hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
873d307fc9b32af8ef5f17eb23d1d1e7d71e9f94b1eaae3a748caf21aa8cc970 | from sympy import (sqrt, exp, Trace, pi, S, Integral, MatrixSymbol, Lambda,
Dummy, Product, Sum, Abs, IndexedBase)
from sympy.stats import (GaussianUnitaryEnsemble as GUE, density,
GaussianOrthogonalEnsemble as GOE,
GaussianSymplecticEnsemble as GSE,
joint_eigen_distribution,
level_spacing_distribution)
from sympy.stats.rv import RandomMatrixSymbol, Density
from sympy.stats.random_matrix_models import GaussianEnsemble
from sympy.utilities.pytest import raises
def test_GaussianEnsemble():
G = GaussianEnsemble('G', 3)
assert density(G) == Density(G)
raises(ValueError, lambda: GaussianEnsemble('G', 3.5))
def test_GaussianUnitaryEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
G = GUE('U', 3)
assert density(G)(H) == sqrt(2)*exp(-3*Trace(H**2)/2)/(4*pi**(S(9)/2))
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
27*sqrt(6)*exp(-3*(l[1]**2)/2 - 3*(l[2]**2)/2 - 3*(l[3]**2)/2)*
Product(Abs(l[i] - l[j])**2, (j, i + 1, 3), (i, 1, 2))/(16*pi**(S(3)/2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, 32*s**2*exp(-4*s**2/pi)/pi**2))
def test_GaussianOrthogonalEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GOE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2)/4)/Integral(exp(-3*Trace(_H**2)/4), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
9*sqrt(2)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j]), (j, i + 1, 3), (i, 1, 2))/(32*pi)))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, s*pi*exp(-s**2*pi/4)/2))
def test_GaussianSymplecticEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GSE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2))/Integral(exp(-3*Trace(_H**2)), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
162*sqrt(3)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j])**4, (j, i + 1, 3), (i, 1, 2))/(5*pi**(S(3)/2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, S(262144)*s**4*exp(-64*s**2/(9*pi))/(729*pi**3)))
|
cc04e2e84063a52f684718027b457c676362430de6483c7aa0c1452cafd9ed23 | from sympy import E as e
from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne,
EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And,
gamma, beta, Piecewise, Integral, sin, cos, tan, sinh, cosh,
besseli, floor, expand_func, Rational, I, re,
im, lambdify, hyper, diff, Or, Mul, sign)
from sympy.core.compatibility import range
from sympy.external import import_module
from sympy.functions.special.error_functions import erfinv
from sympy.functions.special.hyper import meijerg
from sympy.sets.sets import Intersection, FiniteSet
from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis,
given, pspace, cdf, characteristic_function, moment_generating_function,
ContinuousRV, sample, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian,
Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Logistic,
LogLogistic, LogNormal, Maxwell, Nakagami, Normal, GaussianInverse,
Pareto, QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz, StudentT,
Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull,
WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile)
from sympy.stats.crv_types import NormalDistribution
from sympy.stats.joint_rv import JointPSpace
from sympy.utilities.pytest import raises, XFAIL, slow, skip
from sympy.utilities.randtest import verify_numerically as tn
oo = S.Infinity
x, y, z = map(Symbol, 'xyz')
def test_single_normal():
mu = Symbol('mu', real=True)
sigma = Symbol('sigma', positive=True)
X = Normal('x', 0, 1)
Y = X*sigma + mu
assert E(Y) == mu
assert variance(Y) == sigma**2
pdf = density(Y)
x = Symbol('x', real=True)
assert (pdf(x) ==
2**S.Half*exp(-(mu - x)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
assert P(X**2 < 1) == erf(2**S.Half/2)
assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1))))
assert E(X, Eq(X, mu)) == mu
def test_conditional_1d():
X = Normal('x', 0, 1)
Y = given(X, X >= 0)
z = Symbol('z')
assert density(Y)(z) == 2 * density(X)(z)
assert Y.pspace.domain.set == Interval(0, oo)
assert E(Y) == sqrt(2) / sqrt(pi)
assert E(X**2) == E(Y**2)
def test_ContinuousDomain():
X = Normal('x', 0, 1)
assert where(X**2 <= 1).set == Interval(-1, 1)
assert where(X**2 <= 1).symbol == X.symbol
where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
raises(ValueError, lambda: where(sin(X) > 1))
Y = given(X, X >= 0)
assert Y.pspace.domain.set == Interval(0, oo)
@slow
def test_multiple_normal():
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
p = Symbol("p", positive=True)
assert E(X + Y) == 0
assert variance(X + Y) == 2
assert variance(X + X) == 4
assert covariance(X, Y) == 0
assert covariance(2*X + Y, -X) == -2*variance(X)
assert skewness(X) == 0
assert skewness(X + Y) == 0
assert kurtosis(X) == 3
assert kurtosis(X+Y) == 3
assert correlation(X, Y) == 0
assert correlation(X, X + Y) == correlation(X, X - Y)
assert moment(X, 2) == 1
assert cmoment(X, 3) == 0
assert moment(X + Y, 4) == 12
assert cmoment(X, 2) == variance(X)
assert smoment(X*X, 2) == 1
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert E(X, Eq(X + Y, 0)) == 0
assert variance(X, Eq(X + Y, 0)) == S.Half
assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
def test_symbolic():
mu1, mu2 = symbols('mu1 mu2', real=True)
s1, s2 = symbols('sigma1 sigma2', positive=True)
rate = Symbol('lambda', positive=True)
X = Normal('x', mu1, s1)
Y = Normal('y', mu2, s2)
Z = Exponential('z', rate)
a, b, c = symbols('a b c', real=True)
assert E(X) == mu1
assert E(X + Y) == mu1 + mu2
assert E(a*X + b) == a*E(X) + b
assert variance(X) == s1**2
assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)
assert E(Z) == 1/rate
assert E(a*Z + b) == a*E(Z) + b
assert E(X + a*Z + b) == mu1 + a/rate + b
def test_cdf():
X = Normal('x', 0, 1)
d = cdf(X)
assert P(X < 1) == d(1).rewrite(erfc)
assert d(0) == S.Half
d = cdf(X, X > 0) # given X>0
assert d(0) == 0
Y = Exponential('y', 10)
d = cdf(Y)
assert d(-5) == 0
assert P(Y > 3) == 1 - d(3)
raises(ValueError, lambda: cdf(X + Y))
Z = Exponential('z', 1)
f = cdf(Z)
z = Symbol('z')
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
def test_characteristic_function():
X = Uniform('x', 0, 1)
cf = characteristic_function(X)
assert cf(1) == -I*(-1 + exp(I))
Y = Normal('y', 1, 1)
cf = characteristic_function(Y)
assert cf(0) == 1
assert cf(1) == exp(I - S(1)/2)
Z = Exponential('z', 5)
cf = characteristic_function(Z)
assert cf(0) == 1
assert cf(1).expand() == S(25)/26 + 5*I/26
X = GaussianInverse('x', 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == exp(1 - sqrt(1 - 2*I))
X = ExGaussian('x', 0, 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == (1 + I)*exp(-S(1)/2)/2
def test_moment_generating_function():
t = symbols('t', positive=True)
# Symbolic tests
a, b, c = symbols('a b c')
mgf = moment_generating_function(Beta('x', a, b))(t)
assert mgf == hyper((a,), (a + b,), t)
mgf = moment_generating_function(Chi('x', a))(t)
assert mgf == sqrt(2)*t*gamma(a/2 + S(1)/2)*\
hyper((a/2 + S(1)/2,), (S(3)/2,), t**2/2)/gamma(a/2) +\
hyper((a/2,), (S(1)/2,), t**2/2)
mgf = moment_generating_function(ChiSquared('x', a))(t)
assert mgf == (1 - 2*t)**(-a/2)
mgf = moment_generating_function(Erlang('x', a, b))(t)
assert mgf == (1 - t/b)**(-a)
mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)
mgf = moment_generating_function(Exponential('x', a))(t)
assert mgf == a/(a - t)
mgf = moment_generating_function(Gamma('x', a, b))(t)
assert mgf == (-b*t + 1)**(-a)
mgf = moment_generating_function(Gumbel('x', a, b))(t)
assert mgf == exp(b*t)*gamma(-a*t + 1)
mgf = moment_generating_function(Gompertz('x', a, b))(t)
assert mgf == b*exp(b)*expint(t/a, b)
mgf = moment_generating_function(Laplace('x', a, b))(t)
assert mgf == exp(a*t)/(-b**2*t**2 + 1)
mgf = moment_generating_function(Logistic('x', a, b))(t)
assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)
mgf = moment_generating_function(Normal('x', a, b))(t)
assert mgf == exp(a*t + b**2*t**2/2)
mgf = moment_generating_function(Pareto('x', a, b))(t)
assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)
mgf = moment_generating_function(QuadraticU('x', a, b))(t)
assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
"3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")
mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))
mgf = moment_generating_function(Rayleigh('x', a))(t)
assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
*exp(a**2*t**2/2)/2 + 1
mgf = moment_generating_function(Triangular('x', a, b, c))(t)
assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
"2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")
mgf = moment_generating_function(Uniform('x', a, b))(t)
assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))
mgf = moment_generating_function(UniformSum('x', a))(t)
assert mgf == ((exp(t) - 1)/t)**a
mgf = moment_generating_function(WignerSemicircle('x', a))(t)
assert mgf == 2*besseli(1, a*t)/(a*t)
# Numeric tests
mgf = moment_generating_function(Beta('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2
