(y), False) | \ Literal(Q.positive(y), False))) """ def _eval_apply(self, expr, pred): return AND(*[pred.rcall(arg) for arg in expr.args]) class AnyArgs(UnevaluatedOnFree): """ Class representing vectorizing a predicate over any of the .args of an expression. See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicates with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import AnyArgs >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = AnyArgs(Q.positive & Q.negative) >>> a AnyArgs(Q.negative & Q.positive) >>> a.rcall(x*y) ((Literal(Q.negative(x), False) & Literal(Q.positive(x), False)) | (Literal(Q.negative(y), False) & \ Literal(Q.positive(y), False))) """ def _eval_apply(self, expr, pred): return OR(*[pred.rcall(arg) for arg in expr.args]) class ExactlyOneArg(UnevaluatedOnFree): """ Class representing a predicate holding on exactly one of the .args of an expression. See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicate with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import ExactlyOneArg >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = ExactlyOneArg(Q.positive) >>> a ExactlyOneArg(Q.positive) >>> a.rcall(x*y) ((Literal(Q.positive(x), False) & Literal(Q.positive(y), True)) | (Literal(Q.positive(x), True) & \ Literal(Q.positive(y), False))) """ def _eval_apply(self, expr, pred): pred_args = [pred.rcall(arg) for arg in expr.args] # Technically this is xor, but if one term in the disjunction is true, # it is not possible for the remainder to be true, so regular or is # fine in this case. res = OR(*[AND(pred_args[i], *[~lit for lit in pred_args[:i] + pred_args[i+1:]]) for i in range(len(pred_args))]) return res # Note: this is the equivalent cnf form. The above is more efficient # as the first argument of an implication, since p >> q is the same as # q | ~p, so the the ~ will convert the Or to and, and one just needs # to distribute the q across it to get to cnf. # return And(*[Or(*map(Not, c)) for c in combinations(pred_args, 2)]) & Or(*pred_args) def _old_assump_replacer(obj): if not isinstance(obj, AppliedPredicate): return obj e = obj.args[0] ret = None if obj.func == Q.positive: ret = e.is_positive elif obj.func == Q.zero: ret = e.is_zero elif obj.func == Q.negative: ret = e.is_negative elif obj.func == Q.nonpositive: ret = e.is_nonpositive elif obj.func == Q.nonzero: ret = e.is_nonzero elif obj.func == Q.nonnegative: ret = e.is_nonnegative elif obj.func == Q.rational: ret = e.is_rational elif obj.func == Q.irrational: ret = e.is_irrational elif obj.func == Q.even: ret = e.is_even elif obj.func == Q.odd: ret = e.is_odd elif obj.func == Q.integer: ret = e.is_integer elif obj.func == Q.composite: ret = e.is_composite elif obj.func == Q.imaginary: ret = e.is_imaginary elif obj.func == Q.commutative: ret = e.is_commutative if ret is None: return obj return ret def evaluate_old_assump(pred): """ Replace assumptions of expressions replaced with their values in the old assumptions (like Q.negative(-1) => True). Useful because some direct computations for numeric objects is defined most conveniently in the old assumptions. """ return pred.xreplace(Transform(_old_assump_replacer)) class CheckOldAssump(UnevaluatedOnFree): def apply(self, expr=None, is_Not=False): arg = self.args[0](expr) if callable(self.args[0]) else self.args[0] res = Equivalent(arg, evaluate_old_assump(arg)) return to_NNF(res) class CheckIsPrime(UnevaluatedOnFree): def apply(self, expr=None, is_Not=False): from sympy import isprime arg = self.args[0](expr) if callable(self.args[0]) else self.args[0] res = Equivalent(arg, isprime(expr)) return to_NNF(res) class CustomLambda(object): """ Interface to lambda with rcall Workaround until we get a better way to represent certain facts. """ def __init__(self, lamda): self.lamda = lamda def apply(self, *args): return to_NNF(self.lamda(*args)) class ClassFactRegistry(MutableMapping): """ Register handlers against classes ``registry[C] = handler`` registers ``handler`` for class ``C``. ``registry[C]`` returns a set of handlers for class ``C``, or any of its superclasses. """ def __init__(self, d=None): d = d or {} self.d = defaultdict(frozenset, d) super(ClassFactRegistry, self).__init__() def __setitem__(self, key, item): self.d[key] = frozenset(item) def __getitem__(self, key): ret = self.d[key] for k in self.d: if issubclass(key, k): ret |= self.d[k] return ret def __delitem__(self, key): del self.d[key] def __iter__(self): return self.d.__iter__() def __len__(self): return len(self.d) def __repr__(self): return repr(self.d) fact_registry = ClassFactRegistry() def register_fact(klass, fact, registry=fact_registry): registry[klass] |= {fact} for klass, fact in [ (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))), (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))), (Add, Implies(AllArgs(Q.positive), Q.positive)), (Add, Implies(AllArgs(Q.negative), Q.negative)), (Mul, Implies(AllArgs(Q.positive), Q.positive)), (Mul, Implies(AllArgs(Q.commutative), Q.commutative)), (Mul, Implies(AllArgs(Q.real), Q.commutative)), (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) & Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))), (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))), (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))), # This one can still be made easier to read. I think we need basic pattern # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y)) (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))), (Integer, CheckIsPrime(Q.prime)), (Integer, CheckOldAssump(Q.composite)), # Implicitly assumes Mul has more than one arg # Would be AllArgs(Q.prime | Q.composite) except 1 is composite (Mul, Implies(AllArgs(Q.prime), ~Q.prime)), # More advanced prime assumptions will require inequalities, as 1 provides # a corner case. (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))), (Mul, Implies(AllArgs(Q.real), Q.real)), (Add, Implies(AllArgs(Q.real), Q.real)), # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) (Mul, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational), Q.irrational))), (Add, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational), Q.irrational))), (Mul, Implies(AllArgs(Q.rational), Q.rational)), (Add, Implies(AllArgs(Q.rational), Q.rational)), (Abs, Q.nonnegative), (Abs, Equivalent(AllArgs(~Q.zero), ~Q.zero)), # Including the integer qualification means we don't need to add any facts # for odd, since the assumptions already know that every integer is # exactly one of even or odd. (Mul, Implies(AllArgs(Q.integer), Equivalent(AnyArgs(Q.even), Q.even))), (Abs, Implies(AllArgs(Q.even), Q.even)), (Abs, Implies(AllArgs(Q.odd), Q.odd)), (Add, Implies(AllArgs(Q.integer), Q.integer)), (Add, Implies(ExactlyOneArg(~Q.integer), ~Q.integer)), (Mul, Implies(AllArgs(Q.integer), Q.integer)), (Mul, Implies(ExactlyOneArg(~Q.rational), ~Q.integer)), (Abs, Implies(AllArgs(Q.integer), Q.integer)), (Number, CheckOldAssump(Q.negative)), (Number, CheckOldAssump(Q.zero)), (Number, CheckOldAssump(Q.positive)), (Number, CheckOldAssump(Q.nonnegative)), (Number, CheckOldAssump(Q.nonzero)), (Number, CheckOldAssump(Q.nonpositive)), (Number, CheckOldAssump(Q.rational)), (Number, CheckOldAssump(Q.irrational)), (Number, CheckOldAssump(Q.even)), (Number, CheckOldAssump(Q.odd)), (Number, CheckOldAssump(Q.integer)), (Number, CheckOldAssump(Q.imaginary)), # For some reason NumberSymbol does not subclass Number (NumberSymbol, CheckOldAssump(Q.negative)), (NumberSymbol, CheckOldAssump(Q.zero)), (NumberSymbol, CheckOldAssump(Q.positive)), (NumberSymbol, CheckOldAssump(Q.nonnegative)), (NumberSymbol, CheckOldAssump(Q.nonzero)), (NumberSymbol, CheckOldAssump(Q.nonpositive)), (NumberSymbol, CheckOldAssump(Q.rational)), (NumberSymbol, CheckOldAssump(Q.irrational)), (NumberSymbol, CheckOldAssump(Q.imaginary)), (ImaginaryUnit, CheckOldAssump(Q.negative)), (ImaginaryUnit, CheckOldAssump(Q.zero)), (ImaginaryUnit, CheckOldAssump(Q.positive)), (ImaginaryUnit, CheckOldAssump(Q.nonnegative)), (ImaginaryUnit, CheckOldAssump(Q.nonzero)), (ImaginaryUnit, CheckOldAssump(Q.nonpositive)), (ImaginaryUnit, CheckOldAssump(Q.rational)), (ImaginaryUnit, CheckOldAssump(Q.irrational)), (ImaginaryUnit, CheckOldAssump(Q.imaginary)) ]: register_fact(klass, fact)
38a785e0f1aa38b5637ae6fce97eef365047a4ebe5af954b3f652da5e7d59770
"""A functions module, includes all the standard functions. Combinatorial - factorial, fibonacci, harmonic, bernoulli... Elementary - hyperbolic, trigonometric, exponential, floor and ceiling, sqrt... Special - gamma, zeta,spherical harmonics... """ from sympy.functions.combinatorial.factorials import (factorial, factorial2, rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial) from sympy.functions.combinatorial.numbers import (carmichael, fibonacci, lucas, tribonacci, harmonic, bernoulli, bell, euler, catalan, genocchi, partition) from sympy.functions.elementary.miscellaneous import (sqrt, root, Min, Max, Id, real_root, cbrt) from sympy.functions.elementary.complexes import (re, im, sign, Abs, conjugate, arg, polar_lift, periodic_argument, unbranched_argument, principal_branch, transpose, adjoint, polarify, unpolarify) from sympy.functions.elementary.trigonometric import (sin, cos, tan, sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2) from sympy.functions.elementary.exponential import (exp_polar, exp, log, LambertW) from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch) from sympy.functions.elementary.integers import floor, ceiling, frac from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.special.error_functions import (erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc) from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, multigamma) from sympy.functions.special.zeta_functions import (dirichlet_eta, zeta, lerchphi, polylog, stieltjes) from sympy.functions.special.tensor_functions import (Eijk, LeviCivita, KroneckerDelta) from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.bsplines import bspline_basis, bspline_basis_set, interpolating_spline from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq) from sympy.functions.special.hyper import hyper, meijerg, appellf1 from sympy.functions.special.polynomials import (legendre, assoc_legendre, hermite, chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized) from sympy.functions.special.spherical_harmonics import Ynm, Ynm_c, Znm from sympy.functions.special.elliptic_integrals import (elliptic_k, elliptic_f, elliptic_e, elliptic_pi) from sympy.functions.special.beta_functions import beta from sympy.functions.special.mathieu_functions import (mathieus, mathieuc, mathieusprime, mathieucprime) ln = log
039216d56d54355a11241b7a203524bffb0daa85c8294805191c225c4e83b8b1
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode_checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines, like :py:meth:`~sympy.solvers.ode._undetermined_coefficients_match`, it should go outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:meth:`Integral() <sympy.integrals.integrals.Integral>` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :py:meth:`~sympy.functions.log` terms, so :py:meth:`~sympy.solvers.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from __future__ import print_function, division from collections import defaultdict from itertools import islice from sympy.core import Add, S, Mul, Pow, oo, Rational from sympy.core.compatibility import ordered, iterable, is_sequence, range, string_types from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs, _mexpand) from sympy.core.multidimensional import vectorize from sympy.core.numbers import NaN, zoo, I, Number from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.logic.boolalg import (BooleanAtom, And, Not, BooleanTrue, BooleanFalse) from sympy.functions import cos, exp, im, log, re, sin, tan, sqrt, \ atan2, conjugate, Piecewise, cbrt, besselj, bessely, airyai, airybi from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral, integrate from sympy.matrices import wronskian, Matrix, eye, zeros from sympy.polys import (Poly, RootOf, rootof, terms_gcd, PolynomialError, lcm, roots) from sympy.polys.polyroots import roots_quartic from sympy.polys.polytools import cancel, degree, div from sympy.series import Order from sympy.series.series import series from sympy.simplify import collect, logcombine, powsimp, separatevars, \ simplify, trigsimp, posify, cse, besselsimp from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import collect_const, fraction from sympy.solvers import checksol, solve from sympy.solvers.pde import pdsolve from sympy.utilities import numbered_symbols, default_sort_key, sift from sympy.solvers.deutils import _preprocess, ode_order, _desolve #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "factorable", "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_linear_airy", "2nd_linear_bessel", "nth_order_reducible", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", ) lie_heuristics = ( "abaco1_simple", "abaco1_product", "abaco2_similar", "abaco2_unique_unknown", "abaco2_unique_general", "linear", "function_sum", "bivariate", "chi" ) def sub_func_doit(eq, func, new): r""" When replacing the func with something else, we usually want the derivative evaluated, so this function helps in making that happen. Examples ======== >>> from sympy import Derivative, symbols, Function >>> from sympy.solvers.ode import sub_func_doit >>> x, z = symbols('x, z') >>> y = Function('y') >>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x) 2 >>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x), ... 1/(x*(z + 1/x))) x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x)) ...- 1/(x**2*(z + 1/x)**2) """ reps= {func: new} for d in eq.atoms(Derivative): if d.expr == func: reps[d] = new.diff(*d.variable_count) else: reps[d] = d.xreplace({func: new}).doit(deep=False) return eq.xreplace(reps) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ ncs = iter_numbered_constants(eq, start, prefix) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def iter_numbered_constants(eq, start=1, prefix='C'): """ Returns an iterator of constants that do not occur in eq already. """ if isinstance(eq, Expr): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: if match['no_of_equation'] > 3: solvefunc = globals()['sysode_linear_neq_order%(order)s' % match] else: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True) orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match if hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] func = r['func'] order = r['order'] match = r[hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications sols = solvefunc(eq, func, order, match) if isinstance(sols, Expr): rv = odesimp(eq, sols, func, hint) else: rv = [odesimp(eq, s, func, hint) for s in sols] else: # We still want to integrate (you can disable it separately with the hint) match['simplify'] = False # Some hints can take advantage of this option exprs = solvefunc(eq, func, order, match) if isinstance(exprs, list): rv = [_handle_Integral(expr, func, hint) for expr in exprs] else: rv = _handle_Integral(exprs, func, hint) if isinstance(rv, list): rv = _remove_redundant_solutions(eq, rv, order, func.args[0]) if len(rv) == 1: rv = rv[0] if ics and not 'power_series' in hint: if isinstance(rv, Expr): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: try: solved_constants = solve_ics([s], [r['func']], cons(s), ics) except ValueError: continue rv1.append(s.subs(solved_constants)) if len(rv1) == 1: return rv1[0] rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) if variables not in diff_variables: for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) # This check is necessary because of issue #15724 if not isinstance(sol2, BooleanAtom) or not subs_sols: subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)] subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise ValueError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~sympy.integrals.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:meth:`~sympy.solvers.ode.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means the the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) prep = kwargs.pop('prep', True) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) # Some methods want the unprocessed equation eq_orig = eq if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') xi = kwargs.get('xi') eta = kwargs.get('eta') terms = kwargs.get('n') if isinstance(eq, Equality): if eq.rhs != 0: return classify_ode(eq.lhs - eq.rhs, func, dict=dict, ics=ics, xi=xi, n=terms, eta=eta, prep=False) eq = eq.lhs order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) b = Wild('b', exclude=[f(x)]) c = Wild('c', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) k = Wild('k', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a2 = Wild('a2', exclude=[x, f(x), df]) b2 = Wild('b2', exclude=[x, f(x), df]) c2 = Wild('c2', exclude=[x, f(x), df]) d2 = Wild('d2', exclude=[x, f(x), df]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint boundary = {} # Used to extract initial conditions C1 = Symbol("C1") # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and not ics[funcarg].has(f)): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and not ics[funcarg].has(f)): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}") # Factorable method r = _ode_factorable_match(eq, func, kwargs.get('x0', 0)) if r: matching_hints['factorable'] = r # Any ODE that can be solved with a combination of algebra and # integrals e.g.: # d^3/dx^3(x y) = F(x) r = _nth_algebraic_match(eq_orig, func) if r['solutions']: matching_hints['nth_algebraic'] = r matching_hints['nth_algebraic_Integral'] = r eq = expand(eq) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: ## Linear case: a(x)*y'+b(x)*y+c(x) == 0 if eq.is_Add: ind, dep = reduced_eq.as_independent(f) else: u = Dummy('u') ind, dep = (reduced_eq + u).as_independent(f) ind, dep = [tmp.subs(u, 0) for tmp in [ind, dep]] r = {a: dep.coeff(df), b: dep.coeff(f(x)), c: ind} # double check f[a] since the preconditioning may have failed if not r[a].has(f) and not r[b].has(f) and ( r[a]*df + r[b]*f(x) + r[c]).expand() - reduced_eq == 0: r['a'] = a r['b'] = b r['c'] = c matching_hints["1st_linear"] = r matching_hints["1st_linear_Integral"] = r ## Bernoulli case: a(x)*y'+b(x)*y+c(x)*y**n == 0 r = collect( reduced_eq, f(x), exact=True).match(a*df + b*f(x) + c*f(x)**n) if r and r[c] != 0 and r[n] != 1: # See issue 4676 r['a'] = a r['b'] = b r['c'] = c r['n'] = n matching_hints["Bernoulli"] = r matching_hints["Bernoulli_Integral"] = r ## Riccati special n == -2 case: a2*y'+b2*y**2+c2*y/x+d2/x**2 == 0 r = collect(reduced_eq, f(x), exact=True).match(a2*df + b2*f(x)**2 + c2*f(x)/x + d2/x**2) if r and r[b2] != 0 and (r[c2] != 0 or r[d2] != 0): r['a2'] = a2 r['b2'] = b2 r['c2'] = c2 r['d2'] = d2 matching_hints["Riccati_special_minus2"] = r # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(NaN) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(NaN) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries r3.update(r) ## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where # dP/dy == dQ/dx try: if r[d] != 0: numerator = simplify(r[d].diff(y) - r[e].diff(x)) # The following few conditions try to convert a non-exact # differential equation into an exact one. # References : Differential equations with applications # and historical notes - George E. Simmons if numerator: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = simplify(numerator/r[e]) variables = factor.free_symbols if len(variables) == 1 and x == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = simplify(-numerator/r[d]) variables = factor.free_symbols if len(variables) == 1 and y == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r except NotImplementedError: # Differentiating the coefficients might fail because of things # like f(2*x).diff(x). See issue 4624 and issue 4719. pass # Any first order ODE can be ideally solved by the Lie Group # method matching_hints["lie_group"] = r3 # This match is used for several cases below; we now collect on # f(x) so the matching works. r = collect(reduced_eq, df, exact=True).match(d + e*df) if r: # Using r[d] and r[e] without any modification for hints # linear-coefficients and separable-reduced. num, den = r[d], r[e] # ODE = d/e + df r['d'] = d r['e'] = e r['y'] = y r[d] = num.subs(f(x), y) r[e] = den.subs(f(x), y) ## Separable Case: y' == P(y)*Q(x) r[d] = separatevars(r[d]) r[e] = separatevars(r[e]) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' m1 = separatevars(r[d], dict=True, symbols=(x, y)) m2 = separatevars(r[e], dict=True, symbols=(x, y)) if m1 and m2: r1 = {'m1': m1, 'm2': m2, 'y': y} matching_hints["separable"] = r1 matching_hints["separable_Integral"] = r1 ## First order equation with homogeneous coefficients: # dy/dx == F(y/x) or dy/dx == F(x/y) ordera = homogeneous_order(r[d], x, y) if ordera is not None: orderb = homogeneous_order(r[e], x, y) if ordera == orderb: # u1=y/x and u2=x/y u1 = Dummy('u1') u2 = Dummy('u2') s = "1st_homogeneous_coeff_subs" s1 = s + "_dep_div_indep" s2 = s + "_indep_div_dep" if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0: matching_hints[s1] = r matching_hints[s1 + "_Integral"] = r if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0: matching_hints[s2] = r matching_hints[s2 + "_Integral"] = r if s1 in matching_hints and s2 in matching_hints: matching_hints["1st_homogeneous_coeff_best"] = r ## Linear coefficients of the form # y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0 # that can be reduced to homogeneous form. F = num/den params = _linear_coeff_match(F, func) if params: xarg, yarg = params u = Dummy('u') t = Dummy('t') # Dummy substitution for df and f(x). dummy_eq = reduced_eq.subs(((df, t), (f(x), u))) reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x))) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d) if r2: orderd = homogeneous_order(r2[d], x, f(x)) if orderd is not None: ordere = homogeneous_order(r2[e], x, f(x)) if orderd == ordere: # Match arguments are passed in such a way that it # is coherent with the already existing homogeneous # functions. r2[d] = r2[d].subs(f(x), y) r2[e] = r2[e].subs(f(x), y) r2.update({'xarg': xarg, 'yarg': yarg, 'd': d, 'e': e, 'y': y}) matching_hints["linear_coefficients"] = r2 matching_hints["linear_coefficients_Integral"] = r2 ## Equation of the form y' + (y/x)*H(x^n*y) = 0 # that can be reduced to separable form factor = simplify(x/f(x)*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) u = None for mul in ordered(factor.atoms(Mul)): if mul.has(x): _, u = mul.as_independent(x, f(x)) break if u and u.has(f(x)): h = x**(degree(Poly(u.subs(f(x), y), gen=x)))*f(x) p = Wild('p') if (u/h == 1) or ((u/h).simplify().match(x**p)): t = Dummy('t') r2 = {'t': t} xpart, ypart = u.as_independent(f(x)) test = factor.subs(((u, t), (1/u, 1/t))) free = test.free_symbols if len(free) == 1 and free.pop() == t: r2.update({'power': xpart.as_base_exp()[1], 'u': test}) matching_hints["separable_reduced"] = r2 matching_hints["separable_reduced_Integral"] = r2 ## Almost-linear equation of the form f(x)*g(y)*y' + k(x)*l(y) + m(x) = 0 r = collect(eq, [df, f(x)]).match(e*df + d) if r: r2 = r.copy() r2[c] = S.Zero if r2[d].is_Add: # Separate the terms having f(x) to r[d] and # remaining to r[c] no_f, r2[d] = r2[d].as_independent(f(x)) r2[c] += no_f factor = simplify(r2[d].diff(f(x))/r[e]) if factor and not factor.has(f(x)): r2[d] = factor_terms(r2[d]) u = r2[d].as_independent(f(x), as_Add=False)[1] r2.update({'a': e, 'b': d, 'c': c, 'u': u}) r2[d] /= u r2[e] /= u.diff(f(x)) matching_hints["almost_linear"] = r2 matching_hints["almost_linear_Integral"] = r2 elif order == 2: # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 s = d*f(x).diff(x, 2) + e*df**2 + k*df r = reduced_eq.match(s) if r and r[d] != 0: y = Dummy('y') g = simplify(r[e]/r[d]).subs(f(x), y) h = simplify(r[k]/r[d]).subs(f(x), y) if y in h.free_symbols or x in g.free_symbols: pass else: r = {'g': g, 'h': h, 'y': y} matching_hints["Liouville"] = r matching_hints["Liouville_Integral"] = r # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3 # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r: if not all([r[key].is_polynomial() for key in r]): n, d = reduced_eq.as_numer_denom() reduced_eq = expand(n) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) if r and r[a3] != 0: p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict # If the ODE has regular singular point at x0 and is of the form # Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) + # (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation rn = match_2nd_linear_bessel(r, f(x)) if rn: matching_hints["2nd_linear_bessel"] = rn # If the ODE is ordinary and is of the form of Airy's Equation # Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x)) if p.is_zero: a4 = Wild('a4', exclude=[x,f(x),df]) b4 = Wild('b4', exclude=[x,f(x),df]) rn = q.match(a4+b4*x) if rn and rn[b4] != 0: rn = {'b':rn[a4],'m':rn[b4]} matching_hints["2nd_linear_airy"] = rn if order > 0: # Any ODE that can be solved with a substitution and # repeated integration e.g.: # `d^2/dx^2(y) + x*d/dx(y) = constant #f'(x) must be finite for this to work r = _nth_order_reducible_match(reduced_eq, func) if r: matching_hints['nth_order_reducible'] = r # nth order linear ODE # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b r = _nth_linear_match(reduced_eq, func, order) # Constant coefficient case (a_i is constant for all i) if r and not any(r[i].has(x) for i in r if i >= 0): # Inhomogeneous case: F(x) is not identically 0 if r[-1]: undetcoeff = _undetermined_coefficients_match(r[-1], x) s = "nth_linear_constant_coeff_variation_of_parameters" matching_hints[s] = r matching_hints[s + "_Integral"] = r if undetcoeff['test']: r['trialset'] = undetcoeff['trialset'] matching_hints[ "nth_linear_constant_coeff_undetermined_coefficients" ] = r # Homogeneous case: F(x) is identically 0 else: matching_hints["nth_linear_constant_coeff_homogeneous"] = r # nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x) #In case of Homogeneous euler equation F(x) = 0 def _test_term(coeff, order): r""" Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x), where K is independent of x and y(x), order>= 0. So we need to check that for each term, coeff == K*x**order from some K. We have a few cases, since coeff may have several different types. """ if order < 0: raise ValueError("order should be greater than 0") if coeff == 0: return True if order == 0: if x in coeff.free_symbols: return False return True if coeff.is_Mul: if coeff.has(f(x)): return False return x**order in coeff.args elif coeff.is_Pow: return coeff.as_base_exp() == (x, order) elif order == 1: return x == coeff return False # Find coefficient for highest derivative, multiply coefficients to # bring the equation into Euler form if possible r_rescaled = None if r is not None: coeff = r[order] factor = x**order / coeff r_rescaled = {i: factor*r[i] for i in r} if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in r_rescaled if i != 'trialset' and i >= 0): if not r_rescaled[-1]: matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled else: matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled e, re = posify(r_rescaled[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: r_rescaled['trialset'] = undetcoeff['trialset'] matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def match_2nd_linear_bessel(r, func): from sympy.polys.polytools import factor # eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x) f = func x = func.args[0] df = f.diff(x) a = Wild('a', exclude=[f,df]) b = Wild('b', exclude=[x, f,df]) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) c4 = Wild('c4', exclude=[x,f,df]) d4 = Wild('d4', exclude=[x,f,df]) a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) # leading coeff of f(x).diff(x, 2) coeff = factor(r[a3]).match(a4*(x-b)**b4) if coeff: # if coeff[b4] = 0 means constant coefficient if coeff[b4] == 0: return None point = coeff[b] else: return None if point: r[a3] = simplify(r[a3].subs(x, x+point)) r[b3] = simplify(r[b3].subs(x, x+point)) r[c3] = simplify(r[c3].subs(x, x+point)) # making a3 in the form of x**2 r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) # checking if b3 is of form c*(x-b) coeff1 = factor(r[b3]).match(a4*(x)) if coeff1 is None: return None # c3 maybe of very complex form so I am simply checking (a - b) form # if yes later I will match with the standerd form of bessel in a and b # a, b are wild variable defined above. _coeff2 = r[c3].match(a - b) if _coeff2 is None: return None # matching with standerd form for c3 coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) if coeff2 is None: return None if _coeff2[b] == 0: coeff2[d4] = 0 else: coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} rn['c4'] = coeff1[a4] rn['b4'] = point return rn def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. The parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(5*x1, 12*x(t) - 6*y(t)), Eq(2*y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + 5*Derivative(x(t), t), -11*x(t) - 3*y(t) + 2*Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 5, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 2}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type1'} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t), t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type4'} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # find all the functions if not given order = dict() if funcs==[None]: funcs = [] for eqs in eq: derivs = eqs.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if len(funcs) != len(eq): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) func_dict = dict() for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: list_func = [] list_func.append(func_dict[eq_no]) list_func.append(func) func_dict[eq_no] = list_func else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values())) == 1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) elif order_eq == 2: type_of_equation = check_linear_2eq_order2(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_linear_3eq_order1(eq, funcs, func_coef) if type_of_equation is None: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if order_eq == 1: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S(0),S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: if not r['d1'].has(t) and not r['d2'].has(t): if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 2 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)+d1) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)+d2) return "type2" else: return None else: if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 1 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)) return "type1" else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if (r['b1'] == r['c2']) and (r['c1'] == r['b2']): # Equation for type 3 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), g(t)*x(t) + f(t)*y(t)) return "type3" elif (r['b1'] == r['c2']) and (r['c1'] == -r['b2']) or (r['b1'] == -r['c2']) and (r['c1'] == r['b2']): # Equation for type 4 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), -g(t)*x(t) + f(t)*y(t)) return "type4" elif (not cancel(r['b2']/r['c1']).has(t) and not cancel((r['c2']-r['b1'])/r['c1']).has(t)) \ or (not cancel(r['b1']/r['c2']).has(t) and not cancel((r['c1']-r['b2'])/r['c2']).has(t)): # Equations for type 5 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), a*g(t)*x(t) + [f(t) + b*g(t)]*y(t) return "type5" elif p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_linear_2eq_order2(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() a = Wild('a', exclude=[1/t]) b = Wild('b', exclude=[1/t**2]) u = Wild('u', exclude=[t, t**2]) v = Wild('v', exclude=[t, t**2]) w = Wild('w', exclude=[t, t**2]) p = Wild('p', exclude=[t, t**2]) r['a1'] = fc[0,x(t),2] ; r['a2'] = fc[1,y(t),2] r['b1'] = fc[0,x(t),1] ; r['b2'] = fc[1,x(t),1] r['c1'] = fc[0,y(t),1] ; r['c2'] = fc[1,y(t),1] r['d1'] = fc[0,x(t),0] ; r['d2'] = fc[1,x(t),0] r['e1'] = fc[0,y(t),0] ; r['e2'] = fc[1,y(t),0] const = [S(0), S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['f1'] = const[0] r['f2'] = const[1] if r['f1']!=0 or r['f2']!=0: if all(not r[k].has(t) for k in 'a1 a2 d1 d2 e1 e2 f1 f2'.split()) \ and r['b1']==r['c1']==r['b2']==r['c2']==0: return "type2" elif all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2 d1 d2 e1 e1'.split()): p = [S(0), S(0)] ; q = [S(0), S(0)] for n, e in enumerate([r['f1'], r['f2']]): if e.has(t): tpart = e.as_independent(t, Mul)[1] for i in Mul.make_args(tpart): if i.has(exp): b, e = i.as_base_exp() co = e.coeff(t) if co and not co.has(t) and co.has(I): p[n] = 1 else: q[n] = 1 else: q[n] = 1 else: q[n] = 1 if p[0]==1 and p[1]==1 and q[0]==0 and q[1]==0: return "type4" else: return None else: return None else: if r['b1']==r['b2']==r['c1']==r['c2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 d1 d2 e1 e2'.split()): return "type1" elif r['b1']==r['e1']==r['c2']==r['d2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 b2 c1 d1 e2'.split()) and r['c1'] == -r['b2'] and \ r['d1'] == r['e2']: return "type3" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ (r['d2']/r['a2']).has(t) and not (r['e1']/r['a1']).has(t) and \ r['b1']==r['d1']==r['c2']==r['e2']==0: return "type5" elif ((r['a1']/r['d1']).expand()).match((p*(u*t**2+v*t+w)**2).expand()) and not \ (cancel(r['a1']*r['d2']/(r['a2']*r['d1']))).has(t) and not (r['d1']/r['e1']).has(t) and not \ (r['d2']/r['e2']).has(t) and r['b1'] == r['b2'] == r['c1'] == r['c2'] == 0: return "type10" elif not cancel(r['d1']/r['e1']).has(t) and not cancel(r['d2']/r['e2']).has(t) and not \ cancel(r['d1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['b1']==r['b2']==r['c1']==r['c2']==0: return "type6" elif not cancel(r['b1']/r['c1']).has(t) and not cancel(r['b2']/r['c2']).has(t) and not \ cancel(r['b1']*r['a2']/(r['b2']*r['a1'])).has(t) and r['d1']==r['d2']==r['e1']==r['e2']==0: return "type7" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ cancel(r['e1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['e1'].has(t) \ and r['b1']==r['d1']==r['c2']==r['e2']==0: return "type8" elif (r['b1']/r['a1']).match(a/t) and (r['b2']/r['a2']).match(a/t) and not \ (r['b1']/r['c1']).has(t) and not (r['b2']/r['c2']).has(t) and \ (r['d1']/r['a1']).match(b/t**2) and (r['d2']/r['a2']).match(b/t**2) \ and not (r['d1']/r['e1']).has(t) and not (r['d2']/r['e2']).has(t): return "type9" elif -r['b1']/r['d1']==-r['c1']/r['e1']==-r['b2']/r['d2']==-r['c2']/r['e2']==t: return "type11" else: return None def check_linear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() r['a1'] = fc[0,x(t),1]; r['a2'] = fc[1,y(t),1]; r['a3'] = fc[2,z(t),1] r['b1'] = fc[0,x(t),0]; r['b2'] = fc[1,x(t),0]; r['b3'] = fc[2,x(t),0] r['c1'] = fc[0,y(t),0]; r['c2'] = fc[1,y(t),0]; r['c3'] = fc[2,y(t),0] r['d1'] = fc[0,z(t),0]; r['d2'] = fc[1,z(t),0]; r['d3'] = fc[2,z(t),0] forcing = [S(0), S(0), S(0)] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): forcing[i] += j if forcing[0].has(t) or forcing[1].has(t) or forcing[2].has(t): # We can handle homogeneous case and simple constant forcings. # Issue #9244: nonhomogeneous linear systems are not supported return None if all(not r[k].has(t) for k in 'a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3'.split()): if r['c1']==r['d1']==r['d2']==0: return 'type1' elif r['c1'] == -r['b2'] and r['d1'] == -r['b3'] and r['d2'] == -r['c3'] \ and r['b1'] == r['c2'] == r['d3'] == 0: return 'type2' elif r['b1'] == r['c2'] == r['d3'] == 0 and r['c1']/r['a1'] == -r['d1']/r['a1'] \ and r['d2']/r['a2'] == -r['b2']/r['a2'] and r['b3']/r['a3'] == -r['c3']/r['a3']: return 'type3' else: return None else: for k1 in 'c1 d1 b2 d2 b3 c3'.split(): if r[k1] == 0: continue else: if all(not cancel(r[k1]/r[k]).has(t) for k in 'd1 b2 d2 b3 c3'.split() if r[k]!=0) \ and all(not cancel(r[k1]/(r['b1'] - r[k])).has(t) for k in 'b1 c2 d3'.split() if r['b1']!=r[k]): return 'type4' else: break return None def check_linear_neq_order1(eq, func, func_coef): fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] n = len(eq) for i in range(n): for j in range(n): if (fc[i, func[j], 0]/fc[i, func[i], 1]).has(t): return None if len(eq) == 3: return 'type6' return 'type1' def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) # phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None def checksysodesol(eqs, sols, func=None): r""" Substitutes corresponding ``sols`` for each functions into each ``eqs`` and checks that the result of substitutions for each equation is ``0``. The equations and solutions passed can be any iterable. This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`. For each function, ``sols`` can have a single solution or a list of solutions. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. When a sequence of equations is passed, the same sequence is used to return the result for each equation with each function substituted with corresponding solutions. It tries the following method to find zero equivalence for each equation: Substitute the solutions for functions, like `x(t)` and `y(t)` into the original equations containing those functions. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results for each equation is ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. Each element of the ``list`` should always be ``0`` corresponding to each equation if the first item is ``True``. Note that sometimes this function may return ``False``, but with an expression that is identically equal to ``0``, instead of returning ``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot reduce the expression to ``0``. If an expression returned by each function vanishes identically, then ``sols`` really is a solution to ``eqs``. If this function seems to hang, it is probably because of a difficult simplification. Examples ======== >>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function >>> from sympy.solvers.ode import checksysodesol >>> C1, C2 = symbols('C1:3') >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12)) >>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3), ... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)] >>> checksysodesol(eq, sol) (True, [0, 0]) >>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3)) >>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2), ... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)] >>> checksysodesol(eq, sol) (True, [0, 0]) """ def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eqs = _sympify(eqs) for i in range(len(eqs)): if isinstance(eqs[i], Equality): eqs[i] = eqs[i].lhs - eqs[i].rhs if func is None: funcs = [] for eq in eqs: derivs = eq.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\ and len({func.args for func in funcs})!=1: raise ValueError("func must be a function of one variable, not %s" % func) for sol in sols: if len(sol.atoms(AppliedUndef)) != 1: raise ValueError("solutions should have one function only") if len(funcs) != len({sol.lhs for sol in sols}): raise ValueError("number of solutions provided does not match the number of equations") dictsol = dict() for sol in sols: func = list(sol.atoms(AppliedUndef))[0] if sol.rhs == func: sol = sol.reversed solved = sol.lhs == func and not sol.rhs.has(func) if not solved: rhs = solve(sol, func) if not rhs: raise NotImplementedError else: rhs = sol.rhs dictsol[func] = rhs checkeq = [] for eq in eqs: for func in funcs: eq = sub_func_doit(eq, func, dictsol[func]) ss = simplify(eq) if ss != 0: eq = ss.expand(force=True) else: eq = 0 checkeq.append(eq) if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0: return (True, checkeq) else: return (False, checkeq) @vectorize(0) def odesimp(ode, eq, func, hint): r""" Simplifies solutions of ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode import odesimp >>> x , u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u2 + -------| | | /1 \| | | sin|--|| | \ \u2// log(f(x)) = log(C1) + | ---------------- d(u2) | 2 | u2 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) constants = eq.free_symbols - ode.free_symbols # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] # special simplification of the rhs if hint.startswith("nth_linear_constant_coeff"): # Collect terms to make the solution look nice. # This is also necessary for constantsimp to remove unnecessary # terms from the particular solution from variation of parameters # # Collect is not behaving reliably here. The results for # some linear constant-coefficient equations with repeated # roots do not properly simplify all constants sometimes. # 'collectterms' gives different orders sometimes, and results # differ in collect based on that order. The # sort-reverse trick fixes things, but may fail in the # future. In addition, collect is splitting exponentials with # rational powers for no reason. We have to do a match # to fix this using Wilds. global collectterms try: collectterms.sort(key=default_sort_key) collectterms.reverse() except Exception: pass assert len(eq) == 1 and eq[0].lhs == f(x) sol = eq[0].rhs sol = expand_mul(sol) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x)) sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x)) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)) del collectterms # Collect is splitting exponentials with rational powers for # no reason. We call powsimp to fix. sol = powsimp(sol) eq[0] = Eq(f(x), sol) else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], ode.free_symbols) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True): r""" Substitutes ``sol`` into ``ode`` and checks that the result is ``0``. This only works when ``func`` is one function, like `f(x)`. ``sol`` can be a single solution or a list of solutions. Each solution may be an :py:class:`~sympy.core.relational.Equality` that the solution satisfies, e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an :py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. It tries the following methods, in order, until it finds zero equivalence: 1. Substitute the solution for `f` in the original equation. This only works if ``ode`` is solved for `f`. It will attempt to solve it first unless ``solve_for_func == False``. 2. Take `n` derivatives of the solution, where `n` is the order of ``ode``, and check to see if that is equal to the solution. This only works on exact ODEs. 3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time solving for the derivative of `f` of that order (this will always be possible because `f` is a linear operator). Then back substitute each derivative into ``ode`` in reverse order. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results in ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. It should always be ``0`` if the first item is ``True``. Sometimes this function will return ``False`` even when an expression is identically equal to ``0``. This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not reduce the expression to ``0``. If an expression returned by this function vanishes identically, then ``sol`` really is a solution to the ``ode``. If this function seems to hang, it is probably because of a hard simplification. To use this function to test, test the first item of the tuple. Examples ======== >>> from sympy import Eq, Function, checkodesol, symbols >>> x, C1 = symbols('x,C1') >>> f = Function('f') >>> checkodesol(f(x).diff(x), Eq(f(x), C1)) (True, 0) >>> assert checkodesol(f(x).diff(x), C1)[0] >>> assert not checkodesol(f(x).diff(x), x)[0] >>> checkodesol(f(x).diff(x, 2), x**2) (False, 2) """ if not isinstance(ode, Equality): ode = Eq(ode, 0) if func is None: try: _, func = _preprocess(ode.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(*funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkodesol for this case.') func = funcs.pop() if not isinstance(func, AppliedUndef) or len(func.args) != 1: raise ValueError( "func must be a function of one variable, not %s" % func) if is_sequence(sol, set): return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol]) if not isinstance(sol, Equality): sol = Eq(func, sol) elif sol.rhs == func: sol = sol.reversed if order == 'auto': order = ode_order(ode, func) solved = sol.lhs == func and not sol.rhs.has(func) if solve_for_func and not solved: rhs = solve(sol, func) if rhs: eqs = [Eq(func, t) for t in rhs] if len(rhs) == 1: eqs = eqs[0] return checkodesol(ode, eqs, order=order, solve_for_func=False) s = True testnum = 0 x = func.args[0] while s: if testnum == 0: # First pass, try substituting a solved solution directly into the # ODE. This has the highest chance of succeeding. ode_diff = ode.lhs - ode.rhs if sol.lhs == func: s = sub_func_doit(ode_diff, func, sol.rhs) s = besselsimp(s) else: testnum += 1 continue ss = simplify(s) if ss: # with the new numer_denom in power.py, if we do a simple # expansion then testnum == 0 verifies all solutions. s = ss.expand(force=True) else: s = 0 testnum += 1 elif testnum == 1: # Second pass. If we cannot substitute f, try seeing if the nth # derivative is equal, this will only work for odes that are exact, # by definition. s = simplify( trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) - trigsimp(ode.lhs) + trigsimp(ode.rhs)) # s2 = simplify( # diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \ # ode.lhs + ode.rhs) testnum += 1 elif testnum == 2: # Third pass. Try solving for df/dx and substituting that into the # ODE. Thanks to Chris Smith for suggesting this method. Many of # the comments below are his, too. # The method: # - Take each of 1..n derivatives of the solution. # - Solve each nth derivative for d^(n)f/dx^(n) # (the differential of that order) # - Back substitute into the ODE in decreasing order # (i.e., n, n-1, ...) # - Check the result for zero equivalence if sol.lhs == func and not sol.rhs.has(func): diffsols = {0: sol.rhs} elif sol.rhs == func and not sol.lhs.has(func): diffsols = {0: sol.lhs} else: diffsols = {} sol = sol.lhs - sol.rhs for i in range(1, order + 1): # Differentiation is a linear operator, so there should always # be 1 solution. Nonetheless, we test just to make sure. # We only need to solve once. After that, we automatically # have the solution to the differential in the order we want. if i == 1: ds = sol.diff(x) try: sdf = solve(ds, func.diff(x, i)) if not sdf: raise NotImplementedError except NotImplementedError: testnum += 1 break else: diffsols[i] = sdf[0] else: # This is what the solution says df/dx should be. diffsols[i] = diffsols[i - 1].diff(x) # Make sure the above didn't fail. if testnum > 2: continue else: # Substitute it into ODE to check for self consistency. lhs, rhs = ode.lhs, ode.rhs for i in range(order, -1, -1): if i == 0 and 0 not in diffsols: # We can only substitute f(x) if the solution was # solved for f(x). break lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i]) rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i]) ode_or_bool = Eq(lhs, rhs) ode_or_bool = simplify(ode_or_bool) if isinstance(ode_or_bool, (bool, BooleanAtom)): if ode_or_bool: lhs = rhs = S.Zero else: lhs = ode_or_bool.lhs rhs = ode_or_bool.rhs # No sense in overworking simplify -- just prove that the # numerator goes to zero num = trigsimp((lhs - rhs).as_numer_denom()[0]) # since solutions are obtained using force=True we test # using the same level of assumptions ## replace function with dummy so assumptions will work _func = Dummy('func') num = num.subs(func, _func) ## posify the expression num, reps = posify(num) s = simplify(num).xreplace(reps).xreplace({_func: func}) testnum += 1 else: break if not s: return (True, s) elif s is True: # The code above never was able to change s raise NotImplementedError("Unable to test if " + str(sol) + " is a solution to " + str(ode) + ".") else: return (False, s) def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :py:class:`~sympy.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, cos, sqrt, Integral >>> from sympy.solvers.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if expr_syms and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all([expr.count(c) == xe.count(c) for c in xes]): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except Exception: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, variables=None, newconstants=None): r""" Renumber arbitrary constants in ``expr`` to use the symbol names as given in ``newconstants``. In the process, this reorders expression terms in a standard way. If ``newconstants`` is not provided then the new constant names will be ``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable giving the new symbols to use for the constants in order. The ``variables`` argument is a list of non-constant symbols. All other free symbols found in ``expr`` are assumed to be constants and will be renumbered. If ``variables`` is not given then any numbered symbol beginning with ``C`` (e.g. ``C1``) is assumed to be a constant. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols, Eq, pprint >>> from sympy.solvers.ode import constant_renumber >>> x, C1, C2, C3 = symbols('x,C1:4') >>> expr = C3 + C2*x + C1*x**2 >>> expr C1*x**2 + C2*x + C3 >>> constant_renumber(expr) C1 + C2*x + C3*x**2 The ``variables`` argument specifies which are constants so that the other symbols will not be renumbered: >>> constant_renumber(expr, [C1, x]) C1*x**2 + C2 + C3*x The ``newconstants`` argument is used to specify what symbols to use when replacing the constants: >>> constant_renumber(expr, [x], newconstants=symbols('E1:4')) E1 + E2*x + E3*x**2 """ if type(expr) in (set, list, tuple): renumbered = [constant_renumber(e, variables, newconstants) for e in expr] return type(expr)(renumbered) # Symbols in solution but not ODE are constants if variables is not None: variables = set(variables) constantsymbols = list(expr.free_symbols - variables) # Any Cn is a constant... else: variables = set() isconstant = lambda s: s.startswith('C') and s[1:].isdigit() constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)] # Find new constants checking that they aren't already in the ODE if newconstants is None: iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables) else: iter_constants = (sym for sym in newconstants if sym not in variables) global newstartnumber newstartnumber = 1 endnumber = len(constantsymbols) constants_found = [None]*(endnumber + 2) # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function so that newstartnumber maintains its values throughout recursive calls. """ # FIXME: Use nonlocal here when support for Py2 is dropped: global newstartnumber if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found[newstartnumber] = expr newstartnumber += 1 return expr elif expr.is_Function or expr.is_Pow or isinstance(expr, Tuple): return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Don't renumber symbols present in the ODE. constants_found = [c for c in constants_found if c not in variables] # Renumbering happens here expr = expr.subs(zip(constants_found[1:], iter_constants), simultaneous=True) return expr def _handle_Integral(expr, func, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ global y x = func.args[0] f = func.func if hint == "1st_exact": sol = (expr.doit()).subs(y, f(x)) del y elif hint == "1st_exact_Integral": sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs) del y elif hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol def _ode_factorable_match(eq, func, x0): from sympy.polys.polytools import factor eqs = factor(eq) eqs = fraction(eqs)[0] # p/q =0, So we need to solve only p=0 eqns = [] r = None if isinstance(eqs, Pow): # if f(x)**p=0 then f(x)=0 (p>0) if (expr.exp).is_positive: eq = expr.base if isinstance(eq, Pow): return None else: r = _ode_factorable_match(eq, func, x0) if r is None: r = {'eqns' : [eq], 'x0': x0} return r if isinstance(eqs, Mul): fac = eqs.args for i in fac: if i.has(func): eqns.append(i) if len(eqns)>0: r = {'eqns' : eqns, 'x0' : x0} return r # FIXME: replace the general solution in the docstring with # dsolve(equation, hint='1st_exact_Integral'). You will need to be able # to have assumptions on P and Q that dP/dy = dQ/dx. def ode_1st_exact(eq, func, order, match): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ x = func.args[0] r = match # d+e*diff(f(x),x) e = r[r['e']] d = r[r['d']] global y # This is the only way to pass dummy y to _handle_Integral y = r['y'] C1 = get_numbered_constants(eq, num=1) # Refer Joel Moses, "Symbolic Integration - The Stormy Decade", # Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 # which gives the method to solve an exact differential equation. sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y) return Eq(sol, C1) def ode_1st_homogeneous_coeff_best(eq, func, order, match): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode_sol_simplicity`. See the :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ # There are two substitutions that solve the equation, u1=y/x and u2=x/y # They produce different integrals, so try them both and see which # one is easier. sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match) sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match) simplify = match.get('simplify', True) if simplify: # why is odesimp called here? Should it be at the usual spot? sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep") sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u1 = Dummy('u1') # u1 == f(x)/x r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) yarg = match.get('yarg', 0) int = Integral( (-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}), (u1, None, f(x)/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u2) | ---------------- d(u2) | u2*g(u2) + h(u2) | / <BLANKLINE> f(x) = C1*e Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u2 = Dummy('u2') # u2 == x/f(x) r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) # If xarg present take xarg, else zero yarg = match.get('yarg', 0) # If yarg present take yarg, else zero int = Integral( simplify( (-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})), (u2, None, x/f(x))) sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :py:meth:`~solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and :py:meth:`~solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_1st_linear(eq, func, order, match): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c C1 = get_numbered_constants(eq, num=1) t = exp(Integral(r[r['b']]/r[r['a']], x)) tt = Integral(t*(-r[r['c']]/r[r['a']]), x) f = match.get('u', f(x)) # take almost-linear u if present, else f(x) return Eq(f, (tt + C1)/t) def ode_Bernoulli(eq, func, order, match): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :py:meth:`~sympy.solvers.ode.ode_1st_linear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=100) 1 ----- 1 - n // / \ \ || | | | || | / | / | || | | | | | || | (1 - n)* | P(x) dx | -(1 - n)* | P(x) dx| || | | | | | || | / | / | f(x) = ||C1 + (n - 1)* | -Q(x)*e dx|*e | || | | | \\ / / / Note that the equation is separable when `n = 1` (see the docstring of :py:meth:`~sympy.solvers.ode.ode_separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ------------------- / log(x) 1\ x*|C1 + ------ + -| \ x x/ References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c*f(x)**n, n != 1 C1 = get_numbered_constants(eq, num=1) t = exp((1 - r[r['n']])*Integral(r[r['b']]/r[r['a']], x)) tt = (r[r['n']] - 1)*Integral(t*r[r['c']]/r[r['a']], x) return Eq(f(x), ((tt + C1)/t)**(1/(1 - r[r['n']]))) def ode_Riccati_special_minus2(eq, func, order, match): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, y, a, b, c, d >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y) >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== 1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati 2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ x = func.args[0] f = func.func r = match # a2*diff(f(x),x) + b2*f(x) + c2*f(x)/x + d2/x**2 a2, b2, c2, d2 = [r[r[s]] for s in 'a2 b2 c2 d2'.split()] C1 = get_numbered_constants(eq, num=1) mu = sqrt(4*d2*b2 - (a2 - c2)**2) return Eq(f(x), (a2 - c2 - mu*tan(mu/(2*a2)*log(x) + C1))/(2*b2*x)) def ode_Liouville(eq, func, order, match): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ # Liouville ODE: # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98, as well as # http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville x = func.args[0] f = func.func r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x) y = r['y'] C1, C2 = get_numbered_constants(eq, num=2) int = Integral(exp(Integral(r['g'], y)), (y, None, f(x))) sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0) return sol def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2\ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S(0) # Stripping of terms so that the sum starts with the same number. teq = S(0) suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_linear_airy(eq, func, order, match): r""" Gives solution of the Airy differential equation .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 in terms of Airy special functions airyai and airybi. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) - x*f(x) >>> dsolve(eq) Eq(f(x), C1*airyai(x) + C2*airybi(x)) """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) b = match['b'] m = match['m'] if m.is_positive: arg = - b/cbrt(m)**2 - cbrt(m)*x elif m.is_negative: arg = - b/cbrt(-m)**2 + cbrt(-m)*x else: arg = - b/cbrt(-m)**2 + cbrt(-m)*x return Eq(f(x), C0*airyai(arg) + C1*airybi(arg)) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_regular')) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) m = Dummy("m") # for solving the indicial equation x0 = match.get('x0') terms = match.get('terms', 5) p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, n=1, x0=x0) if isinstance(term, Order): indicial.append(S(0)) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( [sol.is_real for sol in sollist]): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S(0) if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def ode_2nd_linear_bessel(eq, func, order, match): r""" Gives solution of the Bessel differential equation .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)) as both the solutions are linearly independent else if n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)). Examples ======== >>> from sympy.abc import x, y, a >>> from sympy import Symbol >>> v = Symbol('v', positive=True) >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y >>> dsolve(genform) Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) References ========== https://www.math24.net/bessel-differential-equation/ """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = match['n'] a4 = match['a4'] c4 = match['c4'] d4 = match['d4'] b4 = match['b4'] n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4) + C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S(0) serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S(0) else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _nth_order_reducible_match(eq, func): r""" Matches any differential equation that can be rewritten with a smaller order. Only derivatives of ``func`` alone, wrt a single variable, are considered, and only in them should ``func`` appear. """ # ODE only handles functions of 1 variable so this affirms that state assert len(func.args) == 1 x = func.args[0] vc = [d.variable_count[0] for d in eq.atoms(Derivative) if d.expr == func and len(d.variable_count) == 1] ords = [c for v, c in vc if v == x] if len(ords) < 2: return smallest = min(ords) # make sure func does not appear outside of derivatives D = Dummy() if eq.subs(func.diff(x, smallest), D).has(func): return return {'n': smallest} def ode_nth_order_reducible(eq, func, order, match): r""" Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form `f^n(x) = g(x)`. For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If that gives an explicit solution for `g` then `f` is found simply by integration. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) >>> dsolve(eq, f(x), hint='nth_order_reducible') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) """ x = func.args[0] f = func.func n = match['n'] # get a unique function name for g names = [a.name for a in eq.atoms(AppliedUndef)] while True: name = Dummy().name if name not in names: g = Function(name) break w = f(x).diff(x, n) geq = eq.subs(w, g(x)) gsol = dsolve(geq, g(x)) if not isinstance(gsol, list): gsol = [gsol] # Might be multiple solutions to the reduced ODE: fsol = [] for gsoli in gsol: fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times fsol.append(fsoli) if len(fsol) == 1: fsol = fsol[0] return fsol # This needs to produce an invertible function but the inverse depends # which variable we are integrating with respect to. Since the class can # be stored in cached results we need to ensure that we always get the # same class back for each particular integration variable so we store these # classes in a global dict: _nth_algebraic_diffx_stored = {} def _nth_algebraic_diffx(var): cls = _nth_algebraic_diffx_stored.get(var, None) if cls is None: # A class that behaves like Derivative wrt var but is "invertible". class diffx(Function): def inverse(self): # don't use integrate here because fx has been replaced by _t # in the equation; integrals will not be correct while solve # is at work. return lambda expr: Integral(expr, var) + Dummy('C') cls = _nth_algebraic_diffx_stored.setdefault(var, diffx) return cls def _nth_algebraic_match(eq, func): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ # The independent variable var = func.args[0] # Derivative that solve can handle: diffx = _nth_algebraic_diffx(var) # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) subs_eqn = replace(eq, var) try: # turn off simplification to protect Integrals that have # _t instead of fx in them and would otherwise factor # as t_*Integral(1, x) solns = solve(subs_eqn, func, simplify=False) except NotImplementedError: solns = [] solns = [simplify(unreplace(soln, var)) for soln in solns] solns = [Equality(func, soln) for soln in solns] return {'var':var, 'solutions':solns} def ode_nth_algebraic(eq, func, order, match): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') ... # doctest: +NORMALIZE_WHITESPACE [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). # indirect doctest """ return match['solutions'] def _remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions. This function is needed because otherwise dsolve can return redundant solutions. As an example consider: eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0) There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0 leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the second solution is a special case of the first and we don't want to return it. This does not always happen. If we have eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0) then we get the algebraic solution f(x) = [-2, 2] and the integral solution f(x) = x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by dsolve may be given explicitly or implicitly. # We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs) # of the two solutions. # # Since this is supposed to hold for all x it also holds for derivatives. # For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in sol2. If we can find a solution that doesn't depend on x then it # means that some value of the constants in sol1 is a special case of # sol2 corresponding to a particular choice of the integration constants. # In case the solution is in implicit form we subtract the sides soln1 = soln1.rhs - soln1.lhs soln2 = soln2.rhs - soln2.lhs # Work for the series solution if soln1.has(Order) and soln2.has(Order): if soln1.getO() == soln2.getO(): soln1 = soln1.removeO() soln2 = soln2.removeO() else: return False elif soln1.has(Order) or soln2.has(Order): return False constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(soln1 - soln2, len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for sol1 = sol2, sol1'=sol2', ... lhs = soln1 rhs = soln2 eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] try: constant_solns = solve(eqns, constants2) except NotImplementedError: return False # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # after solving the issue 17418, maybe we don't need the following checksol code. for constant_soln in constant_solns: for eq in eqns: eq=eq.rhs-eq.lhs if checksol(eq, constant_soln) is not True: return False # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True return False def _nth_linear_match(eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode import _nth_linear_match >>> f = Function('f') >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(x), f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(f(x)), f(x), 3) == None True """ x = func.args[0] one_x = {x} terms = {i: S.Zero for i in range(-1, order + 1)} for i in Add.make_args(eq): if not i.has(func): terms[-1] += i else: c, f = i.as_independent(func) if (isinstance(f, Derivative) and set(f.variables) == one_x and f.args[0] == func): terms[f.derivative_count] += c elif f == func: terms[len(f.args[1:])] += c else: return None return terms def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.CRootOf` instance will be returned instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ global collectterms collectterms = [] x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, string_types) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S(0) # We need keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i*(x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * (x**reroot) * ( constants.pop() * sin(abs(imroot)*ln(x)) + constants.pop() * cos(imroot*ln(x))) # Preserve ordering (multiplicity, real part, imaginary part) # It will be assumed implicitly when constructing # fundamental solution sets. collectterms = [(i, reroot, imroot)] + collectterms if returns == 'sol': return Eq(f(x), gsol) elif returns in ('list' 'both'): # HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through) # Create a list of (hopefully) linearly independent solutions gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i*x**reroot) else: sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x)) if sin_form in gensols: cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) if returns == 'list': return gensols else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ x = func.args[0] f = func.func r = match chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, string_types) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1,degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(r[-1].subs(x, exp(x))) eq += e.subs(re) match = _nth_linear_match(eq, f(x), ode_order(eq, f(x))) match['trialset'] = r['trialset'] return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand() def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ x = func.args[0] f = func.func r = match gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both') match.update(gensol) r[-1] = r[-1]/r[ode_order(eq, f(x))] sol = _solve_variation_of_parameters(eq, func, order, match) return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))]) def ode_almost_linear(eq, func, order, match): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: f(x) g(y) y + k(x) l(y) + m(x) = 0 \text{where} l'(y) = g(y)\text{.} This can be solved by substituting `l(y) = u(y)`. Making the given substitution reduces it to a linear differential equation of the form `u' + P(x) u + Q(x) = 0`. The general solution is >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, y, n >>> f, g, k, l = map(Function, ['f', 'g', 'k', 'l']) >>> genform = Eq(f(x)*(l(y).diff(y)) + k(x)*l(y) + g(x), 0) >>> pprint(genform) d f(x)*--(l(y)) + g(x) + k(x)*l(y) = 0 dy >>> pprint(dsolve(genform, hint = 'almost_linear')) / // y*k(x) \\ | || ------ || | || f(x) || -y*k(x) | ||-g(x)*e || -------- | ||-------------- for k(x) != 0|| f(x) l(y) = |C1 + |< k(x) ||*e | || || | || -y*g(x) || | || -------- otherwise || | || f(x) || \ \\ // See Also ======== :meth:`sympy.solvers.ode.ode_1st_linear` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Since ode_1st_linear has already been implemented, and the # coefficients have been modified to the required form in # classify_ode, just passing eq, func, order and match to # ode_1st_linear will give the required output. return ode_1st_linear(eq, func, order, match) def _linear_coeff_match(expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function >>> from sympy.abc import x >>> from sympy.solvers.ode import _linear_coeff_match >>> from sympy.functions.elementary.trigonometric import sin >>> f = Function('f') >>> _linear_coeff_match(( ... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x)) (1/9, 22/9) >>> _linear_coeff_match( ... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x)) (19/27, 2/27) >>> _linear_coeff_match(sin(f(x)/x), f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def ode_linear_coefficients(eq, func, order, match): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_best` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ return ode_1st_homogeneous_coeff_best(eq, func, order, match) def ode_separable_reduced(eq, func, order, match): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :meth:`sympy.solvers.ode.ode_separable` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 [f(x) = ------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Arguments are passed in a way so that they are coherent with the # ode_separable function x = func.args[0] f = func.func y = Dummy('y') u = match['u'].subs(match['t'], y) ycoeff = 1/(y*(match['power'] - u)) m1 = {y: 1, x: -1/x, 'coeff': 1} m2 = {y: ycoeff, x: 1, 'coeff': 1} r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)} return ode_separable(eq, func, order, r) def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, Derivative, pprint, exp >>> from sympy.solvers.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match.get('f0') value = match.get('f0val') terms = match.get('terms') # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(NaN) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.CRootOf` instance will be return instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i]*symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()]) # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. global collectterms collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i*exp(reroot*x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x)) gensols.append(x**i*exp(reroot*x) * cos( imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms if returns == 'list': return gensols elif returns in ('sol' 'both'): gsol = Add(*[i*j for (i, j) in zip(constants, gensols)]) if returns == 'sol': return Eq(f(x), gsol) else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / 4\ | x | -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + C2*x + --|*e - ---------- + ---------- \ 3 / 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_undetermined_coefficients(eq, func, order, match) def _solve_undetermined_coefficients(eq, func, order, match): r""" Helper function for the method of undetermined coefficients. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_undetermined_coefficients` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. ``trialset`` The set of trial functions as returned by ``_undetermined_coefficients_match()['trialset']``. """ x = func.args[0] f = func.func r = match coeffs = numbered_symbols('a', cls=Dummy) coefflist = [] gensols = r['list'] gsol = r['sol'] trialset = r['trialset'] notneedset = set([]) global collectterms if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply" + " undetermined coefficients to " + str(eq) + " (number of terms != order)") usedsin = set([]) mult = 0 # The multiplicity of the root getmult = True for i, reroot, imroot in collectterms: if getmult: mult = i + 1 getmult = False if i == 0: getmult = True if imroot: # Alternate between sin and cos if (i, reroot) in usedsin: check = x**i*exp(reroot*x)*cos(imroot*x) else: check = x**i*exp(reroot*x)*sin(abs(imroot)*x) usedsin.add((i, reroot)) else: check = x**i*exp(reroot*x) if check in trialset: # If an element of the trial function is already part of the # homogeneous solution, we need to multiply by sufficient x to # make it linearly independent. We also don't need to bother # checking for the coefficients on those elements, since we # already know it will be 0. while True: if check*x**mult in trialset: mult += 1 else: break trialset.add(check*x**mult) notneedset.add(check) newtrialset = trialset - notneedset trialfunc = 0 for i in newtrialset: c = next(coeffs) coefflist.append(c) trialfunc += c*i eqs = sub_func_doit(eq, f(x), trialfunc) coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1)))) eqs = _mexpand(eqs) for i in Add.make_args(eqs): s = separatevars(i, dict=True, symbols=[x]) coeffsdict[s[x]] += s['coeff'] coeffvals = solve(list(coeffsdict.values()), coefflist) if not coeffvals: raise NotImplementedError( "Could not solve `%s` using the " "method of undetermined coefficients " "(unable to solve for coefficients)." % eq) psol = trialfunc.subs(coeffvals) return Eq(f(x), gsol.rhs + psol) def _undetermined_coefficients_match(expr, x): r""" Returns a trial function match if undetermined coefficients can be applied to ``expr``, and ``None`` otherwise. A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in `x` (the independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and `e^{a x}` terms (in other words, it has a finite number of linearly independent derivatives). Note that you may still need to multiply each term returned here by sufficient `x` to make it linearly independent with the solutions to the homogeneous equation. This is intended for internal use by ``undetermined_coefficients`` hints. SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So, for example, you will need to manually convert `\sin^2(x)` into `[1 + \cos(2 x)]/2` to properly apply the method of undetermined coefficients on it. Examples ======== >>> from sympy import log, exp >>> from sympy.solvers.ode import _undetermined_coefficients_match >>> from sympy.abc import x >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) {'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}} >>> _undetermined_coefficients_match(log(x), x) {'test': False} """ a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1) retdict = {} def _test_term(expr, x): r""" Test if ``expr`` fits the proper form for undetermined coefficients. """ if not expr.has(x): return True elif expr.is_Add: return all(_test_term(i, x) for i in expr.args) elif expr.is_Mul: if expr.has(sin, cos): foundtrig = False # Make sure that there is only one trig function in the args. # See the docstring. for i in expr.args: if i.has(sin, cos): if foundtrig: return False else: foundtrig = True return all(_test_term(i, x) for i in expr.args) elif expr.is_Function: if expr.func in (sin, cos, exp): if expr.args[0].match(a*x + b): return True else: return False else: return False elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \ expr.exp >= 0: return True elif expr.is_Pow and expr.base.is_number: if expr.exp.match(a*x + b): return True else: return False elif expr.is_Symbol or expr.is_number: return True else: return False def _get_trial_set(expr, x, exprs=set([])): r""" Returns a set of trial terms for undetermined coefficients. The idea behind undetermined coefficients is that the terms expression repeat themselves after a finite number of derivatives, except for the coefficients (they are linearly dependent). So if we collect these, we should have the terms of our trial function. """ def _remove_coefficient(expr, x): r""" Returns the expression without a coefficient. Similar to expr.as_independent(x)[1], except it only works multiplicatively. """ term = S.One if expr.is_Mul: for i in expr.args: if i.has(x): term *= i elif expr.has(x): term = expr return term expr = expand_mul(expr) if expr.is_Add: for term in expr.args: if _remove_coefficient(term, x) in exprs: pass else: exprs.add(_remove_coefficient(term, x)) exprs = exprs.union(_get_trial_set(term, x, exprs)) else: term = _remove_coefficient(expr, x) tmpset = exprs.union({term}) oldset = set([]) while tmpset != oldset: # If you get stuck in this loop, then _test_term is probably # broken oldset = tmpset.copy() expr = expr.diff(x) term = _remove_coefficient(expr, x) if term.is_Add: tmpset = tmpset.union(_get_trial_set(term, x, tmpset)) else: tmpset.add(term) exprs = tmpset return exprs retdict['test'] = _test_term(expr, x) if retdict['test']: # Try to generate a list of trial solutions that will have the # undetermined coefficients. Note that if any of these are not linearly # independent with any of the solutions to the homogeneous equation, # then they will need to be multiplied by sufficient x to make them so. # This function DOES NOT do that (it doesn't even look at the # homogeneous equation). retdict['trialset'] = _get_trial_set(expr, x) return retdict def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / 3 \ | 2 x *(6*log(x) - 11)| x f(x) = |C1 + C2*x + C3*x + ------------------|*e \ 36 / References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_variation_of_parameters(eq, func, order, match) def _solve_variation_of_parameters(eq, func, order, match): r""" Helper function for the method of variation of parameters and nonhomogeneous euler eq. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_variation_of_parameters` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. """ x = func.args[0] f = func.func r = match psol = 0 gensols = r['list'] gsol = r['sol'] wr = wronskian(gensols, x) if r.get('simplify', True): wr = simplify(wr) # We need much better simplification for # some ODEs. See issue 4662, for example. # To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1 wr = trigsimp(wr, deep=True, recursive=True) if not wr: # The wronskian will be 0 iff the solutions are not linearly # independent. raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (Wronskian == 0)") if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (number of terms != order)") negoneterm = (-1)**(order) for i in gensols: psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order] negoneterm *= -1 if r.get('simplify', True): psol = simplify(psol) psol = trigsimp(psol, deep=True) return Eq(f(x), gsol.rhs + psol) def ode_factorable(eq, func, order, match): r""" Solves equations having a solvable factor. This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the list of solutions. Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) >>> pprint(dsolve(eq, f(x))) -x [f(x) = 2, f(x) = -2, f(x) = C1*e ] """ eqns = match['eqns'] x0 = match['x0'] sols = [] for eq in eqns: try: sol = dsolve(eq, func, x0=x0) except NotImplementedError: continue else: if isinstance(sol, list): sols.extend(sol) else: sols.append(sol) if sols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the factorable group method") return sols def ode_separable(eq, func, order, match): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) r = match # {'m1':m1, 'm2':m2, 'y':y} u = r.get('hint', f(x)) # get u from separable_reduced else get f(x) return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']], (r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/ r['m2'][x], x) + C1) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf): xi = Function("xi") eta = Function("eta") f = func.func x = func.args[0] y = match['y'] h = match['h'] tempsol = [] if not inf: try: inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match) except ValueError: return None for infsim in inf: xiinf = (infsim[xi(x, func)]).subs(func, y) etainf = (infsim[eta(x, func)]).subs(func, y) # This condition creates recursion while using pdsolve. # Since the first step while solving a PDE of form # a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0 # is to solve the ODE dy/dx = b/a if simplify(etainf/xiinf) == h: continue rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf r = pdsolve(rpde, func=f(x, y)).rhs s = pdsolve(rpde - 1, func=f(x, y)).rhs newcoord = [_lie_group_remove(coord) for coord in [r, s]] r = Dummy("r") s = Dummy("s") C1 = Symbol("C1") rcoord = newcoord[0] scoord = newcoord[-1] try: sol = solve([r - rcoord, s - scoord], x, y, dict=True) if sol == []: continue except NotImplementedError: continue else: sol = sol[0] xsub = sol[x] ysub = sol[y] num = simplify(scoord.diff(x) + scoord.diff(y)*h) denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h) if num and denom: diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)])) sep = separatevars(diffeq, symbols=[r, s], dict=True) if sep: # Trying to separate, r and s coordinates deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r) # Substituting and reverting back to original coordinates deq = deq.subs([(r, rcoord), (s, scoord)]) try: sdeq = solve(deq, y) except NotImplementedError: tempsol.append(deq) else: return [Eq(f(x), sol) for sol in sdeq] elif denom: # (ds/dr) is zero which means s is constant return [Eq(f(x), solve(scoord - C1, y)[0])] elif num: # (dr/ds) is zero which means r is constant return [Eq(f(x), solve(rcoord - C1, y)[0])] # If nothing works, return solution as it is, without solving for y if tempsol: return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol] return None def _ode_lie_group( s, func, order, match): heuristics = lie_heuristics inf = {} f = func.func x = func.args[0] df = func.diff(x) xi = Function("xi") eta = Function("eta") xis = match['xi'] etas = match['eta'] y = match.pop('y', None) if y: h = -simplify(match[match['d']]/match[match['e']]) y = y else: y = Dummy("y") h = s.subs(func, y) if xis is not None and etas is not None: inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}] if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]: heuristics = ["user_defined"] + list(heuristics) match = {'h': h, 'y': y} # This is done so that if: # a] any heuristic raises a ValueError # another heuristic can be used. sol = None for heuristic in heuristics: sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf) if sol: return sol return sol def ode_lie_group(eq, func, order, match): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate given system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE is quadrature and can be solved easily. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, Eq, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ f = func.func x = func.args[0] df = func.diff(x) try: eqsol = solve(eq, df) except NotImplementedError: eqsol = [] desols = [] for s in eqsol: sol = _ode_lie_group(s, func, order, match=match) if sol: desols.extend(sol) if desols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") return desols def _lie_group_remove(coords): r""" This function is strictly meant for internal use by the Lie group ODE solving method. It replaces arbitrary functions returned by pdsolve with either 0 or 1 or the args of the arbitrary function. The algorithm used is: 1] If coords is an instance of an Undefined Function, then the args are returned 2] If the arbitrary function is present in an Add object, it is replaced by zero. 3] If the arbitrary function is present in an Mul object, it is replaced by one. 4] If coords has no Undefined Function, it is returned as it is. Examples ======== >>> from sympy.solvers.ode import _lie_group_remove >>> from sympy import Function >>> from sympy.abc import x, y >>> F = Function("F") >>> eq = x**2*y >>> _lie_group_remove(eq) x**2*y >>> eq = F(x**2*y) >>> _lie_group_remove(eq) x**2*y >>> eq = y**2*x + F(x**3) >>> _lie_group_remove(eq) x*y**2 >>> eq = (F(x**3) + y)*x**4 >>> _lie_group_remove(eq) x**4*y """ if isinstance(coords, AppliedUndef): return coords.args[0] elif coords.is_Add: subfunc = coords.atoms(AppliedUndef) if subfunc: for func in subfunc: coords = coords.subs(func, 0) return coords elif coords.is_Pow: base, expr = coords.as_base_exp() base = _lie_group_remove(base) expr = _lie_group_remove(expr) return base**expr elif coords.is_Mul: mulargs = [] coordargs = coords.args for arg in coordargs: if not isinstance(coords, AppliedUndef): mulargs.append(_lie_group_remove(arg)) return Mul(*mulargs) return coords def infinitesimals(eq, func=None, order=None, hint='default', match=None): r""" The infinitesimal functions of an ordinary differential equation, `\xi(x,y)` and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE `y'=f(x,y)` would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`, `y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`. A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`. They are tangents to the coordinate curves of the new system. Consider the transformation `(x, y) \to (X, Y)` such that the differential equation remains invariant. `\xi` and `\eta` are the tangents to the transformed coordinates `X` and `Y`, at `\varepsilon=0`. .. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \xi, \left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \eta, The infinitesimals can be found by solving the following PDE: >>> from sympy import Function, diff, Eq, pprint >>> from sympy.abc import x, y >>> xi, eta, h = map(Function, ['xi', 'eta', 'h']) >>> h = h(x, y) # dy/dx = h >>> eta = eta(x, y) >>> xi = xi(x, y) >>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h ... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0) >>> pprint(genform) /d d \ d 2 d |--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x \dy dx / dy dy <BLANKLINE> d d i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0 dx dx Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to ``hint``. Examples ======== >>> from sympy import Function, diff >>> from sympy.solvers.ode import infinitesimals >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x) - x**2*f(x) >>> infinitesimals(eq) [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}] References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Infinitesimals for only " "first order ODE's have been implemented") else: df = func.diff(x) # Matching differential equation of the form a*df + b a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) if match: # Used by lie_group hint h = match['h'] y = match['y'] else: match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy("y") h = h.subs(func, y) u = Dummy("u") hx = h.diff(x) hy = h.diff(y) hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv} if hint == 'all': xieta = [] for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] inflist = function(match, comp=True) if inflist: xieta.extend([inf for inf in inflist if inf not in xieta]) if xieta: return xieta else: raise NotImplementedError("Infinitesimals could not be found for " "the given ODE") elif hint == 'default': for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] xieta = function(match, comp=False) if xieta: return xieta raise NotImplementedError("Infinitesimals could not be found for" " the given ODE") elif hint not in lie_heuristics: raise ValueError("Heuristic not recognized: " + hint) else: function = globals()['lie_heuristic_' + hint] xieta = function(match, comp=True) if xieta: return xieta else: raise ValueError("Infinitesimals could not be found using the" " given heuristic") def lie_heuristic_abaco1_simple(match, comp=False): r""" The first heuristic uses the following four sets of assumptions on `\xi` and `\eta` .. math:: \xi = 0, \eta = f(x) .. math:: \xi = 0, \eta = f(y) .. math:: \xi = f(x), \eta = 0 .. math:: \xi = f(y), \eta = 0 The success of this heuristic is determined by algebraic factorisation. For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE .. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x})*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0 reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0` If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ xieta = [] y = match['y'] h = match['h'] func = match['func'] x = func.args[0] hx = match['hx'] hy = match['hy'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) hysym = hy.free_symbols if y not in hysym: try: fx = exp(integrate(hy, x)) except NotImplementedError: pass else: inf = {xi: S(0), eta: fx} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = hy/h facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: S(0), eta: fy.subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/h facsym = factor.free_symbols if y not in facsym: try: fx = exp(integrate(factor, x)) except NotImplementedError: pass else: inf = {xi: fx, eta: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/(h**2) facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: fy.subs(y, func), eta: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco1_product(match, comp=False): r""" The second heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x)*g(y) .. math:: \eta = f(x)*g(y), \xi = 0 The first assumption of this heuristic holds good if `\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is separable in `x` and `y`, then the separated factors containing `x` is `f(x)`, and `g(y)` is obtained by .. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy} provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function of `y` only. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x)*g(y)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] y = match['y'] h = match['h'] hinv = match['hinv'] func = match['func'] x = func.args[0] xi = Function('xi')(x, func) eta = Function('eta')(x, func) inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*h)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) inf = {eta: S(0), xi: (fx*gy).subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) u1 = Dummy("u1") inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*hinv)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) etaval = fx*gy etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y) inf = {eta: etaval.subs(y, func), xi: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_bivariate(match, comp=False): r""" The third heuristic assumes the infinitesimals `\xi` and `\eta` to be bi-variate polynomials in `x` and `y`. The assumption made here for the logic below is that `h` is a rational function in `x` and `y` though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value. References ========== - Lie Groups and Differential Equations pp. 327 - pp. 329 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): # The maximum degree that the infinitesimals can take is # calculated by this technique. etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid") ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy num, denom = cancel(ipde).as_numer_denom() deg = Poly(num, x, y).total_degree() deta = Function('deta')(x, y) dxi = Function('dxi')(x, y) ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2 - dxi*hx - deta*hy) xieq = Symbol("xi0") etaeq = Symbol("eta0") for i in range(deg + 1): if i: xieq += Add(*[ Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) etaeq += Add(*[ Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom() pden = expand(pden) # If the individual terms are monomials, the coefficients # are grouped if pden.is_polynomial(x, y) and pden.is_Add: polyy = Poly(pden, x, y).as_dict() if polyy: symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y} soldict = solve(polyy.values(), *symset) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): xired = xieq.subs(soldict) etared = etaeq.subs(soldict) # Scaling is done by substituting one for the parameters # This can be any number except zero. dict_ = dict((sym, 1) for sym in symset) inf = {eta: etared.subs(dict_).subs(y, func), xi: xired.subs(dict_).subs(y, func)} return [inf] def lie_heuristic_chi(match, comp=False): r""" The aim of the fourth heuristic is to find the function `\chi(x, y)` that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0`. This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition, `h` should be a rational function in `x` and `y`. The method used here is to substitute a general binomial for `\chi` up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in `x` and `y`. After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h` which would give `-\xi` as the quotient and `\eta` as the remainder. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ h = match['h'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): schi, schix, schiy = symbols("schi, schix, schiy") cpde = schix + h*schiy - hy*schi num, denom = cancel(cpde).as_numer_denom() deg = Poly(num, x, y).total_degree() chi = Function('chi')(x, y) chix = chi.diff(x) chiy = chi.diff(y) cpde = chix + h*chiy - hy*chi chieq = Symbol("chi") for i in range(1, deg + 1): chieq += Add(*[ Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom() cnum = expand(cnum) if cnum.is_polynomial(x, y) and cnum.is_Add: cpoly = Poly(cnum, x, y).as_dict() if cpoly: solsyms = chieq.free_symbols - {x, y} soldict = solve(cpoly.values(), *solsyms) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): chieq = chieq.subs(soldict) dict_ = dict((sym, 1) for sym in solsyms) chieq = chieq.subs(dict_) # After finding chi, the main aim is to find out # eta, xi by the equation eta = xi*h + chi # One method to set xi, would be rearranging it to # (eta/h) - xi = (chi/h). This would mean dividing # chi by h would give -xi as the quotient and eta # as the remainder. Thanks to Sean Vig for suggesting # this method. xic, etac = div(chieq, h) inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)} return [inf] def lie_heuristic_function_sum(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x) + g(y) .. math:: \eta = f(x) + g(y), \xi = 0 The first assumption of this heuristic holds good if .. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{ \partial x^{2}}(h^{-1}))^{-1}] is separable in `x` and `y`, 1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`. From this `g(y)` can be determined. 2. The separated factors containing `x` is `f''(x)`. 3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals `\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x) + g(y)`. For both assumptions, the constant factors are separated among `g(y)` and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] h = match['h'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) for odefac in [h, hinv]: factor = odefac*((1/odefac).diff(x, 2)) sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y]) if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y): k = Dummy("k") try: gy = k*integrate(sep[y], y) except NotImplementedError: pass else: fdd = 1/(k*sep[x]*sep['coeff']) fx = simplify(fdd/factor - gy) check = simplify(fx.diff(x, 2) - fdd) if fx: if not check: fx = fx.subs(k, 1) gy = (gy/k) else: sol = solve(check, k) if sol: sol = sol[0] fx = fx.subs(k, sol) gy = (gy/k)*sol else: continue if odefac == hinv: # Inverse ODE fx = fx.subs(x, y) gy = gy.subs(y, x) etaval = factor_terms(fx + gy) if etaval.is_Mul: etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)]) if odefac == hinv: # Inverse ODE inf = {eta: etaval.subs(y, func), xi : S(0)} else: inf = {xi: etaval.subs(y, func), eta : S(0)} if not comp: return [inf] else: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco2_similar(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = g(x), \xi = f(x) .. math:: \eta = f(y), \xi = g(y) For the first assumption, 1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{ \partial yy}}` is calculated. Let us say this value is A 2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{ \frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)` and `A(x)*f(x)` gives `g(x)` 3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{ \partial Y}} = \gamma` is calculated. If a] `\gamma` is a function of `x` alone b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{ \partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone. then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)` The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) factor = cancel(h.diff(y)/h.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{xi: tau, eta: gx}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{xi: tau, eta: gx}] factor = cancel(hinv.diff(y)/hinv.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/( hinv + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] def lie_heuristic_abaco2_unique_unknown(match, comp=False): r""" This heuristic assumes the presence of unknown functions or known functions with non-integer powers. 1. A list of all functions and non-integer powers containing x and y 2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{ \frac{\partial f}{\partial x}} = R` If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return `\xi` and `\eta` b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE. If yes, then return `\xi` and `\eta` If not, then check if a] :math:`\xi = -R,\eta = 1` b] :math:`\xi = 1, \eta = -\frac{1}{R}` are solutions. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) funclist = [] for atom in h.atoms(Pow): base, exp = atom.as_base_exp() if base.has(x) and base.has(y): if not exp.is_Integer: funclist.append(atom) for function in h.atoms(AppliedUndef): syms = function.free_symbols if x in syms and y in syms: funclist.append(function) for f in funclist: frac = cancel(f.diff(y)/f.diff(x)) sep = separatevars(frac, dict=True, symbols=[x, y]) if sep and sep['coeff']: xitry1 = sep[x] etatry1 = -1/(sep[y]*sep['coeff']) pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy if not simplify(pde1): return [{xi: xitry1, eta: etatry1.subs(y, func)}] xitry2 = 1/etatry1 etatry2 = 1/xitry1 pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy if not simplify(expand(pde2)): return [{xi: xitry2.subs(y, func), eta: etatry2}] else: etatry = -1/frac pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy if not simplify(pde): return [{xi: S(1), eta: etatry.subs(y, func)}] xitry = -frac pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy if not simplify(expand(pde)): return [{xi: xitry.subs(y, func), eta: S(1)}] def lie_heuristic_abaco2_unique_general(match, comp=False): r""" This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)` without making any assumptions on `h`. The complete sequence of steps is given in the paper mentioned below. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) A = hx.diff(y) B = hy.diff(y) + hy**2 C = hx.diff(x) - hx**2 if not (A and B and C): return Ax = A.diff(x) Ay = A.diff(y) Axy = Ax.diff(y) Axx = Ax.diff(x) Ayy = Ay.diff(y) D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay if not D: E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A) if E1: E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if not E2: E3 = simplify( E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4) if not E3: etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -4*A**3*etaval/E1 if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] else: E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if E1: E2 = simplify( 4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2)) if not E2: E3 = simplify( -(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D + (A*hx - 3*Ax)*E1)*E1) if not E3: etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -E1*etaval/D if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] def lie_heuristic_linear(match, comp=False): r""" This heuristic assumes 1. `\xi = ax + by + c` and 2. `\eta = fx + gy + h` After substituting the following assumptions in the determining PDE, it reduces to .. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x} - (fx + gy + c)\frac{\partial h}{\partial y} Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that `h` need not be a rational function in this case. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) coeffdict = {} symbols = numbered_symbols("c", cls=Dummy) symlist = [next(symbols) for _ in islice(symbols, 6)] C0, C1, C2, C3, C4, C5 = symlist pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2 pde, denom = pde.as_numer_denom() pde = powsimp(expand(pde)) if pde.is_Add: terms = pde.args for term in terms: if term.is_Mul: rem = Mul(*[m for m in term.args if not m.has(x, y)]) xypart = term/rem if xypart not in coeffdict: coeffdict[xypart] = rem else: coeffdict[xypart] += rem else: if term not in coeffdict: coeffdict[term] = S(1) else: coeffdict[term] += S(1) sollist = coeffdict.values() soldict = solve(sollist, symlist) if soldict: if isinstance(soldict, list): soldict = soldict[0] subval = soldict.values() if any(t for t in subval): onedict = dict(zip(symlist, [1]*6)) xival = C0*x + C1*func + C2 etaval = C3*x + C4*func + C5 xival = xival.subs(soldict) etaval = etaval.subs(soldict) xival = xival.subs(onedict) etaval = etaval.subs(onedict) return [{xi: xival, eta: etaval}] def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S(0),S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order1_type1(x, y, t, r, eq) if match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order1_type1(x, y, t, r, eq) psol = _linear_2eq_order1_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] if match_['type_of_equation'] == 'type3': sol = _linear_2eq_order1_type3(x, y, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_2eq_order1_type4(x, y, t, r, eq) if match_['type_of_equation'] == 'type5': sol = _linear_2eq_order1_type5(x, y, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type1(x, y, t, r, eq): r""" It is classified under system of two linear homogeneous first-order constant-coefficient ordinary differential equations. The equations which come under this type are .. math:: x' = ax + by, .. math:: y' = cx + dy The characteristics equation is written as .. math:: \lambda^{2} + (a+d) \lambda + ad - bc = 0 and its discriminant is `D = (a-d)^{2} + 4bc`. There are several cases 1. Case when `ad - bc \neq 0`. The origin of coordinates, `x = y = 0`, is the only stationary point; it is - a node if `D = 0` - a node if `D > 0` and `ad - bc > 0` - a saddle if `D > 0` and `ad - bc < 0` - a focus if `D < 0` and `a + d \neq 0` - a centre if `D < 0` and `a + d \neq 0`. 1.1. If `D > 0`. The characteristic equation has two distinct real roots `\lambda_1` and `\lambda_ 2` . The general solution of the system in question is expressed as .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} .. math:: y = C_1 (\lambda_1 - a) e^{\lambda_1 t} + C_2 (\lambda_2 - a) e^{\lambda_2 t} where `C_1` and `C_2` being arbitrary constants 1.2. If `D < 0`. The characteristics equation has two conjugate roots, `\lambda_1 = \sigma + i \beta` and `\lambda_2 = \sigma - i \beta`. The general solution of the system is given by .. math:: x = b e^{\sigma t} (C_1 \sin(\beta t) + C_2 \cos(\beta t)) .. math:: y = e^{\sigma t} ([(\sigma - a) C_1 - \beta C_2] \sin(\beta t) + [\beta C_1 + (\sigma - a) C_2 \cos(\beta t)]) 1.3. If `D = 0` and `a \neq d`. The characteristic equation has two equal roots, `\lambda_1 = \lambda_2`. The general solution of the system is written as .. math:: x = 2b (C_1 + \frac{C_2}{a-d} + C_2 t) e^{\frac{a+d}{2} t} .. math:: y = [(d - a) C_1 + C_2 + (d - a) C_2 t] e^{\frac{a+d}{2} t} 1.4. If `D = 0` and `a = d \neq 0` and `b = 0` .. math:: x = C_1 e^{a t} , y = (c C_1 t + C_2) e^{a t} 1.5. If `D = 0` and `a = d \neq 0` and `c = 0` .. math:: x = (b C_1 t + C_2) e^{a t} , y = C_1 e^{a t} 2. Case when `ad - bc = 0` and `a^{2} + b^{2} > 0`. The whole straight line `ax + by = 0` consists of singular points. The original system of differential equations can be rewritten as .. math:: x' = ax + by , y' = k (ax + by) 2.1 If `a + bk \neq 0`, solution will be .. math:: x = b C_1 + C_2 e^{(a + bk) t} , y = -a C_1 + k C_2 e^{(a + bk) t} 2.2 If `a + bk = 0`, solution will be .. math:: x = C_1 (bk t - 1) + b C_2 t , y = k^{2} b C_1 t + (b k^{2} t + 1) C_2 """ C1, C2 = get_numbered_constants(eq, num=2) a, b, c, d = r['a'], r['b'], r['c'], r['d'] real_coeff = all(v.is_real for v in (a, b, c, d)) D = (a - d)**2 + 4*b*c l1 = (a + d + sqrt(D))/2 l2 = (a + d - sqrt(D))/2 equal_roots = Eq(D, 0).expand() gsol1, gsol2 = [], [] # Solutions have exponential form if either D > 0 with real coefficients # or D != 0 with complex coefficients. Eigenvalues are distinct. # For each eigenvalue lam, pick an eigenvector, making sure we don't get (0, 0) # The candidates are (b, lam-a) and (lam-d, c). exponential_form = D > 0 if real_coeff else Not(equal_roots) bad_ab_vector1 = And(Eq(b, 0), Eq(l1, a)) bad_ab_vector2 = And(Eq(b, 0), Eq(l2, a)) vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((l2 - d, bad_ab_vector2), (b, True)), Piecewise((c, bad_ab_vector2), (l2 - a, True)))) sol_vector = C1*exp(l1*t)*vector1 + C2*exp(l2*t)*vector2 gsol1.append((sol_vector[0], exponential_form)) gsol2.append((sol_vector[1], exponential_form)) # Solutions have trigonometric form for real coefficients with D < 0 # Both b and c are nonzero in this case, so (b, lam-a) is an eigenvector # It splits into real/imag parts as (b, sigma-a) and (0, beta). Then # multiply it by C1(cos(beta*t) + I*C2*sin(beta*t)) and separate real/imag trigonometric_form = D < 0 if real_coeff else False sigma = re(l1) if im(l1).is_positive: beta = im(l1) else: beta = im(l2) vector1 = Matrix((b, sigma - a)) vector2 = Matrix((0, beta)) sol_vector = exp(sigma*t) * (C1*(cos(beta*t)*vector1 - sin(beta*t)*vector2) + \ C2*(sin(beta*t)*vector1 + cos(beta*t)*vector2)) gsol1.append((sol_vector[0], trigonometric_form)) gsol2.append((sol_vector[1], trigonometric_form)) # Final case is D == 0, a single eigenvalue. If the eigenspace is 2-dimensional # then we have a scalar matrix, deal with this case first. scalar_matrix = And(Eq(a, d), Eq(b, 0), Eq(c, 0)) vector1 = Matrix((S.One, S.Zero)) vector2 = Matrix((S.Zero, S.One)) sol_vector = exp(l1*t) * (C1*vector1 + C2*vector2) gsol1.append((sol_vector[0], scalar_matrix)) gsol2.append((sol_vector[1], scalar_matrix)) # Have one eigenvector. Get a generalized eigenvector from (A-lam)*vector2 = vector1 vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((S.One, bad_ab_vector1), (S.Zero, Eq(a, l1)), (b/(a - l1), True)), Piecewise((S.Zero, bad_ab_vector1), (S.One, Eq(a, l1)), (S.Zero, True)))) sol_vector = exp(l1*t) * (C1*vector1 + C2*(vector2 + t*vector1)) gsol1.append((sol_vector[0], equal_roots)) gsol2.append((sol_vector[1], equal_roots)) return [Eq(x(t), Piecewise(*gsol1)), Eq(y(t), Piecewise(*gsol2))] def _linear_2eq_order1_type2(x, y, t, r, eq): r""" The equations of this type are .. math:: x' = ax + by + k1 , y' = cx + dy + k2 The general solution of this system is given by sum of its particular solution and the general solution of the corresponding homogeneous system is obtained from type1. 1. When `ad - bc \neq 0`. The particular solution will be `x = x_0` and `y = y_0` where `x_0` and `y_0` are determined by solving linear system of equations .. math:: a x_0 + b y_0 + k1 = 0 , c x_0 + d y_0 + k2 = 0 2. When `ad - bc = 0` and `a^{2} + b^{2} > 0`. In this case, the system of equation becomes .. math:: x' = ax + by + k_1 , y' = k (ax + by) + k_2 2.1 If `\sigma = a + bk \neq 0`, particular solution is given by .. math:: x = b \sigma^{-1} (c_1 k - c_2) t - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + (c_2 - c_1 k) t 2.2 If `\sigma = a + bk = 0`, particular solution is given by .. math:: x = \frac{1}{2} b (c_2 - c_1 k) t^{2} + c_1 t .. math:: y = kx + (c_2 - c_1 k) t """ r['k1'] = -r['k1']; r['k2'] = -r['k2'] if (r['a']*r['d'] - r['b']*r['c']) != 0: x0, y0 = symbols('x0, y0', cls=Dummy) sol = solve((r['a']*x0+r['b']*y0+r['k1'], r['c']*x0+r['d']*y0+r['k2']), x0, y0) psol = [sol[x0], sol[y0]] elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2+r['b']**2) > 0: k = r['c']/r['a'] sigma = r['a'] + r['b']*k if sigma != 0: sol1 = r['b']*sigma**-1*(r['k1']*k-r['k2'])*t - sigma**-2*(r['a']*r['k1']+r['b']*r['k2']) sol2 = k*sol1 + (r['k2']-r['k1']*k)*t else: # FIXME: a previous typo fix shows this is not covered by tests sol1 = r['b']*(r['k2']-r['k1']*k)*t**2 + r['k1']*t sol2 = k*sol1 + (r['k2']-r['k1']*k)*t psol = [sol1, sol2] return psol def _linear_2eq_order1_type3(x, y, t, r, eq): r""" The equations of this type of ode are .. math:: x' = f(t) x + g(t) y .. math:: y' = g(t) x + f(t) y The solution of such equations is given by .. math:: x = e^{F} (C_1 e^{G} + C_2 e^{-G}) , y = e^{F} (C_1 e^{G} - C_2 e^{-G}) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) F = Integral(r['a'], t) G = Integral(r['b'], t) sol1 = exp(F)*(C1*exp(G) + C2*exp(-G)) sol2 = exp(F)*(C1*exp(G) - C2*exp(-G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type4(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = -g(t) x + f(t) y The solution is given by .. math:: x = F (C_1 \cos(G) + C_2 \sin(G)), y = F (-C_1 \sin(G) + C_2 \cos(G)) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b'] == -r['c']: F = exp(Integral(r['a'], t)) G = Integral(r['b'], t) sol1 = F*(C1*cos(G) + C2*sin(G)) sol2 = F*(-C1*sin(G) + C2*cos(G)) elif r['d'] == -r['a']: F = exp(Integral(r['c'], t)) G = Integral(r['d'], t) sol1 = F*(-C1*sin(G) + C2*cos(G)) sol2 = F*(C1*cos(G) + C2*sin(G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type5(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a g(t) x + [f(t) + b g(t)] y The transformation of .. math:: x = e^{\int f(t) \,dt} u , y = e^{\int f(t) \,dt} v , T = \int g(t) \,dt leads to a system of constant coefficient linear differential equations .. math:: u'(T) = v , v'(T) = au + bv """ u, v = symbols('u, v', cls=Function) T = Symbol('T') if not cancel(r['c']/r['b']).has(t): p = cancel(r['c']/r['b']) q = cancel((r['d']-r['a'])/r['b']) eq = (Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol = dsolve(eq) sol1 = exp(Integral(r['a'], t))*sol[0].rhs.subs(T, Integral(r['b'], t)) sol2 = exp(Integral(r['a'], t))*sol[1].rhs.subs(T, Integral(r['b'], t)) if not cancel(r['a']/r['d']).has(t): p = cancel(r['a']/r['d']) q = cancel((r['b']-r['c'])/r['d']) sol = dsolve(Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol1 = exp(Integral(r['c'], t))*sol[1].rhs.subs(T, Integral(r['d'], t)) sol2 = exp(Integral(r['c'], t))*sol[0].rhs.subs(T, Integral(r['d'], t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_2eq_order2(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = [] for terms in Add.make_args(eq[i]): eqs.append(terms/fc[i,func[i],2]) eq[i] = Add(*eqs) # for equations Eq(diff(x(t),t,t), a1*diff(x(t),t)+b1*diff(y(t),t)+c1*x(t)+d1*y(t)+e1) # and Eq(a2*diff(y(t),t,t), a2*diff(x(t),t)+b2*diff(y(t),t)+c2*x(t)+d2*y(t)+e2) r['a1'] = -fc[0,x(t),1]/fc[0,x(t),2] ; r['a2'] = -fc[1,x(t),1]/fc[1,y(t),2] r['b1'] = -fc[0,y(t),1]/fc[0,x(t),2] ; r['b2'] = -fc[1,y(t),1]/fc[1,y(t),2] r['c1'] = -fc[0,x(t),0]/fc[0,x(t),2] ; r['c2'] = -fc[1,x(t),0]/fc[1,y(t),2] r['d1'] = -fc[0,y(t),0]/fc[0,x(t),2] ; r['d2'] = -fc[1,y(t),0]/fc[1,y(t),2] const = [S(0), S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['e1'] = -const[0] r['e2'] = -const[1] if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order2_type1(x, y, t, r, eq) elif match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order2_type1(x, y, t, r, eq) psol = _linear_2eq_order2_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] elif match_['type_of_equation'] == 'type3': sol = _linear_2eq_order2_type3(x, y, t, r, eq) elif match_['type_of_equation'] == 'type4': sol = _linear_2eq_order2_type4(x, y, t, r, eq) elif match_['type_of_equation'] == 'type5': sol = _linear_2eq_order2_type5(x, y, t, r, eq) elif match_['type_of_equation'] == 'type6': sol = _linear_2eq_order2_type6(x, y, t, r, eq) elif match_['type_of_equation'] == 'type7': sol = _linear_2eq_order2_type7(x, y, t, r, eq) elif match_['type_of_equation'] == 'type8': sol = _linear_2eq_order2_type8(x, y, t, r, eq) elif match_['type_of_equation'] == 'type9': sol = _linear_2eq_order2_type9(x, y, t, r, eq) elif match_['type_of_equation'] == 'type10': sol = _linear_2eq_order2_type10(x, y, t, r, eq) elif match_['type_of_equation'] == 'type11': sol = _linear_2eq_order2_type11(x, y, t, r, eq) return sol def _linear_2eq_order2_type1(x, y, t, r, eq): r""" System of two constant-coefficient second-order linear homogeneous differential equations .. math:: x'' = ax + by .. math:: y'' = cx + dy The characteristic equation for above equations .. math:: \lambda^4 - (a + d) \lambda^2 + ad - bc = 0 whose discriminant is `D = (a - d)^2 + 4bc \neq 0` 1. When `ad - bc \neq 0` 1.1. If `D \neq 0`. The characteristic equation has four distinct roots, `\lambda_1, \lambda_2, \lambda_3, \lambda_4`. The general solution of the system is .