mgf = moment_generating_function(Chi('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (S(3)/2,), S(1)/2
)/sqrt(pi) + hyper((S(3)/2,), (S(3)/2,), S(1)/2) + 2*sqrt(2)*hyper((2,),
(S(5)/2,), S(1)/2)/(3*sqrt(pi))
mgf = moment_generating_function(ChiSquared('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == I
mgf = moment_generating_function(Erlang('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
assert mgf.diff(t).subs(t, 2) == -exp(2)
mgf = moment_generating_function(Exponential('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gamma('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == EulerGamma + 1
mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
((0, 0, 0), ()), 1)
mgf = moment_generating_function(Laplace('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Logistic('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == beta(1, 1)
mgf = moment_generating_function(Normal('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == exp(S(1)/2)
mgf = moment_generating_function(Pareto('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == expint(1, 0)
mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)
mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
(1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)
mgf = moment_generating_function(Rayleigh('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2
mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
assert mgf.diff(t).subs(t, 1) == -e + exp(3)
mgf = moment_generating_function(Uniform('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(UniformSum('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
besseli(0, 1)
def test_sample_continuous():
z = Symbol('z')
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert sample(Z) in Z.pspace.domain.set
sym, val = list(Z.pspace.sample().items())[0]
assert sym == Z and val in Interval(0, oo)
assert density(Z)(-1) == 0
def test_ContinuousRV():
x = Symbol('x')
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
# X and Y should be equivalent
X = ContinuousRV(x, pdf)
Y = Normal('y', 0, 1)
assert variance(X) == variance(Y)
assert P(X > 0) == P(Y > 0)
def test_arcsin():
from sympy import asin
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Arcsin('x', a, b)
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
assert cdf(X)(x) == Piecewise((0, a > x),
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
(1, True))
def test_benini():
alpha = Symbol("alpha", positive=True)
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=True)
X = Benini('x', alpha, beta, sigma)
assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
*exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
alpha = Symbol("alpha", positive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
def test_beta():
a, b = symbols('alpha beta', positive=True)
B = Beta('x', a, b)
assert pspace(B).domain.set == Interval(0, 1)
dens = density(B)
x = Symbol('x')
assert dens(x) == x**(a - 1)*(1 - x)**(b - 1) / beta(a, b)
assert simplify(E(B)) == a / (a + b)
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
# Full symbolic solution is too much, test with numeric version
a, b = 1, 2
B = Beta('x', a, b)
assert expand_func(E(B)) == a / S(a + b)
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
def test_beta_noncentral():
a, b = symbols('a b', positive=True)
c = Symbol('c', nonnegative=True)
_k = Symbol('k')
X = BetaNoncentral('x', a, b, c)
assert pspace(X).domain.set == Interval(0, 1)
dens = density(X)
z = Symbol('z')
assert str(dens(z)) == ("Sum(z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/"
"(beta(_k + a, b)*factorial(_k)), (_k, 0, oo))")
# BetaCentral should not raise if the assumptions
# on the symbols can not be determined
a, b, c = symbols('a b c')
assert BetaNoncentral('x', a, b, c)
a = Symbol('a', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=True)
c = Symbol('c', nonnegative=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
def test_betaprime():
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=True)
X = BetaPrime('x', alpha, betap)
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
def test_cauchy():
x0 = Symbol("x0")
gamma = Symbol("gamma", positive=True)
p = Symbol("p", positive=True)
X = Cauchy('x', x0, gamma)
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
gamma = Symbol("gamma", nonpositive=True)
raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_chi():
k = Symbol("k", integer=True)
X = Chi('x', k)
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: Chi('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: Chi('x', k))
def test_chi_noncentral():
k = Symbol("k", integer=True)
l = Symbol("l")
X = ChiNoncentral("x", k, l)
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", nonpositive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=False)
l = Symbol("l", positive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
def test_chi_squared():
k = Symbol("k", integer=True)
X = ChiSquared('x', k)
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
assert E(X) == k
assert variance(X) == 2*k
X = ChiSquared('x', 15)
assert cdf(X)(3) == -14873*sqrt(6)*exp(-S(3)/2)/(5005*sqrt(pi)) + erf(sqrt(6)/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiSquared('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: ChiSquared('x', k))
def test_dagum():
p = Symbol("p", positive=True)
b = Symbol("b", positive=True)
a = Symbol("a", positive=True)
X = Dagum('x', p, a, b)
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
(0, True))
p = Symbol("p", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
p = Symbol("p", positive=True)
b = Symbol("b", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
b = Symbol("b", positive=True)
a = Symbol("a", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
def test_erlang():
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=True)
X = Erlang("x", k, l)
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
(0, True))
def test_exgaussian():
m, z = symbols("m, z")
s, l = symbols("s, l", positive=True)
X = ExGaussian("x", m, s, l)
assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2
# Note: actual_output simplifies to expected_output.
# Ideally cdf(X)(z) would return expected_output
# expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S(1)/2
u = l*(z - m)
v = l*s
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
assert cdf(X)(z) == actual_output
# assert simplify(actual_output) == expected_output
assert variance(X).expand() == s**2 + l**(-2)
assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
sqrt(s**2 + l**(-2)))
def test_exponential():
rate = Symbol('lambda', positive=True)
X = Exponential('x', rate)
p = Symbol("p", positive=True, real=True,finite=True)
assert E(X) == 1/rate
assert variance(X) == 1/rate**2
assert skewness(X) == 2
assert skewness(X) == smoment(X, 3)
assert kurtosis(X) == 9
assert kurtosis(X) == smoment(X, 4)
assert smoment(2*X, 4) == smoment(X, 4)
assert moment(X, 3) == 3*2*1/rate**3
assert P(X > 0) == S(1)
assert P(X > 1) == exp(-rate)
assert P(X > 10) == exp(-10*rate)
assert quantile(X)(p) == -log(1-p)/rate
assert where(X <= 1).set == Interval(0, 1)
def test_exponential_power():
mu = Symbol('mu')
z = Symbol('z')
alpha = Symbol('alpha', positive=True)
beta = Symbol('beta', positive=True)
X = ExponentialPower('x', mu, alpha, beta)
assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
** beta)/(2*alpha*gamma(1/beta))
assert cdf(X)(z) == S.Half + lowergamma(1/beta,
(Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
(2*gamma(1/beta))
def test_f_distribution():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FDistribution("x", d1, d2)
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
/(x*beta(d1/2, d2/2)))
d1 = Symbol("d1", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d2))
d2 = Symbol("d2", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d2))
def test_fisher_z():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FisherZ("x", d1, d2)
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
def test_frechet():
a = Symbol("a", positive=True)
s = Symbol("s", positive=True)
m = Symbol("m", real=True)
X = Frechet("x", a, s=s, m=m)
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
def test_gamma():
k = Symbol("k", positive=True)
theta = Symbol("theta", positive=True)
X = Gamma('x', k, theta)
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
assert cdf(X, meijerg=True)(z) == Piecewise(
(-k*lowergamma(k, 0)/gamma(k + 1) +
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
(0, True))
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
assert E(X) == moment(X, 1)
k, theta = symbols('k theta', positive=True)
X = Gamma('x', k, theta)
assert E(X) == k*theta
assert variance(X) == k*theta**2
assert skewness(X).expand() == 2/sqrt(k)
assert kurtosis(X).expand() == 3 + 6/k
def test_gamma_inverse():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = GammaInverse("x", a, b)
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
def test_sampling_gamma_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of gamma inverse.')
X = GammaInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_gompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = Gompertz("x", b, eta)
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_gumbel():
beta = Symbol("beta", positive=True)
mu = Symbol("mu")
x = Symbol("x")
y = Symbol("y")
X = Gumbel("x", beta, mu)
Y = Gumbel("y", beta, mu, minimum=True)
assert density(X)(x).expand() == \
exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
assert density(Y)(y).expand() == \
exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
assert cdf(X)(x).expand() == \
exp(-exp(mu/beta)*exp(-x/beta))
def test_kumaraswamy():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = Kumaraswamy("x", a, b)
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
assert cdf(X)(x) == Piecewise((0, x < 0),
(-(-x**a + 1)**b + 1, x <= 1),
(1, True))
def test_laplace():
mu = Symbol("mu")
b = Symbol("b", positive=True)
X = Laplace('x', mu, b)
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
(-exp((mu - x)/b)/2 + 1, True))
def test_logistic():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
p = Symbol("p", positive=True)
X = Logistic('x', mu, s)
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
assert quantile(X)(p) == mu - s*log(-S(1) + 1/p)
def test_loglogistic():
a, b = symbols('a b')
assert LogLogistic('x', a, b)
a = Symbol('a', negative=True)
b = Symbol('b', positive=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a = Symbol('a', positive=True)
b = Symbol('b', negative=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a, b, z, p = symbols('a b z p', positive=True)
X = LogLogistic('x', a, b)
assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
assert quantile(X)(p) == a*(p/(1 - p))**(1/b)
# Expectation
assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
b = symbols('b', prime=True) # b > 1
X = LogLogistic('x', a, b)
assert E(X) == pi*a/(b*sin(pi/b))
def test_lognormal():
mean = Symbol('mu', real=True)
std = Symbol('sigma', positive=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
for i in range(3):
X = LogNormal('x', i, 1)
assert sample(X) in X.pspace.domain.set
# The sympy integrator can't do this too well
#assert E(X) ==
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
def test_maxwell():
a = Symbol("a", positive=True)
X = Maxwell('x', a)
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
(sqrt(pi)*a**3))
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
assert variance(X) == -8*a**2/pi + 3*a**2
assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
assert diff(cdf(X)(x), x) == density(X)(x)
def test_nakagami():
mu = Symbol("mu", positive=True)
omega = Symbol("omega", positive=True)
X = Nakagami('x', mu, omega)
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
*exp(-x**2*mu/omega)/gamma(mu))
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
*gamma(mu + S.Half)/gamma(mu + 1))
assert simplify(variance(X)) == (
omega - omega*gamma(mu + S(1)/2)**2/(gamma(mu)*gamma(mu + 1)))
assert cdf(X)(x) == Piecewise(
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
(0, True))
def test_gaussian_inverse():
# test for symbolic parameters
a, b = symbols('a b')
assert GaussianInverse('x', a, b)
# Inverse Gaussian distribution is also known as Wald distribution
# `GaussianInverse` can also be referred by the name `Wald`
a, b, z = symbols('a b z')
X = Wald('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
a, b = symbols('a b', positive=True)
z = Symbol('z', positive=True)
X = GaussianInverse('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
assert E(X) == a
assert variance(X).expand() == a**3/b
assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half
a = symbols('a', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
a = symbols('a', positive=True)
b = symbols('b', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
def test_sampling_gaussian_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.')
X = GaussianInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_pareto():
xm, beta = symbols('xm beta', positive=True)
alpha = beta + 5
X = Pareto('x', xm, alpha)
dens = density(X)
x = Symbol('x')
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
assert simplify(E(X)) == alpha*xm/(alpha-1)
# computation of taylor series for MGF still too slow
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
def test_pareto_numeric():
xm, beta = 3, 2
alpha = beta + 5
X = Pareto('x', xm, alpha)
assert E(X) == alpha*xm/S(alpha - 1)
assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
# Skewness tests too slow. Try shortcutting function?
def test_raised_cosine():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = RaisedCosine("x", mu, s)
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
And(x <= mu + s, mu - s <= x)), (0, True)))
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_shiftedgompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = ShiftedGompertz("x", b, eta)
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
def test_studentt():
nu = Symbol("nu", positive=True)
X = StudentT('x', nu)
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S(1)/2)/(sqrt(nu)*beta(S(1)/2, nu/2))
assert cdf(X)(x) == S(1)/2 + x*gamma(nu/2 + S(1)/2)*hyper((S(1)/2, nu/2 + S(1)/2),
(S(3)/2,), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
def test_trapezoidal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
c = Symbol("c", real=True)
d = Symbol("d", real=True)
X = Trapezoidal('x', a, b, c, d)
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
(2/(-a - b + c + d), (b <= x) & (x < c)),
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
(0, True))
X = Trapezoidal('x', 0, 1, 2, 3)
assert E(X) == S(3)/2
assert variance(X) == S(5)/12
assert P(X < 2) == S(3)/4
def test_triangular():
a = Symbol("a")
b = Symbol("b")
c = Symbol("c")
X = Triangular('x', a, b, c)
assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
"(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")
def test_quadratic_u():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = QuadraticU("x", a, b)
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
And(x <= b, a <= x)), (0, True)))
def test_uniform():
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert E(X) == l + w/2
assert variance(X).expand() == w**2/12
# With numbers all is well
X = Uniform('x', 3, 5)
assert P(X < 3) == 0 and P(X > 5) == 0
assert P(X < 4) == P(X > 4) == S.Half
z = Symbol('z')
p = density(X)(z)
assert p.subs(z, 3.7) == S(1)/2
assert p.subs(z, -1) == 0
assert p.subs(z, 6) == 0
c = cdf(X)
assert c(2) == 0 and c(3) == 0
assert c(S(7)/2) == S(1)/4
assert c(5) == 1 and c(6) == 1
@XFAIL
def test_uniform_P():
""" This stopped working because SingleContinuousPSpace.compute_density no
longer calls integrate on a DiracDelta but rather just solves directly.
integrate used to call UniformDistribution.expectation which special-cased
subsed out the Min and Max terms that Uniform produces
I decided to regress on this class for general cleanliness (and I suspect
speed) of the algorithm.
"""
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert P(X < l) == 0 and P(X > l + w) == 0
def test_uniformsum():
n = Symbol("n", integer=True)
_k = Symbol("k")
x = Symbol("x")
X = UniformSum('x', n)
assert str(density(X)(x)) == ("Sum((-1)**_k*(-_k + x)**(n - 1)"
"*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)")
def test_von_mises():
mu = Symbol("mu")
k = Symbol("k", positive=True)
X = VonMises("x", mu, k)
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
def test_weibull():
a, b = symbols('a b', positive=True)
# FIXME: simplify(E(X)) seems to hang without extended_positive=True
# On a Linux machine this had a rapid memory leak...
# a, b = symbols('a b', positive=True)
X = Weibull('x', a, b)
assert E(X).expand() == a * gamma(1 + 1/b)
assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**(S(3)/2)
assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2
def test_weibull_numeric():
# Test for integers and rationals
a = 1
bvals = [S.Half, 1, S(3)/2, 5]
for b in bvals:
X = Weibull('x', a, b)
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
assert simplify(variance(X)) == simplify(
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
# Not testing Skew... it's slow with int/frac values > 3/2
def test_wignersemicircle():
R = Symbol("R", positive=True)
X = WignerSemicircle('x', R)
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
assert E(X) == 0
def test_prefab_sampling():
N = Normal('X', 0, 1)
L = LogNormal('L', 0, 1)
E = Exponential('Ex', 1)
P = Pareto('P', 1, 3)
W = Weibull('W', 1, 1)
U = Uniform('U', 0, 1)
B = Beta('B', 2, 5)
G = Gamma('G', 1, 3)
variables = [N, L, E, P, W, U, B, G]
niter = 10
for var in variables:
for i in range(niter):
assert sample(var) in var.pspace.domain.set
def test_input_value_assertions():
a, b = symbols('a b')
p, q = symbols('p q', positive=True)
m, n = symbols('m n', positive=False, real=True)
raises(ValueError, lambda: Normal('x', 3, 0))
raises(ValueError, lambda: Normal('x', m, n))
Normal('X', a, p) # No error raised
raises(ValueError, lambda: Exponential('x', m))
Exponential('Ex', p) # No error raised
for fn in [Pareto, Weibull, Beta, Gamma]:
raises(ValueError, lambda: fn('x', m, p))
raises(ValueError, lambda: fn('x', p, n))
fn('x', p, q) # No error raised
def test_unevaluated():
X = Normal('x', 0, 1)
assert str(E(X, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/"
"(2*sqrt(pi)), (x, -oo, oo))")
assert str(E(X + 1, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/"
"(2*sqrt(pi)), (x, -oo, oo)) + 1")
assert str(P(X > 0, evaluate=False)) == ("Integral(sqrt(2)*exp(-_z**2/2)/"
"(2*sqrt(pi)), (_z, 0, oo))")
assert P(X > 0, X**2 < 1, evaluate=False) == S(1)/2
def test_probability_unevaluated():
T = Normal('T', 30, 3)
assert type(P(T > 33, evaluate=False)) == Integral
def test_density_unevaluated():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 2)
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
def test_NormalDistribution():
nd = NormalDistribution(0, 1)
x = Symbol('x')
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.One/2
assert isinstance(nd.sample(), float) or nd.sample().is_Number
assert nd.expectation(1, x) == 1
assert nd.expectation(x, x) == 0
assert nd.expectation(x**2, x) == 1
def test_random_parameters():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert density(meas, evaluate=False)(z)
assert isinstance(pspace(meas), JointPSpace)
#assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf *
# meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z)
def test_random_parameters_given():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
def test_conjugate_priors():
mu = Normal('mu', 2, 3)
x = Normal('x', mu, 1)
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
Mul)
def test_difficult_univariate():
""" Since using solve in place of deltaintegrate we're able to perform
substantially more complex density computations on single continuous random
variables """
x = Normal('x', 0, 1)
assert density(x**3)
assert density(exp(x**2))
assert density(log(x))
def test_issue_10003():
X = Exponential('x', 3)
G = Gamma('g', 1, 2)
assert P(X < -1) == S.Zero
assert P(G < -1) == S.Zero
@slow
def test_precomputed_cdf():
x = symbols("x", real=True)
mu = symbols("mu", real=True)
sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
n = symbols("n", integer=True, positive=True)
distribs = [
Normal("X", mu, sigma),
Pareto("P", xm, alpha),
ChiSquared("C", n),
Exponential("E", sigma),
# LogNormal("L", mu, sigma),
]
for X in distribs:
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
compdiff = simplify(compdiff.rewrite(erfc))
assert compdiff == 0
@slow
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = Symbol('t')
x = Symbol('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Beta('b', 1, 2), 0, 1)
test_cf(Chi('c', 3), 0, mpmath.inf)
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
test_cf(Exponential('e', 6), 0, mpmath.inf)
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
test_cf(RaisedCosine('r', 3, 1), 2, 4)
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
test_cf(Uniform('u', -1, 1), -1, 1)
test_cf(WignerSemicircle('w', 3), -3, 3)
def test_long_precomputed_cdf():
x = symbols("x", real=True)
distribs = [
Arcsin("A", -5, 9),
Dagum("D", 4, 10, 3),
Erlang("E", 14, 5),
Frechet("F", 2, 6, -3),
Gamma("G", 2, 7),
GammaInverse("GI", 3, 5),
Kumaraswamy("K", 6, 8),
Laplace("LA", -5, 4),
Logistic("L", -6, 7),
Nakagami("N", 2, 7),
StudentT("S", 4)
]
for distr in distribs:
for _ in range(5):
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
US = UniformSum("US", 5)
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
def test_issue_13324():
X = Uniform('X', 0, 1)
assert E(X, X > Rational(1, 2)) == Rational(3, 4)
assert E(X, X > 0) == Rational(1, 2)
def test_FiniteSet_prob():
x = symbols('x')
E = Exponential('E', 3)
N = Normal('N', 5, 7)
assert P(Eq(E, 1)) is S.Zero
assert P(Eq(N, 2)) is S.Zero
assert P(Eq(N, x)) is S.Zero
def test_prob_neq():
E = Exponential('E', 4)
X = ChiSquared('X', 4)
x = symbols('x')
assert P(Ne(E, 2)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 5)) == 1
assert P(Ne(E, x)) == 1
def test_union():
N = Normal('N', 3, 2)
assert simplify(P(N**2 - N > 2)) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + S(3)/2
assert simplify(P(N**2 - 4 > 0)) == \
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + S(3)/2
def test_Or():
N = Normal('N', 0, 1)
assert simplify(P(Or(N > 2, N < 1))) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + S(3)/2
assert P(Or(N < 0, N < 1)) == P(N < 1)
assert P(Or(N > 0, N < 0)) == 1
def test_conditional_eq():
E = Exponential('E', 1)
assert P(Eq(E, 1), Eq(E, 1)) == 1
assert P(Eq(E, 1), Eq(E, 2)) == 0
assert P(E > 1, Eq(E, 2)) == 1
assert P(E < 1, Eq(E, 2)) == 0
|
99dfe4d8afabfe30996b3531a4c04faab4140a900f3e67b8cdbdf31e9ab6d7a8 | from sympy import (Sieve, binomial_coefficients, binomial_coefficients_list,
Mul, S, Pow, sieve, Symbol, summation, Dummy, Dict,
factorial as fac)
from sympy.core.evalf import bitcount
from sympy.core.numbers import Integer, Rational
from sympy.core.compatibility import long, range
from sympy.ntheory import (isprime, n_order, is_primitive_root,
is_quad_residue, legendre_symbol, jacobi_symbol, npartitions, totient,
factorint, primefactors, divisors, randprime, nextprime, prevprime,
primerange, primepi, prime, pollard_rho, perfect_power, multiplicity,
trailing, divisor_count, primorial, pollard_pm1, divisor_sigma,
factorrat, reduced_totient)
from sympy.ntheory.factor_ import (smoothness, smoothness_p,
antidivisors, antidivisor_count, core, digits, udivisors, udivisor_sigma,
udivisor_count, primenu, primeomega, small_trailing, mersenne_prime_exponent,
is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable)
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.multinomial import (
multinomial_coefficients, multinomial_coefficients_iterator)
from sympy.ntheory.bbp_pi import pi_hex_digits
from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence
from sympy.utilities.pytest import raises
from sympy.utilities.iterables import capture
def fac_multiplicity(n, p):
"""Return the power of the prime number p in the
factorization of n!"""
if p > n:
return 0
if p > n//2:
return 1
q, m = n, 0
while q >= p:
q //= p
m += q
return m
def multiproduct(seq=(), start=1):
"""
Return the product of a sequence of factors with multiplicities,
times the value of the parameter ``start``. The input may be a
sequence of (factor, exponent) pairs or a dict of such pairs.