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} + C_3 b e^{\lambda_3 t} + C_4 b e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} - a) e^{\lambda_1 t} + C_2 (\lambda_2^{2} - a) e^{\lambda_2 t} + C_3 (\lambda_3^{2} - a) e^{\lambda_3 t} + C_4 (\lambda_4^{2} - a) e^{\lambda_4 t} where `C_1,..., C_4` are arbitrary constants. 1.2. If `D = 0` and `a \neq d`: .. math:: x = 2 C_1 (bt + \frac{2bk}{a - d}) e^{\frac{kt}{2}} + 2 C_2 (bt + \frac{2bk}{a - d}) e^{\frac{-kt}{2}} + 2b C_3 t e^{\frac{kt}{2}} + 2b C_4 t e^{\frac{-kt}{2}} .. math:: y = C_1 (d - a) t e^{\frac{kt}{2}} + C_2 (d - a) t e^{\frac{-kt}{2}} + C_3 [(d - a) t + 2k] e^{\frac{kt}{2}} + C_4 [(d - a) t - 2k] e^{\frac{-kt}{2}} where `C_1,..., C_4` are arbitrary constants and `k = \sqrt{2 (a + d)}` 1.3. If `D = 0` and `a = d \neq 0` and `b = 0`: .. math:: x = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} .. math:: y = c C_1 t e^{\sqrt{a} t} - c C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} 1.4. If `D = 0` and `a = d \neq 0` and `c = 0`: .. math:: x = b C_1 t e^{\sqrt{a} t} - b C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} .. math:: y = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} 2. When `ad - bc = 0` and `a^2 + b^2 > 0`. Then the original system becomes .. math:: x'' = ax + by .. math:: y'' = k (ax + by) 2.1. If `a + bk \neq 0`: .. math:: x = C_1 e^{t \sqrt{a + bk}} + C_2 e^{-t \sqrt{a + bk}} + C_3 bt + C_4 b .. math:: y = C_1 k e^{t \sqrt{a + bk}} + C_2 k e^{-t \sqrt{a + bk}} - C_3 at - C_4 a 2.2. If `a + bk = 0`: .. math:: x = C_1 b t^3 + C_2 b t^2 + C_3 t + C_4 .. math:: y = kx + 6 C_1 t + 2 C_2 """ r['a'] = r['c1'] r['b'] = r['d1'] r['c'] = r['c2'] r['d'] = r['d2'] l = Symbol('l') C1, C2, C3, C4 = get_numbered_constants(eq, num=4) chara_eq = l**4 - (r['a']+r['d'])*l**2 + r['a']*r['d'] - r['b']*r['c'] l1 = rootof(chara_eq, 0) l2 = rootof(chara_eq, 1) l3 = rootof(chara_eq, 2) l4 = rootof(chara_eq, 3) D = (r['a'] - r['d'])**2 + 4*r['b']*r['c'] if (r['a']*r['d'] - r['b']*r['c']) != 0: if D != 0: gsol1 = C1*r['b']*exp(l1*t) + C2*r['b']*exp(l2*t) + C3*r['b']*exp(l3*t) \ + C4*r['b']*exp(l4*t) gsol2 = C1*(l1**2-r['a'])*exp(l1*t) + C2*(l2**2-r['a'])*exp(l2*t) + \ C3*(l3**2-r['a'])*exp(l3*t) + C4*(l4**2-r['a'])*exp(l4*t) else: if r['a'] != r['d']: k = sqrt(2*(r['a']+r['d'])) mid = r['b']*t+2*r['b']*k/(r['a']-r['d']) gsol1 = 2*C1*mid*exp(k*t/2) + 2*C2*mid*exp(-k*t/2) + \ 2*r['b']*C3*t*exp(k*t/2) + 2*r['b']*C4*t*exp(-k*t/2) gsol2 = C1*(r['d']-r['a'])*t*exp(k*t/2) + C2*(r['d']-r['a'])*t*exp(-k*t/2) + \ C3*((r['d']-r['a'])*t+2*k)*exp(k*t/2) + C4*((r['d']-r['a'])*t-2*k)*exp(-k*t/2) elif r['a'] == r['d'] != 0 and r['b'] == 0: sa = sqrt(r['a']) gsol1 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) gsol2 = r['c']*C1*t*exp(sa*t)-r['c']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) elif r['a'] == r['d'] != 0 and r['c'] == 0: sa = sqrt(r['a']) gsol1 = r['b']*C1*t*exp(sa*t)-r['b']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) gsol2 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2 + r['b']**2) > 0: k = r['c']/r['a'] if r['a'] + r['b']*k != 0: mid = sqrt(r['a'] + r['b']*k) gsol1 = C1*exp(mid*t) + C2*exp(-mid*t) + C3*r['b']*t + C4*r['b'] gsol2 = C1*k*exp(mid*t) + C2*k*exp(-mid*t) - C3*r['a']*t - C4*r['a'] else: gsol1 = C1*r['b']*t**3 + C2*r['b']*t**2 + C3*t + C4 gsol2 = k*gsol1 + 6*C1*t + 2*C2 return [Eq(x(t), gsol1), Eq(y(t), gsol2)] def _linear_2eq_order2_type2(x, y, t, r, eq): r""" The equations in this type are .. math:: x'' = a_1 x + b_1 y + c_1 .. math:: y'' = a_2 x + b_2 y + c_2 The general solution of this system is given by the sum of its particular solution and the general solution of the homogeneous system. The general solution is given by the linear system of 2 equation of order 2 and type 1 1. If `a_1 b_2 - a_2 b_1 \neq 0`. A particular solution will be `x = x_0` and `y = y_0` where the constants `x_0` and `y_0` are determined by solving the linear algebraic system .. math:: a_1 x_0 + b_1 y_0 + c_1 = 0, a_2 x_0 + b_2 y_0 + c_2 = 0 2. If `a_1 b_2 - a_2 b_1 = 0` and `a_1^2 + b_1^2 > 0`. In this case, the system in question becomes .. math:: x'' = ax + by + c_1, y'' = k (ax + by) + c_2 2.1. If `\sigma = a + bk \neq 0`, the particular solution will be .. math:: x = \frac{1}{2} b \sigma^{-1} (c_1 k - c_2) t^2 - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 2.2. If `\sigma = a + bk = 0`, the particular solution will be .. math:: x = \frac{1}{24} b (c_2 - c_1 k) t^4 + \frac{1}{2} c_1 t^2 .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 """ x0, y0 = symbols('x0, y0') if r['c1']*r['d2'] - r['c2']*r['d1'] != 0: sol = solve((r['c1']*x0+r['d1']*y0+r['e1'], r['c2']*x0+r['d2']*y0+r['e2']), x0, y0) psol = [sol[x0], sol[y0]] elif r['c1']*r['d2'] - r['c2']*r['d1'] == 0 and (r['c1']**2 + r['d1']**2) > 0: k = r['c2']/r['c1'] sig = r['c1'] + r['d1']*k if sig != 0: psol1 = r['d1']*sig**-1*(r['e1']*k-r['e2'])*t**2/2 - \ sig**-2*(r['c1']*r['e1']+r['d1']*r['e2']) psol2 = k*psol1 + (r['e2'] - r['e1']*k)*t**2/2 psol = [psol1, psol2] else: psol1 = r['d1']*(r['e2']-r['e1']*k)*t**4/24 + r['e1']*t**2/2 psol2 = k*psol1 + (r['e2']-r['e1']*k)*t**2/2 psol = [psol1, psol2] return psol def _linear_2eq_order2_type3(x, y, t, r, eq): r""" These type of equation is used for describing the horizontal motion of a pendulum taking into account the Earth rotation. The solution is given with `a^2 + 4b > 0`: .. math:: x = C_1 \cos(\alpha t) + C_2 \sin(\alpha t) + C_3 \cos(\beta t) + C_4 \sin(\beta t) .. math:: y = -C_1 \sin(\alpha t) + C_2 \cos(\alpha t) - C_3 \sin(\beta t) + C_4 \cos(\beta t) where `C_1,...,C_4` and .. math:: \alpha = \frac{1}{2} a + \frac{1}{2} \sqrt{a^2 + 4b}, \beta = \frac{1}{2} a - \frac{1}{2} \sqrt{a^2 + 4b} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b1']**2 - 4*r['c1'] > 0: r['a'] = r['b1'] ; r['b'] = -r['c1'] alpha = r['a']/2 + sqrt(r['a']**2 + 4*r['b'])/2 beta = r['a']/2 - sqrt(r['a']**2 + 4*r['b'])/2 sol1 = C1*cos(alpha*t) + C2*sin(alpha*t) + C3*cos(beta*t) + C4*sin(beta*t) sol2 = -C1*sin(alpha*t) + C2*cos(alpha*t) - C3*sin(beta*t) + C4*cos(beta*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type4(x, y, t, r, eq): r""" These equations are found in the theory of oscillations .. math:: x'' + a_1 x' + b_1 y' + c_1 x + d_1 y = k_1 e^{i \omega t} .. math:: y'' + a_2 x' + b_2 y' + c_2 x + d_2 y = k_2 e^{i \omega t} The general solution of this linear nonhomogeneous system of constant-coefficient differential equations is given by the sum of its particular solution and the general solution of the corresponding homogeneous system (with `k_1 = k_2 = 0`) 1. A particular solution is obtained by the method of undetermined coefficients: .. math:: x = A_* e^{i \omega t}, y = B_* e^{i \omega t} On substituting these expressions into the original system of differential equations, one arrive at a linear nonhomogeneous system of algebraic equations for the coefficients `A` and `B`. 2. The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials: .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + a_1 \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + b_2 \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + a_1 \lambda + c_1) (\lambda^2 + b_2 \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + a_1 \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + a_1 \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + a_1 \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + a_1 \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') Ra, Ca, Rb, Cb = symbols('Ra, Ca, Rb, Cb') a1 = r['a1'] ; a2 = r['a2'] b1 = r['b1'] ; b2 = r['b2'] c1 = r['c1'] ; c2 = r['c2'] d1 = r['d1'] ; d2 = r['d2'] k1 = r['e1'].expand().as_independent(t)[0] k2 = r['e2'].expand().as_independent(t)[0] ew1 = r['e1'].expand().as_independent(t)[1] ew2 = powdenest(ew1).as_base_exp()[1] ew3 = collect(ew2, t).coeff(t) w = cancel(ew3/I) # The particular solution is assumed to be (Ra+I*Ca)*exp(I*w*t) and # (Rb+I*Cb)*exp(I*w*t) for x(t) and y(t) respectively # peq1, peq2, peq3, peq4 unused # peq1 = (-w**2+c1)*Ra - a1*w*Ca + d1*Rb - b1*w*Cb - k1 # peq2 = a1*w*Ra + (-w**2+c1)*Ca + b1*w*Rb + d1*Cb # peq3 = c2*Ra - a2*w*Ca + (-w**2+d2)*Rb - b2*w*Cb - k2 # peq4 = a2*w*Ra + c2*Ca + b2*w*Rb + (-w**2+d2)*Cb # FIXME: solve for what in what? Ra, Rb, etc I guess # but then psol not used for anything? # psol = solve([peq1, peq2, peq3, peq4]) chareq = (k**2+a1*k+c1)*(k**2+b2*k+d2) - (b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(chareq)) sol1 = -C1*(b1*k1+d1)*exp(k1*t) - C2*(b1*k2+d1)*exp(k2*t) - \ C3*(b1*k3+d1)*exp(k3*t) - C4*(b1*k4+d1)*exp(k4*t) + (Ra+I*Ca)*exp(I*w*t) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*t) + C2*(k2**2+a1_*k2+c1)*exp(k2*t) + \ C3*(k3**2+a1_*k3+c1)*exp(k3*t) + C4*(k4**2+a1_*k4+c1)*exp(k4*t) + (Rb+I*Cb)*exp(I*w*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type5(x, y, t, r, eq): r""" The equation which come under this category are .. math:: x'' = a (t y' - y) .. math:: y'' = b (t x' - x) The transformation .. math:: u = t x' - x, b = t y' - y leads to the first-order system .. math:: u' = atv, v' = btu The general solution of this system is given by If `ab > 0`: .. math:: u = C_1 a e^{\frac{1}{2} \sqrt{ab} t^2} + C_2 a e^{-\frac{1}{2} \sqrt{ab} t^2} .. math:: v = C_1 \sqrt{ab} e^{\frac{1}{2} \sqrt{ab} t^2} - C_2 \sqrt{ab} e^{-\frac{1}{2} \sqrt{ab} t^2} If `ab < 0`: .. math:: u = C_1 a \cos(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 a \sin(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 \sqrt{\left|ab\right|} \cos(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r['a'] = -r['d1'] ; r['b'] = -r['c2'] mul = sqrt(abs(r['a']*r['b'])) if r['a']*r['b'] > 0: u = C1*r['a']*exp(mul*t**2/2) + C2*r['a']*exp(-mul*t**2/2) v = C1*mul*exp(mul*t**2/2) - C2*mul*exp(-mul*t**2/2) else: u = C1*r['a']*cos(mul*t**2/2) + C2*r['a']*sin(mul*t**2/2) v = -C1*mul*sin(mul*t**2/2) + C2*mul*cos(mul*t**2/2) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type6(x, y, t, r, eq): r""" The equations are .. math:: x'' = f(t) (a_1 x + b_1 y) .. math:: y'' = f(t) (a_2 x + b_2 y) If `k_1` and `k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then by multiplying appropriate constants and adding together original equations we obtain two independent equations: .. math:: z_1'' = k_1 f(t) z_1, z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2, z_2 = a_2 x + (k_2 - a_1) y Solving the equations will give the values of `x` and `y` after obtaining the value of `z_1` and `z_2` by solving the differential equation and substituting the result. """ k = Symbol('k') z = Function('z') num, den = cancel( (r['c1']*x(t) + r['d1']*y(t))/ (r['c2']*x(t) + r['d2']*y(t))).as_numer_denom() f = r['c1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 k1, k2 = [rootof(chareq, k) for k in range(Poly(chareq).degree())] z1 = dsolve(diff(z(t),t,t) - k1*f*z(t)).rhs z2 = dsolve(diff(z(t),t,t) - k2*f*z(t)).rhs sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type7(x, y, t, r, eq): r""" The equations are given as .. math:: x'' = f(t) (a_1 x' + b_1 y') .. math:: y'' = f(t) (a_2 x' + b_2 y') If `k_1` and 'k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then the system can be reduced by adding together the two equations multiplied by appropriate constants give following two independent equations: .. math:: z_1'' = k_1 f(t) z_1', z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2', z_2 = a_2 x + (k_2 - a_1) y Integrating these and returning to the original variables, one arrives at a linear algebraic system for the unknowns `x` and `y`: .. math:: a_2 x + (k_1 - a_1) y = C_1 \int e^{k_1 F(t)} \,dt + C_2 .. math:: a_2 x + (k_2 - a_1) y = C_3 \int e^{k_2 F(t)} \,dt + C_4 where `C_1,...,C_4` are arbitrary constants and `F(t) = \int f(t) \,dt` """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') num, den = cancel( (r['a1']*x(t) + r['b1']*y(t))/ (r['a2']*x(t) + r['b2']*y(t))).as_numer_denom() f = r['a1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 [k1, k2] = [rootof(chareq, k) for k in range(Poly(chareq).degree())] F = Integral(f, t) z1 = C1*Integral(exp(k1*F), t) + C2 z2 = C3*Integral(exp(k2*F), t) + C4 sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type8(x, y, t, r, eq): r""" The equation of this category are .. math:: x'' = a f(t) (t y' - y) .. math:: y'' = b f(t) (t x' - x) The transformation .. math:: u = t x' - x, v = t y' - y leads to the system of first-order equations .. math:: u' = a t f(t) v, v' = b t f(t) u The general solution of this system has the form If `ab > 0`: .. math:: u = C_1 a e^{\sqrt{ab} \int t f(t) \,dt} + C_2 a e^{-\sqrt{ab} \int t f(t) \,dt} .. math:: v = C_1 \sqrt{ab} e^{\sqrt{ab} \int t f(t) \,dt} - C_2 \sqrt{ab} e^{-\sqrt{ab} \int t f(t) \,dt} If `ab < 0`: .. math:: u = C_1 a \cos(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 a \sin(-\sqrt{\left|ab\right|} \int t f(t) \,dt) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 \sqrt{\left|ab\right|} \cos(-\sqrt{\left|ab\right|} \int t f(t) \,dt) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) num, den = cancel(r['d1']/r['c2']).as_numer_denom() f = -r['d1']/num a = num b = den mul = sqrt(abs(a*b)) Igral = Integral(t*f, t) if a*b > 0: u = C1*a*exp(mul*Igral) + C2*a*exp(-mul*Igral) v = C1*mul*exp(mul*Igral) - C2*mul*exp(-mul*Igral) else: u = C1*a*cos(mul*Igral) + C2*a*sin(mul*Igral) v = -C1*mul*sin(mul*Igral) + C2*mul*cos(mul*Igral) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type9(x, y, t, r, eq): r""" .. math:: t^2 x'' + a_1 t x' + b_1 t y' + c_1 x + d_1 y = 0 .. math:: t^2 y'' + a_2 t x' + b_2 t y' + c_2 x + d_2 y = 0 These system of equations are euler type. The substitution of `t = \sigma e^{\tau} (\sigma \neq 0)` leads to the system of constant coefficient linear differential equations .. math:: x'' + (a_1 - 1) x' + b_1 y' + c_1 x + d_1 y = 0 .. math:: y'' + a_2 x' + (b_2 - 1) y' + c_2 x + d_2 y = 0 The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + (a_1 - 1) \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + (b_2 - 1) \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + (a_1 - 1) \lambda + c_1) (\lambda^2 + (b_2 - 1) \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + (a_1 - 1) \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + (a_1 - 1) \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + (a_1 - 1) \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + (a_1 - 1) \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') a1 = -r['a1']*t; a2 = -r['a2']*t b1 = -r['b1']*t; b2 = -r['b2']*t c1 = -r['c1']*t**2; c2 = -r['c2']*t**2 d1 = -r['d1']*t**2; d2 = -r['d2']*t**2 eq = (k**2+(a1-1)*k+c1)*(k**2+(b2-1)*k+d2)-(b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(eq)) sol1 = -C1*(b1*k1+d1)*exp(k1*log(t)) - C2*(b1*k2+d1)*exp(k2*log(t)) - \ C3*(b1*k3+d1)*exp(k3*log(t)) - C4*(b1*k4+d1)*exp(k4*log(t)) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*log(t)) + C2*(k2**2+a1_*k2+c1)*exp(k2*log(t)) \ + C3*(k3**2+a1_*k3+c1)*exp(k3*log(t)) + C4*(k4**2+a1_*k4+c1)*exp(k4*log(t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type10(x, y, t, r, eq): r""" The equation of this category are .. math:: (\alpha t^2 + \beta t + \gamma)^{2} x'' = ax + by .. math:: (\alpha t^2 + \beta t + \gamma)^{2} y'' = cx + dy The transformation .. math:: \tau = \int \frac{1}{\alpha t^2 + \beta t + \gamma} \,dt , u = \frac{x}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} , v = \frac{y}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} leads to a constant coefficient linear system of equations .. math:: u'' = (a - \alpha \gamma + \frac{1}{4} \beta^{2}) u + b v .. math:: v'' = c u + (d - \alpha \gamma + \frac{1}{4} \beta^{2}) v These system of equations obtained can be solved by type1 of System of two constant-coefficient second-order linear homogeneous differential equations. """ u, v = symbols('u, v', cls=Function) assert False p = Wild('p', exclude=[t, t**2]) q = Wild('q', exclude=[t, t**2]) s = Wild('s', exclude=[t, t**2]) n = Wild('n', exclude=[t, t**2]) num, den = r['c1'].as_numer_denom() dic = den.match((n*(p*t**2+q*t+s)**2).expand()) eqz = dic[p]*t**2 + dic[q]*t + dic[s] a = num/dic[n] b = cancel(r['d1']*eqz**2) c = cancel(r['c2']*eqz**2) d = cancel(r['d2']*eqz**2) [msol1, msol2] = dsolve([Eq(diff(u(t), t, t), (a - dic[p]*dic[s] + dic[q]**2/4)*u(t) \ + b*v(t)), Eq(diff(v(t),t,t), c*u(t) + (d - dic[p]*dic[s] + dic[q]**2/4)*v(t))]) sol1 = (msol1.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) sol2 = (msol2.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type11(x, y, t, r, eq): r""" The equations which comes under this type are .. math:: x'' = f(t) (t x' - x) + g(t) (t y' - y) .. math:: y'' = h(t) (t x' - x) + p(t) (t y' - y) The transformation .. math:: u = t x' - x, v = t y' - y leads to the linear system of first-order equations .. math:: u' = t f(t) u + t g(t) v, v' = t h(t) u + t p(t) v On substituting the value of `u` and `v` in transformed equation gives value of `x` and `y` as .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt , y = C_4 t + t \int \frac{v}{t^2} \,dt. where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) u, v = symbols('u, v', cls=Function) f = -r['c1'] ; g = -r['d1'] h = -r['c2'] ; p = -r['d2'] [msol1, msol2] = dsolve([Eq(diff(u(t),t), t*f*u(t) + t*g*v(t)), Eq(diff(v(t),t), t*h*u(t) + t*p*v(t))]) sol1 = C3*t + t*Integral(msol1.rhs/t**2, t) sol2 = C4*t + t*Integral(msol2.rhs/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations: # Eq(g1*diff(x(t),t), a1*x(t)+b1*y(t)+c1*z(t)+d1), # Eq(g2*diff(y(t),t), a2*x(t)+b2*y(t)+c2*z(t)+d2), and # Eq(g3*diff(z(t),t), a3*x(t)+b3*y(t)+c3*z(t)+d3) r['a1'] = fc[0,x(t),0]/fc[0,x(t),1]; r['a2'] = fc[1,x(t),0]/fc[1,y(t),1]; r['a3'] = fc[2,x(t),0]/fc[2,z(t),1] r['b1'] = fc[0,y(t),0]/fc[0,x(t),1]; r['b2'] = fc[1,y(t),0]/fc[1,y(t),1]; r['b3'] = fc[2,y(t),0]/fc[2,z(t),1] r['c1'] = fc[0,z(t),0]/fc[0,x(t),1]; r['c2'] = fc[1,z(t),0]/fc[1,y(t),1]; r['c3'] = fc[2,z(t),0]/fc[2,z(t),1] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): raise NotImplementedError("Only homogeneous problems are supported, non-homogeneous are not supported currently.") if match_['type_of_equation'] == 'type1': sol = _linear_3eq_order1_type1(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type2': sol = _linear_3eq_order1_type2(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type3': sol = _linear_3eq_order1_type3(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_3eq_order1_type4(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_neq_order1_type1(match_) return sol def _linear_3eq_order1_type1(x, y, z, t, r, eq): r""" .. math:: x' = ax .. math:: y' = bx + cy .. math:: z' = dx + ky + pz Solution of such equations are forward substitution. Solving first equations gives the value of `x`, substituting it in second and third equation and solving second equation gives `y` and similarly substituting `y` in third equation give `z`. .. math:: x = C_1 e^{at} .. math:: y = \frac{b C_1}{a - c} e^{at} + C_2 e^{ct} .. math:: z = \frac{C_1}{a - p} (d + \frac{bk}{a - c}) e^{at} + \frac{k C_2}{c - p} e^{ct} + C_3 e^{pt} where `C_1, C_2` and `C_3` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) a = -r['a1']; b = -r['a2']; c = -r['b2'] d = -r['a3']; k = -r['b3']; p = -r['c3'] sol1 = C1*exp(a*t) sol2 = b*C1*exp(a*t)/(a-c) + C2*exp(c*t) sol3 = C1*(d+b*k/(a-c))*exp(a*t)/(a-p) + k*C2*exp(c*t)/(c-p) + C3*exp(p*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type2(x, y, z, t, r, eq): r""" The equations of this type are .. math:: x' = cy - bz .. math:: y' = az - cx .. math:: z' = bx - ay 1. First integral: .. math:: ax + by + cz = A \qquad - (1) .. math:: x^2 + y^2 + z^2 = B^2 \qquad - (2) where `A` and `B` are arbitrary constants. It follows from these integrals that the integral lines are circles formed by the intersection of the planes `(1)` and sphere `(2)` 2. Solution: .. math:: x = a C_0 + k C_1 \cos(kt) + (c C_2 - b C_3) \sin(kt) .. math:: y = b C_0 + k C_2 \cos(kt) + (a C_2 - c C_3) \sin(kt) .. math:: z = c C_0 + k C_3 \cos(kt) + (b C_2 - a C_3) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation, .. math:: a C_1 + b C_2 + c C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) a = -r['c2']; b = -r['a3']; c = -r['b1'] k = sqrt(a**2 + b**2 + c**2) C3 = (-a*C1 - b*C2)/c sol1 = a*C0 + k*C1*cos(k*t) + (c*C2-b*C3)*sin(k*t) sol2 = b*C0 + k*C2*cos(k*t) + (a*C3-c*C1)*sin(k*t) sol3 = c*C0 + k*C3*cos(k*t) + (b*C1-a*C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type3(x, y, z, t, r, eq): r""" Equations of this system of ODEs .. math:: a x' = bc (y - z) .. math:: b y' = ac (z - x) .. math:: c z' = ab (x - y) 1. First integral: .. math:: a^2 x + b^2 y + c^2 z = A where A is an arbitrary constant. It follows that the integral lines are plane curves. 2. Solution: .. math:: x = C_0 + k C_1 \cos(kt) + a^{-1} bc (C_2 - C_3) \sin(kt) .. math:: y = C_0 + k C_2 \cos(kt) + a b^{-1} c (C_3 - C_1) \sin(kt) .. math:: z = C_0 + k C_3 \cos(kt) + ab c^{-1} (C_1 - C_2) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation .. math:: a^2 C_1 + b^2 C_2 + c^2 C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) c = sqrt(r['b1']*r['c2']) b = sqrt(r['b1']*r['a3']) a = sqrt(r['c2']*r['a3']) C3 = (-a**2*C1-b**2*C2)/c**2 k = sqrt(a**2 + b**2 + c**2) sol1 = C0 + k*C1*cos(k*t) + a**-1*b*c*(C2-C3)*sin(k*t) sol2 = C0 + k*C2*cos(k*t) + a*b**-1*c*(C3-C1)*sin(k*t) sol3 = C0 + k*C3*cos(k*t) + a*b*c**-1*(C1-C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type4(x, y, z, t, r, eq): r""" Equations: .. math:: x' = (a_1 f(t) + g(t)) x + a_2 f(t) y + a_3 f(t) z .. math:: y' = b_1 f(t) x + (b_2 f(t) + g(t)) y + b_3 f(t) z .. math:: z' = c_1 f(t) x + c_2 f(t) y + (c_3 f(t) + g(t)) z The transformation .. math:: x = e^{\int g(t) \,dt} u, y = e^{\int g(t) \,dt} v, z = e^{\int g(t) \,dt} w, \tau = \int f(t) \,dt leads to the system of constant coefficient linear differential equations .. math:: u' = a_1 u + a_2 v + a_3 w .. math:: v' = b_1 u + b_2 v + b_3 w .. math:: w' = c_1 u + c_2 v + c_3 w These system of equations are solved by homogeneous linear system of constant coefficients of `n` equations of first order. Then substituting the value of `u, v` and `w` in transformed equation gives value of `x, y` and `z`. """ u, v, w = symbols('u, v, w', cls=Function) a2, a3 = cancel(r['b1']/r['c1']).as_numer_denom() f = cancel(r['b1']/a2) b1 = cancel(r['a2']/f); b3 = cancel(r['c2']/f) c1 = cancel(r['a3']/f); c2 = cancel(r['b3']/f) a1, g = div(r['a1'],f) b2 = div(r['b2'],f)[0] c3 = div(r['c3'],f)[0] trans_eq = (diff(u(t),t)-a1*u(t)-a2*v(t)-a3*w(t), diff(v(t),t)-b1*u(t)-\ b2*v(t)-b3*w(t), diff(w(t),t)-c1*u(t)-c2*v(t)-c3*w(t)) sol = dsolve(trans_eq) sol1 = exp(Integral(g,t))*((sol[0].rhs).subs(t, Integral(f,t))) sol2 = exp(Integral(g,t))*((sol[1].rhs).subs(t, Integral(f,t))) sol3 = exp(Integral(g,t))*((sol[2].rhs).subs(t, Integral(f,t))) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def sysode_linear_neq_order1(match_): sol = _linear_neq_order1_type1(match_) return sol def _linear_neq_order1_type1(match_): r""" System of n first-order constant-coefficient linear nonhomogeneous differential equation .. math:: y'_k = a_{k1} y_1 + a_{k2} y_2 +...+ a_{kn} y_n; k = 1,2,...,n or that can be written as `\vec{y'} = A . \vec{y}` where `\vec{y}` is matrix of `y_k` for `k = 1,2,...n` and `A` is a `n \times n` matrix. Since these equations are equivalent to a first order homogeneous linear differential equation. So the general solution will contain `n` linearly independent parts and solution will consist some type of exponential functions. Assuming `y = \vec{v} e^{rt}` is a solution of the system where `\vec{v}` is a vector of coefficients of `y_1,...,y_n`. Substituting `y` and `y' = r v e^{r t}` into the equation `\vec{y'} = A . \vec{y}`, we get .. math:: r \vec{v} e^{rt} = A \vec{v} e^{rt} .. math:: r \vec{v} = A \vec{v} where `r` comes out to be eigenvalue of `A` and vector `\vec{v}` is the eigenvector of `A` corresponding to `r`. There are three possibilities of eigenvalues of `A` - `n` distinct real eigenvalues - complex conjugate eigenvalues - eigenvalues with multiplicity `k` 1. When all eigenvalues `r_1,..,r_n` are distinct with `n` different eigenvectors `v_1,...v_n` then the solution is given by .. math:: \vec{y} = C_1 e^{r_1 t} \vec{v_1} + C_2 e^{r_2 t} \vec{v_2} +...+ C_n e^{r_n t} \vec{v_n} where `C_1,C_2,...,C_n` are arbitrary constants. 2. When some eigenvalues are complex then in order to make the solution real, we take a linear combination: if `r = a + bi` has an eigenvector `\vec{v} = \vec{w_1} + i \vec{w_2}` then to obtain real-valued solutions to the system, replace the complex-valued solutions `e^{rx} \vec{v}` with real-valued solution `e^{ax} (\vec{w_1} \cos(bx) - \vec{w_2} \sin(bx))` and for `r = a - bi` replace the solution `e^{-r x} \vec{v}` with `e^{ax} (\vec{w_1} \sin(bx) + \vec{w_2} \cos(bx))` 3. If some eigenvalues are repeated. Then we get fewer than `n` linearly independent eigenvectors, we miss some of the solutions and need to construct the missing ones. We do this via generalized eigenvectors, vectors which are not eigenvectors but are close enough that we can use to write down the remaining solutions. For a eigenvalue `r` with eigenvector `\vec{w}` we obtain `\vec{w_2},...,\vec{w_k}` using .. math:: (A - r I) . \vec{w_2} = \vec{w} .. math:: (A - r I) . \vec{w_3} = \vec{w_2} .. math:: \vdots .. math:: (A - r I) . \vec{w_k} = \vec{w_{k-1}} Then the solutions to the system for the eigenspace are `e^{rt} [\vec{w}], e^{rt} [t \vec{w} + \vec{w_2}], e^{rt} [\frac{t^2}{2} \vec{w} + t \vec{w_2} + \vec{w_3}], ...,e^{rt} [\frac{t^{k-1}}{(k-1)!} \vec{w} + \frac{t^{k-2}}{(k-2)!} \vec{w_2} +...+ t \vec{w_{k-1}} + \vec{w_k}]` So, If `\vec{y_1},...,\vec{y_n}` are `n` solution of obtained from three categories of `A`, then general solution to the system `\vec{y'} = A . \vec{y}` .. math:: \vec{y} = C_1 \vec{y_1} + C_2 \vec{y_2} + \cdots + C_n \vec{y_n} """ eq = match_['eq'] func = match_['func'] fc = match_['func_coeff'] n = len(eq) t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] constants = numbered_symbols(prefix='C', cls=Symbol, start=1) M = Matrix(n,n,lambda i,j:-fc[i,func[j],0]) evector = M.eigenvects(simplify=True) def is_complex(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*cos(im(root)*t) - im(mat[i])*sin(im(root)*t)) def is_complex_conjugate(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*sin(abs(im(root))*t) + im(mat[i])*cos(im(root)*t)*abs(im(root))/im(root)) conjugate_root = [] e_vector = zeros(n,1) for evects in evector: if evects[0] not in conjugate_root: # If number of column of an eigenvector is not equal to the multiplicity # of its eigenvalue then the legt eigenvectors are calculated if len(evects[2])!=evects[1]: var_mat = Matrix(n, 1, lambda i,j: Symbol('x'+str(i))) Mnew = (M - evects[0]*eye(evects[2][-1].rows))*var_mat w = [0 for i in range(evects[1])] w[0] = evects[2][-1] for r in range(1, evects[1]): w_ = Mnew - w[r-1] sol_dict = solve(list(w_), var_mat[1:]) sol_dict[var_mat[0]] = var_mat[0] for key, value in sol_dict.items(): sol_dict[key] = value.subs(var_mat[0],1) w[r] = Matrix(n, 1, lambda i,j: sol_dict[var_mat[i]]) evects[2].append(w[r]) for i in range(evects[1]): C = next(constants) for j in range(i+1): if evects[0].has(I): evects[2][j] = simplify(evects[2][j]) e_vector += C*is_complex(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) C = next(constants) e_vector += C*is_complex_conjugate(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) else: e_vector += C*evects[2][j]*t**(i-j)*exp(evects[0]*t)/factorial(i-j) if evects[0].has(I): conjugate_root.append(conjugate(evects[0])) sol = [] for i in range(len(eq)): sol.append(Eq(func[i],e_vector[i])) return sol def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) if isinstance(sol2r, Expr): sol2r = [sol2r] for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w, c) a = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w, c) b = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t), t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(v(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, z, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t), t) - x(t)*(F2 - F3)) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(v(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, v(u))).rhs z_x = dsolve(diff(w(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, w(u))).rhs z_y = dsolve(diff(w(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, w(v))).rhs x_y = dsolve(diff(u(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, u(v))).rhs y_z = dsolve(diff(v(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, v(w))).rhs x_z = dsolve(diff(u(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, u(w))).rhs sol1 = dsolve(diff(u(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, u(t))).rhs sol2 = dsolve(diff(v(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, v(t))).rhs sol3 = dsolve(diff(w(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, w(t))).rhs return [sol1, sol2, sol3]
c01579881acbaab7654585b6b11542c6fb1c4227cdbdaf759d827be621dce8cb
""" This module contains functions to: - solve a single equation for a single variable, in any domain either real or complex. - solve a single transcendental equation for a single variable in any domain either real or complex. (currently supports solving in real domain only) - solve a system of linear equations with N variables and M equations. - solve a system of Non Linear Equations with N variables and M equations """ from __future__ import print_function, division from sympy.core.sympify import sympify from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality, Add) from sympy.core.containers import Tuple from sympy.core.facts import InconsistentAssumptions from sympy.core.numbers import I, Number, Rational, oo from sympy.core.function import (Lambda, expand_complex, AppliedUndef, expand_log, _mexpand) from sympy.core.mod import Mod from sympy.core.numbers import igcd from sympy.core.relational import Eq, Ne from sympy.core.symbol import Symbol from sympy.core.sympify import _sympify from sympy.simplify.simplify import simplify, fraction, trigsimp from sympy.simplify import powdenest, logcombine from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp, acos, asin, acsc, asec, arg, piecewise_fold, Piecewise) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.functions.elementary.miscellaneous import real_root from sympy.logic.boolalg import And from sympy.sets import (FiniteSet, EmptySet, imageset, Interval, Intersection, Union, ConditionSet, ImageSet, Complement, Contains) from sympy.sets.sets import Set from sympy.matrices import Matrix, MatrixBase from sympy.ntheory import totient from sympy.ntheory.factor_ import divisors from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod from sympy.polys import (roots, Poly, degree, together, PolynomialError, RootOf, factor) from sympy.polys.polyerrors import CoercionFailed from sympy.polys.polytools import invert from sympy.solvers.solvers import (checksol, denoms, unrad, _simple_dens, recast_to_symbols) from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import solve_univariate_inequality from sympy.utilities import filldedent from sympy.utilities.iterables import numbered_symbols, has_dups from sympy.calculus.util import periodicity, continuous_domain from sympy.core.compatibility import ordered, default_sort_key, is_sequence from types import GeneratorType from collections import defaultdict def _masked(f, *atoms): """Return ``f``, with all objects given by ``atoms`` replaced with Dummy symbols, ``d``, and the list of replacements, ``(d, e)``, where ``e`` is an object of type given by ``atoms`` in which any other instances of atoms have been recursively replaced with Dummy symbols, too. The tuples are ordered so that if they are applied in sequence, the origin ``f`` will be restored. Examples ======== >>> from sympy import cos >>> from sympy.abc import x >>> from sympy.solvers.solveset import _masked >>> f = cos(cos(x) + 1) >>> f, reps = _masked(cos(1 + cos(x)), cos) >>> f _a1 >>> reps [(_a1, cos(_a0 + 1)), (_a0, cos(x))] >>> for d, e in reps: ... f = f.xreplace({d: e}) >>> f cos(cos(x) + 1) """ sym = numbered_symbols('a', cls=Dummy, real=True) mask = [] for a in ordered(f.atoms(*atoms)): for i in mask: a = a.replace(*i) mask.append((a, next(sym))) for i, (o, n) in enumerate(mask): f = f.replace(o, n) mask[i] = (n, o) mask = list(reversed(mask)) return f, mask def _invert(f_x, y, x, domain=S.Complexes): r""" Reduce the complex valued equation ``f(x) = y`` to a set of equations ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is a simpler function than ``f(x)``. The return value is a tuple ``(g(x), set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``. Here, ``y`` is not necessarily a symbol. The ``set_h`` contains the functions, along with the information about the domain in which they are valid, through set operations. For instance, if ``y = Abs(x) - n`` is inverted in the real domain, then ``set_h`` is not simply `{-n, n}` as the nature of `n` is unknown; rather, it is: `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})` By default, the complex domain is used which means that inverting even seemingly simple functions like ``exp(x)`` will give very different results from those obtained in the real domain. (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued in the complex domain, having infinitely many branches.) If you are working with real values only (or you are not sure which function to use) you should probably set the domain to ``S.Reals`` (or use `invert\_real` which does that automatically). Examples ======== >>> from sympy.solvers.solveset import invert_complex, invert_real >>> from sympy.abc import x, y >>> from sympy import exp, log When does exp(x) == y? >>> invert_complex(exp(x), y, x) (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers)) >>> invert_real(exp(x), y, x) (x, Intersection({log(y)}, Reals)) When does exp(x) == 1? >>> invert_complex(exp(x), 1, x) (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers)) >>> invert_real(exp(x), 1, x) (x, {0}) See Also ======== invert_real, invert_complex """ x = sympify(x) if not x.is_Symbol: raise ValueError("x must be a symbol") f_x = sympify(f_x) if x not in f_x.free_symbols: raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if x in y.free_symbols: raise ValueError("y should be independent of x ") if domain.is_subset(S.Reals): x1, s = _invert_real(f_x, FiniteSet(y), x) else: x1, s = _invert_complex(f_x, FiniteSet(y), x) if not isinstance(s, FiniteSet) or x1 != x: return x1, s return x1, s.intersection(domain) invert_complex = _invert def invert_real(f_x, y, x, domain=S.Reals): """ Inverts a real-valued function. Same as _invert, but sets the domain to ``S.Reals`` before inverting. """ return _invert(f_x, y, x, domain) def _invert_real(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n', real=True) if hasattr(f, 'inverse') and not isinstance(f, ( TrigonometricFunction, HyperbolicFunction, )): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_abs(f.args[0], g_ys, symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if denom % 2 == 0: base_positive = solveset(base >= 0, symbol, S.Reals) res = imageset(Lambda(n, real_root(n, expo) ), g_ys.intersect( Interval.Ropen(S.Zero, S.Infinity))) _inv, _set = _invert_real(base, res, symbol) return (_inv, _set.intersect(base_positive)) elif numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: rhs = g_ys.args[0] if base.is_positive: return _invert_real(expo, imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol) elif base.is_negative: from sympy.core.power import integer_log s, b = integer_log(rhs, base) if b: return _invert_real(expo, FiniteSet(s), symbol) else: return _invert_real(expo, S.EmptySet, symbol) elif base.is_zero: one = Eq(rhs, 1) if one == S.true: # special case: 0**x - 1 return _invert_real(expo, FiniteSet(0), symbol) elif one == S.false: return _invert_real(expo, S.EmptySet, symbol) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(f, (sin, csc)): F = asin if isinstance(f, sin) else acsc return (lambda a: n*pi + (-1)**n*F(a),) if isinstance(f, (cos, sec)): F = acos if isinstance(f, cos) else asec return ( lambda a: 2*n*pi + F(a), lambda a: 2*n*pi - F(a),) if isinstance(f, (tan, cot)): return (lambda a: n*pi + f.inverse()(a),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys) def _invert_complex(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n') if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: if g in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): return (h, S.EmptySet) return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol) if hasattr(f, 'inverse') and \ not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction) and \ not isinstance(f, exp): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp): if isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) + log(Abs(g_y))), S.Integers) for g_y in g_ys if g_y != 0]) return _invert_complex(f.args[0], exp_invs, symbol) return (f, g_ys) def _invert_abs(f, g_ys, symbol): """Helper function for inverting absolute value functions. Returns the complete result of inverting an absolute value function along with the conditions which must also be satisfied. If it is certain that all these conditions are met, a `FiniteSet` of all possible solutions is returned. If any condition cannot be satisfied, an `EmptySet` is returned. Otherwise, a `ConditionSet` of the solutions, with all the required conditions specified, is returned. """ if not g_ys.is_FiniteSet: # this could be used for FiniteSet, but the # results are more compact if they aren't, e.g. # ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs # Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n})) # for the solution of abs(x) - n pos = Intersection(g_ys, Interval(0, S.Infinity)) parg = _invert_real(f, pos, symbol) narg = _invert_real(-f, pos, symbol) if parg[0] != narg[0]: raise NotImplementedError return parg[0], Union(narg[1], parg[1]) # check conditions: all these must be true. If any are unknown # then return them as conditions which must be satisfied unknown = [] for a in g_ys.args: ok = a.is_nonnegative if a.is_Number else a.is_positive if ok is None: unknown.append(a) elif not ok: return symbol, S.EmptySet if unknown: conditions = And(*[Contains(i, Interval(0, oo)) for i in unknown]) else: conditions = True n = Dummy('n', real=True) # this is slightly different than above: instead of solving # +/-f on positive values, here we solve for f on +/- g_ys g_x, values = _invert_real(f, Union( imageset(Lambda(n, n), g_ys), imageset(Lambda(n, -n), g_ys)), symbol) return g_x, ConditionSet(g_x, conditions, values) def domain_check(f, symbol, p): """Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned. Examples ======== >>> from sympy import Mul, oo >>> from sympy.abc import x >>> from sympy.solvers.solveset import domain_check >>> g = 1/(1 + (1/(x + 1))**2) >>> domain_check(g, x, -1) False >>> domain_check(x**2, x, 0) True >>> domain_check(1/x, x, oo) False * The function relies on the assumption that the original form of the equation has not been changed by automatic simplification. >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1 True * To deal with automatic evaluations use evaluate=False: >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0) False """ f, p = sympify(f), sympify(p) if p.is_infinite: return False return _domain_check(f, symbol, p) def _domain_check(f, symbol, p): # helper for domain check if f.is_Atom and f.is_finite: return True elif f.subs(symbol, p).is_infinite: return False else: return all([_domain_check(g, symbol, p) for g in f.args]) def _is_finite_with_finite_vars(f, domain=S.Complexes): """ Return True if the given expression is finite. For symbols that don't assign a value for `complex` and/or `real`, the domain will be used to assign a value; symbols that don't assign a value for `finite` will be made finite. All other assumptions are left unmodified. """ def assumptions(s): A = s.assumptions0 A.setdefault('finite', A.get('finite', True)) if domain.is_subset(S.Reals): # if this gets set it will make complex=True, too A.setdefault('real', True) else: # don't change 'real' because being complex implies # nothing about being real A.setdefault('complex', True) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite def _is_function_class_equation(func_class, f, symbol): """ Tests whether the equation is an equation of the given function class. The given equation belongs to the given function class if it is comprised of functions of the function class which are multiplied by or added to expressions independent of the symbol. In addition, the arguments of all such functions must be linear in the symbol as well. Examples ======== >>> from sympy.solvers.solveset import _is_function_class_equation >>> from sympy import tan, sin, tanh, sinh, exp >>> from sympy.abc import x >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction, ... HyperbolicFunction) >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) True >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x) True >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) True """ if f.is_Mul or f.is_Add: return all(_is_function_class_equation(func_class, arg, symbol) for arg in f.args) if f.is_Pow: if not f.exp.has(symbol): return _is_function_class_equation(func_class, f.base, symbol) else: return False if not f.has(symbol): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return g.degree() <= 1 except PolynomialError: return False else: return False def _solve_as_rational(f, symbol, domain): """ solve rational functions""" f = together(f, deep=True) g, h = fraction(f) if not h.has(symbol): try: return _solve_as_poly(g, symbol, domain) except NotImplementedError: # The polynomial formed from g could end up having # coefficients in a ring over which finding roots # isn't implemented yet, e.g. ZZ[a] for some symbol a return ConditionSet(symbol, Eq(f, 0), domain) except CoercionFailed: # contained oo, zoo or nan return S.EmptySet else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return valid_solns - invalid_solns def _solve_trig(f, symbol, domain): """Function to call other helpers to solve trigonometric equations """ sol1 = sol = None try: sol1 = _solve_trig1(f, symbol, domain) except BaseException: pass if sol1 is None or isinstance(sol1, ConditionSet): try: sol = _solve_trig2(f, symbol, domain) except BaseException: sol = sol1 if isinstance(sol1, ConditionSet) and isinstance(sol, ConditionSet): if sol1.count_ops() < sol.count_ops(): sol = sol1 else: sol = sol1 if sol is None: raise NotImplementedError(filldedent(''' Solution to this kind of trigonometric equations is yet to be implemented''')) return sol def _solve_trig1(f, symbol, domain): """Primary Helper to solve trigonometric equations """ f = trigsimp(f) f_original = f f = f.rewrite(exp) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(exp(I*symbol), y), h.subs(exp(I*symbol), y) if g.has(symbol) or h.has(symbol): return ConditionSet(symbol, Eq(f, 0), S.Reals) solns = solveset_complex(g, y) - solveset_complex(h, y) if isinstance(solns, ConditionSet): raise NotImplementedError if isinstance(solns, FiniteSet): if any(isinstance(s, RootOf) for s in solns): raise NotImplementedError result = Union(*[invert_complex(exp(I*symbol), s, symbol)[1] for s in solns]) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_trig2(f, symbol, domain): """Secondary helper to solve trigonometric equations, called when first helper fails """ from sympy import ilcm, expand_trig, degree f = trigsimp(f) f_original = f trig_functions = f.atoms(sin, cos, tan, sec, cot, csc) trig_arguments = [e.args[0] for e in trig_functions] denominators = [] numerators = [] for ar in trig_arguments: try: poly_ar = Poly(ar, symbol) except ValueError: raise ValueError("give up, we can't solve if this is not a polynomial in x") if poly_ar.degree() > 1: # degree >1 still bad raise ValueError("degree of variable inside polynomial should not exceed one") if poly_ar.degree() == 0: # degree 0, don't care continue c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol' numerators.append(Rational(c).p) denominators.append(Rational(c).q) x = Dummy('x') # ilcm() and igcd() require more than one argument if len(numerators) > 1: mu = Rational(2)*ilcm(*denominators)/igcd(*numerators) else: assert len(numerators) == 1 mu = Rational(2)*denominators[0]/numerators[0] f = f.subs(symbol, mu*x) f = f.rewrite(tan) f = expand_trig(f) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(tan(x), y), h.subs(tan(x), y) if g.has(x) or h.has(x): return ConditionSet(symbol, Eq(f_original, 0), domain) solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals) if isinstance(solns, FiniteSet): result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1] for s in solns]) dsol = invert_real(tan(symbol/mu), oo, symbol)[1] if degree(h) > degree(g): # If degree(denom)>degree(num) then there result = Union(result, dsol) # would be another sol at Lim(denom-->oo) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_as_poly(f, symbol, domain=S.Complexes): """ Solve the equation using polynomial techniques if it already is a polynomial equation or, with a change of variables, can be made so. """ result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if degree(f, symbol) <= num_roots: result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if poly.degree() <= len(solns): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if poly is None: result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if len(gens) == 1: poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if len(poly_solns) < deg: result = ConditionSet(symbol, Eq(f, 0), domain) if gen != symbol: y = Dummy('y') inverter = invert_real if domain.is_subset(S.Reals) else invert_complex lhs, rhs_s = inverter(gen, y, symbol) if lhs == symbol: result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if result is not None: if isinstance(result, FiniteSet): # this is to simplify solutions like -sqrt(-I) to sqrt(2)/2 # - sqrt(2)*I/2. We are not expanding for solution with symbols # or undefined functions because that makes the solution more complicated. # For example, expand_complex(a) returns re(a) + I*im(a) if all([s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf) for s in result]): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet): result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain) def _has_rational_power(expr, symbol): """ Returns (bool, den) where bool is True if the term has a non-integer rational power and den is the denominator of the expression's exponent. Examples ======== >>> from sympy.solvers.solveset import _has_rational_power >>> from sympy import sqrt >>> from sympy.abc import x >>> _has_rational_power(sqrt(x), x) (True, 2) >>> _has_rational_power(x**2, x) (False, 1) """ a, p, q = Wild('a'), Wild('p'), Wild('q') pattern_match = expr.match(a*p**q) or {} if pattern_match.get(a, S.Zero) is S.Zero: return (False, S.One) elif p not in pattern_match.keys(): return (False, S.One) elif isinstance(pattern_match[q], Rational) \ and pattern_match[p].has(symbol): if not pattern_match[q].q == S.One: return (True, pattern_match[q].q) if not isinstance(pattern_match[a], Pow) \ or isinstance(pattern_match[a], Mul): return (False, S.One) else: return _has_rational_power(pattern_match[a], symbol) def _solve_radical(f, symbol, solveset_solver): """ Helper function to solve equations with radicals """ eq, cov = unrad(f) if not cov: result = solveset_solver(eq, symbol) - \ Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)]) else: y, yeq = cov if not solveset_solver(y - I, y): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if isinstance(result, Complement) or isinstance(result,ConditionSet): solution_set = result else: f_set = [] # solutions for FiniteSet c_set = [] # solutions for ConditionSet for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set)) return solution_set def _solve_abs(f, symbol, domain): """ Helper function to solve equation involving absolute value function """ if not domain.is_subset(S.Reals): raise ValueError(filldedent(''' Absolute values cannot be inverted in the complex domain.''')) p, q, r = Wild('p'), Wild('q'), Wild('r') pattern_match = f.match(p*Abs(q) + r) or {} f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)] if not (f_p.is_zero or f_q.is_zero): domain = continuous_domain(f_q, symbol, domain) q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol, relational=False, domain=domain, continuous=True) q_neg_cond = q_pos_cond.complement(domain) sols_q_pos = solveset_real(f_p*f_q + f_r, symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(f_p*(-f_q) + f_r, symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain) def solve_decomposition(f, symbol, domain): """ Function to solve equations via the principle of "Decomposition and Rewriting". Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solve_decomposition as sd >>> x = Symbol('x') >>> f1 = exp(2*x) - 3*exp(x) + 2 >>> sd(f1, x, S.Reals) {0, log(2)} >>> f2 = sin(x)**2 + 2*sin(x) + 1 >>> pprint(sd(f2, x, S.Reals), use_unicode=False) 3*pi {2*n*pi + ---- | n in Integers} 2 >>> f3 = sin(x + 2) >>> pprint(sd(f3, x, S.Reals), use_unicode=False) {2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers} """ from sympy.solvers.decompogen import decompogen from sympy.calculus.util import function_range # decompose the given function g_s = decompogen(f, symbol) # `y_s` represents the set of values for which the function `g` is to be # solved. # `solutions` represent the solutions of the equations `g = y_s` or # `g = 0` depending on the type of `y_s`. # As we are interested in solving the equation: f = 0 y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if not isinstance(solutions, ConditionSet): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args elif isinstance(y_s, EmptySet): # y_s is not in the range of g in g_s, so no solution exists #in the given domain return y_s for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] base_set = iset.base_set if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if result is S.EmptySet: return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s def _solveset(f, symbol, domain, _check=False): """Helper for solveset to return a result from an expression that has already been sympify'ed and is known to contain the given symbol.""" # _check controls whether the answer is checked or not from sympy.simplify.simplify import signsimp orig_f = f if f.is_Mul: coeff, f = f.as_independent(symbol, as_Add=False) if coeff in set([S.ComplexInfinity, S.NegativeInfinity, S.Infinity]): f = together(orig_f) elif f.is_Add: a, h = f.as_independent(symbol) m, h = h.as_independent(symbol, as_Add=False) if m not in set([S.ComplexInfinity, S.Zero, S.Infinity, S.NegativeInfinity]): f = a/m + h # XXX condition `m != 0` should be added to soln # assign the solvers to use solver = lambda f, x, domain=domain: _solveset(f, x, domain) inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain) result = EmptySet() if f.expand().is_zero: return domain elif not f.has(symbol): return EmptySet() elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain) for m in f.args): # if f(x) and g(x) are both finite we can say that the solution of # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in # general. g(x) can grow to infinitely large for the values where # f(x) == 0. To be sure that we are not silently allowing any # wrong solutions we are using this technique only if both f and g are # finite for a finite input. result = Union(*[solver(m, symbol) for m in f.args]) elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \ _is_function_class_equation(HyperbolicFunction, f, symbol): result = _solve_trig(f, symbol, domain) elif isinstance(f, arg): a = f.args[0] result = solveset_real(a > 0, symbol) elif f.is_Piecewise: result = EmptySet() expr_set_pairs = f.as_expr_set_pairs(domain) for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() solns = solver(expr, symbol, in_set) result += solns elif isinstance(f, Eq): result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain) elif f.is_Relational: if not domain.is_subset(S.Reals): raise NotImplementedError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) try: result = solve_univariate_inequality( f, symbol, domain=domain, relational=False) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result elif _is_modular(f, symbol): result = _solve_modular(f, symbol, domain) else: lhs, rhs_s = inverter(f, 0, symbol) if lhs == symbol: # do some very minimal simplification since # repeated inversion may have left the result # in a state that other solvers (e.g. poly) # would have simplified; this is done here # rather than in the inverter since here it # is only done once whereas there it would # be repeated for each step of the inversion if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(* signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [lhs - rhs for rhs in rhs_s]: if equation == f: if any(_has_rational_power(g, symbol)[0] for g in equation.args) or _has_rational_power( equation, symbol)[0]: result += _solve_radical(equation, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result_rational = _solve_as_rational(equation, symbol, domain) if isinstance(result_rational, ConditionSet): # may be a transcendental type equation result += _transolve(equation, symbol, domain) else: result += result_rational else: result += solver(equation, symbol) elif rhs_s is not S.EmptySet: result = ConditionSet(symbol, Eq(f, 0), domain) if isinstance(result, ConditionSet): num, den = f.as_numer_denom() if den.has(symbol): _result = _solveset(num, symbol, domain) if not isinstance(_result, ConditionSet): singularities = _solveset(den, symbol, domain) result = _result - singularities if _check: if isinstance(result, ConditionSet): # it wasn't solved or has enumerated all conditions # -- leave it alone return result # whittle away all but the symbol-containing core # to use this for testing fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] if isinstance(result, FiniteSet): # check the result for invalid solutions result = FiniteSet(*[s for s in result if isinstance(s, RootOf) or domain_check(fx, symbol, s)]) return result def _is_modular(f, symbol): """ Helper function to check below mentioned types of modular equations. ``A - Mod(B, C) = 0`` A -> This can or cannot be a function of symbol. B -> This is surely a function of symbol. C -> It is an integer. Parameters ========== f : Expr The equation to be checked. symbol : Symbol The concerned variable for which the equation is to be checked. Examples ======== >>> from sympy import symbols, exp, Mod >>> from sympy.solvers.solveset import _is_modular as check >>> x, y = symbols('x y') >>> check(Mod(x, 3) - 1, x) True >>> check(Mod(x, 3) - 1, y) False >>> check(Mod(x, 3)**2 - 5, x) False >>> check(Mod(x, 3)**2 - y, x) False >>> check(exp(Mod(x, 3)) - 1, x) False >>> check(Mod(3, y) - 1, y) False """ if not f.has(Mod): return False # extract modterms from f. modterms = list(f.atoms(Mod)) return (len(modterms) == 1 and # only one Mod should be present modterms[0].args[0].has(symbol) and # B-> function of symbol modterms[0].args[1].is_integer and # C-> to be an integer. any(isinstance(term, Mod) for term in list(_term_factors(f))) # free from other funcs ) def _invert_modular(modterm, rhs, n, symbol): """ Helper function to invert modular equation. ``Mod(a, m) - rhs = 0`` Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)). More simplified form will be returned if possible. If it is not invertible then (modterm, rhs) is returned. The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``: 1. If a is symbol then m*n + rhs is the required solution. 2. If a is an instance of ``Add`` then we try to find two symbol independent parts of a and the symbol independent part gets tranferred to the other side and again the ``_invert_modular`` is called on the symbol dependent part. 3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate out the symbol dependent and symbol independent parts and transfer the symbol independent part to the rhs with the help of invert and again the ``_invert_modular`` is called on the symbol dependent part. 4. If a is an instance of ``Pow`` then two cases arise as following: - If a is of type (symbol_indep)**(symbol_dep) then the remainder is evaluated with the help of discrete_log function and then the least period is being found out with the help of totient function. period*n + remainder is the required solution in this case. For reference: (https://en.wikipedia.org/wiki/Euler's_theorem) - If a is of type (symbol_dep)**(symbol_indep) then we try to find all primitive solutions list with the help of nthroot_mod function. m*n + rem is the general solution where rem belongs to solutions list from nthroot_mod function. Parameters ========== modterm, rhs : Expr The modular equation to be inverted, ``modterm - rhs = 0`` symbol : Symbol The variable in the equation to be inverted. n : Dummy Dummy variable for output g_n. Returns ======= A tuple (f_x, g_n) is being returned where f_x is modular independent function of symbol and g_n being set of values f_x can have. Examples ======== >>> from sympy import symbols, exp, Mod, Dummy, S >>> from sympy.solvers.solveset import _invert_modular as invert_modular >>> x, y = symbols('x y') >>> n = Dummy('n') >>> invert_modular(Mod(exp(x), 7), S(5), n, x) (Mod(exp(x), 7), 5) >>> invert_modular(Mod(x, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 5), Integers)) >>> invert_modular(Mod(3*x + 8, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 6), Integers)) >>> invert_modular(Mod(x**4, 7), S(5), n, x) (x, EmptySet()) >>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) (x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0)) """ a, m = modterm.args if rhs.is_real is False or any(term.is_real is False for term in list(_term_factors(a))): # Check for complex arguments return modterm, rhs if abs(rhs) >= abs(m): # if rhs has value greater than value of m. return symbol, EmptySet() if a is symbol: return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers) if a.is_Add: # g + h = a g, h = a.as_independent(symbol) if g is not S.Zero: x_indep_term = rhs - Mod(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Mul: # g*h = a g, h = a.as_independent(symbol) if g is not S.One: x_indep_term = rhs*invert(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Pow: # base**expo = a base, expo = a.args if expo.has(symbol) and not base.has(symbol): # remainder -> solution independent of n of equation. # m, rhs are made coprime by dividing igcd(m, rhs) try: remainder = discrete_log(m / igcd(m, rhs), rhs, a.base) except ValueError: # log does not exist return modterm, rhs # period -> coefficient of n in the solution and also referred as # the least period of expo in which it is repeats itself. # (a**(totient(m)) - 1) divides m. Here is link of theorem: # (https://en.wikipedia.org/wiki/Euler's_theorem) period = totient(m) for p in divisors(period): # there might a lesser period exist than totient(m). if pow(a.base, p, m / igcd(m, a.base)) == 1: period = p break # recursion is not applied here since _invert_modular is currently # not smart enough to handle infinite rhs as here expo has infinite # rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0). return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0) elif base.has(symbol) and not expo.has(symbol): try: remainder_list = nthroot_mod(rhs, expo, m, all_roots=True) if remainder_list is None: return symbol, EmptySet() except (ValueError, NotImplementedError): return modterm, rhs g_n = EmptySet() for rem in remainder_list: g_n += ImageSet(Lambda(n, m*n + rem), S.Integers) return base, g_n return modterm, rhs def _solve_modular(f, symbol, domain): r""" Helper function for solving modular equations of type ``A - Mod(B, C) = 0``, where A can or cannot be a function of symbol, B is surely a function of symbol and C is an integer. Currently ``_solve_modular`` is only able to solve cases where A is not a function of symbol. Parameters ========== f : Expr The modular equation to be solved, ``f = 0`` symbol : Symbol The variable in the equation to be solved. domain : Set A set over which the equation is solved. It has to be a subset of Integers. Returns ======= A set of integer solutions satisfying the given modular equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy.solvers.solveset import _solve_modular as solve_modulo >>> from sympy import S, Symbol, sin, Intersection, Range, Interval >>> from sympy.core.mod import Mod >>> x = Symbol('x') >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers) ImageSet(Lambda(_n, 7*_n + 5), Integers) >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers. ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals) >>> solve_modulo(-7 + Mod(x, 5), x, S.Integers) EmptySet() >>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers) ImageSet(Lambda(_n, 6*_n + 2), Naturals0) >>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers) >>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100))) Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1)) """ # extract modterm and g_y from f unsolved_result = ConditionSet(symbol, Eq(f, 0), domain) modterm = list(f.atoms(Mod))[0] rhs = -S.One*(f.subs(modterm, S.Zero)) if f.as_coefficients_dict()[modterm].is_negative: # checks if coefficient of modterm is negative in main equation. rhs *= -S.One if not domain.is_subset(S.Integers): return unsolved_result if rhs.has(symbol): # TODO Case: A-> function of symbol, can be extended here # in future. return unsolved_result n = Dummy('n', integer=True) f_x, g_n = _invert_modular(modterm, rhs, n, symbol) if f_x is modterm and g_n is rhs: return unsolved_result if f_x is symbol: if domain is not S.Integers: return domain.intersect(g_n) return g_n if isinstance(g_n, ImageSet): lamda_expr = g_n.lamda.expr lamda_vars = g_n.lamda.variables base_set = g_n.base_set sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers) if isinstance(sol_set, FiniteSet): tmp_sol = EmptySet() for sol in sol_set: tmp_sol += ImageSet(Lambda(lamda_vars, sol), base_set) sol_set = tmp_sol else: sol_set = ImageSet(Lambda(lamda_vars, sol_set), base_set) return domain.intersect(sol_set) return unsolved_result def _term_factors(f): """ Iterator to get the factors of all terms present in the given equation. Parameters ========== f : Expr Equation that needs to be addressed Returns ======= Factors of all terms present in the equation. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.solveset import _term_factors >>> x = symbols('x') >>> list(_term_factors(-2 - x**2 + x*(x + 1))) [-2, -1, x**2, x, x + 1] """ for add_arg in Add.make_args(f): for mul_arg in Mul.make_args(add_arg): yield mul_arg def _solve_exponential(lhs, rhs, symbol, domain): r""" Helper function for solving (supported) exponential equations. Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a symbol-dependent exponent. For example .. math:: 5^{2x + 3} - 5^{3x - 1} .. math:: 4^{5 - 9x} - e^{2 - x} Parameters ========== lhs, rhs : Expr The exponential equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable or if the assumptions are not properly defined, in that case a different style of ``ConditionSet`` is returned having the solution(s) of the equation with the desired assumptions. Examples ======== >>> from sympy.solvers.solveset import _solve_exponential as solve_expo >>> from sympy import symbols, S >>> x = symbols('x', real=True) >>> a, b = symbols('a b') >>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals) >>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions ConditionSet(x, (a > 0) & (b > 0), {0}) >>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals) {-3*log(2)/(-2*log(3) + log(2))} >>> solve_expo(2**x - 4**x, 0, x, S.Reals) {0} * Proof of correctness of the method The logarithm function is the inverse of the exponential function. The defining relation between exponentiation and logarithm is: .. math:: {\log_b x} = y \enspace if \enspace b^y = x Therefore if we are given an equation with exponent terms, we can convert every term to its corresponding logarithmic form. This is achieved by taking logarithms and expanding the equation using logarithmic identities so that it can easily be handled by ``solveset``. For example: .. math:: 3^{2x} = 2^{x + 3} Taking log both sides will reduce the equation to .. math:: (2x)\log(3) = (x + 3)\log(2) This form can be easily handed by ``solveset``. """ unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) newlhs = powdenest(lhs) if lhs != newlhs: # it may also be advantageous to factor the new expr return _solveset(factor(newlhs - rhs), symbol, domain) # try again with _solveset if not (isinstance(lhs, Add) and len(lhs.args) == 2): # solving for the sum of more than two powers is possible # but not yet implemented return unsolved_result if rhs != 0: return unsolved_result a, b = list(ordered(lhs.args)) a_term = a.as_independent(symbol)[1] b_term = b.as_independent(symbol)[1] a_base, a_exp = a_term.base, a_term.exp b_base, b_exp = b_term.base, b_term.exp from sympy.functions.elementary.complexes import im if domain.is_subset(S.Reals): conditions = And( a_base > 0, b_base > 0, Eq(im(a_exp), 0), Eq(im(b_exp), 0)) else: conditions = And( Ne(a_base, 0), Ne(b_base, 0)) L, R = map(lambda i: expand_log(log(i), force=True), (a, -b)) solutions = _solveset(L - R, symbol, domain) return ConditionSet(symbol, conditions, solutions) def _is_exponential(f, symbol): r""" Return ``True`` if one or more terms contain ``symbol`` only in exponents, else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Examples ======== >>> from sympy import symbols, cos, exp >>> from sympy.solvers.solveset import _is_exponential as check >>> x, y = symbols('x y') >>> check(y, y) False >>> check(x**y - 1, y) True >>> check(x**y*2**y - 1, y) True >>> check(exp(x + 3) + 3**x, x) True >>> check(cos(2**x), x) False * Philosophy behind the helper The function extracts each term of the equation and checks if it is of exponential form w.r.t ``symbol``. """ rv = False for expr_arg in _term_factors(f): if symbol not in expr_arg.free_symbols: continue if (isinstance(expr_arg, Pow) and symbol not in expr_arg.base.free_symbols or isinstance(expr_arg, exp)): rv = True # symbol in exponent else: return False # dependent on symbol in non-exponential way return rv def _solve_logarithm(lhs, rhs, symbol, domain): r""" Helper to solve logarithmic equations which are reducible to a single instance of `\log`. Logarithmic equations are (currently) the equations that contains `\log` terms which can be reduced to a single `\log` term or a constant using various logarithmic identities. For example: .. math:: \log(x) + \log(x - 4) can be reduced to: .. math:: \log(x(x - 4)) Parameters ========== lhs, rhs : Expr The logarithmic equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy import symbols, log, S >>> from sympy.solvers.solveset import _solve_logarithm as solve_log >>> x = symbols('x') >>> f = log(x - 3) + log(x + 3) >>> solve_log(f, 0, x, S.Reals) {-sqrt(10), sqrt(10)} * Proof of correctness A logarithm is another way to write exponent and is defined by .. math:: {\log_b x} = y \enspace if \enspace b^y = x When one side of the equation contains a single logarithm, the equation can be solved by rewriting the equation as an equivalent exponential equation as defined above. But if one side contains more than one logarithm, we need to use the properties of logarithm to condense it into a single logarithm. Take for example .. math:: \log(2x) - 15 = 0 contains single logarithm, therefore we can directly rewrite it to exponential form as .. math:: x = \frac{e^{15}}{2} But if the equation has more than one logarithm as .. math:: \log(x - 3) + \log(x + 3) = 0 we use logarithmic identities to convert it into a reduced form Using, .. math:: \log(a) + \log(b) = \log(ab) the equation becomes, .. math:: \log((x - 3)(x + 3)) This equation contains one logarithm and can be solved by rewriting to exponents. """ new_lhs = logcombine(lhs, force=True) new_f = new_lhs - rhs return _solveset(new_f, symbol, domain) def _is_logarithmic(f, symbol): r""" Return ``True`` if the equation is in the form `a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Returns ======= ``True`` if the equation is logarithmic otherwise ``False``. Examples ======== >>> from sympy import symbols, tan, log >>> from sympy.solvers.solveset import _is_logarithmic as check >>> x, y = symbols('x y') >>> check(log(x + 2) - log(x + 3), x) True >>> check(tan(log(2*x)), x) False >>> check(x*log(x), x) False >>> check(x + log(x), x) False >>> check(y + log(x), x) True * Philosophy behind the helper The function extracts each term and checks whether it is logarithmic w.r.t ``symbol``. """ rv = False for term in Add.make_args(f): saw_log = False for term_arg in Mul.make_args(term): if symbol not in term_arg.free_symbols: continue if isinstance(term_arg, log): if saw_log: return False # more than one log in term saw_log = True else: return False # dependent on symbol in non-log way if saw_log: rv = True return rv def _transolve(f, symbol, domain): r""" Function to solve transcendental equations. It is a helper to ``solveset`` and should be used internally. ``_transolve`` currently supports the following class of equations: - Exponential equations - Logarithmic equations Parameters ========== f : Any transcendental equation that needs to be solved. This needs to be an expression, which is assumed to be equal to ``0``. symbol : The variable for which the equation is solved. This needs to be of class ``Symbol``. domain : A set over which the equation is solved. This needs to be of class ``Set``. Returns ======= Set A set of values for ``symbol`` for which ``f`` is equal to zero. An ``EmptySet`` is returned if ``f`` does not have solutions in respective domain. A ``ConditionSet`` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. How to use ``_transolve`` ========================= ``_transolve`` should not be used as an independent function, because it assumes that the equation (``f``) and the ``symbol`` comes from ``solveset`` and might have undergone a few modification(s). To use ``_transolve`` as an independent function the equation (``f``) and the ``symbol`` should be passed as they would have been by ``solveset``. Examples ======== >>> from sympy.solvers.solveset import _transolve as transolve >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy import symbols, S, pprint >>> x = symbols('x', real=True) # assumption added >>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals) {-(log(3) + 3*log(5))/(-log(5) + 2*log(3))} How ``_transolve`` works ======================== ``_transolve`` uses two types of helper functions to solve equations of a particular class: Identifying helpers: To determine whether a given equation belongs to a certain class of equation or not. Returns either ``True`` or ``False``. Solving helpers: Once an equation is identified, a corresponding helper either solves the equation or returns a form of the equation that ``solveset`` might better be able to handle. * Philosophy behind the module The purpose of ``_transolve`` is to take equations which are not already polynomial in their generator(s) and to either recast them as such through a valid transformation or to solve them outright. A pair of helper functions for each class of supported transcendental functions are employed for this purpose. One identifies the transcendental form of an equation and the other either solves it or recasts it into a tractable form that can be solved by ``solveset``. For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0` can be transformed to `\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0` (under certain assumptions) and this can be solved with ``solveset`` if `f(x)` and `g(x)` are in polynomial form. How ``_transolve`` is better than ``_tsolve`` ============================================= 1) Better output ``_transolve`` provides expressions in a more simplified form. Consider a simple exponential equation >>> f = 3**(2*x) - 2**(x + 3) >>> pprint(transolve(f, x, S.Reals), use_unicode=False) -3*log(2) {------------------} -2*log(3) + log(2) >>> pprint(tsolve(f, x), use_unicode=False) / 3 \ | --------| | log(2/9)| [-log\2 /] 2) Extensible The API of ``_transolve`` is designed such that it is easily extensible, i.e. the code that solves a given class of equations is encapsulated in a helper and not mixed in with the code of ``_transolve`` itself. 3) Modular ``_transolve`` is designed to be modular i.e, for every class of equation a separate helper for identification and solving is implemented. This makes it easy to change or modify any of the method implemented directly in the helpers without interfering with the actual structure of the API. 4) Faster Computation Solving equation via ``_transolve`` is much faster as compared to ``_tsolve``. In ``solve``, attempts are made computing every possibility to get the solutions. This series of attempts makes solving a bit slow. In ``_transolve``, computation begins only after a particular type of equation is identified. How to add new class of equations ================================= Adding a new class of equation solver is a three-step procedure: - Identify the type of the equations Determine the type of the class of equations to which they belong: it could be of ``Add``, ``Pow``, etc. types. Separate internal functions are used for each type. Write identification and solving helpers and use them from within the routine for the given type of equation (after adding it, if necessary). Something like: .. code-block:: python def add_type(lhs, rhs, x): .... if _is_exponential(lhs, x): new_eq = _solve_exponential(lhs, rhs, x) .... rhs, lhs = eq.as_independent(x) if lhs.is_Add: result = add_type(lhs, rhs, x) - Define the identification helper. - Define the solving helper. Apart from this, a few other things needs to be taken care while adding an equation solver: - Naming conventions: Name of the identification helper should be as ``_is_class`` where class will be the name or abbreviation of the class of equation. The solving helper will be named as ``_solve_class``. For example: for exponential equations it becomes ``_is_exponential`` and ``_solve_expo``. - The identifying helpers should take two input parameters, the equation to be checked and the variable for which a solution is being sought, while solving helpers would require an additional domain parameter. - Be sure to consider corner cases. - Add tests for each helper. - Add a docstring to your helper that describes the method implemented. The documentation of the helpers should identify: - the purpose of the helper, - the method used to identify and solve the equation, - a proof of correctness - the return values of the helpers """ def add_type(lhs, rhs, symbol, domain): """ Helper for ``_transolve`` to handle equations of ``Add`` type, i.e. equations taking the form as ``a*f(x) + b*g(x) + .... = c``. For example: 4**x + 8**x = 0 """ result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) # check if it is exponential type equation if _is_exponential(lhs, symbol): result = _solve_exponential(lhs, rhs, symbol, domain) # check if it is logarithmic type equation elif _is_logarithmic(lhs, symbol): result = _solve_logarithm(lhs, rhs, symbol, domain) return result result = ConditionSet(symbol, Eq(f, 0), domain) # invert_complex handles the call to the desired inverter based # on the domain specified. lhs, rhs_s = invert_complex(f, 0, symbol, domain) if isinstance(rhs_s, FiniteSet): assert (len(rhs_s.args)) == 1 rhs = rhs_s.args[0] if lhs.is_Add: result = add_type(lhs, rhs, symbol, domain) else: result = rhs_s return result def solveset(f, symbol=None, domain=S.Complexes): r"""Solves a given inequality or equation with set as output Parameters ========== f : Expr or a relational. The target equation or inequality symbol : Symbol The variable for which the equation is solved domain : Set The domain over which the equation is solved Returns ======= Set A set of values for `symbol` for which `f` is True or is equal to zero. An `EmptySet` is returned if `f` is False or nonzero. A `ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. `solveset` claims to be complete in the solution set that it returns. Raises ====== NotImplementedError The algorithms to solve inequalities in complex domain are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report to the github issue tracker. Notes ===== Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the Domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions). See Also ======== solveset_real: solver for real domain solveset_complex: solver for complex domain Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solveset, solveset_real * The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol): >>> x = Symbol('x') >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} >>> x = Symbol('x', real=True) >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} * If you want to use `solveset` to solve the equation in the real domain, provide a real domain. (Using ``solveset_real`` does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) {0} >>> solveset_real(exp(x) - 1, x) {0} The solution is mostly unaffected by assumptions on the symbol, but there may be some slight difference: >>> pprint(solveset(sin(x)/x,x), use_unicode=False) ({2*n*pi | n in Integers} \ {0}) U ({2*n*pi + pi | n in Integers} \ {0}) >>> p = Symbol('p', positive=True) >>> pprint(solveset(sin(p)/p, p), use_unicode=False) {2*n*pi | n in Integers} U {2*n*pi + pi | n in Integers} * Inequalities can be solved over the real domain only. Use of a complex domain leads to a NotImplementedError. >>> solveset(exp(x) > 1, x, R) Interval.open(0, oo) """ f = sympify(f) symbol = sympify(symbol) if f is S.true: return domain if f is S.false: return S.EmptySet if not isinstance(f, (Expr, Number)): raise ValueError("%s is not a valid SymPy expression" % f) if not isinstance(symbol, Expr) and symbol is not None: raise ValueError("%s is not a valid SymPy symbol" % symbol) if not isinstance(domain, Set): raise ValueError("%s is not a valid domain" %(domain)) free_symbols = f.free_symbols if symbol is None and not free_symbols: b = Eq(f, 0) if b is S.true: return domain elif b is S.false: return S.EmptySet else: raise NotImplementedError(filldedent(''' relationship between value and 0 is unknown: %s''' % b)) if symbol is None: if len(free_symbols) == 1: symbol = free_symbols.pop() elif free_symbols: raise ValueError(filldedent(''' The independent variable must be specified for a multivariate equation.''')) elif not isinstance(symbol, Symbol): f, s, swap = recast_to_symbols([f], [symbol]) # the xreplace will be needed if a ConditionSet is returned return solveset(f[0], s[0], domain).xreplace(swap) if domain.is_subset(S.Reals): if not symbol.is_real: assumptions = symbol.assumptions0 assumptions['real'] = True try: r = Dummy('r', **assumptions) return solveset(f.xreplace({symbol: r}), r, domain ).xreplace({r: symbol}) except InconsistentAssumptions: pass # Abs has its own handling method which avoids the # rewriting property that the first piece of abs(x) # is for x >= 0 and the 2nd piece for x < 0 -- solutions # can look better if the 2nd condition is x <= 0. Since # the solution is a set, duplication of results is not # an issue, e.g. {y, -y} when y is 0 will be {0} f, mask = _masked(f, Abs) f = f.rewrite(Piecewise) # everything that's not an Abs for d, e in mask: # everything *in* an Abs e = e.func(e.args[0].rewrite(Piecewise)) f = f.xreplace({d: e}) f = piecewise_fold(f) return _solveset(f, symbol, domain, _check=True) def solveset_real(f, symbol): return solveset(f, symbol, S.Reals) def solveset_complex(f, symbol): return solveset(f, symbol, S.Complexes) def solvify(f, symbol, domain): """Solves an equation using solveset and returns the solution in accordance with the `solve` output API. Returns ======= We classify the output based on the type of solution returned by `solveset`. Solution | Output ---------------------------------------- FiniteSet | list ImageSet, | list (if `f` is periodic) Union | EmptySet | empty list Others | None Raises ====== NotImplementedError A ConditionSet is the input. Examples ======== >>> from sympy.solvers.solveset import solvify, solveset >>> from sympy.abc import x >>> from sympy import S, tan, sin, exp >>> solvify(x**2 - 9, x, S.Reals) [-3, 3] >>> solvify(sin(x) - 1, x, S.Reals) [pi/2] >>> solvify(tan(x), x, S.Reals) [0] >>> solvify(exp(x) - 1, x, S.Complexes) >>> solvify(exp(x) - 1, x, S.Reals) [0] """ solution_set = solveset(f, symbol, domain) result = None if solution_set is S.EmptySet: result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if period is not None: solutions = S.EmptySet iter_solutions = () if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all(isinstance(i, ImageSet) for i in solution_set.args): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, FiniteSet): result += solution return result ############################################################################### ################################ LINSOLVE ##################################### ############################################################################### def linear_coeffs(eq, *syms, **_kw): """Return a list whose elements are the coefficients of the corresponding symbols in the sum of terms in ``eq``. The additive constant is returned as the last element of the list. Examples ======== >>> from sympy.solvers.solveset import linear_coeffs >>> from sympy.abc import x, y, z >>> linear_coeffs(3*x + 2*y - 1, x, y) [3, 2, -1] It is not necessary to expand the expression: >>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x) [3*y*z + 1, y*(2*z + 3)] But if there are nonlinear or cross terms -- even if they would cancel after simplification -- an error is raised so the situation does not pass silently past the caller's attention: >>> eq = 1/x*(x - 1) + 1/x >>> linear_coeffs(eq.expand(), x) [0, 1] >>> linear_coeffs(eq, x) Traceback (most recent call last): ... ValueError: nonlinear term encountered: 1/x >>> linear_coeffs(x*(y + 1) - x*y, x, y) Traceback (most recent call last): ... ValueError: nonlinear term encountered: x*(y + 1) """ d = defaultdict(list) c, terms = _sympify(eq).as_coeff_add(*syms) d[0].extend(Add.make_args(c)) for t in terms: m, f = t.as_coeff_mul(*syms) if len(f) != 1: break f = f[0] if f in syms: d[f].append(m) elif f.is_Add: d1 = linear_coeffs(f, *syms, **{'dict': True}) d[0].append(m*d1.pop(0)) for xf, vf in d1.items(): d[xf].append(m*vf) else: break else: for k, v in d.items(): d[k] = Add(*v) if not _kw: return [d.get(s, S.Zero) for s in syms] + [d[0]] return d # default is still list but this won't matter raise ValueError('nonlinear term encountered: %s' % t) def linear_eq_to_matrix(equations, *symbols): r""" Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. Element M[i, j] corresponds to the coefficient of the jth symbol in the ith equation. The Matrix form corresponds to the augmented matrix form. For example: .. math:: 4x + 2y + 3z = 1 .. math:: 3x + y + z = -6 .. math:: 2x + 4y + 9z = 2 This system would return `A` & `b` as given below: :: [ 4 2 3 ] [ 1 ] A = [ 3 1 1 ] b = [-6 ] [ 2 4 9 ] [ 2 ] The only simplification performed is to convert `Eq(a, b) -> a - b`. Raises ====== ValueError The equations contain a nonlinear term. The symbols are not given or are not unique. Examples ======== >>> from sympy import linear_eq_to_matrix, symbols >>> c, x, y, z = symbols('c, x, y, z') The coefficients (numerical or symbolic) of the symbols will be returned as matrices: >>> eqns = [c*x + z - 1 - c, y + z, x - y] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [c, 0, 1], [0, 1, 1], [1, -1, 0]]) >>> b Matrix([ [c + 1], [ 0], [ 0]]) This routine does not simplify expressions and will raise an error if nonlinearity is encountered: >>> eqns = [ ... (x**2 - 3*x)/(x - 3) - 3, ... y**2 - 3*y - y*(y - 4) + x - 4] >>> linear_eq_to_matrix(eqns, [x, y]) Traceback (most recent call last): ... ValueError: The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y} Simplifying these equations will discard the removable singularity in the first, reveal the linear structure of the second: >>> [e.simplify() for e in eqns] [x - 3, x + y - 4] Any such simplification needed to eliminate nonlinear terms must be done before calling this routine. """ if not symbols: raise ValueError(filldedent(''' Symbols must be given, for which coefficients are to be found. ''')) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] for i in symbols: if not isinstance(i, Symbol): raise ValueError(filldedent(''' Expecting a Symbol but got %s ''' % i)) if has_dups(symbols): raise ValueError('Symbols must be unique') equations = sympify(equations) if isinstance(equations, MatrixBase): equations = list(equations) elif isinstance(equations, Expr): equations = [equations] elif not is_sequence(equations): raise ValueError(filldedent(''' Equation(s) must be given as a sequence, Expr, Eq or Matrix. ''')) A, b = [], [] for i, f in enumerate(equations): if isinstance(f, Equality): f = f.rewrite(Add, evaluate=False) coeff_list = linear_coeffs(f, *symbols) b.append(-coeff_list.pop()) A.append(coeff_list) A, b = map(Matrix, (A, b)) return A, b def linsolve(system, *symbols): r""" Solve system of N linear equations with M variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, whereas infinite solutions are represented parametrically in terms of the given symbols. For unique solution a FiniteSet of ordered tuples is returned. All Standard input formats are supported: For the given set of Equations, the respective input types are given below: .. math:: 3x + 2y - z = 1 .. math:: 2x - 2y + 4z = -2 .. math:: 2x - y + 2z = 0 * Augmented Matrix Form, `system` given below: :: [3 2 -1 1] system = [2 -2 4 -2] [2 -1 2 0] * List Of Equations Form `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]` * Input A & b Matrix Form (from Ax = b) are given as below: :: [3 2 -1 ] [ 1 ] A = [2 -2 4 ] b = [ -2 ] [2 -1 2 ] [ 0 ] `system = (A, b)` Symbols can always be passed but are actually only needed when 1) a system of equations is being passed and 2) the system is passed as an underdetermined matrix and one wants to control the name of the free variables in the result. An error is raised if no symbols are used for case 1, but if no symbols are provided for case 2, internally generated symbols will be provided. When providing symbols for case 2, there should be at least as many symbols are there are columns in matrix A. The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in a row echelon form matrix. Returns ======= A FiniteSet containing an ordered tuple of values for the unknowns for which the `system` has a solution. (Wrapping the tuple in FiniteSet is used to maintain a consistent output format throughout solveset.) Returns EmptySet(), if the linear system is inconsistent. Raises ====== ValueError The input is not valid. The symbols are not given. Examples ======== >>> from sympy import Matrix, S, linsolve, symbols >>> x, y, z = symbols("x, y, z") >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> A Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b Matrix([ [3], [6], [9]]) >>> linsolve((A, b), [x, y, z]) {(-1, 2, 0)} * Parametric Solution: In case the system is underdetermined, the function will return a parametric solution in terms of the given symbols. Those that are free will be returned unchanged. e.g. in the system below, `z` is returned as the solution for variable z; it can take on any value. >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> b = Matrix([3, 6, 9]) >>> linsolve((A, b), x, y, z) {(z - 1, 2 - 2*z, z)} If no symbols are given, internally generated symbols will be used. The `tau0` in the 3rd position indicates (as before) that the 3rd variable -- whatever it's named -- can take on any value: >>> linsolve((A, b)) {(tau0 - 1, 2 - 2*tau0, tau0)} * List of Equations as input >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z] >>> linsolve(Eqns, x, y, z) {(1, -2, -2)} * Augmented Matrix as input >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> aug Matrix([ [2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> linsolve(aug, x, y, z) {(3/10, 2/5, 0)} * Solve for symbolic coefficients >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> linsolve(eqns, x, y) {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))} * A degenerate system returns solution as set of given symbols. >>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0])) >>> linsolve(system, x, y) {(x, y)} * For an empty system linsolve returns empty set >>> linsolve([], x) EmptySet() * An error is raised if, after expansion, any nonlinearity is detected: >>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y) {(1, 1)} >>> linsolve([x**2 - 1], x) Traceback (most recent call last): ... ValueError: The term x**2 is nonlinear in {x} """ if not system: return S.EmptySet # If second argument is an iterable if symbols and hasattr(symbols[0], '__iter__'): symbols = symbols[0] sym_gen = isinstance(symbols, GeneratorType) swap = {} b = None # if we don't get b the input was bad syms_needed_msg = None # unpack system if hasattr(system, '__iter__'): # 1). (A, b) if len(system) == 2 and isinstance(system[0], Matrix): A, b = system # 2). (eq1, eq2, ...) if not isinstance(system[0], Matrix): if sym_gen or not symbols: raise ValueError(filldedent(''' When passing a system of equations, the explicit symbols for which a solution is being sought must be given as a sequence, too. ''')) system = [ _mexpand(i.lhs - i.rhs if isinstance(i, Eq) else i, recursive=True) for i in system] system, symbols, swap = recast_to_symbols(system, symbols) A, b = linear_eq_to_matrix(system, symbols) syms_needed_msg = 'free symbols in the equations provided' elif isinstance(system, Matrix) and not ( symbols and not isinstance(symbols, GeneratorType) and isinstance(symbols[0], Matrix)): # 3). A augmented with b A, b = system[:, :-1], system[:, -1:] if b is None: raise ValueError("Invalid arguments") syms_needed_msg = syms_needed_msg or 'columns of A' if sym_gen: symbols = [next(symbols) for i in range(A.cols)] if any(set(symbols) & (A.free_symbols | b.free_symbols)): raise ValueError(filldedent(''' At least one of the symbols provided already appears in the system to be solved. One way to avoid this is to use Dummy symbols in the generator, e.g. numbered_symbols('%s', cls=Dummy) ''' % symbols[0].name.rstrip('1234567890'))) try: solution, params, free_syms = A.gauss_jordan_solve(b, freevar=True) except ValueError: # No solution return S.EmptySet # Replace free parameters with free symbols if params: if not symbols: symbols = [_ for _ in params] # re-use the parameters but put them in order # params [x, y, z] # free_symbols [2, 0, 4] # idx [1, 0, 2] idx = list(zip(*sorted(zip(free_syms, range(len(free_syms))))))[1] # simultaneous replacements {y: x, x: y, z: z} replace_dict = dict(zip(symbols, [symbols[i] for i in idx])) elif len(symbols) >= A.cols: replace_dict = {v: symbols[free_syms[k]] for k, v in enumerate(params)} else: raise IndexError(filldedent(''' the number of symbols passed should have a length equal to the number of %s. ''' % syms_needed_msg)) solution = [sol.xreplace(replace_dict) for sol in solution] solution = [simplify(sol).xreplace(swap) for sol in solution] return FiniteSet(tuple(solution)) ############################################################################## # ------------------------------nonlinsolve ---------------------------------# ############################################################################## def _return_conditionset(eqs, symbols): # return conditionset condition_set = ConditionSet( Tuple(*symbols), FiniteSet(*eqs), S.Complexes) return condition_set def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): r""" Solves the `system` using substitution method. It is used in `nonlinsolve`. This will be called from `nonlinsolve` when any equation(s) is non polynomial equation. Parameters ========== system : list of equations The target system of equations symbols : list of symbols to be solved. The variable(s) for which the system is solved known_symbols : list of solved symbols Values are known for these variable(s) result : An empty list or list of dict If No symbol values is known then empty list otherwise symbol as keys and corresponding value in dict. exclude : Set of expression. Mostly denominator expression(s) of the equations of the system. Final solution should not satisfy these expressions. all_symbols : known_symbols + symbols(unsolved). Returns ======= A FiniteSet of ordered tuple of values of `all_symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `all_symbols`. If parameter `all_symbols` is None then same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> x, y = symbols('x, y', real=True) >>> from sympy.solvers.solveset import substitution >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) {(-1, 1)} * when you want soln should not satisfy eq `x + 1 = 0` >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) EmptySet() >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x]) {(1, -1)} >>> substitution([x + y - 1, y - x**2 + 5], [x, y]) {(-3, 4), (2, -1)} * Returns both real and complex solution >>> x, y, z = symbols('x, y, z') >>> from sympy import exp, sin >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y]) {(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)} >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)] >>> substitution(eqs, [y, z]) {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3)))), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))} """ from sympy import Complement from sympy.core.compatibility import is_sequence if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if not is_sequence(symbols): msg = ('symbols should be given as a sequence, e.g. a list.' 'Not type %s: %s') raise TypeError(filldedent(msg % (type(symbols), symbols))) sym = getattr(symbols[0], 'is_Symbol', False) if not sym: msg = ('Iterable of symbols must be given as ' 'second argument, not type %s: %s') raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0]))) # By default `all_symbols` will be same as `symbols` if all_symbols is None: all_symbols = symbols old_result = result # storing complements and intersection for particular symbol complements = {} intersections = {} # when total_solveset_call equals total_conditionset # it means that solveset failed to solve all eqs. total_conditionset = -1 total_solveset_call = -1 def _unsolved_syms(eq, sort=False): """Returns the unsolved symbol present in the equation `eq`. """ free = eq.free_symbols unsolved = (free - set(known_symbols)) & set(all_symbols) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved # end of _unsolved_syms() # sort such that equation with the fewest potential symbols is first. # means eq with less number of variable first in the list. eqs_in_better_order = list( ordered(system, lambda _: len(_unsolved_syms(_)))) def add_intersection_complement(result, sym_set, **flags): # If solveset have returned some intersection/complement # for any symbol. It will be added in final solution. final_result = [] for res in result: res_copy = res for key_res, value_res in res.items(): # Intersection/complement is in Interval or Set. intersection_true = flags.get('Intersection', True) complements_true = flags.get('Complement', True) for key_sym, value_sym in sym_set.items(): if key_sym == key_res: if intersection_true: # testcase is not added for this line(intersection) new_value = \ Intersection(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value if complements_true: new_value = \ Complement(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value final_result.append(res_copy) return final_result # end of def add_intersection_complement() def _extract_main_soln(sol, soln_imageset): """separate the Complements, Intersections, ImageSet lambda expr and it's base_set. """ # if there is union, then need to check # Complement, Intersection, Imageset. # Order should not be changed. if isinstance(sol, Complement): # extract solution and complement complements[sym] = sol.args[1] sol = sol.args[0] # complement will be added at the end # using `add_intersection_complement` method if isinstance(sol, Intersection): # Interval/Set will be at 0th index always if sol.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection `S.Reals`, to confirm that # soln is in `domain=S.Reals` or not. We don't consider # that intersection. intersections[sym] = sol.args[0] sol = sol.args[1] # after intersection and complement Imageset should # be checked. if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest # if there is union of Imageset or other in soln. # no testcase is written for this if block if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet # We need in sequence so append finteset elements # and then imageset or other. for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: # ImageSet, Intersection, complement then # append them directly sol += FiniteSet(sol_arg2) if not isinstance(sol, FiniteSet): sol = FiniteSet(sol) return sol, soln_imageset # end of def _extract_main_soln() # helper function for _append_new_soln def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: # replace all dummy variables (Imageset lambda variables) # with zero before `checksol`. Considering fundamental soln # for `checksol`. rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for key_res, value_res in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy # satisfy_exclude == true if it satisfies the expr of `exclude` list. try: # something like : `Mod(-log(3), 2*I*pi)` can't be # simplified right now, so `checksol` returns `TypeError`. # when this issue is fixed this try block should be # removed. Mod(-log(3), 2*I*pi) == -log(3) satisfy_exclude = any( checksol(d, rnew_) for d in exclude) except TypeError: satisfy_exclude = None return satisfy_exclude # end of def _check_exclude() # helper function for _append_new_soln def _restore_imgset(rnew, original_imageset, newresult): restore_sym = set(rnew.keys()) & \ set(original_imageset.keys()) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if rnew not in newresult: newresult.append(rnew) # end of def _restore_imgset() def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = checksol(u, u, eq, minimal=True) if satisfy is False: delete_soln = True res = {} else: result.append(res) return result, res, delete_soln def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): """If `rnew` (A dict <symbol: soln>) contains valid soln append it to `newresult` list. `imgset_yes` is (base, dummy_var) if there was imageset in previously calculated result(otherwise empty tuple). `original_imageset` is dict of imageset expr and imageset from this result. `soln_imageset` dict of imageset expr and imageset of new soln. """ satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False # soln should not satisfy expr present in `exclude` list. if not satisfy_exclude: local_n = None # if it is imageset if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if sym and sol: # when `sym` and `sol` is `None` means no new # soln. In that case we will append rnew directly after # substituting original imagesets in rnew values if present # (second last line of this function using _restore_imgset) dummy_list = list(sol.atoms(Dummy)) # use one dummy `n` which is in # previous imageset local_n_list = [ local_n for i in range( 0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln, local_n) elif eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] # restore original imageset _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return newresult, delete_soln # end of def _append_new_soln() def _new_order_result(result, eq): # separate first, second priority. `res` that makes `eq` value equals # to zero, should be used first then other result(second priority). # If it is not done then we may miss some soln. first_priority = [] second_priority = [] for res in result: if not any(isinstance(val, ImageSet) for val in res.values()): if eq.subs(res) == 0: first_priority.append(res) else: second_priority.append(res) if first_priority or second_priority: return first_priority + second_priority return result def _solve_using_known_values(result, solver): """Solves the system using already known solution (result contains the dict <symbol: value>). solver is `solveset_complex` or `solveset_real`. """ # stores imageset <expr: imageset(Lambda(n, expr), base)>. soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 # sort such that equation with the fewest potential symbols is first. # means eq with less variable first for index, eq in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} # if imageset expr is used to solve other symbol imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() # symbols solved in one iteration if soln_imageset: # find the imageset and use its expr. for key_res, value_res in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) # update eq with everything that is known so far eq2 = eq.subs(res).expand() unsolved_syms = _unsolved_syms(eq2, sort=True) if not unsolved_syms: if res: newresult, delete_res = _append_new_soln( res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: # `delete_res` is true, means substituting `res` in # eq2 doesn't return `zero` or deleting the `res` # (a soln) since it staisfies expr of `exclude` # list. result.remove(res) continue # skip as it's independent of desired symbols depen = eq2.as_independent(unsolved_syms)[0] if depen.has(Abs) and solver == solveset_complex: # Absolute values cannot be inverted in the # complex domain continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): # separate solution and complement complements[sym] = soln.args[1] soln = soln.args[0] # complement will be added at the end if isinstance(soln, Intersection): # Interval will be at 0th index always if soln.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection S.Reals, to confirm that # soln is in domain=S.Reals intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = soln_new if soln_new else soln if index > 0 and solver == solveset_real: # one symbol's real soln , another symbol may have # corresponding complex soln. if not isinstance(soln, (ImageSet, ConditionSet)): soln += solveset_complex(eq2, sym) except NotImplementedError: # If sovleset is not able to solve equation `eq2`. Next # time we may get soln using next equation `eq2` continue if isinstance(soln, ConditionSet): soln = S.EmptySet # don't do `continue` we may get soln # in terms of other symbol(s) not_solvable = True total_conditionst += 1 if soln is not S.EmptySet: soln, soln_imageset = _extract_main_soln( soln, soln_imageset) for sol in soln: # sol is not a `Union` since we checked it # before this loop sol, soln_imageset = _extract_main_soln( sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if got_symbol and any([ ss in free for ss in got_symbol ]): # sol depends on previously solved symbols # then continue continue rnew = res.copy() # put each solution in res and append the new result # in the new result list (solution for symbol `s`) # along with old results. for k, v in res.items(): if isinstance(v, Expr): # if any unsolved symbol is present # Then subs known value rnew[k] = v.subs(sym, sol) # and add this new solution if soln_imageset: # replace all lambda variables with 0. imgst = soln_imageset[sol] rnew[sym] = imgst.lamda( *[0 for i in range(0, len( imgst.lamda.variables))]) else: rnew[sym] = sol newresult, delete_res = _append_new_soln( rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: # deleting the `res` (a soln) since it staisfies # eq of `exclude` list result.remove(res) # solution got for sym if not not_solvable: got_symbol.add(sym) # next time use this new soln if newresult: result = newresult return result, total_solvest_call, total_conditionst # end def _solve_using_know_values() new_result_real, solve_call1, cnd_call1 = _solve_using_known_values( old_result, solveset_real) new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values( old_result, solveset_complex) # when `total_solveset_call` is equals to `total_conditionset` # means solvest fails to solve all the eq. # return conditionset in this case total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if total_conditionset == total_solveset_call and total_solveset_call != -1: return _return_conditionset(eqs_in_better_order, all_symbols) # overall result result = new_result_real + new_result_complex result_all_variables = [] result_infinite = [] for res in result: if not res: # means {None : None} continue # If length < len(all_symbols) means infinite soln. # Some or all the soln is dependent on 1 symbol. # eg. {x: y+2} then final soln {x: y+2, y: y} if len(res) < len(all_symbols): solved_symbols = res.keys() unsolved = list(filter( lambda x: x not in solved_symbols, all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if res not in result_all_variables: result_all_variables.append(res) if result_infinite: # we have general soln # eg : [{x: -1, y : 1}, {x : -y , y: y}] then # return [{x : -y, y : y}] result_all_variables = result_infinite if intersections and complements: # no testcase is added for this block result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True, Complement=True) elif intersections: result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True) elif complements: result_all_variables = add_intersection_complement( result_all_variables, complements, Complement=True) # convert to ordered tuple result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result # end of def substitution() def _solveset_work(system, symbols): soln = solveset(system[0], symbols[0]) if isinstance(soln, FiniteSet): _soln = FiniteSet(*[tuple((s,)) for s in soln]) return _soln else: return FiniteSet(tuple(FiniteSet(soln))) def _handle_positive_dimensional(polys, symbols, denominators): from sympy.polys.polytools import groebner # substitution method where new system is groebner basis of the system _symbols = list(symbols) _symbols.sort(key=default_sort_key) basis = groebner(polys, _symbols, polys=True) new_system = [] for poly_eq in basis: new_system.append(poly_eq.as_expr()) result = [{}] result = substitution( new_system, symbols, result, [], denominators) return result # end of def _handle_positive_dimensional() def _handle_zero_dimensional(polys, symbols, system): # solve 0 dimensional poly system using `solve_poly_system` result = solve_poly_system(polys, *symbols) # May be some extra soln is added because # we used `unrad` in `_separate_poly_nonpoly`, so # need to check and remove if it is not a soln. result_update = S.EmptySet for res in result: dict_sym_value = dict(list(zip(symbols, res))) if all(checksol(eq, dict_sym_value) for eq in system): result_update += FiniteSet(res) return result_update # end of def _handle_zero_dimensional() def _separate_poly_nonpoly(system, symbols): polys = [] polys_expr = [] nonpolys = [] denominators = set() poly = None for eq in system: # Store denom expression if it contains symbol denominators.update(_simple_dens(eq, symbols)) # try to remove sqrt and rational power without_radicals = unrad(simplify(eq)) if without_radicals: eq_unrad, cov = without_radicals if not cov: eq = eq_unrad if isinstance(eq, Expr): eq = eq.as_numer_denom()[0] poly = eq.as_poly(*symbols, extension=True) elif simplify(eq).is_number: continue if poly is not None: polys.append(poly) polys_expr.append(poly.as_expr()) else: nonpolys.append(eq) return polys, polys_expr, nonpolys, denominators # end of def _separate_poly_nonpoly() def nonlinsolve(system, *symbols): r""" Solve system of N non linear equations with M variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In Positive dimensional system solution will be dependent on at least one symbol. Returns both real solution and complex solution(If system have). The possible number of solutions is zero, one or infinite. Parameters ========== system : list of equations The target system of equations symbols : list of Symbols symbols should be given as a sequence eg. list Returns ======= A FiniteSet of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. For the given set of Equations, the respective input types are given below: .. math:: x*y - 1 = 0 .. math:: 4*x**2 + y**2 - 5 = 0 `system = [x*y - 1, 4*x**2 + y**2 - 5]` `symbols = [x, y]` Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> from sympy.solvers.solveset import nonlinsolve >>> x, y, z = symbols('x, y, z', real=True) >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y]) {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)} 1. Positive dimensional system and complements: >>> from sympy import pprint >>> from sympy.polys.polytools import is_zero_dimensional >>> a, b, c, d = symbols('a, b, c, d', extended_real=True) >>> eq1 = a + b + c + d >>> eq2 = a*b + b*c + c*d + d*a >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b >>> eq4 = a*b*c*d - 1 >>> system = [eq1, eq2, eq3, eq4] >>> is_zero_dimensional(system) False >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False) -1 1 1 -1 {(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})} d d d d >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y]) {(2 - y, y)} 2. If some of the equations are non-polynomial then `nonlinsolve` will call the `substitution` function and return real and complex solutions, if present. >>> from sympy import exp, sin >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y]) {(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)} 3. If system is non-linear polynomial and zero-dimensional then it returns both solution (real and complex solutions, if present) using `solve_poly_system`: >>> from sympy import sqrt >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y]) {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)} 4. `nonlinsolve` can solve some linear (zero or positive dimensional) system (because it uses the `groebner` function to get the groebner basis and then uses the `substitution` function basis as the new `system`). But it is not recommended to solve linear system using `nonlinsolve`, because `linsolve` is better for general linear systems. >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z]) {(3*z - 5, 4 - z, z)} 5. System having polynomial equations and only real solution is solved using `solve_poly_system`: >>> e1 = sqrt(x**2 + y**2) - 10 >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3 >>> nonlinsolve((e1, e2), (x, y)) {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y]) {(1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x]) {(2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))} 6. It is better to use symbols instead of Trigonometric Function or Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol and so on. Get soln from `nonlinsolve` and then using `solveset` get the value of `x`) How nonlinsolve is better than old solver `_solve_system` : =========================================================== 1. A positive dimensional system solver : nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations. 2. Real and Complex both solutions : nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using `solve_poly_system` both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to `substitution` method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution function `_solve_using_know_values` is used inside `substitution` function.(`substitution` function will be called when there is any non polynomial equation(s) is present). When solution is valid then add its general solution in the final result. 3. Complement and Intersection will be added if any : nonlinsolve maintains dict for complements and Intersections. If solveset find complements or/and Intersection with any Interval or set during the execution of `substitution` function ,then complement or/and Intersection for that variable is added before returning final solution. """ from sympy.polys.polytools import is_zero_dimensional if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] if not is_sequence(symbols) or not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise IndexError(filldedent(msg)) system, symbols, swap = recast_to_symbols(system, symbols) if swap: soln = nonlinsolve(system, symbols) return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln]) if len(system) == 1 and len(symbols) == 1: return _solveset_work(system, symbols) # main code of def nonlinsolve() starts from here polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly( system, symbols) if len(symbols) == len(polys): # If all the equations in the system are poly if is_zero_dimensional(polys, symbols): # finite number of soln (Zero dimensional system) try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: # Right now it doesn't fail for any polynomial system of # equation. If `solve_poly_system` fails then `substitution` # method will handle it. result = substitution( polys_expr, symbols, exclude=denominators) return result # positive dimensional system res = _handle_positive_dimensional(polys, symbols, denominators) if isinstance(res, EmptySet) and any(not p.domain.is_Exact for p in polys): raise NotImplementedError("Equation not in exact domain. Try converting to rational") else: return res else: # If all the equations are not polynomial. # Use `substitution` method for the system result = substitution( polys_expr + nonpolys, symbols, exclude=denominators) return result
437eca318e720b9660f0380d2e778b1cac0d44263f369aef9d86339d434ecdd5
""" This module contains pdsolve() and different helper functions that it uses. It is heavily inspired by the ode module and hence the basic infrastructure remains the same. **Functions in this module** These are the user functions in this module: - pdsolve() - Solves PDE's - classify_pde() - Classifies PDEs into possible hints for dsolve(). - pde_separate() - Separate variables in partial differential equation either by additive or multiplicative separation approach. These are the helper functions in this module: - pde_separate_add() - Helper function for searching additive separable solutions. - pde_separate_mul() - Helper function for searching multiplicative separable solutions. **Currently implemented solver methods** The following methods are implemented for solving partial differential equations. See the docstrings of the various pde_hint() functions for more information on each (run help(pde)): - 1st order linear homogeneous partial differential equations with constant coefficients. - 1st order linear general partial differential equations with constant coefficients. - 1st order linear partial differential equations with variable coefficients. """ from __future__ import print_function, division from itertools import combinations_with_replacement from sympy.simplify import simplify from sympy.core import Add, S from sympy.core.compatibility import (reduce, is_sequence, range) from sympy.core.function import Function, expand, AppliedUndef, Subs from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, symbols from sympy.functions import exp from sympy.integrals.integrals import Integral from sympy.utilities.iterables import has_dups from sympy.utilities.misc import filldedent from sympy.solvers.deutils import _preprocess, ode_order, _desolve from sympy.solvers.solvers import solve from sympy.simplify.radsimp import collect import operator allhints = ( "1st_linear_constant_coeff_homogeneous", "1st_linear_constant_coeff", "1st_linear_constant_coeff_Integral", "1st_linear_variable_coeff" ) def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs): """ Solves any (supported) kind of partial differential equation. **Usage** pdsolve(eq, f(x,y), hint) -> Solve partial differential equation eq for function f(x,y), using method hint. **Details** ``eq`` can be any supported partial differential equation (see the pde docstring for supported methods). This can either be an Equality, or an expression, which is assumed to be equal to 0. ``f(x,y)`` is a function of two variables whose derivatives in that variable make up the partial differential equation. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want pdsolve to use. Use classify_pde(eq, f(x,y)) to get all of the possible hints for a PDE. The default hint, 'default', will use whatever hint is returned first by classify_pde(). See Hints below for more options that you can use for hint. ``solvefun`` is the convention used for arbitrary functions returned by the PDE solver. If not set by the user, it is set by default to be F. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to pdsolve(): "default": This uses whatever hint is returned first by classify_pde(). This is the default argument to pdsolve(). "all": To make pdsolve apply all relevant classification hints, use pdsolve(PDE, func, hint="all"). This will return a dictionary of hint:solution terms. If a hint causes pdsolve to raise the NotImplementedError, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - order: The order of the PDE. See also ode_order() in deutils.py - default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_pde(). "all_Integral": This is the same as "all", except if a hint also has a corresponding "_Integral" hint, it only returns the "_Integral" hint. This is useful if "all" causes pdsolve() to hang because of a difficult or impossible integral. This meta-hint will also be much faster than "all", because integrate() is an expensive routine. See also the classify_pde() docstring for more info on hints, and the pde docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x, y # x and y are the independent variables >>> f = Function("f")(x, y) # f is a function of x and y >>> # fx will be the partial derivative of f with respect to x >>> fx = Derivative(f, x) >>> # fy will be the partial derivative of f with respect to y >>> fy = Derivative(f, y) - See test_pde.py for many tests, which serves also as a set of examples for how to use pdsolve(). - pdsolve always returns an Equality class (except for the case when the hint is "all" or "all_Integral"). Note that it is not possible to get an explicit solution for f(x, y) as in the case of ODE's - Do help(pde.pde_hintname) to get help more information on a specific hint Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) >>> pdsolve(eq) Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13)) """ if not solvefun: solvefun = Function('F') # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, type='pde', **kwargs) eq = hints.pop('eq', False) all_ = hints.pop('all', False) if all_: # TODO : 'best' hint should be implemented when adequate # number of hints are added. pdedict = {} failed_hints = {} gethints = classify_pde(eq, dict=True) pdedict.update({'order': gethints['order'], 'default': gethints['default']}) for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint]['func'], hints[hint]['order'], hints[hint][hint], solvefun) except NotImplementedError as detail: failed_hints[hint] = detail else: pdedict[hint] = rv pdedict.update(failed_hints) return pdedict else: return _helper_simplify(eq, hints['hint'], hints['func'], hints['order'], hints[hints['hint']], solvefun) def _helper_simplify(eq, hint, func, order, match, solvefun): """Helper function of pdsolve that calls the respective pde functions to solve for the partial differential equations. This minimizes the computation in calling _desolve multiple times. """ if hint.endswith("_Integral"): solvefunc = globals()[ "pde_" + hint[:-len("_Integral")]] else: solvefunc = globals()["pde_" + hint] return _handle_Integral(solvefunc(eq, func, order, match, solvefun), func, order, hint) def _handle_Integral(expr, func, order, hint): r""" Converts a solution with integrals in it into an actual solution. Simplifies the integral mainly using doit() """ if hint.endswith("_Integral"): return expr elif hint == "1st_linear_constant_coeff": return simplify(expr.doit()) else: return expr def classify_pde(eq, func=None, dict=False, **kwargs): """ Returns a tuple of possible pdsolve() classifications for a PDE. The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, classifications near the beginning of the list will produce better solutions faster than those near the end, though there are always exceptions. To make pdsolve use a different classification, use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() docstring for different meta-hints you can use. If ``dict`` is true, classify_pde() will return a dictionary of hint:match expression terms. This is intended for internal use by pdsolve(). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by doing help(pde.pde_hintname), where hintname is the name of the hint without "_Integral". See sympy.pde.allhints or the sympy.pde docstring for a list of all supported hints that can be returned from classify_pde. Examples ======== >>> from sympy.solvers.pde import classify_pde >>> from sympy import Function, diff, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) >>> classify_pde(eq) ('1st_linear_constant_coeff_homogeneous',) """ prep = kwargs.pop('prep', True) if func and len(func.args) != 2: raise NotImplementedError("Right now only partial " "differential equations of two variables are supported") if prep or func is None: prep, func_ = _preprocess(eq, func) if func is None: func = func_ if isinstance(eq, Equality): if eq.rhs != 0: return classify_pde(eq.lhs - eq.rhs, func) eq = eq.lhs f = func.func x = func.args[0] y = func.args[1] fx = f(x,y).diff(x) fy = f(x,y).diff(y) # TODO : For now pde.py uses support offered by the ode_order function # to find the order with respect to a multi-variable function. An # improvement could be to classify the order of the PDE on the basis of # individual variables. order = ode_order(eq, f(x,y)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {'order': order} if not order: if dict: matching_hints["default"] = None return matching_hints else: return () eq = expand(eq) a = Wild('a', exclude = [f(x,y)]) b = Wild('b', exclude = [f(x,y), fx, fy, x, y]) c = Wild('c', exclude = [f(x,y), fx, fy, x, y]) d = Wild('d', exclude = [f(x,y), fx, fy, x, y]) e = Wild('e', exclude = [f(x,y), fx, fy]) n = Wild('n', exclude = [x, y]) # Try removing the smallest power of f(x,y) # from the highest partial derivatives of f(x,y) reduced_eq = None if eq.is_Add: var = set(combinations_with_replacement((x,y), order)) dummyvar = var.copy() power = None for i in var: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a]: power = match[n] dummyvar.remove(i) break dummyvar.remove(i) for i in dummyvar: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a] and match[n] < power: power = match[n] if power: den = f(x,y)**power reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: reduced_eq = collect(reduced_eq, f(x, y)) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: if not r[e]: ## Linear first-order homogeneous partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d}) matching_hints["1st_linear_constant_coeff_homogeneous"] = r else: if r[b]**2 + r[c]**2 != 0: ## Linear first-order general partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_constant_coeff"] = r matching_hints[ "1st_linear_constant_coeff_Integral"] = r else: b = Wild('b', exclude=[f(x, y), fx, fy]) c = Wild('c', exclude=[f(x, y), fx, fy]) d = Wild('d', exclude=[f(x, y), fx, fy]) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_variable_coeff"] = r # Order keys based on allhints. retlist = [] for i in allhints: if i in matching_hints: retlist.append(i) if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for pdsolve(). Use an ordered dict in Py 3. matching_hints["default"] = None matching_hints["ordered_hints"] = tuple(retlist) for i in allhints: if i in matching_hints: matching_hints["default"] = i break return matching_hints else: return tuple(retlist) def checkpdesol(pde, sol, func=None, solve_for_func=True): """ Checks if the given solution satisfies the partial differential equation. pde is the partial differential equation which can be given in the form of an equation or an expression. sol is the solution for which the pde is to be checked. This can also be given in an equation or an expression form. If the function is not provided, the helper function _preprocess from deutils is used to identify the function. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. The following methods are currently being implemented to check if the solution satisfies the PDE: 1. Directly substitute the solution in the PDE and check. If the solution hasn't been solved for f, then it will solve for f provided solve_for_func hasn't been set to False. If the solution satisfies the PDE, then a tuple (True, 0) is returned. Otherwise a tuple (False, expr) where expr is the value obtained after substituting the solution in the PDE. However if a known solution returns False, it may be due to the inability of doit() to simplify it to zero. Examples ======== >>> from sympy import Function, symbols, diff >>> from sympy.solvers.pde import checkpdesol, pdsolve >>> x, y = symbols('x y') >>> f = Function('f') >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y) >>> sol = pdsolve(eq) >>> assert checkpdesol(eq, sol)[0] >>> eq = x*f(x,y) + f(x,y).diff(x) >>> checkpdesol(eq, sol) (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25)) """ # Converting the pde into an equation if not isinstance(pde, Equality): pde = Eq(pde, 0) # If no function is given, try finding the function present. if func is None: try: _, func = _preprocess(pde.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkpdesol for this case.') func = funcs.pop() # If the given solution is in the form of a list or a set # then return a list or set of tuples. if is_sequence(sol, set): return type(sol)([checkpdesol( pde, i, func=func, solve_for_func=solve_for_func) for i in sol]) # Convert solution into an equation if not isinstance(sol, Equality): sol = Eq(func, sol) elif sol.rhs == func: sol = sol.reversed # Try solving for the function solved = sol.lhs == func and not sol.rhs.has(func) if solve_for_func and not solved: solved = solve(sol, func) if solved: if len(solved) == 1: return checkpdesol(pde, Eq(func, solved[0]), func=func, solve_for_func=False) else: return checkpdesol(pde, [Eq(func, t) for t in solved], func=func, solve_for_func=False) # try direct substitution of the solution into the PDE and simplify if sol.lhs == func: pde = pde.lhs - pde.rhs s = simplify(pde.subs(func, sol.rhs).doit()) return s is S.Zero, s raise NotImplementedError(filldedent(''' Unable to test if %s is a solution to %s.''' % (sol, pde))) def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun): r""" Solves a first order linear homogeneous partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{\partial f(x,y)}{\partial x} + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0 where `a`, `b` and `c` are constants. The general solution is of the form: .. math:: f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}} and can be found in SymPy with ``pdsolve``:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*ux + b*uy + c*u >>> pprint(genform) d d a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) dx dy >>> pprint(pdsolve(genform)) -c*(a*x + b*y) --------------- 2 2 a + b f(x, y) = F(-a*y + b*x)*e Examples ======== >>> from sympy.solvers.pde import ( ... pde_1st_linear_constant_coeff_homogeneous) >>> from sympy import pdsolve >>> from sympy import Function, diff, pprint >>> from sympy.abc import x,y >>> f = Function('f') >>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)) Eq(f(x, y), F(x - y)*exp(-x/2 - y/2)) >>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))) x y - - - - 2 2 f(x, y) = F(x - y)*e References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y)) def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{\partial f(x,y)}{\partial x} + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = G(x,y) where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary function in `x` and `y`. The general solution of the PDE is: .. math:: f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2} \int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2}, \frac{- a \eta + b \xi}{a^2 + b^2} \right) e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right] e^{- \frac{c \xi}{a^2 + b^2}} \right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, , where `F(\eta)` is an arbitrary single-valued function. The solution can be found in SymPy with ``pdsolve``:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> G = Function('G') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*ux + b*uy + c*u - G(x,y) >>> pprint(genform) d d a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y) dx dy >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral')) // a*x + b*y \ || / | || | | || | c*xi | || | ------- | || | 2 2 | || | /a*xi + b*eta -a*eta + b*xi\ a + b | || | G|------------, -------------|*e d(xi)| || | | 2 2 2 2 | | || | \ a + b a + b / | || | | || / | || | f(x, y) = ||F(eta) + -------------------------------------------------------|* || 2 2 | \\ a + b / <BLANKLINE> \| || || || || || || || || -c*xi || -------|| 2 2|| a + b || e || || /|eta=-a*y + b*x, xi=a*x + b*y Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, pprint, exp >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y) >>> pdsolve(eq) Eq(f(x, y), (F(4*x + 2*y) + exp(x/2 + 4*y)/15)*exp(x/2 - y)) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] expterm = exp(-S(d)/(b**2 + c**2)*xi) functerm = solvefun(eta) solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y) # Integral should remain as it is in terms of xi, # doit() should be done in _handle_Integral. genterm = (1/S(b**2 + c**2))*Integral( (1/expterm*e).subs(solvedict), (xi, b*x + c*y)) return Eq(f(x,y), Subs(expterm*(functerm + genterm), (eta, xi), (c*x - b*y, b*x + c*y))) def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is .. math:: a(x, y) \frac{\partial f(x, y)}{\partial x} + b(x, y) \frac{\partial f(x, y)}{\partial y} + c(x, y) f(x, y) = G(x, y) where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary functions in `x` and `y`. This PDE is converted into an ODE by making the following transformation: 1. `\xi` as `x` 2. `\eta` as the constant in the solution to the differential equation `\frac{dy}{dx} = -\frac{b}{a}` Making the previous substitutions reduces it to the linear ODE .. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0 which can be solved using ``dsolve``. >>> from sympy.solvers.pde import pdsolve >>> from sympy.abc import x, y >>> from sympy import Function, pprint >>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']] >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y) >>> pprint(genform) d d -G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y)) dx dy Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, pprint, exp >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2 >>> pdsolve(eq) Eq(f(x, y), F(x*y)*exp(y**2/2) + 1) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ from sympy.integrals.integrals import integrate from sympy.solvers.ode import dsolve xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] if not d: # To deal with cases like b*ux = e or c*uy = e if not (b and c): if c: try: tsol = integrate(e/c, y) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(x) + tsol) if b: try: tsol = integrate(e/b, x) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(y) + tsol) if not c: # To deal with cases when c is 0, a simpler method is used. # The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x plode = f(x).diff(x)*b + d*f(x) - e sol = dsolve(plode, f(x)) syms = sol.free_symbols - plode.free_symbols - {x, y} rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y) return Eq(f(x, y), rhs) if not b: # To deal with cases when b is 0, a simpler method is used. # The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y plode = f(y).diff(y)*c + d*f(y) - e sol = dsolve(plode, f(y)) syms = sol.free_symbols - plode.free_symbols - {x, y} rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x) return Eq(f(x, y), rhs) dummy = Function('d') h = (c/b).subs(y, dummy(x)) sol = dsolve(dummy(x).diff(x) - h, dummy(x)) if isinstance(sol, list): sol = sol[0] solsym = sol.free_symbols - h.free_symbols - {x, y} if len(solsym) == 1: solsym = solsym.pop() etat = (solve(sol, solsym)[0]).subs(dummy(x), y) ysub = solve(eta - etat, y)[0] deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub) final = (dsolve(deq, f(x), hint='1st_linear')).rhs if isinstance(final, list): final = final[0] finsyms = final.free_symbols - deq.free_symbols - {x, y} rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat) return Eq(f(x, y), rhs) else: raise NotImplementedError("Cannot solve the partial differential equation due" " to inability of constantsimp") def _simplify_variable_coeff(sol, syms, func, funcarg): r""" Helper function to replace constants by functions in 1st_linear_variable_coeff """ eta = Symbol("eta") if len(syms) == 1: sym = syms.pop() final = sol.subs(sym, func(funcarg)) else: for key, sym in enumerate(syms): final = sol.subs(sym, func(funcarg)) return simplify(final.subs(eta, funcarg)) def pde_separate(eq, fun, sep, strategy='mul'): """Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the equation than the others. :param eq: Partial differential equation :param fun: Original function F(x, y, z) :param sep: List of separated functions [X(x), u(y, z)] :param strategy: Separation strategy. You can choose between additive separation ('add') and multiplicative separation ('mul') which is default. Examples ======== >>> from sympy import E, Eq, Function, pde_separate, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add') [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] >>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul') [Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)] See Also ======== pde_separate_add, pde_separate_mul """ do_add = False if strategy == 'add': do_add = True elif strategy == 'mul': do_add = False else: raise ValueError('Unknown strategy: %s' % strategy) if isinstance(eq, Equality): if eq.rhs != 0: return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy) else: return pde_separate(Eq(eq, 0), fun, sep, strategy) if eq.rhs != 0: raise ValueError("Value should be 0") # Handle arguments orig_args = list(fun.args) subs_args = [] for s in sep: for j in range(0, len(s.args)): subs_args.append(s.args[j]) if do_add: functions = reduce(operator.add, sep) else: functions = reduce(operator.mul, sep) # Check whether variables match if len(subs_args) != len(orig_args): raise ValueError("Variable counts do not match") # Check for duplicate arguments like [X(x), u(x, y)] if has_dups(subs_args): raise ValueError("Duplicate substitution arguments detected") # Check whether the variables match if set(orig_args) != set(subs_args): raise ValueError("Arguments do not match") # Substitute original function with separated... result = eq.lhs.subs(fun, functions).doit() # Divide by terms when doing multiplicative separation if not do_add: eq = 0 for i in result.args: eq += i/functions result = eq svar = subs_args[0] dvar = subs_args[1:] return _separate(result, svar, dvar) def pde_separate_add(eq, fun, sep): """ Helper function for searching additive separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x) + y(y, z)` Examples ======== >>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate_add(eq, u(x, t), [X(x), T(t)]) [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] """ return pde_separate(eq, fun, sep, strategy='add') def pde_separate_mul(eq, fun, sep): """ Helper function for searching multiplicative separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x)*u(y, z)` Examples ======== >>> from sympy import Function, Eq, pde_separate_mul, Derivative as D >>> from sympy.abc import x, y >>> u, X, Y = map(Function, 'uXY') >>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2)) >>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)]) [Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)] """ return pde_separate(eq, fun, sep, strategy='mul') def _separate(eq, dep, others): """Separate expression into two parts based on dependencies of variables.""" # FIRST PASS # Extract derivatives depending our separable variable... terms = set() for term in eq.args: if term.is_Mul: for i in term.args: if i.is_Derivative and not i.has(*others): terms.add(term) continue elif term.is_Derivative and not term.has(*others): terms.add(term) # Find the factor that we need to divide by div = set() for term in terms: ext, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None div.add(ext) # FIXME: Find lcm() of all the divisors and divide with it, instead of # current hack :( # https://github.com/sympy/sympy/issues/4597 if len(div) > 0: final = 0 for term in eq.args: eqn = 0 for i in div: eqn += term / i final += simplify(eqn) eq = final # SECOND PASS - separate the derivatives div = set() lhs = rhs = 0 for term in eq.args: # Check, whether we have already term with independent variable... if not term.has(*others): lhs += term continue # ...otherwise, try to separate temp, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None # Extract the divisors div.add(sep) rhs -= term.expand() # Do the division fulldiv = reduce(operator.add, div) lhs = simplify(lhs/fulldiv).expand() rhs = simplify(rhs/fulldiv).expand() # ...and check whether we were successful :) if lhs.has(*others) or rhs.has(dep): return None return [lhs, rhs]
a20131e76b515804f0e1506b4cabcfe8bc1872ccbd0242f8d30234ce35ee6b4f
"""Utility functions for classifying and solving ordinary and partial differential equations. Contains ======== _preprocess ode_order _desolve """ from __future__ import print_function, division from sympy.core import Pow from sympy.core.function import Derivative, AppliedUndef from sympy.core.relational import Equality from sympy.core.symbol import Wild def _preprocess(expr, func=None, hint='_Integral'): """Prepare expr for solving by making sure that differentiation is done so that only func remains in unevaluated derivatives and (if hint doesn't end with _Integral) that doit is applied to all other derivatives. If hint is None, don't do any differentiation. (Currently this may cause some simple differential equations to fail.) In case func is None, an attempt will be made to autodetect the function to be solved for. >>> from sympy.solvers.deutils import _preprocess >>> from sympy import Derivative, Function, Integral, sin >>> from sympy.abc import x, y, z >>> f, g = map(Function, 'fg') If f(x)**p == 0 and p>0 then we can solve for f(x)=0 >>> _preprocess((f(x).diff(x)-4)**5, f(x)) (Derivative(f(x), x) - 4, f(x)) Apply doit to derivatives that contain more than the function of interest: >>> _preprocess(Derivative(f(x) + x, x)) (Derivative(f(x), x) + 1, f(x)) Do others if the differentiation variable(s) intersect with those of the function of interest or contain the function of interest: >>> _preprocess(Derivative(g(x), y, z), f(y)) (0, f(y)) >>> _preprocess(Derivative(f(y), z), f(y)) (0, f(y)) Do others if the hint doesn't end in '_Integral' (the default assumes that it does): >>> _preprocess(Derivative(g(x), y), f(x)) (Derivative(g(x), y), f(x)) >>> _preprocess(Derivative(f(x), y), f(x), hint='') (0, f(x)) Don't do any derivatives if hint is None: >>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y) >>> _preprocess(eq, f(x), hint=None) (Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x)) If it's not clear what the function of interest is, it must be given: >>> eq = Derivative(f(x) + g(x), x) >>> _preprocess(eq, g(x)) (Derivative(f(x), x) + Derivative(g(x), x), g(x)) >>> try: _preprocess(eq) ... except ValueError: print("A ValueError was raised.") A ValueError was raised. """ if isinstance(expr, Pow): # if f(x)**p=0 then f(x)=0 (p>0) if (expr.exp).is_positive: expr = expr.base derivs = expr.atoms(Derivative) if not func: funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs]) if len(funcs) != 1: raise ValueError('The function cannot be ' 'automatically detected for %s.' % expr) func = funcs.pop() fvars = set(func.args) if hint is None: return expr, func reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or d.has(func) or set(d.variables) & fvars] eq = expr.subs(reps) return eq, func def ode_order(expr, func): """ Returns the order of a given differential equation with respect to func. This function is implemented recursively. Examples ======== >>> from sympy import Function >>> from sympy.solvers.deutils import ode_order >>> from sympy.abc import x >>> f, g = map(Function, ['f', 'g']) >>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 + ... f(x).diff(x), f(x)) 2 >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x)) 2 >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x)) 3 """ a = Wild('a', exclude=[func]) if expr.match(a): return 0 if isinstance(expr, Derivative): if expr.args[0] == func: return len(expr.variables) else: order = 0 for arg in expr.args[0].args: order = max(order, ode_order(arg, func) + len(expr.variables)) return order else: order = 0 for arg in expr.args: order = max(order, ode_order(arg, func)) return order def _desolve(eq, func=None, hint="default", ics=None, simplify=True, **kwargs): """This is a helper function to dsolve and pdsolve in the ode and pde modules. If the hint provided to the function is "default", then a dict with the following keys are returned 'func' - It provides the function for which the differential equation has to be solved. This is useful when the expression has more than one function in it. 'default' - The default key as returned by classifier functions in ode and pde.py 'hint' - The hint given by the user for which the differential equation is to be solved. If the hint given by the user is 'default', then the value of 'hint' and 'default' is the same. 'order' - The order of the function as returned by ode_order 'match' - It returns the match as given by the classifier functions, for the default hint. If the hint provided to the function is not "default" and is not in ('all', 'all_Integral', 'best'), then a dict with the above mentioned keys is returned along with the keys which are returned when dict in classify_ode or classify_pde is set True If the hint given is in ('all', 'all_Integral', 'best'), then this function returns a nested dict, with the keys, being the set of classified hints returned by classifier functions, and the values being the dict of form as mentioned above. Key 'eq' is a common key to all the above mentioned hints which returns an expression if eq given by user is an Equality. See Also ======== classify_ode(ode.py) classify_pde(pde.py) """ prep = kwargs.pop('prep', True) if isinstance(eq, Equality): eq = eq.lhs - eq.rhs # preprocess the equation and find func if not given if prep or func is None: eq, func = _preprocess(eq, func) prep = False # type is an argument passed by the solve functions in ode and pde.py # that identifies whether the function caller is an ordinary # or partial differential equation. Accordingly corresponding # changes are made in the function. type = kwargs.get('type', None) xi = kwargs.get('xi') eta = kwargs.get('eta') x0 = kwargs.get('x0', 0) terms = kwargs.get('n') if type == 'ode': from sympy.solvers.ode import classify_ode, allhints classifier = classify_ode string = 'ODE ' dummy = '' elif type == 'pde': from sympy.solvers.pde import classify_pde, allhints classifier = classify_pde string = 'PDE ' dummy = 'p' # Magic that should only be used internally. Prevents classify_ode from # being called more than it needs to be by passing its results through # recursive calls. if kwargs.get('classify', True): hints = classifier(eq, func, dict=True, ics=ics, xi=xi, eta=eta, n=terms, x0=x0, prep=prep) else: # Here is what all this means: # # hint: The hint method given to _desolve() by the user. # hints: The dictionary of hints that match the DE, along with other # information (including the internal pass-through magic). # default: The default hint to return, the first hint from allhints # that matches the hint; obtained from classify_ode(). # match: Dictionary containing the match dictionary for each hint # (the parts of the DE for solving). When going through the # hints in "all", this holds the match string for the current # hint. # order: The order of the DE, as determined by ode_order(). hints = kwargs.get('hint', {'default': hint, hint: kwargs['match'], 'order': kwargs['order']}) if not hints['default']: # classify_ode will set hints['default'] to None if no hints match. if hint not in allhints and hint != 'default': raise ValueError("Hint not recognized: " + hint) elif hint not in hints['ordered_hints'] and hint != 'default': raise ValueError(string + str(eq) + " does not match hint " + hint) # If dsolve can't solve the purely algebraic equation then dsolve will raise # ValueError elif hints['order'] == 0: raise ValueError( str(eq) + " is not a solvable differential equation in " + str(func)) else: raise NotImplementedError(dummy + "solve" + ": Cannot solve " + str(eq)) if hint == 'default': return _desolve(eq, func, ics=ics, hint=hints['default'], simplify=simplify, prep=prep, x0=x0, classify=False, order=hints['order'], match=hints[hints['default']], xi=xi, eta=eta, n=terms, type=type) elif hint in ('all', 'all_Integral', 'best'): retdict = {} gethints = set(hints) - set(['order', 'default', 'ordered_hints']) if hint == 'all_Integral': for i in hints: if i.endswith('_Integral'): gethints.remove(i[:-len('_Integral')]) # special cases for k in ["1st_homogeneous_coeff_best", "1st_power_series", "lie_group", "2nd_power_series_ordinary", "2nd_power_series_regular"]: if k in gethints: gethints.remove(k) for i in gethints: sol = _desolve(eq, func, ics=ics, hint=i, x0=x0, simplify=simplify, prep=prep, classify=False, n=terms, order=hints['order'], match=hints[i], type=type) retdict[i] = sol retdict['all'] = True retdict['eq'] = eq return retdict elif hint not in allhints: # and hint not in ('default', 'ordered_hints'): raise ValueError("Hint not recognized: " + hint) elif hint not in hints: raise ValueError(string + str(eq) + " does not match hint " + hint) else: # Key added to identify the hint needed to solve the equation hints['hint'] = hint hints.update({'func': func, 'eq': eq}) return hints
9032d0cc7e42329b6af732e184da89f52c7ec8911a467ed2f3bfdd0aa844695b
"""Tools for solving inequalities and systems of inequalities. """ from __future__ import print_function, division from sympy.core import Symbol, Dummy, sympify from sympy.core.compatibility import iterable from sympy.core.exprtools import factor_terms from sympy.core.relational import Relational, Eq, Ge, Lt from sympy.sets import Interval from sympy.sets.sets import FiniteSet, Union, EmptySet, Intersection from sympy.core.singleton import S from sympy.core.function import expand_mul from sympy.functions import Abs from sympy.logic import And from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr from sympy.polys.polyutils import _nsort from sympy.utilities.iterables import sift from sympy.utilities.misc import filldedent def solve_poly_inequality(poly, rel): """Solve a polynomial inequality with rational coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> from sympy.solvers.inequalities import solve_poly_inequality >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==') [{0}] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=') [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==') [{-1}, {1}] See Also ======== solve_poly_inequalities """ if not isinstance(poly, Poly): raise ValueError( 'For efficiency reasons, `poly` should be a Poly instance') if poly.is_number: t = Relational(poly.as_expr(), 0, rel) if t is S.true: return [S.Reals] elif t is S.false: return [S.EmptySet] else: raise NotImplementedError( "could not determine truth value of %s" % t) reals, intervals = poly.real_roots(multiple=False), [] if rel == '==': for root, _ in reals: interval = Interval(root, root) intervals.append(interval) elif rel == '!=': left = S.NegativeInfinity for right, _ in reals + [(S.Infinity, 1)]: interval = Interval(left, right, True, True) intervals.append(interval) left = right else: if poly.LC() > 0: sign = +1 else: sign = -1 eq_sign, equal = None, False if rel == '>': eq_sign = +1 elif rel == '<': eq_sign = -1 elif rel == '>=': eq_sign, equal = +1, True elif rel == '<=': eq_sign, equal = -1, True else: raise ValueError("'%s' is not a valid relation" % rel) right, right_open = S.Infinity, True for left, multiplicity in reversed(reals): if multiplicity % 2: if sign == eq_sign: intervals.insert( 0, Interval(left, right, not equal, right_open)) sign, right, right_open = -sign, left, not equal else: if sign == eq_sign and not equal: intervals.insert( 0, Interval(left, right, True, right_open)) right, right_open = left, True elif sign != eq_sign and equal: intervals.insert(0, Interval(left, left)) if sign == eq_sign: intervals.insert( 0, Interval(S.NegativeInfinity, right, True, right_open)) return intervals def solve_poly_inequalities(polys): """Solve polynomial inequalities with rational coefficients. Examples ======== >>> from sympy.solvers.inequalities import solve_poly_inequalities >>> from sympy.polys import Poly >>> from sympy.abc import x >>> solve_poly_inequalities((( ... Poly(x**2 - 3), ">"), ( ... Poly(-x**2 + 1), ">"))) Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo)) """ from sympy import Union return Union(*[s for p in polys for s in solve_poly_inequality(*p)]) def solve_rational_inequalities(eqs): """Solve a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy.abc import x >>> from sympy import Poly >>> from sympy.solvers.inequalities import solve_rational_inequalities >>> solve_rational_inequalities([[ ... ((Poly(-x + 1), Poly(1, x)), '>='), ... ((Poly(-x + 1), Poly(1, x)), '<=')]]) {1} >>> solve_rational_inequalities([[ ... ((Poly(x), Poly(1, x)), '!='), ... ((Poly(-x + 1), Poly(1, x)), '>=')]]) Union(Interval.open(-oo, 0), Interval.Lopen(0, 1)) See Also ======== solve_poly_inequality """ result = S.EmptySet for _eqs in eqs: if not _eqs: continue global_intervals = [Interval(S.NegativeInfinity, S.Infinity)] for (numer, denom), rel in _eqs: numer_intervals = solve_poly_inequality(numer*denom, rel) denom_intervals = solve_poly_inequality(denom, '==') intervals = [] for numer_interval in numer_intervals: for global_interval in global_intervals: interval = numer_interval.intersect(global_interval) if interval is not S.EmptySet: intervals.append(interval) global_intervals = intervals intervals = [] for global_interval in global_intervals: for denom_interval in denom_intervals: global_interval -= denom_interval if global_interval is not S.EmptySet: intervals.append(global_interval) global_intervals = intervals if not global_intervals: break for interval in global_intervals: result = result.union(interval) return result def reduce_rational_inequalities(exprs, gen, relational=True): """Reduce a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy import Poly, Symbol >>> from sympy.solvers.inequalities import reduce_rational_inequalities >>> x = Symbol('x', real=True) >>> reduce_rational_inequalities([[x**2 <= 0]], x) Eq(x, 0) >>> reduce_rational_inequalities([[x + 2 > 0]], x) -2 < x >>> reduce_rational_inequalities([[(x + 2, ">")]], x) -2 < x >>> reduce_rational_inequalities([[x + 2]], x) Eq(x, -2) This function find the non-infinite solution set so if the unknown symbol is declared as extended real rather than real then the result may include finiteness conditions: >>> y = Symbol('y', extended_real=True) >>> reduce_rational_inequalities([[y + 2 > 0]], y) (-2 < y) & (y < oo) """ exact = True eqs = [] solution = S.Reals if exprs else S.EmptySet for _exprs in exprs: _eqs = [] for expr in _exprs: if isinstance(expr, tuple): expr, rel = expr else: if expr.is_Relational: expr, rel = expr.lhs - expr.rhs, expr.rel_op else: expr, rel = expr, '==' if expr is S.true: numer, denom, rel = S.Zero, S.One, '==' elif expr is S.false: numer, denom, rel = S.One, S.One, '==' else: numer, denom = expr.together().as_numer_denom() try: (numer, denom), opt = parallel_poly_from_expr( (numer, denom), gen) except PolynomialError: raise PolynomialError(filldedent(''' only polynomials and rational functions are supported in this context. ''')) if not opt.domain.is_Exact: numer, denom, exact = numer.to_exact(), denom.to_exact(), False domain = opt.domain.get_exact() if not (domain.is_ZZ or domain.is_QQ): expr = numer/denom expr = Relational(expr, 0, rel) solution &= solve_univariate_inequality(expr, gen, relational=False) else: _eqs.append(((numer, denom), rel)) if _eqs: eqs.append(_eqs) if eqs: solution &= solve_rational_inequalities(eqs) exclude = solve_rational_inequalities([[((d, d.one), '==') for i in eqs for ((n, d), _) in i if d.has(gen)]]) solution -= exclude if not exact and solution: solution = solution.evalf() if relational: solution = solution.as_relational(gen) return solution def reduce_abs_inequality(expr, rel, gen): """Reduce an inequality with nested absolute values. Examples ======== >>> from sympy import Abs, Symbol >>> from sympy.solvers.inequalities import reduce_abs_inequality >>> x = Symbol('x', real=True) >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x) (2 < x) & (x < 8) >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x) (-19/3 < x) & (x < 7/3) See Also ======== reduce_abs_inequalities """ if gen.is_extended_real is False: raise TypeError(filldedent(''' can't solve inequalities with absolute values containing non-real variables. ''')) def _bottom_up_scan(expr): exprs = [] if expr.is_Add or expr.is_Mul: op = expr.func for arg in expr.args: _exprs = _bottom_up_scan(arg) if not exprs: exprs = _exprs else: args = [] for expr, conds in exprs: for _expr, _conds in _exprs: args.append((op(expr, _expr), conds + _conds)) exprs = args elif expr.is_Pow: n = expr.exp if not n.is_Integer: raise ValueError("Only Integer Powers are allowed on Abs.") _exprs = _bottom_up_scan(expr.base) for expr, conds in _exprs: exprs.append((expr**n, conds)) elif isinstance(expr, Abs): _exprs = _bottom_up_scan(expr.args[0]) for expr, conds in _exprs: exprs.append(( expr, conds + [Ge(expr, 0)])) exprs.append((-expr, conds + [Lt(expr, 0)])) else: exprs = [(expr, [])] return exprs exprs = _bottom_up_scan(expr) mapping = {'<': '>', '<=': '>='} inequalities = [] for expr, conds in exprs: if rel not in mapping.keys(): expr = Relational( expr, 0, rel) else: expr = Relational(-expr, 0, mapping[rel]) inequalities.append([expr] + conds) return reduce_rational_inequalities(inequalities, gen) def reduce_abs_inequalities(exprs, gen): """Reduce a system of inequalities with nested absolute values. Examples ======== >>> from sympy import Abs, Symbol >>> from sympy.abc import x >>> from sympy.solvers.inequalities import reduce_abs_inequalities >>> x = Symbol('x', extended_real=True) >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'), ... (Abs(x + 25) - 13, '>')], x) (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo))) >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x) (1/2 < x) & (x < 4) See Also ======== reduce_abs_inequality """ return And(*[ reduce_abs_inequality(expr, rel, gen) for expr, rel in exprs ]) def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False): """Solves a real univariate inequality. Parameters ========== expr : Relational The target inequality gen : Symbol The variable for which the inequality is solved relational : bool A Relational type output is expected or not domain : Set The domain over which the equation is solved continuous: bool True if expr is known to be continuous over the given domain (and so continuous_domain() doesn't need to be called on it) Raises ====== NotImplementedError The solution of the inequality cannot be determined due to limitation in `solvify`. Notes ===== Currently, we cannot solve all the inequalities due to limitations in `solvify`. Also, the solution returned for trigonometric inequalities are restricted in its periodic interval. See Also ======== solvify: solver returning solveset solutions with solve's output API Examples ======== >>> from sympy.solvers.inequalities import solve_univariate_inequality >>> from sympy import Symbol, sin, Interval, S >>> x = Symbol('x') >>> solve_univariate_inequality(x**2 >= 4, x) ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x)) >>> solve_univariate_inequality(x**2 >= 4, x, relational=False) Union(Interval(-oo, -2), Interval(2, oo)) >>> domain = Interval(0, S.Infinity) >>> solve_univariate_inequality(x**2 >= 4, x, False, domain) Interval(2, oo) >>> solve_univariate_inequality(sin(x) > 0, x, relational=False) Interval.open(0, pi) """ from sympy import im from sympy.calculus.util import (continuous_domain, periodicity, function_range) from sympy.solvers.solvers import denoms from sympy.solvers.solveset import solvify, solveset # This keeps the function independent of the assumptions about `gen`. # `solveset` makes sure this function is called only when the domain is # real. _gen = gen _domain = domain if gen.is_extended_real is False: rv = S.EmptySet return rv if not relational else rv.as_relational(_gen) elif gen.is_extended_real is None: gen = Dummy('gen', extended_real=True) try: expr = expr.xreplace({_gen: gen}) except TypeError: raise TypeError(filldedent(''' When gen is real, the relational has a complex part which leads to an invalid comparison like I < 0. ''')) rv = None if expr is S.true: rv = domain elif expr is S.false: rv = S.EmptySet else: e = expr.lhs - expr.rhs period = periodicity(e, gen) if period is S.Zero: e = expand_mul(e) const = expr.func(e, 0) if const is S.true: rv = domain elif const is S.false: rv = S.EmptySet elif period is not None: frange = function_range(e, gen, domain) rel = expr.rel_op if rel == '<' or rel == '<=': if expr.func(frange.sup, 0): rv = domain elif not expr.func(frange.inf, 0): rv = S.EmptySet elif rel == '>' or rel == '>=': if expr.func(frange.inf, 0): rv = domain elif not expr.func(frange.sup, 0): rv = S.EmptySet inf, sup = domain.inf, domain.sup if sup - inf is S.Infinity: domain = Interval(0, period, False, True) if rv is None: n, d = e.as_numer_denom() try: if gen not in n.free_symbols and len(e.free_symbols) > 1: raise ValueError # this might raise ValueError on its own # or it might give None... solns = solvify(e, gen, domain) if solns is None: # in which case we raise ValueError raise ValueError except (ValueError, NotImplementedError): # replace gen with generic x since it's # univariate anyway raise NotImplementedError(filldedent(''' The inequality, %s, cannot be solved using solve_univariate_inequality. ''' % expr.subs(gen, Symbol('x')))) expanded_e = expand_mul(e) def valid(x): # this is used to see if gen=x satisfies the # relational by substituting it into the # expanded form and testing against 0, e.g. # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2 # and expanded_e = x**2 + x - 2; the test is # whether a given value of x satisfies # x**2 + x - 2 < 0 # # expanded_e, expr and gen used from enclosing scope v = expanded_e.subs(gen, expand_mul(x)) try: r = expr.func(v, 0) except TypeError: r = S.false if r in (S.true, S.false): return r if v.is_extended_real is False: return S.false else: v = v.n(2) if v.is_comparable: return expr.func(v, 0) # not comparable or couldn't be evaluated raise NotImplementedError( 'relationship did not evaluate: %s' % r) singularities = [] for d in denoms(expr, gen): singularities.extend(solvify(d, gen, domain)) if not continuous: domain = continuous_domain(expanded_e, gen, domain) include_x = '=' in expr.rel_op and expr.rel_op != '!=' try: discontinuities = set(domain.boundary - FiniteSet(domain.inf, domain.sup)) # remove points that are not between inf and sup of domain critical_points = FiniteSet(*(solns + singularities + list( discontinuities))).intersection( Interval(domain.inf, domain.sup, domain.inf not in domain, domain.sup not in domain)) if all(r.is_number for r in critical_points): reals = _nsort(critical_points, separated=True)[0] else: sifted = sift(critical_points, lambda x: x.is_extended_real) if sifted[None]: # there were some roots that weren't known # to be real raise NotImplementedError try: reals = sifted[True] if len(reals) > 1: reals = list(sorted(reals)) except TypeError: raise NotImplementedError except NotImplementedError: raise NotImplementedError('sorting of these roots is not supported') # If expr contains imaginary coefficients, only take real # values of x for which the imaginary part is 0 make_real = S.Reals if im(expanded_e) != S.Zero: check = True im_sol = FiniteSet() try: a = solveset(im(expanded_e), gen, domain) if not isinstance(a, Interval): for z in a: if z not in singularities and valid(z) and z.is_extended_real: im_sol += FiniteSet(z) else: start, end = a.inf, a.sup for z in _nsort(critical_points + FiniteSet(end)): valid_start = valid(start) if start != end: valid_z = valid(z) pt = _pt(start, z) if pt not in singularities and pt.is_extended_real and valid(pt): if valid_start and valid_z: im_sol += Interval(start, z) elif valid_start: im_sol += Interval.Ropen(start, z) elif valid_z: im_sol += Interval.Lopen(start, z) else: im_sol += Interval.open(start, z) start = z for s in singularities: im_sol -= FiniteSet(s) except (TypeError): im_sol = S.Reals check = False if isinstance(im_sol, EmptySet): raise ValueError(filldedent(''' %s contains imaginary parts which cannot be made 0 for any value of %s satisfying the inequality, leading to relations like I < 0. ''' % (expr.subs(gen, _gen), _gen))) make_real = make_real.intersect(im_sol) sol_sets = [S.EmptySet] start = domain.inf if valid(start) and start.is_finite: sol_sets.append(FiniteSet(start)) for x in reals: end = x if valid(_pt(start, end)): sol_sets.append(Interval(start, end, True, True)) if x in singularities: singularities.remove(x) else: if x in discontinuities: discontinuities.remove(x) _valid = valid(x) else: # it's a solution _valid = include_x if _valid: sol_sets.append(FiniteSet(x)) start = end end = domain.sup if valid(end) and end.is_finite: sol_sets.append(FiniteSet(end)) if valid(_pt(start, end)): sol_sets.append(Interval.open(start, end)) if im(expanded_e) != S.Zero and check: rv = (make_real).intersect(_domain) else: rv = Intersection( (Union(*sol_sets)), make_real, _domain).subs(gen, _gen) return rv if not relational else rv.as_relational(_gen) def _pt(start, end): """Return a point between start and end""" if not start.is_infinite and not end.is_infinite: pt = (start + end)/2 elif start.is_infinite and end.is_infinite: pt = S.Zero else: if (start.is_infinite and start.is_extended_positive is None or end.is_infinite and end.is_extended_positive is None): raise ValueError('cannot proceed with unsigned infinite values') if (end.is_infinite and end.is_extended_negative or start.is_infinite and start.is_extended_positive): start, end = end, start # if possible, use a multiple of self which has # better behavior when checking assumptions than # an expression obtained by adding or subtracting 1 if end.is_infinite: if start.is_extended_positive: pt = start*2 elif start.is_extended_negative: pt = start*S.Half else: pt = start + 1 elif start.is_infinite: if end.is_extended_positive: pt = end*S.Half elif end.is_extended_negative: pt = end*2 else: pt = end - 1 return pt def _solve_inequality(ie, s, linear=False): """Return the inequality with s isolated on the left, if possible. If the relationship is non-linear, a solution involving And or Or may be returned. False or True are returned if the relationship is never True or always True, respectively. If `linear` is True (default is False) an `s`-dependent expression will be isolated on the left, if possible but it will not be solved for `s` unless the expression is linear in `s`. Furthermore, only "safe" operations which don't change the sense of the relationship are applied: no division by an unsigned value is attempted unless the relationship involves Eq or Ne and no division by a value not known to be nonzero is ever attempted. Examples ======== >>> from sympy import Eq, Symbol >>> from sympy.solvers.inequalities import _solve_inequality as f >>> from sympy.abc import x, y For linear expressions, the symbol can be isolated: >>> f(x - 2 < 0, x) x < 2 >>> f(-x - 6 < x, x) x > -3 Sometimes nonlinear relationships will be False >>> f(x**2 + 4 < 0, x) False Or they may involve more than one region of values: >>> f(x**2 - 4 < 0, x) (-2 < x) & (x < 2) To restrict the solution to a relational, set linear=True and only the x-dependent portion will be isolated on the left: >>> f(x**2 - 4 < 0, x, linear=True) x**2 < 4 Division of only nonzero quantities is allowed, so x cannot be isolated by dividing by y: >>> y.is_nonzero is None # it is unknown whether it is 0 or not True >>> f(x*y < 1, x) x*y < 1 And while an equality (or inequality) still holds after dividing by a non-zero quantity >>> nz = Symbol('nz', nonzero=True) >>> f(Eq(x*nz, 1), x) Eq(x, 1/nz) the sign must be known for other inequalities involving > or <: >>> f(x*nz <= 1, x) nz*x <= 1 >>> p = Symbol('p', positive=True) >>> f(x*p <= 1, x) x <= 1/p When there are denominators in the original expression that are removed by expansion, conditions for them will be returned as part of the result: >>> f(x < x*(2/x - 1), x) (x < 1) & Ne(x, 0) """ from sympy.solvers.solvers import denoms if s not in ie.free_symbols: return ie if ie.rhs == s: ie = ie.reversed if ie.lhs == s and s not in ie.rhs.free_symbols: return ie def classify(ie, s, i): # return True or False if ie evaluates when substituting s with # i else None (if unevaluated) or NaN (when there is an error # in evaluating) try: v = ie.subs(s, i) if v is S.NaN: return v elif v not in (True, False): return return v except TypeError: return S.NaN rv = None oo = S.Infinity expr = ie.lhs - ie.rhs try: p = Poly(expr, s) if p.degree() == 0: rv = ie.func(p.as_expr(), 0) elif not linear and p.degree() > 1: # handle in except clause raise NotImplementedError except (PolynomialError, NotImplementedError): if not linear: try: rv = reduce_rational_inequalities([[ie]], s) except PolynomialError: rv = solve_univariate_inequality(ie, s) # remove restrictions wrt +/-oo that may have been # applied when using sets to simplify the relationship okoo = classify(ie, s, oo) if okoo is S.true and classify(rv, s, oo) is S.false: rv = rv.subs(s < oo, True) oknoo = classify(ie, s, -oo) if (oknoo is S.true and classify(rv, s, -oo) is S.false): rv = rv.subs(-oo < s, True) rv = rv.subs(s > -oo, True) if rv is S.true: rv = (s <= oo) if okoo is S.true else (s < oo) if oknoo is not S.true: rv = And(-oo < s, rv) else: p = Poly(expr) conds = [] if rv is None: e = p.as_expr() # this is in expanded form # Do a safe inversion of e, moving non-s terms # to the rhs and dividing by a nonzero factor if # the relational is Eq/Ne; for other relationals # the sign must also be positive or negative rhs = 0 b, ax = e.as_independent(s, as_Add=True) e -= b rhs -= b ef = factor_terms(e) a, e = ef.as_independent(s, as_Add=False) if (a.is_zero != False or # don't divide by potential 0 a.is_negative == a.is_positive is None and # if sign is not known then ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne e = ef a = S.One rhs /= a if a.is_positive: rv = ie.func(e, rhs) else: rv = ie.reversed.func(e, rhs) # return conditions under which the value is # valid, too. beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs) current_denoms = denoms(rv) for d in beginning_denoms - current_denoms: c = _solve_inequality(Eq(d, 0), s, linear=linear) if isinstance(c, Eq) and c.lhs == s: if classify(rv, s, c.rhs) is S.true: # rv is permitting this value but it shouldn't conds.append(~c) for i in (-oo, oo): if (classify(rv, s, i) is S.true and classify(ie, s, i) is not S.true): conds.append(s < i if i is oo else i < s) conds.append(rv) return And(*conds) def _reduce_inequalities(inequalities, symbols): # helper for reduce_inequalities poly_part, abs_part = {}, {} other = [] for inequality in inequalities: expr, rel = inequality.lhs, inequality.rel_op # rhs is 0 # check for gens using atoms which is more strict than free_symbols to # guard against EX domain which won't be handled by # reduce_rational_inequalities gens = expr.atoms(Symbol) if len(gens) == 1: gen = gens.pop() else: common = expr.free_symbols & symbols if len(common) == 1: gen = common.pop() other.append(_solve_inequality(Relational(expr, 0, rel), gen)) continue else: raise NotImplementedError(filldedent(''' inequality has more than one symbol of interest. ''')) if expr.is_polynomial(gen): poly_part.setdefault(gen, []).append((expr, rel)) else: components = expr.find(lambda u: u.has(gen) and ( u.is_Function or u.is_Pow and not u.exp.is_Integer)) if components and all(isinstance(i, Abs) for i in components): abs_part.setdefault(gen, []).append((expr, rel)) else: other.append(_solve_inequality(Relational(expr, 0, rel), gen)) poly_reduced = [] abs_reduced = [] for gen, exprs in poly_part.items(): poly_reduced.append(reduce_rational_inequalities([exprs], gen)) for gen, exprs in abs_part.items(): abs_reduced.append(reduce_abs_inequalities(exprs, gen)) return And(*(poly_reduced + abs_reduced + other)) def reduce_inequalities(inequalities, symbols=[]): """Reduce a system of inequalities with rational coefficients. Examples ======== >>> from sympy import sympify as S, Symbol >>> from sympy.abc import x, y >>> from sympy.solvers.inequalities import reduce_inequalities >>> reduce_inequalities(0 <= x + 3, []) (-3 <= x) & (x < oo) >>> reduce_inequalities(0 <= x + y*2 - 1, [x]) (x < oo) & (x >= 1 - 2*y) """ if not iterable(inequalities): inequalities = [inequalities] inequalities = [sympify(i) for i in inequalities] gens = set().union(*[i.free_symbols for i in inequalities]) if not iterable(symbols): symbols = [symbols] symbols = (set(symbols) or gens) & gens if any(i.is_extended_real is False for i in symbols): raise TypeError(filldedent(''' inequalities cannot contain symbols that are not real. ''')) # make vanilla symbol real recast = {i: Dummy(i.name, extended_real=True) for i in gens if i.is_extended_real is None} inequalities = [i.xreplace(recast) for i in inequalities] symbols = {i.xreplace(recast) for i in symbols} # prefilter keep = [] for i in inequalities: if isinstance(i, Relational): i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0) elif i not in (True, False): i = Eq(i, 0) if i == True: continue elif i == False: return S.false if i.lhs.is_number: raise NotImplementedError( "could not determine truth value of %s" % i) keep.append(i) inequalities = keep del keep # solve system rv = _reduce_inequalities(inequalities, symbols) # restore original symbols and return return rv.xreplace({v: k for k, v in recast.items()})
7a785e0f66c708908f794551f1bea52a8c94735773bbac9ae7c003afcd8fcbb0
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.compatibility import as_int, is_sequence, range from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.numbers import igcdex, ilcm, igcd from sympy.core.power import integer_nthroot, isqrt from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.ntheory.factor_ import ( divisors, factorint, multiplicity, perfect_power) from sympy.ntheory.generate import nextprime from sympy.ntheory.primetest import is_square, isprime from sympy.ntheory.residue_ntheory import sqrt_mod from sympy.polys.polyerrors import GeneratorsNeeded from sympy.polys.polytools import Poly, factor_list from sympy.simplify.simplify import signsimp from sympy.solvers.solvers import check_assumptions from sympy.solvers.solveset import solveset_real from sympy.utilities import default_sort_key, numbered_symbols from sympy.utilities.misc import filldedent # these are imported with 'from sympy.solvers.diophantine import * __all__ = ['diophantine', 'classify_diop'] # these types are known (but not necessarily handled) diop_known = { "binary_quadratic", "cubic_thue", "general_pythagorean", "general_sum_of_even_powers", "general_sum_of_squares", "homogeneous_general_quadratic", "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal", "inhomogeneous_general_quadratic", "inhomogeneous_ternary_quadratic", "linear", "univariate"} def _is_int(i): try: as_int(i) return True except ValueError: pass def _sorted_tuple(*i): return tuple(sorted(i)) def _remove_gcd(*x): try: g = igcd(*x) except ValueError: fx = list(filter(None, x)) if len(fx) < 2: return x g = igcd(*[i.as_content_primitive()[0] for i in fx]) except TypeError: raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') if g == 1: return x return tuple([i//g for i in x]) def _rational_pq(a, b): # return `(numer, denom)` for a/b; sign in numer and gcd removed return _remove_gcd(sign(b)*a, abs(b)) def _nint_or_floor(p, q): # return nearest int to p/q; in case of tie return floor(p/q) w, r = divmod(p, q) if abs(r) <= abs(q)//2: return w return w + 1 def _odd(i): return i % 2 != 0 def _even(i): return i % 2 == 0 def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Usage ===== ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError, AttributeError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ 'general_sum_of_squares', 'general_sum_of_even_powers'] permute_signs_check = [ 'homogeneous_ternary_quadratic', 'homogeneous_ternary_quadratic_normal', 'binary_quadratic'] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): terms = factor_list(eq)[1] sols = set([]) for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ "linear", "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal", "general_pythagorean"]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ "binary_quadratic", "general_sum_of_squares", "general_sum_of_even_powers", "univariate"]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)) is S.Zero: sols.add(null) final_soln = set([]) for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln def merge_solution(var, var_t, solution): """ This is used to construct the full solution from the solutions of sub equations. For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But we should introduce a value for z when we output the solution for the original equation. This function converts `(t, t)` into `(t, t, n_{1})` where `n_{1}` is an integer parameter. """ sol = [] if None in solution: return () solution = iter(solution) params = numbered_symbols("n", integer=True, start=1) for v in var: if v in var_t: sol.append(next(solution)) else: sol.append(next(params)) for val, symb in zip(sol, var): if check_assumptions(val, **symb.assumptions0) is False: return tuple() return tuple(sol) def diop_solve(eq, param=symbols("t", integer=True)): """ Solves the diophantine equation ``eq``. Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses ``classify_diop()`` to determine the type of the equation and calls the appropriate solver function. Use of ``diophantine()`` is recommended over other helper functions. ``diop_solve()`` can return either a set or a tuple depending on the nature of the equation. Usage ===== ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` as a parameter if needed. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is a parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_solve >>> from sympy.abc import x, y, z, w >>> diop_solve(2*x + 3*y - 5) (3*t_0 - 5, 5 - 2*t_0) >>> diop_solve(4*x + 3*y - 4*z + 5) (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) >>> diop_solve(x + 3*y - 4*z + w - 6) (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) >>> diop_solve(x**2 + y**2 - 5) {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} See Also ======== diophantine() """ var, coeff, eq_type = classify_diop(eq, _dict=False) if eq_type == "linear": return _diop_linear(var, coeff, param) elif eq_type == "binary_quadratic": return _diop_quadratic(var, coeff, param) elif eq_type == "homogeneous_ternary_quadratic": x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) elif eq_type == "homogeneous_ternary_quadratic_normal": x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) elif eq_type == "general_pythagorean": return _diop_general_pythagorean(var, coeff, param) elif eq_type == "univariate": return set([(int(i),) for i in solveset_real( eq, var[0]).intersect(S.Integers)]) elif eq_type == "general_sum_of_squares": return _diop_general_sum_of_squares(var, -int(coeff[1]), limit=S.Infinity) elif eq_type == "general_sum_of_even_powers": for k in coeff.keys(): if k.is_Pow and coeff[k]: p = k.exp return _diop_general_sum_of_even_powers(var, p, -int(coeff[1]), limit=S.Infinity) if eq_type is not None and eq_type not in diop_known: raise ValueError(filldedent(''' Alhough this type of equation was identified, it is not yet handled. It should, however, be listed in `diop_known` at the top of this file. Developers should see comments at the end of `classify_diop`. ''')) # pragma: no cover else: raise NotImplementedError( 'No solver has been written for %s.' % eq_type) def classify_diop(eq, _dict=True): # docstring supplied externally try: var = list(eq.free_symbols) assert var except (AttributeError, AssertionError): raise ValueError('equation should have 1 or more free symbols') var.sort(key=default_sort_key) eq = eq.expand(force=True) coeff = eq.as_coefficients_dict() if not all(_is_int(c) for c in coeff.values()): raise TypeError("Coefficients should be Integers") diop_type = None total_degree = Poly(eq).total_degree() homogeneous = 1 not in coeff if total_degree == 1: diop_type = "linear" elif len(var) == 1: diop_type = "univariate" elif total_degree == 2 and len(var) == 2: diop_type = "binary_quadratic" elif total_degree == 2 and len(var) == 3 and homogeneous: if set(coeff) & set(var): diop_type = "inhomogeneous_ternary_quadratic" else: nonzero = [k for k in coeff if coeff[k]] if len(nonzero) == 3 and all(i**2 in nonzero for i in var): diop_type = "homogeneous_ternary_quadratic_normal" else: diop_type = "homogeneous_ternary_quadratic" elif total_degree == 2 and len(var) >= 3: if set(coeff) & set(var): diop_type = "inhomogeneous_general_quadratic" else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in coeff): # cross terms if not homogeneous: diop_type = "inhomogeneous_general_quadratic" else: diop_type = "homogeneous_general_quadratic" else: # all squares: x**2 + y**2 + ... + constant if all(coeff[k] == 1 for k in coeff if k != 1): diop_type = "general_sum_of_squares" elif all(is_square(abs(coeff[k])) for k in coeff): if abs(sum(sign(coeff[k]) for k in coeff)) == \ len(var) - 2: # all but one has the same sign # e.g. 4*x**2 + y**2 - 4*z**2 diop_type = "general_pythagorean" elif total_degree == 3 and len(var) == 2: diop_type = "cubic_thue" elif (total_degree > 3 and total_degree % 2 == 0 and all(k.is_Pow and k.exp == total_degree for k in coeff if k != 1)): if all(coeff[k] == 1 for k in coeff if k != 1): diop_type = 'general_sum_of_even_powers' if diop_type is not None: return var, dict(coeff) if _dict else coeff, diop_type # new diop type instructions # -------------------------- # if this error raises and the equation *can* be classified, # * it should be identified in the if-block above # * the type should be added to the diop_known # if a solver can be written for it, # * a dedicated handler should be written (e.g. diop_linear) # * it should be passed to that handler in diop_solve raise NotImplementedError(filldedent(''' This equation is not yet recognized or else has not been simplified sufficiently to put it in a form recognized by diop_classify().''')) classify_diop.func_doc = ''' Helper routine used by diop_solve() to find information about ``eq``. Returns a tuple containing the type of the diophantine equation along with the variables (free symbols) and their coefficients. Variables are returned as a list and coefficients are returned as a dict with the key being the respective term and the constant term is keyed to 1. The type is one of the following: * %s Usage ===== ``classify_diop(eq)``: Return variables, coefficients and type of the ``eq``. Details ======= ``eq`` should be an expression which is assumed to be zero. ``_dict`` is for internal use: when True (default) a dict is returned, otherwise a defaultdict which supplies 0 for missing keys is returned. Examples ======== >>> from sympy.solvers.diophantine import classify_diop >>> from sympy.abc import x, y, z, w, t >>> classify_diop(4*x + 6*y - 4) ([x, y], {1: -4, x: 4, y: 6}, 'linear') >>> classify_diop(x + 3*y -4*z + 5) ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') >>> classify_diop(x**2 + y**2 - x*y + x + 5) ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') ''' % ('\n * '.join(sorted(diop_known))) def diop_linear(eq, param=symbols("t", integer=True)): """ Solves linear diophantine equations. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Usage ===== ``diop_linear(eq)``: Returns a tuple containing solutions to the diophantine equation ``eq``. Values in the tuple is arranged in the same order as the sorted variables. Details ======= ``eq`` is a linear diophantine equation which is assumed to be zero. ``param`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_linear >>> from sympy.abc import x, y, z, t >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 (3*t_0 - 5, 2*t_0 - 5) Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> diop_linear(2*x - 3*y - 4*z -3) (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) See Also ======== diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), diop_general_sum_of_squares() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "linear": return _diop_linear(var, coeff, param) def _diop_linear(var, coeff, param): """ Solves diophantine equations of the form: a_0*x_0 + a_1*x_1 + ... + a_n*x_n == c Note that no solution exists if gcd(a_0, ..., a_n) doesn't divide c. """ if 1 in coeff: # negate coeff[] because input is of the form: ax + by + c == 0 # but is used as: ax + by == -c c = -coeff[1] else: c = 0 # Some solutions will have multiple free variables in their solutions. if param is None: params = [symbols('t')]*len(var) else: temp = str(param) + "_%i" params = [symbols(temp % i, integer=True) for i in range(len(var))] if len(var) == 1: q, r = divmod(c, coeff[var[0]]) if not r: return (q,) else: return (None,) ''' base_solution_linear() can solve diophantine equations of the form: a*x + b*y == c We break down multivariate linear diophantine equations into a series of bivariate linear diophantine equations which can then be solved individually by base_solution_linear(). Consider the following: a_0*x_0 + a_1*x_1 + a_2*x_2 == c which can be re-written as: a_0*x_0 + g_0*y_0 == c where g_0 == gcd(a_1, a_2) and y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 This leaves us with two binary linear diophantine equations. For the first equation: a == a_0 b == g_0 c == c For the second: a == a_1/g_0 b == a_2/g_0 c == the solution we find for y_0 in the first equation. The arrays A and B are the arrays of integers used for 'a' and 'b' in each of the n-1 bivariate equations we solve. ''' A = [coeff[v] for v in var] B = [] if len(var) > 2: B.append(igcd(A[-2], A[-1])) A[-2] = A[-2] // B[0] A[-1] = A[-1] // B[0] for i in range(len(A) - 3, 0, -1): gcd = igcd(B[0], A[i]) B[0] = B[0] // gcd A[i] = A[i] // gcd B.insert(0, gcd) B.append(A[-1]) ''' Consider the trivariate linear equation: 4*x_0 + 6*x_1 + 3*x_2 == 2 This can be re-written as: 4*x_0 + 3*y_0 == 2 where y_0 == 2*x_1 + x_2 (Note that gcd(3, 6) == 3) The complete integral solution to this equation is: x_0 == 2 + 3*t_0 y_0 == -2 - 4*t_0 where 't_0' is any integer. Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 2*x_1 + x_2 == -2 - 4*t_0 We can then solve for '-2' and '-4' independently, and combine the results: 2*x_1a + x_2a == -2 x_1a == 0 + t_0 x_2a == -2 - 2*t_0 2*x_1b + x_2b == -4*t_0 x_1b == 0*t_0 + t_1 x_2b == -4*t_0 - 2*t_1 ==> x_1 == t_0 + t_1 x_2 == -2 - 6*t_0 - 2*t_1 where 't_0' and 't_1' are any integers. Note that: 4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 for any integral values of 't_0', 't_1'; as required. This method is generalised for many variables, below. ''' solutions = [] for i in range(len(B)): tot_x, tot_y = [], [] for j, arg in enumerate(Add.make_args(c)): if arg.is_Integer: # example: 5 -> k = 5 k, p = arg, S.One pnew = params[0] else: # arg is a Mul or Symbol # example: 3*t_1 -> k = 3 # example: t_0 -> k = 1 k, p = arg.as_coeff_Mul() pnew = params[params.index(p) + 1] sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew) if p is S.One: if None in sol: return tuple([None]*len(var)) else: # convert a + b*pnew -> a*p + b*pnew if isinstance(sol_x, Add): sol_x = sol_x.args[0]*p + sol_x.args[1] if isinstance(sol_y, Add): sol_y = sol_y.args[0]*p + sol_y.args[1] tot_x.append(sol_x) tot_y.append(sol_y) solutions.append(Add(*tot_x)) c = Add(*tot_y) solutions.append(c) if param is None: # just keep the additive constant (i.e. replace t with 0) solutions = [i.as_coeff_Add()[0] for i in solutions] return tuple(solutions) def base_solution_linear(c, a, b, t=None): """ Return the base solution for the linear equation, `ax + by = c`. Used by ``diop_linear()`` to find the base solution of a linear Diophantine equation. If ``t`` is given then the parametrized solution is returned. Usage ===== ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients in `ax + by = c` and ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import base_solution_linear >>> from sympy.abc import t >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 (-5, 5) >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 (0, 0) >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 (3*t - 5, 5 - 2*t) >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 (7*t, -5*t) """ a, b, c = _remove_gcd(a, b, c) if c == 0: if t is not None: if b < 0: t = -t return (b*t , -a*t) else: return (0, 0) else: x0, y0, d = igcdex(abs(a), abs(b)) x0 *= sign(a) y0 *= sign(b) if divisible(c, d): if t is not None: if b < 0: t = -t return (c*x0 + b*t, c*y0 - a*t) else: return (c*x0, c*y0) else: return (None, None) def divisible(a, b): """ Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. """ return not a % b def diop_quadratic(eq, param=symbols("t", integer=True)): """ Solves quadratic diophantine equations. i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a set containing the tuples `(x, y)` which contains the solutions. If there are no solutions then `(None, None)` is returned. Usage ===== ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine equation. ``param`` is used to indicate the parameter to be used in the solution. Details ======= ``eq`` should be an expression which is assumed to be zero. ``param`` is a parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, t >>> from sympy.solvers.diophantine import diop_quadratic >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: http://www.jpr2718.org/ax2p.pdf See Also ======== diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), diop_general_pythagorean() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _diop_quadratic(var, coeff, param) def _diop_quadratic(var, coeff, t): x, y = var A = coeff[x**2] B = coeff[x*y] C = coeff[y**2] D = coeff[x] E = coeff[y] F = coeff[1] A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] # (1) Simple-Hyperbolic case: A = C = 0, B != 0 # In this case equation can be converted to (Bx + E)(By + D) = DE - BF # We consider two cases; DE - BF = 0 and DE - BF != 0 # More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb sol = set([]) discr = B**2 - 4*A*C if A == 0 and C == 0 and B != 0: if D*E - B*F == 0: q, r = divmod(E, B) if not r: sol.add((-q, t)) q, r = divmod(D, B) if not r: sol.add((t, -q)) else: div = divisors(D*E - B*F) div = div + [-term for term in div] for d in div: x0, r = divmod(d - E, B) if not r: q, r = divmod(D*E - B*F, d) if not r: y0, r = divmod(q - D, B) if not r: sol.add((x0, y0)) # (2) Parabolic case: B**2 - 4*A*C = 0 # There are two subcases to be considered in this case. # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 # More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol elif discr == 0: if A == 0: s = _diop_quadratic([y, x], coeff, t) for soln in s: sol.add((soln[1], soln[0])) else: g = sign(A)*igcd(A, C) a = A // g c = C // g e = sign(B/A) sqa = isqrt(a) sqc = isqrt(c) _c = e*sqc*D - sqa*E if not _c: z = symbols("z", real=True) eq = sqa*g*z**2 + D*z + sqa*F roots = solveset_real(eq, z).intersect(S.Integers) for root in roots: ans = diop_solve(sqa*x + e*sqc*y - root) sol.add((ans[0], ans[1])) elif _is_int(c): solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t\ - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ + (sqa*g*u**2 + D*u + sqa*F) // _c for z0 in range(0, abs(_c)): # Check if the coefficients of y and x obtained are integers or not if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and divisible(e*sqc**g*z0**2 + E*z0 + e*sqc*F, _c)): sol.add((solve_x(z0), solve_y(z0))) # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper # by John P. Robertson. # http://www.jpr2718.org/ax2p.pdf elif is_square(discr): if A != 0: r = sqrt(discr) u, v = symbols("u, v", integer=True) eq = _mexpand( 4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 2*A*4*A*E*(u - v) + 4*A*r*4*A*F) solution = diop_solve(eq, t) for s0, t0 in solution: num = B*t0 + r*s0 + r*t0 - B*s0 x_0 = S(num)/(4*A*r) y_0 = S(s0 - t0)/(2*r) if isinstance(s0, Symbol) or isinstance(t0, Symbol): if check_param(x_0, y_0, 4*A*r, t) != (None, None): ans = check_param(x_0, y_0, 4*A*r, t) sol.add((ans[0], ans[1])) elif x_0.is_Integer and y_0.is_Integer: if is_solution_quad(var, coeff, x_0, y_0): sol.add((x_0, y_0)) else: s = _diop_quadratic(var[::-1], coeff, t) # Interchange x and y while s: # | sol.add(s.pop()[::-1]) # and solution <--------+ # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 else: P, Q = _transformation_to_DN(var, coeff) D, N = _find_DN(var, coeff) solns_pell = diop_DN(D, N) if D < 0: for x0, y0 in solns_pell: for x in [-x0, x0]: for y in [-y0, y0]: s = P*Matrix([x, y]) + Q try: sol.add(tuple([as_int(_) for _ in s])) except ValueError: pass else: # In this case equation can be transformed into a Pell equation solns_pell = set(solns_pell) for X, Y in list(solns_pell): solns_pell.add((-X, -Y)) a = diop_DN(D, 1) T = a[0][0] U = a[0][1] if all(_is_int(_) for _ in P[:4] + Q[:2]): for r, s in solns_pell: _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t x_n = _mexpand(S(_a + _b)/2) y_n = _mexpand(S(_a - _b)/(2*sqrt(D))) s = P*Matrix([x_n, y_n]) + Q sol.add(tuple(s)) else: L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) k = 1 T_k = T U_k = U while (T_k - 1) % L != 0 or U_k % L != 0: T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T k += 1 for X, Y in solns_pell: for i in range(k): if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t Xt = S(_a + _b)/2 Yt = S(_a - _b)/(2*sqrt(D)) s = P*Matrix([Xt, Yt]) + Q sol.add(tuple(s)) X, Y = X*T + D*U*Y, X*U + Y*T return sol def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0 def diop_DN(D, N, t=symbols("t", integer=True)): """ Solves the equation `x^2 - Dy^2 = N`. Mainly concerned with the case `D > 0, D` is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [1]_ is used to solve this equation. Returns one solution tuple, (`x, y)` for each class of the solutions. Other solutions of the class can be constructed according to the values of ``D`` and ``N``. Usage ===== ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine import diop_DN >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 [(3, 1), (393, 109), (36, 10)] The output can be interpreted as follows: There are three fundamental solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means that `x = 3` and `y = 1`. >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 [(49299, 1570)] See Also ======== find_DN(), diop_bf_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Pages 16 - 17. [online], Available: http://www.jpr2718.org/pell.pdf """ if D < 0: if N == 0: return [(0, 0)] elif N < 0: return [] elif N > 0: sol = [] for d in divisors(square_factor(N)): sols = cornacchia(1, -D, N // d**2) if sols: for x, y in sols: sol.append((d*x, d*y)) if D == -1: sol.append((d*y, d*x)) return sol elif D == 0: if N < 0: return [] if N == 0: return [(0, t)] sN, _exact = integer_nthroot(N, 2) if _exact: return [(sN, t)] else: return [] else: # D > 0 sD, _exact = integer_nthroot(D, 2) if _exact: if N == 0: return [(sD*t, t)] else: sol = [] for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): try: sq, _exact = integer_nthroot(D*y**2 + N, 2) except ValueError: _exact = False if _exact: sol.append((sq, y)) return sol elif 1 < N**2 < D: # It is much faster to call `_special_diop_DN`. return _special_diop_DN(D, N) else: if N == 0: return [(0, 0)] elif abs(N) == 1: pqa = PQa(0, 1, D) j = 0 G = [] B = [] for i in pqa: a = i[2] G.append(i[5]) B.append(i[4]) if j != 0 and a == 2*sD: break j = j + 1 if _odd(j): if N == -1: x = G[j - 1] y = B[j - 1] else: count = j while count < 2*j - 1: i = next(pqa) G.append(i[5]) B.append(i[4]) count += 1 x = G[count] y = B[count] else: if N == 1: x = G[j - 1] y = B[j - 1] else: return [] return [(x, y)] else: fs = [] sol = [] div = divisors(N) for d in div: if divisible(N, d**2): fs.append(d) for f in fs: m = N // f**2 zs = sqrt_mod(D, abs(m), all_roots=True) zs = [i for i in zs if i <= abs(m) // 2 ] if abs(m) != 2: zs = zs + [-i for i in zs if i] # omit dupl 0 for z in zs: pqa = PQa(z, abs(m), D) j = 0 G = [] B = [] for i in pqa: G.append(i[5]) B.append(i[4]) if j != 0 and abs(i[1]) == 1: r = G[j-1] s = B[j-1] if r**2 - D*s**2 == m: sol.append((f*r, f*s)) elif diop_DN(D, -1) != []: a = diop_DN(D, -1) sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) break j = j + 1 if j == length(z, abs(m), D): break return sol def _special_diop_DN(D, N): """ Solves the equation `x^2 - Dy^2 = N` for the special case where `1 < N**2 < D` and `D` is not a perfect square. It is better to call `diop_DN` rather than this function, as the former checks the condition `1 < N**2 < D`, and calls the latter only if appropriate. Usage ===== WARNING: Internal method. Do not call directly! ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. Details ======= ``D`` and ``N`` correspond to D and N in the equation. Examples ======== >>> from sympy.solvers.diophantine import _special_diop_DN >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 [(7, 2), (137, 38)] The output can be interpreted as follows: There are two fundamental solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means that `x = 7` and `y = 2`. >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 [(445, 9), (17625560, 356454), (698095554475, 14118073569)] See Also ======== diop_DN() References ========== .. [1] Section 4.4.4 of the following book: Quadratic Diophantine Equations, T. Andreescu and D. Andrica, Springer, 2015. """ # The following assertion was removed for efficiency, with the understanding # that this method is not called directly. The parent method, `diop_DN` # is responsible for performing the appropriate checks. # # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) sqrt_D = sqrt(D) F = [(N, 1)] f = 2 while True: f2 = f**2 if f2 > abs(N): break n, r = divmod(N, f2) if r == 0: F.append((n, f)) f += 1 P = 0 Q = 1 G0, G1 = 0, 1 B0, B1 = 1, 0 solutions = [] i = 0 while True: a = floor((P + sqrt_D) / Q) P = a*Q - P Q = (D - P**2) // Q G2 = a*G1 + G0 B2 = a*B1 + B0 for n, f in F: if G2**2 - D*B2**2 == n: solutions.append((f*G2, f*B2)) i += 1 if Q == 1 and i % 2 == 0: break G0, G1 = G1, G2 B0, B1 = B1, B2 return solutions def cornacchia(a, b, m): r""" Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to find the solutions of `x^2 + y^2 = 20` since the only solution to former is `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the solutions with `x \leq y` are found. For more details, see the References. Examples ======== >>> from sympy.solvers.diophantine import cornacchia >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 {(2, 3), (4, 1)} >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 {(4, 3)} References =========== .. [1] A. Nitaj, "L'algorithme de Cornacchia" .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html See Also ======== sympy.utilities.iterables.signed_permutations """ sols = set() a1 = igcdex(a, m)[0] v = sqrt_mod(-b*a1, m, all_roots=True) if not v: return None for t in v: if t < m // 2: continue u, r = t, m while True: u, r = r, u % r if a*r**2 < m: break m1 = m - a*r**2 if m1 % b == 0: m1 = m1 // b s, _exact = integer_nthroot(m1, 2) if _exact: if a == b and r < s: r, s = s, r sols.add((int(r), int(s))) return sols def PQa(P_0, Q_0, D): r""" Returns useful information needed to solve the Pell equation. There are six sequences of integers defined related to the continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns these values as a 6-tuple in the same order as mentioned above. Refer [1]_ for more detailed information. Usage ===== ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding to `P_{0}`, `Q_{0}` and `D` in the continued fraction `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. Examples ======== >>> from sympy.solvers.diophantine import PQa >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) (13, 4, 3, 3, 1, -1) >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) (-1, 1, 1, 4, 1, 3) References ========== .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf """ A_i_2 = B_i_1 = 0 A_i_1 = B_i_2 = 1 G_i_2 = -P_0 G_i_1 = Q_0 P_i = P_0 Q_i = Q_0 while True: a_i = floor((P_i + sqrt(D))/Q_i) A_i = a_i*A_i_1 + A_i_2 B_i = a_i*B_i_1 + B_i_2 G_i = a_i*G_i_1 + G_i_2 yield P_i, Q_i, a_i, A_i, B_i, G_i A_i_1, A_i_2 = A_i, A_i_1 B_i_1, B_i_2 = B_i, B_i_1 G_i_1, G_i_2 = G_i, G_i_1 P_i = a_i*Q_i - P_i Q_i = (D - P_i**2)/Q_i def diop_bf_DN(D, N, t=symbols("t", integer=True)): r""" Uses brute force to solve the equation, `x^2 - Dy^2 = N`. Mainly concerned with the generalized Pell equation which is the case when `D > 0, D` is not a perfect square. For more information on the case refer [1]_. Let `(t, u)` be the minimal positive solution of the equation `x^2 - Dy^2 = 1`. Then this method requires `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. Usage ===== ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine import diop_bf_DN >>> diop_bf_DN(13, -4) [(3, 1), (-3, 1), (36, 10)] >>> diop_bf_DN(986, 1) [(49299, 1570)] See Also ======== diop_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf """ D = as_int(D) N = as_int(N) sol = [] a = diop_DN(D, 1) u = a[0][0] if abs(N) == 1: return diop_DN(D, N) elif N > 1: L1 = 0 L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 elif N < -1: L1, _exact = integer_nthroot(-int(N/D), 2) if not _exact: L1 += 1 L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 else: # N = 0 if D < 0: return [(0, 0)] elif D == 0: return [(0, t)] else: sD, _exact = integer_nthroot(D, 2) if _exact: return [(sD*t, t), (-sD*t, t)] else: return [(0, 0)] for y in range(L1, L2): try: x, _exact = integer_nthroot(N + D*y**2, 2) except ValueError: _exact = False if _exact: sol.append((x, y)) if not equivalent(x, y, -x, y, D, N): sol.append((-x, y)) return sol def equivalent(u, v, r, s, D, N): """ Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` belongs to the same equivalence class and False otherwise. Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by `N`. See reference [1]_. No test is performed to test whether `(u, v)` and `(r, s)` are actually solutions to the equation. User should take care of this. Usage ===== ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. Examples ======== >>> from sympy.solvers.diophantine import equivalent >>> equivalent(18, 5, -18, -5, 13, -1) True >>> equivalent(3, 1, -18, 393, 109, -4) False References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf """ return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) def length(P, Q, D): r""" Returns the (length of aperiodic part + length of periodic part) of continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. It is important to remember that this does NOT return the length of the periodic part but the sum of the lengths of the two parts as mentioned above. Usage ===== ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to the continued fraction `\\frac{P + \sqrt{D}}{Q}`. Details ======= ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, `\\frac{P + \sqrt{D}}{Q}`. Examples ======== >>> from sympy.solvers.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 See Also ======== sympy.ntheory.continued_fraction.continued_fraction_periodic """ from sympy.ntheory.continued_fraction import continued_fraction_periodic v = continued_fraction_periodic(P, Q, D) if type(v[-1]) is list: rpt = len(v[-1]) nonrpt = len(v) - 1 else: rpt = 0 nonrpt = len(v) return rpt + nonrpt def transformation_to_DN(eq): """ This function transforms general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0` to more easy to deal with `X^2 - DY^2 = N` form. This is used to solve the general quadratic equation by transforming it to the latter form. Refer [1]_ for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that, Transpose([x y]) = A * Transpose([X Y]) + B Usage ===== ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine import transformation_to_DN >>> from sympy.solvers.diophantine import classify_diop >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) >>> A Matrix([ [1/26, 3/26], [ 0, 1/13]]) >>> B Matrix([ [-6/13], [-4/13]]) A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for `x` and `y` and a bit of simplifying work will give an equation of the form `x^2 - Dy^2 = N`. >>> from sympy.abc import X, Y >>> from sympy import Matrix, simplify >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x >>> u X/26 + 3*Y/26 - 6/13 >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y >>> v Y/13 - 4/13 Next we will substitute these formulas for `x` and `y` and do ``simplify()``. >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) >>> eq X**2/676 - Y**2/52 + 17/13 By multiplying the denominator appropriately, we can get a Pell equation in the standard form. >>> eq * 676 X**2 - 13*Y**2 + 884 If only the final equation is needed, ``find_DN()`` can be used. See Also ======== find_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _transformation_to_DN(var, coeff) def _transformation_to_DN(var, coeff): x, y = var a = coeff[x**2] b = coeff[x*y] c = coeff[y**2] d = coeff[x] e = coeff[y] f = coeff[1] a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] X, Y = symbols("X, Y", integer=True) if b: B, C = _rational_pq(2*a, b) A, T = _rational_pq(a, B**2) # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S(1)/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S(1)/B, -S(C)/B, 0, 1])*B_0 else: if d: B, C = _rational_pq(2*a, d) A, T = _rational_pq(a, B**2) # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S(1)/B, 0, 0, 1])*A_0, Matrix(2, 2, [S(1)/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) else: if e: B, C = _rational_pq(2*c, e) A, T = _rational_pq(c, B**2) # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [1, 0, 0, S(1)/B])*A_0, Matrix(2, 2, [1, 0, 0, S(1)/B])*B_0 + Matrix([0, -S(C)/B]) else: # TODO: pre-simplification: Not necessary but may simplify # the equation. return Matrix(2, 2, [S(1)/a, 0, 0, 1]), Matrix([0, 0]) def find_DN(eq): """ This function returns a tuple, `(D, N)` of the simplified form, `x^2 - Dy^2 = N`, corresponding to the general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0`. Solving the general quadratic is then equivalent to solving the equation `X^2 - DY^2 = N` and transforming the solutions by using the transformation matrices returned by ``transformation_to_DN()``. Usage ===== ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine import find_DN >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) (13, -884) Interpretation of the output is that we get `X^2 -13Y^2 = -884` after transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned by ``transformation_to_DN()``. See Also ======== transformation_to_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _find_DN(var, coeff) def _find_DN(var, coeff): x, y = var X, Y = symbols("X, Y", integer=True) A, B = _transformation_to_DN(var, coeff) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) coeff = simplified.as_coefficients_dict() return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] def check_param(x, y, a, t): """ If there is a number modulo ``a`` such that ``x`` and ``y`` are both integers, then return a parametric representation for ``x`` and ``y`` else return (None, None). Here ``x`` and ``y`` are functions of ``t``. """ from sympy.simplify.simplify import clear_coefficients if x.is_number and not x.is_Integer: return (None, None) if y.is_number and not y.is_Integer: return (None, None) m, n = symbols("m, n", integer=True) c, p = (m*x + n*y).as_content_primitive() if a % c.q: return (None, None) # clear_coefficients(mx + b, R)[1] -> (R - b)/m eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] junk, eq = eq.as_content_primitive() return diop_solve(eq, t) def diop_ternary_quadratic(eq): """ Solves the general quadratic ternary form, `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Returns a tuple `(x, y, z)` which is a base solution for the above equation. If there are no solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution to ``eq``. Details ======= ``eq`` should be an homogeneous expression of degree two in three variables and it is assumed to be zero. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import diop_ternary_quadratic >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) (28, 45, 105) >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) (9, 1, 5) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _diop_ternary_quadratic(var, coeff) def _diop_ternary_quadratic(_var, coeff): x, y, z = _var var = [x, y, z] # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the # coefficients A, B, C are non-zero. # There are infinitely many solutions for the equation. # Ex: (0, 0, t), (0, t, 0), (t, 0, 0) # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by # using methods for binary quadratic diophantine equations. Let's select the # solution which minimizes |x| + |z| if not any(coeff[i**2] for i in var): if coeff[x*z]: sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) s = sols.pop() min_sum = abs(s[0]) + abs(s[1]) for r in sols: m = abs(r[0]) + abs(r[1]) if m < min_sum: s = r min_sum = m x_0, y_0, z_0 = _remove_gcd(s[0], -coeff[x*z], s[1]) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) return x_0, y_0, z_0 if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) else: if coeff[x*y] or coeff[x*z]: # Apply the transformation x --> X - (B*y + C*z)/(2*A) A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 x_0, y_0, z_0 = _diop_ternary_quadratic(var, _coeff) if x_0 is None: return (None, None, None) p, q = _rational_pq(B*y_0 + C*z_0, 2*A) x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q elif coeff[z*y] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. A = coeff[x**2] E = coeff[y*z] b, a = _rational_pq(-E, A) x_0, y_0, z_0 = b, a, b else: # Ax**2 + E*y*z + F*z**2 = 0 var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) else: # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) return _remove_gcd(x_0, y_0, z_0) def transformation_to_normal(eq): """ Returns the transformation Matrix that converts a general ternary quadratic equation `eq` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is not used in solving ternary quadratics; it is only implemented for the sake of completeness. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _transformation_to_normal(var, coeff) def _transformation_to_normal(var, coeff): _var = list(var) # copy x, y, z = var if not any(coeff[i**2] for i in var): # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 a = coeff[x*y] b = coeff[y*z] c = coeff[x*z] swap = False if not a: # b can't be 0 or else there aren't 3 vars swap = True a, b = b, a T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) if swap: T.row_swap(0, 1) T.col_swap(0, 1) return T if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T # Apply the transformation x --> X - (B*Y + C*Z)/(2*A) if coeff[x*y] != 0 or coeff[x*z] != 0: A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 T_0 = _transformation_to_normal(_var, _coeff) return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 elif coeff[y*z] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. # Apply transformation y -> Y + Z ans z -> Y - Z return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) else: # Ax**2 + E*y*z + F*z**2 = 0 _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T else: return Matrix.eye(3) def parametrize_ternary_quadratic(eq): """ Returns the parametrized general solution for the ternary quadratic equation ``eq`` which has the form `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Examples ======== >>> from sympy import Tuple, ordered >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import parametrize_ternary_quadratic The parametrized solution may be returned with three parameters: >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2) (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r) There might also be only two parameters: >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2) (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2) Notes ===== Consider ``p`` and ``q`` in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If `p` and ``q`` are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when ``p`` and ``q`` are coprime: >>> sol = Tuple(*_) >>> p, q = ordered(sol.free_symbols) >>> sol.subs([(p, 3), (q, 2)]) (6, 12, 12) >>> sol.subs([(q, 1), (p, 1)]) (-1, 2, 2) >>> sol.subs([(q, 0), (p, 1)]) (2, -4, 4) >>> sol.subs([(q, 1), (p, 0)]) (-3, -6, 6) Except for sign and a common factor, these are equivalent to the solution of (1, 2, 2). References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) def _parametrize_ternary_quadratic(solution, _var, coeff): # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 assert 1 not in coeff x_0, y_0, z_0 = solution v = list(_var) # copy if x_0 is None: return (None, None, None) if solution.count(0) >= 2: # if there are 2 zeros the equation reduces # to k*X**2 == 0 where X is x, y, or z so X must # be zero, too. So there is only the trivial # solution. return (None, None, None) if x_0 == 0: v[0], v[1] = v[1], v[0] y_p, x_p, z_p = _parametrize_ternary_quadratic( (y_0, x_0, z_0), v, coeff) return x_p, y_p, z_p x, y, z = v r, p, q = symbols("r, p, q", integer=True) eq = sum(k*v for k, v in coeff.items()) eq_1 = _mexpand(eq.subs(zip( (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) A, B = eq_1.as_independent(r, as_Add=True) x = A*x_0 y = (A*y_0 - _mexpand(B/r*p)) z = (A*z_0 - _mexpand(B/r*q)) return _remove_gcd(x, y, z) def diop_ternary_quadratic_normal(eq): """ Solves the quadratic ternary diophantine equation, `ax^2 + by^2 + cz^2 = 0`. Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple `(x, y, z)` that satisfies the given equation. If the equation does not have integer solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form `ax^2 + by^2 + cz^2 = 0`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import diop_ternary_quadratic_normal >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) (4, 9, 1) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "homogeneous_ternary_quadratic_normal": return _diop_ternary_quadratic_normal(var, coeff) def _diop_ternary_quadratic_normal(var, coeff): x, y, z = var a = coeff[x**2] b = coeff[y**2] c = coeff[z**2] try: assert len([k for k in coeff if coeff[k]]) == 3 assert all(coeff[i**2] for i in var) except AssertionError: raise ValueError(filldedent(''' coeff dict is not consistent with assumption of this routine: coefficients should be those of an expression in the form a*x**2 + b*y**2 + c*z**2 where a*b*c != 0.''')) (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ sqf_normal(a, b, c, steps=True) A = -a_2*c_2 B = -b_2*c_2 # If following two conditions are satisfied then there are no solutions if A < 0 and B < 0: return (None, None, None) if ( sqrt_mod(-b_2*c_2, a_2) is None or sqrt_mod(-c_2*a_2, b_2) is None or sqrt_mod(-a_2*b_2, c_2) is None): return (None, None, None) z_0, x_0, y_0 = descent(A, B) z_0, q = _rational_pq(z_0, abs(c_2)) x_0 *= q y_0 *= q x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) # Holzer reduction if sign(a) == sign(b): x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) elif sign(a) == sign(c): x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) else: y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) x_0 = reconstruct(b_1, c_1, x_0) y_0 = reconstruct(a_1, c_1, y_0) z_0 = reconstruct(a_1, b_1, z_0) sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) x_0 = abs(x_0*sq_lcm//sqf_of_a) y_0 = abs(y_0*sq_lcm//sqf_of_b) z_0 = abs(z_0*sq_lcm//sqf_of_c) return _remove_gcd(x_0, y_0, z_0) def sqf_normal(a, b, c, steps=False): """ Return `a', b', c'`, the coefficients of the square-free normal form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise prime. If `steps` is True then also return three tuples: `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; `sqf` contains the values of `a`, `b` and `c` after removing both the `gcd(a, b, c)` and the square factors. The solutions for `ax^2 + by^2 + cz^2 = 0` can be recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine import sqf_normal >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) (11, 1, 5) >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) ((3, 1, 7), (5, 55, 11), (11, 1, 5)) References ========== .. [1] Legendre's Theorem, Legrange's Descent, http://public.csusm.edu/aitken_html/notes/legendre.pdf See Also ======== reconstruct() """ ABC = _remove_gcd(a, b, c) sq = tuple(square_factor(i) for i in ABC) sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) pc = igcd(A, B) A /= pc B /= pc pa = igcd(B, C) B /= pa C /= pa pb = igcd(A, C) A /= pb B /= pb A *= pa B *= pb C *= pc if steps: return (sq, sqf, (A, B, C)) else: return A, B, C def square_factor(a): r""" Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square free. `a` can be given as an integer or a dictionary of factors. Examples ======== >>> from sympy.solvers.diophantine import square_factor >>> square_factor(24) 2 >>> square_factor(-36*3) 6 >>> square_factor(1) 1 >>> square_factor({3: 2, 2: 1, -1: 1}) # -18 3 See Also ======== sympy.ntheory.factor_.core """ f = a if isinstance(a, dict) else factorint(a) return Mul(*[p**(e//2) for p, e in f.items()]) def reconstruct(A, B, z): """ Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` from the `z` value of a solution of the square-free normal form of the equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square free and `gcd(a', b', c') == 1`. """ f = factorint(igcd(A, B)) for p, e in f.items(): if e != 1: raise ValueError('a and b should be square-free') z *= p return z def ldescent(A, B): """ Return a non-trivial solution to `w^2 = Ax^2 + By^2` using Lagrange's method; return None if there is no such solution. . Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a tuple `(w_0, x_0, y_0)` which is a solution to the above equation. Examples ======== >>> from sympy.solvers.diophantine import ldescent >>> ldescent(1, 1) # w^2 = x^2 + y^2 (1, 1, 0) >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 (2, -1, 0) This means that `x = -1, y = 0` and `w = 2` is a solution to the equation `w^2 = 4x^2 - 7y^2` >>> ldescent(5, -1) # w^2 = 5x^2 - y^2 (2, 1, -1) References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, [online], Available: http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf """ if abs(A) > abs(B): w, y, x = ldescent(B, A) return w, x, y if A == 1: return (1, 1, 0) if B == 1: return (1, 0, 1) if B == -1: # and A == -1 return r = sqrt_mod(A, B) Q = (r**2 - A) // B if Q == 0: B_0 = 1 d = 0 else: div = divisors(Q) B_0 = None for i in div: sQ, _exact = integer_nthroot(abs(Q) // i, 2) if _exact: B_0, d = sign(Q)*i, sQ break if B_0 is not None: W, X, Y = ldescent(A, B_0) return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) def descent(A, B): """ Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` using Lagrange's descent method with lattice-reduction. `A` and `B` are assumed to be valid for such a solution to exist. This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used. Examples ======== >>> from sympy.solvers.diophantine import descent >>> descent(3, 1) # x**2 = 3*y**2 + z**2 (1, 0, 1) `(x, y, z) = (1, 0, 1)` is a solution to the above equation. >>> descent(41, -113) (-16, -3, 1) References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ if abs(A) > abs(B): x, y, z = descent(B, A) return x, z, y if B == 1: return (1, 0, 1) if A == 1: return (1, 1, 0) if B == -A: return (0, 1, 1) if B == A: x, z, y = descent(-1, A) return (A*y, z, x) w = sqrt_mod(A, B) x_0, z_0 = gaussian_reduce(w, A, B) t = (x_0**2 - A*z_0**2) // B t_2 = square_factor(t) t_1 = t // t_2**2 x_1, z_1, y_1 = descent(A, t_1) return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) def gaussian_reduce(w, a, b): r""" Returns a reduced solution `(x, z)` to the congruence `X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. Details ======= Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` References ========== .. [1] Gaussian lattice Reduction [online]. Available: http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ u = (0, 1) v = (1, 0) if dot(u, v, w, a, b) < 0: v = (-v[0], -v[1]) if norm(u, w, a, b) < norm(v, w, a, b): u, v = v, u while norm(u, w, a, b) > norm(v, w, a, b): k = dot(u, v, w, a, b) // dot(v, v, w, a, b) u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) u, v = v, u if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): c = v else: c = (u[0] - v[0], u[1] - v[1]) return c[0]*w + b*c[1], c[0] def dot(u, v, w, a, b): r""" Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})` which is defined in order to reduce solution of the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. """ u_1, u_2 = u v_1, v_2 = v return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 def norm(u, w, a, b): r""" Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. """ u_1, u_2 = u return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) def holzer(x, y, z, a, b, c): r""" Simplify the solution `(x, y, z)` of the equation `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in reference [2]_. References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. .. [2] Diophantine Equations, L. J. Mordell, page 48. """ if _odd(c): k = 2*c else: k = c//2 small = a*b*c step = 0 while True: t1, t2, t3 = a*x**2, b*y**2, c*z**2 # check that it's a solution if t1 + t2 != t3: if step == 0: raise ValueError('bad starting solution') break x_0, y_0, z_0 = x, y, z if max(t1, t2, t3) <= small: # Holzer condition break uv = u, v = base_solution_linear(k, y_0, -x_0) if None in uv: break p, q = -(a*u*x_0 + b*v*y_0), c*z_0 r = Rational(p, q) if _even(c): w = _nint_or_floor(p, q) assert abs(w - r) <= S.Half else: w = p//q # floor if _odd(a*u + b*v + c*w): w += 1 assert abs(w - r) <= S.One A = (a*u**2 + b*v**2 + c*w**2) B = (a*u*x_0 + b*v*y_0 + c*w*z_0) x = Rational(x_0*A - 2*u*B, k) y = Rational(y_0*A - 2*v*B, k) z = Rational(z_0*A - 2*w*B, k) assert all(i.is_Integer for i in (x, y, z)) step += 1 return tuple([int(i) for i in (x_0, y_0, z_0)]) def diop_general_pythagorean(eq, param=symbols("m", integer=True)): """ Solves the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables. Usage ===== ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general pythagorean equation which is assumed to be zero and ``param`` is the base parameter used to construct other parameters by subscripting. Examples ======== >>> from sympy.solvers.diophantine import diop_general_pythagorean >>> from sympy.abc import a, b, c, d, e >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) (10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_pythagorean": return _diop_general_pythagorean(var, coeff, param) def _diop_general_pythagorean(var, coeff, t): if sign(coeff[var[0]**2]) + sign(coeff[var[1]**2]) + sign(coeff[var[2]**2]) < 0: for key in coeff.keys(): coeff[key] = -coeff[key] n = len(var) index = 0 for i, v in enumerate(var): if sign(coeff[v**2]) == -1: index = i m = symbols('%s1:%i' % (t, n), integer=True) ith = sum(m_i**2 for m_i in m) L = [ith - 2*m[n - 2]**2] L.extend([2*m[i]*m[n-2] for i in range(n - 2)]) sol = L[:index] + [ith] + L[index:] lcm = 1 for i, v in enumerate(var): if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): lcm = ilcm(lcm, sqrt(abs(coeff[v**2]))) else: s = sqrt(coeff[v**2]) lcm = ilcm(lcm, s if _odd(s) else s//2) for i, v in enumerate(var): sol[i] = (lcm*sol[i]) / sqrt(abs(coeff[v**2])) return tuple(sol) def diop_general_sum_of_squares(eq, limit=1): r""" Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine import diop_general_sum_of_squares >>> from sympy.abc import a, b, c, d, e, f >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) {(15, 22, 22, 24, 24)} Reference ========= .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_sum_of_squares": return _diop_general_sum_of_squares(var, -coeff[1], limit) def _diop_general_sum_of_squares(var, k, limit=1): # solves Eq(sum(i**2 for i in var), k) n = len(var) if n < 3: raise ValueError('n must be greater than 2') s = set() if k < 0 or limit < 1: return s sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in sum_of_squares(k, n, zeros=True): if negs: s.add(tuple([sign[i]*j for i, j in enumerate(t)])) else: s.add(t) took += 1 if took == limit: break return s def diop_general_sum_of_even_powers(eq, limit=1): """ Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. Examples ======== >>> from sympy.solvers.diophantine import diop_general_sum_of_even_powers >>> from sympy.abc import a, b >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) {(2, 3)} See Also ======== power_representation() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_sum_of_even_powers": for k in coeff.keys(): if k.is_Pow and coeff[k]: p = k.exp return _diop_general_sum_of_even_powers(var, p, -coeff[1], limit) def _diop_general_sum_of_even_powers(var, p, n, limit=1): # solves Eq(sum(i**2 for i in var), n) k = len(var) s = set() if n < 0 or limit < 1: return s sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in power_representation(n, p, k): if negs: s.add(tuple([sign[i]*j for i, j in enumerate(t)])) else: s.add(t) took += 1 if took == limit: break return s ## Functions below this comment can be more suitably grouped under ## an Additive number theory module rather than the Diophantine ## equation module. def partition(n, k=None, zeros=False): """ Returns a generator that can be used to generate partitions of an integer `n`. A partition of `n` is a set of positive integers which add up to `n`. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If ``k`` equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size ``k`` are returned. If the ``zero`` parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than ``k``. ``zero`` parameter is considered only if ``k`` is not None. When the partitions are over, the last `next()` call throws the ``StopIteration`` exception, so this function should always be used inside a try - except block. Details ======= ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size of the partition which is also positive integer. Examples ======== >>> from sympy.solvers.diophantine import partition >>> f = partition(5) >>> next(f) (1, 1, 1, 1, 1) >>> next(f) (1, 1, 1, 2) >>> g = partition(5, 3) >>> next(g) (1, 1, 3) >>> next(g) (1, 2, 2) >>> g = partition(5, 3, zeros=True) >>> next(g) (0, 0, 5) """ from sympy.utilities.iterables import ordered_partitions if not zeros or k is None: for i in ordered_partitions(n, k): yield tuple(i) else: for m in range(1, k + 1): for i in ordered_partitions(n, m): i = tuple(i) yield (0,)*(k - len(i)) + i def prime_as_sum_of_two_squares(p): """ Represent a prime `p` as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4. Examples ======== >>> from sympy.solvers.diophantine import prime_as_sum_of_two_squares >>> prime_as_sum_of_two_squares(7) # can't be done >>> prime_as_sum_of_two_squares(5) (1, 2) Reference ========= .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if not p % 4 == 1: return if p % 8 == 5: b = 2 else: b = 3 while pow(b, (p - 1) // 2, p) == 1: b = nextprime(b) b = pow(b, (p - 1) // 4, p) a = p while b**2 > p: a, b = b, a % b return (int(a % b), int(b)) # convert from long def sum_of_three_squares(n): r""" Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and `a, b, c \geq 0`. Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See [1]_ for more details. Usage ===== ``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine import sum_of_three_squares >>> sum_of_three_squares(44542) (18, 37, 207) References ========== .. [1] Representing a number as a sum of three squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)} v = 0 if n == 0: return (0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: return if n in special.keys(): x, y, z = special[n] return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) s, _exact = integer_nthroot(n, 2) if _exact: return (2**v*s, 0, 0) x = None if n % 8 == 3: s = s if _odd(s) else s - 1 for x in range(s, -1, -2): N = (n - x**2) // 2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) return if n % 8 == 2 or n % 8 == 6: s = s if _odd(s) else s - 1 else: s = s - 1 if _odd(s) else s for x in range(s, -1, -2): N = n - x**2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) def sum_of_four_squares(n): r""" Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. Here `a, b, c, d \geq 0`. Usage ===== ``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine import sum_of_four_squares >>> sum_of_four_squares(3456) (8, 8, 32, 48) >>> sum_of_four_squares(1294585930293) (0, 1234, 2161, 1137796) References ========== .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if n == 0: return (0, 0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: d = 2 n = n - 4 elif n % 8 == 6 or n % 8 == 2: d = 1 n = n - 1 else: d = 0 x, y, z = sum_of_three_squares(n) return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) def power_representation(n, p, k, zeros=False): """ Returns a generator for finding k-tuples of integers, `(n_{1}, n_{2}, . . . n_{k})`, such that `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. Usage ===== ``power_representation(n, p, k, zeros)``: Represent non-negative number ``n`` as a sum of ``k`` ``p``th powers. If ``zeros`` is true, then the solutions is allowed to contain zeros. Examples ======== >>> from sympy.solvers.diophantine import power_representation Represent 1729 as a sum of two cubes: >>> f = power_representation(1729, 3, 2) >>> next(f) (9, 10) >>> next(f) (1, 12) If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros: >>> list(power_representation(125, 2, 3, zeros=True)) [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] For even `p` the `permute_sign` function can be used to get all signed values: >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12)] All possible signed permutations can also be obtained: >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] """ n, p, k = [as_int(i) for i in (n, p, k)] if n < 0: if p % 2: for t in power_representation(-n, p, k, zeros): yield tuple(-i for i in t) return if p < 1 or k < 1: raise ValueError(filldedent(''' Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' % (p, k))) if n == 0: if zeros: yield (0,)*k return if k == 1: if p == 1: yield (n,) else: be = perfect_power(n) if be: b, e = be d, r = divmod(e, p) if not r: yield (b**d,) return if p == 1: for t in partition(n, k, zeros=zeros): yield t return if p == 2: feasible = _can_do_sum_of_squares(n, k) if not feasible: return if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 13, 10, 7, 5, 4, 2, 1): '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' return if feasible is not True: # it's prime and k == 2 yield prime_as_sum_of_two_squares(n) return if k == 2 and p > 2: be = perfect_power(n) if be and be[1] % p == 0: return # Fermat: a**n + b**n = c**n has no solution for n > 2 if n >= k: a = integer_nthroot(n - (k - 1), p)[0] for t in pow_rep_recursive(a, k, n, [], p): yield tuple(reversed(t)) if zeros: a = integer_nthroot(n, p)[0] for i in range(1, k): for t in pow_rep_recursive(a, i, n, [], p): yield tuple(reversed(t + (0,) * (k - i))) sum_of_powers = power_representation def pow_rep_recursive(n_i, k, n_remaining, terms, p): if k == 0 and n_remaining == 0: yield tuple(terms) else: if n_i >= 1 and k > 0: for t in pow_rep_recursive(n_i - 1, k, n_remaining, terms, p): yield t residual = n_remaining - pow(n_i, p) if residual >= 0: for t in pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p): yield t def sum_of_squares(n, k, zeros=False): """Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted. * If k == 1 and n is square, (n,) is returned. * If k == 2 then n can only be written as a sum of squares if every prime in the factorization of n that has the form 4*k + 3 has an even multiplicity. If n is prime then it can only be written as a sum of two squares if it is in the form 4*k + 1. * if k == 3 then n can be written as a sum of squares if it does not have the form 4**m*(8*k + 7). * all integers can be written as the sum of 4 squares. * if k > 4 then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if k = 6 then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares -- which can only be done if the condition above for k = 2 can be met, so this will automatically reject certain partitions of n. Examples ======== >>> from sympy.solvers.diophantine import sum_of_squares >>> list(sum_of_squares(25, 2)) [(3, 4)] >>> list(sum_of_squares(25, 2, True)) [(3, 4), (0, 5)] >>> list(sum_of_squares(25, 4)) [(1, 2, 2, 4)] See Also ======== sympy.utilities.iterables.signed_permutations """ for t in power_representation(n, 2, k, zeros): yield t def _can_do_sum_of_squares(n, k): """Return True if n can be written as the sum of k squares, False if it can't, or 1 if k == 2 and n is prime (in which case it *can* be written as a sum of two squares). A False is returned only if it can't be written as k-squares, even if 0s are allowed. """ if k < 1: return False if n < 0: return False if n == 0: return True if k == 1: return is_square(n) if k == 2: if n in (1, 2): return True if isprime(n): if n % 4 == 1: return 1 # signal that it was prime return False else: f = factorint(n) for p, m in f.items(): # we can proceed iff no prime factor in the form 4*k + 3 # has an odd multiplicity if (p % 4 == 3) and m % 2: return False return True if k == 3: if (n//4**multiplicity(4, n)) % 8 == 7: return False # every number can be written as a sum of 4 squares; for k > 4 partitions # can be 0 return True