>>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4
279936
"""
if not seq:
return start
if isinstance(seq, dict):
seq = iter(seq.items())
units = start
multi = []
for base, exp in seq:
if not exp:
continue
elif exp == 1:
units *= base
else:
if exp % 2:
units *= base
multi.append((base, exp//2))
return units * multiproduct(multi)**2
def test_trailing_bitcount():
assert trailing(0) == 0
assert trailing(1) == 0
assert trailing(-1) == 0
assert trailing(2) == 1
assert trailing(7) == 0
assert trailing(-7) == 0
for i in range(100):
assert trailing((1 << i)) == i
assert trailing((1 << i) * 31337) == i
assert trailing((1 << 1000001)) == 1000001
assert trailing((1 << 273956)*7**37) == 273956
# issue 12709
big = small_trailing[-1]*2
assert trailing(-big) == trailing(big)
assert bitcount(-big) == bitcount(big)
def test_multiplicity():
for b in range(2, 20):
for i in range(100):
assert multiplicity(b, b**i) == i
assert multiplicity(b, (b**i) * 23) == i
assert multiplicity(b, (b**i) * 1000249) == i
# Should be fast
assert multiplicity(10, 10**10023) == 10023
# Should exit quickly
assert multiplicity(10**10, 10**10) == 1
# Should raise errors for bad input
raises(ValueError, lambda: multiplicity(1, 1))
raises(ValueError, lambda: multiplicity(1, 2))
raises(ValueError, lambda: multiplicity(1.3, 2))
raises(ValueError, lambda: multiplicity(2, 0))
raises(ValueError, lambda: multiplicity(1.3, 0))
# handles Rationals
assert multiplicity(10, Rational(30, 7)) == 1
assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1
assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2
assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1
assert multiplicity(3, Rational(1, 9)) == -2
def test_perfect_power():
raises(ValueError, lambda: perfect_power(0))
raises(ValueError, lambda: perfect_power(Rational(25, 4)))
assert perfect_power(1) is False
assert perfect_power(2) is False
assert perfect_power(3) is False
assert perfect_power(4) == (2, 2)
assert perfect_power(14) is False
assert perfect_power(25) == (5, 2)
assert perfect_power(22) is False
assert perfect_power(22, [2]) is False
assert perfect_power(137**(3*5*13)) == (137, 3*5*13)
assert perfect_power(137**(3*5*13) + 1) is False
assert perfect_power(137**(3*5*13) - 1) is False
assert perfect_power(103005006004**7) == (103005006004, 7)
assert perfect_power(103005006004**7 + 1) is False
assert perfect_power(103005006004**7 - 1) is False
assert perfect_power(103005006004**12) == (103005006004, 12)
assert perfect_power(103005006004**12 + 1) is False
assert perfect_power(103005006004**12 - 1) is False
assert perfect_power(2**10007) == (2, 10007)
assert perfect_power(2**10007 + 1) is False
assert perfect_power(2**10007 - 1) is False
assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60)
assert perfect_power((9**99 + 1)**60 + 1) is False
assert perfect_power((9**99 + 1)**60 - 1) is False
assert perfect_power((10**40000)**2, big=False) == (10**40000, 2)
assert perfect_power(10**100000) == (10, 100000)
assert perfect_power(10**100001) == (10, 100001)
assert perfect_power(13**4, [3, 5]) is False
assert perfect_power(3**4, [3, 10], factor=0) is False
assert perfect_power(3**3*5**3) == (15, 3)
assert perfect_power(2**3*5**5) is False
assert perfect_power(2*13**4) is False
assert perfect_power(2**5*3**3) is False
t = 2**24
for d in divisors(24):
m = perfect_power(t*3**d)
assert m and m[1] == d or d == 1
m = perfect_power(t*3**d, big=False)
assert m and m[1] == 2 or d == 1 or d == 3, (d, m)
def test_factorint():
assert primefactors(123456) == [2, 3, 643]
assert factorint(0) == {0: 1}
assert factorint(1) == {}
assert factorint(-1) == {-1: 1}
assert factorint(-2) == {-1: 1, 2: 1}
assert factorint(-16) == {-1: 1, 2: 4}
assert factorint(2) == {2: 1}
assert factorint(126) == {2: 1, 3: 2, 7: 1}
assert factorint(123456) == {2: 6, 3: 1, 643: 1}
assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
assert factorint(64015937) == {7993: 1, 8009: 1}
assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
assert factorint(0, multiple=True) == [0]
assert factorint(1, multiple=True) == []
assert factorint(-1, multiple=True) == [-1]
assert factorint(-2, multiple=True) == [-1, 2]
assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
assert factorint(2, multiple=True) == [2]
assert factorint(24, multiple=True) == [2, 2, 2, 3]
assert factorint(126, multiple=True) == [2, 3, 3, 7]
assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
assert factorint(64015937, multiple=True) == [7993, 8009]
assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]
assert factorint(fac(1, evaluate=False)) == {}
assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
assert factorint(fac(15, evaluate=False)) == \
{2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
assert factorint(fac(20, evaluate=False)) == \
{2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
assert factorint(fac(23, evaluate=False)) == \
{2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}
assert multiproduct(factorint(fac(200))) == fac(200)
assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
for b, e in factorint(fac(150)).items():
assert e == fac_multiplicity(150, b)
for b, e in factorint(fac(150, evaluate=False)).items():
assert e == fac_multiplicity(150, b)
assert factorint(103005006059**7) == {103005006059: 7}
assert factorint(31337**191) == {31337: 191}
assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
{2: 1000, 3: 500, 257: 127, 383: 60}
assert len(factorint(fac(10000))) == 1229
assert len(factorint(fac(10000, evaluate=False))) == 1229
assert factorint(12932983746293756928584532764589230) == \
{2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
assert factorint(727719592270351) == {727719592270351: 1}
assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
for n in range(60000):
assert multiproduct(factorint(n)) == n
assert pollard_rho(2**64 + 1, seed=1) == 274177
assert pollard_rho(19, seed=1) is None
assert factorint(3, limit=2) == {3: 1}
assert factorint(12345) == {3: 1, 5: 1, 823: 1}
assert factorint(
12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit
assert factorint(1, limit=1) == {}
assert factorint(0, 3) == {0: 1}
assert factorint(12, limit=1) == {12: 1}
assert factorint(30, limit=2) == {2: 1, 15: 1}
assert factorint(16, limit=2) == {2: 4}
assert factorint(124, limit=3) == {2: 2, 31: 1}
assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
p1 = nextprime(2**32)
p2 = nextprime(2**16)
p3 = nextprime(p2)
assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
assert factorint(primorial(17) + 1, use_pm1=0) == \
{long(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
# when prime b is closer than approx sqrt(8*p) to prime p then they are
# "close" and have a trivial factorization
a = nextprime(2**2**8) # 78 digits
b = nextprime(a + 2**2**4)
assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))
raises(ValueError, lambda: pollard_rho(4))
raises(ValueError, lambda: pollard_pm1(3))
raises(ValueError, lambda: pollard_pm1(10, B=2))
# verbose coverage
n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
assert 'with primes' in capture(lambda: factorint(n, verbose=1))
capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))
n = nextprime(2**17)
capture(lambda: factorint(n**3, verbose=1)) # perfect power termination
capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg
# exceed 1st
n = nextprime(2**17)
n *= nextprime(n)
assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
n *= nextprime(n)
assert len(factorint(n)) == 3
assert len(factorint(n, limit=p1)) == 3
n *= nextprime(2*n)
# exceed 2nd
assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
assert capture(
lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
# non-prime pm1 result
n = nextprime(8069)
n *= nextprime(2*n)*nextprime(2*n, 2)
capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result
# factor fermat composite
p1 = nextprime(2**17)
p2 = nextprime(2*p1)
assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
# Test for non integer input
raises(ValueError, lambda: factorint(4.5))
# test dict/Dict input
sans = '2**10*3**3'