8be04faa9a5a19226b52bd893f01c5cc641304f7e7214e5c1f184465fa1158bc
""" This module contain solvers for all kinds of equations: - algebraic or transcendental, use solve() - recurrence, use rsolve() - differential, use dsolve() - nonlinear (numerically), use nsolve() (you will need a good starting point) """ from __future__ import print_function, division from sympy import divisors from sympy.core.compatibility import (iterable, is_sequence, ordered, default_sort_key, range) from sympy.core.sympify import sympify from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul, Pow, Unequality) from sympy.core.exprtools import factor_terms from sympy.core.function import (expand_mul, expand_log, Derivative, AppliedUndef, UndefinedFunction, nfloat, Function, expand_power_exp, _mexpand, expand) from sympy.integrals.integrals import Integral from sympy.core.numbers import ilcm, Float, Rational from sympy.core.relational import Relational from sympy.core.logic import fuzzy_not, fuzzy_and from sympy.core.power import integer_log from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.core.basic import preorder_traversal from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan, Abs, re, im, arg, sqrt, atan2) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.simplify import (simplify, collect, powsimp, posify, powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction, separatevars) from sympy.simplify.sqrtdenest import sqrt_depth from sympy.simplify.fu import TR1 from sympy.matrices import Matrix, zeros from sympy.polys import roots, cancel, factor, Poly, degree from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise from sympy.utilities.lambdify import lambdify from sympy.utilities.misc import filldedent from sympy.utilities.iterables import uniq, generate_bell, flatten from sympy.utilities.decorator import conserve_mpmath_dps from mpmath import findroot from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import reduce_inequalities from types import GeneratorType from collections import defaultdict import warnings def recast_to_symbols(eqs, symbols): """Return (e, s, d) where e and s are versions of eqs and symbols in which any non-Symbol objects in symbols have been replaced with generic Dummy symbols and d is a dictionary that can be used to restore the original expressions. Examples ======== >>> from sympy.solvers.solvers import recast_to_symbols >>> from sympy import symbols, Function >>> x, y = symbols('x y') >>> fx = Function('f')(x) >>> eqs, syms = [fx + 1, x, y], [fx, y] >>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d) ([_X0 + 1, x, y], [_X0, y], {_X0: f(x)}) The original equations and symbols can be restored using d: >>> assert [i.xreplace(d) for i in eqs] == eqs >>> assert [d.get(i, i) for i in s] == syms """ if not iterable(eqs) and iterable(symbols): raise ValueError('Both eqs and symbols must be iterable') new_symbols = list(symbols) swap_sym = {} for i, s in enumerate(symbols): if not isinstance(s, Symbol) and s not in swap_sym: swap_sym[s] = Dummy('X%d' % i) new_symbols[i] = swap_sym[s] new_f = [] for i in eqs: isubs = getattr(i, 'subs', None) if isubs is not None: new_f.append(isubs(swap_sym)) else: new_f.append(i) swap_sym = {v: k for k, v in swap_sym.items()} return new_f, new_symbols, swap_sym def _ispow(e): """Return True if e is a Pow or is exp.""" return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp)) def _simple_dens(f, symbols): # when checking if a denominator is zero, we can just check the # base of powers with nonzero exponents since if the base is zero # the power will be zero, too. To keep it simple and fast, we # limit simplification to exponents that are Numbers dens = set() for d in denoms(f, symbols): if d.is_Pow and d.exp.is_Number: if d.exp.is_zero: continue # foo**0 is never 0 d = d.base dens.add(d) return dens def denoms(eq, *symbols): """Return (recursively) set of all denominators that appear in eq that contain any symbol in ``symbols``; if ``symbols`` are not provided then all denominators will be returned. Examples ======== >>> from sympy.solvers.solvers import denoms >>> from sympy.abc import x, y, z >>> from sympy import sqrt >>> denoms(x/y) {y} >>> denoms(x/(y*z)) {y, z} >>> denoms(3/x + y/z) {x, z} >>> denoms(x/2 + y/z) {2, z} If `symbols` are provided then only denominators containing those symbols will be returned >>> denoms(1/x + 1/y + 1/z, y, z) {y, z} """ pot = preorder_traversal(eq) dens = set() for p in pot: den = denom(p) if den is S.One: continue for d in Mul.make_args(den): dens.add(d) if not symbols: return dens elif len(symbols) == 1: if iterable(symbols[0]): symbols = symbols[0] rv = [] for d in dens: free = d.free_symbols if any(s in free for s in symbols): rv.append(d) return set(rv) def checksol(f, symbol, sol=None, **flags): """Checks whether sol is a solution of equation f == 0. Input can be either a single symbol and corresponding value or a dictionary of symbols and values. When given as a dictionary and flag ``simplify=True``, the values in the dictionary will be simplified. ``f`` can be a single equation or an iterable of equations. A solution must satisfy all equations in ``f`` to be considered valid; if a solution does not satisfy any equation, False is returned; if one or more checks are inconclusive (and none are False) then None is returned. Examples ======== >>> from sympy import symbols >>> from sympy.solvers import checksol >>> x, y = symbols('x,y') >>> checksol(x**4 - 1, x, 1) True >>> checksol(x**4 - 1, x, 0) False >>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4}) True To check if an expression is zero using checksol, pass it as ``f`` and send an empty dictionary for ``symbol``: >>> checksol(x**2 + x - x*(x + 1), {}) True None is returned if checksol() could not conclude. flags: 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify solution before substituting into function and simplify the function before trying specific simplifications 'force=True (default is False)' make positive all symbols without assumptions regarding sign. """ from sympy.physics.units import Unit minimal = flags.get('minimal', False) if sol is not None: sol = {symbol: sol} elif isinstance(symbol, dict): sol = symbol else: msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)' raise ValueError(msg % (symbol, sol)) if iterable(f): if not f: raise ValueError('no functions to check') rv = True for fi in f: check = checksol(fi, sol, **flags) if check: continue if check is False: return False rv = None # don't return, wait to see if there's a False return rv if isinstance(f, Poly): f = f.as_expr() elif isinstance(f, (Equality, Unequality)): if f.rhs in (S.true, S.false): f = f.reversed B, E = f.args if B in (S.true, S.false): f = f.subs(sol) if f not in (S.true, S.false): return else: f = f.rewrite(Add, evaluate=False) if isinstance(f, BooleanAtom): return bool(f) elif not f.is_Relational and not f: return True if sol and not f.free_symbols & set(sol.keys()): # if f(y) == 0, x=3 does not set f(y) to zero...nor does it not return None illegal = set([S.NaN, S.ComplexInfinity, S.Infinity, S.NegativeInfinity]) if any(sympify(v).atoms() & illegal for k, v in sol.items()): return False was = f attempt = -1 numerical = flags.get('numerical', True) while 1: attempt += 1 if attempt == 0: val = f.subs(sol) if isinstance(val, Mul): val = val.as_independent(Unit)[0] if val.atoms() & illegal: return False elif attempt == 1: if not val.is_number: if not val.is_constant(*list(sol.keys()), simplify=not minimal): return False # there are free symbols -- simple expansion might work _, val = val.as_content_primitive() val = _mexpand(val.as_numer_denom()[0], recursive=True) elif attempt == 2: if minimal: return if flags.get('simplify', True): for k in sol: sol[k] = simplify(sol[k]) # start over without the failed expanded form, possibly # with a simplified solution val = simplify(f.subs(sol)) if flags.get('force', True): val, reps = posify(val) # expansion may work now, so try again and check exval = _mexpand(val, recursive=True) if exval.is_number: # we can decide now val = exval else: # if there are no radicals and no functions then this can't be # zero anymore -- can it? pot = preorder_traversal(expand_mul(val)) seen = set() saw_pow_func = False for p in pot: if p in seen: continue seen.add(p) if p.is_Pow and not p.exp.is_Integer: saw_pow_func = True elif p.is_Function: saw_pow_func = True elif isinstance(p, UndefinedFunction): saw_pow_func = True if saw_pow_func: break if saw_pow_func is False: return False if flags.get('force', True): # don't do a zero check with the positive assumptions in place val = val.subs(reps) nz = fuzzy_not(val.is_zero) if nz is not None: # issue 5673: nz may be True even when False # so these are just hacks to keep a false positive # from being returned # HACK 1: LambertW (issue 5673) if val.is_number and val.has(LambertW): # don't eval this to verify solution since if we got here, # numerical must be False return None # add other HACKs here if necessary, otherwise we assume # the nz value is correct return not nz break if val == was: continue elif val.is_Rational: return val == 0 if numerical and val.is_number: if val in (S.true, S.false): return bool(val) return bool(abs(val.n(18).n(12, chop=True)) < 1e-9) was = val if flags.get('warn', False): warnings.warn("\n\tWarning: could not verify solution %s." % sol) # returns None if it can't conclude # TODO: improve solution testing def failing_assumptions(expr, **assumptions): """Return a dictionary containing assumptions with values not matching those of the passed assumptions. Examples ======== >>> from sympy import failing_assumptions, Symbol >>> x = Symbol('x', real=True, positive=True) >>> y = Symbol('y') >>> failing_assumptions(6*x + y, real=True, positive=True) {'positive': None, 'real': None} >>> failing_assumptions(x**2 - 1, positive=True) {'positive': None} If all assumptions satisfy the `expr` an empty dictionary is returned. >>> failing_assumptions(x**2, positive=True) {} """ expr = sympify(expr) failed = {} for key in list(assumptions.keys()): test = getattr(expr, 'is_%s' % key, None) if test is not assumptions[key]: failed[key] = test return failed # {} or {assumption: value != desired} def check_assumptions(expr, against=None, **assumptions): """Checks whether expression `expr` satisfies all assumptions. `assumptions` is a dict of assumptions: {'assumption': True|False, ...}. Examples ======== >>> from sympy import Symbol, pi, I, exp, check_assumptions >>> check_assumptions(-5, integer=True) True >>> check_assumptions(pi, real=True, integer=False) True >>> check_assumptions(pi, real=True, negative=True) False >>> check_assumptions(exp(I*pi/7), real=False) True >>> x = Symbol('x', real=True, positive=True) >>> check_assumptions(2*x + 1, real=True, positive=True) True >>> check_assumptions(-2*x - 5, real=True, positive=True) False To check assumptions of ``expr`` against another variable or expression, pass the expression or variable as ``against``. >>> check_assumptions(2*x + 1, x) True `None` is returned if check_assumptions() could not conclude. >>> check_assumptions(2*x - 1, real=True, positive=True) >>> z = Symbol('z') >>> check_assumptions(z, real=True) See Also ======== failing_assumptions """ expr = sympify(expr) if against: if not isinstance(against, Symbol): raise TypeError('against should be of type Symbol') if assumptions: raise AssertionError('No assumptions should be specified') assumptions = against.assumptions0 def _test(key): v = getattr(expr, 'is_' + key, None) if v is not None: return assumptions[key] is v return fuzzy_and(_test(key) for key in assumptions) def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Currently supported are: - polynomial, - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions. Input is formed as: * f - a single Expr or Poly that must be zero, - an Equality - a Relational expression - a Boolean - iterable of one or more of the above * symbols (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols e.g. solve(f, x, y) - ordered iterable of symbols e.g. solve(f, [x, y]) * flags 'dict'=True (default is False) return list (perhaps empty) of solution mappings 'set'=True (default is False) return list of symbols and set of tuple(s) of solution(s) 'exclude=[] (default)' don't try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. 'check=True (default)' If False, don't do any testing of solutions. This can be useful if one wants to include solutions that make any denominator zero. 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero 'force=True (default is False)' make positive all symbols without assumptions regarding sign. 'rational=True (default)' recast Floats as Rational; if this option is not used, the system containing floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. 'manual=True (default is False)' do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually" 'implicit=True (default is False)' allows solve to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, .... 'particular=True (default is False)' instructs solve to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive 'quick=True (default is False)' when using particular=True, use a fast heuristic instead to find a solution with many zeros (instead of using the very slow method guaranteed to find the largest number of zeros possible) 'cubics=True (default)' return explicit solutions when cubic expressions are encountered 'quartics=True (default)' return explicit solutions when quartic expressions are encountered 'quintics=True (default)' return explicit solutions (if possible) when quintic expressions are encountered Examples ======== The output varies according to the input and can be seen by example:: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') * boolean or univariate Relational >>> solve(x < 3) (-oo < x) & (x < 3) * to always get a list of solution mappings, use flag dict=True >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 * to get a list of symbols and set of solution(s) use flag set=True >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) * single expression and single symbol that is in the expression >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) * single expression with no symbol that is in the expression >>> solve(3, x) [] >>> solve(x - 3, y) [] * single expression with no symbol given In this case, all free symbols will be selected as potential symbols to solve for. If the equation is univariate then a list of solutions is returned; otherwise -- as is the case when symbols are given as an iterable of length > 1 -- a list of mappings will be returned. >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] * when an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save one from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method. >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a *symbol* implicitly, use 'implicit=True': >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * if you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use dsolve. * single expression and more than 1 symbol * when there is a linear solution >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * when undetermined coefficients are identified * that are linear >>> solve((a + b)*x - b + 2, a, b) {a: -2, b: 2} * that are nonlinear >>> solve((a + b)*x - b**2 + 2, a, b, set=True) ([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) * if there is no linear solution then the first successful attempt for a nonlinear solution will be returned >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] * iterable of one or more of the above * involving relationals or bools >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * when the system is linear * with a solution >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: 2 - 5*y, z: 21*y - 6} * without a solution >>> solve([x + 3, x - 3]) [] * when the system is not linear >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * if no symbols are given, all free symbols will be selected and a list of mappings returned >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * if any equation doesn't depend on the symbol(s) given it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest >>> solve([x - y, y - 3], x) {x: y} Notes ===== solve() with check=True (default) will run through the symbol tags to elimate unwanted solutions. If no assumptions are included all possible solutions will be returned. >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions aren't checked when `solve()` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since sin(x)/x has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 Disabling high-order, explicit solutions ---------------------------------------- When solving polynomial expressions, one might not want explicit solutions (which can be quite long). If the expression is univariate, CRootOf instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] Solving equations involving radicals ------------------------------------ Because of SymPy's use of the principle root (issue #8789), some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*_p**5 - 7*_p**3 + 1, 1)**15, CRootOf(7*_p**5 - 7*_p**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so real_root must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The solve function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function unrad, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although eq or eq1 could have been used to find xvals, the solution can only be verified with expr1: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] See Also ======== - rsolve() for solving recurrence relationships - dsolve() for solving differential equations """ # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) ordered_symbols = (symbols and symbols[0] and (isinstance(symbols[0], Symbol) or is_sequence(symbols[0], include=GeneratorType) ) ) f, symbols = (_sympified_list(w) for w in [f, symbols]) if isinstance(f, list): f = [s for s in f if s is not S.true and s is not True] implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper symbols = list(symbols) ordered_symbols = False elif len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] # remove symbols the user is not interested in exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Equality, Unequality)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: args = fi.args if args[1] in (S.true, S.false): args = args[1], args[0] L, R = args if L in (S.false, S.true): if isinstance(fi, Unequality): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_extended_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- if any(isinstance(fi, (bool, BooleanAtom)) for fi in f): if flags.get('set', False): return [], set() return [] for i, fi in enumerate(f): # Abs fi = fi.replace(Abs, lambda arg: separatevars(Abs(arg)) if arg.has(*symbols) else Abs(arg)) fi = fi.replace(Abs, lambda arg: Abs(arg).rewrite(Piecewise) if arg.has(*symbols) else Abs(arg)) for e in fi.find(Abs): if e.has(*symbols): raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % e) # arg _arg = [a for a in fi.atoms(arg) if a.has(*symbols)] fi = fi.xreplace(dict(list(zip(_arg, [atan(im(a.args[0])/re(a.args[0])) for a in _arg])))) # save changes f[i] = fi # see if re(s) or im(s) appear irf = [] for s in symbols: if s.is_extended_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in f): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: for i, fi in enumerate(f): f[i] = fi.xreplace({s: rhs}) f.append(s - rhs) symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- symbols = list(uniq(symbols)) if not ordered_symbols: # we do this to make the results returned canonical in case f # contains a system of nonlinear equations; all other cases should # be unambiguous symbols = sorted(symbols, key=default_sort_key) # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # this is needed in the next two events symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.has(*symset): ok = True else: if fi.is_number: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif not p in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any([_has_piecewise(a) for a in e.args]) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) else: solution = _solve_system(f, symbols, **flags) # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return {k: v.subs(non_inverts) for k, v in solution.items()} for i in range(1): if isinstance(solution, dict): solution = _do_dict(solution) break elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] break elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] break else: solution = [v.subs(non_inverts) for v in solution] break elif not solution: break else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in solution.items()} elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in sol.items()} # undo the dictionary solutions returned when the system was only partially # solved with poly-system if all symbols are present if ( not flags.get('dict', False) and solution and ordered_symbols and not isinstance(solution, dict) and all(isinstance(sol, dict) for sol in solution) ): solution = [tuple([r.get(s, s).subs(r) for s in symbols]) for r in solution] # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) can't be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if not as_set and isinstance(solution, list): # Make sure that a list of solutions is ordered in a canonical way. solution.sort(key=default_sort_key) if not as_dict and not as_set: return solution or [] # return a list of mappings or [] if not solution: solution = [] else: if isinstance(solution, dict): solution = [solution] elif iterable(solution[0]): solution = [dict(list(zip(symbols, s))) for s in solution] elif isinstance(solution[0], dict): pass else: if len(symbols) != 1: raise ValueError("Length should be 1") solution = [{symbols[0]: s} for s in solution] if as_dict: return solution assert as_set if not solution: return [], set() k = list(ordered(solution[0].keys())) return k, {tuple([s[ki] for ki in k]) for s in solution} def _solve(f, *symbols, **flags): """Return a checked solution for f in terms of one or more of the symbols. A list should be returned except for the case when a linear undetermined-coefficients equation is encountered (in which case a dictionary is returned). If no method is implemented to solve the equation, a NotImplementedError will be raised. In the case that conversion of an expression to a Poly gives None a ValueError will be raised.""" not_impl_msg = "No algorithms are implemented to solve equation %s" if len(symbols) != 1: soln = None free = f.free_symbols ex = free - set(symbols) if len(ex) != 1: ind, dep = f.as_independent(*symbols) ex = ind.free_symbols & dep.free_symbols if len(ex) == 1: ex = ex.pop() try: # soln may come back as dict, list of dicts or tuples, or # tuple of symbol list and set of solution tuples soln = solve_undetermined_coeffs(f, symbols, ex, **flags) except NotImplementedError: pass if soln: if flags.get('simplify', True): if isinstance(soln, dict): for k in soln: soln[k] = simplify(soln[k]) elif isinstance(soln, list): if isinstance(soln[0], dict): for d in soln: for k in d: d[k] = simplify(d[k]) elif isinstance(soln[0], tuple): soln = [tuple(simplify(i) for i in j) for j in soln] else: raise TypeError('unrecognized args in list') elif isinstance(soln, tuple): sym, sols = soln soln = sym, {tuple(simplify(i) for i in j) for j in sols} else: raise TypeError('unrecognized solution type') return soln # find first successful solution failed = [] got_s = set([]) result = [] for s in symbols: xi, v = solve_linear(f, symbols=[s]) if xi == s: # no need to check but we should simplify if desired if flags.get('simplify', True): v = simplify(v) vfree = v.free_symbols if got_s and any([ss in vfree for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(xi) result.append({xi: v}) elif xi: # there might be a non-linear solution if xi is not 0 failed.append(s) if not failed: return result for s in failed: try: soln = _solve(f, s, **flags) for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(s) result.append({s: sol}) except NotImplementedError: continue if got_s: return result else: raise NotImplementedError(not_impl_msg % f) symbol = symbols[0] # /!\ capture this flag then set it to False so that no checking in # recursive calls will be done; only the final answer is checked flags['check'] = checkdens = check = flags.pop('check', True) # build up solutions if f is a Mul if f.is_Mul: result = set() for m in f.args: if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): result = set() break soln = _solve(m, symbol, **flags) result.update(set(soln)) result = list(result) if check: # all solutions have been checked but now we must # check that the solutions do not set denominators # in any factor to zero dens = flags.get('_denominators', _simple_dens(f, symbols)) result = [s for s in result if all(not checksol(den, {symbol: s}, **flags) for den in dens)] # set flags for quick exit at end; solutions for each # factor were already checked and simplified check = False flags['simplify'] = False elif f.is_Piecewise: result = set() for i, (expr, cond) in enumerate(f.args): if expr.is_zero: raise NotImplementedError( 'solve cannot represent interval solutions') candidates = _solve(expr, symbol, **flags) # the explicit condition for this expr is the current cond # and none of the previous conditions args = [~c for _, c in f.args[:i]] + [cond] cond = And(*args) for candidate in candidates: if candidate in result: # an unconditional value was already there continue try: v = cond.subs(symbol, candidate) _eval_simplify = getattr(v, '_eval_simplify', None) if _eval_simplify is not None: # unconditionally take the simpification of v v = _eval_simplify(ratio=2, measure=lambda x: 1) except TypeError: # incompatible type with condition(s) continue if v == False: continue if v == True: result.add(candidate) else: result.add(Piecewise( (candidate, v), (S.NaN, True))) # set flags for quick exit at end; solutions for each # piece were already checked and simplified check = False flags['simplify'] = False else: # first see if it really depends on symbol and whether there # is only a linear solution f_num, sol = solve_linear(f, symbols=symbols) if f_num is S.Zero or sol is S.NaN: return [] elif f_num.is_Symbol: # no need to check but simplify if desired if flags.get('simplify', True): sol = simplify(sol) return [sol] result = False # no solution was obtained msg = '' # there is no failure message # Poly is generally robust enough to convert anything to # a polynomial and tell us the different generators that it # contains, so we will inspect the generators identified by # polys to figure out what to do. # try to identify a single generator that will allow us to solve this # as a polynomial, followed (perhaps) by a change of variables if the # generator is not a symbol try: poly = Poly(f_num) if poly is None: raise ValueError('could not convert %s to Poly' % f_num) except GeneratorsNeeded: simplified_f = simplify(f_num) if simplified_f != f_num: return _solve(simplified_f, symbol, **flags) raise ValueError('expression appears to be a constant') gens = [g for g in poly.gens if g.has(symbol)] def _as_base_q(x): """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) """ b, e = x.as_base_exp() if e.is_Rational: return b, e.q if not e.is_Mul: return x, 1 c, ee = e.as_coeff_Mul() if c.is_Rational and c is not S.One: # c could be a Float return b**ee, c.q return x, 1 if len(gens) > 1: # If there is more than one generator, it could be that the # generators have the same base but different powers, e.g. # >>> Poly(exp(x) + 1/exp(x)) # Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') # # If unrad was not disabled then there should be no rational # exponents appearing as in # >>> Poly(sqrt(x) + sqrt(sqrt(x))) # Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') bases, qs = list(zip(*[_as_base_q(g) for g in gens])) bases = set(bases) if len(bases) > 1 or not all(q == 1 for q in qs): funcs = set(b for b in bases if b.is_Function) trig = set([_ for _ in funcs if isinstance(_, TrigonometricFunction)]) other = funcs - trig if not other and len(funcs.intersection(trig)) > 1: newf = TR1(f_num).rewrite(tan) if newf != f_num: # don't check the rewritten form --check # solutions in the un-rewritten form below flags['check'] = False result = _solve(newf, symbol, **flags) flags['check'] = check # just a simple case - see if replacement of single function # clears all symbol-dependent functions, e.g. # log(x) - log(log(x) - 1) - 3 can be solved even though it has # two generators. if result is False and funcs: funcs = list(ordered(funcs)) # put shallowest function first f1 = funcs[0] t = Dummy('t') # perform the substitution ftry = f_num.subs(f1, t) # if no Functions left, we can proceed with usual solve if not ftry.has(symbol): cv_sols = _solve(ftry, t, **flags) cv_inv = _solve(t - f1, symbol, **flags)[0] sols = list() for sol in cv_sols: sols.append(cv_inv.subs(t, sol)) result = list(ordered(sols)) if result is False: msg = 'multiple generators %s' % gens else: # e.g. case where gens are exp(x), exp(-x) u = bases.pop() t = Dummy('t') inv = _solve(u - t, symbol, **flags) if isinstance(u, (Pow, exp)): # this will be resolved by factor in _tsolve but we might # as well try a simple expansion here to get things in # order so something like the following will work now without # having to factor: # # >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) # >>> eq.subs(exp(x),y) # fails # exp(I*(-x - 2)) + exp(I*(x + 2)) # >>> eq.expand().subs(exp(x),y) # works # y**I*exp(2*I) + y**(-I)*exp(-2*I) def _expand(p): b, e = p.as_base_exp() e = expand_mul(e) return expand_power_exp(b**e) ftry = f_num.replace( lambda w: w.is_Pow or isinstance(w, exp), _expand).subs(u, t) if not ftry.has(symbol): soln = _solve(ftry, t, **flags) sols = list() for sol in soln: for i in inv: sols.append(i.subs(t, sol)) result = list(ordered(sols)) elif len(gens) == 1: # There is only one generator that we are interested in, but # there may have been more than one generator identified by # polys (e.g. for symbols other than the one we are interested # in) so recast the poly in terms of our generator of interest. # Also use composite=True with f_num since Poly won't update # poly as documented in issue 8810. poly = Poly(f_num, gens[0], composite=True) # if we aren't on the tsolve-pass, use roots if not flags.pop('tsolve', False): soln = None deg = poly.degree() flags['tsolve'] = True solvers = {k: flags.get(k, True) for k in ('cubics', 'quartics', 'quintics')} soln = roots(poly, **solvers) if sum(soln.values()) < deg: # e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + # 5000*x**2 + 6250*x + 3189) -> {} # so all_roots is used and RootOf instances are # returned *unless* the system is multivariate # or high-order EX domain. try: soln = poly.all_roots() except NotImplementedError: if not flags.get('incomplete', True): raise NotImplementedError( filldedent(''' Neither high-order multivariate polynomials nor sorting of EX-domain polynomials is supported. If you want to see any results, pass keyword incomplete=True to solve; to see numerical values of roots for univariate expressions, use nroots. ''')) else: pass else: soln = list(soln.keys()) if soln is not None: u = poly.gen if u != symbol: try: t = Dummy('t') iv = _solve(u - t, symbol, **flags) soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) except NotImplementedError: # perhaps _tsolve can handle f_num soln = None else: check = False # only dens need to be checked if soln is not None: if len(soln) > 2: # if the flag wasn't set then unset it since high-order # results are quite long. Perhaps one could base this # decision on a certain critical length of the # roots. In addition, wester test M2 has an expression # whose roots can be shown to be real with the # unsimplified form of the solution whereas only one of # the simplified forms appears to be real. flags['simplify'] = flags.get('simplify', False) result = soln # fallback if above fails # ----------------------- if result is False: # try unrad if flags.pop('_unrad', True): try: u = unrad(f_num, symbol) except (ValueError, NotImplementedError): u = False if u: eq, cov = u if cov: isym, ieq = cov inv = _solve(ieq, symbol, **flags)[0] rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} else: try: rv = set(_solve(eq, symbol, **flags)) except NotImplementedError: rv = None if rv is not None: result = list(ordered(rv)) # if the flag wasn't set then unset it since unrad results # can be quite long or of very high order flags['simplify'] = flags.get('simplify', False) else: pass # for coverage # try _tsolve if result is False: flags.pop('tsolve', None) # allow tsolve to be used on next pass try: soln = _tsolve(f_num, symbol, **flags) if soln is not None: result = soln except PolynomialError: pass # ----------- end of fallback ---------------------------- if result is False: raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) if flags.get('simplify', True): result = list(map(simplify, result)) # we just simplified the solution so we now set the flag to # False so the simplification doesn't happen again in checksol() flags['simplify'] = False if checkdens: # reject any result that makes any denom. affirmatively 0; # if in doubt, keep it dens = _simple_dens(f, symbols) result = [s for s in result if all(not checksol(d, {symbol: s}, **flags) for d in dens)] if check: # keep only results if the check is not False result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False] return result def _solve_system(exprs, symbols, **flags): if not exprs: return [] polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): from sympy.utilities.iterables import subsets free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [] or list of tuples of solutions for syms res = solve_poly_system(polys, *syms) if res: for r in res: skip = False for r1 in r: if got_s and any([ss in r1.free_symbols for ss in got_s]): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.extend([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in result] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] result = None if result: if isinstance(result, dict): result = [result] else: result = [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = (e.free_symbols - solved_syms) & legal if sort: rv = list(rv) rv.sort(key=default_sort_key) return rv solved_syms = set(solved_syms) # set of symbols we have solved for legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _solve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s in being added in-place for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) default_simplify = bool(failed) # rely on system-solvers to simplify if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] if linear and result: result = result[0] return result def solve_linear(lhs, rhs=0, symbols=[], exclude=[]): r""" Return a tuple derived from f = lhs - rhs that is one of the following: (0, 1) meaning that ``f`` is independent of the symbols in ``symbols`` that aren't in ``exclude``, e.g:: >>> from sympy.solvers.solvers import solve_linear >>> from sympy.abc import x, y, z >>> from sympy import cos, sin >>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 >>> solve_linear(eq) (0, 1) >>> eq = cos(x)**2 + sin(x)**2 # = 1 >>> solve_linear(eq) (0, 1) >>> solve_linear(x, exclude=[x]) (0, 1) (0, 0) meaning that there is no solution to the equation amongst the symbols given. (If the first element of the tuple is not zero then the function is guaranteed to be dependent on a symbol in ``symbols``.) (symbol, solution) where symbol appears linearly in the numerator of ``f``, is in ``symbols`` (if given) and is not in ``exclude`` (if given). No simplification is done to ``f`` other than a ``mul=True`` expansion, so the solution will correspond strictly to a unique solution. ``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f`` when the numerator was not linear in any symbol of interest; ``n`` will never be a symbol unless a solution for that symbol was found (in which case the second element is the solution, not the denominator). Examples ======== >>> from sympy.core.power import Pow >>> from sympy.polys.polytools import cancel The variable ``x`` appears as a linear variable in each of the following: >>> solve_linear(x + y**2) (x, -y**2) >>> solve_linear(1/x - y**2) (x, y**(-2)) When not linear in x or y then the numerator and denominator are returned. >>> solve_linear(x**2/y**2 - 3) (x**2 - 3*y**2, y**2) If the numerator of the expression is a symbol then (0, 0) is returned if the solution for that symbol would have set any denominator to 0: >>> eq = 1/(1/x - 2) >>> eq.as_numer_denom() (x, 1 - 2*x) >>> solve_linear(eq) (0, 0) But automatic rewriting may cause a symbol in the denominator to appear in the numerator so a solution will be returned: >>> (1/x)**-1 x >>> solve_linear((1/x)**-1) (x, 0) Use an unevaluated expression to avoid this: >>> solve_linear(Pow(1/x, -1, evaluate=False)) (0, 0) If ``x`` is allowed to cancel in the following expression, then it appears to be linear in ``x``, but this sort of cancellation is not done by ``solve_linear`` so the solution will always satisfy the original expression without causing a division by zero error. >>> eq = x**2*(1/x - z**2/x) >>> solve_linear(cancel(eq)) (x, 0) >>> solve_linear(eq) (x**2*(1 - z**2), x) A list of symbols for which a solution is desired may be given: >>> solve_linear(x + y + z, symbols=[y]) (y, -x - z) A list of symbols to ignore may also be given: >>> solve_linear(x + y + z, exclude=[x]) (y, -x - z) (A solution for ``y`` is obtained because it is the first variable from the canonically sorted list of symbols that had a linear solution.) """ if isinstance(lhs, Equality): if rhs: raise ValueError(filldedent(''' If lhs is an Equality, rhs must be 0 but was %s''' % rhs)) rhs = lhs.rhs lhs = lhs.lhs dens = None eq = lhs - rhs n, d = eq.as_numer_denom() if not n: return S.Zero, S.One free = n.free_symbols if not symbols: symbols = free else: bad = [s for s in symbols if not s.is_Symbol] if bad: if len(bad) == 1: bad = bad[0] if len(symbols) == 1: eg = 'solve(%s, %s)' % (eq, symbols[0]) else: eg = 'solve(%s, *%s)' % (eq, list(symbols)) raise ValueError(filldedent(''' solve_linear only handles symbols, not %s. To isolate non-symbols use solve, e.g. >>> %s <<<. ''' % (bad, eg))) symbols = free.intersection(symbols) symbols = symbols.difference(exclude) if not symbols: return S.Zero, S.One # derivatives are easy to do but tricky to analyze to see if they # are going to disallow a linear solution, so for simplicity we # just evaluate the ones that have the symbols of interest derivs = defaultdict(list) for der in n.atoms(Derivative): csym = der.free_symbols & symbols for c in csym: derivs[c].append(der) all_zero = True for xi in sorted(symbols, key=default_sort_key): # canonical order # if there are derivatives in this var, calculate them now if isinstance(derivs[xi], list): derivs[xi] = {der: der.doit() for der in derivs[xi]} newn = n.subs(derivs[xi]) dnewn_dxi = newn.diff(xi) # dnewn_dxi can be nonzero if it survives differentation by any # of its free symbols free = dnewn_dxi.free_symbols if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free)): all_zero = False if dnewn_dxi is S.NaN: break if xi not in dnewn_dxi.free_symbols: vi = -1/dnewn_dxi*(newn.subs(xi, 0)) if dens is None: dens = _simple_dens(eq, symbols) if not any(checksol(di, {xi: vi}, minimal=True) is True for di in dens): # simplify any trivial integral irep = [(i, i.doit()) for i in vi.atoms(Integral) if i.function.is_number] # do a slight bit of simplification vi = expand_mul(vi.subs(irep)) return xi, vi if all_zero: return S.Zero, S.One if n.is_Symbol: # no solution for this symbol was found return S.Zero, S.Zero return n, d def minsolve_linear_system(system, *symbols, **flags): r""" Find a particular solution to a linear system. In particular, try to find a solution with the minimal possible number of non-zero variables using a naive algorithm with exponential complexity. If ``quick=True``, a heuristic is used. """ quick = flags.get('quick', False) # Check if there are any non-zero solutions at all s0 = solve_linear_system(system, *symbols, **flags) if not s0 or all(v == 0 for v in s0.values()): return s0 if quick: # We just solve the system and try to heuristically find a nice # solution. s = solve_linear_system(system, *symbols) def update(determined, solution): delete = [] for k, v in solution.items(): solution[k] = v.subs(determined) if not solution[k].free_symbols: delete.append(k) determined[k] = solution[k] for k in delete: del solution[k] determined = {} update(determined, s) while s: # NOTE sort by default_sort_key to get deterministic result k = max((k for k in s.values()), key=lambda x: (len(x.free_symbols), default_sort_key(x))) x = max(k.free_symbols, key=default_sort_key) if len(k.free_symbols) != 1: determined[x] = S(0) else: val = solve(k)[0] if val == 0 and all(v.subs(x, val) == 0 for v in s.values()): determined[x] = S(1) else: determined[x] = val update(determined, s) return determined else: # We try to select n variables which we want to be non-zero. # All others will be assumed zero. We try to solve the modified system. # If there is a non-trivial solution, just set the free variables to # one. If we do this for increasing n, trying all combinations of # variables, we will find an optimal solution. # We speed up slightly by starting at one less than the number of # variables the quick method manages. from itertools import combinations from sympy.utilities.misc import debug N = len(symbols) bestsol = minsolve_linear_system(system, *symbols, quick=True) n0 = len([x for x in bestsol.values() if x != 0]) for n in range(n0 - 1, 1, -1): debug('minsolve: %s' % n) thissol = None for nonzeros in combinations(list(range(N)), n): subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T s = solve_linear_system(subm, *[symbols[i] for i in nonzeros]) if s and not all(v == 0 for v in s.values()): subs = [(symbols[v], S(1)) for v in nonzeros] for k, v in s.items(): s[k] = v.subs(subs) for sym in symbols: if sym not in s: if symbols.index(sym) in nonzeros: s[sym] = S(1) else: s[sym] = S(0) thissol = s break if thissol is None: break bestsol = thissol return bestsol def solve_linear_system(system, *symbols, **flags): r""" Solve system of N linear equations with M variables, which means both under- and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values. Input to this functions is a Nx(M+1) matrix, which means it has to be in augmented form. If you prefer to enter N equations and M unknowns then use `solve(Neqs, *Msymbols)` instead. Note: a local copy of the matrix is made by this routine so the matrix that is passed will not be modified. The algorithm used here is fraction-free Gaussian elimination, which results, after elimination, in an upper-triangular matrix. Then solutions are found using back-substitution. This approach is more efficient and compact than the Gauss-Jordan method. >>> from sympy import Matrix, solve_linear_system >>> from sympy.abc import x, y Solve the following system:: x + 4 y == 2 -2 x + y == 14 >>> system = Matrix(( (1, 4, 2), (-2, 1, 14))) >>> solve_linear_system(system, x, y) {x: -6, y: 2} A degenerate system returns an empty dictionary. >>> system = Matrix(( (0,0,0), (0,0,0) )) >>> solve_linear_system(system, x, y) {} """ do_simplify = flags.get('simplify', True) if system.rows == system.cols - 1 == len(symbols): try: # well behaved n-equations and n-unknowns inv = inv_quick(system[:, :-1]) rv = dict(zip(symbols, inv*system[:, -1])) if do_simplify: for k, v in rv.items(): rv[k] = simplify(v) if not all(i.is_zero for i in rv.values()): # non-trivial solution return rv except ValueError: pass matrix = system[:, :] syms = list(symbols) i, m = 0, matrix.cols - 1 # don't count augmentation while i < matrix.rows: if i == m: # an overdetermined system if any(matrix[i:, m]): return None # no solutions else: # remove trailing rows matrix = matrix[:i, :] break if not matrix[i, i]: # there is no pivot in current column # so try to find one in other columns for k in range(i + 1, m): if matrix[i, k]: break else: if matrix[i, m]: # We need to know if this is always zero or not. We # assume that if there are free symbols that it is not # identically zero (or that there is more than one way # to make this zero). Otherwise, if there are none, this # is a constant and we assume that it does not simplify # to zero XXX are there better (fast) ways to test this? # The .equals(0) method could be used but that can be # slow; numerical testing is prone to errors of scaling. if not matrix[i, m].free_symbols: return None # no solution # A row of zeros with a non-zero rhs can only be accepted # if there is another equivalent row. Any such rows will # be deleted. nrows = matrix.rows rowi = matrix.row(i) ip = None j = i + 1 while j < matrix.rows: # do we need to see if the rhs of j # is a constant multiple of i's rhs? rowj = matrix.row(j) if rowj == rowi: matrix.row_del(j) elif rowj[:-1] == rowi[:-1]: if ip is None: _, ip = rowi[-1].as_content_primitive() _, jp = rowj[-1].as_content_primitive() if not (simplify(jp - ip) or simplify(jp + ip)): matrix.row_del(j) j += 1 if nrows == matrix.rows: # no solution return None # zero row or was a linear combination of # other rows or was a row with a symbolic # expression that matched other rows, e.g. [0, 0, x - y] # so now we can safely skip it matrix.row_del(i) if not matrix: # every choice of variable values is a solution # so we return an empty dict instead of None return dict() continue # we want to change the order of columns so # the order of variables must also change syms[i], syms[k] = syms[k], syms[i] matrix.col_swap(i, k) pivot_inv = S.One/matrix[i, i] # divide all elements in the current row by the pivot matrix.row_op(i, lambda x, _: x * pivot_inv) for k in range(i + 1, matrix.rows): if matrix[k, i]: coeff = matrix[k, i] # subtract from the current row the row containing # pivot and multiplied by extracted coefficient matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff)) i += 1 # if there weren't any problems, augmented matrix is now # in row-echelon form so we can check how many solutions # there are and extract them using back substitution if len(syms) == matrix.rows: # this system is Cramer equivalent so there is # exactly one solution to this system of equations k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, m): content -= matrix[k, j]*solutions[syms[j]] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions elif len(syms) > matrix.rows: # this system will have infinite number of solutions # dependent on exactly len(syms) - i parameters k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, i): content -= matrix[k, j]*solutions[syms[j]] # run back-substitution for parameters for j in range(i, m): content -= matrix[k, j]*syms[j] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions else: return [] # no solutions def solve_undetermined_coeffs(equ, coeffs, sym, **flags): """Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both p, q are univariate polynomials and f depends on k parameters. The result of this functions is a dictionary with symbolic values of those parameters with respect to coefficients in q. This functions accepts both Equations class instances and ordinary SymPy expressions. Specification of parameters and variable is obligatory for efficiency and simplicity reason. >>> from sympy import Eq >>> from sympy.abc import a, b, c, x >>> from sympy.solvers import solve_undetermined_coeffs >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x) {a: 1/2, b: -1/2} >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x) {a: 1/c, b: -1/c} """ if isinstance(equ, Equality): # got equation, so move all the # terms to the left hand side equ = equ.lhs - equ.rhs equ = cancel(equ).as_numer_denom()[0] system = list(collect(equ.expand(), sym, evaluate=False).values()) if not any(equ.has(sym) for equ in system): # consecutive powers in the input expressions have # been successfully collected, so solve remaining # system using Gaussian elimination algorithm return solve(system, *coeffs, **flags) else: return None # no solutions def solve_linear_system_LU(matrix, syms): """ Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of syms *as ordered*. The matrix must be invertible. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> from sympy.solvers.solvers import solve_linear_system_LU >>> solve_linear_system_LU(Matrix([ ... [1, 2, 0, 1], ... [3, 2, 2, 1], ... [2, 0, 0, 1]]), [x, y, z]) {x: 1/2, y: 1/4, z: -1/2} See Also ======== sympy.matrices.LUsolve """ if matrix.rows != matrix.cols - 1: raise ValueError("Rows should be equal to columns - 1") A = matrix[:matrix.rows, :matrix.rows] b = matrix[:, matrix.cols - 1:] soln = A.LUsolve(b) solutions = {} for i in range(soln.rows): solutions[syms[i]] = soln[i, 0] return solutions def det_perm(M): """Return the det(``M``) by using permutations to select factors. For size larger than 8 the number of permutations becomes prohibitively large, or if there are no symbols in the matrix, it is better to use the standard determinant routines, e.g. `M.det()`. See Also ======== det_minor det_quick """ args = [] s = True n = M.rows list_ = getattr(M, '_mat', None) if list_ is None: list_ = flatten(M.tolist()) for perm in generate_bell(n): fac = [] idx = 0 for j in perm: fac.append(list_[idx + j]) idx += n term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7 args.append(term if s else -term) s = not s return Add(*args) def det_minor(M): """Return the ``det(M)`` computed from minors without introducing new nesting in products. See Also ======== det_perm det_quick """ n = M.rows if n == 2: return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1] else: return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in Add.make_args(det_minor(M.minor_submatrix(0, i)))]) if M[0, i] else S.Zero for i in range(n)]) def det_quick(M, method=None): """Return ``det(M)`` assuming that either there are lots of zeros or the size of the matrix is small. If this assumption is not met, then the normal Matrix.det function will be used with method = ``method``. See Also ======== det_minor det_perm """ if any(i.has(Symbol) for i in M): if M.rows < 8 and all(i.has(Symbol) for i in M): return det_perm(M) return det_minor(M) else: return M.det(method=method) if method else M.det() def inv_quick(M): """Return the inverse of ``M``, assuming that either there are lots of zeros or the size of the matrix is small. """ from sympy.matrices import zeros if not all(i.is_Number for i in M): if not any(i.is_Number for i in M): det = lambda _: det_perm(_) else: det = lambda _: det_minor(_) else: return M.inv() n = M.rows d = det(M) if d is S.Zero: raise ValueError("Matrix det == 0; not invertible.") ret = zeros(n) s1 = -1 for i in range(n): s = s1 = -s1 for j in range(n): di = det(M.minor_submatrix(i, j)) ret[j, i] = s*di/d s = -s return ret # these are functions that have multiple inverse values per period multi_inverses = { sin: lambda x: (asin(x), S.Pi - asin(x)), cos: lambda x: (acos(x), 2*S.Pi - acos(x)), } def _tsolve(eq, sym, **flags): """ Helper for _solve that solves a transcendental equation with respect to the given symbol. Various equations containing powers and logarithms, can be solved. There is currently no guarantee that all solutions will be returned or that a real solution will be favored over a complex one. Either a list of potential solutions will be returned or None will be returned (in the case that no method was known to get a solution for the equation). All other errors (like the inability to cast an expression as a Poly) are unhandled. Examples ======== >>> from sympy import log >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy.abc import x >>> tsolve(3**(2*x + 5) - 4, x) [-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)] >>> tsolve(log(x) + 2*x, x) [LambertW(2)/2] """ if 'tsolve_saw' not in flags: flags['tsolve_saw'] = [] if eq in flags['tsolve_saw']: return None else: flags['tsolve_saw'].append(eq) rhs, lhs = _invert(eq, sym) if lhs == sym: return [rhs] try: if lhs.is_Add: # it's time to try factoring; powdenest is used # to try get powers in standard form for better factoring f = factor(powdenest(lhs - rhs)) if f.is_Mul: return _solve(f, sym, **flags) if rhs: f = logcombine(lhs, force=flags.get('force', True)) if f.count(log) != lhs.count(log): if isinstance(f, log): return _solve(f.args[0] - exp(rhs), sym, **flags) return _tsolve(f - rhs, sym, **flags) elif lhs.is_Pow: if lhs.exp.is_Integer: if lhs - rhs != eq: return _solve(lhs - rhs, sym, **flags) if sym not in lhs.exp.free_symbols: return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags) # _tsolve calls this with Dummy before passing the actual number in. if any(t.is_Dummy for t in rhs.free_symbols): raise NotImplementedError # _tsolve will call here again... # a ** g(x) == 0 if not rhs: # f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at # the same place sol_base = _solve(lhs.base, sym, **flags) return [s for s in sol_base if lhs.exp.subs(sym, s) != 0] # a ** g(x) == b if not lhs.base.has(sym): if lhs.base == 0: return _solve(lhs.exp, sym, **flags) if rhs != 0 else [] # Gets most solutions... if lhs.base == rhs.as_base_exp()[0]: # handles case when bases are equal sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags) else: # handles cases when bases are not equal and exp # may or may not be equal sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags) # Check for duplicate solutions def equal(expr1, expr2): _ = Dummy() eq = checksol(expr1 - _, _, expr2) if eq is None: if nsimplify(expr1) != nsimplify(expr2): return False # they might be coincidentally the same # so check more rigorously eq = expr1.equals(expr2) return eq # Guess a rational exponent e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base))) e_rat = simplify(posify(e_rat)[0]) n, d = fraction(e_rat) if expand(lhs.base**n - rhs**d) == 0: sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)] sol.extend(_solve(lhs.exp - e_rat, sym, **flags)) return list(ordered(set(sol))) # f(x) ** g(x) == c else: sol = [] logform = lhs.exp*log(lhs.base) - log(rhs) if logform != lhs - rhs: try: sol.extend(_solve(logform, sym, **flags)) except NotImplementedError: pass # Collect possible solutions and check with substitution later. check = [] if rhs == 1: # f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1 check.extend(_solve(lhs.exp, sym, **flags)) check.extend(_solve(lhs.base - 1, sym, **flags)) check.extend(_solve(lhs.base + 1, sym, **flags)) elif rhs.is_Rational: for d in (i for i in divisors(abs(rhs.p)) if i != 1): e, t = integer_log(rhs.p, d) if not t: continue # rhs.p != d**b for s in divisors(abs(rhs.q)): if s**e== rhs.q: r = Rational(d, s) check.extend(_solve(lhs.base - r, sym, **flags)) check.extend(_solve(lhs.base + r, sym, **flags)) check.extend(_solve(lhs.exp - e, sym, **flags)) elif rhs.is_irrational: b_l, e_l = lhs.base.as_base_exp() n, d = (e_l*lhs.exp).as_numer_denom() b, e = sqrtdenest(rhs).as_base_exp() check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))] check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))]) if e_l*d != 1: check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags)) for s in check: ok = checksol(eq, sym, s) if ok is None: ok = eq.subs(sym, s).equals(0) if ok: sol.append(s) return list(ordered(set(sol))) elif lhs.is_Function and len(lhs.args) == 1: if lhs.func in multi_inverses: # sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3)) soln = [] for i in multi_inverses[lhs.func](rhs): soln.extend(_solve(lhs.args[0] - i, sym, **flags)) return list(ordered(soln)) elif lhs.func == LambertW: return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags) rewrite = lhs.rewrite(exp) if rewrite != lhs: return _solve(rewrite - rhs, sym, **flags) except NotImplementedError: pass # maybe it is a lambert pattern if flags.pop('bivariate', True): # lambert forms may need some help being recognized, e.g. changing # 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1 # to 2**(3*x) + (x*log(2) + 1)**3 g = _filtered_gens(eq.as_poly(), sym) up_or_log = set() for gi in g: if isinstance(gi, exp) or isinstance(gi, log): up_or_log.add(gi) elif gi.is_Pow: gisimp = powdenest(expand_power_exp(gi)) if gisimp.is_Pow and sym in gisimp.exp.free_symbols: up_or_log.add(gi) eq_down = expand_log(expand_power_exp(eq)).subs( dict(list(zip(up_or_log, [0]*len(up_or_log))))) eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down)) rhs, lhs = _invert(eq, sym) if lhs.has(sym): try: poly = lhs.as_poly() g = _filtered_gens(poly, sym) _eq = lhs - rhs sols = _solve_lambert(_eq, sym, g) # use a simplified form if it satisfies eq # and has fewer operations for n, s in enumerate(sols): ns = nsimplify(s) if ns != s and ns.count_ops() <= s.count_ops(): ok = checksol(_eq, sym, ns) if ok is None: ok = _eq.subs(sym, ns).equals(0) if ok: sols[n] = ns return sols except NotImplementedError: # maybe it's a convoluted function if len(g) == 2: try: gpu = bivariate_type(lhs - rhs, *g) if gpu is None: raise NotImplementedError g, p, u = gpu flags['bivariate'] = False inversion = _tsolve(g - u, sym, **flags) if inversion: sol = _solve(p, u, **flags) return list(ordered(set([i.subs(u, s) for i in inversion for s in sol]))) except NotImplementedError: pass else: pass if flags.pop('force', True): flags['force'] = False pos, reps = posify(lhs - rhs) for u, s in reps.items(): if s == sym: break else: u = sym if pos.has(u): try: soln = _solve(pos, u, **flags) return list(ordered([s.subs(reps) for s in soln])) except NotImplementedError: pass else: pass # here for coverage return # here for coverage # TODO: option for calculating J numerically @conserve_mpmath_dps def nsolve(*args, **kwargs): r""" Solve a nonlinear equation system numerically:: nsolve(f, [args,] x0, modules=['mpmath'], **kwargs) f is a vector function of symbolic expressions representing the system. args are the variables. If there is only one variable, this argument can be omitted. x0 is a starting vector close to a solution. Use the modules keyword to specify which modules should be used to evaluate the function and the Jacobian matrix. Make sure to use a module that supports matrices. For more information on the syntax, please see the docstring of lambdify. If the keyword arguments contain 'dict'=True (default is False) nsolve will return a list (perhaps empty) of solution mappings. This might be especially useful if you want to use nsolve as a fallback to solve since using the dict argument for both methods produces return values of consistent type structure. Please note: to keep this consistency with solve, the solution will be returned in a list even though nsolve (currently at least) only finds one solution at a time. Overdetermined systems are supported. >>> from sympy import Symbol, nsolve >>> import sympy >>> import mpmath >>> mpmath.mp.dps = 15 >>> x1 = Symbol('x1') >>> x2 = Symbol('x2') >>> f1 = 3 * x1**2 - 2 * x2**2 - 1 >>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 >>> print(nsolve((f1, f2), (x1, x2), (-1, 1))) Matrix([[-1.19287309935246], [1.27844411169911]]) For one-dimensional functions the syntax is simplified: >>> from sympy import sin, nsolve >>> from sympy.abc import x >>> nsolve(sin(x), x, 2) 3.14159265358979 >>> nsolve(sin(x), 2) 3.14159265358979 To solve with higher precision than the default, use the prec argument. >>> from sympy import cos >>> nsolve(cos(x) - x, 1) 0.739085133215161 >>> nsolve(cos(x) - x, 1, prec=50) 0.73908513321516064165531208767387340401341175890076 >>> cos(_) 0.73908513321516064165531208767387340401341175890076 To solve for complex roots of real functions, a nonreal initial point must be specified: >>> from sympy import I >>> nsolve(x**2 + 2, I) 1.4142135623731*I mpmath.findroot is used and you can find there more extensive documentation, especially concerning keyword parameters and available solvers. Note, however, that functions which are very steep near the root the verification of the solution may fail. In this case you should use the flag `verify=False` and independently verify the solution. >>> from sympy import cos, cosh >>> from sympy.abc import i >>> f = cos(x)*cosh(x) - 1 >>> nsolve(f, 3.14*100) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19) >>> ans = nsolve(f, 3.14*100, verify=False); ans 312.588469032184 >>> f.subs(x, ans).n(2) 2.1e+121 >>> (f/f.diff(x)).subs(x, ans).n(2) 7.4e-15 One might safely skip the verification if bounds of the root are known and a bisection method is used: >>> bounds = lambda i: (3.14*i, 3.14*(i + 1)) >>> nsolve(f, bounds(100), solver='bisect', verify=False) 315.730061685774 Alternatively, a function may be better behaved when the denominator is ignored. Since this is not always the case, however, the decision of what function to use is left to the discretion of the user. >>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100 >>> nsolve(eq, 0.46) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19) Try another starting point or tweak arguments. >>> nsolve(eq.as_numer_denom()[0], 0.46) 0.46792545969349058 """ # there are several other SymPy functions that use method= so # guard against that here if 'method' in kwargs: raise ValueError(filldedent(''' Keyword "method" should not be used in this context. When using some mpmath solvers directly, the keyword "method" is used, but when using nsolve (and findroot) the keyword to use is "solver".''')) if 'prec' in kwargs: prec = kwargs.pop('prec') import mpmath mpmath.mp.dps = prec else: prec = None # keyword argument to return result as a dictionary as_dict = kwargs.pop('dict', False) # interpret arguments if len(args) == 3: f = args[0] fargs = args[1] x0 = args[2] if iterable(fargs) and iterable(x0): if len(x0) != len(fargs): raise TypeError('nsolve expected exactly %i guess vectors, got %i' % (len(fargs), len(x0))) elif len(args) == 2: f = args[0] fargs = None x0 = args[1] if iterable(f): raise TypeError('nsolve expected 3 arguments, got 2') elif len(args) < 2: raise TypeError('nsolve expected at least 2 arguments, got %i' % len(args)) else: raise TypeError('nsolve expected at most 3 arguments, got %i' % len(args)) modules = kwargs.get('modules', ['mpmath']) if iterable(f): f = list(f) for i, fi in enumerate(f): if isinstance(fi, Equality): f[i] = fi.lhs - fi.rhs f = Matrix(f).T if iterable(x0): x0 = list(x0) if not isinstance(f, Matrix): # assume it's a sympy expression if isinstance(f, Equality): f = f.lhs - f.rhs syms = f.free_symbols if fargs is None: fargs = syms.copy().pop() if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)): raise ValueError(filldedent(''' expected a one-dimensional and numerical function''')) # the function is much better behaved if there is no denominator # but sending the numerator is left to the user since sometimes # the function is better behaved when the denominator is present # e.g., issue 11768 f = lambdify(fargs, f, modules) x = sympify(findroot(f, x0, **kwargs)) if as_dict: return [{fargs: x}] return x if len(fargs) > f.cols: raise NotImplementedError(filldedent(''' need at least as many equations as variables''')) verbose = kwargs.get('verbose', False) if verbose: print('f(x):') print(f) # derive Jacobian J = f.jacobian(fargs) if verbose: print('J(x):') print(J) # create functions f = lambdify(fargs, f.T, modules) J = lambdify(fargs, J, modules) # solve the system numerically x = findroot(f, x0, J=J, **kwargs) if as_dict: return [dict(zip(fargs, [sympify(xi) for xi in x]))] return Matrix(x) def _invert(eq, *symbols, **kwargs): """Return tuple (i, d) where ``i`` is independent of ``symbols`` and ``d`` contains symbols. ``i`` and ``d`` are obtained after recursively using algebraic inversion until an uninvertible ``d`` remains. If there are no free symbols then ``d`` will be zero. Some (but not necessarily all) solutions to the expression ``i - d`` will be related to the solutions of the original expression. Examples ======== >>> from sympy.solvers.solvers import _invert as invert >>> from sympy import sqrt, cos >>> from sympy.abc import x, y >>> invert(x - 3) (3, x) >>> invert(3) (3, 0) >>> invert(2*cos(x) - 1) (1/2, cos(x)) >>> invert(sqrt(x) - 3) (3, sqrt(x)) >>> invert(sqrt(x) + y, x) (-y, sqrt(x)) >>> invert(sqrt(x) + y, y) (-sqrt(x), y) >>> invert(sqrt(x) + y, x, y) (0, sqrt(x) + y) If there is more than one symbol in a power's base and the exponent is not an Integer, then the principal root will be used for the inversion: >>> invert(sqrt(x + y) - 2) (4, x + y) >>> invert(sqrt(x + y) - 2) (4, x + y) If the exponent is an integer, setting ``integer_power`` to True will force the principal root to be selected: >>> invert(x**2 - 4, integer_power=True) (2, x) """ eq = sympify(eq) if eq.args: # make sure we are working with flat eq eq = eq.func(*eq.args) free = eq.free_symbols if not symbols: symbols = free if not free & set(symbols): return eq, S.Zero dointpow = bool(kwargs.get('integer_power', False)) lhs = eq rhs = S.Zero while True: was = lhs while True: indep, dep = lhs.as_independent(*symbols) # dep + indep == rhs if lhs.is_Add: # this indicates we have done it all if indep is S.Zero: break lhs = dep rhs -= indep # dep * indep == rhs else: # this indicates we have done it all if indep is S.One: break lhs = dep rhs /= indep # collect like-terms in symbols if lhs.is_Add: terms = {} for a in lhs.args: i, d = a.as_independent(*symbols) terms.setdefault(d, []).append(i) if any(len(v) > 1 for v in terms.values()): args = [] for d, i in terms.items(): if len(i) > 1: args.append(Add(*i)*d) else: args.append(i[0]*d) lhs = Add(*args) # if it's a two-term Add with rhs = 0 and two powers we can get the # dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3 if lhs.is_Add and not rhs and len(lhs.args) == 2 and \ not lhs.is_polynomial(*symbols): a, b = ordered(lhs.args) ai, ad = a.as_independent(*symbols) bi, bd = b.as_independent(*symbols) if any(_ispow(i) for i in (ad, bd)): a_base, a_exp = ad.as_base_exp() b_base, b_exp = bd.as_base_exp() if a_base == b_base: # a = -b lhs = powsimp(powdenest(ad/bd)) rhs = -bi/ai else: rat = ad/bd _lhs = powsimp(ad/bd) if _lhs != rat: lhs = _lhs rhs = -bi/ai elif ai == -bi: if isinstance(ad, Function) and ad.func == bd.func: if len(ad.args) == len(bd.args) == 1: lhs = ad.args[0] - bd.args[0] elif len(ad.args) == len(bd.args): # should be able to solve # f(x, y) - f(2 - x, 0) == 0 -> x == 1 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') elif lhs.is_Mul and any(_ispow(a) for a in lhs.args): lhs = powsimp(powdenest(lhs)) if lhs.is_Function: if hasattr(lhs, 'inverse') and len(lhs.args) == 1: # -1 # f(x) = g -> x = f (g) # # /!\ inverse should not be defined if there are multiple values # for the function -- these are handled in _tsolve # rhs = lhs.inverse()(rhs) lhs = lhs.args[0] elif isinstance(lhs, atan2): y, x = lhs.args lhs = 2*atan(y/(sqrt(x**2 + y**2) + x)) elif lhs.func == rhs.func: if len(lhs.args) == len(rhs.args) == 1: lhs = lhs.args[0] rhs = rhs.args[0] elif len(lhs.args) == len(rhs.args): # should be able to solve # f(x, y) == f(2, 3) -> x == 2 # f(x, x + y) == f(2, 3) -> x == 2 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0: lhs = 1/lhs rhs = 1/rhs # base**a = b -> base = b**(1/a) if # a is an Integer and dointpow=True (this gives real branch of root) # a is not an Integer and the equation is multivariate and the # base has more than 1 symbol in it # The rationale for this is that right now the multi-system solvers # doesn't try to resolve generators to see, for example, if the whole # system is written in terms of sqrt(x + y) so it will just fail, so we # do that step here. if lhs.is_Pow and ( lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1): rhs = rhs**(1/lhs.exp) lhs = lhs.base if lhs == was: break return rhs, lhs def unrad(eq, *syms, **flags): """ Remove radicals with symbolic arguments and return (eq, cov), None or raise an error: None is returned if there are no radicals to remove. NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved. Otherwise the tuple, ``(eq, cov)``, is returned where:: ``eq``, ``cov`` ``eq`` is an equation without radicals (in the symbol(s) of interest) whose solutions are a superset of the solutions to the original expression. ``eq`` might be re-written in terms of a new variable; the relationship to the original variables is given by ``cov`` which is a list containing ``v`` and ``v**p - b`` where ``p`` is the power needed to clear the radical and ``b`` is the radical now expressed as a polynomial in the symbols of interest. For example, for sqrt(2 - x) the tuple would be ``(c, c**2 - 2 + x)``. The solutions of ``eq`` will contain solutions to the original equation (if there are any). ``syms`` an iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if ``syms`` is not set. ``flags`` are used internally for communication during recursive calls. Two options are also recognized:: ``take``, when defined, is interpreted as a single-argument function that returns True if a given Pow should be handled. Radicals can be removed from an expression if:: * all bases of the radicals are the same; a change of variables is done in this case. * if all radicals appear in one term of the expression * there are only 4 terms with sqrt() factors or there are less than four terms having sqrt() factors * there are only two terms with radicals Examples ======== >>> from sympy.solvers.solvers import unrad >>> from sympy.abc import x >>> from sympy import sqrt, Rational, root, real_roots, solve >>> unrad(sqrt(x)*x**Rational(1, 3) + 2) (x**5 - 64, []) >>> unrad(sqrt(x) + root(x + 1, 3)) (x**3 - x**2 - 2*x - 1, []) >>> eq = sqrt(x) + root(x, 3) - 2 >>> unrad(eq) (_p**3 + _p**2 - 2, [_p, _p**6 - x]) """ uflags = dict(check=False, simplify=False) def _cov(p, e): if cov: # XXX - uncovered oldp, olde = cov if Poly(e, p).degree(p) in (1, 2): cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])] else: raise NotImplementedError else: cov[:] = [p, e] def _canonical(eq, cov): if cov: # change symbol to vanilla so no solutions are eliminated p, e = cov rep = {p: Dummy(p.name)} eq = eq.xreplace(rep) cov = [p.xreplace(rep), e.xreplace(rep)] # remove constants and powers of factors since these don't change # the location of the root; XXX should factor or factor_terms be used? eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True) if eq.is_Mul: args = [] for f in eq.args: if f.is_number: continue if f.is_Pow and _take(f, True): args.append(f.base) else: args.append(f) eq = Mul(*args) # leave as Mul for more efficient solving # make the sign canonical free = eq.free_symbols if len(free) == 1: if eq.coeff(free.pop()**degree(eq)).could_extract_minus_sign(): eq = -eq elif eq.could_extract_minus_sign(): eq = -eq return eq, cov def _Q(pow): # return leading Rational of denominator of Pow's exponent c = pow.as_base_exp()[1].as_coeff_Mul()[0] if not c.is_Rational: return S.One return c.q # define the _take method that will determine whether a term is of interest def _take(d, take_int_pow): # return True if coefficient of any factor's exponent's den is not 1 for pow in Mul.make_args(d): if not (pow.is_Symbol or pow.is_Pow): continue b, e = pow.as_base_exp() if not b.has(*syms): continue if not take_int_pow and _Q(pow) == 1: continue free = pow.free_symbols if free.intersection(syms): return True return False _take = flags.setdefault('_take', _take) cov, nwas, rpt = [flags.setdefault(k, v) for k, v in sorted(dict(cov=[], n=None, rpt=0).items())] # preconditioning eq = powdenest(factor_terms(eq, radical=True, clear=True)) eq, d = eq.as_numer_denom() eq = _mexpand(eq, recursive=True) if eq.is_number: return syms = set(syms) or eq.free_symbols poly = eq.as_poly() gens = [g for g in poly.gens if _take(g, True)] if not gens: return # check for trivial case # - already a polynomial in integer powers if all(_Q(g) == 1 for g in gens): return # - an exponent has a symbol of interest (don't handle) if any(g.as_base_exp()[1].has(*syms) for g in gens): return def _rads_bases_lcm(poly): # if all the bases are the same or all the radicals are in one # term, `lcm` will be the lcm of the denominators of the # exponents of the radicals lcm = 1 rads = set() bases = set() for g in poly.gens: if not _take(g, False): continue q = _Q(g) if q != 1: rads.add(g) lcm = ilcm(lcm, q) bases.add(g.base) return rads, bases, lcm rads, bases, lcm = _rads_bases_lcm(poly) if not rads: return covsym = Dummy('p', nonnegative=True) # only keep in syms symbols that actually appear in radicals; # and update gens newsyms = set() for r in rads: newsyms.update(syms & r.free_symbols) if newsyms != syms: syms = newsyms gens = [g for g in gens if g.free_symbols & syms] # get terms together that have common generators drad = dict(list(zip(rads, list(range(len(rads)))))) rterms = {(): []} args = Add.make_args(poly.as_expr()) for t in args: if _take(t, False): common = set(t.as_poly().gens).intersection(rads) key = tuple(sorted([drad[i] for i in common])) else: key = () rterms.setdefault(key, []).append(t) others = Add(*rterms.pop(())) rterms = [Add(*rterms[k]) for k in rterms.keys()] # the output will depend on the order terms are processed, so # make it canonical quickly rterms = list(reversed(list(ordered(rterms)))) ok = False # we don't have a solution yet depth = sqrt_depth(eq) if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2): eq = rterms[0]**lcm - ((-others)**lcm) ok = True else: if len(rterms) == 1 and rterms[0].is_Add: rterms = list(rterms[0].args) if len(bases) == 1: b = bases.pop() if len(syms) > 1: free = b.free_symbols x = {g for g in gens if g.is_Symbol} & free if not x: x = free x = ordered(x) else: x = syms x = list(x)[0] try: inv = _solve(covsym**lcm - b, x, **uflags) if not inv: raise NotImplementedError eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0]) _cov(covsym, covsym**lcm - b) return _canonical(eq, cov) except NotImplementedError: pass else: # no longer consider integer powers as generators gens = [g for g in gens if _Q(g) != 1] if len(rterms) == 2: if not others: eq = rterms[0]**lcm - (-rterms[1])**lcm ok = True elif not log(lcm, 2).is_Integer: # the lcm-is-power-of-two case is handled below r0, r1 = rterms if flags.get('_reverse', False): r1, r0 = r0, r1 i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly()) i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly()) for reverse in range(2): if reverse: i0, i1 = i1, i0 r0, r1 = r1, r0 _rads1, _, lcm1 = i1 _rads1 = Mul(*_rads1) t1 = _rads1**lcm1 c = covsym**lcm1 - t1 for x in syms: try: sol = _solve(c, x, **uflags) if not sol: raise NotImplementedError neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \ others tmp = unrad(neweq, covsym) if tmp: eq, newcov = tmp if newcov: newp, newc = newcov _cov(newp, c.subs(covsym, _solve(newc, covsym, **uflags)[0])) else: _cov(covsym, c) else: eq = neweq _cov(covsym, c) ok = True break except NotImplementedError: if reverse: raise NotImplementedError( 'no successful change of variable found') else: pass if ok: break elif len(rterms) == 3: # two cube roots and another with order less than 5 # (so an analytical solution can be found) or a base # that matches one of the cube root bases info = [_rads_bases_lcm(i.as_poly()) for i in rterms] RAD = 0 BASES = 1 LCM = 2 if info[0][LCM] != 3: info.append(info.pop(0)) rterms.append(rterms.pop(0)) elif info[1][LCM] != 3: info.append(info.pop(1)) rterms.append(rterms.pop(1)) if info[0][LCM] == info[1][LCM] == 3: if info[1][BASES] != info[2][BASES]: info[0], info[1] = info[1], info[0] rterms[0], rterms[1] = rterms[1], rterms[0] if info[1][BASES] == info[2][BASES]: eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3 ok = True elif info[2][LCM] < 5: # a*root(A, 3) + b*root(B, 3) + others = c a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB'] # zz represents the unraded expression into which the # specifics for this case are substituted zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 - 3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 + 3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 - 63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 - 21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d + 45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 - 18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 + 9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 + 3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 - 60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 + 3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 - 126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 - 9*c*d**8 + d**9) def _t(i): b = Mul(*info[i][RAD]) return cancel(rterms[i]/b), Mul(*info[i][BASES]) aa, AA = _t(0) bb, BB = _t(1) cc = -rterms[2] dd = others eq = zz.xreplace(dict(zip( (a, A, b, B, c, d), (aa, AA, bb, BB, cc, dd)))) ok = True # handle power-of-2 cases if not ok: if log(lcm, 2).is_Integer and (not others and len(rterms) == 4 or len(rterms) < 4): def _norm2(a, b): return a**2 + b**2 + 2*a*b if len(rterms) == 4: # (r0+r1)**2 - (r2+r3)**2 r0, r1, r2, r3 = rterms eq = _norm2(r0, r1) - _norm2(r2, r3) ok = True elif len(rterms) == 3: # (r1+r2)**2 - (r0+others)**2 r0, r1, r2 = rterms eq = _norm2(r1, r2) - _norm2(r0, others) ok = True elif len(rterms) == 2: # r0**2 - (r1+others)**2 r0, r1 = rterms eq = r0**2 - _norm2(r1, others) ok = True new_depth = sqrt_depth(eq) if ok else depth rpt += 1 # XXX how many repeats with others unchanging is enough? if not ok or ( nwas is not None and len(rterms) == nwas and new_depth is not None and new_depth == depth and rpt > 3): raise NotImplementedError('Cannot remove all radicals') flags.update(dict(cov=cov, n=len(rterms), rpt=rpt)) neq = unrad(eq, *syms, **flags) if neq: eq, cov = neq eq, cov = _canonical(eq, cov) return eq, cov from sympy.solvers.bivariate import ( bivariate_type, _solve_lambert, _filtered_gens)
78bf52f2feb9535208652b2c0433482fe4528c169d5bc8e6187088ba76c4c9b8
# -*- coding: utf-8 -*- """ Discrete Fourier Transform, Number Theoretic Transform, Walsh Hadamard Transform, Mobius Transform """ from __future__ import print_function, division, unicode_literals from sympy.core import S, Symbol, sympify from sympy.core.compatibility import as_int, range, iterable from sympy.core.function import expand_mul from sympy.core.numbers import pi, I from sympy.functions.elementary.trigonometric import sin, cos from sympy.ntheory import isprime, primitive_root from sympy.utilities.iterables import ibin #----------------------------------------------------------------------------# # # # Discrete Fourier Transform # # # #----------------------------------------------------------------------------# def _fourier_transform(seq, dps, inverse=False): """Utility function for the Discrete Fourier Transform""" if not iterable(seq): raise TypeError("Expected a sequence of numeric coefficients " "for Fourier Transform") a = [sympify(arg) for arg in seq] if any(x.has(Symbol) for x in a): raise ValueError("Expected non-symbolic coefficients") n = len(a) if n < 2: return a b = n.bit_length() - 1 if n&(n - 1): # not a power of 2 b += 1 n = 2**b a += [S.Zero]*(n - len(a)) for i in range(1, n): j = int(ibin(i, b, str=True)[::-1], 2) if i < j: a[i], a[j] = a[j], a[i] ang = -2*pi/n if inverse else 2*pi/n if dps is not None: ang = ang.evalf(dps + 2) w = [cos(ang*i) + I*sin(ang*i) for i in range(n // 2)] h = 2 while h <= n: hf, ut = h // 2, n // h for i in range(0, n, h): for j in range(hf): u, v = a[i + j], expand_mul(a[i + j + hf]*w[ut * j]) a[i + j], a[i + j + hf] = u + v, u - v h *= 2 if inverse: a = [(x/n).evalf(dps) for x in a] if dps is not None \ else [x/n for x in a] return a def fft(seq, dps=None): r""" Performs the Discrete Fourier Transform (**DFT**) in the complex domain. The sequence is automatically padded to the right with zeros, as the *radix-2 FFT* requires the number of sample points to be a power of 2. This method should be used with default arguments only for short sequences as the complexity of expressions increases with the size of the sequence. Parameters ========== seq : iterable The sequence on which **DFT** is to be applied. dps : Integer Specifies the number of decimal digits for precision. Examples ======== >>> from sympy import fft, ifft >>> fft([1, 2, 3, 4]) [10, -2 - 2*I, -2, -2 + 2*I] >>> ifft(_) [1, 2, 3, 4] >>> ifft([1, 2, 3, 4]) [5/2, -1/2 + I/2, -1/2, -1/2 - I/2] >>> fft(_) [1, 2, 3, 4] >>> ifft([1, 7, 3, 4], dps=15) [3.75, -0.5 - 0.75*I, -1.75, -0.5 + 0.75*I] >>> fft(_) [1.0, 7.0, 3.0, 4.0] References ========== .. [1] https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm .. [2] http://mathworld.wolfram.com/FastFourierTransform.html """ return _fourier_transform(seq, dps=dps) def ifft(seq, dps=None): return _fourier_transform(seq, dps=dps, inverse=True) ifft.__doc__ = fft.__doc__ #----------------------------------------------------------------------------# # # # Number Theoretic Transform # # # #----------------------------------------------------------------------------# def _number_theoretic_transform(seq, prime, inverse=False): """Utility function for the Number Theoretic Transform""" if not iterable(seq): raise TypeError("Expected a sequence of integer coefficients " "for Number Theoretic Transform") p = as_int(prime) if not isprime(p): raise ValueError("Expected prime modulus for " "Number Theoretic Transform") a = [as_int(x) % p for x in seq] n = len(a) if n < 1: return a b = n.bit_length() - 1 if n&(n - 1): b += 1 n = 2**b if (p - 1) % n: raise ValueError("Expected prime modulus of the form (m*2**k + 1)") a += [0]*(n - len(a)) for i in range(1, n): j = int(ibin(i, b, str=True)[::-1], 2) if i < j: a[i], a[j] = a[j], a[i] pr = primitive_root(p) rt = pow(pr, (p - 1) // n, p) if inverse: rt = pow(rt, p - 2, p) w = [1]*(n // 2) for i in range(1, n // 2): w[i] = w[i - 1]*rt % p h = 2 while h <= n: hf, ut = h // 2, n // h for i in range(0, n, h): for j in range(hf): u, v = a[i + j], a[i + j + hf]*w[ut * j] a[i + j], a[i + j + hf] = (u + v) % p, (u - v) % p h *= 2 if inverse: rv = pow(n, p - 2, p) a = [x*rv % p for x in a] return a def ntt(seq, prime): r""" Performs the Number Theoretic Transform (**NTT**), which specializes the Discrete Fourier Transform (**DFT**) over quotient ring `Z/pZ` for prime `p` instead of complex numbers `C`. The sequence is automatically padded to the right with zeros, as the *radix-2 NTT* requires the number of sample points to be a power of 2. Parameters ========== seq : iterable The sequence on which **DFT** is to be applied. prime : Integer Prime modulus of the form `(m 2^k + 1)` to be used for performing **NTT** on the sequence. Examples ======== >>> from sympy import ntt, intt >>> ntt([1, 2, 3, 4], prime=3*2**8 + 1) [10, 643, 767, 122] >>> intt(_, 3*2**8 + 1) [1, 2, 3, 4] >>> intt([1, 2, 3, 4], prime=3*2**8 + 1) [387, 415, 384, 353] >>> ntt(_, prime=3*2**8 + 1) [1, 2, 3, 4] References ========== .. [1] http://www.apfloat.org/ntt.html .. [2] http://mathworld.wolfram.com/NumberTheoreticTransform.html .. [3] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29 """ return _number_theoretic_transform(seq, prime=prime) def intt(seq, prime): return _number_theoretic_transform(seq, prime=prime, inverse=True) intt.__doc__ = ntt.__doc__ #----------------------------------------------------------------------------# # # # Walsh Hadamard Transform # # # #----------------------------------------------------------------------------# def _walsh_hadamard_transform(seq, inverse=False): """Utility function for the Walsh Hadamard Transform""" if not iterable(seq): raise TypeError("Expected a sequence of coefficients " "for Walsh Hadamard Transform") a = [sympify(arg) for arg in seq] n = len(a) if n < 2: return a if n&(n - 1): n = 2**n.bit_length() a += [S.Zero]*(n - len(a)) h = 2 while h <= n: hf = h // 2 for i in range(0, n, h): for j in range(hf): u, v = a[i + j], a[i + j + hf] a[i + j], a[i + j + hf] = u + v, u - v h *= 2 if inverse: a = [x/n for x in a] return a def fwht(seq): r""" Performs the Walsh Hadamard Transform (**WHT**), and uses Hadamard ordering for the sequence. The sequence is automatically padded to the right with zeros, as the *radix-2 FWHT* requires the number of sample points to be a power of 2. Parameters ========== seq : iterable The sequence on which WHT is to be applied. Examples ======== >>> from sympy import fwht, ifwht >>> fwht([4, 2, 2, 0, 0, 2, -2, 0]) [8, 0, 8, 0, 8, 8, 0, 0] >>> ifwht(_) [4, 2, 2, 0, 0, 2, -2, 0] >>> ifwht([19, -1, 11, -9, -7, 13, -15, 5]) [2, 0, 4, 0, 3, 10, 0, 0] >>> fwht(_) [19, -1, 11, -9, -7, 13, -15, 5] References ========== .. [1] https://en.wikipedia.org/wiki/Hadamard_transform .. [2] https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform """ return _walsh_hadamard_transform(seq) def ifwht(seq): return _walsh_hadamard_transform(seq, inverse=True) ifwht.__doc__ = fwht.__doc__ #----------------------------------------------------------------------------# # # # Möbius Transform for Subset Lattice # # # #----------------------------------------------------------------------------# def _mobius_transform(seq, sgn, subset): r"""Utility function for performing Möbius Transform using Yate's Dynamic Programming method""" if not iterable(seq): raise TypeError("Expected a sequence of coefficients") a = [sympify(arg) for arg in seq] n = len(a) if n < 2: return a if n&(n - 1): n = 2**n.bit_length() a += [S.Zero]*(n - len(a)) if subset: i = 1 while i < n: for j in range(n): if j & i: a[j] += sgn*a[j ^ i] i *= 2 else: i = 1 while i < n: for j in range(n): if j & i: continue a[j] += sgn*a[j ^ i] i *= 2 return a def mobius_transform(seq, subset=True): r""" Performs the Möbius Transform for subset lattice with indices of sequence as bitmasks. The indices of each argument, considered as bit strings, correspond to subsets of a finite set. The sequence is automatically padded to the right with zeros, as the definition of subset/superset based on bitmasks (indices) requires the size of sequence to be a power of 2. Parameters ========== seq : iterable The sequence on which Möbius Transform is to be applied. subset : bool Specifies if Möbius Transform is applied by enumerating subsets or supersets of the given set. Examples ======== >>> from sympy import symbols >>> from sympy import mobius_transform, inverse_mobius_transform >>> x, y, z = symbols('x y z') >>> mobius_transform([x, y, z]) [x, x + y, x + z, x + y + z] >>> inverse_mobius_transform(_) [x, y, z, 0] >>> mobius_transform([x, y, z], subset=False) [x + y + z, y, z, 0] >>> inverse_mobius_transform(_, subset=False) [x, y, z, 0] >>> mobius_transform([1, 2, 3, 4]) [1, 3, 4, 10] >>> inverse_mobius_transform(_) [1, 2, 3, 4] >>> mobius_transform([1, 2, 3, 4], subset=False) [10, 6, 7, 4] >>> inverse_mobius_transform(_, subset=False) [1, 2, 3, 4] References ========== .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula .. [2] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf .. [3] https://arxiv.org/pdf/1211.0189.pdf """ return _mobius_transform(seq, sgn=+1, subset=subset) def inverse_mobius_transform(seq, subset=True): return _mobius_transform(seq, sgn=-1, subset=subset) inverse_mobius_transform.__doc__ = mobius_transform.__doc__
d8570909bfeaf3e2eeced6b18e3e6e9435d106b879dff9978427fabcffc99e2d
from sympy.core.compatibility import range from .cartan_type import Standard_Cartan from sympy.core.backend import Matrix, Rational class TypeF(Standard_Cartan): def __new__(cls, n): if n != 4: raise ValueError("n should be 4") return Standard_Cartan.__new__(cls, "F", 4) def dimension(self): """Dimension of the vector space V underlying the Lie algebra Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("F4") >>> c.dimension() 4 """ return 4 def basic_root(self, i, j): """Generate roots with 1 in ith position and -1 in jth position """ n = self.n root = [0]*n root[i] = 1 root[j] = -1 return root def simple_root(self, i): """The ith simple root of F_4 Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("F4") >>> c.simple_root(3) [0, 0, 0, 1] """ if i < 3: return self.basic_root(i-1, i) if i == 3: root = [0]*4 root[3] = 1 return root if i == 4: root = [Rational(-1, 2)]*4 return root def positive_roots(self): """Generate all the positive roots of A_n This is half of all of the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("A3") >>> c.positive_roots() {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]} """ n = self.n posroots = {} k = 0 for i in range(0, n-1): for j in range(i+1, n): k += 1 posroots[k] = self.basic_root(i, j) k += 1 root = self.basic_root(i, j) root[j] = 1 posroots[k] = root for i in range(0, n): k += 1 root = [0]*n root[i] = 1 posroots[k] = root k += 1 root = [Rational(1, 2)]*n posroots[k] = root for i in range(1, 4): k += 1 root = [Rational(1, 2)]*n root[i] = Rational(-1, 2) posroots[k] = root posroots[k+1] = [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)] posroots[k+2] = [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)] posroots[k+3] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)] posroots[k+4] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(-1, 2)] return posroots def roots(self): """ Returns the total number of roots for F_4 """ return 48 def cartan_matrix(self): """The Cartan matrix for F_4 The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ...., alpha[l]). Then the ijth entry of the Cartan matrix is (<alpha[i],alpha[j]>). Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType('A4') >>> c.cartan_matrix() Matrix([ [ 2, -1, 0, 0], [-1, 2, -1, 0], [ 0, -1, 2, -1], [ 0, 0, -1, 2]]) """ m = Matrix( 4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2]) return m def basis(self): """ Returns the number of independent generators of F_4 """ return 52 def dynkin_diagram(self): diag = "0---0=>=0---0\n" diag += " ".join(str(i) for i in range(1, 5)) return diag
1e7e13ed9a20ec27560233927d12a46660224b3820e7fb97dae613b1a16027e2
""" Finite difference weights ========================= This module implements an algorithm for efficient generation of finite difference weights for ordinary differentials of functions for derivatives from 0 (interpolation) up to arbitrary order. The core algorithm is provided in the finite difference weight generating function (``finite_diff_weights``), and two convenience functions are provided for: - estimating a derivative (or interpolate) directly from a series of points is also provided (``apply_finite_diff``). - differentiating by using finite difference approximations (``differentiate_finite``). """ from sympy import Derivative, S from sympy.core.compatibility import iterable, range from sympy.core.decorators import deprecated def finite_diff_weights(order, x_list, x0=S.One): """ Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (``x_list``) for derivatives at ``x0`` of order 0, 1, ..., up to ``order`` using a recursive formula. Order of accuracy is at least ``len(x_list) - order``, if ``x_list`` is defined correctly. Parameters ========== order: int Up to what derivative order weights should be calculated. 0 corresponds to interpolation. x_list: sequence Sequence of (unique) values for the independent variable. It is useful (but not necessary) to order ``x_list`` from nearest to furthest from ``x0``; see examples below. x0: Number or Symbol Root or value of the independent variable for which the finite difference weights should be generated. Default is ``S.One``. Returns ======= list A list of sublists, each corresponding to coefficients for increasing derivative order, and each containing lists of coefficients for increasing subsets of x_list. Examples ======== >>> from sympy import S >>> from sympy.calculus import finite_diff_weights >>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0) >>> res [[[1, 0, 0, 0], [1/2, 1/2, 0, 0], [3/8, 3/4, -1/8, 0], [5/16, 15/16, -5/16, 1/16]], [[0, 0, 0, 0], [-1, 1, 0, 0], [-1, 1, 0, 0], [-23/24, 7/8, 1/8, -1/24]]] >>> res[0][-1] # FD weights for 0th derivative, using full x_list [5/16, 15/16, -5/16, 1/16] >>> res[1][-1] # FD weights for 1st derivative [-23/24, 7/8, 1/8, -1/24] >>> res[1][-2] # FD weights for 1st derivative, using x_list[:-1] [-1, 1, 0, 0] >>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0] -23/24 >>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc. 7/8 Each sublist contains the most accurate formula at the end. Note, that in the above example ``res[1][1]`` is the same as ``res[1][2]``. Since res[1][2] has an order of accuracy of ``len(x_list[:3]) - order = 3 - 1 = 2``, the same is true for ``res[1][1]``! >>> from sympy import S >>> from sympy.calculus import finite_diff_weights >>> res = finite_diff_weights(1, [S(0), S(1), -S(1), S(2), -S(2)], 0)[1] >>> res [[0, 0, 0, 0, 0], [-1, 1, 0, 0, 0], [0, 1/2, -1/2, 0, 0], [-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]] >>> res[0] # no approximation possible, using x_list[0] only [0, 0, 0, 0, 0] >>> res[1] # classic forward step approximation [-1, 1, 0, 0, 0] >>> res[2] # classic centered approximation [0, 1/2, -1/2, 0, 0] >>> res[3:] # higher order approximations [[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]] Let us compare this to a differently defined ``x_list``. Pay attention to ``foo[i][k]`` corresponding to the gridpoint defined by ``x_list[k]``. >>> from sympy import S >>> from sympy.calculus import finite_diff_weights >>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1] >>> foo [[0, 0, 0, 0, 0], [-1, 1, 0, 0, 0], [1/2, -2, 3/2, 0, 0], [1/6, -1, 1/2, 1/3, 0], [1/12, -2/3, 0, 2/3, -1/12]] >>> foo[1] # not the same and of lower accuracy as res[1]! [-1, 1, 0, 0, 0] >>> foo[2] # classic double backward step approximation [1/2, -2, 3/2, 0, 0] >>> foo[4] # the same as res[4] [1/12, -2/3, 0, 2/3, -1/12] Note that, unless you plan on using approximations based on subsets of ``x_list``, the order of gridpoints does not matter. The capability to generate weights at arbitrary points can be used e.g. to minimize Runge's phenomenon by using Chebyshev nodes: >>> from sympy import cos, symbols, pi, simplify >>> from sympy.calculus import finite_diff_weights >>> N, (h, x) = 4, symbols('h x') >>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes >>> print(x_list) [-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x] >>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4] >>> [simplify(c) for c in mycoeffs] #doctest: +NORMALIZE_WHITESPACE [(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4, (-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4, 6*x/h**2 - 8*x**3/h**4, (sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4, (-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4] Notes ===== If weights for a finite difference approximation of 3rd order derivative is wanted, weights for 0th, 1st and 2nd order are calculated "for free", so are formulae using subsets of ``x_list``. This is something one can take advantage of to save computational cost. Be aware that one should define ``x_list`` from nearest to furthest from ``x0``. If not, subsets of ``x_list`` will yield poorer approximations, which might not grand an order of accuracy of ``len(x_list) - order``. See also ======== sympy.calculus.finite_diff.apply_finite_diff References ========== .. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Bengt Fornberg; Mathematics of computation; 51; 184; (1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0 """ # The notation below closely corresponds to the one used in the paper. order = S(order) if not order.is_number: raise ValueError("Cannot handle symbolic order.") if order < 0: raise ValueError("Negative derivative order illegal.") if int(order) != order: raise ValueError("Non-integer order illegal") M = order N = len(x_list) - 1 delta = [[[0 for nu in range(N+1)] for n in range(N+1)] for m in range(M+1)] delta[0][0][0] = S(1) c1 = S(1) for n in range(1, N+1): c2 = S(1) for nu in range(0, n): c3 = x_list[n]-x_list[nu] c2 = c2 * c3 if n <= M: delta[n][n-1][nu] = 0 for m in range(0, min(n, M)+1): delta[m][n][nu] = (x_list[n]-x0)*delta[m][n-1][nu] -\ m*delta[m-1][n-1][nu] delta[m][n][nu] /= c3 for m in range(0, min(n, M)+1): delta[m][n][n] = c1/c2*(m*delta[m-1][n-1][n-1] - (x_list[n-1]-x0)*delta[m][n-1][n-1]) c1 = c2 return delta def apply_finite_diff(order, x_list, y_list, x0=S(0)): """ Calculates the finite difference approximation of the derivative of requested order at ``x0`` from points provided in ``x_list`` and ``y_list``. Parameters ========== order: int order of derivative to approximate. 0 corresponds to interpolation. x_list: sequence Sequence of (unique) values for the independent variable. y_list: sequence The function value at corresponding values for the independent variable in x_list. x0: Number or Symbol At what value of the independent variable the derivative should be evaluated. Defaults to S(0). Returns ======= sympy.core.add.Add or sympy.core.numbers.Number The finite difference expression approximating the requested derivative order at ``x0``. Examples ======== >>> from sympy.calculus import apply_finite_diff >>> cube = lambda arg: (1.0*arg)**3 >>> xlist = range(-3,3+1) >>> apply_finite_diff(2, xlist, map(cube, xlist), 2) - 12 # doctest: +SKIP -3.55271367880050e-15 we see that the example above only contain rounding errors. apply_finite_diff can also be used on more abstract objects: >>> from sympy import IndexedBase, Idx >>> from sympy.calculus import apply_finite_diff >>> x, y = map(IndexedBase, 'xy') >>> i = Idx('i') >>> x_list, y_list = zip(*[(x[i+j], y[i+j]) for j in range(-1,2)]) >>> apply_finite_diff(1, x_list, y_list, x[i]) ((x[i + 1] - x[i])/(-x[i - 1] + x[i]) - 1)*y[i]/(x[i + 1] - x[i]) - \ (x[i + 1] - x[i])*y[i - 1]/((x[i + 1] - x[i - 1])*(-x[i - 1] + x[i])) + \ (-x[i - 1] + x[i])*y[i + 1]/((x[i + 1] - x[i - 1])*(x[i + 1] - x[i])) Notes ===== Order = 0 corresponds to interpolation. Only supply so many points you think makes sense to around x0 when extracting the derivative (the function need to be well behaved within that region). Also beware of Runge's phenomenon. See also ======== sympy.calculus.finite_diff.finite_diff_weights References ========== Fortran 90 implementation with Python interface for numerics: finitediff_ .. _finitediff: https://github.com/bjodah/finitediff """ # In the original paper the following holds for the notation: # M = order # N = len(x_list) - 1 N = len(x_list) - 1 if len(x_list) != len(y_list): raise ValueError("x_list and y_list not equal in length.") delta = finite_diff_weights(order, x_list, x0) derivative = 0 for nu in range(0, len(x_list)): derivative += delta[order][N][nu]*y_list[nu] return derivative def _as_finite_diff(derivative, points=1, x0=None, wrt=None): """ Returns an approximation of a derivative of a function in the form of a finite difference formula. The expression is a weighted sum of the function at a number of discrete values of (one of) the independent variable(s). Parameters ========== derivative: a Derivative instance points: sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around ``x0``. default: 1 (step-size 1) x0: number or Symbol, optional the value of the independent variable (``wrt``) at which the derivative is to be approximated. Default: same as ``wrt``. wrt: Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the Derivative is ordinary. Default: ``None``. Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol, as_finite_diff >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> import warnings >>> warnings.simplefilter("ignore", SymPyDeprecationWarning) >>> x, h = symbols('x h') >>> f = Function('f') >>> as_finite_diff(f(x).diff(x)) -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> as_finite_diff(f(x).diff(x), h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> as_finite_diff(f(x).diff(x), [x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around ``x0``, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2) 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/\ ((-h + E*h)*(h + E*h)) + (-(-sqrt(2)*h + h)/(2*h) - \ (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) + \ (-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> as_finite_diff(d2fdxdy, wrt=x) -Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y) See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.finite_diff_weights """ if derivative.is_Derivative: pass elif derivative.is_Atom: return derivative else: return derivative.fromiter( [_as_finite_diff(ar, points, x0, wrt) for ar in derivative.args], **derivative.assumptions0) if wrt is None: old = None for v in derivative.variables: if old is v: continue derivative = _as_finite_diff(derivative, points, x0, v) old = v return derivative order = derivative.variables.count(wrt) if x0 is None: x0 = wrt if not iterable(points): if getattr(points, 'is_Function', False) and wrt in points.args: points = points.subs(wrt, x0) # points is simply the step-size, let's make it a # equidistant sequence centered around x0 if order % 2 == 0: # even order => odd number of points, grid point included points = [x0 + points*i for i in range(-order//2, order//2 + 1)] else: # odd order => even number of points, half-way wrt grid point points = [x0 + points*S(i)/2 for i in range(-order, order + 1, 2)] others = [wrt, 0] for v in set(derivative.variables): if v == wrt: continue others += [v, derivative.variables.count(v)] if len(points) < order+1: raise ValueError("Too few points for order %d" % order) return apply_finite_diff(order, points, [ Derivative(derivative.expr.subs({wrt: x}), *others) for x in points], x0) as_finite_diff = deprecated( useinstead="Derivative.as_finite_difference", deprecated_since_version="1.1", issue=11410)(_as_finite_diff) as_finite_diff.__doc__ = """ Deprecated function. Use Diff.as_finite_difference instead. """ def differentiate_finite(expr, *symbols, # points=1, x0=None, wrt=None, evaluate=True, #Py2: **kwargs): r""" Differentiate expr and replace Derivatives with finite differences. Parameters ========== expr : expression \*symbols : differentiate with respect to symbols points: sequence or coefficient, optional see ``Derivative.as_finite_difference`` x0: number or Symbol, optional see ``Derivative.as_finite_difference`` wrt: Symbol, optional see ``Derivative.as_finite_difference`` evaluate : bool kwarg passed on to ``diff``, whether or not to evaluate the Derivative intermediately (default: ``False``). Examples ======== >>> from sympy import cos, sin, Function, differentiate_finite >>> from sympy.abc import x, y, h >>> f, g = Function('f'), Function('g') >>> differentiate_finite(f(x)*g(x), x, points=[x-h, x+h]) -f(-h + x)*g(-h + x)/(2*h) + f(h + x)*g(h + x)/(2*h) Note that the above form preserves the product rule in discrete form. If we want we can pass ``evaluate=True`` to get another form (which is usually not what we want): >>> differentiate_finite(f(x)*g(x), x, points=[x-h, x+h], evaluate=True).simplify() -((f(-h + x) - f(h + x))*g(x) + (g(-h + x) - g(h + x))*f(x))/(2*h) ``differentiate_finite`` works on any expression: >>> differentiate_finite(f(x) + sin(x), x, 2) -2*f(x) + f(x - 1) + f(x + 1) - 2*sin(x) + sin(x - 1) + sin(x + 1) >>> differentiate_finite(f(x) + sin(x), x, 2, evaluate=True) -2*f(x) + f(x - 1) + f(x + 1) - sin(x) >>> differentiate_finite(f(x, y), x, y) f(x - 1/2, y - 1/2) - f(x - 1/2, y + 1/2) - f(x + 1/2, y - 1/2) + f(x + 1/2, y + 1/2) """ # Key-word only arguments only available in Python 3 points = kwargs.pop('points', 1) x0 = kwargs.pop('x0', None) wrt = kwargs.pop('wrt', None) evaluate = kwargs.pop('evaluate', False) if kwargs: raise ValueError("Unknown kwargs: %s" % kwargs) Dexpr = expr.diff(*symbols, evaluate=evaluate) return Dexpr.replace( lambda arg: arg.is_Derivative, lambda arg: arg.as_finite_difference(points=points, x0=x0, wrt=wrt))