n = {4: 2, 12: 3}
assert str(factorint(n)) == sans
assert str(factorint(Dict(n))) == sans
def test_divisors_and_divisor_count():
assert divisors(-1) == [1]
assert divisors(0) == []
assert divisors(1) == [1]
assert divisors(2) == [1, 2]
assert divisors(3) == [1, 3]
assert divisors(17) == [1, 17]
assert divisors(10) == [1, 2, 5, 10]
assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100]
assert divisors(101) == [1, 101]
assert divisor_count(0) == 0
assert divisor_count(-1) == 1
assert divisor_count(1) == 1
assert divisor_count(6) == 4
assert divisor_count(12) == 6
assert divisor_count(180, 3) == divisor_count(180//3)
assert divisor_count(2*3*5, 7) == 0
def test_udivisors_and_udivisor_count():
assert udivisors(-1) == [1]
assert udivisors(0) == []
assert udivisors(1) == [1]
assert udivisors(2) == [1, 2]
assert udivisors(3) == [1, 3]
assert udivisors(17) == [1, 17]
assert udivisors(10) == [1, 2, 5, 10]
assert udivisors(100) == [1, 4, 25, 100]
assert udivisors(101) == [1, 101]
assert udivisors(1000) == [1, 8, 125, 1000]
assert udivisor_count(0) == 0
assert udivisor_count(-1) == 1
assert udivisor_count(1) == 1
assert udivisor_count(6) == 4
assert udivisor_count(12) == 4
assert udivisor_count(180) == 8
assert udivisor_count(2*3*5*7) == 16
def test_issue_6981():
S = set(divisors(4)).union(set(divisors(Integer(2))))
assert S == {1,2,4}
def test_totient():
assert [totient(k) for k in range(1, 12)] == \
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
assert totient(5005) == 2880
assert totient(5006) == 2502
assert totient(5009) == 5008
assert totient(2**100) == 2**99
raises(ValueError, lambda: totient(30.1))
raises(ValueError, lambda: totient(20.001))
m = Symbol("m", integer=True)
assert totient(m)
assert totient(m).subs(m, 3**10) == 3**10 - 3**9
assert summation(totient(m), (m, 1, 11)) == 42
n = Symbol("n", integer=True, positive=True)
assert totient(n).is_integer
x=Symbol("x", integer=False)
raises(ValueError, lambda: totient(x))
y=Symbol("y", positive=False)
raises(ValueError, lambda: totient(y))
z=Symbol("z", positive=True, integer=True)
raises(ValueError, lambda: totient(2**(-z)))
def test_reduced_totient():
assert [reduced_totient(k) for k in range(1, 16)] == \
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4]
assert reduced_totient(5005) == 60
assert reduced_totient(5006) == 2502
assert reduced_totient(5009) == 5008
assert reduced_totient(2**100) == 2**98
m = Symbol("m", integer=True)
assert reduced_totient(m)
assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9
assert summation(reduced_totient(m), (m, 1, 16)) == 68
n = Symbol("n", integer=True, positive=True)
assert reduced_totient(n).is_integer
def test_divisor_sigma():
assert [divisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12]
assert [divisor_sigma(k, 2) for k in range(1, 12)] == \
[1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122]
assert divisor_sigma(23450) == 50592
assert divisor_sigma(23450, 0) == 24
assert divisor_sigma(23450, 1) == 50592
assert divisor_sigma(23450, 2) == 730747500
assert divisor_sigma(23450, 3) == 14666785333344
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert divisor_sigma(m)
assert divisor_sigma(m, k)
assert divisor_sigma(m).subs(m, 3**10) == 88573
assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597
assert summation(divisor_sigma(m), (m, 1, 11)) == 99
def test_udivisor_sigma():
assert [udivisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12]
assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \
[1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332]
assert udivisor_sigma(23450) == 42432
assert udivisor_sigma(23450, 0) == 16
assert udivisor_sigma(23450, 1) == 42432
assert udivisor_sigma(23450, 2) == 702685000
assert udivisor_sigma(23450, 4) == 321426961814978248
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert udivisor_sigma(m)
assert udivisor_sigma(m, k)
assert udivisor_sigma(m).subs(m, 4**9) == 262145
assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737
assert summation(udivisor_sigma(m), (m, 2, 15)) == 169
def test_issue_4356():
assert factorint(1030903) == {53: 2, 367: 1}
def test_divisors():
assert divisors(28) == [1, 2, 4, 7, 14, 28]
assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105]
assert divisors(0) == []
def test_divisor_count():
assert divisor_count(0) == 0
assert divisor_count(6) == 4
def test_antidivisors():
assert antidivisors(-1) == []
assert antidivisors(-3) == [2]
assert antidivisors(14) == [3, 4, 9]
assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158]
assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230]
assert antidivisors(393216) == [262144]
assert sorted(x for x in antidivisors(3*5*7, 1)) == \
[2, 6, 10, 11, 14, 19, 30, 42, 70]
assert antidivisors(1) == []
def test_antidivisor_count():
assert antidivisor_count(0) == 0
assert antidivisor_count(-1) == 0
assert antidivisor_count(-4) == 1
assert antidivisor_count(20) == 3
assert antidivisor_count(25) == 5
assert antidivisor_count(38) == 7
assert antidivisor_count(180) == 6
assert antidivisor_count(2*3*5) == 3
def test_smoothness_and_smoothness_p():
assert smoothness(1) == (1, 1)
assert smoothness(2**4*3**2) == (3, 16)
assert smoothness_p(10431, m=1) == \
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
assert smoothness_p(10431) == \
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
assert smoothness_p(10431, power=1) == \
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
assert smoothness_p(21477639576571, visual=1) == \
'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \
'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931'
def test_visual_factorint():
assert factorint(1, visual=1) == 1
forty2 = factorint(42, visual=True)
assert type(forty2) == Mul
assert str(forty2) == '2**1*3**1*7**1'
assert factorint(1, visual=True) is S.One
no = dict(evaluate=False)
assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no),
Pow(3, 2, **no),
Pow(7, 2, **no), **no)
assert -1 in factorint(-42, visual=True).args
def test_factorrat():
assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1'
assert str(factorrat(S(1)/1, visual=True)) == '1'
assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)'
assert str(factorrat(S(-25)/14/9, visual=True)) == '-5**2/(2*3**2*7)'
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(S(1)/1, multiple=True) == []
assert factorrat(S(25)/14, multiple=True) == [S(1)/7, S(1)/2, 5, 5]
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(S(-25)/14/9, multiple=True) == \
[-1, S(1)/7, S(1)/3, S(1)/3, S(1)/2, 5, 5]
def test_visual_io():
sm = smoothness_p
fi = factorint
# with smoothness_p
n = 124
d = fi(n)
m = fi(d, visual=True)
t = sm(n)
s = sm(t)
for th in [d, s, t, n, m]:
assert sm(th, visual=True) == s
assert sm(th, visual=1) == s
for th in [d, s, t, n, m]:
assert sm(th, visual=False) == t
assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t]
assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t]
# with factorint
for th in [d, m, n]:
assert fi(th, visual=True) == m
assert fi(th, visual=1) == m
for th in [d, m, n]:
assert fi(th, visual=False) == d
assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d]
assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d]
# test reevaluation
no = dict(evaluate=False)
assert sm({4: 2}, visual=False) == sm(16)
assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == sm(2**10)
assert fi({4: 2}, visual=False) == fi(16)
assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == fi(2**10)
def test_core():
assert core(35**13, 10) == 42875
assert core(210**2) == 1
assert core(7776, 3) == 36
assert core(10**27, 22) == 10**5
assert core(537824) == 14
assert core(1, 6) == 1
def test_digits():
assert all([digits(n, 2)[1:] == [int(d) for d in format(n, 'b')]
for n in range(20)])
assert all([digits(n, 8)[1:] == [int(d) for d in format(n, 'o')]
for n in range(20)])
assert all([digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')]
for n in range(20)])
assert digits(2345, 34) == [34, 2, 0, 33]
assert digits(384753, 71) == [71, 1, 5, 23, 4]