3419fc6a31aa62338a82e626bf182840f482f0fcb92c47aa0e47d00ee57a512e
from sympy import Order, S, log, limit, lcm_list, Abs, im, re, Dummy from sympy.core import Add, Mul, Pow from sympy.core.basic import Basic from sympy.core.compatibility import iterable from sympy.core.expr import AtomicExpr, Expr from sympy.core.numbers import _sympifyit, oo from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import Min, Max from sympy.logic.boolalg import And from sympy.polys.rationaltools import together from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union, Complement, EmptySet) from sympy.sets.fancysets import ImageSet from sympy.simplify.radsimp import denom from sympy.solvers.inequalities import solve_univariate_inequality from sympy.utilities import filldedent def continuous_domain(f, symbol, domain): """ Returns the intervals in the given domain for which the function is continuous. This method is limited by the ability to determine the various singularities and discontinuities of the given function. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the intervals are to be determined. domain : Interval The domain over which the continuity of the symbol has to be checked. Examples ======== >>> from sympy import Symbol, S, tan, log, pi, sqrt >>> from sympy.sets import Interval >>> from sympy.calculus.util import continuous_domain >>> x = Symbol('x') >>> continuous_domain(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> continuous_domain(tan(x), x, Interval(0, pi)) Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi)) >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5)) Interval(2, 5) >>> continuous_domain(log(2*x - 1), x, S.Reals) Interval.open(1/2, oo) Returns ======= Interval Union of all intervals where the function is continuous. Raises ====== NotImplementedError If the method to determine continuity of such a function has not yet been developed. """ from sympy.solvers.inequalities import solve_univariate_inequality from sympy.solvers.solveset import solveset, _has_rational_power if domain.is_subset(S.Reals): constrained_interval = domain for atom in f.atoms(Pow): predicate, denomin = _has_rational_power(atom, symbol) if predicate and denomin == 2: constraint = solve_univariate_inequality(atom.base >= 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) for atom in f.atoms(log): constraint = solve_univariate_inequality(atom.args[0] > 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) domain = constrained_interval try: if f.has(Abs): sings = solveset(1/f, symbol, domain) + \ solveset(denom(together(f)), symbol, domain) else: for atom in f.atoms(Pow): predicate, denomin = _has_rational_power(atom, symbol) if predicate and denomin == 2: sings = solveset(1/f, symbol, domain) +\ solveset(denom(together(f)), symbol, domain) break else: sings = Intersection(solveset(1/f, symbol), domain) + \ solveset(denom(together(f)), symbol, domain) except NotImplementedError: raise NotImplementedError("Methods for determining the continuous domains" " of this function have not been developed.") return domain - sings def function_range(f, symbol, domain): """ Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the range of function is to be determined. domain : Interval The domain under which the range of the function has to be found. Examples ======== >>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan >>> from sympy.sets import Interval >>> from sympy.calculus.util import function_range >>> x = Symbol('x') >>> function_range(sin(x), x, Interval(0, 2*pi)) Interval(-1, 1) >>> function_range(tan(x), x, Interval(-pi/2, pi/2)) Interval(-oo, oo) >>> function_range(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> function_range(exp(x), x, S.Reals) Interval.open(0, oo) >>> function_range(log(x), x, S.Reals) Interval(-oo, oo) >>> function_range(sqrt(x), x , Interval(-5, 9)) Interval(0, 3) Returns ======= Interval Union of all ranges for all intervals under domain where function is continuous. Raises ====== NotImplementedError If any of the intervals, in the given domain, for which function is continuous are not finite or real, OR if the critical points of the function on the domain can't be found. """ from sympy.solvers.solveset import solveset if isinstance(domain, EmptySet): return S.EmptySet period = periodicity(f, symbol) if period is S.Zero: # the expression is constant wrt symbol return FiniteSet(f.expand()) if period is not None: if isinstance(domain, Interval): if (domain.inf - domain.sup).is_infinite: domain = Interval(0, period) elif isinstance(domain, Union): for sub_dom in domain.args: if isinstance(sub_dom, Interval) and \ ((sub_dom.inf - sub_dom.sup).is_infinite): domain = Interval(0, period) intervals = continuous_domain(f, symbol, domain) range_int = S.EmptySet if isinstance(intervals,(Interval, FiniteSet)): interval_iter = (intervals,) elif isinstance(intervals, Union): interval_iter = intervals.args else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) for interval in interval_iter: if isinstance(interval, FiniteSet): for singleton in interval: if singleton in domain: range_int += FiniteSet(f.subs(symbol, singleton)) elif isinstance(interval, Interval): vals = S.EmptySet critical_points = S.EmptySet critical_values = S.EmptySet bounds = ((interval.left_open, interval.inf, '+'), (interval.right_open, interval.sup, '-')) for is_open, limit_point, direction in bounds: if is_open: critical_values += FiniteSet(limit(f, symbol, limit_point, direction)) vals += critical_values else: vals += FiniteSet(f.subs(symbol, limit_point)) solution = solveset(f.diff(symbol), symbol, interval) if not iterable(solution): raise NotImplementedError( 'Unable to find critical points for {}'.format(f)) if isinstance(solution, ImageSet): raise NotImplementedError( 'Infinite number of critical points for {}'.format(f)) critical_points += solution for critical_point in critical_points: vals += FiniteSet(f.subs(symbol, critical_point)) left_open, right_open = False, False if critical_values is not S.EmptySet: if critical_values.inf == vals.inf: left_open = True if critical_values.sup == vals.sup: right_open = True range_int += Interval(vals.inf, vals.sup, left_open, right_open) else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) return range_int def not_empty_in(finset_intersection, *syms): """ Finds the domain of the functions in `finite_set` in which the `finite_set` is not-empty Parameters ========== finset_intersection : The unevaluated intersection of FiniteSet containing real-valued functions with Union of Sets syms : Tuple of symbols Symbol for which domain is to be found Raises ====== NotImplementedError The algorithms to find the non-emptiness of the given FiniteSet are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report it to the github issue tracker (https://github.com/sympy/sympy/issues). Examples ======== >>> from sympy import FiniteSet, Interval, not_empty_in, oo >>> from sympy.abc import x >>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x) Interval(0, 2) >>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) Union(Interval(1, 2), Interval(-sqrt(2), -1)) >>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) Union(Interval.Lopen(-2, -1), Interval(2, oo)) """ # TODO: handle piecewise defined functions # TODO: handle transcendental functions # TODO: handle multivariate functions if len(syms) == 0: raise ValueError("One or more symbols must be given in syms.") if finset_intersection is S.EmptySet: return S.EmptySet if isinstance(finset_intersection, Union): elm_in_sets = finset_intersection.args[0] return Union(not_empty_in(finset_intersection.args[1], *syms), elm_in_sets) if isinstance(finset_intersection, FiniteSet): finite_set = finset_intersection _sets = S.Reals else: finite_set = finset_intersection.args[1] _sets = finset_intersection.args[0] if not isinstance(finite_set, FiniteSet): raise ValueError('A FiniteSet must be given, not %s: %s' % (type(finite_set), finite_set)) if len(syms) == 1: symb = syms[0] else: raise NotImplementedError('more than one variables %s not handled' % (syms,)) def elm_domain(expr, intrvl): """ Finds the domain of an expression in any given interval """ from sympy.solvers.solveset import solveset _start = intrvl.start _end = intrvl.end _singularities = solveset(expr.as_numer_denom()[1], symb, domain=S.Reals) if intrvl.right_open: if _end is S.Infinity: _domain1 = S.Reals else: _domain1 = solveset(expr < _end, symb, domain=S.Reals) else: _domain1 = solveset(expr <= _end, symb, domain=S.Reals) if intrvl.left_open: if _start is S.NegativeInfinity: _domain2 = S.Reals else: _domain2 = solveset(expr > _start, symb, domain=S.Reals) else: _domain2 = solveset(expr >= _start, symb, domain=S.Reals) # domain in the interval expr_with_sing = Intersection(_domain1, _domain2) expr_domain = Complement(expr_with_sing, _singularities) return expr_domain if isinstance(_sets, Interval): return Union(*[elm_domain(element, _sets) for element in finite_set]) if isinstance(_sets, Union): _domain = S.EmptySet for intrvl in _sets.args: _domain_element = Union(*[elm_domain(element, intrvl) for element in finite_set]) _domain = Union(_domain, _domain_element) return _domain def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) """ from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree temp = Dummy('x', real=True) f = f.subs(symbol, temp) symbol = temp def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if isinstance(f, TrigonometricFunction): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if isinstance(f, exp): if im(f) != 0: period_real = periodicity(re(f), symbol) period_imag = periodicity(im(f), symbol) if period_real is not None and period_imag is not None: period = lcim([period_real, period_imag]) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None def _periodicity(args, symbol): """ Helper for `periodicity` to find the period of a list of simpler functions. It uses the `lcim` method to find the least common period of all the functions. Parameters ========== args : Tuple of Symbol All the symbols present in a function. symbol : Symbol The symbol over which the function is to be evaluated. Returns ======= period The least common period of the function for all the symbols of the function. None if for at least one of the symbols the function is aperiodic """ periods = [] for f in args: period = periodicity(f, symbol) if period is None: return None if period is not S.Zero: periods.append(period) if len(periods) > 1: return lcim(periods) if periods: return periods[0] def lcim(numbers): """Returns the least common integral multiple of a list of numbers. The numbers can be rational or irrational or a mixture of both. `None` is returned for incommensurable numbers. Parameters ========== numbers : list Numbers (rational and/or irrational) for which lcim is to be found. Returns ======= number lcim if it exists, otherwise `None` for incommensurable numbers. Examples ======== >>> from sympy import S, pi >>> from sympy.calculus.util import lcim >>> lcim([S(1)/2, S(3)/4, S(5)/6]) 15/2 >>> lcim([2*pi, 3*pi, pi, pi/2]) 6*pi >>> lcim([S(1), 2*pi]) """ result = None if all(num.is_irrational for num in numbers): factorized_nums = list(map(lambda num: num.factor(), numbers)) factors_num = list( map(lambda num: num.as_coeff_Mul(), factorized_nums)) term = factors_num[0][1] if all(factor == term for coeff, factor in factors_num): common_term = term coeffs = [coeff for coeff, factor in factors_num] result = lcm_list(coeffs) * common_term elif all(num.is_rational for num in numbers): result = lcm_list(numbers) else: pass return result def is_convex(f, *syms, **kwargs): """Determines the convexity of the function passed in the argument. Parameters ========== f : Expr The concerned function. syms : Tuple of symbols The variables with respect to which the convexity is to be determined. domain : Interval, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= Boolean The method returns `True` if the function is convex otherwise it returns `False`. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass log(f) as concerned function. To determine logartihmic concavity of a function pass -log(f) as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import symbols, exp, oo, Interval >>> from sympy.calculus.util import is_convex >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") f = _sympify(f) domain = kwargs.get('domain', S.Reals) var = syms[0] condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True def stationary_points(f, symbol, domain=S.Reals): """ Returns the stationary points of a function (where derivative of the function is 0) in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the stationary points are to be determined. domain : Interval The domain over which the stationary points have to be checked. If unspecified, S.Reals will be the default domain. Examples ======== >>> from sympy import Symbol, S, sin, log, pi, pprint, stationary_points >>> from sympy.sets import Interval >>> x = Symbol('x') >>> stationary_points(1/x, x, S.Reals) EmptySet() >>> pprint(stationary_points(sin(x), x), use_unicode=False) pi 3*pi {2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers} 2 2 >>> stationary_points(sin(x),x, Interval(0, 4*pi)) {pi/2, 3*pi/2, 5*pi/2, 7*pi/2} """ from sympy import solveset, diff if isinstance(domain, EmptySet): return S.EmptySet domain = continuous_domain(f, symbol, domain) set = solveset(diff(f, symbol), symbol, domain) return set def maximum(f, symbol, domain=S.Reals): """ Returns the maximum value of a function in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for maximum value needs to be determined. domain : Interval The domain over which the maximum have to be checked. If unspecified, then Global maximum is returned. Examples ======== >>> from sympy import Symbol, S, sin, cos, pi, maximum >>> from sympy.sets import Interval >>> x = Symbol('x') >>> f = -x**2 + 2*x + 5 >>> maximum(f, x, S.Reals) 6 >>> maximum(sin(x), x, Interval(-pi, pi/4)) sqrt(2)/2 >>> maximum(sin(x)*cos(x), x) 1/2 """ from sympy import Symbol if isinstance(symbol, Symbol): if isinstance(domain, EmptySet): raise ValueError("Maximum value not defined for empty domain.") return function_range(f, symbol, domain).sup else: raise ValueError("%s is not a valid symbol." % symbol) def minimum(f, symbol, domain=S.Reals): """ Returns the minimum value of a function in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for minimum value needs to be determined. domain : Interval The domain over which the minimum have to be checked. If unspecified, then Global minimum is returned. Examples ======== >>> from sympy import Symbol, S, sin, cos, minimum >>> from sympy.sets import Interval >>> x = Symbol('x') >>> f = x**2 + 2*x + 5 >>> minimum(f, x, S.Reals) 4 >>> minimum(sin(x), x, Interval(2, 3)) sin(3) >>> minimum(sin(x)*cos(x), x) -1/2 """ from sympy import Symbol if isinstance(symbol, Symbol): if isinstance(domain, EmptySet): raise ValueError("Minimum value not defined for empty domain.") return function_range(f, symbol, domain).inf else: raise ValueError("%s is not a valid symbol." % symbol) class AccumulationBounds(AtomicExpr): r""" # Note AccumulationBounds has an alias: AccumBounds AccumulationBounds represent an interval `[a, b]`, which is always closed at the ends. Here `a` and `b` can be any value from extended real numbers. The intended meaning of AccummulationBounds is to give an approximate location of the accumulation points of a real function at a limit point. Let `a` and `b` be reals such that a <= b. `\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}` `\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}` `\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}` `\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}` `oo` and `-oo` are added to the second and third definition respectively, since if either `-oo` or `oo` is an argument, then the other one should be included (though not as an end point). This is forced, since we have, for example, `1/AccumBounds(0, 1) = AccumBounds(1, oo)`, and the limit at `0` is not one-sided. As x tends to `0-`, then `1/x -> -oo`, so `-oo` should be interpreted as belonging to `AccumBounds(1, oo)` though it need not appear explicitly. In many cases it suffices to know that the limit set is bounded. However, in some other cases more exact information could be useful. For example, all accumulation values of cos(x) + 1 are non-negative. (AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)) A AccumulationBounds object is defined to be real AccumulationBounds, if its end points are finite reals. Let `X`, `Y` be real AccumulationBounds, then their sum, difference, product are defined to be the following sets: `X + Y = \{ x+y \mid x \in X \cap y \in Y\}` `X - Y = \{ x-y \mid x \in X \cap y \in Y\}` `X * Y = \{ x*y \mid x \in X \cap y \in Y\}` There is, however, no consensus on Interval division. `X / Y = \{ z \mid \exists x \in X, y \in Y \mid y \neq 0, z = x/y\}` Note: According to this definition the quotient of two AccumulationBounds may not be a AccumulationBounds object but rather a union of AccumulationBounds. Note ==== The main focus in the interval arithmetic is on the simplest way to calculate upper and lower endpoints for the range of values of a function in one or more variables. These barriers are not necessarily the supremum or infimum, since the precise calculation of those values can be difficult or impossible. Examples ======== >>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo >>> from sympy.abc import x >>> AccumBounds(0, 1) + AccumBounds(1, 2) AccumBounds(1, 3) >>> AccumBounds(0, 1) - AccumBounds(0, 2) AccumBounds(-2, 1) >>> AccumBounds(-2, 3)*AccumBounds(-1, 1) AccumBounds(-3, 3) >>> AccumBounds(1, 2)*AccumBounds(3, 5) AccumBounds(3, 10) The exponentiation of AccumulationBounds is defined as follows: If 0 does not belong to `X` or `n > 0` then `X^n = \{ x^n \mid x \in X\}` otherwise `X^n = \{ x^n \mid x \neq 0, x \in X\} \cup \{-\infty, \infty\}` Here for fractional `n`, the part of `X` resulting in a complex AccumulationBounds object is neglected. >>> AccumBounds(-1, 4)**(S(1)/2) AccumBounds(0, 2) >>> AccumBounds(1, 2)**2 AccumBounds(1, 4) >>> AccumBounds(-1, oo)**(-1) AccumBounds(-oo, oo) Note: `<a, b>^2` is not same as `<a, b>*<a, b>` >>> AccumBounds(-1, 1)**2 AccumBounds(0, 1) >>> AccumBounds(1, 3) < 4 True >>> AccumBounds(1, 3) < -1 False Some elementary functions can also take AccumulationBounds as input. A function `f` evaluated for some real AccumulationBounds `<a, b>` is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}` >>> sin(AccumBounds(pi/6, pi/3)) AccumBounds(1/2, sqrt(3)/2) >>> exp(AccumBounds(0, 1)) AccumBounds(1, E) >>> log(AccumBounds(1, E)) AccumBounds(0, 1) Some symbol in an expression can be substituted for a AccumulationBounds object. But it doesn't necessarily evaluate the AccumulationBounds for that expression. Same expression can be evaluated to different values depending upon the form it is used for substitution. For example: >>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) AccumBounds(-1, 4) >>> ((x + 1)**2).subs(x, AccumBounds(-1, 1)) AccumBounds(0, 4) References ========== .. [1] https://en.wikipedia.org/wiki/Interval_arithmetic .. [2] http://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf Notes ===== Do not use ``AccumulationBounds`` for floating point interval arithmetic calculations, use ``mpmath.iv`` instead. """ is_extended_real = True def __new__(cls, min, max): min = _sympify(min) max = _sympify(max) # Only allow real intervals (use symbols with 'is_extended_real=True'). if not min.is_extended_real or not max.is_extended_real: raise ValueError("Only real AccumulationBounds are supported") # Make sure that the created AccumBounds object will be valid. if max.is_comparable and min.is_comparable: if max < min: raise ValueError( "Lower limit should be smaller than upper limit") if max == min: return max return Basic.__new__(cls, min, max) # setting the operation priority _op_priority = 11.0 def _eval_is_real(self): if self.min.is_real and self.max.is_real: return True @property def min(self): """ Returns the minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).min 1 """ return self.args[0] @property def max(self): """ Returns the maximum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).max 3 """ return self.args[1] @property def delta(self): """ Returns the difference of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).delta 2 """ return self.max - self.min @property def mid(self): """ Returns the mean of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).mid 2 """ return (self.min + self.max) / 2 @_sympifyit('other', NotImplemented) def _eval_power(self, other): return self.__pow__(other) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, other.min), Add(self.max, other.max)) if other is S.Infinity and self.min is S.NegativeInfinity or \ other is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: return AccumBounds(Add(self.min, other), Add(self.max, other)) return Add(self, other, evaluate=False) return NotImplemented __radd__ = __add__ def __neg__(self): return AccumBounds(-self.max, -self.min) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, -other.max), Add(self.max, -other.min)) if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \ other is S.Infinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: return AccumBounds( Add(self.min, -other), Add(self.max, -other)) return Add(self, -other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return self.__neg__() + other @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds(Min(Mul(self.min, other.min), Mul(self.min, other.max), Mul(self.max, other.min), Mul(self.max, other.max)), Max(Mul(self.min, other.min), Mul(self.min, other.max), Mul(self.max, other.min), Mul(self.max, other.max))) if other is S.Infinity: if self.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero: return AccumBounds(-oo, 0) if other is S.NegativeInfinity: if self.min.is_zero: return AccumBounds(-oo, 0) if self.max.is_zero: return AccumBounds(0, oo) if other.is_extended_real: if other.is_zero: if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(0, oo) if self.min is S.NegativeInfinity: return AccumBounds(-oo, 0) return S.Zero if other.is_extended_positive: return AccumBounds( Mul(self.min, other), Mul(self.max, other)) elif other.is_extended_negative: return AccumBounds( Mul(self.max, other), Mul(self.min, other)) if isinstance(other, Order): return other return Mul(self, other, evaluate=False) return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): if S.Zero not in other: return self * AccumBounds(1/other.max, 1/other.min) if S.Zero in self and S.Zero in other: if self.min.is_zero and other.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero and other.min.is_zero: return AccumBounds(-oo, 0) return AccumBounds(-oo, oo) if self.max.is_extended_negative: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(self.max / other.min, oo) if other.max.is_extended_positive: # the actual answer is a Union of AccumBounds, # Union(AccumBounds(-oo, self.max/other.max), # AccumBounds(self.max/other.min, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(-oo, self.max / other.max) if self.min.is_extended_positive: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(-oo, self.min / other.min) if other.max.is_extended_positive: # the actual answer is a Union of AccumBounds, # Union(AccumBounds(-oo, self.min/other.min), # AccumBounds(self.min/other.max, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(self.min / other.max, oo) elif other.is_extended_real: if other is S.Infinity or other is S.NegativeInfinity: if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(Min(0, other), Max(0, other)) if self.min is S.NegativeInfinity: return AccumBounds(Min(0, -other), Max(0, -other)) if other.is_extended_positive: return AccumBounds(self.min / other, self.max / other) elif other.is_extended_negative: return AccumBounds(self.max / other, self.min / other) return Mul(self, 1 / other, evaluate=False) return NotImplemented __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __rdiv__(self, other): if isinstance(other, Expr): if other.is_extended_real: if other.is_zero: return S.Zero if S.Zero in self: if self.min == S.Zero: if other.is_extended_positive: return AccumBounds(Mul(other, 1 / self.max), oo) if other.is_extended_negative: return AccumBounds(-oo, Mul(other, 1 / self.max)) if self.max == S.Zero: if other.is_extended_positive: return AccumBounds(-oo, Mul(other, 1 / self.min)) if other.is_extended_negative: return AccumBounds(Mul(other, 1 / self.min), oo) return AccumBounds(-oo, oo) else: return AccumBounds(Min(other / self.min, other / self.max), Max(other / self.min, other / self.max)) return Mul(other, 1 / self, evaluate=False) else: return NotImplemented __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) def __pow__(self, other): from sympy.functions.elementary.miscellaneous import real_root if isinstance(other, Expr): if other is S.Infinity: if self.min.is_extended_nonnegative: if self.max < 1: return S.Zero if self.min > 1: return S.Infinity return AccumBounds(0, oo) elif self.max.is_extended_negative: if self.min > -1: return S.Zero if self.max < -1: return FiniteSet(-oo, oo) return AccumBounds(-oo, oo) else: if self.min > -1: if self.max < 1: return S.Zero return AccumBounds(0, oo) return AccumBounds(-oo, oo) if other is S.NegativeInfinity: return (1 / self)**oo if other.is_extended_real and other.is_number: if other.is_zero: return S.One if other.is_Integer: if self.min.is_extended_positive: return AccumBounds( Min(self.min ** other, self.max ** other), Max(self.min ** other, self.max ** other)) elif self.max.is_extended_negative: return AccumBounds( Min(self.max ** other, self.min ** other), Max(self.max ** other, self.min ** other)) if other % 2 == 0: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(self.min**other, oo) return AccumBounds(0, oo) return AccumBounds( S.Zero, Max(self.min**other, self.max**other)) else: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(-oo, self.min**other) return AccumBounds(-oo, oo) return AccumBounds(self.min**other, self.max**other) num, den = other.as_numer_denom() if num == S(1): if den % 2 == 0: if S.Zero in self: if self.min.is_extended_negative: return AccumBounds(0, real_root(self.max, den)) return AccumBounds(real_root(self.min, den), real_root(self.max, den)) num_pow = self**num return num_pow**(1 / den) return Pow(self, other, evaluate=False) return NotImplemented def __abs__(self): if self.max.is_extended_negative: return self.__neg__() elif self.min.is_extended_negative: return AccumBounds(S.Zero, Max(abs(self.min), self.max)) else: return self def __lt__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less than the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) < AccumBounds(4, oo) True >>> AccumBounds(1, 4) < AccumBounds(3, 4) AccumBounds(1, 4) < AccumBounds(3, 4) >>> AccumBounds(1, oo) < -1 False """ other = _sympify(other) if isinstance(other, AccumBounds): if self.max < other.min: return True if self.min >= other.max: return False elif not other.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.max < other: return True if self.min >= other: return False return super(AccumulationBounds, self).__lt__(other) def __le__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less than or equal to the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) <= AccumBounds(4, oo) True >>> AccumBounds(1, 4) <= AccumBounds(3, 4) AccumBounds(1, 4) <= AccumBounds(3, 4) >>> AccumBounds(1, 3) <= 0 False """ other = _sympify(other) if isinstance(other, AccumBounds): if self.max <= other.min: return True if self.min > other.max: return False elif not other.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.max <= other: return True if self.min > other: return False return super(AccumulationBounds, self).__le__(other) def __gt__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is greater than the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) > AccumBounds(4, oo) False >>> AccumBounds(1, 4) > AccumBounds(3, 4) AccumBounds(1, 4) > AccumBounds(3, 4) >>> AccumBounds(1, oo) > -1 True """ other = _sympify(other) if isinstance(other, AccumBounds): if self.min > other.max: return True if self.max <= other.min: return False elif not other.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.min > other: return True if self.max <= other: return False return super(AccumulationBounds, self).__gt__(other) def __ge__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less that the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) >= AccumBounds(4, oo) False >>> AccumBounds(1, 4) >= AccumBounds(3, 4) AccumBounds(1, 4) >= AccumBounds(3, 4) >>> AccumBounds(1, oo) >= 1 True """ other = _sympify(other) if isinstance(other, AccumBounds): if self.min >= other.max: return True if self.max < other.min: return False elif not other.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.min >= other: return True if self.max < other: return False return super(AccumulationBounds, self).__ge__(other) def __contains__(self, other): """ Returns True if other is contained in self, where other belongs to extended real numbers, False if not contained, otherwise TypeError is raised. Examples ======== >>> from sympy import AccumBounds, oo >>> 1 in AccumBounds(-1, 3) True -oo and oo go together as limits (in AccumulationBounds). >>> -oo in AccumBounds(1, oo) True >>> oo in AccumBounds(-oo, 0) True """ other = _sympify(other) if other is S.Infinity or other is S.NegativeInfinity: if self.min is S.NegativeInfinity or self.max is S.Infinity: return True return False rv = And(self.min <= other, self.max >= other) if rv not in (True, False): raise TypeError("input failed to evaluate") return rv def intersection(self, other): """ Returns the intersection of 'self' and 'other'. Here other can be an instance of FiniteSet or AccumulationBounds. Examples ======== >>> from sympy import AccumBounds, FiniteSet >>> AccumBounds(1, 3).intersection(AccumBounds(2, 4)) AccumBounds(2, 3) >>> AccumBounds(1, 3).intersection(AccumBounds(4, 6)) EmptySet() >>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5)) {1, 2} """ if not isinstance(other, (AccumBounds, FiniteSet)): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if isinstance(other, FiniteSet): fin_set = S.EmptySet for i in other: if i in self: fin_set = fin_set + FiniteSet(i) return fin_set if self.max < other.min or self.min > other.max: return S.EmptySet if self.min <= other.min: if self.max <= other.max: return AccumBounds(other.min, self.max) if self.max > other.max: return other if other.min <= self.min: if other.max < self.max: return AccumBounds(self.min, other.max) if other.max > self.max: return self def union(self, other): # TODO : Devise a better method for Union of AccumBounds # this method is not actually correct and # can be made better if not isinstance(other, AccumBounds): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if self.min <= other.min and self.max >= other.min: return AccumBounds(self.min, Max(self.max, other.max)) if other.min <= self.min and other.max >= self.min: return AccumBounds(other.min, Max(self.max, other.max)) # setting an alias for AccumulationBounds AccumBounds = AccumulationBounds
4f9d9458860b848d68d4e88efe592ee95f6388be30f28c452e461b807c4f6cec
""" This module provides convenient functions to transform sympy expressions to lambda functions which can be used to calculate numerical values very fast. """ from __future__ import print_function, division import inspect import keyword import re import textwrap import linecache from sympy.core.compatibility import (exec_, is_sequence, iterable, NotIterable, string_types, range, builtins, PY3) from sympy.utilities.misc import filldedent from sympy.utilities.decorator import doctest_depends_on __doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']} # Default namespaces, letting us define translations that can't be defined # by simple variable maps, like I => 1j MATH_DEFAULT = {} MPMATH_DEFAULT = {} NUMPY_DEFAULT = {"I": 1j} SCIPY_DEFAULT = {"I": 1j} TENSORFLOW_DEFAULT = {} SYMPY_DEFAULT = {} NUMEXPR_DEFAULT = {} # These are the namespaces the lambda functions will use. # These are separate from the names above because they are modified # throughout this file, whereas the defaults should remain unmodified. MATH = MATH_DEFAULT.copy() MPMATH = MPMATH_DEFAULT.copy() NUMPY = NUMPY_DEFAULT.copy() SCIPY = SCIPY_DEFAULT.copy() TENSORFLOW = TENSORFLOW_DEFAULT.copy() SYMPY = SYMPY_DEFAULT.copy() NUMEXPR = NUMEXPR_DEFAULT.copy() # Mappings between sympy and other modules function names. MATH_TRANSLATIONS = { "ceiling": "ceil", "E": "e", "ln": "log", } # NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses # of Function to automatically evalf. MPMATH_TRANSLATIONS = { "Abs": "fabs", "elliptic_k": "ellipk", "elliptic_f": "ellipf", "elliptic_e": "ellipe", "elliptic_pi": "ellippi", "ceiling": "ceil", "chebyshevt": "chebyt", "chebyshevu": "chebyu", "E": "e", "I": "j", "ln": "log", #"lowergamma":"lower_gamma", "oo": "inf", #"uppergamma":"upper_gamma", "LambertW": "lambertw", "MutableDenseMatrix": "matrix", "ImmutableDenseMatrix": "matrix", "conjugate": "conj", "dirichlet_eta": "altzeta", "Ei": "ei", "Shi": "shi", "Chi": "chi", "Si": "si", "Ci": "ci", "RisingFactorial": "rf", "FallingFactorial": "ff", } NUMPY_TRANSLATIONS = {} SCIPY_TRANSLATIONS = {} TENSORFLOW_TRANSLATIONS = { "Abs": "abs", "ceiling": "ceil", "im": "imag", "ln": "log", "Mod": "mod", "conjugate": "conj", "re": "real", } NUMEXPR_TRANSLATIONS = {} # Available modules: MODULES = { "math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)), "mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)), "numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)), "scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import numpy; import scipy; from scipy import *; from scipy.special import *",)), "tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("from tensorflow import *",)), "sympy": (SYMPY, SYMPY_DEFAULT, {}, ( "from sympy.functions import *", "from sympy.matrices import *", "from sympy import Integral, pi, oo, nan, zoo, E, I",)), "numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS, ("import_module('numexpr')", )), } def _import(module, reload=False): """ Creates a global translation dictionary for module. The argument module has to be one of the following strings: "math", "mpmath", "numpy", "sympy", "tensorflow". These dictionaries map names of python functions to their equivalent in other modules. """ # Required despite static analysis claiming it is not used from sympy.external import import_module try: namespace, namespace_default, translations, import_commands = MODULES[ module] except KeyError: raise NameError( "'%s' module can't be used for lambdification" % module) # Clear namespace or exit if namespace != namespace_default: # The namespace was already generated, don't do it again if not forced. if reload: namespace.clear() namespace.update(namespace_default) else: return for import_command in import_commands: if import_command.startswith('import_module'): module = eval(import_command) if module is not None: namespace.update(module.__dict__) continue else: try: exec_(import_command, {}, namespace) continue except ImportError: pass raise ImportError( "can't import '%s' with '%s' command" % (module, import_command)) # Add translated names to namespace for sympyname, translation in translations.items(): namespace[sympyname] = namespace[translation] # For computing the modulus of a sympy expression we use the builtin abs # function, instead of the previously used fabs function for all # translation modules. This is because the fabs function in the math # module does not accept complex valued arguments. (see issue 9474). The # only exception, where we don't use the builtin abs function is the # mpmath translation module, because mpmath.fabs returns mpf objects in # contrast to abs(). if 'Abs' not in namespace: namespace['Abs'] = abs # Used for dynamically generated filenames that are inserted into the # linecache. _lambdify_generated_counter = 1 @doctest_depends_on(modules=('numpy', 'tensorflow', ), python_version=(3,)) def lambdify(args, expr, modules=None, printer=None, use_imps=True, dummify=False): """ Translates a SymPy expression into an equivalent numeric function For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an equivalent NumPy function that numerically evaluates it: >>> from sympy import sin, cos, symbols, lambdify >>> import numpy as np >>> x = symbols('x') >>> expr = sin(x) + cos(x) >>> expr sin(x) + cos(x) >>> f = lambdify(x, expr, 'numpy') >>> a = np.array([1, 2]) >>> f(a) [1.38177329 0.49315059] The primary purpose of this function is to provide a bridge from SymPy expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath, and tensorflow. In general, SymPy functions do not work with objects from other libraries, such as NumPy arrays, and functions from numeric libraries like NumPy or mpmath do not work on SymPy expressions. ``lambdify`` bridges the two by converting a SymPy expression to an equivalent numeric function. The basic workflow with ``lambdify`` is to first create a SymPy expression representing whatever mathematical function you wish to evaluate. This should be done using only SymPy functions and expressions. Then, use ``lambdify`` to convert this to an equivalent function for numerical evaluation. For instance, above we created ``expr`` using the SymPy symbol ``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an equivalent NumPy function ``f``, and called it on a NumPy array ``a``. .. warning:: This function uses ``exec``, and thus shouldn't be used on unsanitized input. Arguments ========= The first argument of ``lambdify`` is a variable or list of variables in the expression. Variable lists may be nested. Variables can be Symbols, undefined functions, or matrix symbols. The order and nesting of the variables corresponds to the order and nesting of the parameters passed to the lambdified function. For instance, >>> from sympy.abc import x, y, z >>> f = lambdify([x, (y, z)], x + y + z) >>> f(1, (2, 3)) 6 The second argument of ``lambdify`` is the expression, list of expressions, or matrix to be evaluated. Lists may be nested. If the expression is a list, the output will also be a list. >>> f = lambdify(x, [x, [x + 1, x + 2]]) >>> f(1) [1, [2, 3]] If it is a matrix, an array will be returned (for the NumPy module). >>> from sympy import Matrix >>> f = lambdify(x, Matrix([x, x + 1])) >>> f(1) [[1] [2]] Note that the argument order here, variables then expression, is used to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works (roughly) like ``lambda x: expr`` (see :ref:`lambdify-how-it-works` below). The third argument, ``modules`` is optional. If not specified, ``modules`` defaults to ``["scipy", "numpy"]`` if SciPy is installed, ``["numpy"]`` if only NumPy is installed, and ``["math", "mpmath", "sympy"]`` if neither is installed. That is, SymPy functions are replaced as far as possible by either ``scipy`` or ``numpy`` functions if available, and Python's standard library ``math``, or ``mpmath`` functions otherwise. ``modules`` can be one of the following types - the strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``, ``"scipy"``, ``"sympy"``, or ``"tensorflow"``. This uses the corresponding printer and namespace mapping for that module. - a module (e.g., ``math``). This uses the global namespace of the module. If the module is one of the above known modules, it will also use the corresponding printer and namespace mapping (i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``). - a dictionary that maps names of SymPy functions to arbitrary functions (e.g., ``{'sin': custom_sin}``). - a list that contains a mix of the arguments above, with higher priority given to entries appearing first (e.g., to use the NumPy module but override the ``sin`` function with a custom version, you can use ``[{'sin': custom_sin}, 'numpy']``). The ``dummify`` keyword argument controls whether or not the variables in the provided expression that are not valid Python identifiers are substituted with dummy symbols. This allows for undefined functions like ``Function('f')(t)`` to be supplied as arguments. By default, the variables are only dummified if they are not valid Python identifiers. Set ``dummify=True`` to replace all arguments with dummy symbols (if ``args`` is not a string) - for example, to ensure that the arguments do not redefine any built-in names. .. _lambdify-how-it-works: How it works ============ When using this function, it helps a great deal to have an idea of what it is doing. At its core, lambdify is nothing more than a namespace translation, on top of a special printer that makes some corner cases work properly. To understand lambdify, first we must properly understand how Python namespaces work. Say we had two files. One called ``sin_cos_sympy.py``, with .. code:: python # sin_cos_sympy.py from sympy import sin, cos def sin_cos(x): return sin(x) + cos(x) and one called ``sin_cos_numpy.py`` with .. code:: python # sin_cos_numpy.py from numpy import sin, cos def sin_cos(x): return sin(x) + cos(x) The two files define an identical function ``sin_cos``. However, in the first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and ``cos``. In the second, they are defined as the NumPy versions. If we were to import the first file and use the ``sin_cos`` function, we would get something like >>> from sin_cos_sympy import sin_cos # doctest: +SKIP >>> sin_cos(1) # doctest: +SKIP cos(1) + sin(1) On the other hand, if we imported ``sin_cos`` from the second file, we would get >>> from sin_cos_numpy import sin_cos # doctest: +SKIP >>> sin_cos(1) # doctest: +SKIP 1.38177329068 In the first case we got a symbolic output, because it used the symbolic ``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions from NumPy. But notice that the versions of ``sin`` and ``cos`` that were used was not inherent to the ``sin_cos`` function definition. Both ``sin_cos`` definitions are exactly the same. Rather, it was based on the names defined at the module where the ``sin_cos`` function was defined. The key point here is that when function in Python references a name that is not defined in the function, that name is looked up in the "global" namespace of the module where that function is defined. Now, in Python, we can emulate this behavior without actually writing a file to disk using the ``exec`` function. ``exec`` takes a string containing a block of Python code, and a dictionary that should contain the global variables of the module. It then executes the code "in" that dictionary, as if it were the module globals. The following is equivalent to the ``sin_cos`` defined in ``sin_cos_sympy.py``: >>> import sympy >>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos} >>> exec(''' ... def sin_cos(x): ... return sin(x) + cos(x) ... ''', module_dictionary) >>> sin_cos = module_dictionary['sin_cos'] >>> sin_cos(1) cos(1) + sin(1) and similarly with ``sin_cos_numpy``: >>> import numpy >>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos} >>> exec(''' ... def sin_cos(x): ... return sin(x) + cos(x) ... ''', module_dictionary) >>> sin_cos = module_dictionary['sin_cos'] >>> sin_cos(1) 1.38177329068 So now we can get an idea of how ``lambdify`` works. The name "lambdify" comes from the fact that we can think of something like ``lambdify(x, sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where ``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why the symbols argument is first in ``lambdify``, as opposed to most SymPy functions where it comes after the expression: to better mimic the ``lambda`` keyword. ``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and 1. Converts it to a string 2. Creates a module globals dictionary based on the modules that are passed in (by default, it uses the NumPy module) 3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the list of variables separated by commas, and ``{expr}`` is the string created in step 1., then ``exec``s that string with the module globals namespace and returns ``func``. In fact, functions returned by ``lambdify`` support inspection. So you can see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you are using IPython or the Jupyter notebook. >>> f = lambdify(x, sin(x) + cos(x)) >>> import inspect >>> print(inspect.getsource(f)) def _lambdifygenerated(x): return (sin(x) + cos(x)) This shows us the source code of the function, but not the namespace it was defined in. We can inspect that by looking at the ``__globals__`` attribute of ``f``: >>> f.__globals__['sin'] <ufunc 'sin'> >>> f.__globals__['cos'] <ufunc 'cos'> >>> f.__globals__['sin'] is numpy.sin True This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be ``numpy.sin`` and ``numpy.cos``. Note that there are some convenience layers in each of these steps, but at the core, this is how ``lambdify`` works. Step 1 is done using the ``LambdaPrinter`` printers defined in the printing module (see :mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions to define how they should be converted to a string for different modules. You can change which printer ``lambdify`` uses by passing a custom printer in to the ``printer`` argument. Step 2 is augmented by certain translations. There are default translations for each module, but you can provide your own by passing a list to the ``modules`` argument. For instance, >>> def mysin(x): ... print('taking the sin of', x) ... return numpy.sin(x) ... >>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy']) >>> f(1) taking the sin of 1 0.8414709848078965 The globals dictionary is generated from the list by merging the dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The merging is done so that earlier items take precedence, which is why ``mysin`` is used above instead of ``numpy.sin``. If you want to modify the way ``lambdify`` works for a given function, it is usually easiest to do so by modifying the globals dictionary as such. In more complicated cases, it may be necessary to create and pass in a custom printer. Finally, step 3 is augmented with certain convenience operations, such as the addition of a docstring. Understanding how ``lambdify`` works can make it easier to avoid certain gotchas when using it. For instance, a common mistake is to create a lambdified function for one module (say, NumPy), and pass it objects from another (say, a SymPy expression). For instance, say we create >>> from sympy.abc import x >>> f = lambdify(x, x + 1, 'numpy') Now if we pass in a NumPy array, we get that array plus 1 >>> import numpy >>> a = numpy.array([1, 2]) >>> f(a) [2 3] But what happens if you make the mistake of passing in a SymPy expression instead of a NumPy array: >>> f(x + 1) x + 2 This worked, but it was only by accident. Now take a different lambdified function: >>> from sympy import sin >>> g = lambdify(x, x + sin(x), 'numpy') This works as expected on NumPy arrays: >>> g(a) [1.84147098 2.90929743] But if we try to pass in a SymPy expression, it fails >>> try: ... g(x + 1) ... # NumPy release after 1.17 raises TypeError instead of ... # AttributeError ... except (AttributeError, TypeError): ... raise AttributeError() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: Now, let's look at what happened. The reason this fails is that ``g`` calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not know how to operate on a SymPy object. **As a general rule, NumPy functions do not know how to operate on SymPy expressions, and SymPy functions do not know how to operate on NumPy arrays. This is why lambdify exists: to provide a bridge between SymPy and NumPy.** However, why is it that ``f`` did work? That's because ``f`` doesn't call any functions, it only adds 1. So the resulting function that is created, ``def _lambdifygenerated(x): return x + 1`` does not depend on the globals namespace it is defined in. Thus it works, but only by accident. A future version of ``lambdify`` may remove this behavior. Be aware that certain implementation details described here may change in future versions of SymPy. The API of passing in custom modules and printers will not change, but the details of how a lambda function is created may change. However, the basic idea will remain the same, and understanding it will be helpful to understanding the behavior of lambdify. **In general: you should create lambdified functions for one module (say, NumPy), and only pass it input types that are compatible with that module (say, NumPy arrays).** Remember that by default, if the ``module`` argument is not provided, ``lambdify`` creates functions using the NumPy and SciPy namespaces. Examples ======== >>> from sympy.utilities.lambdify import implemented_function >>> from sympy import sqrt, sin, Matrix >>> from sympy import Function >>> from sympy.abc import w, x, y, z >>> f = lambdify(x, x**2) >>> f(2) 4 >>> f = lambdify((x, y, z), [z, y, x]) >>> f(1,2,3) [3, 2, 1] >>> f = lambdify(x, sqrt(x)) >>> f(4) 2.0 >>> f = lambdify((x, y), sin(x*y)**2) >>> f(0, 5) 0.0 >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') >>> row(1, 2) Matrix([[1, 3]]) ``lambdify`` can be used to translate SymPy expressions into mpmath functions. This may be preferable to using ``evalf`` (which uses mpmath on the backend) in some cases. >>> import mpmath >>> f = lambdify(x, sin(x), 'mpmath') >>> f(1) 0.8414709848078965 Tuple arguments are handled and the lambdified function should be called with the same type of arguments as were used to create the function: >>> f = lambdify((x, (y, z)), x + y) >>> f(1, (2, 4)) 3 The ``flatten`` function can be used to always work with flattened arguments: >>> from sympy.utilities.iterables import flatten >>> args = w, (x, (y, z)) >>> vals = 1, (2, (3, 4)) >>> f = lambdify(flatten(args), w + x + y + z) >>> f(*flatten(vals)) 10 Functions present in ``expr`` can also carry their own numerical implementations, in a callable attached to the ``_imp_`` attribute. This can be used with undefined functions using the ``implemented_function`` factory: >>> f = implemented_function(Function('f'), lambda x: x+1) >>> func = lambdify(x, f(x)) >>> func(4) 5 ``lambdify`` always prefers ``_imp_`` implementations to implementations in other namespaces, unless the ``use_imps`` input parameter is False. Usage with Tensorflow: >>> import tensorflow as tf >>> from sympy import Max, sin >>> f = Max(x, sin(x)) >>> func = lambdify(x, f, 'tensorflow') >>> result = func(tf.constant(1.0)) >>> print(result) # a tf.Tensor representing the result of the calculation Tensor("Maximum:0", shape=(), dtype=float32) >>> sess = tf.Session() >>> sess.run(result) # compute result 1.0 >>> var = tf.Variable(1.0) >>> sess.run(tf.global_variables_initializer()) >>> sess.run(func(var)) # also works for tf.Variable and tf.Placeholder 1.0 >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]]) # works with any shape tensor >>> sess.run(func(tensor)) [[1. 2.] [3. 4.]] Notes ===== - For functions involving large array calculations, numexpr can provide a significant speedup over numpy. Please note that the available functions for numexpr are more limited than numpy but can be expanded with ``implemented_function`` and user defined subclasses of Function. If specified, numexpr may be the only option in modules. The official list of numexpr functions can be found at: https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions - In previous versions of SymPy, ``lambdify`` replaced ``Matrix`` with ``numpy.matrix`` by default. As of SymPy 1.0 ``numpy.array`` is the default. To get the old default behavior you must pass in ``[{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']`` to the ``modules`` kwarg. >>> from sympy import lambdify, Matrix >>> from sympy.abc import x, y >>> import numpy >>> array2mat = [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'] >>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat) >>> f(1, 2) [[1] [2]] - In the above examples, the generated functions can accept scalar values or numpy arrays as arguments. However, in some cases the generated function relies on the input being a numpy array: >>> from sympy import Piecewise >>> from sympy.utilities.pytest import ignore_warnings >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy") >>> with ignore_warnings(RuntimeWarning): ... f(numpy.array([-1, 0, 1, 2])) [-1. 0. 1. 0.5] >>> f(0) Traceback (most recent call last): ... ZeroDivisionError: division by zero In such cases, the input should be wrapped in a numpy array: >>> with ignore_warnings(RuntimeWarning): ... float(f(numpy.array([0]))) 0.0 Or if numpy functionality is not required another module can be used: >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math") >>> f(0) 0 """ from sympy.core.symbol import Symbol # If the user hasn't specified any modules, use what is available. if modules is None: try: _import("scipy") except ImportError: try: _import("numpy") except ImportError: # Use either numpy (if available) or python.math where possible. # XXX: This leads to different behaviour on different systems and # might be the reason for irreproducible errors. modules = ["math", "mpmath", "sympy"] else: modules = ["numpy"] else: modules = ["scipy", "numpy"] # Get the needed namespaces. namespaces = [] # First find any function implementations if use_imps: namespaces.append(_imp_namespace(expr)) # Check for dict before iterating if isinstance(modules, (dict, string_types)) or not hasattr(modules, '__iter__'): namespaces.append(modules) else: # consistency check if _module_present('numexpr', modules) and len(modules) > 1: raise TypeError("numexpr must be the only item in 'modules'") namespaces += list(modules) # fill namespace with first having highest priority namespace = {} for m in namespaces[::-1]: buf = _get_namespace(m) namespace.update(buf) if hasattr(expr, "atoms"): #Try if you can extract symbols from the expression. #Move on if expr.atoms in not implemented. syms = expr.atoms(Symbol) for term in syms: namespace.update({str(term): term}) if printer is None: if _module_present('mpmath', namespaces): from sympy.printing.pycode import MpmathPrinter as Printer elif _module_present('scipy', namespaces): from sympy.printing.pycode import SciPyPrinter as Printer elif _module_present('numpy', namespaces): from sympy.printing.pycode import NumPyPrinter as Printer elif _module_present('numexpr', namespaces): from sympy.printing.lambdarepr import NumExprPrinter as Printer elif _module_present('tensorflow', namespaces): from sympy.printing.tensorflow import TensorflowPrinter as Printer elif _module_present('sympy', namespaces): from sympy.printing.pycode import SymPyPrinter as Printer else: from sympy.printing.pycode import PythonCodePrinter as Printer user_functions = {} for m in namespaces[::-1]: if isinstance(m, dict): for k in m: user_functions[k] = k printer = Printer({'fully_qualified_modules': False, 'inline': True, 'allow_unknown_functions': True, 'user_functions': user_functions}) # Get the names of the args, for creating a docstring if not iterable(args): args = (args,) names = [] # Grab the callers frame, for getting the names by inspection (if needed) callers_local_vars = inspect.currentframe().f_back.f_locals.items() for n, var in enumerate(args): if hasattr(var, 'name'): names.append(var.name) else: # It's an iterable. Try to get name by inspection of calling frame. name_list = [var_name for var_name, var_val in callers_local_vars if var_val is var] if len(name_list) == 1: names.append(name_list[0]) else: # Cannot infer name with certainty. arg_# will have to do. names.append('arg_' + str(n)) # Create the function definition code and execute it funcname = '_lambdifygenerated' if _module_present('tensorflow', namespaces): funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) else: funcprinter = _EvaluatorPrinter(printer, dummify) funcstr = funcprinter.doprint(funcname, args, expr) # Collect the module imports from the code printers. imp_mod_lines = [] for mod, keys in (getattr(printer, 'module_imports', None) or {}).items(): for k in keys: if k not in namespace: imp_mod_lines.append("from %s import %s" % (mod, k)) for ln in imp_mod_lines: exec_(ln, {}, namespace) # Provide lambda expression with builtins, and compatible implementation of range namespace.update({'builtins':builtins, 'range':range}) funclocals = {} global _lambdify_generated_counter filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter _lambdify_generated_counter += 1 c = compile(funcstr, filename, 'exec') exec_(c, namespace, funclocals) # mtime has to be None or else linecache.checkcache will remove it linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) func = funclocals[funcname] # Apply the docstring sig = "func({0})".format(", ".join(str(i) for i in names)) sig = textwrap.fill(sig, subsequent_indent=' '*8) expr_str = str(expr) if len(expr_str) > 78: expr_str = textwrap.wrap(expr_str, 75)[0] + '...' func.__doc__ = ( "Created with lambdify. Signature:\n\n" "{sig}\n\n" "Expression:\n\n" "{expr}\n\n" "Source code:\n\n" "{src}\n\n" "Imported modules:\n\n" "{imp_mods}" ).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines)) return func def _module_present(modname, modlist): if modname in modlist: return True for m in modlist: if hasattr(m, '__name__') and m.__name__ == modname: return True return False def _get_namespace(m): """ This is used by _lambdify to parse its arguments. """ if isinstance(m, string_types): _import(m) return MODULES[m][0] elif isinstance(m, dict): return m elif hasattr(m, "__dict__"): return m.__dict__ else: raise TypeError("Argument must be either a string, dict or module but it is: %s" % m) def lambdastr(args, expr, printer=None, dummify=None): """ Returns a string that can be evaluated to a lambda function. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.utilities.lambdify import lambdastr >>> lambdastr(x, x**2) 'lambda x: (x**2)' >>> lambdastr((x,y,z), [z,y,x]) 'lambda x,y,z: ([z, y, x])' Although tuples may not appear as arguments to lambda in Python 3, lambdastr will create a lambda function that will unpack the original arguments so that nested arguments can be handled: >>> lambdastr((x, (y, z)), x + y) 'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])' """ # Transforming everything to strings. from sympy.matrices import DeferredVector from sympy import Dummy, sympify, Symbol, Function, flatten, Derivative, Basic if printer is not None: if inspect.isfunction(printer): lambdarepr = printer else: if inspect.isclass(printer): lambdarepr = lambda expr: printer().doprint(expr) else: lambdarepr = lambda expr: printer.doprint(expr) else: #XXX: This has to be done here because of circular imports from sympy.printing.lambdarepr import lambdarepr def sub_args(args, dummies_dict): if isinstance(args, string_types): return args elif isinstance(args, DeferredVector): return str(args) elif iterable(args): dummies = flatten([sub_args(a, dummies_dict) for a in args]) return ",".join(str(a) for a in dummies) else: # replace these with Dummy symbols if isinstance(args, (Function, Symbol, Derivative)): dummies = Dummy() dummies_dict.update({args : dummies}) return str(dummies) else: return str(args) def sub_expr(expr, dummies_dict): try: expr = sympify(expr).xreplace(dummies_dict) except Exception: if isinstance(expr, DeferredVector): pass elif isinstance(expr, dict): k = [sub_expr(sympify(a), dummies_dict) for a in expr.keys()] v = [sub_expr(sympify(a), dummies_dict) for a in expr.values()] expr = dict(zip(k, v)) elif isinstance(expr, tuple): expr = tuple(sub_expr(sympify(a), dummies_dict) for a in expr) elif isinstance(expr, list): expr = [sub_expr(sympify(a), dummies_dict) for a in expr] return expr # Transform args def isiter(l): return iterable(l, exclude=(str, DeferredVector, NotIterable)) def flat_indexes(iterable): n = 0 for el in iterable: if isiter(el): for ndeep in flat_indexes(el): yield (n,) + ndeep else: yield (n,) n += 1 if dummify is None: dummify = any(isinstance(a, Basic) and a.atoms(Function, Derivative) for a in ( args if isiter(args) else [args])) if isiter(args) and any(isiter(i) for i in args): dum_args = [str(Dummy(str(i))) for i in range(len(args))] indexed_args = ','.join([ dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]]) for ind in flat_indexes(args)]) lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify) return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args) dummies_dict = {} if dummify: args = sub_args(args, dummies_dict) else: if isinstance(args, string_types): pass elif iterable(args, exclude=DeferredVector): args = ",".join(str(a) for a in args) # Transform expr if dummify: if isinstance(expr, string_types): pass else: expr = sub_expr(expr, dummies_dict) expr = lambdarepr(expr) return "lambda %s: (%s)" % (args, expr) class _EvaluatorPrinter(object): def __init__(self, printer=None, dummify=False): self._dummify = dummify #XXX: This has to be done here because of circular imports from sympy.printing.lambdarepr import LambdaPrinter if printer is None: printer = LambdaPrinter() if inspect.isfunction(printer): self._exprrepr = printer else: if inspect.isclass(printer): printer = printer() self._exprrepr = printer.doprint if hasattr(printer, '_print_Symbol'): symbolrepr = printer._print_Symbol if hasattr(printer, '_print_Dummy'): dummyrepr = printer._print_Dummy # Used to print the generated function arguments in a standard way self._argrepr = LambdaPrinter().doprint def doprint(self, funcname, args, expr): """Returns the function definition code as a string.""" from sympy import Dummy funcbody = [] if not iterable(args): args = [args] argstrs, expr = self._preprocess(args, expr) # Generate argument unpacking and final argument list funcargs = [] unpackings = [] for argstr in argstrs: if iterable(argstr): funcargs.append(self._argrepr(Dummy())) unpackings.extend(self._print_unpacking(argstr, funcargs[-1])) else: funcargs.append(argstr) funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs)) # Wrap input arguments before unpacking funcbody.extend(self._print_funcargwrapping(funcargs)) funcbody.extend(unpackings) funcbody.append('return ({})'.format(self._exprrepr(expr))) funclines = [funcsig] funclines.extend(' ' + line for line in funcbody) return '\n'.join(funclines) + '\n' if PY3: @classmethod def _is_safe_ident(cls, ident): return isinstance(ident, string_types) and ident.isidentifier() \ and not keyword.iskeyword(ident) else: _safe_ident_re = re.compile('^[a-zA-Z_][a-zA-Z0-9_]*$') @classmethod def _is_safe_ident(cls, ident): return isinstance(ident, string_types) and cls._safe_ident_re.match(ident) \ and not (keyword.iskeyword(ident) or ident == 'None') def _preprocess(self, args, expr): """Preprocess args, expr to replace arguments that do not map to valid Python identifiers. Returns string form of args, and updated expr. """ from sympy import Dummy, Function, flatten, Derivative, ordered, Basic from sympy.matrices import DeferredVector from sympy.core.symbol import _uniquely_named_symbol from sympy.core.expr import Expr # Args of type Dummy can cause name collisions with args # of type Symbol. Force dummify of everything in this # situation. dummify = self._dummify or any( isinstance(arg, Dummy) for arg in flatten(args)) argstrs = [None]*len(args) for arg, i in reversed(list(ordered(zip(args, range(len(args)))))): if iterable(arg): s, expr = self._preprocess(arg, expr) elif isinstance(arg, DeferredVector): s = str(arg) elif isinstance(arg, Basic) and arg.is_symbol: s = self._argrepr(arg) if dummify or not self._is_safe_ident(s): dummy = Dummy() if isinstance(expr, Expr): dummy = _uniquely_named_symbol(dummy.name, expr) s = self._argrepr(dummy) expr = self._subexpr(expr, {arg: dummy}) elif dummify or isinstance(arg, (Function, Derivative)): dummy = Dummy() s = self._argrepr(dummy) expr = self._subexpr(expr, {arg: dummy}) else: s = str(arg) argstrs[i] = s return argstrs, expr def _subexpr(self, expr, dummies_dict): from sympy.matrices import DeferredVector from sympy import sympify expr = sympify(expr) xreplace = getattr(expr, 'xreplace', None) if xreplace is not None: expr = xreplace(dummies_dict) else: if isinstance(expr, DeferredVector): pass elif isinstance(expr, dict): k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()] v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()] expr = dict(zip(k, v)) elif isinstance(expr, tuple): expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr) elif isinstance(expr, list): expr = [self._subexpr(sympify(a), dummies_dict) for a in expr] return expr def _print_funcargwrapping(self, args): """Generate argument wrapping code. args is the argument list of the generated function (strings). Return value is a list of lines of code that will be inserted at the beginning of the function definition. """ return [] def _print_unpacking(self, unpackto, arg): """Generate argument unpacking code. arg is the function argument to be unpacked (a string), and unpackto is a list or nested lists of the variable names (strings) to unpack to. """ def unpack_lhs(lvalues): return '[{}]'.format(', '.join( unpack_lhs(val) if iterable(val) else val for val in lvalues)) return ['{} = {}'.format(unpack_lhs(unpackto), arg)] class _TensorflowEvaluatorPrinter(_EvaluatorPrinter): def _print_unpacking(self, lvalues, rvalue): """Generate argument unpacking code. This method is used when the input value is not interable, but can be indexed (see issue #14655). """ from sympy import flatten def flat_indexes(elems): n = 0 for el in elems: if iterable(el): for ndeep in flat_indexes(el): yield (n,) + ndeep else: yield (n,) n += 1 indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind))) for ind in flat_indexes(lvalues)) return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)] def _imp_namespace(expr, namespace=None): """ Return namespace dict with function implementations We need to search for functions in anything that can be thrown at us - that is - anything that could be passed as ``expr``. Examples include sympy expressions, as well as tuples, lists and dicts that may contain sympy expressions. Parameters ---------- expr : object Something passed to lambdify, that will generate valid code from ``str(expr)``. namespace : None or mapping Namespace to fill. None results in new empty dict Returns ------- namespace : dict dict with keys of implemented function names within ``expr`` and corresponding values being the numerical implementation of function Examples ======== >>> from sympy.abc import x >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace >>> from sympy import Function >>> f = implemented_function(Function('f'), lambda x: x+1) >>> g = implemented_function(Function('g'), lambda x: x*10) >>> namespace = _imp_namespace(f(g(x))) >>> sorted(namespace.keys()) ['f', 'g'] """ # Delayed import to avoid circular imports from sympy.core.function import FunctionClass if namespace is None: namespace = {} # tuples, lists, dicts are valid expressions if is_sequence(expr): for arg in expr: _imp_namespace(arg, namespace) return namespace elif isinstance(expr, dict): for key, val in expr.items(): # functions can be in dictionary keys _imp_namespace(key, namespace) _imp_namespace(val, namespace) return namespace # sympy expressions may be Functions themselves func = getattr(expr, 'func', None) if isinstance(func, FunctionClass): imp = getattr(func, '_imp_', None) if imp is not None: name = expr.func.__name__ if name in namespace and namespace[name] != imp: raise ValueError('We found more than one ' 'implementation with name ' '"%s"' % name) namespace[name] = imp # and / or they may take Functions as arguments if hasattr(expr, 'args'): for arg in expr.args: _imp_namespace(arg, namespace) return namespace def implemented_function(symfunc, implementation): """ Add numerical ``implementation`` to function ``symfunc``. ``symfunc`` can be an ``UndefinedFunction`` instance, or a name string. In the latter case we create an ``UndefinedFunction`` instance with that name. Be aware that this is a quick workaround, not a general method to create special symbolic functions. If you want to create a symbolic function to be used by all the machinery of SymPy you should subclass the ``Function`` class. Parameters ---------- symfunc : ``str`` or ``UndefinedFunction`` instance If ``str``, then create new ``UndefinedFunction`` with this as name. If ``symfunc`` is an Undefined function, create a new function with the same name and the implemented function attached. implementation : callable numerical implementation to be called by ``evalf()`` or ``lambdify`` Returns ------- afunc : sympy.FunctionClass instance function with attached implementation Examples ======== >>> from sympy.abc import x >>> from sympy.utilities.lambdify import lambdify, implemented_function >>> from sympy import Function >>> f = implemented_function('f', lambda x: x+1) >>> lam_f = lambdify(x, f(x)) >>> lam_f(4) 5 """ # Delayed import to avoid circular imports from sympy.core.function import UndefinedFunction # if name, create function to hold implementation kwargs = {} if isinstance(symfunc, UndefinedFunction): kwargs = symfunc._kwargs symfunc = symfunc.__name__ if isinstance(symfunc, string_types): # Keyword arguments to UndefinedFunction are added as attributes to # the created class. symfunc = UndefinedFunction( symfunc, _imp_=staticmethod(implementation), **kwargs) elif not isinstance(symfunc, UndefinedFunction): raise ValueError(filldedent(''' symfunc should be either a string or an UndefinedFunction instance.''')) return symfunc
e1e593656394aedb5c3e1610fda15f5d7b725d3a2a60222a5023a05dfed88b1a
from __future__ import print_function, division from collections import defaultdict, OrderedDict from itertools import ( combinations, combinations_with_replacement, permutations, product, product as cartes ) import random from operator import gt from sympy.core import Basic # this is the logical location of these functions from sympy.core.compatibility import ( as_int, default_sort_key, is_sequence, iterable, ordered, range, string_types ) from sympy.utilities.enumerative import ( multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser) def flatten(iterable, levels=None, cls=None): """ Recursively denest iterable containers. >>> from sympy.utilities.iterables import flatten >>> flatten([1, 2, 3]) [1, 2, 3] >>> flatten([1, 2, [3]]) [1, 2, 3] >>> flatten([1, [2, 3], [4, 5]]) [1, 2, 3, 4, 5] >>> flatten([1.0, 2, (1, None)]) [1.0, 2, 1, None] If you want to denest only a specified number of levels of nested containers, then set ``levels`` flag to the desired number of levels:: >>> ls = [[(-2, -1), (1, 2)], [(0, 0)]] >>> flatten(ls, levels=1) [(-2, -1), (1, 2), (0, 0)] If cls argument is specified, it will only flatten instances of that class, for example: >>> from sympy.core import Basic >>> class MyOp(Basic): ... pass ... >>> flatten([MyOp(1, MyOp(2, 3))], cls=MyOp) [1, 2, 3] adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks """ from sympy.tensor.array import NDimArray if levels is not None: if not levels: return iterable elif levels > 0: levels -= 1 else: raise ValueError( "expected non-negative number of levels, got %s" % levels) if cls is None: reducible = lambda x: is_sequence(x, set) else: reducible = lambda x: isinstance(x, cls) result = [] for el in iterable: if reducible(el): if hasattr(el, 'args') and not isinstance(el, NDimArray): el = el.args result.extend(flatten(el, levels=levels, cls=cls)) else: result.append(el) return result def unflatten(iter, n=2): """Group ``iter`` into tuples of length ``n``. Raise an error if the length of ``iter`` is not a multiple of ``n``. """ if n < 1 or len(iter) % n: raise ValueError('iter length is not a multiple of %i' % n) return list(zip(*(iter[i::n] for i in range(n)))) def reshape(seq, how): """Reshape the sequence according to the template in ``how``. Examples ======== >>> from sympy.utilities import reshape >>> seq = list(range(1, 9)) >>> reshape(seq, [4]) # lists of 4 [[1, 2, 3, 4], [5, 6, 7, 8]] >>> reshape(seq, (4,)) # tuples of 4 [(1, 2, 3, 4), (5, 6, 7, 8)] >>> reshape(seq, (2, 2)) # tuples of 4 [(1, 2, 3, 4), (5, 6, 7, 8)] >>> reshape(seq, (2, [2])) # (i, i, [i, i]) [(1, 2, [3, 4]), (5, 6, [7, 8])] >>> reshape(seq, ((2,), [2])) # etc.... [((1, 2), [3, 4]), ((5, 6), [7, 8])] >>> reshape(seq, (1, [2], 1)) [(1, [2, 3], 4), (5, [6, 7], 8)] >>> reshape(tuple(seq), ([[1], 1, (2,)],)) (([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],)) >>> reshape(tuple(seq), ([1], 1, (2,))) (([1], 2, (3, 4)), ([5], 6, (7, 8))) >>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) [[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]] """ m = sum(flatten(how)) n, rem = divmod(len(seq), m) if m < 0 or rem: raise ValueError('template must sum to positive number ' 'that divides the length of the sequence') i = 0 container = type(how) rv = [None]*n for k in range(len(rv)): rv[k] = [] for hi in how: if type(hi) is int: rv[k].extend(seq[i: i + hi]) i += hi else: n = sum(flatten(hi)) hi_type = type(hi) rv[k].append(hi_type(reshape(seq[i: i + n], hi)[0])) i += n rv[k] = container(rv[k]) return type(seq)(rv) def group(seq, multiple=True): """ Splits a sequence into a list of lists of equal, adjacent elements. Examples ======== >>> from sympy.utilities.iterables import group >>> group([1, 1, 1, 2, 2, 3]) [[1, 1, 1], [2, 2], [3]] >>> group([1, 1, 1, 2, 2, 3], multiple=False) [(1, 3), (2, 2), (3, 1)] >>> group([1, 1, 3, 2, 2, 1], multiple=False) [(1, 2), (3, 1), (2, 2), (1, 1)] See Also ======== multiset """ if not seq: return [] current, groups = [seq[0]], [] for elem in seq[1:]: if elem == current[-1]: current.append(elem) else: groups.append(current) current = [elem] groups.append(current) if multiple: return groups for i, current in enumerate(groups): groups[i] = (current[0], len(current)) return groups def multiset(seq): """Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence. Examples ======== >>> from sympy.utilities.iterables import multiset >>> multiset('mississippi') {'i': 4, 'm': 1, 'p': 2, 's': 4} See Also ======== group """ rv = defaultdict(int) for s in seq: rv[s] += 1 return dict(rv) def postorder_traversal(node, keys=None): """ Do a postorder traversal of a tree. This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of a node's children's postorder traversal before yielding the node itself. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ``ordered`` will be used (node count and default_sort_key). Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy.utilities.iterables import postorder_traversal >>> from sympy.abc import w, x, y, z The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(postorder_traversal(w + (x + y)*z)) # doctest: +SKIP [z, y, x, x + y, z*(x + y), w, w + z*(x + y)] >>> list(postorder_traversal(w + (x + y)*z, keys=True)) [w, z, x, y, x + y, z*(x + y), w + z*(x + y)] """ if isinstance(node, Basic): args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: for subtree in postorder_traversal(arg, keys): yield subtree elif iterable(node): for item in node: for subtree in postorder_traversal(item, keys): yield subtree yield node def interactive_traversal(expr): """Traverse a tree asking a user which branch to choose. """ from sympy.printing import pprint RED, BRED = '\033[0;31m', '\033[1;31m' GREEN, BGREEN = '\033[0;32m', '\033[1;32m' YELLOW, BYELLOW = '\033[0;33m', '\033[1;33m' BLUE, BBLUE = '\033[0;34m', '\033[1;34m' MAGENTA, BMAGENTA = '\033[0;35m', '\033[1;35m' CYAN, BCYAN = '\033[0;36m', '\033[1;36m' END = '\033[0m' def cprint(*args): print("".join(map(str, args)) + END) def _interactive_traversal(expr, stage): if stage > 0: print() cprint("Current expression (stage ", BYELLOW, stage, END, "):") print(BCYAN) pprint(expr) print(END) if isinstance(expr, Basic): if expr.is_Add: args = expr.as_ordered_terms() elif expr.is_Mul: args = expr.as_ordered_factors() else: args = expr.args elif hasattr(expr, "__iter__"): args = list(expr) else: return expr n_args = len(args) if not n_args: return expr for i, arg in enumerate(args): cprint(GREEN, "[", BGREEN, i, GREEN, "] ", BLUE, type(arg), END) pprint(arg) print if n_args == 1: choices = '0' else: choices = '0-%d' % (n_args - 1) try: choice = input("Your choice [%s,f,l,r,d,?]: " % choices) except EOFError: result = expr print() else: if choice == '?': cprint(RED, "%s - select subexpression with the given index" % choices) cprint(RED, "f - select the first subexpression") cprint(RED, "l - select the last subexpression") cprint(RED, "r - select a random subexpression") cprint(RED, "d - done\n") result = _interactive_traversal(expr, stage) elif choice in ['d', '']: result = expr elif choice == 'f': result = _interactive_traversal(args[0], stage + 1) elif choice == 'l': result = _interactive_traversal(args[-1], stage + 1) elif choice == 'r': result = _interactive_traversal(random.choice(args), stage + 1) else: try: choice = int(choice) except ValueError: cprint(BRED, "Choice must be a number in %s range\n" % choices) result = _interactive_traversal(expr, stage) else: if choice < 0 or choice >= n_args: cprint(BRED, "Choice must be in %s range\n" % choices) result = _interactive_traversal(expr, stage) else: result = _interactive_traversal(args[choice], stage + 1) return result return _interactive_traversal(expr, 0) def ibin(n, bits=0, str=False): """Return a list of length ``bits`` corresponding to the binary value of ``n`` with small bits to the right (last). If bits is omitted, the length will be the number required to represent ``n``. If the bits are desired in reversed order, use the ``[::-1]`` slice of the returned list. If a sequence of all bits-length lists starting from ``[0, 0,..., 0]`` through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g. ``'all'``. If the bit *string* is desired pass ``str=True``. Examples ======== >>> from sympy.utilities.iterables import ibin >>> ibin(2) [1, 0] >>> ibin(2, 4) [0, 0, 1, 0] >>> ibin(2, 4)[::-1] [0, 1, 0, 0] If all lists corresponding to 0 to 2**n - 1, pass a non-integer for bits: >>> bits = 2 >>> for i in ibin(2, 'all'): ... print(i) (0, 0) (0, 1) (1, 0) (1, 1) If a bit string is desired of a given length, use str=True: >>> n = 123 >>> bits = 10 >>> ibin(n, bits, str=True) '0001111011' >>> ibin(n, bits, str=True)[::-1] # small bits left '1101111000' >>> list(ibin(3, 'all', str=True)) ['000', '001', '010', '011', '100', '101', '110', '111'] """ if not str: try: bits = as_int(bits) return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")] except ValueError: return variations(list(range(2)), n, repetition=True) else: try: bits = as_int(bits) return bin(n)[2:].rjust(bits, "0") except ValueError: return (bin(i)[2:].rjust(n, "0") for i in range(2**n)) def variations(seq, n, repetition=False): r"""Returns a generator of the n-sized variations of ``seq`` (size N). ``repetition`` controls whether items in ``seq`` can appear more than once; Examples ======== ``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without repetition of ``seq``'s elements: >>> from sympy.utilities.iterables import variations >>> list(variations([1, 2], 2)) [(1, 2), (2, 1)] ``variations(seq, n, True)`` will return the `N^n` permutations obtained by allowing repetition of elements: >>> list(variations([1, 2], 2, repetition=True)) [(1, 1), (1, 2), (2, 1), (2, 2)] If you ask for more items than are in the set you get the empty set unless you allow repetitions: >>> list(variations([0, 1], 3, repetition=False)) [] >>> list(variations([0, 1], 3, repetition=True))[:4] [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)] See Also ======== sympy.core.compatibility.permutations sympy.core.compatibility.product """ if not repetition: seq = tuple(seq) if len(seq) < n: return for i in permutations(seq, n): yield i else: if n == 0: yield () else: for i in product(seq, repeat=n): yield i def subsets(seq, k=None, repetition=False): r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``. A `k`-subset of an `n`-element set is any subset of length exactly `k`. The number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``, whereas there are `2^n` subsets all together. If `k` is ``None`` then all `2^n` subsets will be returned from shortest to longest. Examples ======== >>> from sympy.utilities.iterables import subsets ``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations) without repetition, i.e. once an item has been removed, it can no longer be "taken": >>> list(subsets([1, 2], 2)) [(1, 2)] >>> list(subsets([1, 2])) [(), (1,), (2,), (1, 2)] >>> list(subsets([1, 2, 3], 2)) [(1, 2), (1, 3), (2, 3)] ``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}` combinations *with* repetition: >>> list(subsets([1, 2], 2, repetition=True)) [(1, 1), (1, 2), (2, 2)] If you ask for more items than are in the set you get the empty set unless you allow repetitions: >>> list(subsets([0, 1], 3, repetition=False)) [] >>> list(subsets([0, 1], 3, repetition=True)) [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)] """ if k is None: for k in range(len(seq) + 1): for i in subsets(seq, k, repetition): yield i else: if not repetition: for i in combinations(seq, k): yield i else: for i in combinations_with_replacement(seq, k): yield i def filter_symbols(iterator, exclude): """ Only yield elements from `iterator` that do not occur in `exclude`. Parameters ========== iterator : iterable iterator to take elements from exclude : iterable elements to exclude Returns ======= iterator : iterator filtered iterator """ exclude = set(exclude) for s in iterator: if s not in exclude: yield s def numbered_symbols(prefix='x', cls=None, start=0, exclude=[], *args, **assumptions): """ Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in ``exclude``. Parameters ========== prefix : str, optional The prefix to use. By default, this function will generate symbols of the form "x0", "x1", etc. cls : class, optional The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``. start : int, optional The start number. By default, it is 0. Returns ======= sym : Symbol The subscripted symbols. """ exclude = set(exclude or []) if cls is None: # We can't just make the default cls=Symbol because it isn't # imported yet. from sympy import Symbol cls = Symbol while True: name = '%s%s' % (prefix, start) s = cls(name, *args, **assumptions) if s not in exclude: yield s start += 1 def capture(func): """Return the printed output of func(). ``func`` should be a function without arguments that produces output with print statements. >>> from sympy.utilities.iterables import capture >>> from sympy import pprint >>> from sympy.abc import x >>> def foo(): ... print('hello world!') ... >>> 'hello' in capture(foo) # foo, not foo() True >>> capture(lambda: pprint(2/x)) '2\\n-\\nx\\n' """ from sympy.core.compatibility import StringIO import sys stdout = sys.stdout sys.stdout = file = StringIO() try: func() finally: sys.stdout = stdout return file.getvalue() def sift(seq, keyfunc, binary=False): """ Sift the sequence, ``seq`` according to ``keyfunc``. Returns ======= When ``binary`` is ``False`` (default), the output is a dictionary where elements of ``seq`` are stored in a list keyed to the value of keyfunc for that element. If ``binary`` is True then a tuple with lists ``T`` and ``F`` are returned where ``T`` is a list containing elements of seq for which ``keyfunc`` was ``True`` and ``F`` containing those elements for which ``keyfunc`` was ``False``; a ValueError is raised if the ``keyfunc`` is not binary. Examples ======== >>> from sympy.utilities import sift >>> from sympy.abc import x, y >>> from sympy import sqrt, exp, pi, Tuple >>> sift(range(5), lambda x: x % 2) {0: [0, 2, 4], 1: [1, 3]} sift() returns a defaultdict() object, so any key that has no matches will give []. >>> sift([x], lambda x: x.is_commutative) {True: [x]} >>> _[False] [] Sometimes you will not know how many keys you will get: >>> sift([sqrt(x), exp(x), (y**x)**2], ... lambda x: x.as_base_exp()[0]) {E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]} Sometimes you expect the results to be binary; the results can be unpacked by setting ``binary`` to True: >>> sift(range(4), lambda x: x % 2, binary=True) ([1, 3], [0, 2]) >>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True) ([1], [pi]) A ValueError is raised if the predicate was not actually binary (which is a good test for the logic where sifting is used and binary results were expected): >>> unknown = exp(1) - pi # the rationality of this is unknown >>> args = Tuple(1, pi, unknown) >>> sift(args, lambda x: x.is_rational, binary=True) Traceback (most recent call last): ... ValueError: keyfunc gave non-binary output The non-binary sifting shows that there were 3 keys generated: >>> set(sift(args, lambda x: x.is_rational).keys()) {None, False, True} If you need to sort the sifted items it might be better to use ``ordered`` which can economically apply multiple sort keys to a sequence while sorting. See Also ======== ordered """ if not binary: m = defaultdict(list) for i in seq: m[keyfunc(i)].append(i) return m sift = F, T = [], [] for i in seq: try: sift[keyfunc(i)].append(i) except (IndexError, TypeError): raise ValueError('keyfunc gave non-binary output') return T, F def take(iter, n): """Return ``n`` items from ``iter`` iterator. """ return [ value for _, value in zip(range(n), iter) ] def dict_merge(*dicts): """Merge dictionaries into a single dictionary. """ merged = {} for dict in dicts: merged.update(dict) return merged def common_prefix(*seqs): """Return the subsequence that is a common start of sequences in ``seqs``. >>> from sympy.utilities.iterables import common_prefix >>> common_prefix(list(range(3))) [0, 1, 2] >>> common_prefix(list(range(3)), list(range(4))) [0, 1, 2] >>> common_prefix([1, 2, 3], [1, 2, 5]) [1, 2] >>> common_prefix([1, 2, 3], [1, 3, 5]) [1] """ if any(not s for s in seqs): return [] elif len(seqs) == 1: return seqs[0] i = 0 for i in range(min(len(s) for s in seqs)): if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))): break else: i += 1 return seqs[0][:i] def common_suffix(*seqs): """Return the subsequence that is a common ending of sequences in ``seqs``. >>> from sympy.utilities.iterables import common_suffix >>> common_suffix(list(range(3))) [0, 1, 2] >>> common_suffix(list(range(3)), list(range(4))) [] >>> common_suffix([1, 2, 3], [9, 2, 3]) [2, 3] >>> common_suffix([1, 2, 3], [9, 7, 3]) [3] """ if any(not s for s in seqs): return [] elif len(seqs) == 1: return seqs[0] i = 0 for i in range(-1, -min(len(s) for s in seqs) - 1, -1): if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))): break else: i -= 1 if i == -1: return [] else: return seqs[0][i + 1:] def prefixes(seq): """ Generate all prefixes of a sequence. Examples ======== >>> from sympy.utilities.iterables import prefixes >>> list(prefixes([1,2,3,4])) [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]] """ n = len(seq) for i in range(n): yield seq[:i + 1] def postfixes(seq): """ Generate all postfixes of a sequence. Examples ======== >>> from sympy.utilities.iterables import postfixes >>> list(postfixes([1,2,3,4])) [[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]] """ n = len(seq) for i in range(n): yield seq[n - i - 1:] def topological_sort(graph, key=None): r""" Topological sort of graph's vertices. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph to be sorted topologically. key : callable[T] (optional) Ordering key for vertices on the same level. By default the natural (e.g. lexicographic) ordering is used (in this case the base type must implement ordering relations). Examples ======== Consider a graph:: +---+ +---+ +---+ | 7 |\ | 5 | | 3 | +---+ \ +---+ +---+ | _\___/ ____ _/ | | / \___/ \ / | V V V V | +----+ +---+ | | 11 | | 8 | | +----+ +---+ | | | \____ ___/ _ | | \ \ / / \ | V \ V V / V V +---+ \ +---+ | +----+ | 2 | | | 9 | | | 10 | +---+ | +---+ | +----+ \________/ where vertices are integers. This graph can be encoded using elementary Python's data structures as follows:: >>> V = [2, 3, 5, 7, 8, 9, 10, 11] >>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10), ... (11, 2), (11, 9), (11, 10), (8, 9)] To compute a topological sort for graph ``(V, E)`` issue:: >>> from sympy.utilities.iterables import topological_sort >>> topological_sort((V, E)) [3, 5, 7, 8, 11, 2, 9, 10] If specific tie breaking approach is needed, use ``key`` parameter:: >>> topological_sort((V, E), key=lambda v: -v) [7, 5, 11, 3, 10, 8, 9, 2] Only acyclic graphs can be sorted. If the input graph has a cycle, then :py:exc:`ValueError` will be raised:: >>> topological_sort((V, E + [(10, 7)])) Traceback (most recent call last): ... ValueError: cycle detected References ========== .. [1] https://en.wikipedia.org/wiki/Topological_sorting """ V, E = graph L = [] S = set(V) E = list(E) for v, u in E: S.discard(u) if key is None: key = lambda value: value S = sorted(S, key=key, reverse=True) while S: node = S.pop() L.append(node) for u, v in list(E): if u == node: E.remove((u, v)) for _u, _v in E: if v == _v: break else: kv = key(v) for i, s in enumerate(S): ks = key(s) if kv > ks: S.insert(i, v) break else: S.append(v) if E: raise ValueError("cycle detected") else: return L def strongly_connected_components(G): r""" Strongly connected components of a directed graph in reverse topological order. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph whose strongly connected components are to be found. Examples ======== Consider a directed graph (in dot notation):: digraph { A -> B A -> C B -> C C -> B B -> D } where vertices are the letters A, B, C and D. This graph can be encoded using Python's elementary data structures as follows:: >>> V = ['A', 'B', 'C', 'D'] >>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')] The strongly connected components of this graph can be computed as >>> from sympy.utilities.iterables import strongly_connected_components >>> strongly_connected_components((V, E)) [['D'], ['B', 'C'], ['A']] This also gives the components in reverse topological order. Since the subgraph containing B and C has a cycle they must be together in a strongly connected component. A and D are connected to the rest of the graph but not in a cyclic manner so they appear as their own strongly connected components. Notes ===== The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices. This function uses Tarjan's algorithm to compute the strongly connected components in `O(|V|+|E|)` (linear) time. References ========== .. [1] https://en.wikipedia.org/wiki/Strongly_connected_component .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm See Also ======== utilities.iterables.connected_components() """ # Map from a vertex to its neighbours V, E = G Gmap = {vi: [] for vi in V} for v1, v2 in E: Gmap[v1].append(v2) # Non-recursive Tarjan's algorithm: lowlink = {} indices = {} stack = OrderedDict() callstack = [] components = [] nomore = object() def start(v): index = len(stack) indices[v] = lowlink[v] = index stack[v] = None callstack.append((v, iter(Gmap[v]))) def finish(v1): # Finished a component? if lowlink[v1] == indices[v1]: component = [stack.popitem()[0]] while component[-1] is not v1: component.append(stack.popitem()[0]) components.append(component[::-1]) v2, _ = callstack.pop() if callstack: v1, _ = callstack[-1] lowlink[v1] = min(lowlink[v1], lowlink[v2]) for v in V: if v in indices: continue start(v) while callstack: v1, it1 = callstack[-1] v2 = next(it1, nomore) # Finished children of v1? if v2 is nomore: finish(v1) # Recurse on v2 elif v2 not in indices: start(v2) elif v2 in stack: lowlink[v1] = min(lowlink[v1], indices[v2]) # Reverse topological sort order: return components def connected_components(G): r""" Connected components of an undirected graph or weakly connected components of a directed graph. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph whose connected components are to be found. Examples ======== Given an undirected graph:: graph { A -- B C -- D } We can find the connected components using this function if we include each edge in both directions:: >>> from sympy.utilities.iterables import connected_components >>> V = ['A', 'B', 'C', 'D'] >>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')] >>> connected_components((V, E)) [['A', 'B'], ['C', 'D']] The weakly connected components of a directed graph can found the same way. Notes ===== The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices. This function uses Tarjan's algorithm to compute the connected components in `O(|V|+|E|)` (linear) time. References ========== .. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory) .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm See Also ======== utilities.iterables.strongly_connected_components() """ # Duplicate edges both ways so that the graph is effectively undirected # and return the strongly connected components: V, E = G E_undirected = [] for v1, v2 in E: E_undirected.extend([(v1, v2), (v2, v1)]) return strongly_connected_components((V, E_undirected)) def rotate_left(x, y): """ Left rotates a list x by the number of steps specified in y. Examples ======== >>> from sympy.utilities.iterables import rotate_left >>> a = [0, 1, 2] >>> rotate_left(a, 1) [1, 2, 0] """ if len(x) == 0: return [] y = y % len(x) return x[y:] + x[:y] def rotate_right(x, y): """ Right rotates a list x by the number of steps specified in y. Examples ======== >>> from sympy.utilities.iterables import rotate_right >>> a = [0, 1, 2] >>> rotate_right(a, 1) [2, 0, 1] """ if len(x) == 0: return [] y = len(x) - y % len(x) return x[y:] + x[:y] def least_rotation(x): ''' Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc. Examples ======== >>> from sympy.utilities.iterables import least_rotation, rotate_left >>> a = [3, 1, 5, 1, 2] >>> least_rotation(a) 3 >>> rotate_left(a, _) [1, 2, 3, 1, 5] References ========== .. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation ''' S = x + x # Concatenate string to it self to avoid modular arithmetic f = [-1] * len(S) # Failure function k = 0 # Least rotation of string found so far for j in range(1,len(S)): sj = S[j] i = f[j-k-1] while i != -1 and sj != S[k+i+1]: if sj < S[k+i+1]: k = j-i-1 i = f[i] if sj != S[k+i+1]: if sj < S[k]: k = j f[j-k] = -1 else: f[j-k] = i+1 return k def multiset_combinations(m, n, g=None): """ Return the unique combinations of size ``n`` from multiset ``m``. Examples ======== >>> from sympy.utilities.iterables import multiset_combinations >>> from itertools import combinations >>> [''.join(i) for i in multiset_combinations('baby', 3)] ['abb', 'aby', 'bby'] >>> def count(f, s): return len(list(f(s, 3))) The number of combinations depends on the number of letters; the number of unique combinations depends on how the letters are repeated. >>> s1 = 'abracadabra' >>> s2 = 'banana tree' >>> count(combinations, s1), count(multiset_combinations, s1) (165, 23) >>> count(combinations, s2), count(multiset_combinations, s2) (165, 54) """ if g is None: if type(m) is dict: if n > sum(m.values()): return g = [[k, m[k]] for k in ordered(m)] else: m = list(m) if n > len(m): return try: m = multiset(m) g = [(k, m[k]) for k in ordered(m)] except TypeError: m = list(ordered(m)) g = [list(i) for i in group(m, multiple=False)] del m if sum(v for k, v in g) < n or not n: yield [] else: for i, (k, v) in enumerate(g): if v >= n: yield [k]*n v = n - 1 for v in range(min(n, v), 0, -1): for j in multiset_combinations(None, n - v, g[i + 1:]): rv = [k]*v + j if len(rv) == n: yield rv def multiset_permutations(m, size=None, g=None): """ Return the unique permutations of multiset ``m``. Examples ======== >>> from sympy.utilities.iterables import multiset_permutations >>> from sympy import factorial >>> [''.join(i) for i in multiset_permutations('aab')] ['aab', 'aba', 'baa'] >>> factorial(len('banana')) 720 >>> len(list(multiset_permutations('banana'))) 60 """ if g is None: if type(m) is dict: g = [[k, m[k]] for k in ordered(m)] else: m = list(ordered(m)) g = [list(i) for i in group(m, multiple=False)] del m do = [gi for gi in g if gi[1] > 0] SUM = sum([gi[1] for gi in do]) if not do or size is not None and (size > SUM or size < 1): if size < 1: yield [] return elif size == 1: for k, v in do: yield [k] elif len(do) == 1: k, v = do[0] v = v if size is None else (size if size <= v else 0) yield [k for i in range(v)] elif all(v == 1 for k, v in do): for p in permutations([k for k, v in do], size): yield list(p) else: size = size if size is not None else SUM for i, (k, v) in enumerate(do): do[i][1] -= 1 for j in multiset_permutations(None, size - 1, do): if j: yield [k] + j do[i][1] += 1 def _partition(seq, vector, m=None): """ Return the partition of seq as specified by the partition vector. Examples ======== >>> from sympy.utilities.iterables import _partition >>> _partition('abcde', [1, 0, 1, 2, 0]) [['b', 'e'], ['a', 'c'], ['d']] Specifying the number of bins in the partition is optional: >>> _partition('abcde', [1, 0, 1, 2, 0], 3) [['b', 'e'], ['a', 'c'], ['d']] The output of _set_partitions can be passed as follows: >>> output = (3, [1, 0, 1, 2, 0]) >>> _partition('abcde', *output) [['b', 'e'], ['a', 'c'], ['d']] See Also ======== combinatorics.partitions.Partition.from_rgs() """ if m is None: m = max(vector) + 1 elif type(vector) is int: # entered as m, vector vector, m = m, vector p = [[] for i in range(m)] for i, v in enumerate(vector): p[v].append(seq[i]) return p def _set_partitions(n): """Cycle through all partions of n elements, yielding the current number of partitions, ``m``, and a mutable list, ``q`` such that element[i] is in part q[i] of the partition. NOTE: ``q`` is modified in place and generally should not be changed between function calls. Examples ======== >>> from sympy.utilities.iterables import _set_partitions, _partition >>> for m, q in _set_partitions(3): ... print('%s %s %s' % (m, q, _partition('abc', q, m))) 1 [0, 0, 0] [['a', 'b', 'c']] 2 [0, 0, 1] [['a', 'b'], ['c']] 2 [0, 1, 0] [['a', 'c'], ['b']] 2 [0, 1, 1] [['a'], ['b', 'c']] 3 [0, 1, 2] [['a'], ['b'], ['c']] Notes ===== This algorithm is similar to, and solves the same problem as, Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer Programming. Knuth uses the term "restricted growth string" where this code refers to a "partition vector". In each case, the meaning is the same: the value in the ith element of the vector specifies to which part the ith set element is to be assigned. At the lowest level, this code implements an n-digit big-endian counter (stored in the array q) which is incremented (with carries) to get the next partition in the sequence. A special twist is that a digit is constrained to be at most one greater than the maximum of all the digits to the left of it. The array p maintains this maximum, so that the code can efficiently decide when a digit can be incremented in place or whether it needs to be reset to 0 and trigger a carry to the next digit. The enumeration starts with all the digits 0 (which corresponds to all the set elements being assigned to the same 0th part), and ends with 0123...n, which corresponds to each set element being assigned to a different, singleton, part. This routine was rewritten to use 0-based lists while trying to preserve the beauty and efficiency of the original algorithm. References ========== .. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms, 2nd Ed, p 91, algorithm "nexequ". Available online from https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed November 17, 2012). """ p = [0]*n q = [0]*n nc = 1 yield nc, q while nc != n: m = n while 1: m -= 1 i = q[m] if p[i] != 1: break q[m] = 0 i += 1 q[m] = i m += 1 nc += m - n p[0] += n - m if i == nc: p[nc] = 0 nc += 1 p[i - 1] -= 1 p[i] += 1 yield nc, q def multiset_partitions(multiset, m=None): """ Return unique partitions of the given multiset (in list form). If ``m`` is None, all multisets will be returned, otherwise only partitions with ``m`` parts will be returned. If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1] will be supplied. Examples ======== >>> from sympy.utilities.iterables import multiset_partitions >>> list(multiset_partitions([1, 2, 3, 4], 2)) [[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]], [[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]], [[1], [2, 3, 4]]] >>> list(multiset_partitions([1, 2, 3, 4], 1)) [[[1, 2, 3, 4]]] Only unique partitions are returned and these will be returned in a canonical order regardless of the order of the input: >>> a = [1, 2, 2, 1] >>> ans = list(multiset_partitions(a, 2)) >>> a.sort() >>> list(multiset_partitions(a, 2)) == ans True >>> a = range(3, 1, -1) >>> (list(multiset_partitions(a)) == ... list(multiset_partitions(sorted(a)))) True If m is omitted then all partitions will be returned: >>> list(multiset_partitions([1, 1, 2])) [[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]] >>> list(multiset_partitions([1]*3)) [[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]] Counting ======== The number of partitions of a set is given by the bell number: >>> from sympy import bell >>> len(list(multiset_partitions(5))) == bell(5) == 52 True The number of partitions of length k from a set of size n is given by the Stirling Number of the 2nd kind: >>> from sympy.functions.combinatorial.numbers import stirling >>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15 True These comments on counting apply to *sets*, not multisets. Notes ===== When all the elements are the same in the multiset, the order of the returned partitions is determined by the ``partitions`` routine. If one is counting partitions then it is better to use the ``nT`` function. See Also ======== partitions sympy.combinatorics.partitions.Partition sympy.combinatorics.partitions.IntegerPartition sympy.functions.combinatorial.numbers.nT """ # This function looks at the supplied input and dispatches to # several special-case routines as they apply. if type(multiset) is int: n = multiset if m and m > n: return multiset = list(range(n)) if m == 1: yield [multiset[:]] return # If m is not None, it can sometimes be faster to use # MultisetPartitionTraverser.enum_range() even for inputs # which are sets. Since the _set_partitions code is quite # fast, this is only advantageous when the overall set # partitions outnumber those with the desired number of parts # by a large factor. (At least 60.) Such a switch is not # currently implemented. for nc, q in _set_partitions(n): if m is None or nc == m: rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(multiset[i]) yield rv return if len(multiset) == 1 and isinstance(multiset, string_types): multiset = [multiset] if not has_variety(multiset): # Only one component, repeated n times. The resulting # partitions correspond to partitions of integer n. n = len(multiset) if m and m > n: return if m == 1: yield [multiset[:]] return x = multiset[:1] for size, p in partitions(n, m, size=True): if m is None or size == m: rv = [] for k in sorted(p): rv.extend([x*k]*p[k]) yield rv else: multiset = list(ordered(multiset)) n = len(multiset) if m and m > n: return if m == 1: yield [multiset[:]] return # Split the information of the multiset into two lists - # one of the elements themselves, and one (of the same length) # giving the number of repeats for the corresponding element. elements, multiplicities = zip(*group(multiset, False)) if len(elements) < len(multiset): # General case - multiset with more than one distinct element # and at least one element repeated more than once. if m: mpt = MultisetPartitionTraverser() for state in mpt.enum_range(multiplicities, m-1, m): yield list_visitor(state, elements) else: for state in multiset_partitions_taocp(multiplicities): yield list_visitor(state, elements) else: # Set partitions case - no repeated elements. Pretty much # same as int argument case above, with same possible, but # currently unimplemented optimization for some cases when # m is not None for nc, q in _set_partitions(n): if m is None or nc == m: rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(i) yield [[multiset[j] for j in i] for i in rv] def partitions(n, m=None, k=None, size=False): """Generate all partitions of positive integer, n. Parameters ========== m : integer (default gives partitions of all sizes) limits number of parts in partition (mnemonic: m, maximum parts) k : integer (default gives partitions number from 1 through n) limits the numbers that are kept in the partition (mnemonic: k, keys) size : bool (default False, only partition is returned) when ``True`` then (M, P) is returned where M is the sum of the multiplicities and P is the generated partition. Each partition is represented as a dictionary, mapping an integer to the number of copies of that integer in the partition. For example, the first partition of 4 returned is {4: 1}, "4: one of them". Examples ======== >>> from sympy.utilities.iterables import partitions The numbers appearing in the partition (the key of the returned dict) are limited with k: >>> for p in partitions(6, k=2): # doctest: +SKIP ... print(p) {2: 3} {1: 2, 2: 2} {1: 4, 2: 1} {1: 6} The maximum number of parts in the partition (the sum of the values in the returned dict) are limited with m (default value, None, gives partitions from 1 through n): >>> for p in partitions(6, m=2): # doctest: +SKIP ... print(p) ... {6: 1} {1: 1, 5: 1} {2: 1, 4: 1} {3: 2} Note that the _same_ dictionary object is returned each time. This is for speed: generating each partition goes quickly, taking constant time, independent of n. >>> [p for p in partitions(6, k=2)] [{1: 6}, {1: 6}, {1: 6}, {1: 6}] If you want to build a list of the returned dictionaries then make a copy of them: >>> [p.copy() for p in partitions(6, k=2)] # doctest: +SKIP [{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}] >>> [(M, p.copy()) for M, p in partitions(6, k=2, size=True)] # doctest: +SKIP [(3, {2: 3}), (4, {1: 2, 2: 2}), (5, {1: 4, 2: 1}), (6, {1: 6})] References ========== .. [1] modified from Tim Peter's version to allow for k and m values: http://code.activestate.com/recipes/218332-generator-for-integer-partitions/ See Also ======== sympy.combinatorics.partitions.Partition sympy.combinatorics.partitions.IntegerPartition """ if (n <= 0 or m is not None and m < 1 or k is not None and k < 1 or m and k and m*k < n): # the empty set is the only way to handle these inputs # and returning {} to represent it is consistent with # the counting convention, e.g. nT(0) == 1. if size: yield 0, {} else: yield {} return if m is None: m = n else: m = min(m, n) if n == 0: if size: yield 1, {0: 1} else: yield {0: 1} return k = min(k or n, n) n, m, k = as_int(n), as_int(m), as_int(k) q, r = divmod(n, k) ms = {k: q} keys = [k] # ms.keys(), from largest to smallest if r: ms[r] = 1 keys.append(r) room = m - q - bool(r) if size: yield sum(ms.values()), ms else: yield ms while keys != [1]: # Reuse any 1's. if keys[-1] == 1: del keys[-1] reuse = ms.pop(1) room += reuse else: reuse = 0 while 1: # Let i be the smallest key larger than 1. Reuse one # instance of i. i = keys[-1] newcount = ms[i] = ms[i] - 1 reuse += i if newcount == 0: del keys[-1], ms[i] room += 1 # Break the remainder into pieces of size i-1. i -= 1 q, r = divmod(reuse, i) need = q + bool(r) if need > room: if not keys: return continue ms[i] = q keys.append(i) if r: ms[r] = 1 keys.append(r) break room -= need if size: yield sum(ms.values()), ms else: yield ms def ordered_partitions(n, m=None, sort=True): """Generates ordered partitions of integer ``n``. Parameters ========== m : integer (default None) The default value gives partitions of all sizes else only those with size m. In addition, if ``m`` is not None then partitions are generated *in place* (see examples). sort : bool (default True) Controls whether partitions are returned in sorted order when ``m`` is not None; when False, the partitions are returned as fast as possible with elements sorted, but when m|n the partitions will not be in ascending lexicographical order. Examples ======== >>> from sympy.utilities.iterables import ordered_partitions All partitions of 5 in ascending lexicographical: >>> for p in ordered_partitions(5): ... print(p) [1, 1, 1, 1, 1] [1, 1, 1, 2] [1, 1, 3] [1, 2, 2] [1, 4] [2, 3] [5] Only partitions of 5 with two parts: >>> for p in ordered_partitions(5, 2): ... print(p) [1, 4] [2, 3] When ``m`` is given, a given list objects will be used more than once for speed reasons so you will not see the correct partitions unless you make a copy of each as it is generated: >>> [p for p in ordered_partitions(7, 3)] [[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]] >>> [list(p) for p in ordered_partitions(7, 3)] [[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]] When ``n`` is a multiple of ``m``, the elements are still sorted but the partitions themselves will be *unordered* if sort is False; the default is to return them in ascending lexicographical order. >>> for p in ordered_partitions(6, 2): ... print(p) [1, 5] [2, 4] [3, 3] But if speed is more important than ordering, sort can be set to False: >>> for p in ordered_partitions(6, 2, sort=False): ... print(p) [1, 5] [3, 3] [2, 4] References ========== .. [1] Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html .. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All Partitions: A Comparison Of Two Encodings", [online], Available: https://arxiv.org/pdf/0909.2331v2.pdf """ if n < 1 or m is not None and m < 1: # the empty set is the only way to handle these inputs # and returning {} to represent it is consistent with # the counting convention, e.g. nT(0) == 1. yield [] return if m is None: # The list `a`'s leading elements contain the partition in which # y is the biggest element and x is either the same as y or the # 2nd largest element; v and w are adjacent element indices # to which x and y are being assigned, respectively. a = [1]*n y = -1 v = n while v > 0: v -= 1 x = a[v] + 1 while y >= 2 * x: a[v] = x y -= x v += 1 w = v + 1 while x <= y: a[v] = x a[w] = y yield a[:w + 1] x += 1 y -= 1 a[v] = x + y y = a[v] - 1 yield a[:w] elif m == 1: yield [n] elif n == m: yield [1]*n else: # recursively generate partitions of size m for b in range(1, n//m + 1): a = [b]*m x = n - b*m if not x: if sort: yield a elif not sort and x <= m: for ax in ordered_partitions(x, sort=False): mi = len(ax) a[-mi:] = [i + b for i in ax] yield a a[-mi:] = [b]*mi else: for mi in range(1, m): for ax in ordered_partitions(x, mi, sort=True): a[-mi:] = [i + b for i in ax] yield a a[-mi:] = [b]*mi def binary_partitions(n): """ Generates the binary partition of n. A binary partition consists only of numbers that are powers of two. Each step reduces a `2^{k+1}` to `2^k` and `2^k`. Thus 16 is converted to 8 and 8. Examples ======== >>> from sympy.utilities.iterables import binary_partitions >>> for i in binary_partitions(5): ... print(i) ... [4, 1] [2, 2, 1] [2, 1, 1, 1] [1, 1, 1, 1, 1] References ========== .. [1] TAOCP 4, section 7.2.1.5, problem 64 """ from math import ceil, log pow = int(2**(ceil(log(n, 2)))) sum = 0 partition = [] while pow: if sum + pow <= n: partition.append(pow) sum += pow pow >>= 1 last_num = len(partition) - 1 - (n & 1) while last_num >= 0: yield partition if partition[last_num] == 2: partition[last_num] = 1 partition.append(1) last_num -= 1 continue partition.append(1) partition[last_num] >>= 1 x = partition[last_num + 1] = partition[last_num] last_num += 1 while x > 1: if x <= len(partition) - last_num - 1: del partition[-x + 1:] last_num += 1 partition[last_num] = x else: x >>= 1 yield [1]*n def has_dups(seq): """Return True if there are any duplicate elements in ``seq``. Examples ======== >>> from sympy.utilities.iterables import has_dups >>> from sympy import Dict, Set >>> has_dups((1, 2, 1)) True >>> has_dups(range(3)) False >>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict())) True """ from sympy.core.containers import Dict from sympy.sets.sets import Set if isinstance(seq, (dict, set, Dict, Set)): return False uniq = set() return any(True for s in seq if s in uniq or uniq.add(s)) def has_variety(seq): """Return True if there are any different elements in ``seq``. Examples ======== >>> from sympy.utilities.iterables import has_variety >>> has_variety((1, 2, 1)) True >>> has_variety((1, 1, 1)) False """ for i, s in enumerate(seq): if i == 0: sentinel = s else: if s != sentinel: return True return False def uniq(seq, result=None): """ Yield unique elements from ``seq`` as an iterator. The second parameter ``result`` is used internally; it is not necessary to pass anything for this. Examples ======== >>> from sympy.utilities.iterables import uniq >>> dat = [1, 4, 1, 5, 4, 2, 1, 2] >>> type(uniq(dat)) in (list, tuple) False >>> list(uniq(dat)) [1, 4, 5, 2] >>> list(uniq(x for x in dat)) [1, 4, 5, 2] >>> list(uniq([[1], [2, 1], [1]])) [[1], [2, 1]] """ try: seen = set() result = result or [] for i, s in enumerate(seq): if not (s in seen or seen.add(s)): yield s except TypeError: if s not in result: yield s result.append(s) if hasattr(seq, '__getitem__'): for s in uniq(seq[i + 1:], result): yield s else: for s in uniq(seq, result): yield s def generate_bell(n): """Return permutations of [0, 1, ..., n - 1] such that each permutation differs from the last by the exchange of a single pair of neighbors. The ``n!`` permutations are returned as an iterator. In order to obtain the next permutation from a random starting permutation, use the ``next_trotterjohnson`` method of the Permutation class (which generates the same sequence in a different manner). Examples ======== >>> from itertools import permutations >>> from sympy.utilities.iterables import generate_bell >>> from sympy import zeros, Matrix This is the sort of permutation used in the ringing of physical bells, and does not produce permutations in lexicographical order. Rather, the permutations differ from each other by exactly one inversion, and the position at which the swapping occurs varies periodically in a simple fashion. Consider the first few permutations of 4 elements generated by ``permutations`` and ``generate_bell``: >>> list(permutations(range(4)))[:5] [(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)] >>> list(generate_bell(4))[:5] [(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)] Notice how the 2nd and 3rd lexicographical permutations have 3 elements out of place whereas each "bell" permutation always has only two elements out of place relative to the previous permutation (and so the signature (+/-1) of a permutation is opposite of the signature of the previous permutation). How the position of inversion varies across the elements can be seen by tracing out where the largest number appears in the permutations: >>> m = zeros(4, 24) >>> for i, p in enumerate(generate_bell(4)): ... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero >>> m.print_nonzero('X') [XXX XXXXXX XXXXXX XXX] [XX XX XXXX XX XXXX XX XX] [X XXXX XX XXXX XX XXXX X] [ XXXXXX XXXXXX XXXXXX ] See Also ======== sympy.combinatorics.Permutation.next_trotterjohnson References ========== .. [1] https://en.wikipedia.org/wiki/Method_ringing .. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018 .. [3] http://programminggeeks.com/bell-algorithm-for-permutation/ .. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm .. [5] Generating involutions, derangements, and relatives by ECO Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010 """ n = as_int(n) if n < 1: raise ValueError('n must be a positive integer') if n == 1: yield (0,) elif n == 2: yield (0, 1) yield (1, 0) elif n == 3: for li in [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]: yield li else: m = n - 1 op = [0] + [-1]*m l = list(range(n)) while True: yield tuple(l) # find biggest element with op big = None, -1 # idx, value for i in range(n): if op[i] and l[i] > big[1]: big = i, l[i] i, _ = big if i is None: break # there are no ops left # swap it with neighbor in the indicated direction j = i + op[i] l[i], l[j] = l[j], l[i] op[i], op[j] = op[j], op[i] # if it landed at the end or if the neighbor in the same # direction is bigger then turn off op if j == 0 or j == m or l[j + op[j]] > l[j]: op[j] = 0 # any element bigger to the left gets +1 op for i in range(j): if l[i] > l[j]: op[i] = 1 # any element bigger to the right gets -1 op for i in range(j + 1, n): if l[i] > l[j]: op[i] = -1 def generate_involutions(n): """ Generates involutions. An involution is a permutation that when multiplied by itself equals the identity permutation. In this implementation the involutions are generated using Fixed Points. Alternatively, an involution can be considered as a permutation that does not contain any cycles with a length that is greater than two. Examples ======== >>> from sympy.utilities.iterables import generate_involutions >>> list(generate_involutions(3)) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)] >>> len(list(generate_involutions(4))) 10 References ========== .. [1] http://mathworld.wolfram.com/PermutationInvolution.html """ idx = list(range(n)) for p in permutations(idx): for i in idx: if p[p[i]] != i: break else: yield p def generate_derangements(perm): """ Routine to generate unique derangements. TODO: This will be rewritten to use the ECO operator approach once the permutations branch is in master. Examples ======== >>> from sympy.utilities.iterables import generate_derangements >>> list(generate_derangements([0, 1, 2])) [[1, 2, 0], [2, 0, 1]] >>> list(generate_derangements([0, 1, 2, 3])) [[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1], \ [2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], \ [3, 2, 1, 0]] >>> list(generate_derangements([0, 1, 1])) [] See Also ======== sympy.functions.combinatorial.factorials.subfactorial """ p = multiset_permutations(perm) indices = range(len(perm)) p0 = next(p) for pi in p: if all(pi[i] != p0[i] for i in indices): yield pi def necklaces(n, k, free=False): """ A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The "necklaces" returned are comprised of ``n`` integers (beads) with ``k`` different values (colors). Only unique necklaces are returned. Examples ======== >>> from sympy.utilities.iterables import necklaces, bracelets >>> def show(s, i): ... return ''.join(s[j] for j in i) The "unrestricted necklace" is sometimes also referred to as a "bracelet" (an object that can be turned over, a sequence that can be reversed) and the term "necklace" is used to imply a sequence that cannot be reversed. So ACB == ABC for a bracelet (rotate and reverse) while the two are different for a necklace since rotation alone cannot make the two sequences the same. (mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.) >>> B = [show('ABC', i) for i in bracelets(3, 3)] >>> N = [show('ABC', i) for i in necklaces(3, 3)] >>> set(N) - set(B) {'ACB'} >>> list(necklaces(4, 2)) [(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)] >>> [show('.o', i) for i in bracelets(4, 2)] ['....', '...o', '..oo', '.o.o', '.ooo', 'oooo'] References ========== .. [1] http://mathworld.wolfram.com/Necklace.html """ return uniq(minlex(i, directed=not free) for i in variations(list(range(k)), n, repetition=True)) def bracelets(n, k): """Wrapper to necklaces to return a free (unrestricted) necklace.""" return necklaces(n, k, free=True) def generate_oriented_forest(n): """ This algorithm generates oriented forests. An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can also be described as a disjoint union of trees, which are graphs in which any two vertices are connected by exactly one simple path. Examples ======== >>> from sympy.utilities.iterables import generate_oriented_forest >>> list(generate_oriented_forest(4)) [[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \ [0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]] References ========== .. [1] T. Beyer and S.M. Hedetniemi: constant time generation of rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980 .. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python """ P = list(range(-1, n)) while True: yield P[1:] if P[n] > 0: P[n] = P[P[n]] else: for p in range(n - 1, 0, -1): if P[p] != 0: target = P[p] - 1 for q in range(p - 1, 0, -1): if P[q] == target: break offset = p - q for i in range(p, n + 1): P[i] = P[i - offset] break else: break def minlex(seq, directed=True, is_set=False, small=None): """ Return a tuple where the smallest element appears first; if ``directed`` is True (default) then the order is preserved, otherwise the sequence will be reversed if that gives a smaller ordering. If every element appears only once then is_set can be set to True for more efficient processing. If the smallest element is known at the time of calling, it can be passed and the calculation of the smallest element will be omitted. Examples ======== >>> from sympy.combinatorics.polyhedron import minlex >>> minlex((1, 2, 0)) (0, 1, 2) >>> minlex((1, 0, 2)) (0, 2, 1) >>> minlex((1, 0, 2), directed=False) (0, 1, 2) >>> minlex('11010011000', directed=True) '00011010011' >>> minlex('11010011000', directed=False) '00011001011' """ is_str = isinstance(seq, string_types) seq = list(seq) if small is None: small = min(seq, key=default_sort_key) if is_set: i = seq.index(small) if not directed: n = len(seq) p = (i + 1) % n m = (i - 1) % n if default_sort_key(seq[p]) > default_sort_key(seq[m]): seq = list(reversed(seq)) i = n - i - 1 if i: seq = rotate_left(seq, i) best = seq else: count = seq.count(small) if count == 1 and directed: best = rotate_left(seq, seq.index(small)) else: # if not directed, and not a set, we can't just # pass this off to minlex with is_set True since # peeking at the neighbor may not be sufficient to # make the decision so we continue... best = seq for i in range(count): seq = rotate_left(seq, seq.index(small, count != 1)) if seq < best: best = seq # it's cheaper to rotate now rather than search # again for these in reversed order so we test # the reverse now if not directed: seq = rotate_left(seq, 1) seq = list(reversed(seq)) if seq < best: best = seq seq = list(reversed(seq)) seq = rotate_right(seq, 1) # common return if is_str: return ''.join(best) return tuple(best) def runs(seq, op=gt): """Group the sequence into lists in which successive elements all compare the same with the comparison operator, ``op``: op(seq[i + 1], seq[i]) is True from all elements in a run. Examples ======== >>> from sympy.utilities.iterables import runs >>> from operator import ge >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2]) [[0, 1, 2], [2], [1, 4], [3], [2], [2]] >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge) [[0, 1, 2, 2], [1, 4], [3], [2, 2]] """ cycles = [] seq = iter(seq) try: run = [next(seq)] except StopIteration: return [] while True: try: ei = next(seq) except StopIteration: break if op(ei, run[-1]): run.append(ei) continue else: cycles.append(run) run = [ei] if run: cycles.append(run) return cycles def kbins(l, k, ordered=None): """ Return sequence ``l`` partitioned into ``k`` bins. Examples ======== >>> from sympy.utilities.iterables import kbins The default is to give the items in the same order, but grouped into k partitions without any reordering: >>> from __future__ import print_function >>> for p in kbins(list(range(5)), 2): ... print(p) ... [[0], [1, 2, 3, 4]] [[0, 1], [2, 3, 4]] [[0, 1, 2], [3, 4]] [[0, 1, 2, 3], [4]] The ``ordered`` flag is either None (to give the simple partition of the elements) or is a 2 digit integer indicating whether the order of the bins and the order of the items in the bins matters. Given:: A = [[0], [1, 2]] B = [[1, 2], [0]] C = [[2, 1], [0]] D = [[0], [2, 1]] the following values for ``ordered`` have the shown meanings:: 00 means A == B == C == D 01 means A == B 10 means A == D 11 means A == A >>> for ordered in [None, 0, 1, 10, 11]: ... print('ordered = %s' % ordered) ... for p in kbins(list(range(3)), 2, ordered=ordered): ... print(' %s' % p) ... ordered = None [[0], [1, 2]] [[0, 1], [2]] ordered = 0 [[0, 1], [2]] [[0, 2], [1]] [[0], [1, 2]] ordered = 1 [[0], [1, 2]] [[0], [2, 1]] [[1], [0, 2]] [[1], [2, 0]] [[2], [0, 1]] [[2], [1, 0]] ordered = 10 [[0, 1], [2]] [[2], [0, 1]] [[0, 2], [1]] [[1], [0, 2]] [[0], [1, 2]] [[1, 2], [0]] ordered = 11 [[0], [1, 2]] [[0, 1], [2]] [[0], [2, 1]] [[0, 2], [1]] [[1], [0, 2]] [[1, 0], [2]] [[1], [2, 0]] [[1, 2], [0]] [[2], [0, 1]] [[2, 0], [1]] [[2], [1, 0]] [[2, 1], [0]] See Also ======== partitions, multiset_partitions """ def partition(lista, bins): # EnricoGiampieri's partition generator from # https://stackoverflow.com/questions/13131491/ # partition-n-items-into-k-bins-in-python-lazily if len(lista) == 1 or bins == 1: yield [lista] elif len(lista) > 1 and bins > 1: for i in range(1, len(lista)): for part in partition(lista[i:], bins - 1): if len([lista[:i]] + part) == bins: yield [lista[:i]] + part if ordered is None: for p in partition(l, k): yield p elif ordered == 11: for pl in multiset_permutations(l): pl = list(pl) for p in partition(pl, k): yield p elif ordered == 00: for p in multiset_partitions(l, k): yield p elif ordered == 10: for p in multiset_partitions(l, k): for perm in permutations(p): yield list(perm) elif ordered == 1: for kgot, p in partitions(len(l), k, size=True): if kgot != k: continue for li in multiset_permutations(l): rv = [] i = j = 0 li = list(li) for size, multiplicity in sorted(p.items()): for m in range(multiplicity): j = i + size rv.append(li[i: j]) i = j yield rv else: raise ValueError( 'ordered must be one of 00, 01, 10 or 11, not %s' % ordered) def permute_signs(t): """Return iterator in which the signs of non-zero elements of t are permuted. Examples ======== >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((0, 1, 2))) [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)] """ for signs in cartes(*[(1, -1)]*(len(t) - t.count(0))): signs = list(signs) yield type(t)([i*signs.pop() if i else i for i in t]) def signed_permutations(t): """Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted. Examples ======== >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((0, 1, 2))) [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1), (0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2), (1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0), (-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1), (2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)] """ return (type(t)(i) for j in permutations(t) for i in permute_signs(j)) def rotations(s, dir=1): """Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list. Examples ======== >>> from sympy.utilities.iterables import rotations >>> list(rotations([1,2,3])) [[1, 2, 3], [2, 3, 1], [3, 1, 2]] >>> list(rotations([1,2,3], -1)) [[1, 2, 3], [3, 1, 2], [2, 3, 1]] """ seq = list(s) for i in range(len(seq)): yield seq seq = rotate_left(seq, dir)
2d15a148ae2f6d8d4663392b296fbbe8694a0f83ef0829361bd1f9b198dbacd5
""" This is our testing framework. Goals: * it should be compatible with py.test and operate very similarly (or identically) * doesn't require any external dependencies * preferably all the functionality should be in this file only * no magic, just import the test file and execute the test functions, that's it * portable """ from __future__ import print_function, division import os import sys import platform import inspect import traceback import pdb import re import linecache import time from fnmatch import fnmatch from timeit import default_timer as clock import doctest as pdoctest # avoid clashing with our doctest() function from doctest import DocTestFinder, DocTestRunner import random import subprocess import signal import stat import tempfile import sympy from sympy.core.cache import clear_cache from sympy.core.compatibility import exec_, PY3, string_types, range, unwrap from sympy.utilities.misc import find_executable from sympy.external import import_module from sympy.utilities.exceptions import SymPyDeprecationWarning IS_WINDOWS = (os.name == 'nt') ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) # emperically generated list of the proportion of time spent running # an even split of tests. This should periodically be regenerated. # A list of [.6, .1, .3] would mean that if the tests are evenly split # into '1/3', '2/3', '3/3', the first split would take 60% of the time, # the second 10% and the third 30%. These lists are normalized to sum # to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3]. # # This list can be generated with the code: # from time import time # import sympy # # delays, num_splits = [], 30 # for i in range(1, num_splits + 1): # tic = time() # sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests # delays.append(time() - tic) # tot = sum(delays) # print([round(x / tot, 4) for x in delays]) SPLIT_DENSITY = [0.0801, 0.0099, 0.0429, 0.0103, 0.0122, 0.0055, 0.0533, 0.0191, 0.0977, 0.0878, 0.0026, 0.0028, 0.0147, 0.0118, 0.0358, 0.0063, 0.0026, 0.0351, 0.0084, 0.0027, 0.0158, 0.0156, 0.0024, 0.0416, 0.0566, 0.0425, 0.2123, 0.0042, 0.0099, 0.0576] SPLIT_DENSITY_SLOW = [0.1525, 0.0342, 0.0092, 0.0004, 0.0005, 0.0005, 0.0379, 0.0353, 0.0637, 0.0801, 0.0005, 0.0004, 0.0133, 0.0021, 0.0098, 0.0108, 0.0005, 0.0076, 0.0005, 0.0004, 0.0056, 0.0093, 0.0005, 0.0264, 0.0051, 0.0956, 0.2983, 0.0005, 0.0005, 0.0981] class Skipped(Exception): pass class TimeOutError(Exception): pass class DependencyError(Exception): pass # add more flags ?? future_flags = division.compiler_flag def _indent(s, indent=4): """ Add the given number of space characters to the beginning of every non-blank line in ``s``, and return the result. If the string ``s`` is Unicode, it is encoded using the stdout encoding and the ``backslashreplace`` error handler. """ # After a 2to3 run the below code is bogus, so wrap it with a version check if not PY3: if isinstance(s, unicode): s = s.encode(pdoctest._encoding, 'backslashreplace') # This regexp matches the start of non-blank lines: return re.sub('(?m)^(?!$)', indent*' ', s) pdoctest._indent = _indent # override reporter to maintain windows and python3 def _report_failure(self, out, test, example, got): """ Report that the given example failed. """ s = self._checker.output_difference(example, got, self.optionflags) s = s.encode('raw_unicode_escape').decode('utf8', 'ignore') out(self._failure_header(test, example) + s) if PY3 and IS_WINDOWS: DocTestRunner.report_failure = _report_failure def convert_to_native_paths(lst): """ Converts a list of '/' separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive. """ newlst = [] for i, rv in enumerate(lst): rv = os.path.join(*rv.split("/")) # on windows the slash after the colon is dropped if sys.platform == "win32": pos = rv.find(':') if pos != -1: if rv[pos + 1] != '\\': rv = rv[:pos + 1] + '\\' + rv[pos + 1:] newlst.append(os.path.normcase(rv)) return newlst def get_sympy_dir(): """ Returns the root sympy directory and set the global value indicating whether the system is case sensitive or not. """ this_file = os.path.abspath(__file__) sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..") sympy_dir = os.path.normpath(sympy_dir) return os.path.normcase(sympy_dir) def setup_pprint(): from sympy import pprint_use_unicode, init_printing import sympy.interactive.printing as interactive_printing # force pprint to be in ascii mode in doctests use_unicode_prev = pprint_use_unicode(False) # hook our nice, hash-stable strprinter init_printing(pretty_print=False) # Prevent init_printing() in doctests from affecting other doctests interactive_printing.NO_GLOBAL = True return use_unicode_prev def run_in_subprocess_with_hash_randomization( function, function_args=(), function_kwargs=None, command=sys.executable, module='sympy.utilities.runtests', force=False): """ Run a function in a Python subprocess with hash randomization enabled. If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value. The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the ``-R`` flag. ``function`` should be a string name of a function that is importable from the module ``module``, like "_test". The default for ``module`` is "sympy.utilities.runtests". ``function_args`` and ``function_kwargs`` should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command. This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. Examples ======== >>> from sympy.utilities.runtests import ( ... run_in_subprocess_with_hash_randomization) >>> # run the core tests in verbose mode >>> run_in_subprocess_with_hash_randomization("_test", ... function_args=("core",), ... function_kwargs={'verbose': True}) # doctest: +SKIP # Will return 0 if sys.executable supports hash randomization and tests # pass, 1 if they fail, and False if it does not support hash # randomization. """ cwd = get_sympy_dir() # Note, we must return False everywhere, not None, as subprocess.call will # sometimes return None. # First check if the Python version supports hash randomization # If it doesn't have this support, it won't recognize the -R flag p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=cwd) p.communicate() if p.returncode != 0: return False hash_seed = os.getenv("PYTHONHASHSEED") if not hash_seed: os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32)) else: if not force: return False function_kwargs = function_kwargs or {} # Now run the command commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" % (module, function, function, repr(function_args), repr(function_kwargs))) try: p = subprocess.Popen([command, "-R", "-c", commandstring], cwd=cwd) p.communicate() except KeyboardInterrupt: p.wait() finally: # Put the environment variable back, so that it reads correctly for # the current Python process. if hash_seed is None: del os.environ["PYTHONHASHSEED"] else: os.environ["PYTHONHASHSEED"] = hash_seed return p.returncode def run_all_tests(test_args=(), test_kwargs=None, doctest_args=(), doctest_kwargs=None, examples_args=(), examples_kwargs=None): """ Run all tests. Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), the examples (examples/all.py), and the sage tests (see sympy/external/tests/test_sage.py). This is what ``setup.py test`` uses. You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options. For example, to run the solvers tests with colors turned off: >>> from sympy.utilities.runtests import run_all_tests >>> run_all_tests(test_args=("solvers",), ... test_kwargs={"colors:False"}) # doctest: +SKIP """ cwd = get_sympy_dir() tests_successful = True test_kwargs = test_kwargs or {} doctest_kwargs = doctest_kwargs or {} examples_kwargs = examples_kwargs or {'quiet': True} try: # Regular tests if not test(*test_args, **test_kwargs): # some regular test fails, so set the tests_successful # flag to false and continue running the doctests tests_successful = False # Doctests print() if not doctest(*doctest_args, **doctest_kwargs): tests_successful = False # Examples print() sys.path.append("examples") from all import run_examples # examples/all.py if not run_examples(*examples_args, **examples_kwargs): tests_successful = False # Sage tests if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"): # run Sage tests; Sage currently doesn't support Windows or Python 3 # Only run Sage tests if 'bin/test' is present (it is missing from # our release because everything in the 'bin' directory gets # installed). dev_null = open(os.devnull, 'w') if subprocess.call("sage -v", shell=True, stdout=dev_null, stderr=dev_null) == 0: if subprocess.call("sage -python bin/test " "sympy/external/tests/test_sage.py", shell=True, cwd=cwd) != 0: tests_successful = False if tests_successful: return else: # Return nonzero exit code sys.exit(1) except KeyboardInterrupt: print() print("DO *NOT* COMMIT!") sys.exit(1) def test(*paths, **kwargs): """ Run tests in the specified test_*.py files. Tests in a particular test_*.py file are run if any of the given strings in ``paths`` matches a part of the test file's path. If ``paths=[]``, tests in all test_*.py files are run. Notes: - If sort=False, tests are run in random order (not default). - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. **Explanation of test results** ====== =============================================================== Output Meaning ====== =============================================================== . passed F failed X XPassed (expected to fail but passed) f XFAILed (expected to fail and indeed failed) s skipped w slow T timeout (e.g., when ``--timeout`` is used) K KeyboardInterrupt (when running the slow tests with ``--slow``, you can interrupt one of them without killing the test runner) ====== =============================================================== Colors have no additional meaning and are used just to facilitate interpreting the output. Examples ======== >>> import sympy Run all tests: >>> sympy.test() # doctest: +SKIP Run one file: >>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP >>> sympy.test("_basic") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.test("sympy/core/tests/test_basic.py", ... "sympy/functions") # doctest: +SKIP Run all tests in sympy/core and sympy/utilities: >>> sympy.test("/core", "/util") # doctest: +SKIP Run specific test from a file: >>> sympy.test("sympy/core/tests/test_basic.py", ... kw="test_equality") # doctest: +SKIP Run specific test from any file: >>> sympy.test(kw="subs") # doctest: +SKIP Run the tests with verbose mode on: >>> sympy.test(verbose=True) # doctest: +SKIP Don't sort the test output: >>> sympy.test(sort=False) # doctest: +SKIP Turn on post-mortem pdb: >>> sympy.test(pdb=True) # doctest: +SKIP Turn off colors: >>> sympy.test(colors=False) # doctest: +SKIP Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to ``less -r`` and you still want colors) >>> sympy.test(force_colors=False) # doctest: +SKIP The traceback verboseness can be set to "short" or "no" (default is "short") >>> sympy.test(tb='no') # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. For instance, to run the first half of the test suite: >>> sympy.test(split='1/2') # doctest: +SKIP The ``time_balance`` option can be passed in conjunction with ``split``. If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt to split the tests such that each split takes equal time. This heuristic for balancing is based on pre-recorded test data. >>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP You can disable running the tests in a separate subprocess using ``subprocess=False``. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. If hash randomization is not supported ``subprocess=False`` is used automatically. >>> sympy.test(subprocess=False) # doctest: +SKIP To set the hash randomization seed, set the environment variable ``PYTHONHASHSEED`` before running the tests. This can be done from within Python using >>> import os >>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP Or from the command line using $ PYTHONHASHSEED=42 ./bin/test If the seed is not set, a random seed will be chosen. Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit). """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_test", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_test(*paths, **kwargs)) if not val or i == 0: return val def _test(*paths, **kwargs): """ Internal function that actually runs the tests. All keyword arguments from ``test()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstring of ``test()`` for more information. """ verbose = kwargs.get("verbose", False) tb = kwargs.get("tb", "short") kw = kwargs.get("kw", None) or () # ensure that kw is a tuple if isinstance(kw, string_types): kw = (kw, ) post_mortem = kwargs.get("pdb", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) sort = kwargs.get("sort", True) seed = kwargs.get("seed", None) if seed is None: seed = random.randrange(100000000) timeout = kwargs.get("timeout", False) fail_on_timeout = kwargs.get("fail_on_timeout", False) if ON_TRAVIS and timeout is False: # Travis times out if no activity is seen for 10 minutes. timeout = 595 fail_on_timeout = True slow = kwargs.get("slow", False) enhance_asserts = kwargs.get("enhance_asserts", False) split = kwargs.get('split', None) time_balance = kwargs.get('time_balance', True) blacklist = kwargs.get('blacklist', ['sympy/integrals/rubi/rubi_tests/tests']) if ON_TRAVIS: # pyglet does not work on Travis blacklist.extend(['sympy/plotting/pygletplot/tests']) blacklist = convert_to_native_paths(blacklist) fast_threshold = kwargs.get('fast_threshold', None) slow_threshold = kwargs.get('slow_threshold', None) r = PyTestReporter(verbose=verbose, tb=tb, colors=colors, force_colors=force_colors, split=split) t = SymPyTests(r, kw, post_mortem, seed, fast_threshold=fast_threshold, slow_threshold=slow_threshold) # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') test_files = t.get_test_files('sympy') not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break density = None if time_balance: if slow: density = SPLIT_DENSITY_SLOW else: density = SPLIT_DENSITY if split: matched = split_list(matched, split, density=density) t._testfiles.extend(matched) return int(not t.test(sort=sort, timeout=timeout, slow=slow, enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout)) def doctest(*paths, **kwargs): r""" Runs doctests in all \*.py files in the sympy directory which match any of the given strings in ``paths`` or all tests if paths=[]. Notes: - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. Examples ======== >>> import sympy Run all tests: >>> sympy.doctest() # doctest: +SKIP Run one file: >>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP >>> sympy.doctest("polynomial.rst") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py: >>> sympy.doctest("polynomial") # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite: >>> sympy.doctest(split='1/2') # doctest: +SKIP The ``subprocess`` and ``verbose`` options are the same as with the function ``test()``. See the docstring of that function for more information. """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_doctest", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_doctest(*paths, **kwargs)) if not val or i == 0: return val def _get_doctest_blacklist(): '''Get the default blacklist for the doctests''' blacklist = [] blacklist.extend([ "doc/src/modules/plotting.rst", # generates live plots "doc/src/modules/physics/mechanics/autolev_parser.rst", "sympy/galgebra.py", # no longer part of SymPy "sympy/this.py", # prints text "sympy/physics/gaussopt.py", # raises deprecation warning "sympy/matrices/densearith.py", # raises deprecation warning "sympy/matrices/densesolve.py", # raises deprecation warning "sympy/matrices/densetools.py", # raises deprecation warning "sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code "sympy/parsing/autolev/_antlr/autolevparser.py", # generated code "sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code "sympy/parsing/latex/_antlr/latexlexer.py", # generated code "sympy/parsing/latex/_antlr/latexparser.py", # generated code "sympy/integrals/rubi/rubi.py", ]) # autolev parser tests num = 12 for i in range (1, num+1): blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py") blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"]) if import_module('numpy') is None: blacklist.extend([ "sympy/plotting/experimental_lambdify.py", "sympy/plotting/plot_implicit.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py", "examples/intermediate/sample.py", "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py", "doc/src/modules/numeric-computation.rst" ]) else: if import_module('matplotlib') is None: blacklist.extend([ "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py" ]) else: # Use a non-windowed backend, so that the tests work on Travis import matplotlib matplotlib.use('Agg') if ON_TRAVIS or import_module('pyglet') is None: blacklist.extend(["sympy/plotting/pygletplot"]) if import_module('theano') is None: blacklist.extend([ "sympy/printing/theanocode.py", "doc/src/modules/numeric-computation.rst", ]) if import_module('antlr4') is None: blacklist.extend([ "sympy/parsing/autolev/__init__.py", "sympy/parsing/latex/_parse_latex_antlr.py", ]) if import_module('lfortran') is None: #throws ImportError when lfortran not installed blacklist.extend([ "sympy/parsing/sym_expr.py", ]) # disabled because of doctest failures in asmeurer's bot blacklist.extend([ "sympy/utilities/autowrap.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py" ]) # blacklist these modules until issue 4840 is resolved blacklist.extend([ "sympy/conftest.py", # Python 2.7 issues "sympy/utilities/benchmarking.py" ]) blacklist = convert_to_native_paths(blacklist) return blacklist def _doctest(*paths, **kwargs): """ Internal function that actually runs the doctests. All keyword arguments from ``doctest()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstrings of ``doctest()`` and ``test()`` for more information. """ from sympy import pprint_use_unicode normal = kwargs.get("normal", False) verbose = kwargs.get("verbose", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) blacklist = kwargs.get("blacklist", []) split = kwargs.get('split', None) blacklist.extend(_get_doctest_blacklist()) # Use a non-windowed backend, so that the tests work on Travis if import_module('matplotlib') is not None: import matplotlib matplotlib.use('Agg') # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Disable showing up of plots from sympy.plotting.plot import unset_show unset_show() # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') r = PyTestReporter(verbose, split=split, colors=colors,\ force_colors=force_colors) t = SymPyDocTests(r, normal) test_files = t.get_test_files('sympy') test_files.extend(t.get_test_files('examples', init_only=False)) not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # take only what was requested...but not blacklisted items # and allow for partial match anywhere or fnmatch of name paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) # run the tests and record the result for this *py portion of the tests if t._testfiles: failed = not t.test() else: failed = False # N.B. # -------------------------------------------------------------------- # Here we test *.rst files at or below doc/src. Code from these must # be self supporting in terms of imports since there is no importing # of necessary modules by doctest.testfile. If you try to pass *.py # files through this they might fail because they will lack the needed # imports and smarter parsing that can be done with source code. # test_files = t.get_test_files('doc/src', '*.rst', init_only=False) test_files.sort() not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # Take only what was requested as long as it's not on the blacklist. # Paths were already made native in *py tests so don't repeat here. # There's no chance of having a *py file slip through since we # only have *rst files in test_files. matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) first_report = True for rst_file in matched: if not os.path.isfile(rst_file): continue old_displayhook = sys.displayhook try: use_unicode_prev = setup_pprint() out = sympytestfile( rst_file, module_relative=False, encoding='utf-8', optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) finally: # make sure we return to the original displayhook in case some # doctest has changed that sys.displayhook = old_displayhook # The NO_GLOBAL flag overrides the no_global flag to init_printing # if True import sympy.interactive.printing as interactive_printing interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) rstfailed, tested = out if tested: failed = rstfailed or failed if first_report: first_report = False msg = 'rst doctests start' if not t._testfiles: r.start(msg=msg) else: r.write_center(msg) print() # use as the id, everything past the first 'sympy' file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:] print(file_id, end=" ") # get at least the name out so it is know who is being tested wid = r.terminal_width - len(file_id) - 1 # update width test_file = '[%s]' % (tested) report = '[%s]' % (rstfailed or 'OK') print(''.join( [test_file, ' '*(wid - len(test_file) - len(report)), report]) ) # the doctests for *py will have printed this message already if there was # a failure, so now only print it if there was intervening reporting by # testing the *rst as evidenced by first_report no longer being True. if not first_report and failed: print() print("DO *NOT* COMMIT!") return int(failed) sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def split_list(l, split, density=None): """ Splits a list into part a of b split should be a string of the form 'a/b'. For instance, '1/3' would give the split one of three. If the length of the list is not divisible by the number of splits, the last split will have more items. `density` may be specified as a list. If specified, tests will be balanced so that each split has as equal-as-possible amount of mass according to `density`. >>> from sympy.utilities.runtests import split_list >>> a = list(range(10)) >>> split_list(a, '1/3') [0, 1, 2] >>> split_list(a, '2/3') [3, 4, 5] >>> split_list(a, '3/3') [6, 7, 8, 9] """ m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b where a and b are ints") i, t = map(int, m.groups()) if not density: return l[(i - 1)*len(l)//t : i*len(l)//t] # normalize density tot = sum(density) density = [x / tot for x in density] def density_inv(x): """Interpolate the inverse to the cumulative distribution function given by density""" if x <= 0: return 0 if x >= sum(density): return 1 # find the first time the cumulative sum surpasses x # and linearly interpolate cumm = 0 for i, d in enumerate(density): cumm += d if cumm >= x: break frac = (d - (cumm - x)) / d return (i + frac) / len(density) lower_frac = density_inv((i - 1) / t) higher_frac = density_inv(i / t) return l[int(lower_frac*len(l)) : int(higher_frac*len(l))] from collections import namedtuple SymPyTestResults = namedtuple('TestResults', 'failed attempted') def sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=pdoctest.DocTestParser(), encoding=None): """ Test examples in the given file. Return (#failures, #tests). Optional keyword arg ``module_relative`` specifies how filenames should be interpreted: - If ``module_relative`` is True (the default), then ``filename`` specifies a module-relative path. By default, this path is relative to the calling module's directory; but if the ``package`` argument is specified, then it is relative to that package. To ensure os-independence, ``filename`` should use "/" characters to separate path segments, and should not be an absolute path (i.e., it may not begin with "/"). - If ``module_relative`` is False, then ``filename`` specifies an os-specific path. The path may be absolute or relative (to the current working directory). Optional keyword arg ``name`` gives the name of the test; by default use the file's basename. Optional keyword argument ``package`` is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module's directory is used as the base directory for module relative filenames. It is an error to specify ``package`` if ``module_relative`` is False. Optional keyword arg ``globs`` gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring's examples start with a clean slate. Optional keyword arg ``extraglobs`` gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used. Optional keyword arg ``verbose`` prints lots of stuff if true, prints only failures if false; by default, it's true iff "-v" is in sys.argv. Optional keyword arg ``report`` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed). Optional keyword arg ``optionflags`` or's together module constants, and defaults to 0. Possible values (see the docs for details): - DONT_ACCEPT_TRUE_FOR_1 - DONT_ACCEPT_BLANKLINE - NORMALIZE_WHITESPACE - ELLIPSIS - SKIP - IGNORE_EXCEPTION_DETAIL - REPORT_UDIFF - REPORT_CDIFF - REPORT_NDIFF - REPORT_ONLY_FIRST_FAILURE Optional keyword arg ``raise_on_error`` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged. Optional keyword arg ``parser`` specifies a DocTestParser (or subclass) that should be used to extract tests from the files. Optional keyword arg ``encoding`` specifies an encoding that should be used to convert the file to unicode. Advanced tomfoolery: testmod runs methods of a local instance of class doctest.Tester, then merges the results into (or creates) global Tester instance doctest.master. Methods of doctest.master can be called directly too, if you want to do something unusual. Passing report=0 to testmod is especially useful then, to delay displaying a summary. Invoke doctest.master.summarize(verbose) when you're done fiddling. """ if package and not module_relative: raise ValueError("Package may only be specified for module-" "relative paths.") # Relativize the path if not PY3: text, filename = pdoctest._load_testfile( filename, package, module_relative) if encoding is not None: text = text.decode(encoding) else: text, filename = pdoctest._load_testfile( filename, package, module_relative, encoding) # If no name was given, then use the file's name. if name is None: name = os.path.basename(filename) # Assemble the globals. if globs is None: globs = {} else: globs = globs.copy() if extraglobs is not None: globs.update(extraglobs) if '__name__' not in globs: globs['__name__'] = '__main__' if raise_on_error: runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags) else: runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags) runner._checker = SymPyOutputChecker() # Read the file, convert it to a test, and run it. test = parser.get_doctest(text, globs, name, filename, 0) runner.run(test, compileflags=future_flags) if report: runner.summarize() if pdoctest.master is None: pdoctest.master = runner else: pdoctest.master.merge(runner) return SymPyTestResults(runner.failures, runner.tries) class SymPyTests(object): def __init__(self, reporter, kw="", post_mortem=False, seed=None, fast_threshold=None, slow_threshold=None): self._post_mortem = post_mortem self._kw = kw self._count = 0 self._root_dir = get_sympy_dir() self._reporter = reporter self._reporter.root_dir(self._root_dir) self._testfiles = [] self._seed = seed if seed is not None else random.random() # Defaults in seconds, from human / UX design limits # http://www.nngroup.com/articles/response-times-3-important-limits/ # # These defaults are *NOT* set in stone as we are measuring different # things, so others feel free to come up with a better yardstick :) if fast_threshold: self._fast_threshold = float(fast_threshold) else: self._fast_threshold = 5 if slow_threshold: self._slow_threshold = float(slow_threshold) else: self._slow_threshold = 10 def test(self, sort=False, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): """ Runs the tests returning True if all tests pass, otherwise False. If sort=False run tests in random order. """ if sort: self._testfiles.sort() elif slow: pass else: random.seed(self._seed) random.shuffle(self._testfiles) self._reporter.start(self._seed) for f in self._testfiles: try: self.test_file(f, sort, timeout, slow, enhance_asserts, fail_on_timeout) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def _enhance_asserts(self, source): from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple, Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations) ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=', "Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not', "In": 'in', "NotIn": 'not in'} class Transform(NodeTransformer): def visit_Assert(self, stmt): if isinstance(stmt.test, Compare): compare = stmt.test values = [compare.left] + compare.comparators names = [ "_%s" % i for i, _ in enumerate(values) ] names_store = [ Name(n, Store()) for n in names ] names_load = [ Name(n, Load()) for n in names ] target = Tuple(names_store, Store()) value = Tuple(values, Load()) assign = Assign([target], value) new_compare = Compare(names_load[0], compare.ops, names_load[1:]) msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s" msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load())) test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset) return [assign, test] else: return stmt tree = parse(source) new_tree = Transform().visit(tree) return fix_missing_locations(new_tree) def test_file(self, filename, sort=True, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): reporter = self._reporter funcs = [] try: gl = {'__file__': filename} try: if PY3: open_file = lambda: open(filename, encoding="utf8") else: open_file = lambda: open(filename) with open_file() as f: source = f.read() if self._kw: for l in source.splitlines(): if l.lstrip().startswith('def '): if any(l.find(k) != -1 for k in self._kw): break else: return if enhance_asserts: try: source = self._enhance_asserts(source) except ImportError: pass code = compile(source, filename, "exec", flags=0, dont_inherit=True) exec_(code, gl) except (SystemExit, KeyboardInterrupt): raise except ImportError: reporter.import_error(filename, sys.exc_info()) return except Exception: reporter.test_exception(sys.exc_info()) clear_cache() self._count += 1 random.seed(self._seed) disabled = gl.get("disabled", False) if not disabled: # we need to filter only those functions that begin with 'test_' # We have to be careful about decorated functions. As long as # the decorator uses functools.wraps, we can detect it. funcs = [] for f in gl: if (f.startswith("test_") and (inspect.isfunction(gl[f]) or inspect.ismethod(gl[f]))): func = gl[f] # Handle multiple decorators while hasattr(func, '__wrapped__'): func = func.__wrapped__ if inspect.getsourcefile(func) == filename: funcs.append(gl[f]) if slow: funcs = [f for f in funcs if getattr(f, '_slow', False)] # Sorting of XFAILed functions isn't fixed yet :-( funcs.sort(key=lambda x: inspect.getsourcelines(x)[1]) i = 0 while i < len(funcs): if inspect.isgeneratorfunction(funcs[i]): # some tests can be generators, that return the actual # test functions. We unpack it below: f = funcs.pop(i) for fg in f(): func = fg[0] args = fg[1:] fgw = lambda: func(*args) funcs.insert(i, fgw) i += 1 else: i += 1 # drop functions that are not selected with the keyword expression: funcs = [x for x in funcs if self.matches(x)] if not funcs: return except Exception: reporter.entering_filename(filename, len(funcs)) raise reporter.entering_filename(filename, len(funcs)) if not sort: random.shuffle(funcs) for f in funcs: start = time.time() reporter.entering_test(f) try: if getattr(f, '_slow', False) and not slow: raise Skipped("Slow") if timeout: self._timeout(f, timeout, fail_on_timeout) else: random.seed(self._seed) f() except KeyboardInterrupt: if getattr(f, '_slow', False): reporter.test_skip("KeyboardInterrupt") else: raise except Exception: if timeout: signal.alarm(0) # Disable the alarm. It could not be handled before. t, v, tr = sys.exc_info() if t is AssertionError: reporter.test_fail((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) elif t.__name__ == "Skipped": reporter.test_skip(v) elif t.__name__ == "XFail": reporter.test_xfail() elif t.__name__ == "XPass": reporter.test_xpass(v) else: reporter.test_exception((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) else: reporter.test_pass() taken = time.time() - start if taken > self._slow_threshold: reporter.slow_test_functions.append((f.__name__, taken)) if getattr(f, '_slow', False) and slow: if taken < self._fast_threshold: reporter.fast_test_functions.append((f.__name__, taken)) reporter.leaving_filename() def _timeout(self, function, timeout, fail_on_timeout): def callback(x, y): signal.alarm(0) if fail_on_timeout: raise TimeOutError("Timed out after %d seconds" % timeout) else: raise Skipped("Timeout") signal.signal(signal.SIGALRM, callback) signal.alarm(timeout) # Set an alarm with a given timeout function() signal.alarm(0) # Disable the alarm def matches(self, x): """ Does the keyword expression self._kw match "x"? Returns True/False. Always returns True if self._kw is "". """ if not self._kw: return True for kw in self._kw: if x.__name__.find(kw) != -1: return True return False def get_test_files(self, dir, pat='test_*.py'): """ Returns the list of test_*.py (default) files at or below directory ``dir`` relative to the sympy home directory. """ dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)]) return sorted([os.path.normcase(gi) for gi in g]) class SymPyDocTests(object): def __init__(self, reporter, normal): self._count = 0 self._root_dir = get_sympy_dir() self._reporter = reporter self._reporter.root_dir(self._root_dir) self._normal = normal self._testfiles = [] def test(self): """ Runs the tests and returns True if all tests pass, otherwise False. """ self._reporter.start() for f in self._testfiles: try: self.test_file(f) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def test_file(self, filename): clear_cache() from sympy.core.compatibility import StringIO import sympy.interactive.printing as interactive_printing from sympy import pprint_use_unicode rel_name = filename[len(self._root_dir) + 1:] dirname, file = os.path.split(filename) module = rel_name.replace(os.sep, '.')[:-3] if rel_name.startswith("examples"): # Examples files do not have __init__.py files, # So we have to temporarily extend sys.path to import them sys.path.insert(0, dirname) module = file[:-3] # remove ".py" try: module = pdoctest._normalize_module(module) tests = SymPyDocTestFinder().find(module) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return finally: if rel_name.startswith("examples"): del sys.path[0] tests = [test for test in tests if len(test.examples) > 0] # By default tests are sorted by alphabetical order by function name. # We sort by line number so one can edit the file sequentially from # bottom to top. However, if there are decorated functions, their line # numbers will be too large and for now one must just search for these # by text and function name. tests.sort(key=lambda x: -x.lineno) if not tests: return self._reporter.entering_filename(filename, len(tests)) for test in tests: assert len(test.examples) != 0 if self._reporter._verbose: self._reporter.write("\n{} ".format(test.name)) # check if there are external dependencies which need to be met if '_doctest_depends_on' in test.globs: try: self._check_dependencies(**test.globs['_doctest_depends_on']) except DependencyError as e: self._reporter.test_skip(v=str(e)) continue runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) runner._checker = SymPyOutputChecker() old = sys.stdout new = StringIO() sys.stdout = new # If the testing is normal, the doctests get importing magic to # provide the global namespace. If not normal (the default) then # then must run on their own; all imports must be explicit within # a function's docstring. Once imported that import will be # available to the rest of the tests in a given function's # docstring (unless clear_globs=True below). if not self._normal: test.globs = {} # if this is uncommented then all the test would get is what # comes by default with a "from sympy import *" #exec('from sympy import *') in test.globs test.globs['print_function'] = print_function old_displayhook = sys.displayhook use_unicode_prev = setup_pprint() try: f, t = runner.run(test, compileflags=future_flags, out=new.write, clear_globs=False) except KeyboardInterrupt: raise finally: sys.stdout = old if f > 0: self._reporter.doctest_fail(test.name, new.getvalue()) else: self._reporter.test_pass() sys.displayhook = old_displayhook interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) self._reporter.leaving_filename() def get_test_files(self, dir, pat='*.py', init_only=True): r""" Returns the list of \*.py files (default) from which docstrings will be tested which are at or below directory ``dir``. By default, only those that have an __init__.py in their parent directory and do not start with ``test_`` will be included. """ def importable(x): """ Checks if given pathname x is an importable module by checking for __init__.py file. Returns True/False. Currently we only test if the __init__.py file exists in the directory with the file "x" (in theory we should also test all the parent dirs). """ init_py = os.path.join(os.path.dirname(x), "__init__.py") return os.path.exists(init_py) dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if not f.startswith('test_') and fnmatch(f, pat)]) if init_only: # skip files that are not importable (i.e. missing __init__.py) g = [x for x in g if importable(x)] return [os.path.normcase(gi) for gi in g] def _check_dependencies(self, executables=(), modules=(), disable_viewers=(), python_version=(2,)): """ Checks if the dependencies for the test are installed. Raises ``DependencyError`` it at least one dependency is not installed. """ for executable in executables: if not find_executable(executable): raise DependencyError("Could not find %s" % executable) for module in modules: if module == 'matplotlib': matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.0.0', catch=(RuntimeError,)) if matplotlib is None: raise DependencyError("Could not import matplotlib") else: if not import_module(module): raise DependencyError("Could not import %s" % module) if disable_viewers: tempdir = tempfile.mkdtemp() os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH']) vw = ('#!/usr/bin/env {}\n' 'import sys\n' 'if len(sys.argv) <= 1:\n' ' exit("wrong number of args")\n').format( 'python3' if PY3 else 'python') for viewer in disable_viewers: with open(os.path.join(tempdir, viewer), 'w') as fh: fh.write(vw) # make the file executable os.chmod(os.path.join(tempdir, viewer), stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR) if python_version: if sys.version_info < python_version: raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version))) if 'pyglet' in modules: # monkey-patch pyglet s.t. it does not open a window during # doctesting import pyglet class DummyWindow(object): def __init__(self, *args, **kwargs): self.has_exit = True self.width = 600 self.height = 400 def set_vsync(self, x): pass def switch_to(self): pass def push_handlers(self, x): pass def close(self): pass pyglet.window.Window = DummyWindow class SymPyDocTestFinder(DocTestFinder): """ A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following object types: modules, functions, classes, methods, staticmethods, classmethods, and properties. Modified from doctest's version to look harder for code that appears comes from a different module. For example, the @vectorize decorator makes it look like functions come from multidimensional.py even though their code exists elsewhere. """ def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to ``tests``. """ if self._verbose: print('Finding tests in %s' % name) # If we've already processed this object, then ignore it. if id(obj) in seen: return seen[id(obj)] = 1 # Make sure we don't run doctests for classes outside of sympy, such # as in numpy or scipy. if inspect.isclass(obj): if obj.__module__.split('.')[0] != 'sympy': return # Find a test for this object, and add it to the list of tests. test = self._get_test(obj, name, module, globs, source_lines) if test is not None: tests.append(test) if not self._recurse: return # Look for tests in a module's contained objects. if inspect.ismodule(obj): for rawname, val in obj.__dict__.items(): # Recurse to functions & classes. if inspect.isfunction(val) or inspect.isclass(val): # Make sure we don't run doctests functions or classes # from different modules if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (rawname %s)" % (val, module, rawname) try: valname = '%s.%s' % (name, rawname) self._find(tests, val, valname, module, source_lines, globs, seen) except KeyboardInterrupt: raise # Look for tests in a module's __test__ dictionary. for valname, val in getattr(obj, '__test__', {}).items(): if not isinstance(valname, string_types): raise ValueError("SymPyDocTestFinder.find: __test__ keys " "must be strings: %r" % (type(valname),)) if not (inspect.isfunction(val) or inspect.isclass(val) or inspect.ismethod(val) or inspect.ismodule(val) or isinstance(val, string_types)): raise ValueError("SymPyDocTestFinder.find: __test__ values " "must be strings, functions, methods, " "classes, or modules: %r" % (type(val),)) valname = '%s.__test__.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if inspect.isclass(obj): for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if ((inspect.isfunction(unwrap(val)) or inspect.isclass(val) or isinstance(val, property)) and self._from_module(module, val)): # Make sure we don't run doctests functions or classes # from different modules if isinstance(val, property): if hasattr(val.fget, '__module__'): if val.fget.__module__ != module.__name__: continue else: if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (valname %s)" % ( val, module, valname) valname = '%s.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) def _get_test(self, obj, name, module, globs, source_lines): """ Return a DocTest for the given object, if it defines a docstring; otherwise, return None. """ lineno = None # Extract the object's docstring. If it doesn't have one, # then return None (no test for this object). if isinstance(obj, string_types): # obj is a string in the case for objects in the polys package. # Note that source_lines is a binary string (compiled polys # modules), which can't be handled by _find_lineno so determine # the line number here. docstring = obj matches = re.findall(r"line \d+", name) assert len(matches) == 1, \ "string '%s' does not contain lineno " % name # NOTE: this is not the exact linenumber but its better than no # lineno ;) lineno = int(matches[0][5:]) else: try: if obj.__doc__ is None: docstring = '' else: docstring = obj.__doc__ if not isinstance(docstring, string_types): docstring = str(docstring) except (TypeError, AttributeError): docstring = '' # Don't bother if the docstring is empty. if self._exclude_empty and not docstring: return None # check that properties have a docstring because _find_lineno # assumes it if isinstance(obj, property): if obj.fget.__doc__ is None: return None # Find the docstring's location in the file. if lineno is None: obj = unwrap(obj) # handling of properties is not implemented in _find_lineno so do # it here if hasattr(obj, 'func_closure') and obj.func_closure is not None: tobj = obj.func_closure[0].cell_contents elif isinstance(obj, property): tobj = obj.fget else: tobj = obj lineno = self._find_lineno(tobj, source_lines) if lineno is None: return None # Return a DocTest for this object. if module is None: filename = None else: filename = getattr(module, '__file__', module.__name__) if filename[-4:] in (".pyc", ".pyo"): filename = filename[:-1] globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {}) return self._parser.get_doctest(docstring, globs, name, filename, lineno) class SymPyDocTestRunner(DocTestRunner): """ A class used to run DocTest test cases, and accumulate statistics. The ``run`` method is used to process a single DocTest case. It returns a tuple ``(f, t)``, where ``t`` is the number of test cases tried, and ``f`` is the number of test cases that failed. Modified from the doctest version to not reset the sys.displayhook (see issue 5140). See the docstring of the original DocTestRunner for more information. """ def run(self, test, compileflags=None, out=None, clear_globs=True): """ Run the examples in ``test``, and display the results using the writer function ``out``. The examples are run in the namespace ``test.globs``. If ``clear_globs`` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use ``clear_globs=False``. ``compileflags`` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to ``globs``. The output of each example is checked using ``SymPyDocTestRunner.check_output``, and the results are formatted by the ``SymPyDocTestRunner.report_*`` methods. """ self.test = test if compileflags is None: compileflags = pdoctest._extract_future_flags(test.globs) save_stdout = sys.stdout if out is None: out = save_stdout.write sys.stdout = self._fakeout # Patch pdb.set_trace to restore sys.stdout during interactive # debugging (so it's not still redirected to self._fakeout). # Note that the interactive output will go to *our* # save_stdout, even if that's not the real sys.stdout; this # allows us to write test cases for the set_trace behavior. save_set_trace = pdb.set_trace self.debugger = pdoctest._OutputRedirectingPdb(save_stdout) self.debugger.reset() pdb.set_trace = self.debugger.set_trace # Patch linecache.getlines, so we can see the example's source # when we're inside the debugger. self.save_linecache_getlines = pdoctest.linecache.getlines linecache.getlines = self.__patched_linecache_getlines try: test.globs['print_function'] = print_function return self.__run(test, compileflags, out) finally: sys.stdout = save_stdout pdb.set_trace = save_set_trace linecache.getlines = self.save_linecache_getlines if clear_globs: test.globs.clear() # We have to override the name mangled methods. SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \ DocTestRunner._DocTestRunner__patched_linecache_getlines SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \ DocTestRunner._DocTestRunner__record_outcome class SymPyOutputChecker(pdoctest.OutputChecker): """ Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples """ def __init__(self): # NOTE OutputChecker is an old-style class with no __init__ method, # so we can't call the base class version of __init__ here got_floats = r'(\d+\.\d*|\.\d+)' # floats in the 'want' string may contain ellipses want_floats = got_floats + r'(\.{3})?' front_sep = r'\s|\+|\-|\*|,' back_sep = front_sep + r'|j|e' fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep) self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep) self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) def check_output(self, want, got, optionflags): """ Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for `TestRunner` for more information about option flags. """ # Handle the common case first, for efficiency: # if they're string-identical, always return true. if got == want: return True # TODO parse integers as well ? # Parse floats and compare them. If some of the parsed floats contain # ellipses, skip the comparison. matches = self.num_got_rgx.finditer(got) numbers_got = [match.group(1) for match in matches] # list of strs matches = self.num_want_rgx.finditer(want) numbers_want = [match.group(1) for match in matches] # list of strs if len(numbers_got) != len(numbers_want): return False if len(numbers_got) > 0: nw_ = [] for ng, nw in zip(numbers_got, numbers_want): if '...' in nw: nw_.append(ng) continue else: nw_.append(nw) if abs(float(ng)-float(nw)) > 1e-5: return False got = self.num_got_rgx.sub(r'%s', got) got = got % tuple(nw_) # <BLANKLINE> can be used as a special sequence to signify a # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used. if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE): # Replace <BLANKLINE> in want with a blank line. want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER), '', want) # If a line in got contains only spaces, then remove the # spaces. got = re.sub(r'(?m)^\s*?$', '', got) if got == want: return True # This flag causes doctest to ignore any differences in the # contents of whitespace strings. Note that this can be used # in conjunction with the ELLIPSIS flag. if optionflags & pdoctest.NORMALIZE_WHITESPACE: got = ' '.join(got.split()) want = ' '.join(want.split()) if got == want: return True # The ELLIPSIS flag says to let the sequence "..." in `want` # match any substring in `got`. if optionflags & pdoctest.ELLIPSIS: if pdoctest._ellipsis_match(want, got): return True # We didn't find any match; return false. return False class Reporter(object): """ Parent class for all reporters. """ pass class PyTestReporter(Reporter): """ Py.test like reporter. Should produce output identical to py.test. """ def __init__(self, verbose=False, tb="short", colors=True, force_colors=False, split=None): self._verbose = verbose self._tb_style = tb self._colors = colors self._force_colors = force_colors self._xfailed = 0 self._xpassed = [] self._failed = [] self._failed_doctest = [] self._passed = 0 self._skipped = 0 self._exceptions = [] self._terminal_width = None self._default_width = 80 self._split = split self._active_file = '' self._active_f = None # TODO: Should these be protected? self.slow_test_functions = [] self.fast_test_functions = [] # this tracks the x-position of the cursor (useful for positioning # things on the screen), without the need for any readline library: self._write_pos = 0 self._line_wrap = False def root_dir(self, dir): self._root_dir = dir @property def terminal_width(self): if self._terminal_width is not None: return self._terminal_width def findout_terminal_width(): if sys.platform == "win32": # Windows support is based on: # # http://code.activestate.com/recipes/ # 440694-determine-size-of-console-window-on-windows/ from ctypes import windll, create_string_buffer h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (_, _, _, _, _, left, _, right, _, _, _) = \ struct.unpack("hhhhHhhhhhh", csbi.raw) return right - left else: return self._default_width if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty(): return self._default_width # leave PIPEs alone try: process = subprocess.Popen(['stty', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = process.stdout.read() if PY3: stdout = stdout.decode("utf-8") except (OSError, IOError): pass else: # We support the following output formats from stty: # # 1) Linux -> columns 80 # 2) OS X -> 80 columns # 3) Solaris -> columns = 80 re_linux = r"columns\s+(?P<columns>\d+);" re_osx = r"(?P<columns>\d+)\s*columns;" re_solaris = r"columns\s+=\s+(?P<columns>\d+);" for regex in (re_linux, re_osx, re_solaris): match = re.search(regex, stdout) if match is not None: columns = match.group('columns') try: width = int(columns) except ValueError: pass if width != 0: return width return self._default_width width = findout_terminal_width() self._terminal_width = width return width def write(self, text, color="", align="left", width=None, force_colors=False): """ Prints a text on the screen. It uses sys.stdout.write(), so no readline library is necessary. Parameters ========== color : choose from the colors below, "" means default color align : "left"/"right", "left" is a normal print, "right" is aligned on the right-hand side of the screen, filled with spaces if necessary width : the screen width """ color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' if width is None: width = self.terminal_width if align == "right": if self._write_pos + len(text) > width: # we don't fit on the current line, create a new line self.write("\n") self.write(" "*(width - self._write_pos - len(text))) if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \ sys.stdout.isatty(): # the stdout is not a terminal, this for example happens if the # output is piped to less, e.g. "bin/test | less". In this case, # the terminal control sequences would be printed verbatim, so # don't use any colors. color = "" elif sys.platform == "win32": # Windows consoles don't support ANSI escape sequences color = "" elif not self._colors: color = "" if self._line_wrap: if text[0] != "\n": sys.stdout.write("\n") # Avoid UnicodeEncodeError when printing out test failures if PY3 and IS_WINDOWS: text = text.encode('raw_unicode_escape').decode('utf8', 'ignore') elif PY3 and not sys.stdout.encoding.lower().startswith('utf'): text = text.encode(sys.stdout.encoding, 'backslashreplace' ).decode(sys.stdout.encoding) if color == "": sys.stdout.write(text) else: sys.stdout.write("%s%s%s" % (c_color % colors[color], text, c_normal)) sys.stdout.flush() l = text.rfind("\n") if l == -1: self._write_pos += len(text) else: self._write_pos = len(text) - l - 1 self._line_wrap = self._write_pos >= width self._write_pos %= width def write_center(self, text, delim="="): width = self.terminal_width if text != "": text = " %s " % text idx = (width - len(text)) // 2 t = delim*idx + text + delim*(width - idx - len(text)) self.write(t + "\n") def write_exception(self, e, val, tb): # remove the first item, as that is always runtests.py tb = tb.tb_next t = traceback.format_exception(e, val, tb) self.write("".join(t)) def start(self, seed=None, msg="test process starts"): self.write_center(msg) executable = sys.executable v = tuple(sys.version_info) python_version = "%s.%s.%s-%s-%s" % v implementation = platform.python_implementation() if implementation == 'PyPy': implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info self.write("executable: %s (%s) [%s]\n" % (executable, python_version, implementation)) from .misc import ARCH self.write("architecture: %s\n" % ARCH) from sympy.core.cache import USE_CACHE self.write("cache: %s\n" % USE_CACHE) from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() self.write("ground types: %s %s\n" % (GROUND_TYPES, version)) numpy = import_module('numpy') self.write("numpy: %s\n" % (None if not numpy else numpy.__version__)) if seed is not None: self.write("random seed: %d\n" % seed) from .misc import HASH_RANDOMIZATION self.write("hash randomization: ") hash_seed = os.getenv("PYTHONHASHSEED") or '0' if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)): self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed) else: self.write("off\n") if self._split: self.write("split: %s\n" % self._split) self.write('\n') self._t_start = clock() def finish(self): self._t_end = clock() self.write("\n") global text, linelen text = "tests finished: %d passed, " % self._passed linelen = len(text) def add_text(mytext): global text, linelen """Break new text if too long.""" if linelen + len(mytext) > self.terminal_width: text += '\n' linelen = 0 text += mytext linelen += len(mytext) if len(self._failed) > 0: add_text("%d failed, " % len(self._failed)) if len(self._failed_doctest) > 0: add_text("%d failed, " % len(self._failed_doctest)) if self._skipped > 0: add_text("%d skipped, " % self._skipped) if self._xfailed > 0: add_text("%d expected to fail, " % self._xfailed) if len(self._xpassed) > 0: add_text("%d expected to fail but passed, " % len(self._xpassed)) if len(self._exceptions) > 0: add_text("%d exceptions, " % len(self._exceptions)) add_text("in %.2f seconds" % (self._t_end - self._t_start)) if self.slow_test_functions: self.write_center('slowest tests', '_') sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1]) for slow_func_name, taken in sorted_slow: print('%s - Took %.3f seconds' % (slow_func_name, taken)) if self.fast_test_functions: self.write_center('unexpectedly fast tests', '_') sorted_fast = sorted(self.fast_test_functions, key=lambda r: r[1]) for fast_func_name, taken in sorted_fast: print('%s - Took %.3f seconds' % (fast_func_name, taken)) if len(self._xpassed) > 0: self.write_center("xpassed tests", "_") for e in self._xpassed: self.write("%s: %s\n" % (e[0], e[1])) self.write("\n") if self._tb_style != "no" and len(self._exceptions) > 0: for e in self._exceptions: filename, f, (t, val, tb) = e self.write_center("", "_") if f is None: s = "%s" % filename else: s = "%s:%s" % (filename, f.__name__) self.write_center(s, "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed) > 0: for e in self._failed: filename, f, (t, val, tb) = e self.write_center("", "_") self.write_center("%s:%s" % (filename, f.__name__), "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed_doctest) > 0: for e in self._failed_doctest: filename, msg = e self.write_center("", "_") self.write_center("%s" % filename, "_") self.write(msg) self.write("\n") self.write_center(text) ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \ len(self._failed_doctest) == 0 if not ok: self.write("DO *NOT* COMMIT!\n") return ok def entering_filename(self, filename, n): rel_name = filename[len(self._root_dir) + 1:] self._active_file = rel_name self._active_file_error = False self.write(rel_name) self.write("[%d] " % n) def leaving_filename(self): self.write(" ") if self._active_file_error: self.write("[FAIL]", "Red", align="right") else: self.write("[OK]", "Green", align="right") self.write("\n") if self._verbose: self.write("\n") def entering_test(self, f): self._active_f = f if self._verbose: self.write("\n" + f.__name__ + " ") def test_xfail(self): self._xfailed += 1 self.write("f", "Green") def test_xpass(self, v): message = str(v) self._xpassed.append((self._active_file, message)) self.write("X", "Green") def test_fail(self, exc_info): self._failed.append((self._active_file, self._active_f, exc_info)) self.write("F", "Red") self._active_file_error = True def doctest_fail(self, name, error_msg): # the first line contains "******", remove it: error_msg = "\n".join(error_msg.split("\n")[1:]) self._failed_doctest.append((name, error_msg)) self.write("F", "Red") self._active_file_error = True def test_pass(self, char="."): self._passed += 1 if self._verbose: self.write("ok", "Green") else: self.write(char, "Green") def test_skip(self, v=None): char = "s" self._skipped += 1 if v is not None: message = str(v) if message == "KeyboardInterrupt": char = "K" elif message == "Timeout": char = "T" elif message == "Slow": char = "w" if self._verbose: if v is not None: self.write(message + ' ', "Blue") else: self.write(" - ", "Blue") self.write(char, "Blue") def test_exception(self, exc_info): self._exceptions.append((self._active_file, self._active_f, exc_info)) if exc_info[0] is TimeOutError: self.write("T", "Red") else: self.write("E", "Red") self._active_file_error = True def import_error(self, filename, exc_info): self._exceptions.append((filename, None, exc_info)) rel_name = filename[len(self._root_dir) + 1:] self.write(rel_name) self.write("[?] Failed to import", "Red") self.write(" ") self.write("[FAIL]", "Red", align="right") self.write("\n")
64d20599188acdc808479ba9186804ede76f03ce1a1354d2892a2abf45cfe484
""" Helpers for randomized testing """ from __future__ import print_function, division from random import uniform, Random, randrange, randint from sympy.core.compatibility import is_sequence, as_int from sympy.core.containers import Tuple from sympy.core.numbers import comp, I from sympy.core.symbol import Symbol from sympy.simplify.simplify import nsimplify def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None): """ Return a random complex number. To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c When rational is True, a rational approximation to a random number is obtained within specified tolerance, if any. """ A, B = uniform(a, c), uniform(b, d) if not rational: return A + I*B return (nsimplify(A, rational=True, tolerance=tolerance) + I*nsimplify(B, rational=True, tolerance=tolerance)) def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that f and g agree when evaluated in the argument z. If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round- off errors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> from sympy.utilities.randtest import verify_numerically as tn >>> tn(sin(x)**2 + cos(x)**2, 1, x) True """ f, g, z = Tuple(f, g, z) z = [z] if isinstance(z, Symbol) else (f.free_symbols | g.free_symbols) reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z])) z1 = f.subs(reps).n() z2 = g.subs(reps).n() return comp(z1, z2, tol) def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that the symbolically computed derivative of f with respect to z is correct. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round-off errors. Examples ======== >>> from sympy import sin >>> from sympy.abc import x >>> from sympy.utilities.randtest import test_derivative_numerically as td >>> td(sin(x), x) True """ from sympy.core.function import Derivative z0 = random_complex_number(a, b, c, d) f1 = f.diff(z).subs(z, z0) f2 = Derivative(f, z).doit_numerically(z0) return comp(f1.n(), f2.n(), tol) def _randrange(seed=None): """Return a randrange generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.utilities.randtest import _randrange >>> rr = _randrange() >>> rr(1000) # doctest: +SKIP 999 >>> rr = _randrange(3) >>> rr(1000) # doctest: +SKIP 238 >>> rr = _randrange([0, 5, 1, 3, 4]) >>> rr(3), rr(3) (0, 1) """ if seed is None: return randrange elif isinstance(seed, int): return Random(seed).randrange elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b=None, seq=seed): if b is None: a, b = 0, a a, b = as_int(a), as_int(b) w = b - a if w < 1: raise ValueError('_randrange got empty range') try: x = seq.pop() except IndexError: raise ValueError('_randrange sequence was too short') if a <= x < b: return x else: return give(a, b, seq) return give else: raise ValueError('_randrange got an unexpected seed') def _randint(seed=None): """Return a randint generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.utilities.randtest import _randint >>> ri = _randint() >>> ri(1, 1000) # doctest: +SKIP 999 >>> ri = _randint(3) >>> ri(1, 1000) # doctest: +SKIP 238 >>> ri = _randint([0, 5, 1, 2, 4]) >>> ri(1, 3), ri(1, 3) (1, 2) """ if seed is None: return randint elif isinstance(seed, int): return Random(seed).randint elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b, seq=seed): a, b = as_int(a), as_int(b) w = b - a if w < 0: raise ValueError('_randint got empty range') try: x = seq.pop() except IndexError: raise ValueError('_randint sequence was too short') if a <= x <= b: return x else: return give(a, b, seq) return give else: raise ValueError('_randint got an unexpected seed')
a562044d1e3ff0741099fc5809347843f90914761adbe7193d5029cc5d890d9c
""" This module adds context manager for temporary files generated by the tests. """ from __future__ import print_function, division import shutil import os class TmpFileManager: """ A class to track record of every temporary files created by the tests. """ tmp_files = set('') tmp_folders = set('') @classmethod def tmp_file(cls, name=''): cls.tmp_files.add(name) return name @classmethod def tmp_folder(cls, name=''): cls.tmp_folders.add(name) return name @classmethod def cleanup(cls): while cls.tmp_files: file = cls.tmp_files.pop() if os.path.isfile(file): os.remove(file) while cls.tmp_folders: folder = cls.tmp_folders.pop() shutil.rmtree(folder) def cleanup_tmp_files(test_func): """ A decorator to help test codes remove temporary files after the tests. """ def wrapper_function(): try: test_func() finally: TmpFileManager.cleanup() return wrapper_function
ce6f3efc25217cbe557f2f650df5a1a548077e1c8f6ac67d971d300237842081
"""A module providing information about the necessity of brackets""" from __future__ import print_function, division from sympy.core.function import _coeff_isneg # Default precedence values for some basic types PRECEDENCE = { "Lambda": 1, "Xor": 10, "Or": 20, "And": 30, "Relational": 35, "Add": 40, "Mul": 50, "Pow": 60, "Func": 70, "Not": 100, "Atom": 1000, "BitwiseOr": 36, "BitwiseAnd": 38 } # A dictionary assigning precedence values to certain classes. These values are # treated like they were inherited, so not every single class has to be named # here. # Do not use this with printers other than StrPrinter PRECEDENCE_VALUES = { "Equivalent": PRECEDENCE["Xor"], "Xor": PRECEDENCE["Xor"], "Implies": PRECEDENCE["Xor"], "Or": PRECEDENCE["Or"], "And": PRECEDENCE["And"], "Add": PRECEDENCE["Add"], "Pow": PRECEDENCE["Pow"], "Relational": PRECEDENCE["Relational"], "Sub": PRECEDENCE["Add"], "Not": PRECEDENCE["Not"], "Function" : PRECEDENCE["Func"], "NegativeInfinity": PRECEDENCE["Add"], "MatAdd": PRECEDENCE["Add"], "MatPow": PRECEDENCE["Pow"], "MatrixSolve": PRECEDENCE["Mul"], "TensAdd": PRECEDENCE["Add"], # As soon as `TensMul` is a subclass of `Mul`, remove this: "TensMul": PRECEDENCE["Mul"], "HadamardProduct": PRECEDENCE["Mul"], "HadamardPower": PRECEDENCE["Pow"], "KroneckerProduct": PRECEDENCE["Mul"], "Equality": PRECEDENCE["Mul"], "Unequality": PRECEDENCE["Mul"], } # Sometimes it's not enough to assign a fixed precedence value to a # class. Then a function can be inserted in this dictionary that takes # an instance of this class as argument and returns the appropriate # precedence value. # Precedence functions def precedence_Mul(item): if _coeff_isneg(item): return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Rational(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Integer(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_Float(item): if item < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_PolyElement(item): if item.is_generator: return PRECEDENCE["Atom"] elif item.is_ground: return precedence(item.coeff(1)) elif item.is_term: return PRECEDENCE["Mul"] else: return PRECEDENCE["Add"] def precedence_FracElement(item): if item.denom == 1: return precedence_PolyElement(item.numer) else: return PRECEDENCE["Mul"] def precedence_UnevaluatedExpr(item): return precedence(item.args[0]) PRECEDENCE_FUNCTIONS = { "Integer": precedence_Integer, "Mul": precedence_Mul, "Rational": precedence_Rational, "Float": precedence_Float, "PolyElement": precedence_PolyElement, "FracElement": precedence_FracElement, "UnevaluatedExpr": precedence_UnevaluatedExpr, } def precedence(item): """Returns the precedence of a given object. This is the precedence for StrPrinter. """ if hasattr(item, "precedence"): return item.precedence try: mro = item.__class__.__mro__ except AttributeError: return PRECEDENCE["Atom"] for i in mro: n = i.__name__ if n in PRECEDENCE_FUNCTIONS: return PRECEDENCE_FUNCTIONS[n](item) elif n in PRECEDENCE_VALUES: return PRECEDENCE_VALUES[n] return PRECEDENCE["Atom"] PRECEDENCE_TRADITIONAL = PRECEDENCE.copy() PRECEDENCE_TRADITIONAL['Integral'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Sum'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Product'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Limit'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Derivative'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['TensorProduct'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Transpose'] = PRECEDENCE["Pow"] PRECEDENCE_TRADITIONAL['Adjoint'] = PRECEDENCE["Pow"] PRECEDENCE_TRADITIONAL['Dot'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Cross'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Gradient'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Divergence'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Curl'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Laplacian'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Union'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['Intersection'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['Complement'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['SymmetricDifference'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['ProductSet'] = PRECEDENCE['Xor'] def precedence_traditional(item): """Returns the precedence of a given object according to the traditional rules of mathematics. This is the precedence for the LaTeX and pretty printer. """ # Integral, Sum, Product, Limit have the precedence of Mul in LaTeX, # the precedence of Atom for other printers: from sympy import Integral, Sum, Product, Limit, Derivative, Transpose, Adjoint from sympy.core.expr import UnevaluatedExpr from sympy.tensor.functions import TensorProduct if isinstance(item, UnevaluatedExpr): return precedence_traditional(item.args[0]) n = item.__class__.__name__ if n in PRECEDENCE_TRADITIONAL: return PRECEDENCE_TRADITIONAL[n] return precedence(item)
cb3867a42575be87b5aaa4d3bea64a58cf0f32e368a45ee0ee5dc5ecb797afc4
""" Python code printers This module contains python code printers for plain python as well as NumPy & SciPy enabled code. """ from collections import defaultdict from itertools import chain from sympy.core import S from .precedence import precedence from .codeprinter import CodePrinter _kw_py2and3 = { 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist } _kw_only_py2 = {'exec', 'print'} _kw_only_py3 = {'False', 'nonlocal', 'True'} _known_functions = { 'Abs': 'abs', } _known_functions_math = { 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'expm1': 'expm1', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'hypot': 'hypot', 'loggamma': 'lgamma', 'log': 'log', 'ln': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'sin': 'sin', 'sinh': 'sinh', 'Sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh' } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf # radians trunc fmod fsum gcd degrees fabs] _known_constants_math = { 'Exp1': 'e', 'Pi': 'pi', 'E': 'e' # Only in python >= 3.5: # 'Infinity': 'inf', # 'NaN': 'nan' } def _print_known_func(self, expr): known = self.known_functions[expr.__class__.__name__] return '{name}({args})'.format(name=self._module_format(known), args=', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_known_const(self, expr): known = self.known_constants[expr.__class__.__name__] return self._module_format(known) class AbstractPythonCodePrinter(CodePrinter): printmethod = "_pythoncode" language = "Python" reserved_words = _kw_py2and3.union(_kw_only_py3) modules = None # initialized to a set in __init__ tab = ' ' _kf = dict(chain( _known_functions.items(), [(k, 'math.' + v) for k, v in _known_functions_math.items()] )) _kc = {k: 'math.'+v for k, v in _known_constants_math.items()} _operators = {'and': 'and', 'or': 'or', 'not': 'not'} _default_settings = dict( CodePrinter._default_settings, user_functions={}, precision=17, inline=True, fully_qualified_modules=True, contract=False, standard='python3' ) def __init__(self, settings=None): super(AbstractPythonCodePrinter, self).__init__(settings) # XXX Remove after dropping python 2 support. # Python standard handler std = self._settings['standard'] if std is None: import sys std = 'python{}'.format(sys.version_info.major) if std not in ('python2', 'python3'): raise ValueError('Unrecognized python standard : {}'.format(std)) self.standard = std self.module_imports = defaultdict(set) # Known functions and constants handler self.known_functions = dict(self._kf, **(settings or {}).get( 'user_functions', {})) self.known_constants = dict(self._kc, **(settings or {}).get( 'user_constants', {})) def _declare_number_const(self, name, value): return "%s = %s" % (name, value) def _module_format(self, fqn, register=True): parts = fqn.split('.') if register and len(parts) > 1: self.module_imports['.'.join(parts[:-1])].add(parts[-1]) if self._settings['fully_qualified_modules']: return fqn else: return fqn.split('(')[0].split('[')[0].split('.')[-1] def _format_code(self, lines): return lines def _get_statement(self, codestring): return "{}".format(codestring) def _get_comment(self, text): return " # {0}".format(text) def _expand_fold_binary_op(self, op, args): """ This method expands a fold on binary operations. ``functools.reduce`` is an example of a folded operation. For example, the expression `A + B + C + D` is folded into `((A + B) + C) + D` """ if len(args) == 1: return self._print(args[0]) else: return "%s(%s, %s)" % ( self._module_format(op), self._expand_fold_binary_op(op, args[:-1]), self._print(args[-1]), ) def _expand_reduce_binary_op(self, op, args): """ This method expands a reductin on binary operations. Notice: this is NOT the same as ``functools.reduce``. For example, the expression `A + B + C + D` is reduced into: `(A + B) + (C + D)` """ if len(args) == 1: return self._print(args[0]) else: N = len(args) Nhalf = N // 2 return "%s(%s, %s)" % ( self._module_format(op), self._expand_reduce_binary_op(args[:Nhalf]), self._expand_reduce_binary_op(args[Nhalf:]), ) def _get_einsum_string(self, subranks, contraction_indices): letters = self._get_letter_generator_for_einsum() contraction_string = "" counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) mapping = {} letters_free = [] letters_dum = [] for i in indices: for j in i: if j not in mapping: l = next(letters) mapping[j] = l else: l = mapping[j] contraction_string += l if j in d: if l not in letters_dum: letters_dum.append(l) else: letters_free.append(l) contraction_string += "," contraction_string = contraction_string[:-1] return contraction_string, letters_free, letters_dum def _print_NaN(self, expr): return "float('nan')" def _print_Infinity(self, expr): return "float('inf')" def _print_NegativeInfinity(self, expr): return "float('-inf')" def _print_ComplexInfinity(self, expr): return self._print_NaN(expr) def _print_Mod(self, expr): PREC = precedence(expr) return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args))) def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond if i == 0: result.append('(') result.append('(') result.append(self._print(e)) result.append(')') result.append(' if ') result.append(self._print(c)) result.append(' else ') i += 1 result = result[:-1] if result[-1] == 'True': result = result[:-2] result.append(')') else: result.append(' else None)') return ''.join(result) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) return super(AbstractPythonCodePrinter, self)._print_Relational(expr) def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_ImaginaryUnit(self, expr): return '1j' def _print_MatrixBase(self, expr): name = expr.__class__.__name__ func = self.known_functions.get(name, name) return "%s(%s)" % (func, self._print(expr.tolist())) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ lambda self, expr: self._print_MatrixBase(expr) def _indent_codestring(self, codestring): return '\n'.join([self.tab + line for line in codestring.split('\n')]) def _print_FunctionDefinition(self, fd): body = '\n'.join(map(lambda arg: self._print(arg), fd.body)) return "def {name}({parameters}):\n{body}".format( name=self._print(fd.name), parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), body=self._indent_codestring(body) ) def _print_While(self, whl): body = '\n'.join(map(lambda arg: self._print(arg), whl.body)) return "while {cond}:\n{body}".format( cond=self._print(whl.condition), body=self._indent_codestring(body) ) def _print_Declaration(self, decl): return '%s = %s' % ( self._print(decl.variable.symbol), self._print(decl.variable.value) ) def _print_Return(self, ret): arg, = ret.args return 'return %s' % self._print(arg) def _print_Print(self, prnt): print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args)) if prnt.format_string != None: # Must be '!= None', cannot be 'is not None' print_args = '{0} % ({1})'.format( self._print(prnt.format_string), print_args) if prnt.file != None: # Must be '!= None', cannot be 'is not None' print_args += ', file=%s' % self._print(prnt.file) # XXX Remove after dropping python 2 support. if self.standard == 'python2': return 'print %s' % print_args return 'print(%s)' % print_args def _print_Stream(self, strm): if str(strm.name) == 'stdout': return self._module_format('sys.stdout') elif str(strm.name) == 'stderr': return self._module_format('sys.stderr') else: return self._print(strm.name) def _print_NoneToken(self, arg): return 'None' class PythonCodePrinter(AbstractPythonCodePrinter): def _print_sign(self, e): return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( f=self._module_format('math.copysign'), e=self._print(e.args[0])) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Indexed(self, expr): base = expr.args[0] index = expr.args[1:] return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index])) def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'): """Printing helper function for ``Pow`` Notes ===== This only preprocesses the ``sqrt`` as math formatter Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.pycode import PythonCodePrinter >>> from sympy.abc import x Python code printer automatically looks up ``math.sqrt``. >>> printer = PythonCodePrinter({'standard':'python3'}) >>> printer._hprint_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._hprint_Pow(sqrt(x), rational=False) 'math.sqrt(x)' >>> printer._hprint_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._hprint_Pow(1/sqrt(x), rational=False) '1/math.sqrt(x)' Using sqrt from numpy or mpmath >>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt') 'numpy.sqrt(x)' >>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt') 'mpmath.sqrt(x)' See Also ======== sympy.printing.str.StrPrinter._print_Pow """ PREC = precedence(expr) if expr.exp == S.Half and not rational: func = self._module_format(sqrt) arg = self._print(expr.base) return '{func}({arg})'.format(func=func, arg=arg) if expr.is_commutative: if -expr.exp is S.Half and not rational: func = self._module_format(sqrt) num = self._print(S.One) arg = self._print(expr.base) return "{num}/{func}({arg})".format( num=num, func=func, arg=arg) base_str = self.parenthesize(expr.base, PREC, strict=False) exp_str = self.parenthesize(expr.exp, PREC, strict=False) return "{}**{}".format(base_str, exp_str) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational) def _print_Rational(self, expr): # XXX Remove after dropping python 2 support. if self.standard == 'python2': return '{}./{}.'.format(expr.p, expr.q) return '{}/{}'.format(expr.p, expr.q) def _print_Half(self, expr): return self._print_Rational(expr) _print_lowergamma = CodePrinter._print_not_supported _print_uppergamma = CodePrinter._print_not_supported _print_fresnelc = CodePrinter._print_not_supported _print_fresnels = CodePrinter._print_not_supported for k in PythonCodePrinter._kf: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_math: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) def pycode(expr, **settings): """ Converts an expr to a string of Python code Parameters ========== expr : Expr A SymPy expression. fully_qualified_modules : bool Whether or not to write out full module names of functions (``math.sin`` vs. ``sin``). default: ``True``. standard : str or None, optional If 'python2', Python 2 sematics will be used. If 'python3', Python 3 sematics will be used. If None, the standard will be automatically detected. Default is 'python3'. And this parameter may be removed in the future. Examples ======== >>> from sympy import tan, Symbol >>> from sympy.printing.pycode import pycode >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1' """ return PythonCodePrinter(settings).doprint(expr) _not_in_mpmath = 'log1p log2'.split() _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] _known_functions_mpmath = dict(_in_mpmath, **{ 'beta': 'beta', 'fresnelc': 'fresnelc', 'fresnels': 'fresnels', 'sign': 'sign', }) _known_constants_mpmath = { 'Pi': 'pi' } class MpmathPrinter(PythonCodePrinter): """ Lambda printer for mpmath which maintains precision for floats """ printmethod = "_mpmathcode" language = "Python with mpmath" _kf = dict(chain( _known_functions.items(), [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] )) def _print_Float(self, e): # XXX: This does not handle setting mpmath.mp.dps. It is assumed that # the caller of the lambdified function will have set it to sufficient # precision to match the Floats in the expression. # Remove 'mpz' if gmpy is installed. args = str(tuple(map(int, e._mpf_))) return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) def _print_Rational(self, e): return "{func}({p})/{func}({q})".format( func=self._module_format('mpmath.mpf'), q=self._print(e.q), p=self._print(e.p) ) def _print_Half(self, e): return self._print_Rational(e) def _print_uppergamma(self, e): return "{0}({1}, {2}, {3})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1]), self._module_format('mpmath.inf')) def _print_lowergamma(self, e): return "{0}({1}, 0, {2})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1])) def _print_log2(self, e): return '{0}({1})/{0}(2)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_log1p(self, e): return '{0}({1}+1)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt') for k in MpmathPrinter._kf: setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_mpmath: setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) _not_in_numpy = 'erf erfc factorial gamma loggamma'.split() _in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy] _known_functions_numpy = dict(_in_numpy, **{ 'acos': 'arccos', 'acosh': 'arccosh', 'asin': 'arcsin', 'asinh': 'arcsinh', 'atan': 'arctan', 'atan2': 'arctan2', 'atanh': 'arctanh', 'exp2': 'exp2', 'sign': 'sign', }) class NumPyPrinter(PythonCodePrinter): """ Numpy printer which handles vectorized piecewise functions, logical operators, etc. """ printmethod = "_numpycode" language = "Python with NumPy" _kf = dict(chain( PythonCodePrinter._kf.items(), [(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()] )) _kc = {k: 'numpy.'+v for k, v in _known_constants_math.items()} def _print_seq(self, seq): "General sequence printer: converts to tuple" # Print tuples here instead of lists because numba supports # tuples in nopython mode. delimiter=', ' return '({},)'.format(delimiter.join(self._print(item) for item in seq)) def _print_MatMul(self, expr): "Matrix multiplication printer" if expr.as_coeff_matrices()[0] is not S(1): expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])] return '({0})'.format(').dot('.join(self._print(i) for i in expr_list)) return '({0})'.format(').dot('.join(self._print(i) for i in expr.args)) def _print_MatPow(self, expr): "Matrix power printer" return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_Inverse(self, expr): "Matrix inverse printer" return '{0}({1})'.format(self._module_format('numpy.linalg.inv'), self._print(expr.args[0])) def _print_DotProduct(self, expr): # DotProduct allows any shape order, but numpy.dot does matrix # multiplication, so we have to make sure it gets 1 x n by n x 1. arg1, arg2 = expr.args if arg1.shape[0] != 1: arg1 = arg1.T if arg2.shape[1] != 1: arg2 = arg2.T return "%s(%s, %s)" % (self._module_format('numpy.dot'), self._print(arg1), self._print(arg2)) def _print_MatrixSolve(self, expr): return "%s(%s, %s)" % (self._module_format('numpy.linalg.solve'), self._print(expr.matrix), self._print(expr.vector)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args)) # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. return '{0}({1}, {2}, default=numpy.nan)'.format(self._module_format('numpy.select'), conds, exprs) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]), lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args)) def _print_Pow(self, expr, rational=False): # XXX Workaround for negative integer power error if expr.exp.is_integer and expr.exp.is_negative: expr = expr.base ** expr.exp.evalf() return self._hprint_Pow(expr, rational=rational, sqrt='numpy.sqrt') def _print_Min(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args)) def _print_Max(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args)) def _print_arg(self, expr): return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0])) def _print_im(self, expr): return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0])) def _print_Mod(self, expr): return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join( map(lambda arg: self._print(arg), expr.args))) def _print_re(self, expr): return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0])) def _print_sinc(self, expr): return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi)) def _print_MatrixBase(self, expr): func = self.known_functions.get(expr.__class__.__name__, None) if func is None: func = self._module_format('numpy.array') return "%s(%s)" % (func, self._print(expr.tolist())) def _print_Identity(self, expr): shape = expr.shape if all([dim.is_Integer for dim in shape]): return "%s(%s)" % (self._module_format('numpy.eye'), self._print(expr.shape[0])) else: raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices") def _print_BlockMatrix(self, expr): return '{0}({1})'.format(self._module_format('numpy.block'), self._print(expr.args[0].tolist())) def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list)) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices if not contraction_indices: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in base.subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)] return "%s(%s)" % ( self._module_format('numpy.einsum'), ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError return "%s(%s, 0, axis1=%s, axis2=%s)" % ( self._module_format("numpy.diagonal"), self._print(expr.expr), diagonal_indices[0][0], diagonal_indices[0][1], ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("numpy.transpose"), self._print(expr.expr), self._print(expr.permutation.array_form), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('numpy.add', expr.args) _print_lowergamma = CodePrinter._print_not_supported _print_uppergamma = CodePrinter._print_not_supported _print_fresnelc = CodePrinter._print_not_supported _print_fresnels = CodePrinter._print_not_supported for k in NumPyPrinter._kf: setattr(NumPyPrinter, '_print_%s' % k, _print_known_func) for k in NumPyPrinter._kc: setattr(NumPyPrinter, '_print_%s' % k, _print_known_const) _known_functions_scipy_special = { 'erf': 'erf', 'erfc': 'erfc', 'besselj': 'jv', 'bessely': 'yv', 'besseli': 'iv', 'besselk': 'kv', 'factorial': 'factorial', 'gamma': 'gamma', 'loggamma': 'gammaln', 'digamma': 'psi', 'RisingFactorial': 'poch', 'jacobi': 'eval_jacobi', 'gegenbauer': 'eval_gegenbauer', 'chebyshevt': 'eval_chebyt', 'chebyshevu': 'eval_chebyu', 'legendre': 'eval_legendre', 'hermite': 'eval_hermite', 'laguerre': 'eval_laguerre', 'assoc_laguerre': 'eval_genlaguerre', 'beta': 'beta' } _known_constants_scipy_constants = { 'GoldenRatio': 'golden_ratio', 'Pi': 'pi', 'E': 'e', 'Exp1': 'e' } class SciPyPrinter(NumPyPrinter): language = "Python with SciPy" _kf = dict(chain( NumPyPrinter._kf.items(), [(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()] )) _kc = {k: 'scipy.constants.' + v for k, v in _known_constants_scipy_constants.items()} def _print_SparseMatrix(self, expr): i, j, data = [], [], [] for (r, c), v in expr._smat.items(): i.append(r) j.append(c) data.append(v) return "{name}({data}, ({i}, {j}), shape={shape})".format( name=self._module_format('scipy.sparse.coo_matrix'), data=data, i=i, j=j, shape=expr.shape ) _print_ImmutableSparseMatrix = _print_SparseMatrix # SciPy's lpmv has a different order of arguments from assoc_legendre def _print_assoc_legendre(self, expr): return "{0}({2}, {1}, {3})".format( self._module_format('scipy.special.lpmv'), self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) def _print_lowergamma(self, expr): return "{0}({2})*{1}({2}, {3})".format( self._module_format('scipy.special.gamma'), self._module_format('scipy.special.gammainc'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_uppergamma(self, expr): return "{0}({2})*{1}({2}, {3})".format( self._module_format('scipy.special.gamma'), self._module_format('scipy.special.gammaincc'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_fresnels(self, expr): return "{0}({1})[0]".format( self._module_format("scipy.special.fresnel"), self._print(expr.args[0])) def _print_fresnelc(self, expr): return "{0}({1})[1]".format( self._module_format("scipy.special.fresnel"), self._print(expr.args[0])) for k in SciPyPrinter._kf: setattr(SciPyPrinter, '_print_%s' % k, _print_known_func) for k in SciPyPrinter._kc: setattr(SciPyPrinter, '_print_%s' % k, _print_known_const) class SymPyPrinter(PythonCodePrinter): language = "Python with SymPy" _kf = {k: 'sympy.' + v for k, v in chain( _known_functions.items(), _known_functions_math.items() )} def _print_Function(self, expr): mod = expr.func.__module__ or '' return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), ', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