assert digits(93409) == [10, 9, 3, 4, 0, 9]
assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9]
def test_primenu():
assert primenu(2) == 1
assert primenu(2 * 3) == 2
assert primenu(2 * 3 * 5) == 3
assert primenu(3 * 25) == primenu(3) + primenu(25)
assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primenu(fac(50)) == 15
assert primenu(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primenu(n)
assert primenu(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primenu(n), (n, 2, 30)) == 43
def test_primeomega():
assert primeomega(2) == 1
assert primeomega(2 * 2) == 2
assert primeomega(2 * 2 * 3) == 3
assert primeomega(3 * 25) == primeomega(3) + primeomega(25)
assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primeomega(fac(50)) == 108
assert primeomega(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primeomega(n)
assert primeomega(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primeomega(n), (n, 2, 30)) == 59
def test_mersenne_prime_exponent():
assert mersenne_prime_exponent(1) == 2
assert mersenne_prime_exponent(4) == 7
assert mersenne_prime_exponent(10) == 89
assert mersenne_prime_exponent(25) == 21701
raises(ValueError, lambda: mersenne_prime_exponent(52))
raises(ValueError, lambda: mersenne_prime_exponent(0))
def test_is_perfect():
assert is_perfect(6) is True
assert is_perfect(15) is False
assert is_perfect(28) is True
assert is_perfect(400) is False
assert is_perfect(496) is True
assert is_perfect(8128) is True
assert is_perfect(10000) is False
def test_is_mersenne_prime():
assert is_mersenne_prime(10) is False
assert is_mersenne_prime(127) is True
assert is_mersenne_prime(511) is False
assert is_mersenne_prime(131071) is True
assert is_mersenne_prime(2147483647) is True
def test_is_abundant():
assert is_abundant(10) is False
assert is_abundant(12) is True
assert is_abundant(18) is True
assert is_abundant(21) is False
assert is_abundant(945) is True
def test_is_deficient():
assert is_deficient(10) is True
assert is_deficient(22) is True
assert is_deficient(56) is False
assert is_deficient(20) is False
assert is_deficient(36) is False
def test_is_amicable():
assert is_amicable(173, 129) is False
assert is_amicable(220, 284) is True
assert is_amicable(8756, 8756) is False
|
0b4bcc698fa7fa7b5e332fe8055e38bfa5723be0325b175364d8333b4e2172c1 | from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence
from sympy.utilities.pytest import raises
def test_crt():
def mcrt(m, v, r, symmetric=False):
assert crt(m, v, symmetric)[0] == r
mm, e, s = crt1(m)
assert crt2(m, v, mm, e, s, symmetric) == (r, mm)
mcrt([2, 3, 5], [0, 0, 0], 0)
mcrt([2, 3, 5], [1, 1, 1], 1)
mcrt([2, 3, 5], [-1, -1, -1], -1, True)
mcrt([2, 3, 5], [-1, -1, -1], 2*3*5 - 1, False)
assert crt([656, 350], [811, 133], symmetric=True) == (-56917, 114800)
def test_modular():
assert solve_congruence(*list(zip([3, 4, 2], [12, 35, 17]))) == (1719, 7140)
assert solve_congruence(*list(zip([3, 4, 2], [12, 6, 17]))) is None
assert solve_congruence(*list(zip([3, 4, 2], [13, 7, 17]))) == (172, 1547)
assert solve_congruence(*list(zip([-10, -3, -15], [13, 7, 17]))) == (172, 1547)
assert solve_congruence(*list(zip([-10, -3, 1, -15], [13, 7, 7, 17]))) is None
assert solve_congruence(
*list(zip([-10, -5, 2, -15], [13, 7, 7, 17]))) == (835, 1547)
assert solve_congruence(
*list(zip([-10, -5, 2, -15], [13, 7, 14, 17]))) == (2382, 3094)
assert solve_congruence(
*list(zip([-10, 2, 2, -15], [13, 7, 14, 17]))) == (2382, 3094)
assert solve_congruence(*list(zip((1, 1, 2), (3, 2, 4)))) is None
raises(
ValueError, lambda: solve_congruence(*list(zip([3, 4, 2], [12.1, 35, 17]))))
|
727a19c87d78496c3a3d522d3ceb90feb715e481b140fd0e7d7af06f4cda711a | from sympy import Sieve, sieve, Symbol, S, limit, I, zoo, nan
from sympy.core.compatibility import range
from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.primetest import mr
from sympy.utilities.pytest import raises
def test_prime():
assert prime(1) == 2
assert prime(2) == 3
assert prime(5) == 11
assert prime(11) == 31
assert prime(57) == 269
assert prime(296) == 1949
assert prime(559) == 4051
assert prime(3000) == 27449
assert prime(4096) == 38873
assert prime(9096) == 94321
assert prime(25023) == 287341
raises(ValueError, lambda: prime(0))
sieve.extend(3000)
assert prime(401) == 2749
def test_primepi():
assert primepi(-1) == 0
assert primepi(1) == 0
assert primepi(2) == 1
assert primepi(S(7)/2) == 2
assert primepi(3.5) == 2
assert primepi(5) == 3
assert primepi(11) == 5
assert primepi(57) == 16
assert primepi(296) == 62
assert primepi(559) == 102
assert primepi(3000) == 430
assert primepi(4096) == 564
assert primepi(9096) == 1128
assert primepi(25023) == 2763
assert primepi(10**8) == 5761455
assert primepi(253425253) == 13856396
assert primepi(8769575643) == 401464322
sieve.extend(3000)
assert primepi(2000) == 303
n = Symbol('n')
assert primepi(n).subs(n, 2) == 1
r = Symbol('r', real=True)
assert primepi(r).subs(r, 2) == 1
assert primepi(S.Infinity) == S.Infinity
assert primepi(-S.Infinity) == 0
assert limit(primepi(n), n, 100) == 25
raises(ValueError, lambda: primepi(I))
raises(ValueError, lambda: primepi(1 + I))
raises(ValueError, lambda: primepi(zoo))
raises(ValueError, lambda: primepi(nan))
def test_composite():
from sympy.ntheory.generate import sieve
sieve._reset()
assert composite(1) == 4
assert composite(2) == 6
assert composite(5) == 10
assert composite(11) == 20
assert composite(41) == 58
assert composite(57) == 80
assert composite(296) == 370
assert composite(559) == 684
assert composite(3000) == 3488
assert composite(4096) == 4736
assert composite(9096) == 10368
assert composite(25023) == 28088
sieve.extend(3000)
assert composite(1957) == 2300
assert composite(2568) == 2998
raises(ValueError, lambda: composite(0))
def test_compositepi():
assert compositepi(1) == 0
assert compositepi(2) == 0
assert compositepi(5) == 1
assert compositepi(11) == 5
assert compositepi(57) == 40
assert compositepi(296) == 233
assert compositepi(559) == 456
assert compositepi(3000) == 2569
assert compositepi(4096) == 3531
assert compositepi(9096) == 7967
assert compositepi(25023) == 22259
assert compositepi(10**8) == 94238544
assert compositepi(253425253) == 239568856
assert compositepi(8769575643) == 8368111320
sieve.extend(3000)
assert compositepi(2321) == 1976
def test_generate():
from sympy.ntheory.generate import sieve
sieve._reset()
assert nextprime(-4) == 2
assert nextprime(2) == 3
assert nextprime(5) == 7
assert nextprime(12) == 13
assert prevprime(3) == 2
assert prevprime(7) == 5
assert prevprime(13) == 11
assert prevprime(19) == 17
assert prevprime(20) == 19
sieve.extend_to_no(9)
assert sieve._list[-1] == 23
assert sieve._list[-1] < 31
assert 31 in sieve
assert nextprime(90) == 97
assert nextprime(10**40) == (10**40 + 121)
assert prevprime(97) == 89
assert prevprime(10**40) == (10**40 - 17)
assert list(sieve.primerange(10, 1)) == []
assert list(sieve.primerange(5, 9)) == [5, 7]
sieve._reset(prime=True)
assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]
assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
sieve._reset(totient=True)
assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
assert list(sieve.totientrange(0, 1)) == []
assert list(sieve.totientrange(1, 2)) == [1]
assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
sieve._reset(mobius=True)
assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
assert list(sieve.mobiusrange(0, 1)) == []
assert list(sieve.mobiusrange(1, 2)) == [1]
assert list(primerange(10, 1)) == []
assert list(primerange(2, 7)) == [2, 3, 5]
assert list(primerange(2, 10)) == [2, 3, 5, 7]
assert list(primerange(1050, 1100)) == [1051, 1061,
1063, 1069, 1087, 1091, 1093, 1097]
s = Sieve()
for i in range(30, 2350, 376):
for j in range(2, 5096, 1139):
A = list(s.primerange(i, i + j))
B = list(primerange(i, i + j))
assert A == B
s = Sieve()
assert s[10] == 29
assert nextprime(2, 2) == 5
raises(ValueError, lambda: totient(0))
raises(ValueError, lambda: reduced_totient(0))
raises(ValueError, lambda: primorial(0))
assert mr(1, [2]) is False