58cb0335c147b7f09cc1d9acb28cbdc468ae9eabf78d012e5fb5decadac89da0
""" A Printer for generating readable representation of most sympy classes. """ from __future__ import print_function, division from sympy.core import S, Rational, Pow, Basic, Mul from sympy.core.mul import _keep_coeff from sympy.core.compatibility import string_types from .printer import Printer from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp import prec_to_dps, to_str as mlib_to_str from sympy.utilities import default_sort_key class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, } _relationals = dict() def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, string_types): return expr elif isinstance(expr, Basic): return repr(expr) else: return str(expr) def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % (self._print(expr.func), self._print(expr.arg)) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_FiniteSet(self, s): s = sorted(s, key=default_sort_key) if len(s) > 10: printset = s[:3] + ['...'] + s[-3:] else: printset = s return '{' + ', '.join(self._print(el) for el in printset) + '}' def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GeometryEntity(self, expr): # GeometryEntity is special -- it's base is tuple return str(expr) def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): args, expr = obj.args if len(args) == 1: return "Lambda(%s, %s)" % (self._print(args.args[0]), self._print(expr)) else: arg_string = ", ".join(self._print(arg) for arg in args) return "Lambda((%s), %s)" % (arg_string, self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_MatrixBase(self, expr): return expr._format_str(self) _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice) + ', ' + strslice(expr.colslice) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() if c.is_number and c < 0: expr = _keep_coeff(-c, m) sign = "-" else: sign = "" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_ElementwiseApplyFunction(self, expr): return "{0}({1}...)".format( expr.function, self._print(expr.expr), ) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Order(self, expr): if not expr.variables or all(p is S.Zero for p in expr.point): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle if Permutation.print_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % exp) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_UniversalSet(self, p): return 'UniversalSet' def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): """Printing helper function for ``Pow`` Parameters ========== rational : bool, optional If ``True``, it will not attempt printing ``sqrt(x)`` or ``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)`` instead. See examples for additional details Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.str import StrPrinter >>> from sympy.abc import x How ``rational`` keyword works with ``sqrt``: >>> printer = StrPrinter() >>> printer._print_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._print_Pow(sqrt(x), rational=False) 'sqrt(x)' >>> printer._print_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._print_Pow(1/sqrt(x), rational=False) '1/sqrt(x)' Notes ===== ``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy, so there is no need of defining a separate printer for ``sqrt``. Instead, it should be handled here as well. """ PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_ImmutableDenseNDimArray(self, expr): return str(expr) def _print_ImmutableSparseNDimArray(self, expr): return str(expr) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Rationals(self, expr): return 'Rationals' def _print_Reals(self, expr): return 'Reals' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_SparseMatrix(self, expr): from sympy.matrices import Matrix return self._print(Matrix(expr)) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_OneMatrix(self, expr): return "1" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): from sympy.core.sympify import SympifyError try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_BaseScalarField(self, field): return field._coord_sys._names[field._index] def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys._names[field._index] def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys._names[field._index] else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
d7b00d95571c50d1f70a385f357247435b3890363aaa8221eb8556d31437975b
from __future__ import print_function, division def pprint_nodes(subtrees): """ Prettyprints systems of nodes. Examples ======== >>> from sympy.printing.tree import pprint_nodes >>> print(pprint_nodes(["a", "b1\\nb2", "c"])) +-a +-b1 | b2 +-c """ def indent(s, type=1): x = s.split("\n") r = "+-%s\n" % x[0] for a in x[1:]: if a == "": continue if type == 1: r += "| %s\n" % a else: r += " %s\n" % a return r if not subtrees: return "" f = "" for a in subtrees[:-1]: f += indent(a) f += indent(subtrees[-1], 2) return f def print_node(node, assumptions=True): """ Returns information about the "node". This includes class name, string representation and assumptions. Parameters ========== assumptions : bool, optional See the ``assumptions`` keyword in ``tree`` """ s = "%s: %s\n" % (node.__class__.__name__, str(node)) if assumptions: d = node._assumptions else: d = None if d: for a in sorted(d): v = d[a] if v is None: continue s += "%s: %s\n" % (a, v) return s def tree(node, assumptions=True): """ Returns a tree representation of "node" as a string. It uses print_node() together with pprint_nodes() on node.args recursively. Parameters ========== asssumptions : bool, optional The flag to decide whether to print out all the assumption data (such as ``is_integer`, ``is_real``) associated with the expression or not. Enabling the flag makes the result verbose, and the printed result may not be determinisitic because of the randomness used in backtracing the assumptions. See Also ======== print_tree """ subtrees = [] for arg in node.args: subtrees.append(tree(arg, assumptions=assumptions)) s = print_node(node, assumptions=assumptions) + pprint_nodes(subtrees) return s def print_tree(node, assumptions=True): """ Prints a tree representation of "node". Parameters ========== asssumptions : bool, optional The flag to decide whether to print out all the assumption data (such as ``is_integer`, ``is_real``) associated with the expression or not. Enabling the flag makes the result verbose, and the printed result may not be determinisitic because of the randomness used in backtracing the assumptions. Examples ======== >>> from sympy.printing import print_tree >>> from sympy import Symbol >>> x = Symbol('x', odd=True) >>> y = Symbol('y', even=True) Printing with full assumptions information: >>> print_tree(y**x) Pow: y**x +-Symbol: y | algebraic: True | commutative: True | complex: True | even: True | extended_real: True | finite: True | hermitian: True | imaginary: False | infinite: False | integer: True | irrational: False | noninteger: False | odd: False | rational: True | real: True | transcendental: False +-Symbol: x algebraic: True commutative: True complex: True even: False extended_nonzero: True extended_real: True finite: True hermitian: True imaginary: False infinite: False integer: True irrational: False noninteger: False nonzero: True odd: True rational: True real: True transcendental: False zero: False Hiding the assumptions: >>> print_tree(y**x, assumptions=False) Pow: y**x +-Symbol: y +-Symbol: x See Also ======== tree """ print(tree(node, assumptions=assumptions))
51a0cd1a6f11f11af01da34094d45cb3b1f4a2fa5d7986b609a80997f6e2725e
"""Printing subsystem""" __all__ = [] from .pretty import pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode __all__ += ['pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode'] from .latex import latex, print_latex, multiline_latex __all__ += ['latex', 'print_latex', 'multiline_latex'] from .mathml import mathml, print_mathml __all__ += ['mathml', 'print_mathml'] from .python import python, print_python __all__ += ['python', 'print_python'] from .pycode import pycode __all__ += ['pycode'] from .ccode import ccode, print_ccode __all__ += ['ccode', 'print_ccode'] from .glsl import glsl_code, print_glsl __all__ += ['glsl_code', 'print_glsl'] from .cxxcode import cxxcode __all__ += ['cxxcode'] from .fcode import fcode, print_fcode __all__ += ['fcode', 'print_fcode'] from .rcode import rcode, print_rcode __all__ += ['rcode', 'print_rcode'] from .jscode import jscode, print_jscode __all__ += ['jscode', 'print_jscode'] from .julia import julia_code __all__ += ['julia_code'] from .mathematica import mathematica_code __all__ += ['mathematica_code'] from .octave import octave_code __all__ += ['octave_code'] from .rust import rust_code __all__ += ['rust_code'] from .gtk import print_gtk __all__ += ['print_gtk'] from .preview import preview __all__ += ['preview'] from .repr import srepr __all__ += ['srepr'] from .tree import print_tree __all__ += ['print_tree'] from .str import StrPrinter, sstr, sstrrepr __all__ += ['StrPrinter', 'sstr', 'sstrrepr'] from .tableform import TableForm __all__ += ['TableForm'] from .dot import dotprint __all__ += ['dotprint'] from .maple import maple_code, print_maple_code __all__ += ['maple_code', 'print_maple_code']
13b69c16d5ac563f3a2a2e04513ebaeb33cdf97c470f0f7e8535c60b8af4692a
""" A few practical conventions common to all printers. """ from __future__ import print_function, division import re from sympy.core.compatibility import Iterable from sympy import Derivative _name_with_digits_p = re.compile(r'^([a-zA-Z]+)([0-9]+)$') def split_super_sub(text): """Split a symbol name into a name, superscripts and subscripts The first part of the symbol name is considered to be its actual 'name', followed by super- and subscripts. Each superscript is preceded with a "^" character or by "__". Each subscript is preceded by a "_" character. The three return values are the actual name, a list with superscripts and a list with subscripts. Examples ======== >>> from sympy.printing.conventions import split_super_sub >>> split_super_sub('a_x^1') ('a', ['1'], ['x']) >>> split_super_sub('var_sub1__sup_sub2') ('var', ['sup'], ['sub1', 'sub2']) """ if not text: return text, [], [] pos = 0 name = None supers = [] subs = [] while pos < len(text): start = pos + 1 if text[pos:pos + 2] == "__": start += 1 pos_hat = text.find("^", start) if pos_hat < 0: pos_hat = len(text) pos_usc = text.find("_", start) if pos_usc < 0: pos_usc = len(text) pos_next = min(pos_hat, pos_usc) part = text[pos:pos_next] pos = pos_next if name is None: name = part elif part.startswith("^"): supers.append(part[1:]) elif part.startswith("__"): supers.append(part[2:]) elif part.startswith("_"): subs.append(part[1:]) else: raise RuntimeError("This should never happen.") # make a little exception when a name ends with digits, i.e. treat them # as a subscript too. m = _name_with_digits_p.match(name) if m: name, sub = m.groups() subs.insert(0, sub) return name, supers, subs def requires_partial(expr): """Return whether a partial derivative symbol is required for printing This requires checking how many free variables there are, filtering out the ones that are integers. Some expressions don't have free variables. In that case, check its variable list explicitly to get the context of the expression. """ if isinstance(expr, Derivative): return requires_partial(expr.expr) if not isinstance(expr.free_symbols, Iterable): return len(set(expr.variables)) > 1 return sum(not s.is_integer for s in expr.free_symbols) > 1
ce3a26e317f36a706212ea99ddcbfedb29089a0d069a813ea0f40d033e776a06
""" A Printer which converts an expression into its LaTeX equivalent. """ from __future__ import print_function, division import itertools from sympy.core import S, Add, Symbol, Mod from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true # sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps from sympy.core.compatibility import default_sort_key, range from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at # https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which sympy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp', ]) # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[{ ]*[-+0-9]'), # match ) class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "gothic_re_im": False, "decimal_separator": "period", } def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): return r"\left({}\right)".format(self._print(item)) else: return self._print(item) def parenthesize_super(self, s): """ Parenthesize s if there is a superscript in s""" if "^" in s: return r"\left({}\right)".format(s) return s def embed_super(self, s): """ Embed s in {} if there is a superscript in s""" if "^" in s: return "{{{}}}".format(s) return s def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy import Integral, Product, Sum if expr.is_Mul: if not first and _coeff_isneg(expr): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any([expr.has(x) for x in (Mod,)]): return True if (not last and any([expr.has(x) for x in (Integral, Product, Sum)])): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any([expr.has(x) for x in (Mod,)]): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): ls = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + \ r"\left(%s\right)" % ", ".join(ls) def _print_bool(self, e): return r"\text{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\text{%s}" % e def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif _coeff_isneg(term): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex _print_Permutation = _print_Cycle def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] if self._settings['decimal_separator'] == 'comma': mant = mant.replace('.','{,}') return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: if self._settings['decimal_separator'] == 'comma': str_real = str_real.replace('.','{,}') return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Laplacian(self, expr): func = expr._expr return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.core.power import Pow from sympy.physics.units import Quantity include_parens = False if _coeff_isneg(expr): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" from sympy.simplify import fraction numer, denom = fraction(expr, exact=True) separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: _tex = last_term_tex = "" if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(term_tex): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] and ldenom <= 2 and \ "^" not in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \ and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base = self.parenthesize(expr.base, PRECEDENCE['Pow']) p, q = expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and \ expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" return self._helper_print_standard_power(expr, tex) def _helper_print_standard_power(self, expr, template): exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised # to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base elif (isinstance(expr.base, Derivative) and base.startswith(r'\left(') and re.match(r'\\left\(\\d?d?dot', base) and base.endswith(r'\right)')): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return template % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key=lambda x: x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + LatexPrinter().doprint(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr.expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self.parenthesize_super(self._print(x)), self._print(num)) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: name = r'%s^{%s}' % (self._hprint_Function(func), exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) def _print_ElementwiseApplyFunction(self, expr): return r"{%s}_{\circ}\left({%s}\right)" % ( self._print(expr.function), self._print(expr.expr), ) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy import Equivalent, Implies if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg \left(%s\right)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"\left(%s\right)^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, self._print(exp)) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if not vec: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (self._print(exp), tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (self._print(exp), tex) return r"\zeta%s" % tex def _print_stieltjes(self, expr, exp=None): if len(expr.args) == 2: tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) else: tex = r"_{%s}" % self._print(expr.args[0]) if exp is not None: return r"\gamma%s^{%s}" % (tex, self._print(exp)) return r"\gamma%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (self._print(exp), tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def __print_mathieu_functions(self, character, args, prime=False, exp=None): a, q, z = map(self._print, args) sup = r"^{\prime}" if prime else "" exp = "" if not exp else "^{%s}" % self._print(exp) return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) def _print_mathieuc(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, exp=exp) def _print_mathieus(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, exp=exp) def _print_mathieucprime(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) def _print_mathieusprime(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif expr.variables: s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] result = self._deal_with_super_sub(expr.name) if \ '\\' not in expr.name else expr.name if style == 'bold': result = r"\mathbf{{{}}}".format(result) return result _print_RandomSymbol = _print_Symbol def _deal_with_super_sub(self, string): if '{' in string: return string name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # glue all items together: if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) _print_ImmutableMatrix = _print_ImmutableDenseMatrix \ = _print_Matrix \ = _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def latexslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(self._print, x)) return (self._print(expr.parent) + r'\left[' + latexslice(expr.rowslice) + ', ' + latexslice(expr.colslice) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{T}" % self._print(mat) else: return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True) def _print_Trace(self, expr): mat = expr.arg return r"\operatorname{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{\dagger}" % self._print(mat) else: return r"%s^{\dagger}" % self._print(mat) def _print_MatMul(self, expr): from sympy import MatMul, Mul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s\bmod{%s}\right)^{%s}' % \ (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1]), self._print(exp)) return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1])) def _print_HadamardProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \circ '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_HadamardPower(self, expr): if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: template = r"%s^{\circ \left({%s}\right)}" else: template = r"%s^{\circ {%s}}" return self._helper_print_standard_power(expr, template) def _print_KroneckerProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \otimes '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return "\\left(%s\\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings[ 'mat_symbol_style']) def _print_ZeroMatrix(self, Z): return r"\mathbb{0}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" def _print_OneMatrix(self, O): return r"\mathbb{1}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" def _print_Identity(self, I): return r"\mathbb{I}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append( r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append( block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + \ level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and \ last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) def _print_UniversalSet(self, expr): return r"\mathbb{U}" def _print_frac(self, expr, exp=None): if exp is None: return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) else: return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( self._print(expr.args[0]), self._print(exp)) def _print_tuple(self, expr): if self._settings['decimal_separator'] =='comma': return r"\left( %s\right)" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] =='period': return r"\left( %s\right)" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): if self._settings['decimal_separator'] == 'comma': return r"\left[ %s\right]" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] == 'period': return r"\left[ %s\right]" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) return tex def _print_Heaviside(self, expr, exp=None): tex = r"\theta\left(%s\right)" % self._print(expr.args[0]) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp is not None: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return '\\text{Domain: }' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' + self._print(d.set)) elif hasattr(d, 'symbols'): return '\\text{Domain on }' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) if self._settings['decimal_separator'] == 'comma': items = "; ".join(map(self._print, items)) elif self._settings['decimal_separator'] == 'period': items = ", ".join(map(self._print, items)) else: raise ValueError('Unknown Decimal Separator') return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): dots = r'\ldots' if s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return (r"\left\{" + r", ".join(self._print(el) for el in printset) + r"\right\}") def __print_number_polynomial(self, expr, letter, exp=None): if len(expr.args) == 2: if exp is not None: return r"%s_{%s}^{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(exp), self._print(expr.args[1])) return r"%s_{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(expr.args[1])) tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_bernoulli(self, expr, exp=None): return self.__print_number_polynomial(expr, "B", exp) def _print_bell(self, expr, exp=None): if len(expr.args) == 3: tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), self._print(expr.args[1])) tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for el in expr.args[2]) if exp is not None: tex = r"%s^{%s}%s" % (tex1, self._print(exp), tex2) else: tex = tex1 + tex2 return tex return self.__print_number_polynomial(expr, "B", exp) def _print_fibonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "F", exp) def _print_lucas(self, expr, exp=None): tex = r"L_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_tribonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "T", exp) def _print_SeqFormula(self, s): if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( self._print(s.formula), self._print(s.variables[0]), self._print(s.start), self._print(s.stop) ) if s.start is S.NegativeInfinity: stop = s.stop printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(r'\ldots') else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cup ".join(args_str) def _print_Complement(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \setminus ".join(args_str) def _print_Intersection(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cap ".join(args_str) def _print_SymmetricDifference(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \triangle ".join(args_str) def _print_ProductSet(self, p): prec = precedence_traditional(p) if len(p.sets) >= 1 and not has_variety(p.sets): return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) return r" \times ".join( self.parenthesize(set, prec) for set in p.sets) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): sets = s.args[1:] varsets = [r"%s \in %s" % (self._print(var), self._print(setv)) for var, setv in zip(s.lamda.variables, sets)] return r"\left\{%s\; |\; %s\right\}" % ( self._print(s.lamda.expr), ', '.join(varsets)) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s \mid %s \right\}" % \ (vars_print, self._print(s.condition.as_expr())) return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition)) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; |\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + self._print(r' + \ldots') def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_UnifiedTransform(self, expr, s, inverse=False): return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_MellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M') def _print_InverseMellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M', True) def _print_LaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L') def _print_InverseLaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L', True) def _print_FourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F') def _print_InverseFourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F', True) def _print_SineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN') def _print_InverseSineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN', True) def _print_CosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS') def _print_InverseCosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS', True) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_LambertW(self, expr): if len(expr.args) == 1: return r"W\left(%s\right)" % self._print(expr.args[0]) return r"W_{%s}\left(%s\right)" % \ (self._print(expr.args[1]), self._print(expr.args[0])) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ {} \right]".format(",".join( '{' + self._print(x) + '}' for x in m)) def _print_SubModule(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for x in m.gens)) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for [x] in m._module.gens)) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{{{}}} + {{{}}}".format(self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{{{}}} + {{{}}}".format(self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) def _print_BaseVectorField(self, field): string = field._coord_sys._names[field._index] return r'\partial_{{{}}}'.format(self._print(Symbol(string))) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) else: string = self._print(field) return r'\operatorname{{d}}\left({}\right)'.format(string) def _print_Tr(self, p): # TODO: Handle indices contents = self._print(p.args[0]) return r'\operatorname{{tr}}\left({}\right)'.format(contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (self._print(exp), tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (self._print(exp), tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True): if s.lower().endswith(key) and len(s) > len(key): return modifier_dict[key](translate(s[:-len(key)])) return s def latex(expr, fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style="abbreviated", itex=False, ln_notation=False, long_frac_ratio=None, mat_delim="[", mat_str=None, mode="plain", mul_symbol=None, order=None, symbol_names=None, root_notation=True, mat_symbol_style="plain", imaginary_unit="i", gothic_re_im=False, decimal_separator="period" ): r"""Convert the given expression to LaTeX string representation. Parameters ========== fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so "ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. gothic_re_im : boolean, optional If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. decimal_separator : string, optional Specifies what separator to use to separate the whole and fractional parts of a floating point number as in `2.5` for the default, ``period`` or `2{,}5` when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types list, tuple, and dictionary. >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ """ if symbol_names is None: symbol_names = {} settings = { 'fold_frac_powers': fold_frac_powers, 'fold_func_brackets': fold_func_brackets, 'fold_short_frac': fold_short_frac, 'inv_trig_style': inv_trig_style, 'itex': itex, 'ln_notation': ln_notation, 'long_frac_ratio': long_frac_ratio, 'mat_delim': mat_delim, 'mat_str': mat_str, 'mode': mode, 'mul_symbol': mul_symbol, 'order': order, 'symbol_names': symbol_names, 'root_notation': root_notation, 'mat_symbol_style': mat_symbol_style, 'imaginary_unit': imaginary_unit, 'gothic_re_im': gothic_re_im, 'decimal_separator': decimal_separator, } return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings)) def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): r""" This function generates a LaTeX equation with a multiline right-hand side in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. Parameters ========== lhs : Expr Left-hand side of equation rhs : Expr Right-hand side of equation terms_per_line : integer, optional Number of terms per line to print. Default is 1. environment : "string", optional Which LaTeX wnvironment to use for the output. Options are "align*" (default), "eqnarray", and "IEEEeqnarray". use_dots : boolean, optional If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. Examples ======== >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I >>> x, y, alpha = symbols('x y alpha') >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) >>> print(multiline_latex(x, expr)) \begin{align*} x = & e^{i \alpha} \\ & + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using at most two terms per line: >>> print(multiline_latex(x, expr, 2)) \begin{align*} x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using ``eqnarray`` and dots: >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) \begin{eqnarray} x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{eqnarray} Using ``IEEEeqnarray``: >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) \begin{IEEEeqnarray}{rCl} x & = & e^{i \alpha} \nonumber\\ & & + \sin{\left(\alpha y \right)} \nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{IEEEeqnarray} Notes ===== All optional parameters from ``latex`` can also be used. """ # Based on code from https://github.com/sympy/sympy/issues/3001 l = LatexPrinter(**settings) if environment == "eqnarray": result = r'\begin{eqnarray}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{eqnarray}' doubleet = True elif environment == "IEEEeqnarray": result = r'\begin{IEEEeqnarray}{rCl}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{IEEEeqnarray}' doubleet = True elif environment == "align*": result = r'\begin{align*}' + '\n' first_term = '= &' nonumber = '' end_term = '\n\\end{align*}' doubleet = False else: raise ValueError("Unknown environment: {}".format(environment)) dots = '' if use_dots: dots=r'\dots' terms = rhs.as_ordered_terms() n_terms = len(terms) term_count = 1 for i in range(n_terms): term = terms[i] term_start = '' term_end = '' sign = '+' if term_count > terms_per_line: if doubleet: term_start = '& & ' else: term_start = '& ' term_count = 1 if term_count == terms_per_line: # End of line if i < n_terms-1: # There are terms remaining term_end = dots + nonumber + r'\\' + '\n' else: term_end = '' if term.as_ordered_factors()[0] == -1: term = -1*term sign = r'-' if i == 0: # beginning if sign == '+': sign = '' result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), first_term, sign, l.doprint(term), term_end) else: result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, l.doprint(term), term_end) term_count += 1 result += end_term return result
4e03a52e6008589af4845af72e11208051a7f2460cc4793849466c3d0730f4d9
""" Mathematica code printer """ from __future__ import print_function, division from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence # Used in MCodePrinter._print_Function(self) known_functions = { "exp": [(lambda x: True, "Exp")], "log": [(lambda x: True, "Log")], "sin": [(lambda x: True, "Sin")], "cos": [(lambda x: True, "Cos")], "tan": [(lambda x: True, "Tan")], "cot": [(lambda x: True, "Cot")], "sec": [(lambda x: True, "Sec")], "csc": [(lambda x: True, "Csc")], "asin": [(lambda x: True, "ArcSin")], "acos": [(lambda x: True, "ArcCos")], "atan": [(lambda x: True, "ArcTan")], "acot": [(lambda x: True, "ArcCot")], "asec": [(lambda x: True, "ArcSec")], "acsc": [(lambda x: True, "ArcCsc")], "atan2": [(lambda *x: True, "ArcTan")], "sinh": [(lambda x: True, "Sinh")], "cosh": [(lambda x: True, "Cosh")], "tanh": [(lambda x: True, "Tanh")], "coth": [(lambda x: True, "Coth")], "sech": [(lambda x: True, "Sech")], "csch": [(lambda x: True, "Csch")], "asinh": [(lambda x: True, "ArcSinh")], "acosh": [(lambda x: True, "ArcCosh")], "atanh": [(lambda x: True, "ArcTanh")], "acoth": [(lambda x: True, "ArcCoth")], "asech": [(lambda x: True, "ArcSech")], "acsch": [(lambda x: True, "ArcCsch")], "conjugate": [(lambda x: True, "Conjugate")], "Max": [(lambda *x: True, "Max")], "Min": [(lambda *x: True, "Min")], "erf": [(lambda x: True, "Erf")], "erf2": [(lambda *x: True, "Erf")], "erfc": [(lambda x: True, "Erfc")], "erfi": [(lambda x: True, "Erfi")], "erfinv": [(lambda x: True, "InverseErf")], "erfcinv": [(lambda x: True, "InverseErfc")], "erf2inv": [(lambda *x: True, "InverseErf")], "expint": [(lambda *x: True, "ExpIntegralE")], "Ei": [(lambda x: True, "ExpIntegralEi")], "fresnelc": [(lambda x: True, "FresnelC")], "fresnels": [(lambda x: True, "FresnelS")], "gamma": [(lambda x: True, "Gamma")], "uppergamma": [(lambda *x: True, "Gamma")], "polygamma": [(lambda *x: True, "PolyGamma")], "loggamma": [(lambda x: True, "LogGamma")], "beta": [(lambda *x: True, "Beta")], "Ci": [(lambda x: True, "CosIntegral")], "Si": [(lambda x: True, "SinIntegral")], "Chi": [(lambda x: True, "CoshIntegral")], "Shi": [(lambda x: True, "SinhIntegral")], "li": [(lambda x: True, "LogIntegral")], "factorial": [(lambda x: True, "Factorial")], "factorial2": [(lambda x: True, "Factorial2")], "subfactorial": [(lambda x: True, "Subfactorial")], "catalan": [(lambda x: True, "CatalanNumber")], "harmonic": [(lambda *x: True, "HarmonicNumber")], "RisingFactorial": [(lambda *x: True, "Pochhammer")], "FallingFactorial": [(lambda *x: True, "FactorialPower")], "laguerre": [(lambda *x: True, "LaguerreL")], "assoc_laguerre": [(lambda *x: True, "LaguerreL")], "hermite": [(lambda *x: True, "HermiteH")], "jacobi": [(lambda *x: True, "JacobiP")], "gegenbauer": [(lambda *x: True, "GegenbauerC")], "chebyshevt": [(lambda *x: True, "ChebyshevT")], "chebyshevu": [(lambda *x: True, "ChebyshevU")], "legendre": [(lambda *x: True, "LegendreP")], "assoc_legendre": [(lambda *x: True, "LegendreP")], "mathieuc": [(lambda *x: True, "MathieuC")], "mathieus": [(lambda *x: True, "MathieuS")], "mathieucprime": [(lambda *x: True, "MathieuCPrime")], "mathieusprime": [(lambda *x: True, "MathieuSPrime")], "stieltjes": [(lambda x: True, "StieltjesGamma")], "elliptic_e": [(lambda *x: True, "EllipticE")], "elliptic_f": [(lambda *x: True, "EllipticE")], "elliptic_k": [(lambda x: True, "EllipticK")], "elliptic_pi": [(lambda *x: True, "EllipticPi")], "zeta": [(lambda *x: True, "Zeta")], "besseli": [(lambda *x: True, "BesselI")], "besselj": [(lambda *x: True, "BesselJ")], "besselk": [(lambda *x: True, "BesselK")], "bessely": [(lambda *x: True, "BesselY")], "hankel1": [(lambda *x: True, "HankelH1")], "hankel2": [(lambda *x: True, "HankelH2")], "airyai": [(lambda x: True, "AiryAi")], "airybi": [(lambda x: True, "AiryBi")], "airyaiprime": [(lambda x: True, "AiryAiPrime")], "airybiprime": [(lambda x: True, "AiryBiPrime")], "polylog": [(lambda *x: True, "PolyLog")], "lerchphi": [(lambda *x: True, "LerchPhi")], "gcd": [(lambda *x: True, "GCD")], "lcm": [(lambda *x: True, "LCM")], "jn": [(lambda *x: True, "SphericalBesselJ")], "yn": [(lambda *x: True, "SphericalBesselY")], "hyper": [(lambda *x: True, "HypergeometricPFQ")], "meijerg": [(lambda *x: True, "MeijerG")], "appellf1": [(lambda *x: True, "AppellF1")], "DiracDelta": [(lambda x: True, "DiracDelta")], "Heaviside": [(lambda x: True, "HeavisideTheta")], "KroneckerDelta": [(lambda *x: True, "KroneckerDelta")], } class MCodePrinter(CodePrinter): """A printer to convert python expressions to strings of the Wolfram's Mathematica code """ printmethod = "_mcode" language = "Wolfram Language" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, } _number_symbols = set() _not_supported = set() def __init__(self, settings={}): """Register function mappings supplied by user""" CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}).copy() for k, v in userfuncs.items(): if not isinstance(v, list): userfuncs[k] = [(lambda *x: True, v)] self.known_functions.update(userfuncs) def _format_code(self, lines): return lines def _print_Pow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Mul(self, expr): PREC = precedence(expr) c, nc = expr.args_cnc() res = super(MCodePrinter, self)._print_Mul(expr.func(*c)) if nc: res += '*' res += '**'.join(self.parenthesize(a, PREC) for a in nc) return res def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{0} {1} {2}".format(lhs_code, op, rhs_code) # Primitive numbers def _print_Zero(self, expr): return '0' def _print_One(self, expr): return '1' def _print_NegativeOne(self, expr): return '-1' def _print_Half(self, expr): return '1/2' def _print_ImaginaryUnit(self, expr): return 'I' # Infinity and invalid numbers def _print_Infinity(self, expr): return 'Infinity' def _print_NegativeInfinity(self, expr): return '-Infinity' def _print_ComplexInfinity(self, expr): return 'ComplexInfinity' def _print_NaN(self, expr): return 'Indeterminate' # Mathematical constants def _print_Exp1(self, expr): return 'E' def _print_Pi(self, expr): return 'Pi' def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): expanded = expr.expand(func=True) PREC = precedence(expr) return self.parenthesize(expanded, PREC) def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Catalan(self, expr): return 'Catalan' def _print_list(self, expr): return '{' + ', '.join(self.doprint(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_ImmutableDenseMatrix(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseMatrix(self, expr): from sympy.core.compatibility import default_sort_key def print_rule(pos, val): return '{} -> {}'.format( self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val)) def print_data(): items = sorted(expr._smat.items(), key=default_sort_key) return '{' + \ ', '.join(print_rule(k, v) for k, v in items) + \ '}' def print_dims(): return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_ImmutableDenseNDimArray(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseNDimArray(self, expr): def print_string_list(string_list): return '{' + ', '.join(a for a in string_list) + '}' def to_mathematica_index(*args): """Helper function to change Python style indexing to Pathematica indexing. Python indexing (0, 1 ... n-1) -> Mathematica indexing (1, 2 ... n) """ return tuple(i + 1 for i in args) def print_rule(pos, val): """Helper function to print a rule of Mathematica""" return '{} -> {}'.format(self.doprint(pos), self.doprint(val)) def print_data(): """Helper function to print data part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html ``data`` must be formatted with rule. """ return print_string_list( [print_rule( to_mathematica_index(*(expr._get_tuple_index(key))), value) for key, value in sorted(expr._sparse_array.items())] ) def print_dims(): """Helper function to print dimensions part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html """ return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_mfunc = self.known_functions[expr.func.__name__] for cond, mfunc in cond_mfunc: if cond(*expr.args): return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) elif (expr.func.__name__ in self._rewriteable_functions and self._rewriteable_functions[expr.func.__name__] in self.known_functions): # Simple rewrite to supported function possible return self._print(expr.rewrite(self._rewriteable_functions[expr.func.__name__])) return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") _print_MinMaxBase = _print_Function def _print_LambertW(self, expr): if len(expr.args) == 1: return "ProductLog[{}]".format(self._print(expr.args[0])) return "ProductLog[{}, {}]".format( self._print(expr.args[1]), self._print(expr.args[0])) def _print_Integral(self, expr): if len(expr.variables) == 1 and not expr.limits[0][1:]: args = [expr.args[0], expr.variables[0]] else: args = expr.args return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" def _print_Sum(self, expr): return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]" def _get_comment(self, text): return "(* {} *)".format(text) def mathematica_code(expr, **settings): r"""Converts an expr to a string of the Wolfram Mathematica code Examples ======== >>> from sympy import mathematica_code as mcode, symbols, sin >>> x = symbols('x') >>> mcode(sin(x).series(x).removeO()) '(1/120)*x^5 - 1/6*x^3 + x' """ return MCodePrinter(settings).doprint(expr)
69c7ec82eadff0238a09059a107781d66c0cd0e2d15261d78721960b9d3e4049
""" A MathML printer. """ from __future__ import print_function, division from sympy import sympify, S, Mul from sympy.core.compatibility import range, string_types, default_sort_key from sympy.core.function import _coeff_isneg from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence_traditional, PRECEDENCE from sympy.printing.pretty.pretty_symbology import greek_unicode from sympy.printing.printer import Printer import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps class MathMLPrinterBase(Printer): """Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter. """ _default_settings = { "order": None, "encoding": "utf-8", "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_symbol_style": "plain", "mul_symbol": None, "root_notation": True, "symbol_names": {}, "mul_symbol_mathml_numbers": '&#xB7;', } def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document, Text self.dom = Document() # Workaround to allow strings to remain unescaped # Based on # https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\ # please-dont-escape-my-strings/38041194 class RawText(Text): def writexml(self, writer, indent='', addindent='', newl=''): if self.data: writer.write(u'{}{}{}'.format(indent, self.data, newl)) def createRawTextNode(data): r = RawText() r.data = data r.ownerDocument = self.dom return r self.dom.createTextNode = createRawTextNode def doprint(self, expr): """ Prints the expression as MathML. """ mathML = Printer._print(self, expr) unistr = mathML.toxml() xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') res = xmlbstr.decode() return res def apply_patch(self): # Applying the patch of xml.dom.minidom bug # Date: 2011-11-18 # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\ # -toprettyxml-and-silly-whitespace/#best-solution # Issue: http://bugs.python.org/issue4147 # Patch: http://hg.python.org/cpython/rev/7262f8f276ff/ from xml.dom.minidom import Element, Text, Node, _write_data def writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) _write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: writer.write(">") if (len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE): self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml( writer, indent + addindent, addindent, newl) writer.write(indent) writer.write("</%s>%s" % (self.tagName, newl)) else: writer.write("/>%s" % (newl)) self._Element_writexml_old = Element.writexml Element.writexml = writexml def writexml(self, writer, indent="", addindent="", newl=""): _write_data(writer, "%s%s%s" % (indent, self.data, newl)) self._Text_writexml_old = Text.writexml Text.writexml = writexml def restore_patch(self): from xml.dom.minidom import Element, Text Element.writexml = self._Element_writexml_old Text.writexml = self._Text_writexml_old class MathMLContentPrinter(MathMLPrinterBase): """Prints an expression to the Content MathML markup language. References: https://www.w3.org/TR/MathML2/chapter4.html """ printmethod = "_mathml_content" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Max': 'max', 'Min': 'min', 'Abs': 'abs', 'And': 'and', 'Or': 'or', 'Xor': 'xor', 'Not': 'not', 'Implies': 'implies', 'Symbol': 'ci', 'MatrixSymbol': 'ci', 'RandomSymbol': 'ci', 'Integral': 'int', 'Sum': 'sum', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'csc': 'csc', 'sec': 'sec', 'sinh': 'sinh', 'cosh': 'cosh', 'tanh': 'tanh', 'coth': 'coth', 'csch': 'csch', 'sech': 'sech', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'atan2': 'arctan', 'acot': 'arccot', 'acoth': 'arccoth', 'asec': 'arcsec', 'asech': 'arcsech', 'acsc': 'arccsc', 'acsch': 'arccsch', 'log': 'ln', 'Equality': 'eq', 'Unequality': 'neq', 'GreaterThan': 'geq', 'LessThan': 'leq', 'StrictGreaterThan': 'gt', 'StrictLessThan': 'lt', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): if _coeff_isneg(expr): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: # XXX since the negative coefficient has been handled, I don't # think a coeff of 1 can remain return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if coeff != 1: x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) lastProcessed = self._print(args[0]) plusNodes = [] for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) # invert expression since this is now minused lastProcessed = x if arg == args[-1]: plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if arg == args[-1]: plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while plusNodes: x.appendChild(plusNodes.pop(0)) return x def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") root = self.dom.createElement('piecewise') for i, (e, c) in enumerate(expr.args): if i == len(expr.args) - 1 and c == True: piece = self.dom.createElement('otherwise') piece.appendChild(self._print(e)) else: piece = self.dom.createElement('piece') piece.appendChild(self._print(e)) piece.appendChild(self._print(c)) root.appendChild(piece) return root def _print_MatrixBase(self, m): x = self.dom.createElement('matrix') for i in range(m.rows): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i, j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) # numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) # denominator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self, e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self, e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_NaN(self, e): return self.dom.createElement('notanumber') def _print_EmptySet(self, e): return self.dom.createElement('emptyset') def _print_BooleanTrue(self, e): return self.dom.createElement('true') def _print_BooleanFalse(self, e): return self.dom.createElement('false') def _print_NegativeInfinity(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if len(limits[0]) == 3: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][2])) x.appendChild(up_elem) if len(limits[0]) == 2: up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Sum(self, e): # Printer can be shared because Sum and Integral have the # same internal representation. return self._print_Integral(e) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if not supers: if not subs: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if not subs: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal # of an integer if (self._settings['root_notation'] and e.exp.is_Rational and e.exp.p == 1): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlci = self.dom.createElement('ci') xmlci.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlci) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') diff_symbol = self.mathml_tag(e) if requires_partial(e.expr): diff_symbol = 'partialdiff' x.appendChild(self.dom.createElement(diff_symbol)) x_1 = self.dom.createElement('bvar') for sym, times in reversed(e.variable_count): x_1.appendChild(self._print(sym)) if times > 1: degree = self.dom.createElement('degree') degree.appendChild(self._print(sympify(times))) x_1.appendChild(degree) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Relational(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x.appendChild(self._print(e.lhs)) x.appendChild(self._print(e.rhs)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element _print_Implies = _print_AssocOp _print_Not = _print_AssocOp _print_Xor = _print_AssocOp class MathMLPresentationPrinter(MathMLPrinterBase): """Prints an expression to the Presentation MathML markup language. References: https://www.w3.org/TR/MathML2/chapter3.html """ printmethod = "_mathml_presentation" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Number': 'mn', 'Limit': '&#x2192;', 'Derivative': '&dd;', 'int': 'mn', 'Symbol': 'mi', 'Integral': '&int;', 'Sum': '&#x2211;', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'Equality': '=', 'Unequality': '&#x2260;', 'GreaterThan': '&#x2265;', 'LessThan': '&#x2264;', 'StrictGreaterThan': '>', 'StrictLessThan': '<', 'lerchphi': '&#x3A6;', 'zeta': '&#x3B6;', 'dirichlet_eta': '&#x3B7;', 'elliptic_k': '&#x39A;', 'lowergamma': '&#x3B3;', 'uppergamma': '&#x393;', 'gamma': '&#x393;', 'totient': '&#x3D5;', 'reduced_totient': '&#x3BB;', 'primenu': '&#x3BD;', 'primeomega': '&#x3A9;', 'fresnels': 'S', 'fresnelc': 'C', 'LambertW': 'W', 'Heaviside': '&#x398;', 'BooleanTrue': 'True', 'BooleanFalse': 'False', 'NoneType': 'None', 'mathieus': 'S', 'mathieuc': 'C', 'mathieusprime': 'S&#x2032;', 'mathieucprime': 'C&#x2032;', } def mul_symbol_selection(): if (self._settings["mul_symbol"] is None or self._settings["mul_symbol"] == 'None'): return '&InvisibleTimes;' elif self._settings["mul_symbol"] == 'times': return '&#xD7;' elif self._settings["mul_symbol"] == 'dot': return '&#xB7;' elif self._settings["mul_symbol"] == 'ldot': return '&#x2024;' elif not isinstance(self._settings["mul_symbol"], string_types): raise TypeError else: return self._settings["mul_symbol"] for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set if e.__class__.__name__ == "Mul": return mul_symbol_selection() n = e.__class__.__name__ return n.lower() def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(item)) return brac else: return self._print(item) def _print_Mul(self, expr): def multiply(expr, mrow): from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: frac = self.dom.createElement('mfrac') if self._settings["fold_short_frac"] and len(str(expr)) < 7: frac.setAttribute('bevelled', 'true') xnum = self._print(numer) xden = self._print(denom) frac.appendChild(xnum) frac.appendChild(xden) mrow.appendChild(frac) return mrow coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: mrow.appendChild(self._print(terms[0])) return mrow if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() if coeff != 1: x = self._print(coeff) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(x) mrow.appendChild(y) for term in terms: mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul'])) if not term == terms[-1]: y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(y) return mrow mrow = self.dom.createElement('mrow') if _coeff_isneg(expr): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) mrow.appendChild(x) mrow = multiply(-expr, mrow) else: mrow = multiply(expr, mrow) return mrow def _print_Add(self, expr, order=None): mrow = self.dom.createElement('mrow') args = self._as_ordered_terms(expr, order=order) mrow.appendChild(self._print(args[0])) for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) y = self._print(-arg) # invert expression since this is now minused else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('+')) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_MatrixBase(self, m): table = self.dom.createElement('mtable') for i in range(m.rows): x = self.dom.createElement('mtr') for j in range(m.cols): y = self.dom.createElement('mtd') y.appendChild(self._print(m[i, j])) x.appendChild(y) table.appendChild(x) if self._settings["mat_delim"] == '': return table brac = self.dom.createElement('mfenced') if self._settings["mat_delim"] == "[": brac.setAttribute('close', ']') brac.setAttribute('open', '[') brac.appendChild(table) return brac def _get_printed_Rational(self, e, folded=None): if e.p < 0: p = -e.p else: p = e.p x = self.dom.createElement('mfrac') if folded or self._settings["fold_short_frac"]: x.setAttribute('bevelled', 'true') x.appendChild(self._print(p)) x.appendChild(self._print(e.q)) if e.p < 0: mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(x) return mrow else: return x def _print_Rational(self, e): if e.q == 1: # don't divide return self._print(e.p) return self._get_printed_Rational(e, self._settings["fold_short_frac"]) def _print_Limit(self, e): mrow = self.dom.createElement('mrow') munder = self.dom.createElement('munder') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('lim')) x = self.dom.createElement('mrow') x_1 = self._print(e.args[1]) arrow = self.dom.createElement('mo') arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) x_2 = self._print(e.args[2]) x.appendChild(x_1) x.appendChild(arrow) x.appendChild(x_2) munder.appendChild(mi) munder.appendChild(x) mrow.appendChild(munder) mrow.appendChild(self._print(e.args[0])) return mrow def _print_ImaginaryUnit(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ImaginaryI;')) return x def _print_GoldenRatio(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3A6;')) return x def _print_Exp1(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ExponentialE;')) return x def _print_Pi(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&pi;')) return x def _print_Infinity(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x221E;')) return x def _print_NegativeInfinity(self, e): mrow = self.dom.createElement('mrow') y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('-')) x = self._print_Infinity(e) mrow.appendChild(y) mrow.appendChild(x) return mrow def _print_HBar(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210F;')) return x def _print_EulerGamma(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3B3;')) return x def _print_TribonacciConstant(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('TribonacciConstant')) return x def _print_Dagger(self, e): msup = self.dom.createElement('msup') msup.appendChild(self._print(e.args[0])) msup.appendChild(self.dom.createTextNode('&#x2020;')) return msup def _print_Contains(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.args[0])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2208;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) return mrow def _print_HilbertSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210B;')) return x def _print_ComplexSpace(self, e): msup = self.dom.createElement('msup') msup.appendChild(self.dom.createTextNode('&#x1D49E;')) msup.appendChild(self._print(e.args[0])) return msup def _print_FockSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x2131;')) return x def _print_Integral(self, expr): intsymbols = {1: "&#x222B;", 2: "&#x222C;", 3: "&#x222D;"} mrow = self.dom.createElement('mrow') if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits): # Only up to three-integral signs exists mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)])) mrow.appendChild(mo) else: # Either more than three or limits provided for lim in reversed(expr.limits): mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[1])) if len(lim) == 1: mrow.appendChild(mo) if len(lim) == 2: msup = self.dom.createElement('msup') msup.appendChild(mo) msup.appendChild(self._print(lim[1])) mrow.appendChild(msup) if len(lim) == 3: msubsup = self.dom.createElement('msubsup') msubsup.appendChild(mo) msubsup.appendChild(self._print(lim[1])) msubsup.appendChild(self._print(lim[2])) mrow.appendChild(msubsup) # print function mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True)) # print integration variables for lim in reversed(expr.limits): d = self.dom.createElement('mo') d.appendChild(self.dom.createTextNode('&dd;')) mrow.appendChild(d) mrow.appendChild(self._print(lim[0])) return mrow def _print_Sum(self, e): limits = list(e.limits) subsup = self.dom.createElement('munderover') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) summand = self.dom.createElement('mo') summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) low = self.dom.createElement('mrow') var = self._print(limits[0][0]) equal = self.dom.createElement('mo') equal.appendChild(self.dom.createTextNode('=')) low.appendChild(var) low.appendChild(equal) low.appendChild(low_elem) subsup.appendChild(summand) subsup.appendChild(low) subsup.appendChild(up_elem) mrow = self.dom.createElement('mrow') mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) return mrow def _print_Symbol(self, sym, style='plain'): def join(items): if len(items) > 1: mrow = self.dom.createElement('mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: x = mname else: x = self.dom.createElement('msub') x.appendChild(mname) x.appendChild(join(subs)) else: if len(subs) == 0: x = self.dom.createElement('msup') x.appendChild(mname) x.appendChild(join(supers)) else: x = self.dom.createElement('msubsup') x.appendChild(mname) x.appendChild(join(subs)) x.appendChild(join(supers)) # Set bold font? if style == 'bold': x.setAttribute('mathvariant', 'bold') return x def _print_MatrixSymbol(self, sym): return self._print_Symbol(sym, style=self._settings['mat_symbol_style']) _print_RandomSymbol = _print_Symbol def _print_conjugate(self, expr): enc = self.dom.createElement('menclose') enc.setAttribute('notation', 'top') enc.appendChild(self._print(expr.args[0])) return enc def _print_operator_after(self, op, expr): row = self.dom.createElement('mrow') row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(op)) row.appendChild(mo) return row def _print_factorial(self, expr): return self._print_operator_after('!', expr.args[0]) def _print_factorial2(self, expr): return self._print_operator_after('!!', expr.args[0]) def _print_binomial(self, expr): brac = self.dom.createElement('mfenced') frac = self.dom.createElement('mfrac') frac.setAttribute('linethickness', '0') frac.appendChild(self._print(expr.args[0])) frac.appendChild(self._print(expr.args[1])) brac.appendChild(frac) return brac def _print_Pow(self, e): # Here we use root instead of power if the exponent is the # reciprocal of an integer if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and self._settings['root_notation']): if e.exp.q == 2: x = self.dom.createElement('msqrt') x.appendChild(self._print(e.base)) if e.exp.q != 2: x = self.dom.createElement('mroot') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp.q)) if e.exp.p == -1: frac = self.dom.createElement('mfrac') frac.appendChild(self._print(1)) frac.appendChild(x) return frac else: return x if e.exp.is_Rational and e.exp.q != 1: if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(-e.exp, self._settings['fold_frac_powers'])) top.appendChild(x) return top else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(e.exp, self._settings['fold_frac_powers'])) return x if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) if e.exp == -1: top.appendChild(self._print(e.base)) else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(-e.exp)) top.appendChild(x) return top x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_AccumulationBounds(self, i): brac = self.dom.createElement('mfenced') brac.setAttribute('close', u'\u27e9') brac.setAttribute('open', u'\u27e8') brac.appendChild(self._print(i.min)) brac.appendChild(self._print(i.max)) return brac def _print_Derivative(self, e): if requires_partial(e.expr): d = '&#x2202;' else: d = self.mathml_tag(e) # Determine denominator m = self.dom.createElement('mrow') dim = 0 # Total diff dimension, for numerator for sym, num in reversed(e.variable_count): dim += num if num >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(num)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) m.appendChild(x) y = self._print(sym) m.appendChild(y) mnum = self.dom.createElement('mrow') if dim >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(dim)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) mnum.appendChild(x) mrow = self.dom.createElement('mrow') frac = self.dom.createElement('mfrac') frac.appendChild(mnum) frac.appendChild(m) mrow.appendChild(frac) # Print function mrow.appendChild(self._print(e.expr)) return mrow def _print_Function(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mi') if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]: x.appendChild(self.dom.createTextNode('ln')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mfenced') for arg in e.args: y.appendChild(self._print(arg)) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_mathml_numbers'] mrow = self.dom.createElement('mrow') if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(mant)) mrow.appendChild(mn) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(separator)) mrow.appendChild(mo) msup = self.dom.createElement('msup') mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode("10")) msup.appendChild(mn) mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(exp)) msup.appendChild(mn) mrow.appendChild(msup) return mrow elif str_real == "+inf": return self._print_Infinity(None) elif str_real == "-inf": return self._print_NegativeInfinity(None) else: mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(str_real)) return mn def _print_polylog(self, expr): mrow = self.dom.createElement('mrow') m = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Li')) m.appendChild(mi) m.appendChild(self._print(expr.args[0])) mrow.appendChild(m) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr.args[1])) mrow.appendChild(brac) return mrow def _print_Basic(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') for arg in e.args: brac.appendChild(self._print(arg)) mrow.appendChild(brac) return mrow def _print_Tuple(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') for arg in e.args: x.appendChild(self._print(arg)) mrow.appendChild(x) return mrow def _print_Interval(self, i): mrow = self.dom.createElement('mrow') brac = self.dom.createElement('mfenced') if i.start == i.end: # Most often, this type of Interval is converted to a FiniteSet brac.setAttribute('close', '}') brac.setAttribute('open', '{') brac.appendChild(self._print(i.start)) else: if i.right_open: brac.setAttribute('close', ')') else: brac.setAttribute('close', ']') if i.left_open: brac.setAttribute('open', '(') else: brac.setAttribute('open', '[') brac.appendChild(self._print(i.start)) brac.appendChild(self._print(i.end)) mrow.appendChild(brac) return mrow def _print_Abs(self, expr, exp=None): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', '|') x.setAttribute('open', '|') x.appendChild(self._print(expr.args[0])) mrow.appendChild(x) return mrow _print_Determinant = _print_Abs def _print_re_im(self, c, expr): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'fraktur') mi.appendChild(self.dom.createTextNode(c)) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr)) mrow.appendChild(brac) return mrow def _print_re(self, expr, exp=None): return self._print_re_im('R', expr.args[0]) def _print_im(self, expr, exp=None): return self._print_re_im('I', expr.args[0]) def _print_AssocOp(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) for arg in e.args: mrow.appendChild(self._print(arg)) return mrow def _print_SetOp(self, expr, symbol): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(expr.args[0])) for arg in expr.args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Union(self, expr): return self._print_SetOp(expr, '&#x222A;') def _print_Intersection(self, expr): return self._print_SetOp(expr, '&#x2229;') def _print_Complement(self, expr): return self._print_SetOp(expr, '&#x2216;') def _print_SymmetricDifference(self, expr): return self._print_SetOp(expr, '&#x2206;') def _print_FiniteSet(self, s): return self._print_set(s.args) def _print_set(self, s): items = sorted(s, key=default_sort_key) brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') for item in items: brac.appendChild(self._print(item)) return brac _print_frozenset = _print_set def _print_LogOp(self, args, symbol): mrow = self.dom.createElement('mrow') if args[0].is_Boolean and not args[0].is_Not: brac = self.dom.createElement('mfenced') brac.appendChild(self._print(args[0])) mrow.appendChild(brac) else: mrow.appendChild(self._print(args[0])) for arg in args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) if arg.is_Boolean and not arg.is_Not: y = self.dom.createElement('mfenced') y.appendChild(self._print(arg)) else: y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_BasisDependent(self, expr): from sympy.vector import Vector if expr == expr.zero: # Not clear if this is ever called return self._print(expr.zero) if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] mrow = self.dom.createElement('mrow') for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x:x[0].__str__()) for i, (k, v) in enumerate(inneritems): if v == 1: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) elif v == -1: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) else: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mbrac = self.dom.createElement('mfenced') mbrac.appendChild(self._print(v)) mrow.appendChild(mbrac) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) return mrow def _print_And(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2227;') def _print_Or(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2228;') def _print_Xor(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x22BB;') def _print_Implies(self, expr): return self._print_LogOp(expr.args, '&#x21D2;') def _print_Equivalent(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x21D4;') def _print_Not(self, e): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xAC;')) mrow.appendChild(mo) if (e.args[0].is_Boolean): x = self.dom.createElement('mfenced') x.appendChild(self._print(e.args[0])) else: x = self._print(e.args[0]) mrow.appendChild(x) return mrow def _print_bool(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi def _print_Range(self, s): dots = u"\u2026" brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') if s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) for el in printset: if el == dots: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(dots)) brac.appendChild(mi) else: brac.appendChild(self._print(el)) return brac def _hprint_variadic_function(self, expr): args = sorted(expr.args, key=default_sort_key) mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode((str(expr.func)).lower())) mrow.appendChild(mo) brac = self.dom.createElement('mfenced') for symbol in args: brac.appendChild(self._print(symbol)) mrow.appendChild(brac) return mrow _print_Min = _print_Max = _hprint_variadic_function def _print_exp(self, expr): msup = self.dom.createElement('msup') msup.appendChild(self._print_Exp1(None)) msup.appendChild(self._print(expr.args[0])) return msup def _print_Relational(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.lhs)) x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(x) mrow.appendChild(self._print(e.rhs)) return mrow def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def _print_BaseScalar(self, e): msub = self.dom.createElement('msub') index, system = e._id mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._variable_names[index])) msub.appendChild(mi) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_BaseVector(self, e): msub = self.dom.createElement('msub') index, system = e._id mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._vector_names[index])) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) msub.appendChild(mover) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_VectorZero(self, e): mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode("0")) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) return mover def _print_Cross(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Curl(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Divergence(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Dot(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Gradient(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Laplacian(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2206;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Integers(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2124;')) return x def _print_Complexes(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2102;')) return x def _print_Reals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x211D;')) return x def _print_Naturals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) return x def _print_Naturals0(self, e): sub = self.dom.createElement('msub') x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) sub.appendChild(x) sub.appendChild(self._print(S.Zero)) return sub def _print_SingularityFunction(self, expr): shift = expr.args[0] - expr.args[1] power = expr.args[2] sup = self.dom.createElement('msup') brac = self.dom.createElement('mfenced') brac.setAttribute('close', u'\u27e9') brac.setAttribute('open', u'\u27e8') brac.appendChild(self._print(shift)) sup.appendChild(brac) sup.appendChild(self._print(power)) return sup def _print_NaN(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('NaN')) return x def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(name)) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) if len(e.args) == 1: return sub # TODO: copy-pasted from _print_Function: can we do better? mrow = self.dom.createElement('mrow') y = self.dom.createElement('mfenced') for arg in e.args[1:]: y.appendChild(self._print(arg)) mrow.appendChild(sub) mrow.appendChild(y) return mrow def _print_bernoulli(self, e): return self._print_number_function(e, 'B') _print_bell = _print_bernoulli def _print_catalan(self, e): return self._print_number_function(e, 'C') def _print_euler(self, e): return self._print_number_function(e, 'E') def _print_fibonacci(self, e): return self._print_number_function(e, 'F') def _print_lucas(self, e): return self._print_number_function(e, 'L') def _print_stieltjes(self, e): return self._print_number_function(e, '&#x03B3;') def _print_tribonacci(self, e): return self._print_number_function(e, 'T') def _print_ComplexInfinity(self, e): x = self.dom.createElement('mover') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x221E;')) x.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('~')) x.appendChild(mo) return x def _print_EmptySet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x2205;')) return x def _print_UniversalSet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x1D54C;')) return x def _print_Adjoint(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2020;')) sup.appendChild(mo) return sup def _print_Transpose(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) sup.appendChild(mo) return sup def _print_Inverse(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) sup.appendChild(self._print(-1)) return sup def _print_MatMul(self, expr): from sympy import MatMul x = self.dom.createElement('mrow') args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) x.appendChild(mo) for arg in args[:-1]: x.appendChild(self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) x.appendChild(mo) x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_MatPow(self, expr): from sympy.matrices import MatrixSymbol base, exp = expr.base, expr.exp sup = self.dom.createElement('msup') if not isinstance(base, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(base)) sup.appendChild(brac) else: sup.appendChild(self._print(base)) sup.appendChild(self._print(exp)) return sup def _print_HadamardProduct(self, expr): x = self.dom.createElement('mrow') args = expr.args for arg in args[:-1]: x.appendChild( self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2218;')) x.appendChild(mo) x.appendChild( self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_ZeroMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D8')) return x def _print_OneMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D9')) return x def _print_Identity(self, I): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x1D540;')) return x def _print_floor(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', u'\u230B') x.setAttribute('open', u'\u230A') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_ceiling(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', u'\u2309') x.setAttribute('open', u'\u2308') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_Lambda(self, e): x = self.dom.createElement('mfenced') mrow = self.dom.createElement('mrow') symbols = e.args[0] if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(symbols) mrow.appendChild(symbols) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x21A6;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) x.appendChild(mrow) return x def _print_tuple(self, e): x = self.dom.createElement('mfenced') for i in e: x.appendChild(self._print(i)) return x def _print_IndexedBase(self, e): return self._print(e.label) def _print_Indexed(self, e): x = self.dom.createElement('msub') x.appendChild(self._print(e.base)) if len(e.indices) == 1: x.appendChild(self._print(e.indices[0])) return x x.appendChild(self._print(e.indices)) return x def _print_MatrixElement(self, e): x = self.dom.createElement('msub') x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True)) brac = self.dom.createElement('mfenced') brac.setAttribute("close", "") brac.setAttribute("open", "") for i in e.indices: brac.appendChild(self._print(i)) x.appendChild(brac) return x def _print_elliptic_f(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a5;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_e(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a4;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_pi(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d6f1;')) x.appendChild(mi) y = self.dom.createElement('mfenced') if len(e.args) == 2: y.setAttribute("separators", "|") else: y.setAttribute("separators", ";|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_Ei(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Ei')) x.appendChild(mi) x.appendChild(self._print(e.args)) return x def _print_expint(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('E')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_jacobi(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:3])) x.appendChild(y) x.appendChild(self._print(e.args[3:])) return x def _print_gegenbauer(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('C')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_chebyshevt(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_chebyshevu(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('U')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_hermite(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('H')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def mathml(expr, printer='content', **settings): """Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML. """ if printer == 'presentation': return MathMLPresentationPrinter(settings).doprint(expr) else: return MathMLContentPrinter(settings).doprint(expr) def print_mathml(expr, printer='content', **settings): """ Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML. Examples ======== >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> """ if printer == 'presentation': s = MathMLPresentationPrinter(settings) else: s = MathMLContentPrinter(settings) xml = s._print(sympify(expr)) s.apply_patch() pretty_xml = xml.toprettyxml() s.restore_patch() print(pretty_xml) # For backward compatibility MathMLPrinter = MathMLContentPrinter
9fe6bda4569ba0079f86e6770de96a575d642c33fb7a9e612d6352dd2339e3a0
""" Octave (and Matlab) code printer The `OctaveCodePrinter` converts SymPy expressions into Octave expressions. It uses a subset of the Octave language for Matlab compatibility. A complete code generator, which uses `octave_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core import Mul, Pow, S, Rational from sympy.core.compatibility import string_types, range from sympy.core.mul import _keep_coeff from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from re import search # List of known functions. First, those that have the same name in # SymPy and Octave. This is almost certainly incomplete! known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", "asin", "acos", "acot", "atan", "atan2", "asec", "acsc", "sinh", "cosh", "tanh", "coth", "csch", "sech", "asinh", "acosh", "atanh", "acoth", "asech", "acsch", "erfc", "erfi", "erf", "erfinv", "erfcinv", "besseli", "besselj", "besselk", "bessely", "bernoulli", "beta", "euler", "exp", "factorial", "floor", "fresnelc", "fresnels", "gamma", "harmonic", "log", "polylog", "sign", "zeta", "legendre"] # These functions have different names ("Sympy": "Octave"), more # generally a mapping to (argument_conditions, octave_function). known_fcns_src2 = { "Abs": "abs", "arg": "angle", # arg/angle ok in Octave but only angle in Matlab "binomial": "bincoeff", "ceiling": "ceil", "chebyshevu": "chebyshevU", "chebyshevt": "chebyshevT", "Chi": "coshint", "Ci": "cosint", "conjugate": "conj", "DiracDelta": "dirac", "Heaviside": "heaviside", "im": "imag", "laguerre": "laguerreL", "LambertW": "lambertw", "li": "logint", "loggamma": "gammaln", "Max": "max", "Min": "min", "Mod": "mod", "polygamma": "psi", "re": "real", "RisingFactorial": "pochhammer", "Shi": "sinhint", "Si": "sinint", } class OctaveCodePrinter(CodePrinter): """ A printer to convert expressions to strings of Octave/Matlab code. """ printmethod = "_octave" language = "Octave" _operators = { 'and': '&', 'or': '|', 'not': '~', } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'inline': True, } # Note: contract is for expressing tensors as loops (if True), or just # assignment (if False). FIXME: this should be looked a more carefully # for Octave. def __init__(self, settings={}): super(OctaveCodePrinter, self).__init__(settings) self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) self.known_functions.update(dict(known_fcns_src2)) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "% {0}".format(text) def _declare_number_const(self, name, value): return "{0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): # Octave uses Fortran order (column-major) rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # Octave arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("for %s = %s:%s" % (var, start, stop)) close_lines.append("end") return open_lines, close_lines def _print_Mul(self, expr): # print complex numbers nicely in Octave if (expr.is_number and expr.is_imaginary and (S.ImaginaryUnit*expr).is_Integer): return "%si" % self._print(-S.ImaginaryUnit*expr) # cribbed from str.py prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if (item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative): if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] # from here it differs from str.py to deal with "*" and ".*" def multjoin(a, a_str): # here we probably are assuming the constants will come first r = a_str[0] for i in range(1, len(a)): mulsym = '*' if a[i-1].is_number else '.*' r = r + mulsym + a_str[i] return r if not b: return sign + multjoin(a, a_str) elif len(b) == 1: divsym = '/' if b[0].is_number else './' return sign + multjoin(a, a_str) + divsym + b_str[0] else: divsym = '/' if all([bi.is_number for bi in b]) else './' return (sign + multjoin(a, a_str) + divsym + "(%s)" % multjoin(b, b_str)) def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{0} {1} {2}".format(lhs_code, op, rhs_code) def _print_Pow(self, expr): powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^' PREC = precedence(expr) if expr.exp == S.Half: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if expr.exp == -S.Half: sym = '/' if expr.base.is_number else './' return "1" + sym + "sqrt(%s)" % self._print(expr.base) if expr.exp == -S.One: sym = '/' if expr.base.is_number else './' return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, self.parenthesize(expr.exp, PREC)) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_MatrixSolve(self, expr): PREC = precedence(expr) return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC), self.parenthesize(expr.vector, PREC)) def _print_Pi(self, expr): return 'pi' def _print_ImaginaryUnit(self, expr): return "1i" def _print_Exp1(self, expr): return "exp(1)" def _print_GoldenRatio(self, expr): # FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)? #return self._print((1+sqrt(S(5)))/2) return "(1+sqrt(5))/2" def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.tensor.indexed import IndexedBase # Copied from codeprinter, but remove special MatrixSymbol treatment lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Infinity(self, expr): return 'inf' def _print_NegativeInfinity(self, expr): return '-inf' def _print_NaN(self, expr): return 'NaN' def _print_list(self, expr): return '{' + ', '.join(self._print(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return str(expr).lower() # Could generate quadrature code for definite Integrals? #_print_Integral = _print_not_supported def _print_MatrixBase(self, A): # Handle zero dimensions: if (A.rows, A.cols) == (0, 0): return '[]' elif A.rows == 0 or A.cols == 0: return 'zeros(%s, %s)' % (A.rows, A.cols) elif (A.rows, A.cols) == (1, 1): # Octave does not distinguish between scalars and 1x1 matrices return self._print(A[0, 0]) return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]]) for r in range(A.rows)) def _print_SparseMatrix(self, A): from sympy.matrices import Matrix L = A.col_list(); # make row vectors of the indices and entries I = Matrix([[k[0] + 1 for k in L]]) J = Matrix([[k[1] + 1 for k in L]]) AIJ = Matrix([[k[2] for k in L]]) return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), self._print(AIJ), A.rows, A.cols) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '(%s, %s)' % (expr.i + 1, expr.j + 1) def _print_MatrixSlice(self, expr): def strslice(x, lim): l = x[0] + 1 h = x[1] step = x[2] lstr = self._print(l) hstr = 'end' if h == lim else self._print(h) if step == 1: if l == 1 and h == lim: return ':' if l == h: return lstr else: return lstr + ':' + hstr else: return ':'.join((lstr, self._print(step), hstr)) return (self._print(expr.parent) + '(' + strslice(expr.rowslice, expr.parent.shape[0]) + ', ' + strslice(expr.colslice, expr.parent.shape[1]) + ')') def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_KroneckerDelta(self, expr): prec = PRECEDENCE["Pow"] return "double(%s == %s)" % tuple(self.parenthesize(x, prec) for x in expr.args) def _print_HadamardProduct(self, expr): return '.*'.join([self.parenthesize(arg, precedence(expr)) for arg in expr.args]) def _print_HadamardPower(self, expr): PREC = precedence(expr) return '.**'.join([ self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC) ]) def _print_Identity(self, expr): shape = expr.shape if len(shape) == 2 and shape[0] == shape[1]: shape = [shape[0]] s = ", ".join(self._print(n) for n in shape) return "eye(" + s + ")" def _print_lowergamma(self, expr): # Octave implements regularized incomplete gamma function return "(gammainc({1}, {0}).*gamma({0}))".format( self._print(expr.args[0]), self._print(expr.args[1])) def _print_uppergamma(self, expr): return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format( self._print(expr.args[0]), self._print(expr.args[1])) def _print_sinc(self, expr): #Note: Divide by pi because Octave implements normalized sinc function. return "sinc(%s)" % self._print(expr.args[0]/S.Pi) def _print_hankel1(self, expr): return "besselh(%s, 1, %s)" % (self._print(expr.order), self._print(expr.argument)) def _print_hankel2(self, expr): return "besselh(%s, 2, %s)" % (self._print(expr.order), self._print(expr.argument)) # Note: as of 2015, Octave doesn't have spherical Bessel functions def _print_jn(self, expr): from sympy.functions import sqrt, besselj x = expr.argument expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) return self._print(expr2) def _print_yn(self, expr): from sympy.functions import sqrt, bessely x = expr.argument expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) return self._print(expr2) def _print_airyai(self, expr): return "airy(0, %s)" % self._print(expr.args[0]) def _print_airyaiprime(self, expr): return "airy(1, %s)" % self._print(expr.args[0]) def _print_airybi(self, expr): return "airy(2, %s)" % self._print(expr.args[0]) def _print_airybiprime(self, expr): return "airy(3, %s)" % self._print(expr.args[0]) def _print_expint(self, expr): mu, x = expr.args if mu != 1: return self._print_not_supported(expr) return "expint(%s)" % self._print(x) def _one_or_two_reversed_args(self, expr): assert len(expr.args) <= 2 return '{name}({args})'.format( name=self.known_functions[expr.__class__.__name__], args=", ".join([self._print(x) for x in reversed(expr.args)]) ) _print_DiracDelta = _print_LambertW = _one_or_two_reversed_args def _nested_binary_math_func(self, expr): return '{name}({arg1}, {arg2})'.format( name=self.known_functions[expr.__class__.__name__], arg1=self._print(expr.args[0]), arg2=self._print(expr.func(*expr.args[1:])) ) _print_Max = _print_Min = _nested_binary_math_func def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if self._settings["inline"]: # Express each (cond, expr) pair in a nested Horner form: # (condition) .* (expr) + (not cond) .* (<others>) # Expressions that result in multiple statements won't work here. ecpairs = ["({0}).*({1}) + (~({0})).*(".format (self._print(c), self._print(e)) for e, c in expr.args[:-1]] elast = "%s" % self._print(expr.args[-1].expr) pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs) # Note: current need these outer brackets for 2*pw. Would be # nicer to teach parenthesize() to do this for us when needed! return "(" + pw + ")" else: for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s)" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("elseif (%s)" % self._print(c)) code0 = self._print(e) lines.append(code0) if i == len(expr.args) - 1: lines.append("end") return "\n".join(lines) def _print_zeta(self, expr): if len(expr.args) == 1: return "zeta(%s)" % self._print(expr.args[0]) else: # Matlab two argument zeta is not equivalent to SymPy's return self._print_not_supported(expr) def indent_code(self, code): """Accepts a string of code or a list of code lines""" # code mostly copied from ccode if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') dec_regex = ('^end$', '^elseif ', '^else$') # pre-strip left-space from the code code = [ line.lstrip(' \t') for line in code ] increase = [ int(any([search(re, line) for re in inc_regex])) for line in code ] decrease = [ int(any([search(re, line) for re in dec_regex])) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def octave_code(expr, assign_to=None, **settings): r"""Converts `expr` to a string of Octave (or Matlab) code. The string uses a subset of the Octave language for Matlab compatibility. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. Examples ======== >>> from sympy import octave_code, symbols, sin, pi >>> x = symbols('x') >>> octave_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x' >>> from sympy import Rational, ceiling, Abs >>> x, y, tau = symbols("x, y, tau") >>> octave_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)' Note that element-wise (Hadamard) operations are used by default between symbols. This is because its very common in Octave to write "vectorized" code. It is harmless if the values are scalars. >>> octave_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y);' If you need a matrix product "*" or matrix power "^", you can specify the symbol as a ``MatrixSymbol``. >>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> octave_code(3*pi*A**3) '(3*pi)*A^3' This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate: >>> octave_code(x**2*y*A**3) '(x.^2.*y)*A^3' Matrices are supported using Octave inline notation. When using ``assign_to`` with matrices, the name can be specified either as a string or as a ``MatrixSymbol``. The dimensions must align in the latter case. >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)];' ``Piecewise`` expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> octave_code(pw, assign_to=tau) 'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));' Note that any expression that can be generated normally can also exist inside a Matrix: >>> mat = Matrix([[x**2, pw, sin(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function. >>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_octave_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx, ccode >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> octave_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));' """ return OctaveCodePrinter(settings).doprint(expr, assign_to) def print_octave_code(expr, **settings): """Prints the Octave (or Matlab) representation of the given expression. See `octave_code` for the meaning of the optional arguments. """ print(octave_code(expr, **settings))
048c2bcfcfef534cd70bb132e709b5e7dec3b73c5fb719190db0513d3078262e
from __future__ import print_function, division from functools import wraps from sympy.core import Add, Mul, Pow, S, sympify, Float from sympy.core.basic import Basic from sympy.core.compatibility import default_sort_key, string_types from sympy.core.function import Lambda from sympy.core.mul import _keep_coeff from sympy.core.symbol import Symbol from sympy.printing.str import StrPrinter from sympy.printing.precedence import precedence # Backwards compatibility from sympy.codegen.ast import Assignment class requires(object): """ Decorator for registering requirements on print methods. """ def __init__(self, **kwargs): self._req = kwargs def __call__(self, method): def _method_wrapper(self_, *args, **kwargs): for k, v in self._req.items(): getattr(self_, k).update(v) return method(self_, *args, **kwargs) return wraps(method)(_method_wrapper) class AssignmentError(Exception): """ Raised if an assignment variable for a loop is missing. """ pass class CodePrinter(StrPrinter): """ The base class for code-printing subclasses. """ _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'error_on_reserved': False, 'reserved_word_suffix': '_', 'human': True, 'inline': False, 'allow_unknown_functions': False, } # Functions which are "simple" to rewrite to other functions that # may be supported _rewriteable_functions = { 'erf2': 'erf', 'Li': 'li', 'beta': 'gamma' } def __init__(self, settings=None): super(CodePrinter, self).__init__(settings=settings) if not hasattr(self, 'reserved_words'): self.reserved_words = set() def doprint(self, expr, assign_to=None): """ Print the expression as code. Parameters ---------- expr : Expression The expression to be printed. assign_to : Symbol, MatrixSymbol, or string (optional) If provided, the printed code will set the expression to a variable with name ``assign_to``. """ from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(assign_to, string_types): if expr.is_Matrix: assign_to = MatrixSymbol(assign_to, *expr.shape) else: assign_to = Symbol(assign_to) elif not isinstance(assign_to, (Basic, type(None))): raise TypeError("{0} cannot assign to object of type {1}".format( type(self).__name__, type(assign_to))) if assign_to: expr = Assignment(assign_to, expr) else: # _sympify is not enough b/c it errors on iterables expr = sympify(expr) # keep a set of expressions that are not strictly translatable to Code # and number constants that must be declared and initialized self._not_supported = set() self._number_symbols = set() lines = self._print(expr).splitlines() # format the output if self._settings["human"]: frontlines = [] if self._not_supported: frontlines.append(self._get_comment( "Not supported in {0}:".format(self.language))) for expr in sorted(self._not_supported, key=str): frontlines.append(self._get_comment(type(expr).__name__)) for name, value in sorted(self._number_symbols, key=str): frontlines.append(self._declare_number_const(name, value)) lines = frontlines + lines lines = self._format_code(lines) result = "\n".join(lines) else: lines = self._format_code(lines) num_syms = set([(k, self._print(v)) for k, v in self._number_symbols]) result = (num_syms, self._not_supported, "\n".join(lines)) self._not_supported = set() self._number_symbols = set() return result def _doprint_loops(self, expr, assign_to=None): # Here we print an expression that contains Indexed objects, they # correspond to arrays in the generated code. The low-level implementation # involves looping over array elements and possibly storing results in temporary # variables or accumulate it in the assign_to object. if self._settings.get('contract', True): from sympy.tensor import get_contraction_structure # Setup loops over non-dummy indices -- all terms need these indices = self._get_expression_indices(expr, assign_to) # Setup loops over dummy indices -- each term needs separate treatment dummies = get_contraction_structure(expr) else: indices = [] dummies = {None: (expr,)} openloop, closeloop = self._get_loop_opening_ending(indices) # terms with no summations first if None in dummies: text = StrPrinter.doprint(self, Add(*dummies[None])) else: # If all terms have summations we must initialize array to Zero text = StrPrinter.doprint(self, 0) # skip redundant assignments (where lhs == rhs) lhs_printed = self._print(assign_to) lines = [] if text != lhs_printed: lines.extend(openloop) if assign_to is not None: text = self._get_statement("%s = %s" % (lhs_printed, text)) lines.append(text) lines.extend(closeloop) # then terms with summations for d in dummies: if isinstance(d, tuple): indices = self._sort_optimized(d, expr) openloop_d, closeloop_d = self._get_loop_opening_ending( indices) for term in dummies[d]: if term in dummies and not ([list(f.keys()) for f in dummies[term]] == [[None] for f in dummies[term]]): # If one factor in the term has it's own internal # contractions, those must be computed first. # (temporary variables?) raise NotImplementedError( "FIXME: no support for contractions in factor yet") else: # We need the lhs expression as an accumulator for # the loops, i.e # # for (int d=0; d < dim; d++){ # lhs[] = lhs[] + term[][d] # } ^.................. the accumulator # # We check if the expression already contains the # lhs, and raise an exception if it does, as that # syntax is currently undefined. FIXME: What would be # a good interpretation? if assign_to is None: raise AssignmentError( "need assignment variable for loops") if term.has(assign_to): raise ValueError("FIXME: lhs present in rhs,\ this is undefined in CodePrinter") lines.extend(openloop) lines.extend(openloop_d) text = "%s = %s" % (lhs_printed, StrPrinter.doprint( self, assign_to + term)) lines.append(self._get_statement(text)) lines.extend(closeloop_d) lines.extend(closeloop) return "\n".join(lines) def _get_expression_indices(self, expr, assign_to): from sympy.tensor import get_indices rinds, junk = get_indices(expr) linds, junk = get_indices(assign_to) # support broadcast of scalar if linds and not rinds: rinds = linds if rinds != linds: raise ValueError("lhs indices must match non-dummy" " rhs indices in %s" % expr) return self._sort_optimized(rinds, assign_to) def _sort_optimized(self, indices, expr): from sympy.tensor.indexed import Indexed if not indices: return [] # determine optimized loop order by giving a score to each index # the index with the highest score are put in the innermost loop. score_table = {} for i in indices: score_table[i] = 0 arrays = expr.atoms(Indexed) for arr in arrays: for p, ind in enumerate(arr.indices): try: score_table[ind] += self._rate_index_position(p) except KeyError: pass return sorted(indices, key=lambda x: score_table[x]) def _rate_index_position(self, p): """function to calculate score based on position among indices This method is used to sort loops in an optimized order, see CodePrinter._sort_optimized() """ raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_statement(self, codestring): """Formats a codestring with the proper line ending.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_comment(self, text): """Formats a text string as a comment.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _declare_number_const(self, name, value): """Declare a numeric constant at the top of a function""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _format_code(self, lines): """Take in a list of lines of code, and format them accordingly. This may include indenting, wrapping long lines, etc...""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _print_Dummy(self, expr): if expr.name.startswith('Dummy_'): return '_' + expr.name else: return '%s_%d' % (expr.name, expr.dummy_index) def _print_CodeBlock(self, expr): return '\n'.join([self._print(i) for i in expr.args]) def _print_String(self, string): return str(string) def _print_QuotedString(self, arg): return '"%s"' % arg.text def _print_Comment(self, string): return self._get_comment(str(string)) def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) elif isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{0} {1} {2}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.op, rhs_code]))) def _print_FunctionCall(self, expr): return '%s(%s)' % ( expr.name, ', '.join(map(lambda arg: self._print(arg), expr.function_args))) def _print_Variable(self, expr): return self._print(expr.symbol) def _print_Statement(self, expr): arg, = expr.args return self._get_statement(self._print(arg)) def _print_Symbol(self, expr): name = super(CodePrinter, self)._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] else: return name def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None if isinstance(cond_func, string_types): func = cond_func else: for cond, func in cond_func: if cond(*expr.args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in expr.args]) except TypeError: return "%s(%s)" % (func, self.stringify(expr.args, ", ")) elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) elif (expr.func.__name__ in self._rewriteable_functions and self._rewriteable_functions[expr.func.__name__] in self.known_functions): # Simple rewrite to supported function possible return self._print(expr.rewrite(self._rewriteable_functions[expr.func.__name__])) elif expr.is_Function and self._settings.get('allow_unknown_functions', False): return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args))) else: return self._print_not_supported(expr) _print_Expr = _print_Function def _print_NumberSymbol(self, expr): if self._settings.get("inline", False): return self._print(Float(expr.evalf(self._settings["precision"]))) else: # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings["precision"])))) return str(expr) def _print_Catalan(self, expr): return self._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): return self._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): return self._print_NumberSymbol(expr) def _print_TribonacciConstant(self, expr): return self._print_NumberSymbol(expr) def _print_Exp1(self, expr): return self._print_NumberSymbol(expr) def _print_Pi(self, expr): return self._print_NumberSymbol(expr) def _print_And(self, expr): PREC = precedence(expr) return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Xor(self, expr): if self._operators.get('xor') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Equivalent(self, expr): if self._operators.get('equivalent') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_not_supported(self, expr): self._not_supported.add(expr) return self.emptyPrinter(expr) # The following can not be simply translated into C or Fortran _print_Basic = _print_not_supported _print_ComplexInfinity = _print_not_supported _print_Derivative = _print_not_supported _print_ExprCondPair = _print_not_supported _print_GeometryEntity = _print_not_supported _print_Infinity = _print_not_supported _print_Integral = _print_not_supported _print_Interval = _print_not_supported _print_AccumulationBounds = _print_not_supported _print_Limit = _print_not_supported _print_Matrix = _print_not_supported _print_ImmutableMatrix = _print_not_supported _print_ImmutableDenseMatrix = _print_not_supported _print_MutableDenseMatrix = _print_not_supported _print_MatrixBase = _print_not_supported _print_DeferredVector = _print_not_supported _print_NaN = _print_not_supported _print_NegativeInfinity = _print_not_supported _print_Order = _print_not_supported _print_RootOf = _print_not_supported _print_RootsOf = _print_not_supported _print_RootSum = _print_not_supported _print_SparseMatrix = _print_not_supported _print_MutableSparseMatrix = _print_not_supported _print_ImmutableSparseMatrix = _print_not_supported _print_Uniform = _print_not_supported _print_Unit = _print_not_supported _print_Wild = _print_not_supported _print_WildFunction = _print_not_supported _print_Relational = _print_not_supported
387578d190163e790c993d2ca83130deefe4657196714a741a0e6fe80c7a42ec
""" Maple code printer The MapleCodePrinter converts single sympy expressions into single Maple expressions, using the functions defined in the Maple objects where possible. FIXME: This module is still under actively developed. Some functions may be not completed. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core import S from sympy.core.basic import Atom from sympy.core.numbers import Integer, IntegerConstant from sympy.core.compatibility import string_types, range from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE import sympy _known_func_same_name = [ 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinh', 'cosh', 'tanh', 'sech', 'csch', 'coth', 'exp', 'floor', 'factorial' ] known_functions = { # Sympy -> Maple 'Abs': 'abs', 'log': 'ln', 'asin': 'arcsin', 'acos': 'arccos', 'atan': 'arctan', 'asec': 'arcsec', 'acsc': 'arccsc', 'acot': 'arccot', 'asinh': 'arcsinh', 'acosh': 'arccosh', 'atanh': 'arctanh', 'asech': 'arcsech', 'acsch': 'arccsch', 'acoth': 'arccoth', 'ceiling': 'ceil', 'besseli': 'BesselI', 'besselj': 'BesselJ', 'besselk': 'BesselK', 'bessely': 'BesselY', 'hankelh1': 'HankelH1', 'hankelh2': 'HankelH2', 'airyai': 'AiryAi', 'airybi': 'AiryBi' } for _func in _known_func_same_name: known_functions[_func] = _func number_symbols = { # Sympy -> Maple S.Pi: 'Pi', S.Exp1: 'exp(1)', S.Catalan: 'Catalan', S.EulerGamma: 'gamma', S.GoldenRatio: '(1/2 + (1/2)*sqrt(5))' } spec_relational_ops = { # Sympy -> Maple '==': '=', '!=': '<>' } not_supported_symbol = [ S.ComplexInfinity ] class MapleCodePrinter(CodePrinter): """ Printer which converts a sympy expression into a maple code. """ printmethod = "_maple" language = "maple" _default_settings = { 'order': None, 'full_prec': 'auto', 'human': True, 'inline': True, 'allow_unknown_functions': True, } def __init__(self, settings=None): if settings is None: settings = dict() super(MapleCodePrinter, self).__init__(settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "# {0}".format(text) def _declare_number_const(self, name, value): return "{0} := {1};".format(name, value.evalf(self._settings['precision'])) def _format_code(self, lines): return lines def _print_tuple(self, expr): return self._print(list(expr)) def _print_Tuple(self, expr): return self._print(list(expr)) def _print_Assignment(self, expr): lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return "{lhs} := {rhs}".format(lhs=lhs, rhs=rhs) def _print_Pow(self, expr, **kwargs): PREC = precedence(expr) if expr.exp == -1: return '1/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5 or expr.exp == S(1) / 2: return 'sqrt(%s)' % self._print(expr.base) elif expr.exp == -0.5 or expr.exp == -S(1) / 2: return '1/sqrt(%s)' % self._print(expr.base) else: return '{base}^{exp}'.format( base=self.parenthesize(expr.base, PREC), exp=self.parenthesize(expr.exp, PREC)) def _print_Piecewise(self, expr): if (expr.args[-1].cond is not True) and (expr.args[-1].cond != S.BooleanTrue): # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") _coup_list = [ ("{c}, {e}".format(c=self._print(c), e=self._print(e)) if c is not True and c is not S.BooleanTrue else "{e}".format( e=self._print(e))) for e, c in expr.args] _inbrace = ', '.join(_coup_list) return 'piecewise({_inbrace})'.format(_inbrace=_inbrace) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return "{p}/{q}".format(p=str(p), q=str(q)) def _print_Relational(self, expr): PREC=precedence(expr) lhs_code = self.parenthesize(expr.lhs, PREC) rhs_code = self.parenthesize(expr.rhs, PREC) op = expr.rel_op if op in spec_relational_ops: op = spec_relational_ops[op] return "{lhs} {rel_op} {rhs}".format(lhs=lhs_code, rel_op=op, rhs=rhs_code) def _print_NumberSymbol(self, expr): return number_symbols[expr] def _print_NegativeInfinity(self, expr): return '-infinity' def _print_Infinity(self, expr): return 'infinity' def _print_Idx(self, expr): return self._print(expr.label) def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return 'true' if expr else 'false' def _print_NaN(self, expr): return 'undefined' def _get_matrix(self, expr, sparse=False): if expr.cols == 0 or expr.rows == 0: _strM = 'Matrix([], storage = {storage})'.format( storage='sparse' if sparse else 'rectangular') else: _strM = 'Matrix({list}, storage = {storage})'.format( list=self._print(expr.tolist()), storage='sparse' if sparse else 'rectangular') return _strM def _print_MatrixElement(self, expr): return "{parent}[{i_maple}, {j_maple}]".format( parent=self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), i_maple=self._print(expr.i + 1), j_maple=self._print(expr.j + 1)) def _print_MatrixBase(self, expr): return self._get_matrix(expr, sparse=False) def _print_SparseMatrix(self, expr): return self._get_matrix(expr, sparse=True) _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_Identity(self, expr): if isinstance(expr.rows, Integer) or isinstance(expr.rows, IntegerConstant): return self._print(sympy.SparseMatrix(expr)) else: return "Matrix({var_size}, shape = identity)".format(var_size=self._print(expr.rows)) def _print_MatMul(self, expr): PREC=precedence(expr) _fact_list = list(expr.args) _const = None if not ( isinstance(_fact_list[0], sympy.MatrixBase) or isinstance( _fact_list[0], sympy.MatrixExpr) or isinstance( _fact_list[0], sympy.MatrixSlice) or isinstance( _fact_list[0], sympy.MatrixSymbol)): _const, _fact_list = _fact_list[0], _fact_list[1:] if _const is None or _const == 1: return '.'.join(self.parenthesize(_m, PREC) for _m in _fact_list) else: return '{c}*{m}'.format(c=_const, m='.'.join(self.parenthesize(_m, PREC) for _m in _fact_list)) def _print_MatPow(self, expr): # This function requires LinearAlgebra Function in Maple return 'MatrixPower({A}, {n})'.format(A=self._print(expr.base), n=self._print(expr.exp)) def _print_HadamardProduct(self, expr): PREC = precedence(expr) _fact_list = list(expr.args) return '*'.join(self.parenthesize(_m, PREC) for _m in _fact_list) def _print_Derivative(self, expr): _f, (_var, _order) = expr.args if _order != 1: _second_arg = '{var}${order}'.format(var=self._print(_var), order=self._print(_order)) else: _second_arg = '{var}'.format(var=self._print(_var)) return 'diff({func_expr}, {sec_arg})'.format(func_expr=self._print(_f), sec_arg=_second_arg) def maple_code(expr, assign_to=None, **settings): r"""Converts ``expr`` to a string of Maple code. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. """ return MapleCodePrinter(settings).doprint(expr, assign_to) def print_maple_code(expr, **settings): """Prints the Maple representation of the given expression. See :func:`maple_code` for the meaning of the optional arguments. Examples ======== >>> from sympy.printing.maple import print_maple_code >>> from sympy import symbols >>> x, y = symbols('x y') >>> print_maple_code(x, assign_to=y) y := x """ print(maple_code(expr, **settings))
aa87b046f92e6733e6c076938de4aa860c33e7403981ca1a63dbda88758f7bee
from distutils.version import LooseVersion as V from sympy import Mul from sympy.core.compatibility import Iterable from sympy.external import import_module from sympy.printing.precedence import PRECEDENCE from sympy.printing.pycode import AbstractPythonCodePrinter import sympy class TensorflowPrinter(AbstractPythonCodePrinter): """ Tensorflow printer which handles vectorized piecewise functions, logical operators, max/min, and relational operators. """ printmethod = "_tensorflowcode" mapping = { sympy.Abs: "tensorflow.abs", sympy.sign: "tensorflow.sign", sympy.ceiling: "tensorflow.ceil", sympy.floor: "tensorflow.floor", sympy.log: "tensorflow.log", sympy.exp: "tensorflow.exp", sympy.sqrt: "tensorflow.sqrt", sympy.cos: "tensorflow.cos", sympy.acos: "tensorflow.acos", sympy.sin: "tensorflow.sin", sympy.asin: "tensorflow.asin", sympy.tan: "tensorflow.tan", sympy.atan: "tensorflow.atan", sympy.atan2: "tensorflow.atan2", sympy.cosh: "tensorflow.cosh", sympy.acosh: "tensorflow.acosh", sympy.sinh: "tensorflow.sinh", sympy.asinh: "tensorflow.asinh", sympy.tanh: "tensorflow.tanh", sympy.atanh: "tensorflow.atanh", sympy.re: "tensorflow.real", sympy.im: "tensorflow.imag", sympy.arg: "tensorflow.angle", sympy.erf: "tensorflow.erf", sympy.loggamma: "tensorflow.gammaln", sympy.Pow: "tensorflow.pow", sympy.Eq: "tensorflow.equal", sympy.Ne: "tensorflow.not_equal", sympy.StrictGreaterThan: "tensorflow.greater", sympy.StrictLessThan: "tensorflow.less", sympy.LessThan: "tensorflow.less_equal", sympy.GreaterThan: "tensorflow.greater_equal", sympy.And: "tensorflow.logical_and", sympy.Or: "tensorflow.logical_or", sympy.Not: "tensorflow.logical_not", sympy.Max: "tensorflow.maximum", sympy.Min: "tensorflow.minimum", # Matrices sympy.MatAdd: "tensorflow.add", sympy.HadamardProduct: "tensorflow.multiply", sympy.Trace: "tensorflow.trace", sympy.Determinant : "tensorflow.matrix_determinant", sympy.Inverse: "tensorflow.matrix_inverse", sympy.Transpose: "tensorflow.matrix_transpose", } def _print_Function(self, expr): op = self.mapping.get(type(expr), None) if op is None: return super(TensorflowPrinter, self)._print_Basic(expr) children = [self._print(arg) for arg in expr.args] if len(children) == 1: return "%s(%s)" % ( self._module_format(op), children[0] ) else: return self._expand_fold_binary_op(op, children) _print_Expr = _print_Function _print_Application = _print_Function _print_MatrixExpr = _print_Function # TODO: a better class structure would avoid this mess: _print_Not = _print_Function _print_And = _print_Function _print_Or = _print_Function _print_Transpose = _print_Function _print_Trace = _print_Function def _print_Derivative(self, expr): variables = expr.variables if any(isinstance(i, Iterable) for i in variables): raise NotImplementedError("derivation by multiple variables is not supported") def unfold(expr, args): if not args: return self._print(expr) return "%s(%s, %s)[0]" % ( self._module_format("tensorflow.gradients"), unfold(expr, args[:-1]), self._print(args[-1]), ) return unfold(expr.expr, variables) def _print_Piecewise(self, expr): tensorflow = import_module('tensorflow') if tensorflow and V(tensorflow.__version__) < '1.0': tensorflow_piecewise = "select" else: tensorflow_piecewise = "where" from sympy import Piecewise e, cond = expr.args[0].args if len(expr.args) == 1: return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), 0) return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), self._print(Piecewise(*expr.args[1:]))) def _print_MatrixBase(self, expr): tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant" data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]" return "%s(%s)" % ( self._module_format(tensorflow_f), data, ) def _print_MatMul(self, expr): from sympy.matrices.expressions import MatrixExpr mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)] args = [arg for arg in expr.args if arg not in mat_args] if args: return "%s*%s" % ( self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]), self._expand_fold_binary_op("tensorflow.matmul", mat_args) ) else: return self._expand_fold_binary_op("tensorflow.matmul", mat_args) def _print_MatPow(self, expr): return self._expand_fold_binary_op("tensorflow.matmul", [expr.base]*expr.exp) def _print_Assignment(self, expr): # TODO: is this necessary? return "%s = %s" % ( self._print(expr.lhs), self._print(expr.rhs), ) def _print_CodeBlock(self, expr): # TODO: is this necessary? ret = [] for subexpr in expr.args: ret.append(self._print(subexpr)) return "\n".join(ret) def _get_letter_generator_for_einsum(self): for i in range(97, 123): yield chr(i) for i in range(65, 91): yield chr(i) raise ValueError("out of letters") def _print_CodegenArrayTensorProduct(self, expr): letters = self._get_letter_generator_for_einsum() contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks]) return '%s("%s", %s)' % ( self._module_format('tensorflow.einsum'), contraction_string, ", ".join([self._print(arg) for arg in expr.args]) ) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices contraction_string, letters_free, letters_dum = self._get_einsum_string(base.subranks, contraction_indices) if not contraction_indices: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): elems = ["%s" % (self._print(arg)) for arg in base.args] return "%s(\"%s\", %s)" % ( self._module_format("tensorflow.einsum"), contraction_string, ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError if isinstance(expr.expr, CodegenArrayTensorProduct): subranks = expr.expr.subranks elems = expr.expr.args else: subranks = expr.subranks elems = [expr.expr] diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices) elems = [self._print(i) for i in elems] return '%s("%s", %s)' % ( self._module_format("tensorflow.einsum"), "{0}->{1}{2}".format(diagonal_string, "".join(letters_free), "".join(letters_dum)), ", ".join(elems) ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("tensorflow.transpose"), self._print(expr.expr), self._print(expr.permutation.array_form), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('tensorflow.add', expr.args) def tensorflow_code(expr): printer = TensorflowPrinter() return printer.doprint(expr)
fad8904d7c44315ccc88f68b8e448b12c06916c70f0c6668ca8c0cb9e9c20a64
""" Julia code printer The `JuliaCodePrinter` converts SymPy expressions into Julia expressions. A complete code generator, which uses `julia_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ from __future__ import print_function, division from sympy.core import Mul, Pow, S, Rational from sympy.core.compatibility import string_types, range from sympy.core.mul import _keep_coeff from sympy.printing.codeprinter import CodePrinter, Assignment from sympy.printing.precedence import precedence, PRECEDENCE from re import search # List of known functions. First, those that have the same name in # SymPy and Julia. This is almost certainly incomplete! known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", "asin", "acos", "atan", "acot", "asec", "acsc", "sinh", "cosh", "tanh", "coth", "sech", "csch", "asinh", "acosh", "atanh", "acoth", "asech", "acsch", "sinc", "atan2", "sign", "floor", "log", "exp", "cbrt", "sqrt", "erf", "erfc", "erfi", "factorial", "gamma", "digamma", "trigamma", "polygamma", "beta", "airyai", "airyaiprime", "airybi", "airybiprime", "besselj", "bessely", "besseli", "besselk", "erfinv", "erfcinv"] # These functions have different names ("Sympy": "Julia"), more # generally a mapping to (argument_conditions, julia_function). known_fcns_src2 = { "Abs": "abs", "ceiling": "ceil", "conjugate": "conj", "hankel1": "hankelh1", "hankel2": "hankelh2", "im": "imag", "re": "real" } class JuliaCodePrinter(CodePrinter): """ A printer to convert expressions to strings of Julia code. """ printmethod = "_julia" language = "Julia" _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'inline': True, } # Note: contract is for expressing tensors as loops (if True), or just # assignment (if False). FIXME: this should be looked a more carefully # for Julia. def __init__(self, settings={}): super(JuliaCodePrinter, self).__init__(settings) self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) self.known_functions.update(dict(known_fcns_src2)) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s" % codestring def _get_comment(self, text): return "# {0}".format(text) def _declare_number_const(self, name, value): return "const {0} = {1}".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): # Julia uses Fortran order (column-major) rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # Julia arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("for %s = %s:%s" % (var, start, stop)) close_lines.append("end") return open_lines, close_lines def _print_Mul(self, expr): # print complex numbers nicely in Julia if (expr.is_number and expr.is_imaginary and expr.as_coeff_Mul()[0].is_integer): return "%sim" % self._print(-S.ImaginaryUnit*expr) # cribbed from str.py prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if (item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative): if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] # from here it differs from str.py to deal with "*" and ".*" def multjoin(a, a_str): # here we probably are assuming the constants will come first r = a_str[0] for i in range(1, len(a)): mulsym = '*' if a[i-1].is_number else '.*' r = r + mulsym + a_str[i] return r if not b: return sign + multjoin(a, a_str) elif len(b) == 1: divsym = '/' if b[0].is_number else './' return sign + multjoin(a, a_str) + divsym + b_str[0] else: divsym = '/' if all([bi.is_number for bi in b]) else './' return (sign + multjoin(a, a_str) + divsym + "(%s)" % multjoin(b, b_str)) def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{0} {1} {2}".format(lhs_code, op, rhs_code) def _print_Pow(self, expr): powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^' PREC = precedence(expr) if expr.exp == S.Half: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if expr.exp == -S.Half: sym = '/' if expr.base.is_number else './' return "1" + sym + "sqrt(%s)" % self._print(expr.base) if expr.exp == -S.One: sym = '/' if expr.base.is_number else './' return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, self.parenthesize(expr.exp, PREC)) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Pi(self, expr): if self._settings["inline"]: return "pi" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_ImaginaryUnit(self, expr): return "im" def _print_Exp1(self, expr): if self._settings["inline"]: return "e" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): if self._settings["inline"]: return "eulergamma" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_Catalan(self, expr): if self._settings["inline"]: return "catalan" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): if self._settings["inline"]: return "golden" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.tensor.indexed import IndexedBase # Copied from codeprinter, but remove special MatrixSymbol treatment lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Infinity(self, expr): return 'Inf' def _print_NegativeInfinity(self, expr): return '-Inf' def _print_NaN(self, expr): return 'NaN' def _print_list(self, expr): return 'Any[' + ', '.join(self._print(a) for a in expr) + ']' def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") _print_Tuple = _print_tuple def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return str(expr).lower() # Could generate quadrature code for definite Integrals? #_print_Integral = _print_not_supported def _print_MatrixBase(self, A): # Handle zero dimensions: if A.rows == 0 or A.cols == 0: return 'zeros(%s, %s)' % (A.rows, A.cols) elif (A.rows, A.cols) == (1, 1): return "[%s]" % A[0, 0] elif A.rows == 1: return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ') elif A.cols == 1: # note .table would unnecessarily equispace the rows return "[%s]" % ", ".join([self._print(a) for a in A]) return "[%s]" % A.table(self, rowstart='', rowend='', rowsep=';\n', colsep=' ') def _print_SparseMatrix(self, A): from sympy.matrices import Matrix L = A.col_list(); # make row vectors of the indices and entries I = Matrix([k[0] + 1 for k in L]) J = Matrix([k[1] + 1 for k in L]) AIJ = Matrix([k[2] for k in L]) return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), self._print(AIJ), A.rows, A.cols) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s,%s]' % (expr.i + 1, expr.j + 1) def _print_MatrixSlice(self, expr): def strslice(x, lim): l = x[0] + 1 h = x[1] step = x[2] lstr = self._print(l) hstr = 'end' if h == lim else self._print(h) if step == 1: if l == 1 and h == lim: return ':' if l == h: return lstr else: return lstr + ':' + hstr else: return ':'.join((lstr, self._print(step), hstr)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice, expr.parent.shape[0]) + ',' + strslice(expr.colslice, expr.parent.shape[1]) + ']') def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s[%s]" % (self._print(expr.base.label), ",".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_Identity(self, expr): return "eye(%s)" % self._print(expr.shape[0]) def _print_HadamardProduct(self, expr): return '.*'.join([self.parenthesize(arg, precedence(expr)) for arg in expr.args]) def _print_HadamardPower(self, expr): PREC = precedence(expr) return '.**'.join([ self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC) ]) # Note: as of 2015, Julia doesn't have spherical Bessel functions def _print_jn(self, expr): from sympy.functions import sqrt, besselj x = expr.argument expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) return self._print(expr2) def _print_yn(self, expr): from sympy.functions import sqrt, bessely x = expr.argument expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) return self._print(expr2) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if self._settings["inline"]: # Express each (cond, expr) pair in a nested Horner form: # (condition) .* (expr) + (not cond) .* (<others>) # Expressions that result in multiple statements won't work here. ecpairs = ["({0}) ? ({1}) :".format (self._print(c), self._print(e)) for e, c in expr.args[:-1]] elast = " (%s)" % self._print(expr.args[-1].expr) pw = "\n".join(ecpairs) + elast # Note: current need these outer brackets for 2*pw. Would be # nicer to teach parenthesize() to do this for us when needed! return "(" + pw + ")" else: for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s)" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("elseif (%s)" % self._print(c)) code0 = self._print(e) lines.append(code0) if i == len(expr.args) - 1: lines.append("end") return "\n".join(lines) def indent_code(self, code): """Accepts a string of code or a list of code lines""" # code mostly copied from ccode if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') dec_regex = ('^end$', '^elseif ', '^else$') # pre-strip left-space from the code code = [ line.lstrip(' \t') for line in code ] increase = [ int(any([search(re, line) for re in inc_regex])) for line in code ] decrease = [ int(any([search(re, line) for re in dec_regex])) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def julia_code(expr, assign_to=None, **settings): r"""Converts `expr` to a string of Julia code. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. Examples ======== >>> from sympy import julia_code, symbols, sin, pi >>> x = symbols('x') >>> julia_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x' >>> from sympy import Rational, ceiling, Abs >>> x, y, tau = symbols("x, y, tau") >>> julia_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)' Note that element-wise (Hadamard) operations are used by default between symbols. This is because its possible in Julia to write "vectorized" code. It is harmless if the values are scalars. >>> julia_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y)' If you need a matrix product "*" or matrix power "^", you can specify the symbol as a ``MatrixSymbol``. >>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> julia_code(3*pi*A**3) '(3*pi)*A^3' This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate: >>> julia_code(x**2*y*A**3) '(x.^2.*y)*A^3' Matrices are supported using Julia inline notation. When using ``assign_to`` with matrices, the name can be specified either as a string or as a ``MatrixSymbol``. The dimensions must align in the latter case. >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)]' ``Piecewise`` expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> julia_code(pw, assign_to=tau) 'tau = ((x > 0) ? (x + 1) : (x))' Note that any expression that can be generated normally can also exist inside a Matrix: >>> mat = Matrix([[x**2, pw, sin(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 ((x > 0) ? (x + 1) : (x)) sin(x)]' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Julia function. >>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_julia_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx, ccode >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> julia_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])./(t[i + 1] - t[i])' """ return JuliaCodePrinter(settings).doprint(expr, assign_to) def print_julia_code(expr, **settings): """Prints the Julia representation of the given expression. See `julia_code` for the meaning of the optional arguments. """ print(julia_code(expr, **settings))
fca10c524ef7e4618ec3bc7765fef41bff5bf5a9ac71e78fe8fb0a43b3b9a555
"""Integration method that emulates by-hand techniques. This module also provides functionality to get the steps used to evaluate a particular integral, in the ``integral_steps`` function. This will return nested namedtuples representing the integration rules used. The ``manualintegrate`` function computes the integral using those steps given an integrand; given the steps, ``_manualintegrate`` will evaluate them. The integrator can be extended with new heuristics and evaluation techniques. To do so, write a function that accepts an ``IntegralInfo`` object and returns either a namedtuple representing a rule or ``None``. Then, write another function that accepts the namedtuple's fields and returns the antiderivative, and decorate it with ``@evaluates(namedtuple_type)``. If the new technique requires a new match, add the key and call to the antiderivative function to integral_steps. To enable simple substitutions, add the match to find_substitutions. """ from __future__ import print_function, division from collections import namedtuple, defaultdict import sympy from sympy.core.compatibility import reduce, Mapping, iterable from sympy.core.containers import Dict from sympy.core.logic import fuzzy_not from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.polynomials import OrthogonalPolynomial from sympy.functions.elementary.piecewise import Piecewise from sympy.strategies.core import switch, do_one, null_safe, condition from sympy.core.relational import Eq, Ne from sympy.polys.polytools import degree from sympy.ntheory.factor_ import divisors ZERO = sympy.S.Zero def Rule(name, props=""): # GOTCHA: namedtuple class name not considered! def __eq__(self, other): return self.__class__ == other.__class__ and tuple.__eq__(self, other) __neq__ = lambda self, other: not __eq__(self, other) cls = namedtuple(name, props + " context symbol") cls.__eq__ = __eq__ cls.__ne__ = __neq__ return cls ConstantRule = Rule("ConstantRule", "constant") ConstantTimesRule = Rule("ConstantTimesRule", "constant other substep") PowerRule = Rule("PowerRule", "base exp") AddRule = Rule("AddRule", "substeps") URule = Rule("URule", "u_var u_func constant substep") PartsRule = Rule("PartsRule", "u dv v_step second_step") CyclicPartsRule = Rule("CyclicPartsRule", "parts_rules coefficient") TrigRule = Rule("TrigRule", "func arg") ExpRule = Rule("ExpRule", "base exp") ReciprocalRule = Rule("ReciprocalRule", "func") ArcsinRule = Rule("ArcsinRule") InverseHyperbolicRule = Rule("InverseHyperbolicRule", "func") AlternativeRule = Rule("AlternativeRule", "alternatives") DontKnowRule = Rule("DontKnowRule") DerivativeRule = Rule("DerivativeRule") RewriteRule = Rule("RewriteRule", "rewritten substep") PiecewiseRule = Rule("PiecewiseRule", "subfunctions") HeavisideRule = Rule("HeavisideRule", "harg ibnd substep") TrigSubstitutionRule = Rule("TrigSubstitutionRule", "theta func rewritten substep restriction") ArctanRule = Rule("ArctanRule", "a b c") ArccothRule = Rule("ArccothRule", "a b c") ArctanhRule = Rule("ArctanhRule", "a b c") JacobiRule = Rule("JacobiRule", "n a b") GegenbauerRule = Rule("GegenbauerRule", "n a") ChebyshevTRule = Rule("ChebyshevTRule", "n") ChebyshevURule = Rule("ChebyshevURule", "n") LegendreRule = Rule("LegendreRule", "n") HermiteRule = Rule("HermiteRule", "n") LaguerreRule = Rule("LaguerreRule", "n") AssocLaguerreRule = Rule("AssocLaguerreRule", "n a") CiRule = Rule("CiRule", "a b") ChiRule = Rule("ChiRule", "a b") EiRule = Rule("EiRule", "a b") SiRule = Rule("SiRule", "a b") ShiRule = Rule("ShiRule", "a b") ErfRule = Rule("ErfRule", "a b c") FresnelCRule = Rule("FresnelCRule", "a b c") FresnelSRule = Rule("FresnelSRule", "a b c") LiRule = Rule("LiRule", "a b") PolylogRule = Rule("PolylogRule", "a b") UpperGammaRule = Rule("UpperGammaRule", "a e") EllipticFRule = Rule("EllipticFRule", "a d") EllipticERule = Rule("EllipticERule", "a d") IntegralInfo = namedtuple('IntegralInfo', 'integrand symbol') evaluators = {} def evaluates(rule): def _evaluates(func): func.rule = rule evaluators[rule] = func return func return _evaluates def contains_dont_know(rule): if isinstance(rule, DontKnowRule): return True else: for val in rule: if isinstance(val, tuple): if contains_dont_know(val): return True elif isinstance(val, list): if any(contains_dont_know(i) for i in val): return True return False def manual_diff(f, symbol): """Derivative of f in form expected by find_substitutions SymPy's derivatives for some trig functions (like cot) aren't in a form that works well with finding substitutions; this replaces the derivatives for those particular forms with something that works better. """ if f.args: arg = f.args[0] if isinstance(f, sympy.tan): return arg.diff(symbol) * sympy.sec(arg)**2 elif isinstance(f, sympy.cot): return -arg.diff(symbol) * sympy.csc(arg)**2 elif isinstance(f, sympy.sec): return arg.diff(symbol) * sympy.sec(arg) * sympy.tan(arg) elif isinstance(f, sympy.csc): return -arg.diff(symbol) * sympy.csc(arg) * sympy.cot(arg) elif isinstance(f, sympy.Add): return sum([manual_diff(arg, symbol) for arg in f.args]) elif isinstance(f, sympy.Mul): if len(f.args) == 2 and isinstance(f.args[0], sympy.Number): return f.args[0] * manual_diff(f.args[1], symbol) return f.diff(symbol) def manual_subs(expr, *args): """ A wrapper for `expr.subs(*args)` with additional logic for substitution of invertible functions. """ if len(args) == 1: sequence = args[0] if isinstance(sequence, (Dict, Mapping)): sequence = sequence.items() elif not iterable(sequence): raise ValueError("Expected an iterable of (old, new) pairs") elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") new_subs = [] for old, new in sequence: if isinstance(old, sympy.log): # If log(x) = y, then exp(a*log(x)) = exp(a*y) # that is, x**a = exp(a*y). Replace nontrivial powers of x # before subs turns them into `exp(y)**a`, but # do not replace x itself yet, to avoid `log(exp(y))`. x0 = old.args[0] expr = expr.replace(lambda x: x.is_Pow and x.base == x0, lambda x: sympy.exp(x.exp*new)) new_subs.append((x0, sympy.exp(new))) return expr.subs(list(sequence) + new_subs) # Method based on that on SIN, described in "Symbolic Integration: The # Stormy Decade" def find_substitutions(integrand, symbol, u_var): results = [] def test_subterm(u, u_diff): if u_diff == 0: return False substituted = integrand / u_diff if symbol not in substituted.free_symbols: # replaced everything already return False substituted = manual_subs(substituted, u, u_var).cancel() if symbol not in substituted.free_symbols: # avoid increasing the degree of a rational function if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var): deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()]) deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()]) if deg_after > deg_before: return False return substituted.as_independent(u_var, as_Add=False) # special treatment for substitutions u = (a*x+b)**(1/n) if (isinstance(u, sympy.Pow) and (1/u.exp).is_Integer and sympy.Abs(u.exp) < 1): a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) match = u.base.match(a*symbol + b) if match: a, b = [match.get(i, ZERO) for i in (a, b)] if a != 0 and b != 0: substituted = substituted.subs(symbol, (u_var**(1/u.exp) - b)/a) return substituted.as_independent(u_var, as_Add=False) return False def possible_subterms(term): if isinstance(term, (TrigonometricFunction, sympy.asin, sympy.acos, sympy.atan, sympy.exp, sympy.log, sympy.Heaviside)): return [term.args[0]] elif isinstance(term, (sympy.chebyshevt, sympy.chebyshevu, sympy.legendre, sympy.hermite, sympy.laguerre)): return [term.args[1]] elif isinstance(term, (sympy.gegenbauer, sympy.assoc_laguerre)): return [term.args[2]] elif isinstance(term, sympy.jacobi): return [term.args[3]] elif isinstance(term, sympy.Mul): r = [] for u in term.args: r.append(u) r.extend(possible_subterms(u)) return r elif isinstance(term, sympy.Pow): r = [] if term.args[1].is_constant(symbol): r.append(term.args[0]) elif term.args[0].is_constant(symbol): r.append(term.args[1]) if term.args[1].is_Integer: r.extend([term.args[0]**d for d in divisors(term.args[1]) if 1 < d < abs(term.args[1])]) if term.args[0].is_Add: r.extend([t for t in possible_subterms(term.args[0]) if t.is_Pow]) return r elif isinstance(term, sympy.Add): r = [] for arg in term.args: r.append(arg) r.extend(possible_subterms(arg)) return r return [] for u in possible_subterms(integrand): if u == symbol: continue u_diff = manual_diff(u, symbol) new_integrand = test_subterm(u, u_diff) if new_integrand is not False: constant, new_integrand = new_integrand if new_integrand == integrand.subs(symbol, u_var): continue substitution = (u, constant, new_integrand) if substitution not in results: results.append(substitution) return results def rewriter(condition, rewrite): """Strategy that rewrites an integrand.""" def _rewriter(integral): integrand, symbol = integral if condition(*integral): rewritten = rewrite(*integral) if rewritten != integrand: substep = integral_steps(rewritten, symbol) if not isinstance(substep, DontKnowRule) and substep: return RewriteRule( rewritten, substep, integrand, symbol) return _rewriter def proxy_rewriter(condition, rewrite): """Strategy that rewrites an integrand based on some other criteria.""" def _proxy_rewriter(criteria): criteria, integral = criteria integrand, symbol = integral args = criteria + list(integral) if condition(*args): rewritten = rewrite(*args) if rewritten != integrand: return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol) return _proxy_rewriter def multiplexer(conditions): """Apply the rule that matches the condition, else None""" def multiplexer_rl(expr): for key, rule in conditions.items(): if key(expr): return rule(expr) return multiplexer_rl def alternatives(*rules): """Strategy that makes an AlternativeRule out of multiple possible results.""" def _alternatives(integral): alts = [] for rule in rules: result = rule(integral) if (result and not isinstance(result, DontKnowRule) and result != integral and result not in alts): alts.append(result) if len(alts) == 1: return alts[0] elif alts: doable = [rule for rule in alts if not contains_dont_know(rule)] if doable: return AlternativeRule(doable, *integral) else: return AlternativeRule(alts, *integral) return _alternatives def constant_rule(integral): integrand, symbol = integral return ConstantRule(integral.integrand, *integral) def power_rule(integral): integrand, symbol = integral base, exp = integrand.as_base_exp() if symbol not in exp.free_symbols and isinstance(base, sympy.Symbol): if sympy.simplify(exp + 1) == 0: return ReciprocalRule(base, integrand, symbol) return PowerRule(base, exp, integrand, symbol) elif symbol not in base.free_symbols and isinstance(exp, sympy.Symbol): rule = ExpRule(base, exp, integrand, symbol) if fuzzy_not(sympy.log(base).is_zero): return rule elif sympy.log(base).is_zero: return ConstantRule(1, 1, symbol) return PiecewiseRule([ (rule, sympy.Ne(sympy.log(base), 0)), (ConstantRule(1, 1, symbol), True) ], integrand, symbol) def exp_rule(integral): integrand, symbol = integral if isinstance(integrand.args[0], sympy.Symbol): return ExpRule(sympy.E, integrand.args[0], integrand, symbol) def orthogonal_poly_rule(integral): orthogonal_poly_classes = { sympy.jacobi: JacobiRule, sympy.gegenbauer: GegenbauerRule, sympy.chebyshevt: ChebyshevTRule, sympy.chebyshevu: ChebyshevURule, sympy.legendre: LegendreRule, sympy.hermite: HermiteRule, sympy.laguerre: LaguerreRule, sympy.assoc_laguerre: AssocLaguerreRule } orthogonal_poly_var_index = { sympy.jacobi: 3, sympy.gegenbauer: 2, sympy.assoc_laguerre: 2 } integrand, symbol = integral for klass in orthogonal_poly_classes: if isinstance(integrand, klass): var_index = orthogonal_poly_var_index.get(klass, 1) if (integrand.args[var_index] is symbol and not any(v.has(symbol) for v in integrand.args[:var_index])): args = integrand.args[:var_index] + (integrand, symbol) return orthogonal_poly_classes[klass](*args) def special_function_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol], properties=[lambda x: not x.is_zero]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c', exclude=[symbol]) d = sympy.Wild('d', exclude=[symbol], properties=[lambda x: not x.is_zero]) e = sympy.Wild('e', exclude=[symbol], properties=[ lambda x: not (x.is_nonnegative and x.is_integer)]) wilds = (a, b, c, d, e) # patterns consist of a SymPy class, a wildcard expr, an optional # condition coded as a lambda (when Wild properties are not enough), # followed by an applicable rule patterns = ( (sympy.Mul, sympy.exp(a*symbol + b)/symbol, None, EiRule), (sympy.Mul, sympy.cos(a*symbol + b)/symbol, None, CiRule), (sympy.Mul, sympy.cosh(a*symbol + b)/symbol, None, ChiRule), (sympy.Mul, sympy.sin(a*symbol + b)/symbol, None, SiRule), (sympy.Mul, sympy.sinh(a*symbol + b)/symbol, None, ShiRule), (sympy.Pow, 1/sympy.log(a*symbol + b), None, LiRule), (sympy.exp, sympy.exp(a*symbol**2 + b*symbol + c), None, ErfRule), (sympy.sin, sympy.sin(a*symbol**2 + b*symbol + c), None, FresnelSRule), (sympy.cos, sympy.cos(a*symbol**2 + b*symbol + c), None, FresnelCRule), (sympy.Mul, symbol**e*sympy.exp(a*symbol), None, UpperGammaRule), (sympy.Mul, sympy.polylog(b, a*symbol)/symbol, None, PolylogRule), (sympy.Pow, 1/sympy.sqrt(a - d*sympy.sin(symbol)**2), lambda a, d: a != d, EllipticFRule), (sympy.Pow, sympy.sqrt(a - d*sympy.sin(symbol)**2), lambda a, d: a != d, EllipticERule), ) for p in patterns: if isinstance(integrand, p[0]): match = integrand.match(p[1]) if match: wild_vals = tuple(match.get(w) for w in wilds if match.get(w) is not None) if p[2] is None or p[2](*wild_vals): args = wild_vals + (integrand, symbol) return p[3](*args) def inverse_trig_rule(integral): integrand, symbol = integral base, exp = integrand.as_base_exp() a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) match = base.match(a + b*symbol**2) if not match: return def negative(x): return x.is_negative or x.could_extract_minus_sign() def ArcsinhRule(integrand, symbol): return InverseHyperbolicRule(sympy.asinh, integrand, symbol) def ArccoshRule(integrand, symbol): return InverseHyperbolicRule(sympy.acosh, integrand, symbol) def make_inverse_trig(RuleClass, base_exp, a, sign_a, b, sign_b): u_var = sympy.Dummy("u") current_base = base current_symbol = symbol constant = u_func = u_constant = substep = None factored = integrand if a != 1: constant = a**base_exp current_base = sign_a + sign_b * (b/a) * current_symbol**2 factored = current_base ** base_exp if (b/a) != 1: u_func = sympy.sqrt(b/a) * symbol u_constant = sympy.sqrt(a/b) current_symbol = u_var current_base = sign_a + sign_b * current_symbol**2 substep = RuleClass(current_base ** base_exp, current_symbol) if u_func is not None: if u_constant != 1 and substep is not None: substep = ConstantTimesRule( u_constant, current_base ** base_exp, substep, u_constant * current_base ** base_exp, symbol) substep = URule(u_var, u_func, u_constant, substep, factored, symbol) if constant is not None and substep is not None: substep = ConstantTimesRule(constant, factored, substep, integrand, symbol) return substep a, b = [match.get(i, ZERO) for i in (a, b)] # list of (rule, base_exp, a, sign_a, b, sign_b, condition) possibilities = [] if sympy.simplify(2*exp + 1) == 0: possibilities.append((ArcsinRule, exp, a, 1, -b, -1, sympy.And(a > 0, b < 0))) possibilities.append((ArcsinhRule, exp, a, 1, b, 1, sympy.And(a > 0, b > 0))) possibilities.append((ArccoshRule, exp, -a, -1, b, 1, sympy.And(a < 0, b > 0))) possibilities = [p for p in possibilities if p[-1] is not sympy.false] if a.is_number and b.is_number: possibility = [p for p in possibilities if p[-1] is sympy.true] if len(possibility) == 1: return make_inverse_trig(*possibility[0][:-1]) elif possibilities: return PiecewiseRule( [(make_inverse_trig(*p[:-1]), p[-1]) for p in possibilities], integrand, symbol) def add_rule(integral): integrand, symbol = integral results = [integral_steps(g, symbol) for g in integrand.as_ordered_terms()] return None if None in results else AddRule(results, integrand, symbol) def mul_rule(integral): integrand, symbol = integral # Constant times function case coeff, f = integrand.as_independent(symbol) next_step = integral_steps(f, symbol) if coeff != 1 and next_step is not None: return ConstantTimesRule( coeff, f, next_step, integrand, symbol) def _parts_rule(integrand, symbol): # LIATE rule: # log, inverse trig, algebraic, trigonometric, exponential def pull_out_algebraic(integrand): integrand = integrand.cancel().together() # iterating over Piecewise args would not work here algebraic = ([] if isinstance(integrand, sympy.Piecewise) else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)]) if algebraic: u = sympy.Mul(*algebraic) dv = (integrand / u).cancel() return u, dv def pull_out_u(*functions): def pull_out_u_rl(integrand): if any([integrand.has(f) for f in functions]): args = [arg for arg in integrand.args if any(isinstance(arg, cls) for cls in functions)] if args: u = reduce(lambda a,b: a*b, args) dv = integrand / u return u, dv return pull_out_u_rl liate_rules = [pull_out_u(sympy.log), pull_out_u(sympy.atan, sympy.asin, sympy.acos), pull_out_algebraic, pull_out_u(sympy.sin, sympy.cos), pull_out_u(sympy.exp)] dummy = sympy.Dummy("temporary") # we can integrate log(x) and atan(x) by setting dv = 1 if isinstance(integrand, (sympy.log, sympy.atan, sympy.asin, sympy.acos)): integrand = dummy * integrand for index, rule in enumerate(liate_rules): result = rule(integrand) if result: u, dv = result # Don't pick u to be a constant if possible if symbol not in u.free_symbols and not u.has(dummy): return u = u.subs(dummy, 1) dv = dv.subs(dummy, 1) # Don't pick a non-polynomial algebraic to be differentiated if rule == pull_out_algebraic and not u.is_polynomial(symbol): return # Don't trade one logarithm for another if isinstance(u, sympy.log): rec_dv = 1/dv if (rec_dv.is_polynomial(symbol) and degree(rec_dv, symbol) == 1): return # Can integrate a polynomial times OrthogonalPolynomial if rule == pull_out_algebraic and isinstance(dv, OrthogonalPolynomial): v_step = integral_steps(dv, symbol) if contains_dont_know(v_step): return else: du = u.diff(symbol) v = _manualintegrate(v_step) return u, dv, v, du, v_step # make sure dv is amenable to integration accept = False if index < 2: # log and inverse trig are usually worth trying accept = True elif (rule == pull_out_algebraic and dv.args and all(isinstance(a, (sympy.sin, sympy.cos, sympy.exp)) for a in dv.args)): accept = True else: for rule in liate_rules[index + 1:]: r = rule(integrand) if r and r[0].subs(dummy, 1).equals(dv): accept = True break if accept: du = u.diff(symbol) v_step = integral_steps(sympy.simplify(dv), symbol) if not contains_dont_know(v_step): v = _manualintegrate(v_step) return u, dv, v, du, v_step def parts_rule(integral): integrand, symbol = integral constant, integrand = integrand.as_coeff_Mul() result = _parts_rule(integrand, symbol) steps = [] if result: u, dv, v, du, v_step = result steps.append(result) if isinstance(v, sympy.Integral): return # Set a limit on the number of times u can be used if isinstance(u, (sympy.sin, sympy.cos, sympy.exp, sympy.sinh, sympy.cosh)): cachekey = u.xreplace({symbol: _cache_dummy}) if _parts_u_cache[cachekey] > 2: return _parts_u_cache[cachekey] += 1 # Try cyclic integration by parts a few times for _ in range(4): coefficient = ((v * du) / integrand).cancel() if coefficient == 1: break if symbol not in coefficient.free_symbols: rule = CyclicPartsRule( [PartsRule(u, dv, v_step, None, None, None) for (u, dv, v, du, v_step) in steps], (-1) ** len(steps) * coefficient, integrand, symbol ) if (constant != 1) and rule: rule = ConstantTimesRule(constant, integrand, rule, constant * integrand, symbol) return rule # _parts_rule is sensitive to constants, factor it out next_constant, next_integrand = (v * du).as_coeff_Mul() result = _parts_rule(next_integrand, symbol) if result: u, dv, v, du, v_step = result u *= next_constant du *= next_constant steps.append((u, dv, v, du, v_step)) else: break def make_second_step(steps, integrand): if steps: u, dv, v, du, v_step = steps[0] return PartsRule(u, dv, v_step, make_second_step(steps[1:], v * du), integrand, symbol) else: steps = integral_steps(integrand, symbol) if steps: return steps else: return DontKnowRule(integrand, symbol) if steps: u, dv, v, du, v_step = steps[0] rule = PartsRule(u, dv, v_step, make_second_step(steps[1:], v * du), integrand, symbol) if (constant != 1) and rule: rule = ConstantTimesRule(constant, integrand, rule, constant * integrand, symbol) return rule def trig_rule(integral): integrand, symbol = integral if isinstance(integrand, sympy.sin) or isinstance(integrand, sympy.cos): arg = integrand.args[0] if not isinstance(arg, sympy.Symbol): return # perhaps a substitution can deal with it if isinstance(integrand, sympy.sin): func = 'sin' else: func = 'cos' return TrigRule(func, arg, integrand, symbol) if integrand == sympy.sec(symbol)**2: return TrigRule('sec**2', symbol, integrand, symbol) elif integrand == sympy.csc(symbol)**2: return TrigRule('csc**2', symbol, integrand, symbol) if isinstance(integrand, sympy.tan): rewritten = sympy.sin(*integrand.args) / sympy.cos(*integrand.args) elif isinstance(integrand, sympy.cot): rewritten = sympy.cos(*integrand.args) / sympy.sin(*integrand.args) elif isinstance(integrand, sympy.sec): arg = integrand.args[0] rewritten = ((sympy.sec(arg)**2 + sympy.tan(arg) * sympy.sec(arg)) / (sympy.sec(arg) + sympy.tan(arg))) elif isinstance(integrand, sympy.csc): arg = integrand.args[0] rewritten = ((sympy.csc(arg)**2 + sympy.cot(arg) * sympy.csc(arg)) / (sympy.csc(arg) + sympy.cot(arg))) else: return return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol ) def trig_product_rule(integral): integrand, symbol = integral sectan = sympy.sec(symbol) * sympy.tan(symbol) q = integrand / sectan if symbol not in q.free_symbols: rule = TrigRule('sec*tan', symbol, sectan, symbol) if q != 1 and rule: rule = ConstantTimesRule(q, sectan, rule, integrand, symbol) return rule csccot = -sympy.csc(symbol) * sympy.cot(symbol) q = integrand / csccot if symbol not in q.free_symbols: rule = TrigRule('csc*cot', symbol, csccot, symbol) if q != 1 and rule: rule = ConstantTimesRule(q, csccot, rule, integrand, symbol) return rule def quadratic_denom_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c', exclude=[symbol]) match = integrand.match(a / (b * symbol ** 2 + c)) if match: a, b, c = match[a], match[b], match[c] if b.is_extended_real and c.is_extended_real: return PiecewiseRule([(ArctanRule(a, b, c, integrand, symbol), sympy.Gt(c / b, 0)), (ArccothRule(a, b, c, integrand, symbol), sympy.And(sympy.Gt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))), (ArctanhRule(a, b, c, integrand, symbol), sympy.And(sympy.Lt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))), ], integrand, symbol) else: return ArctanRule(a, b, c, integrand, symbol) d = sympy.Wild('d', exclude=[symbol]) match2 = integrand.match(a / (b * symbol ** 2 + c * symbol + d)) if match2: b, c = match2[b], match2[c] if b.is_zero: return u = sympy.Dummy('u') u_func = symbol + c/(2*b) integrand2 = integrand.subs(symbol, u - c / (2*b)) next_step = integral_steps(integrand2, u) if next_step: return URule(u, u_func, None, next_step, integrand2, symbol) else: return e = sympy.Wild('e', exclude=[symbol]) match3 = integrand.match((a* symbol + b) / (c * symbol ** 2 + d * symbol + e)) if match3: a, b, c, d, e = match3[a], match3[b], match3[c], match3[d], match3[e] if c.is_zero: return denominator = c * symbol**2 + d * symbol + e const = a/(2*c) numer1 = (2*c*symbol+d) numer2 = - const*d + b u = sympy.Dummy('u') step1 = URule(u, denominator, const, integral_steps(u**(-1), u), integrand, symbol) if const != 1: step1 = ConstantTimesRule(const, numer1/denominator, step1, const*numer1/denominator, symbol) if numer2.is_zero: return step1 step2 = integral_steps(numer2/denominator, symbol) substeps = AddRule([step1, step2], integrand, symbol) rewriten = const*numer1/denominator+numer2/denominator return RewriteRule(rewriten, substeps, integrand, symbol) return def root_mul_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c') match = integrand.match(sympy.sqrt(a * symbol + b) * c) if not match: return a, b, c = match[a], match[b], match[c] d = sympy.Wild('d', exclude=[symbol]) e = sympy.Wild('e', exclude=[symbol]) f = sympy.Wild('f') recursion_test = c.match(sympy.sqrt(d * symbol + e) * f) if recursion_test: return u = sympy.Dummy('u') u_func = sympy.sqrt(a * symbol + b) integrand = integrand.subs(u_func, u) integrand = integrand.subs(symbol, (u**2 - b) / a) integrand = integrand * 2 * u / a next_step = integral_steps(integrand, u) if next_step: return URule(u, u_func, None, next_step, integrand, symbol) @sympy.cacheit def make_wilds(symbol): a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) m = sympy.Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)]) n = sympy.Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)]) return a, b, m, n @sympy.cacheit def sincos_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.sin(a*symbol)**m * sympy.cos(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def tansec_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.tan(a*symbol)**m * sympy.sec(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def cotcsc_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.cot(a*symbol)**m * sympy.csc(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def heaviside_pattern(symbol): m = sympy.Wild('m', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) g = sympy.Wild('g') pattern = sympy.Heaviside(m*symbol + b) * g return pattern, m, b, g def uncurry(func): def uncurry_rl(args): return func(*args) return uncurry_rl def trig_rewriter(rewrite): def trig_rewriter_rl(args): a, b, m, n, integrand, symbol = args rewritten = rewrite(a, b, m, n, integrand, symbol) if rewritten != integrand: return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol) return trig_rewriter_rl sincos_botheven_condition = uncurry( lambda a, b, m, n, i, s: m.is_even and n.is_even and m.is_nonnegative and n.is_nonnegative) sincos_botheven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (((1 - sympy.cos(2*a*symbol)) / 2) ** (m / 2)) * (((1 + sympy.cos(2*b*symbol)) / 2) ** (n / 2)) )) sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3) sincos_sinodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 - sympy.cos(a*symbol)**2)**((m - 1) / 2) * sympy.sin(a*symbol) * sympy.cos(b*symbol) ** n)) sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3) sincos_cosodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 - sympy.sin(b*symbol)**2)**((n - 1) / 2) * sympy.cos(b*symbol) * sympy.sin(a*symbol) ** m)) tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4) tansec_seceven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 + sympy.tan(b*symbol)**2) ** (n/2 - 1) * sympy.sec(b*symbol)**2 * sympy.tan(a*symbol) ** m )) tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd) tansec_tanodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (sympy.sec(a*symbol)**2 - 1) ** ((m - 1) / 2) * sympy.tan(a*symbol) * sympy.sec(b*symbol) ** n )) tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0) tan_tansquared = trig_rewriter( lambda a, b, m, n, i, symbol: ( sympy.sec(a*symbol)**2 - 1)) cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4) cotcsc_csceven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 + sympy.cot(b*symbol)**2) ** (n/2 - 1) * sympy.csc(b*symbol)**2 * sympy.cot(a*symbol) ** m )) cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd) cotcsc_cotodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (sympy.csc(a*symbol)**2 - 1) ** ((m - 1) / 2) * sympy.cot(a*symbol) * sympy.csc(b*symbol) ** n )) def trig_sincos_rule(integral): integrand, symbol = integral if any(integrand.has(f) for f in (sympy.sin, sympy.cos)): pattern, a, b, m, n = sincos_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ sincos_botheven_condition: sincos_botheven, sincos_sinodd_condition: sincos_sinodd, sincos_cosodd_condition: sincos_cosodd })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_tansec_rule(integral): integrand, symbol = integral integrand = integrand.subs({ 1 / sympy.cos(symbol): sympy.sec(symbol) }) if any(integrand.has(f) for f in (sympy.tan, sympy.sec)): pattern, a, b, m, n = tansec_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ tansec_tanodd_condition: tansec_tanodd, tansec_seceven_condition: tansec_seceven, tan_tansquared_condition: tan_tansquared })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_cotcsc_rule(integral): integrand, symbol = integral integrand = integrand.subs({ 1 / sympy.sin(symbol): sympy.csc(symbol), 1 / sympy.tan(symbol): sympy.cot(symbol), sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol) }) if any(integrand.has(f) for f in (sympy.cot, sympy.csc)): pattern, a, b, m, n = cotcsc_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ cotcsc_cotodd_condition: cotcsc_cotodd, cotcsc_csceven_condition: cotcsc_csceven })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_sindouble_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[sympy.sin(2*symbol)]) match = integrand.match(sympy.sin(2*symbol)*a) if match: sin_double = 2*sympy.sin(symbol)*sympy.cos(symbol)/sympy.sin(2*symbol) return integral_steps(integrand * sin_double, symbol) def trig_powers_products_rule(integral): return do_one(null_safe(trig_sincos_rule), null_safe(trig_tansec_rule), null_safe(trig_cotcsc_rule), null_safe(trig_sindouble_rule))(integral) def trig_substitution_rule(integral): integrand, symbol = integral A = sympy.Wild('a', exclude=[0, symbol]) B = sympy.Wild('b', exclude=[0, symbol]) theta = sympy.Dummy("theta") target_pattern = A + B*symbol**2 matches = integrand.find(target_pattern) for expr in matches: match = expr.match(target_pattern) a = match.get(A, ZERO) b = match.get(B, ZERO) a_positive = ((a.is_number and a > 0) or a.is_positive) b_positive = ((b.is_number and b > 0) or b.is_positive) a_negative = ((a.is_number and a < 0) or a.is_negative) b_negative = ((b.is_number and b < 0) or b.is_negative) x_func = None if a_positive and b_positive: # a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2 x_func = (sympy.sqrt(a)/sympy.sqrt(b)) * sympy.tan(theta) # Do not restrict the domain: tan(theta) takes on any real # value on the interval -pi/2 < theta < pi/2 so x takes on # any value restriction = True elif a_positive and b_negative: # a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2 constant = sympy.sqrt(a)/sympy.sqrt(-b) x_func = constant * sympy.sin(theta) restriction = sympy.And(symbol > -constant, symbol < constant) elif a_negative and b_positive: # b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi constant = sympy.sqrt(-a)/sympy.sqrt(b) x_func = constant * sympy.sec(theta) restriction = sympy.And(symbol > -constant, symbol < constant) if x_func: # Manually simplify sqrt(trig(theta)**2) to trig(theta) # Valid due to assumed domain restriction substitutions = {} for f in [sympy.sin, sympy.cos, sympy.tan, sympy.sec, sympy.csc, sympy.cot]: substitutions[sympy.sqrt(f(theta)**2)] = f(theta) substitutions[sympy.sqrt(f(theta)**(-2))] = 1/f(theta) replaced = integrand.subs(symbol, x_func).trigsimp() replaced = manual_subs(replaced, substitutions) if not replaced.has(symbol): replaced *= manual_diff(x_func, theta) replaced = replaced.trigsimp() secants = replaced.find(1/sympy.cos(theta)) if secants: replaced = replaced.xreplace({ 1/sympy.cos(theta): sympy.sec(theta) }) substep = integral_steps(replaced, theta) if not contains_dont_know(substep): return TrigSubstitutionRule( theta, x_func, replaced, substep, restriction, integrand, symbol) def heaviside_rule(integral): integrand, symbol = integral pattern, m, b, g = heaviside_pattern(symbol) match = integrand.match(pattern) if match and 0 != match[g]: # f = Heaviside(m*x + b)*g v_step = integral_steps(match[g], symbol) result = _manualintegrate(v_step) m, b = match[m], match[b] return HeavisideRule(m*symbol + b, -b/m, result, integrand, symbol) def substitution_rule(integral): integrand, symbol = integral u_var = sympy.Dummy("u") substitutions = find_substitutions(integrand, symbol, u_var) if substitutions: ways = [] for u_func, c, substituted in substitutions: subrule = integral_steps(substituted, u_var) if contains_dont_know(subrule): continue if sympy.simplify(c - 1) != 0: _, denom = c.as_numer_denom() if subrule: subrule = ConstantTimesRule(c, substituted, subrule, substituted, u_var) if denom.free_symbols: piecewise = [] could_be_zero = [] if isinstance(denom, sympy.Mul): could_be_zero = denom.args else: could_be_zero.append(denom) for expr in could_be_zero: if not fuzzy_not(expr.is_zero): substep = integral_steps(manual_subs(integrand, expr, 0), symbol) if substep: piecewise.append(( substep, sympy.Eq(expr, 0) )) piecewise.append((subrule, True)) subrule = PiecewiseRule(piecewise, substituted, symbol) ways.append(URule(u_var, u_func, c, subrule, integrand, symbol)) if len(ways) > 1: return AlternativeRule(ways, integrand, symbol) elif ways: return ways[0] elif integrand.has(sympy.exp): u_func = sympy.exp(symbol) c = 1 substituted = integrand / u_func.diff(symbol) substituted = substituted.subs(u_func, u_var) if symbol not in substituted.free_symbols: return URule(u_var, u_func, c, integral_steps(substituted, u_var), integrand, symbol) partial_fractions_rule = rewriter( lambda integrand, symbol: integrand.is_rational_function(), lambda integrand, symbol: integrand.apart(symbol)) cancel_rule = rewriter( # lambda integrand, symbol: integrand.is_algebraic_expr(), # lambda integrand, symbol: isinstance(integrand, sympy.Mul), lambda integrand, symbol: True, lambda integrand, symbol: integrand.cancel()) distribute_expand_rule = rewriter( lambda integrand, symbol: ( all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args) or isinstance(integrand, sympy.Pow) or isinstance(integrand, sympy.Mul)), lambda integrand, symbol: integrand.expand()) trig_expand_rule = rewriter( # If there are trig functions with different arguments, expand them lambda integrand, symbol: ( len(set(a.args[0] for a in integrand.atoms(TrigonometricFunction))) > 1), lambda integrand, symbol: integrand.expand(trig=True)) def derivative_rule(integral): integrand = integral[0] diff_variables = integrand.variables undifferentiated_function = integrand.expr integrand_variables = undifferentiated_function.free_symbols if integral.symbol in integrand_variables: if integral.symbol in diff_variables: return DerivativeRule(*integral) else: return DontKnowRule(integrand, integral.symbol) else: return ConstantRule(integral.integrand, *integral) def rewrites_rule(integral): integrand, symbol = integral if integrand.match(1/sympy.cos(symbol)): rewritten = integrand.subs(1/sympy.cos(symbol), sympy.sec(symbol)) return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol) def fallback_rule(integral): return DontKnowRule(*integral) # Cache is used to break cyclic integrals. # Need to use the same dummy variable in cached expressions for them to match. # Also record "u" of integration by parts, to avoid infinite repetition. _integral_cache = {} _parts_u_cache = defaultdict(int) _cache_dummy = sympy.Dummy("z") def integral_steps(integrand, symbol, **options): """Returns the steps needed to compute an integral. This function attempts to mirror what a student would do by hand as closely as possible. SymPy Gamma uses this to provide a step-by-step explanation of an integral. The code it uses to format the results of this function can be found at https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py. Examples ======== >>> from sympy import exp, sin, cos >>> from sympy.integrals.manualintegrate import integral_steps >>> from sympy.abc import x >>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \ # doctest: +NORMALIZE_WHITESPACE URule(u_var=_u, u_func=exp(x), constant=1, substep=PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), True), (ArccothRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False), (ArctanhRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False)], context=1/(_u**2 + 1), symbol=_u), context=exp(x)/(exp(2*x) + 1), symbol=x) >>> print(repr(integral_steps(sin(x), x))) \ # doctest: +NORMALIZE_WHITESPACE TrigRule(func='sin', arg=x, context=sin(x), symbol=x) >>> print(repr(integral_steps((x**2 + 3)**2 , x))) \ # doctest: +NORMALIZE_WHITESPACE RewriteRule(rewritten=x**4 + 6*x**2 + 9, substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x), ConstantTimesRule(constant=6, other=x**2, substep=PowerRule(base=x, exp=2, context=x**2, symbol=x), context=6*x**2, symbol=x), ConstantRule(constant=9, context=9, symbol=x)], context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x) Returns ======= rule : namedtuple The first step; most rules have substeps that must also be considered. These substeps can be evaluated using ``manualintegrate`` to obtain a result. """ cachekey = integrand.xreplace({symbol: _cache_dummy}) if cachekey in _integral_cache: if _integral_cache[cachekey] is None: # Stop this attempt, because it leads around in a loop return DontKnowRule(integrand, symbol) else: # TODO: This is for future development, as currently # _integral_cache gets no values other than None return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol), symbol) else: _integral_cache[cachekey] = None integral = IntegralInfo(integrand, symbol) def key(integral): integrand = integral.integrand if isinstance(integrand, TrigonometricFunction): return TrigonometricFunction elif isinstance(integrand, sympy.Derivative): return sympy.Derivative elif symbol not in integrand.free_symbols: return sympy.Number else: for cls in (sympy.Pow, sympy.Symbol, sympy.exp, sympy.log, sympy.Add, sympy.Mul, sympy.atan, sympy.asin, sympy.acos, sympy.Heaviside, OrthogonalPolynomial): if isinstance(integrand, cls): return cls def integral_is_subclass(*klasses): def _integral_is_subclass(integral): k = key(integral) return k and issubclass(k, klasses) return _integral_is_subclass result = do_one( null_safe(special_function_rule), null_safe(switch(key, { sympy.Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule), \ null_safe(quadratic_denom_rule)), sympy.Symbol: power_rule, sympy.exp: exp_rule, sympy.Add: add_rule, sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule), \ null_safe(heaviside_rule), null_safe(quadratic_denom_rule), \ null_safe(root_mul_rule)), sympy.Derivative: derivative_rule, TrigonometricFunction: trig_rule, sympy.Heaviside: heaviside_rule, OrthogonalPolynomial: orthogonal_poly_rule, sympy.Number: constant_rule })), do_one( null_safe(trig_rule), null_safe(alternatives( rewrites_rule, substitution_rule, condition( integral_is_subclass(sympy.Mul, sympy.Pow), partial_fractions_rule), condition( integral_is_subclass(sympy.Mul, sympy.Pow), cancel_rule), condition( integral_is_subclass(sympy.Mul, sympy.log, sympy.atan, sympy.asin, sympy.acos), parts_rule), condition( integral_is_subclass(sympy.Mul, sympy.Pow), distribute_expand_rule), trig_powers_products_rule, trig_expand_rule )), null_safe(trig_substitution_rule) ), fallback_rule)(integral) del _integral_cache[cachekey] return result @evaluates(ConstantRule) def eval_constant(constant, integrand, symbol): return constant * symbol @evaluates(ConstantTimesRule) def eval_constanttimes(constant, other, substep, integrand, symbol): return constant * _manualintegrate(substep) @evaluates(PowerRule) def eval_power(base, exp, integrand, symbol): return sympy.Piecewise( ((base**(exp + 1))/(exp + 1), sympy.Ne(exp, -1)), (sympy.log(base), True), ) @evaluates(ExpRule) def eval_exp(base, exp, integrand, symbol): return integrand / sympy.ln(base) @evaluates(AddRule) def eval_add(substeps, integrand, symbol): return sum(map(_manualintegrate, substeps)) @evaluates(URule) def eval_u(u_var, u_func, constant, substep, integrand, symbol): result = _manualintegrate(substep) if u_func.is_Pow and u_func.exp == -1: # avoid needless -log(1/x) from substitution result = result.subs(sympy.log(u_var), -sympy.log(u_func.base)) return result.subs(u_var, u_func) @evaluates(PartsRule) def eval_parts(u, dv, v_step, second_step, integrand, symbol): v = _manualintegrate(v_step) return u * v - _manualintegrate(second_step) @evaluates(CyclicPartsRule) def eval_cyclicparts(parts_rules, coefficient, integrand, symbol): coefficient = 1 - coefficient result = [] sign = 1 for rule in parts_rules: result.append(sign * rule.u * _manualintegrate(rule.v_step)) sign *= -1 return sympy.Add(*result) / coefficient @evaluates(TrigRule) def eval_trig(func, arg, integrand, symbol): if func == 'sin': return -sympy.cos(arg) elif func == 'cos': return sympy.sin(arg) elif func == 'sec*tan': return sympy.sec(arg) elif func == 'csc*cot': return sympy.csc(arg) elif func == 'sec**2': return sympy.tan(arg) elif func == 'csc**2': return -sympy.cot(arg) @evaluates(ArctanRule) def eval_arctan(a, b, c, integrand, symbol): return a / b * 1 / sympy.sqrt(c / b) * sympy.atan(symbol / sympy.sqrt(c / b)) @evaluates(ArccothRule) def eval_arccoth(a, b, c, integrand, symbol): return - a / b * 1 / sympy.sqrt(-c / b) * sympy.acoth(symbol / sympy.sqrt(-c / b)) @evaluates(ArctanhRule) def eval_arctanh(a, b, c, integrand, symbol): return - a / b * 1 / sympy.sqrt(-c / b) * sympy.atanh(symbol / sympy.sqrt(-c / b)) @evaluates(ReciprocalRule) def eval_reciprocal(func, integrand, symbol): return sympy.ln(func) @evaluates(ArcsinRule) def eval_arcsin(integrand, symbol): return sympy.asin(symbol) @evaluates(InverseHyperbolicRule) def eval_inversehyperbolic(func, integrand, symbol): return func(symbol) @evaluates(AlternativeRule) def eval_alternative(alternatives, integrand, symbol): return _manualintegrate(alternatives[0]) @evaluates(RewriteRule) def eval_rewrite(rewritten, substep, integrand, symbol): return _manualintegrate(substep) @evaluates(PiecewiseRule) def eval_piecewise(substeps, integrand, symbol): return sympy.Piecewise(*[(_manualintegrate(substep), cond) for substep, cond in substeps]) @evaluates(TrigSubstitutionRule) def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol): func = func.subs(sympy.sec(theta), 1/sympy.cos(theta)) trig_function = list(func.find(TrigonometricFunction)) assert len(trig_function) == 1 trig_function = trig_function[0] relation = sympy.solve(symbol - func, trig_function) assert len(relation) == 1 numer, denom = sympy.fraction(relation[0]) if isinstance(trig_function, sympy.sin): opposite = numer hypotenuse = denom adjacent = sympy.sqrt(denom**2 - numer**2) inverse = sympy.asin(relation[0]) elif isinstance(trig_function, sympy.cos): adjacent = numer hypotenuse = denom opposite = sympy.sqrt(denom**2 - numer**2) inverse = sympy.acos(relation[0]) elif isinstance(trig_function, sympy.tan): opposite = numer adjacent = denom hypotenuse = sympy.sqrt(denom**2 + numer**2) inverse = sympy.atan(relation[0]) substitution = [ (sympy.sin(theta), opposite/hypotenuse), (sympy.cos(theta), adjacent/hypotenuse), (sympy.tan(theta), opposite/adjacent), (theta, inverse) ] return sympy.Piecewise( (_manualintegrate(substep).subs(substitution).trigsimp(), restriction) ) @evaluates(DerivativeRule) def eval_derivativerule(integrand, symbol): # isinstance(integrand, Derivative) should be True variable_count = list(integrand.variable_count) for i, (var, count) in enumerate(variable_count): if var == symbol: variable_count[i] = (var, count-1) break return sympy.Derivative(integrand.expr, *variable_count) @evaluates(HeavisideRule) def eval_heaviside(harg, ibnd, substep, integrand, symbol): # If we are integrating over x and the integrand has the form # Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol) # then there needs to be continuity at -b/m == ibnd, # so we subtract the appropriate term. return sympy.Heaviside(harg)*(substep - substep.subs(symbol, ibnd)) @evaluates(JacobiRule) def eval_jacobi(n, a, b, integrand, symbol): return Piecewise( (2*sympy.jacobi(n + 1, a - 1, b - 1, symbol)/(n + a + b), Ne(n + a + b, 0)), (symbol, Eq(n, 0)), ((a + b + 2)*symbol**2/4 + (a - b)*symbol/2, Eq(n, 1))) @evaluates(GegenbauerRule) def eval_gegenbauer(n, a, integrand, symbol): return Piecewise( (sympy.gegenbauer(n + 1, a - 1, symbol)/(2*(a - 1)), Ne(a, 1)), (sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)), (sympy.S.Zero, True)) @evaluates(ChebyshevTRule) def eval_chebyshevt(n, integrand, symbol): return Piecewise(((sympy.chebyshevt(n + 1, symbol)/(n + 1) - sympy.chebyshevt(n - 1, symbol)/(n - 1))/2, Ne(sympy.Abs(n), 1)), (symbol**2/2, True)) @evaluates(ChebyshevURule) def eval_chebyshevu(n, integrand, symbol): return Piecewise( (sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)), (sympy.S.Zero, True)) @evaluates(LegendreRule) def eval_legendre(n, integrand, symbol): return (sympy.legendre(n + 1, symbol) - sympy.legendre(n - 1, symbol))/(2*n + 1) @evaluates(HermiteRule) def eval_hermite(n, integrand, symbol): return sympy.hermite(n + 1, symbol)/(2*(n + 1)) @evaluates(LaguerreRule) def eval_laguerre(n, integrand, symbol): return sympy.laguerre(n, symbol) - sympy.laguerre(n + 1, symbol) @evaluates(AssocLaguerreRule) def eval_assoclaguerre(n, a, integrand, symbol): return -sympy.assoc_laguerre(n + 1, a - 1, symbol) @evaluates(CiRule) def eval_ci(a, b, integrand, symbol): return sympy.cos(b)*sympy.Ci(a*symbol) - sympy.sin(b)*sympy.Si(a*symbol) @evaluates(ChiRule) def eval_chi(a, b, integrand, symbol): return sympy.cosh(b)*sympy.Chi(a*symbol) + sympy.sinh(b)*sympy.Shi(a*symbol) @evaluates(EiRule) def eval_ei(a, b, integrand, symbol): return sympy.exp(b)*sympy.Ei(a*symbol) @evaluates(SiRule) def eval_si(a, b, integrand, symbol): return sympy.sin(b)*sympy.Ci(a*symbol) + sympy.cos(b)*sympy.Si(a*symbol) @evaluates(ShiRule) def eval_shi(a, b, integrand, symbol): return sympy.sinh(b)*sympy.Chi(a*symbol) + sympy.cosh(b)*sympy.Shi(a*symbol) @evaluates(ErfRule) def eval_erf(a, b, c, integrand, symbol): if a.is_extended_real: return Piecewise( (sympy.sqrt(sympy.pi/(-a))/2 * sympy.exp(c - b**2/(4*a)) * sympy.erf((-2*a*symbol - b)/(2*sympy.sqrt(-a))), a < 0), (sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) * sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))), True)) else: return sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) * \ sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))) @evaluates(FresnelCRule) def eval_fresnelc(a, b, c, integrand, symbol): return sympy.sqrt(sympy.pi/(2*a)) * ( sympy.cos(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) + sympy.sin(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi))) @evaluates(FresnelSRule) def eval_fresnels(a, b, c, integrand, symbol): return sympy.sqrt(sympy.pi/(2*a)) * ( sympy.cos(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) - sympy.sin(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi))) @evaluates(LiRule) def eval_li(a, b, integrand, symbol): return sympy.li(a*symbol + b)/a @evaluates(PolylogRule) def eval_polylog(a, b, integrand, symbol): return sympy.polylog(b + 1, a*symbol) @evaluates(UpperGammaRule) def eval_uppergamma(a, e, integrand, symbol): return symbol**e * (-a*symbol)**(-e) * sympy.uppergamma(e + 1, -a*symbol)/a @evaluates(EllipticFRule) def eval_elliptic_f(a, d, integrand, symbol): return sympy.elliptic_f(symbol, d/a)/sympy.sqrt(a) @evaluates(EllipticERule) def eval_elliptic_e(a, d, integrand, symbol): return sympy.elliptic_e(symbol, d/a)*sympy.sqrt(a) @evaluates(DontKnowRule) def eval_dontknowrule(integrand, symbol): return sympy.Integral(integrand, symbol) def _manualintegrate(rule): evaluator = evaluators.get(rule.__class__) if not evaluator: raise ValueError("Cannot evaluate rule %s" % repr(rule)) return evaluator(*rule) def manualintegrate(f, var): """manualintegrate(f, var) Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand. Unlike ``integrate``, var can only be a single symbol. Examples ======== >>> from sympy import sin, cos, tan, exp, log, integrate >>> from sympy.integrals.manualintegrate import manualintegrate >>> from sympy.abc import x >>> manualintegrate(1 / x, x) log(x) >>> integrate(1/x) log(x) >>> manualintegrate(log(x), x) x*log(x) - x >>> integrate(log(x)) x*log(x) - x >>> manualintegrate(exp(x) / (1 + exp(2 * x)), x) atan(exp(x)) >>> integrate(exp(x) / (1 + exp(2 * x))) RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x)))) >>> manualintegrate(cos(x)**4 * sin(x), x) -cos(x)**5/5 >>> integrate(cos(x)**4 * sin(x), x) -cos(x)**5/5 >>> manualintegrate(cos(x)**4 * sin(x)**3, x) cos(x)**7/7 - cos(x)**5/5 >>> integrate(cos(x)**4 * sin(x)**3, x) cos(x)**7/7 - cos(x)**5/5 >>> manualintegrate(tan(x), x) -log(cos(x)) >>> integrate(tan(x), x) -log(cos(x)) See Also ======== sympy.integrals.integrals.integrate sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral """ result = _manualintegrate(integral_steps(f, var)) # Clear the cache of u-parts _parts_u_cache.clear() # If we got Piecewise with two parts, put generic first if isinstance(result, Piecewise) and len(result.args) == 2: cond = result.args[0][1] if isinstance(cond, Eq) and result.args[1][1] == True: result = result.func( (result.args[1][0], sympy.Ne(*cond.args)), (result.args[0][0], True)) return result
3a67cd6037faccee2f54e54911904c7c34aa75d358bdf0b2c714c908566e2b4a
""" Integral Transforms """ from __future__ import print_function, division from sympy.core import S from sympy.core.compatibility import reduce, range, iterable from sympy.core.function import Function from sympy.core.relational import _canonical, Ge, Gt from sympy.core.numbers import oo from sympy.core.symbol import Dummy from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.matrices.matrices import MatrixBase ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super(IntegralTransformError, self).__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the _compute_transform(f, x, s, **hints) and _as_integral(f, x, s) functions. If the transform cannot be computed, raise IntegralTransformError. Also set cls._name. Implement self._collapse_extra if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def doit(self, **hints): """ Try to evaluate the transform in closed form. This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, don't return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ from sympy import Add, expand_mul, Mul from sympy.core.function import AppliedUndef needeval = hints.pop('needeval', False) try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: return self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: pass fn = self.function if not fn.is_Add: fn = expand_mul(fn) if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral from sympy.solvers.inequalities import _solve_inequality def _simplify(expr, doit): from sympy import powdenest, piecewise_fold if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): from sympy.core.decorators import wraps @wraps(func) def wrapper(*args, **kwargs): noconds = kwargs.pop('noconds', default) res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, 0, oo)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ from sympy import re, Max, Min, count_ops # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = -oo b = oo aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = oo b_ = -oo aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ != oo and a_ != b: a = Max(a_, a) elif b_ != -oo and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, 0, oo)) def _collapse_extra(self, extra): from sympy import Max, Min a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). >>> from sympy.integrals.transforms import mellin_transform >>> from sympy import exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. from sympy import expand_mul, pi, ceiling, gamma m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ from itertools import repeat from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand, roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar) # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is oo: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [abs(x) if x.is_extended_real else x for x in s_multipliers] common_coefficient = S(1) for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if (any(not x.is_Rational for x in s_multipliers) or not common_coefficient.is_extended_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S(1)) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S(1)/s_multiplier exponent = S(1)/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs = facs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs = dfacs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp_): if fact.is_Pow: base = fact.base exp = fact.exp else: base = exp_polar(1) exp = fact.args[0] if exp.is_Integer: cond = is_numer if exp < 0: cond = not cond args += [(base, cond)]*abs(exp) continue elif not base.has(s): a, b = linear_arg(exp) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S(1), -c + 1)] lgammas += [(S(1), -c)] else: ufacs += [-1] ugammas += [(S(-1), c + 1)] lgammas += [(S(-1), c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S(1)/2) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S(1)/2) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ from sympy import (expand, expand_mul, hyperexpand, meijerg, arg, pi, re, factor, Heaviside, gamma, Add) x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue G = meijerg(a, b, C/x**e) if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - abs(C))*h.args[0].args[0] \ + Heaviside(abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): from sympy import postorder_traversal global _allowed if _allowed is None: from sympy import ( exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf) _allowed = set( [exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf]) for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): from sympy import I c = self.__class__._c return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the sympy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_mellin_transform >>> from sympy import oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) (x/2 - 1/(2*x))*Heaviside(x - 1) >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (-x/2 + 1/(2*x))*Heaviside(1 - x) See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ from sympy.core.relational import ( StrictGreaterThan, StrictLessThan, Unequality ) from sympy import Abs def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (abs(ex1) <= abs(a)**n) == True: return False if n < 0 and (abs(ex1) >= abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b == True or b == False: return True return Unequality(x, y) def repl(ex, *args): if ex == True or ex == False: return bool(ex) return ex.replace(*args) from sympy.simplify.radsimp import collect_abs expr = collect_abs(expr) expr = repl(expr, StrictLessThan, replie) expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. """ from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_, arg, cos, Wild, symbols, polar_lift) s = Dummy('s') F = integrate(exp(-s*t) * f, (t, 0, oo)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), -oo, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = -oo aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*abs(arg((s + w3)*q)) < w2, p*abs(arg((s + w3)*q)) <= w2, abs(arg_((s + w3)**p*q, w1)) < w2, abs(arg_((s + w3)**p*q, w1)) <= w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = oo aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2 )*abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ != oo: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] != -oo] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = conds2 def cnt(expr): if expr == True or expr == False: return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): return _laplace_transform(f, t, s, **hints) def _as_integral(self, f, t, s): from sympy import exp return Integral(f*exp(-s*t), (t, 0, oo)) def _collapse_extra(self, extra): from sympy import Max conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def laplace_transform(f, t, s, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t. For all "sensible" functions, this converges absolutely in a half plane `a < \operatorname{Re}(s)`. This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane of convergence, and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). >>> from sympy.integrals import laplace_transform >>> from sympy.abc import t, s, a >>> laplace_transform(t**a, t, s) (s**(-a)*gamma(a + 1)/s, 0, re(a) > -1) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/abs(coeff))*e2 try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k) else: k = log(rel.lts) return Heaviside(-(t + k)) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): from sympy import I, exp c = self.__class__._c return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the sympy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_laplace_transform >>> from sympy import exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t) See Also ======== laplace_transform hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): """ Compute a general Fourier-type transform F(k) = a int_-oo^oo exp(b*I*x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard Fourier and inverse Fourier transforms. """ from sympy import exp, I F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, -oo, oo)) if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): from sympy import exp, I a = self.a() b = self.b() return Integral(a*f*exp(b*I*x*k), (x, -oo, oo)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of `f`, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## from sympy import sin, cos, sqrt, pi @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, 0, oo)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_sine_transform, exp, sqrt, gamma, pi >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_cosine_transform, exp, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ from sympy import besselj F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): from sympy import besselj return Integral(f*besselj(nu, k*r)*r, (r, 0, oo)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform, gamma >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)
08a2d9296b46a3a50c2987ec8891068d73ccedb47bb74d45c75ead67cd83bd47
from __future__ import print_function, division from sympy.concrete.expr_with_limits import AddWithLimits from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import diff from sympy.core.logic import fuzzy_bool from sympy.core.mul import Mul from sympy.core.numbers import oo, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild) from sympy.core.sympify import sympify from sympy.functions import Piecewise, sqrt, piecewise_fold, tan, cot, atan from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.complexes import Abs, sign from sympy.functions.elementary.miscellaneous import Min, Max from sympy.integrals.manualintegrate import manualintegrate from sympy.integrals.trigonometry import trigintegrate from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite from sympy.matrices import MatrixBase from sympy.polys import Poly, PolynomialError from sympy.series import limit from sympy.series.order import Order from sympy.series.formal import FormalPowerSeries from sympy.simplify.fu import sincos_to_sum from sympy.utilities.misc import filldedent class Integral(AddWithLimits): """Represents unevaluated integral.""" __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): """Create an unevaluated integral. Arguments are an integrand followed by one or more limits. If no limits are given and there is only one free symbol in the expression, that symbol will be used, otherwise an error will be raised. >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x) Integral(x, x) >>> Integral(y) Integral(y, y) When limits are provided, they are interpreted as follows (using ``x`` as though it were the variable of integration): (x,) or x - indefinite integral (x, a) - "evaluate at" integral is an abstract antiderivative (x, a, b) - definite integral The ``as_dummy`` method can be used to see which symbols cannot be targeted by subs: those with a prepended underscore cannot be changed with ``subs``. (Also, the integration variables themselves -- the first element of a limit -- can never be changed by subs.) >>> i = Integral(x, x) >>> at = Integral(x, (x, x)) >>> i.as_dummy() Integral(x, x) >>> at.as_dummy() Integral(_0, (_0, x)) """ #This will help other classes define their own definitions #of behaviour with Integral. if hasattr(function, '_eval_Integral'): return function._eval_Integral(*symbols, **assumptions) obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) return obj def __getnewargs__(self): return (self.function,) + tuple([tuple(xab) for xab in self.limits]) @property def free_symbols(self): """ This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x, (x, y, 1)).free_symbols {y} See Also ======== function, limits, variables """ return AddWithLimits.free_symbols.fget(self) def _eval_is_zero(self): # This is a very naive and quick test, not intended to do the integral to # answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi)) # is zero but this routine should return None for that case. But, like # Mul, there are trivial situations for which the integral will be # zero so we check for those. if self.function.is_zero: return True got_none = False for l in self.limits: if len(l) == 3: z = (l[1] == l[2]) or (l[1] - l[2]).is_zero if z: return True elif z is None: got_none = True free = self.function.free_symbols for xab in self.limits: if len(xab) == 1: free.add(xab[0]) continue if len(xab) == 2 and xab[0] not in free: if xab[1].is_zero: return True elif xab[1].is_zero is None: got_none = True # take integration symbol out of free since it will be replaced # with the free symbols in the limits free.discard(xab[0]) # add in the new symbols for i in xab[1:]: free.update(i.free_symbols) if self.function.is_zero is False and got_none is False: return False def transform(self, x, u): r""" Performs a change of variables from `x` to `u` using the relationship given by `x` and `u` which will define the transformations `f` and `F` (which are inverses of each other) as follows: 1) If `x` is a Symbol (which is a variable of integration) then `u` will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x). 2) If `u` is a Symbol then `x` will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution. Once f and F have been identified, the transformation is made as follows: .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{d}x} where `F(x)` is the inverse of `f(x)` and the limits and integrand have been corrected so as to retain the same value after integration. Notes ===== The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will always work; quadratic expressions like `x**2 - 1` are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples). The integral will be returned unchanged if `x` is not a variable of integration. `x` must be (or contain) only one of of the integration variables. If `u` has more than one free symbol then it should be sent as a tuple (`u`, `uvar`) where `uvar` identifies which variable is replacing the integration variable. XXX can it contain another integration variable? Examples ======== >>> from sympy.abc import a, b, c, d, x, u, y >>> from sympy import Integral, S, cos, sqrt >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1)) transform can change the variable of integration >>> i.transform(x, u) Integral(u*cos(u**2 - 1), (u, 0, 1)) transform can perform u-substitution as long as a unique integrand is obtained: >>> i.transform(x**2 - 1, u) Integral(cos(u)/2, (u, -1, 0)) This attempt fails because x = +/-sqrt(u + 1) and the sign does not cancel out of the integrand: >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u) Traceback (most recent call last): ... ValueError: The mapping between F(x) and f(u) did not give a unique integrand. transform can do a substitution. Here, the previous result is transformed back into the original expression using "u-substitution": >>> ui = _ >>> _.transform(sqrt(u + 1), x) == i True We can accomplish the same with a regular substitution: >>> ui.transform(u, x**2 - 1) == i True If the `x` does not contain a symbol of integration then the integral will be returned unchanged. Integral `i` does not have an integration variable `a` so no change is made: >>> i.transform(a, x) == i True When `u` has more than one free symbol the symbol that is replacing `x` must be identified by passing `u` as a tuple: >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u)) Integral(a + u, (u, -a, 1 - a)) >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a)) Integral(a + u, (a, -u, 1 - u)) See Also ======== variables : Lists the integration variables as_dummy : Replace integration variables with dummy ones """ from sympy.solvers.solvers import solve, posify d = Dummy('d') xfree = x.free_symbols.intersection(self.variables) if len(xfree) > 1: raise ValueError( 'F(x) can only contain one of: %s' % self.variables) xvar = xfree.pop() if xfree else d if xvar not in self.variables: return self u = sympify(u) if isinstance(u, Expr): ufree = u.free_symbols if len(ufree) == 0: raise ValueError(filldedent(''' f(u) cannot be a constant''')) if len(ufree) > 1: raise ValueError(filldedent(''' When f(u) has more than one free symbol, the one replacing x must be identified: pass f(u) as (f(u), u)''')) uvar = ufree.pop() else: u, uvar = u if uvar not in u.free_symbols: raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) where symbol identified a free symbol in expr, but symbol is not in expr's free symbols.''')) if not isinstance(uvar, Symbol): # This probably never evaluates to True raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) but didn't get a symbol; got %s''' % uvar)) if x.is_Symbol and u.is_Symbol: return self.xreplace({x: u}) if not x.is_Symbol and not u.is_Symbol: raise ValueError('either x or u must be a symbol') if uvar == xvar: return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar}) if uvar in self.limits: raise ValueError(filldedent(''' u must contain the same variable as in x or a variable that is not already an integration variable''')) if not x.is_Symbol: F = [x.subs(xvar, d)] soln = solve(u - x, xvar, check=False) if not soln: raise ValueError('no solution for solve(F(x) - f(u), x)') f = [fi.subs(uvar, d) for fi in soln] else: f = [u.subs(uvar, d)] pdiff, reps = posify(u - x) puvar = uvar.subs([(v, k) for k, v in reps.items()]) soln = [s.subs(reps) for s in solve(pdiff, puvar)] if not soln: raise ValueError('no solution for solve(F(x) - f(u), u)') F = [fi.subs(xvar, d) for fi in soln] newfuncs = set([(self.function.subs(xvar, fi)*fi.diff(d) ).subs(d, uvar) for fi in f]) if len(newfuncs) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique integrand.''')) newfunc = newfuncs.pop() def _calc_limit_1(F, a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ wok = F.subs(d, a) if wok is S.NaN or wok.is_finite is False and a.is_finite: return limit(sign(b)*F, d, a) return wok def _calc_limit(a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ avals = list({_calc_limit_1(Fi, a, b) for Fi in F}) if len(avals) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique limit.''')) return avals[0] newlimits = [] for xab in self.limits: sym = xab[0] if sym == xvar: if len(xab) == 3: a, b = xab[1:] a, b = _calc_limit(a, b), _calc_limit(b, a) if fuzzy_bool(a - b > 0): a, b = b, a newfunc = -newfunc newlimits.append((uvar, a, b)) elif len(xab) == 2: a = _calc_limit(xab[1], 1) newlimits.append((uvar, a)) else: newlimits.append(uvar) else: newlimits.append(xab) return self.func(newfunc, *newlimits) def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from sympy import Integral, Piecewise, S >>> from sympy.abc import x, t >>> p = x**2 + Piecewise((0, x/t < 0), (1, True)) >>> p.integrate((t, S(4)/5, 1), (x, -1, 1)) 1/3 See Also ======== sympy.integrals.trigonometry.trigintegrate sympy.integrals.risch.heurisch sympy.integrals.rationaltools.ratint as_sum : Approximate the integral using a sum """ if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) heurisch = hints.get('heurisch', None) manual = hints.get('manual', None) if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1: raise ValueError("At most one of manual, meijerg, risch, heurisch can be True") elif manual: meijerg = risch = heurisch = False elif meijerg: manual = risch = heurisch = False elif risch: manual = meijerg = heurisch = False elif heurisch: manual = meijerg = risch = False eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) if conds not in ['separate', 'piecewise', 'none']: raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError('risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # now compute and check the function function = self.function if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # hacks to handle special cases if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if isinstance(function, FormalPowerSeries): if len(self.limits) > 1: raise NotImplementedError xab = self.limits[0] if len(xab) > 1: return function.integrate(xab, **eval_kwargs) else: return function.integrate(xab[0], **eval_kwargs) # There is no trivial answer and special handling # is done so continue # first make sure any definite limits have integration # variables with matching assumptions reps = {} for xab in self.limits: if len(xab) != 3: continue x, a, b = xab l = (a, b) if all(i.is_nonnegative for i in l) and not x.is_nonnegative: d = Dummy(positive=True) elif all(i.is_nonpositive for i in l) and not x.is_nonpositive: d = Dummy(negative=True) elif all(i.is_real for i in l) and not x.is_real: d = Dummy(real=True) else: d = None if d: reps[x] = d if reps: undo = dict([(v, k) for k, v in reps.items()]) did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did # continue with existing assumptions undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue if function.has(Abs, sign) and ( (len(xab) < 3 and all(x.is_extended_real for x in xab)) or (len(xab) == 3 and all(x.is_extended_real and not x.is_infinite for x in xab[1:]))): # some improper integrals are better off with Abs xr = Dummy("xr", real=True) function = (function.xreplace({xab[0]: xr}) .rewrite(Piecewise).xreplace({xr: xab[0]})) elif function.has(Min, Max): function = function.rewrite(Piecewise) if (function.has(Piecewise) and not isinstance(function, Piecewise)): function = piecewise_fold(function) if isinstance(function, Piecewise): if len(xab) == 1: antideriv = function._eval_integral(xab[0], **eval_kwargs) else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) else: # There are a number of tradeoffs in using the # Meijer G method. It can sometimes be a lot faster # than other methods, and sometimes slower. And # there are certain types of integrals for which it # is more likely to work than others. These # heuristics are incorporated in deciding what # integration methods to try, in what order. See the # integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError ' 'from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise( (f, cond), (self.func( function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError(filldedent(''' conds=separate not supported in multiple integrals''')) ret = f, cond else: ret = f return ret meijerg1 = meijerg if (meijerg is not False and len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real and not function.is_Poly and (xab[1].has(oo, -oo) or xab[2].has(oo, -oo))): ret = try_meijerg(function, xab) if ret is not None: function = ret continue meijerg1 = False # If the special meijerg code did not succeed in # finding a definite integral, then the code using # meijerint_indefinite will not either (it might # find an antiderivative, but the answer is likely # to be nonsensical). Thus if we are requested to # only use Meijer G-function methods, we give up at # this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) if antideriv is None and meijerg is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue if not isinstance(antideriv, Integral) and antideriv is not None: for atan_term in antideriv.atoms(atan): atan_arg = atan_term.args[0] # Checking `atan_arg` to be linear combination of `tan` or `cot` for tan_part in atan_arg.atoms(tan): x1 = Dummy('x1') tan_exp1 = atan_arg.subs(tan_part, x1) # The coefficient of `tan` should be constant coeff = tan_exp1.diff(x1) if x1 not in coeff.free_symbols: a = tan_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a-pi/2)/pi))) for cot_part in atan_arg.atoms(cot): x1 = Dummy('x1') cot_exp1 = atan_arg.subs(cot_part, x1) # The coefficient of `cot` should be constant coeff = cot_exp1.diff(x1) if x1 not in coeff.free_symbols: a = cot_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a)/pi))) if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) else: def is_indef_int(g, x): return (isinstance(g, Integral) and any(i == (x,) for i in g.limits)) def eval_factored(f, x, a, b): # _eval_interval for integrals with # (constant) factors # a single indefinite integral is assumed args = [] for g in Mul.make_args(f): if is_indef_int(g, x): args.append(g._eval_interval(x, a, b)) else: args.append(g) return Mul(*args) integrals, others, piecewises = [], [], [] for f in Add.make_args(antideriv): if any(is_indef_int(g, x) for g in Mul.make_args(f)): integrals.append(f) elif any(isinstance(g, Piecewise) for g in Mul.make_args(f)): piecewises.append(piecewise_fold(f)) else: others.append(f) uneval = Add(*[eval_factored(f, x, a, b) for f in integrals]) try: evalued = Add(*others)._eval_interval(x, a, b) evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b) function = uneval + evalued + evalued_pw except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References: [1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign [2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols {x} >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab)*dab_dsym rv = S.Zero if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) if arg: rv += self.func(arg, Tuple(x, a, b)) return rv def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None, heurisch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in SymPy), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The "manual integration" algorithm: - This algorithm tries to mimic how a person would find an antiderivative by hand, for example by looking for a substitution or applying integration by parts. This algorithm does not handle as many integrands but can return results in a more familiar form. - Sometimes this algorithm can evaluate parts of an integral; in this case integrate() will try to evaluate the rest of the integrand using the other methods here. - Setting manual=True will cause integrate() to use only this method. 6. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. Setting heurisch=True will cause integrate() to use only this method. Set heurisch=False to not use it. """ from sympy.integrals.deltafunctions import deltaintegrate from sympy.integrals.singularityfunctions import singularityintegrate from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper from sympy.integrals.rationaltools import ratint from sympy.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return None if manual: try: result = manualintegrate(f, x) if result is not None and result.func != Integral: return result except (ValueError, PolynomialError): pass eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a sympy expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not (manual or meijerg or risch): return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if isinstance(f, Piecewise): return f.piecewise_integrate(x, **eval_kwargs) # let's cut it short if `f` does not depend on `x`; if # x is only a dummy, that will be handled below if not f.has(x): return f*x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not (manual or meijerg or risch): return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. # if no part of the NonElementaryIntegral is integrated by # the Risch algorithm, then use the original function to # integrate, instead of re-written one if result == 0: from sympy.integrals.risch import NonElementaryIntegral return NonElementaryIntegral(f, x).doit(risch=False) else: return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff*x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x, **eval_kwargs) if h is not None: h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs) if h_order_expr is not None: h_order_term = order_term.func( h_order_expr, *order_term.variables) parts.append(coeff*(h + h_order_term)) continue # NOTE: if there is O(x**n) and we fail to integrate then # there is no point in trying other methods because they # will fail, too. return None # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a*x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h2, Ne(g.exp, -1)), (h1, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not (manual or meijerg or risch): parts.append(coeff * ratint(g, x)) continue if not (manual or meijerg or risch): # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # g(x) has at least a Singularity Function term h = singularityintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff*h) continue # fall back to heurisch if heurisch is not False: try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch_(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') if h is not None: parts.append(coeff * h) continue if h is None and manual is not False: try: result = manualintegrate(g, x) if result is not None and not isinstance(result, Integral): if result.has(Integral) and not manual: # Try to have other algorithms do the integrals # manualintegrate can't handle, # unless we were asked to use manual only. # Keep the rest of eval_kwargs in case another # method was set to False already new_eval_kwargs = eval_kwargs new_eval_kwargs["manual"] = False result = result.func(*[ arg.doit(**new_eval_kwargs) if arg.has(Integral) else arg for arg in result.args ]).expand(multinomial=False, log=False, power_exp=False, power_base=False) if not result.has(Integral): parts.append(coeff * result) continue except (ValueError, PolynomialError): # can't handle some SymPy expressions pass # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = sincos_to_sum(f).expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, **eval_kwargs) if h is not None: parts.append(coeff * h) else: return None return Add(*parts) def _eval_lseries(self, x, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break for term in expr.function.lseries(symb, logx): yield integrate(term, *expr.limits) def _eval_nseries(self, x, n, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries( x=symb, n=n, logx=logx).as_coeff_add(Order) order = [o.subs(symb, x) for o in order] return integrate(terms, *expr.limits) + Add(*order)*x def _eval_as_leading_term(self, x): series_gen = self.args[0].lseries(x) for leading_term in series_gen: if leading_term != 0: break return integrate(leading_term, *self.args[1:]) def _eval_simplify(self, **kwargs): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import simplify expr = factor_terms(self) if isinstance(expr, Integral): return expr.func(*[simplify(i, **kwargs) for i in expr.args]) return expr.simplify(**kwargs) def as_sum(self, n=None, method="midpoint", evaluate=True): """ Approximates a definite integral by a sum. Arguments --------- n The number of subintervals to use, optional. method One of: 'left', 'right', 'midpoint', 'trapezoid'. evaluate If False, returns an unevaluated Sum expression. The default is True, evaluate the sum. These methods of approximate integration are described in [1]. [1] https://en.wikipedia.org/wiki/Riemann_sum#Methods Examples ======== >>> from sympy import sin, sqrt >>> from sympy.abc import x, n >>> from sympy.integrals import Integral >>> e = Integral(sin(x), (x, 3, 7)) >>> e Integral(sin(x), (x, 3, 7)) For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7]. The left-hand rule uses function evaluations at the left of each interval: >>> e.as_sum(2, 'left') 2*sin(5) + 2*sin(3) The midpoint rule uses evaluations at the center of each interval: >>> e.as_sum(2, 'midpoint') 2*sin(4) + 2*sin(6) The right-hand rule uses function evaluations at the right of each interval: >>> e.as_sum(2, 'right') 2*sin(5) + 2*sin(7) The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results: >>> e.as_sum(2, 'trapezoid') 2*sin(5) + sin(3) + sin(7) >>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _ True Here, the discontinuity at x = 0 can be avoided by using the midpoint or right-hand method: >>> e = Integral(1/sqrt(x), (x, 0, 1)) >>> e.as_sum(5).n(4) 1.730 >>> e.as_sum(10).n(4) 1.809 >>> e.doit().n(4) # the actual value is 2 2.000 The left- or trapezoid method will encounter the discontinuity and return infinity: >>> e.as_sum(5, 'left') zoo The number of intervals can be symbolic. If omitted, a dummy symbol will be used for it. >>> e = Integral(x**2, (x, 0, 2)) >>> e.as_sum(n, 'right').expand() 8/3 + 4/n + 4/(3*n**2) This shows that the midpoint rule is more accurate, as its error term decays as the square of n: >>> e.as_sum(method='midpoint').expand() 8/3 - 2/(3*_n**2) A symbolic sum is returned with evaluate=False: >>> e.as_sum(n, 'midpoint', evaluate=False) 2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n See Also ======== Integral.doit : Perform the integration using any hints """ from sympy.concrete.summations import Sum limits = self.limits if len(limits) > 1: raise NotImplementedError( "Multidimensional midpoint rule not implemented yet") else: limit = limits[0] if (len(limit) != 3 or limit[1].is_finite is False or limit[2].is_finite is False): raise ValueError("Expecting a definite integral over " "a finite interval.") if n is None: n = Dummy('n', integer=True, positive=True) else: n = sympify(n) if (n.is_positive is False or n.is_integer is False or n.is_finite is False): raise ValueError("n must be a positive integer, got %s" % n) x, a, b = limit dx = (b - a)/n k = Dummy('k', integer=True, positive=True) f = self.function if method == "left": result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n)) elif method == "right": result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n)) elif method == "midpoint": result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n)) elif method == "trapezoid": result = dx*((f.subs(x, a) + f.subs(x, b))/2 + Sum(f.subs(x, a + k*dx), (k, 1, n - 1))) else: raise ValueError("Unknown method %s" % method) return result.doit() if evaluate else result def _sage_(self): import sage.all as sage f, limits = self.function._sage_(), list(self.limits) for limit in limits: if len(limit) == 1: x = limit[0] f = sage.integral(f, x._sage_(), hold=True) elif len(limit) == 2: x, b = limit f = sage.integral(f, x._sage_(), b._sage_(), hold=True) else: x, a, b = limit f = sage.integral(f, (x._sage_(), a._sage_(), b._sage_()), hold=True) return f def principal_value(self, **kwargs): """ Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis. In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined. Examples ======== >>> from sympy import Dummy, symbols, integrate, limit, oo >>> from sympy.integrals.integrals import Integral >>> from sympy.calculus.singularities import singularities >>> x = symbols('x') >>> Integral(x+1, (x, -oo, oo)).principal_value() oo >>> f = 1 / (x**3) >>> Integral(f, (x, -oo, oo)).principal_value() 0 >>> Integral(f, (x, -10, 10)).principal_value() 0 >>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value() 0 References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value .. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html """ from sympy.calculus import singularities if len(self.limits) != 1 or len(list(self.limits[0])) != 3: raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate " "cauchy's principal value") x, a, b = self.limits[0] if not (a.is_comparable and b.is_comparable and a <= b): raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate " "cauchy's principal value. Also, a and b need to be comparable.") if a == b: return 0 r = Dummy('r') f = self.function singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b] for i in singularities_list: if (i == b) or (i == a): raise ValueError( 'The principal value is not defined in the given interval due to singularity at %d.' % (i)) F = integrate(f, x, **kwargs) if F.has(Integral): return self if a is -oo and b is oo: I = limit(F - F.subs(x, -x), x, oo) else: I = limit(F, x, b, '-') - limit(F, x, a, '+') for s in singularities_list: I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+') return I def integrate(*args, **kwargs): """integrate(f, var, ...) Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert. var can be: - a symbol -- indefinite integration - a tuple (symbol, a) -- indefinite integration with result given with `a` replacing `symbol` - a tuple (symbol, a, b) -- definite integration Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.) Indefinite integrals are returned without terms that are independent of the integration variables. (see examples) Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise'). **Strategy** SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms. SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods. The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented. Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the ``meijerint`` module). The option manual=True can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The ``manualintegrate`` module has functions that return the steps used (see the module docstring for more information). In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions. The strategy employed by the integration code is as follows: - If computing a definite integral, and both limits are real, and at least one limit is +- oo, try the G-function method of definite integration first. - Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last). - If still not successful, try G-functions irrespective of the limits. The option meijerg=True, False, None can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None. Examples ======== >>> from sympy import integrate, log, exp, oo >>> from sympy.abc import a, x, y >>> integrate(x*y, x) x**2*y/2 >>> integrate(log(x), x) x*log(x) - x >>> integrate(log(x), (x, 1, a)) a*log(a) - a + 1 >>> integrate(x) x**2/2 Terms that are independent of x are dropped by indefinite integration: >>> from sympy import sqrt >>> integrate(sqrt(1 + x), (x, 0, x)) 2*(x + 1)**(3/2)/3 - 2/3 >>> integrate(sqrt(1 + x), x) 2*(x + 1)**(3/2)/3 >>> integrate(x*y) Traceback (most recent call last): ... ValueError: specify integration variables to integrate x*y Note that ``integrate(x)`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. >>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise' Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='none') gamma(a + 1) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate') (gamma(a + 1), -re(a) < 1) See Also ======== Integral, Integral.doit """ doit_flags = { 'deep': False, 'meijerg': kwargs.pop('meijerg', None), 'conds': kwargs.pop('conds', 'piecewise'), 'risch': kwargs.pop('risch', None), 'heurisch': kwargs.pop('heurisch', None), 'manual': kwargs.pop('manual', None) } integral = Integral(*args, **kwargs) if isinstance(integral, Integral): return integral.doit(**doit_flags) else: new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a for a in integral.args] return integral.func(*new_args) def line_integrate(field, curve, vars): """line_integrate(field, Curve, variables) Compute the line integral. Examples ======== >>> from sympy import Curve, line_integrate, E, ln >>> from sympy.abc import x, y, t >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2))) >>> line_integrate(x + y, C, [x, y]) 3*sqrt(2) See Also ======== integrate, Integral """ from sympy.geometry import Curve F = sympify(field) if not F: raise ValueError( "Expecting function specifying field as first argument.") if not isinstance(curve, Curve): raise ValueError("Expecting Curve entity as second argument.") if not is_sequence(vars): raise ValueError("Expecting ordered iterable for variables.") if len(curve.functions) != len(vars): raise ValueError("Field variable size does not match curve dimension.") if curve.parameter in vars: raise ValueError("Curve parameter clashes with field parameters.") # Calculate derivatives for line parameter functions # F(r) -> F(r(t)) and finally F(r(t)*r'(t)) Ft = F dldt = 0 for i, var in enumerate(vars): _f = curve.functions[i] _dn = diff(_f, curve.parameter) # ...arc length dldt = dldt + (_dn * _dn) Ft = Ft.subs(var, _f) Ft = Ft * sqrt(dldt) integral = Integral(Ft, curve.limits).doit(deep=False) return integral
a5fe831b0125c14d05f2b53badde00f2dc60281bbdc7e0423ae5901c21ec1ce5
from __future__ import print_function, division from itertools import permutations from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.symbol import Wild, Dummy, symbols from sympy.core.basic import sympify from sympy.core.numbers import Rational, pi, I from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.functions import exp, sin, cos, tan, cot, asin, atan from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh from sympy.functions import sqrt, erf, erfi, li, Ei from sympy.functions import besselj, bessely, besseli, besselk from sympy.functions import hankel1, hankel2, jn, yn from sympy.functions.elementary.complexes import Abs, re, im, sign, arg from sympy.functions.elementary.exponential import LambertW from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside, DiracDelta from sympy.simplify.radsimp import collect from sympy.logic.boolalg import And, Or from sympy.utilities.iterables import uniq from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError from sympy.polys.monomials import itermonomials from sympy.polys.polyroots import root_factors from sympy.polys.rings import PolyRing from sympy.polys.solvers import solve_lin_sys from sympy.polys.constructor import construct_domain from sympy.core.compatibility import reduce, ordered def components(f, x): """ Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents. >>> from sympy import cos, sin >>> from sympy.abc import x, y >>> from sympy.integrals.heurisch import components >>> components(sin(x)*cos(x)**2, x) {x, sin(x), cos(x)} See Also ======== heurisch """ result = set() if x in f.free_symbols: if f.is_symbol and f.is_commutative: result.add(f) elif f.is_Function or f.is_Derivative: for g in f.args: result |= components(g, x) result.add(f) elif f.is_Pow: result |= components(f.base, x) if not f.exp.is_Integer: if f.exp.is_Rational: result.add(f.base**Rational(1, f.exp.q)) else: result |= components(f.exp, x) | {f} else: for g in f.args: result |= components(g, x) return result # name -> [] of symbols _symbols_cache = {} # NB @cacheit is not convenient here def _symbols(name, n): """get vector of symbols local to this module""" try: lsyms = _symbols_cache[name] except KeyError: lsyms = [] _symbols_cache[name] = lsyms while len(lsyms) < n: lsyms.append( Dummy('%s%i' % (name, len(lsyms))) ) return lsyms[:n] def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ A wrapper around the heurisch integration algorithm. This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy.core import symbols >>> from sympy.functions import cos >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if x not in f.free_symbols: return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), True)) return Piecewise(*pairs) class BesselTable(object): """ Derivatives of Bessel functions of orders n and n-1 in terms of each other. See the docstring of DiffCache. """ def __init__(self): self.table = {} self.n = Dummy('n') self.z = Dummy('z') self._create_table() def _create_table(t): table, n, z = t.table, t.n, t.z for f in (besselj, bessely, hankel1, hankel2): table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) f = besseli table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z + f(n, z)) f = besselk table[f] = (-f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) for f in (jn, yn): table[f] = (f(n-1, z) - (n+1)*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) def diffs(t, f, n, z): if f in t.table: diff0, diff1 = t.table[f] repl = [(t.n, n), (t.z, z)] return (diff0.subs(repl), diff1.subs(repl)) def has(t, f): return f in t.table _bessel_table = None class DiffCache(object): """ Store for derivatives of expressions. The standard form of the derivative of a Bessel function of order n contains two Bessel functions of orders n-1 and n+1, respectively. Such forms cannot be used in parallel Risch algorithm, because there is a linear recurrence relation between the three functions while the algorithm expects that functions and derivatives are represented in terms of algebraically independent transcendentals. The solution is to take two of the functions, e.g., those of orders n and n-1, and to express the derivatives in terms of the pair. To guarantee that the proper form is used the two derivatives are cached as soon as one is encountered. Derivatives of other functions are also cached at no extra cost. All derivatives are with respect to the same variable `x`. """ def __init__(self, x): self.cache = {} self.x = x global _bessel_table if not _bessel_table: _bessel_table = BesselTable() def get_diff(self, f): cache = self.cache if f in cache: pass elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)): cache[f] = cancel(f.diff(self.x)) else: n, z = f.args d0, d1 = _bessel_table.diffs(f.func, n, z) dz = self.get_diff(z) cache[f] = d0*dz cache[f.func(n-1, z)] = d1*dz return cache[f] def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral components """ f = sympify(f) # There are some functions that Heurisch cannot currently handle, # so do not even try. # Set _try_heurisch=True to skip this check if _try_heurisch is not True: if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg): return if x not in f.free_symbols: return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add((-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = tuple(itermonomials(V, A + B - 1 + degree_offset)) else: monoms = tuple(itermonomials(V, A + B + degree_offset)) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly if factorization.is_Mul: factors = factorization.args else: factors = (factorization, ) for fact in factors: if fact.is_Pow: reducibles.add(fact.base) else: reducibles.add(fact) def _integrate(field=None): irreducibles = set() atans = set() pairs = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_part, atan_part = [], [] for poly in list(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(ordered(zip(irreducibles, B)))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(ordered(zip(atans, C)))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set([]) def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.subs(solution).subs( list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None