func = lambda i: (i**2 + 1) % 51
assert next(cycle_length(func, 4)) == (6, 2)
assert list(cycle_length(func, 4, values=True)) == \
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
assert next(cycle_length(func, 4, nmax=5)) == (5, None)
assert list(cycle_length(func, 4, nmax=5, values=True)) == \
[17, 35, 2, 5, 26]
sieve.extend(3000)
assert nextprime(2968) == 2969
assert prevprime(2930) == 2927
raises(ValueError, lambda: prevprime(1))
def test_randprime():
assert randprime(10, 1) is None
assert randprime(2, 3) == 2
assert randprime(1, 3) == 2
assert randprime(3, 5) == 3
raises(ValueError, lambda: randprime(20, 22))
for a in [100, 300, 500, 250000]:
for b in [100, 300, 500, 250000]:
p = randprime(a, a + b)
assert a <= p < (a + b) and isprime(p)
def test_primorial():
assert primorial(1) == 2
assert primorial(1, nth=0) == 1
assert primorial(2) == 6
assert primorial(2, nth=0) == 2
assert primorial(4, nth=0) == 6
def test_search():
assert 2 in sieve
assert 2.1 not in sieve
assert 1 not in sieve
assert 2**1000 not in sieve
raises(ValueError, lambda: sieve.search(1))
def test_sieve_slice():
assert sieve[5] == 11
assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
|
8ad5fc44b12501ab1c6f333a1b36ac1201abe4106cf5f53ef2592965dcb07bbb | from random import randint
from sympy.ntheory.bbp_pi import pi_hex_digits
from sympy.utilities.pytest import raises
# http://www.herongyang.com/Cryptography/Blowfish-First-8366-Hex-Digits-of-PI.html
# There are actually 8336 listed there; with the prepended 3 there are 8337
# below
dig=''.join('''
3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89452821e638d013
77be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5
ac2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc
16636920d871574e69a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59
b59c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e6c9e0e8bb01e8a
3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab945748986263e8144055ca396a2aab10
b6b4cc5c341141e8cea15486af7c72e993b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b8793
1eafd6ba336c24cf5c7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a9
91487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc50f6d6ff383f442
392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a670c9c61abd388f06a51a0d2d8542f
68960fa728ab5133a36eef0b6c137a3be4ba3bf0507efb2a98a1f1651d39af017666ca593e82430e
888cee8619456f9fb47d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f77
061bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b25d479d8f6e8de
f7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c45e5c9ec2196a246368fb6faf3e6c53
b51339b2eb3b52ec6f6dfc511f9b30952ccc814544af5ebd09bee3d004de334afd660f2807192e4b
b3c0cba85745c8740fd20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3
cc8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd23876053317b483e00df
829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3ac6732c68c4f5573695b27b0bbca58
c8e1ffa35db8f011a010fa3d98fd2183b84afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb97
90e1ddf2daa4cb7e3362fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae9091
98eaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b648888b812900df0
1c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777ea752dfe8b021fa1e5a0cc0fb56f74
e818acf3d6ce89e299b4a84fe0fd13e0b77cc43b81d2ada8d9165fa2668095770593cc7314211a14
77e6ad206577b5fa86c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b3
5e226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f207d5ba202e5b9
c5832603766295cfa911c819684e734a41b3472dca7b14a94a1b5100529a532915d60f573fbc9bc6
e42b60a47681e6740008ba6fb5571be91ff296ec6b2a0dd915b6636521e7b9f9b6ff34052ec58556
6453b02d5da99f8fa108ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df
7d9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29a0591340e4183a
3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f54d2d38e6f0255dc14cdd20868470eb
266382e9c6021ecc5e09686b3f3ebaefc93c9718146b6a70a1687f358452a0e286b79c5305aa5007
373e07841c7fdeae5c8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574
b225837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadcc8b576349af3dd
a7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f3280bba1183eb3314e548b384f6db9
086f420d03f60a04bf2cb8129024977c795679b072bcaf89afde9a771fd9930810b38bae12dccf3f
2e5512721f2e6b7124501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851d
fa63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c45150940002133ae4
dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b3c11183b5924a509f28fe6ed97f1fb
fa9ebabf2c1e153c6e86e34570eae96fb1860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d
0f803e89d65266c8252e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b
3d1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883b17f37d1018cff
28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b2aef7dad5b6e2f841521b628290761
70ecdd4775619f151013cca830eb61bd960334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade
14eecc86bc60622ca79cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4
b3319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d7711ed935f166812
810e358829c7e61fd696dedfa17858ba9957f584a51b2272639b83c3ff1ac24696cdb30aeb532e30
548fd948e46dbc312858ebf2ef34c6ffeafe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13
e045eee2b6a3aaabeadb6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854d
c7e44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb749247848a0b5692b2
85095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea1dadf43e233f70613372f0928d937e
41d65fecf16c223bdb7cde3759cbee74604085f2a7ce77326ea607808419f8509ee8efd85561d997
35a969a7aac50c06c25a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588
cd675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4ae6e39f2bdb83ad
f7e93d5a68948140f7f64c261c94692934411520f77602d4f7bcf46b2ed4a20068d40824713320f4
6a43b7d4b7500061af1e39f62e9724454614214f74bf8b88404d95fc1d96b591af70f4ddd366a02f
45bfbc09ec03bd97857fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429
f40a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8cb58ce0067af4d6
b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9ee39d7ab3b124e8b1dc9faf74b6d18
5626a36631eae397b23a6efa74dd5b43326841e7f7ca7820fbfb0af54ed8feb397454056acba4895
2755533a3a20838d87fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125
f95ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d2248c1133fc70f86
dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1f2bcc18f41113564257b7834602a9c
60dff8e8a31f636c1b0e12b4c202e1329eaf664fd1cad181156b2395e0333e92e13b240b62eebeb9
2285b2a20ee6ba0d99de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48
fac39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8991be14cdb6e6b
0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3b5390f92690fed0b667b9ffbcedb7d
9ca091cf0bd9155ea3bb132f88515bad247b9479bf763bd6eb37392eb3cc1159798026e297f42e31
2d6842ada7c66a2b3b12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caed
fa3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85fbebfe98864e4c3
fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb07745ae04d736fccc83426b33f01eab
71b08041873c005e5f77a057bebde8ae2455464299bf582e614e58f48ff2ddfda2f474ef388789bd
c25366f9c3c8b38e74b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b457
708cd55591c902de4cb90bace1bb8205d011a862487574a99eb77f19b6e0a9dc09662d09a1c43246
33e85a1f0209f0be8c4a99a0251d6efe101ab93d1d0ba5a4dfa186f20f2868f169dcb7da83573906
fea1e2ce9b4fcd7f5250115e01a70683faa002b5c40de6d0279af88c27773f8641c3604c0661a806
b5f0177a28c0f586e0006058aa30dc7d6211e69ed72338ea6353c2dd94c2c21634bbcbee5690bcb6
deebfc7da1ce591d766f05e4094b7c018839720a3d7c927c2486e3725f724d9db91ac15bb4d39eb8
fced54557808fca5b5d83d7cd34dad0fc41e50ef5eb161e6f8a28514d96c51133c6fd5c7e756e14e
c4362abfceddc6c837d79a323492638212670efa8e406000e03a39ce37d3faf5cfabc277375ac52d
1b5cb0679e4fa33742d382274099bc9bbed5118e9dbf0f7315d62d1c7ec700c47bb78c1b6b21a190
45b26eb1be6a366eb45748ab2fbc946e79c6a376d26549c2c8530ff8ee468dde7dd5730a1d4cd04d
c62939bbdba9ba4650ac9526e8be5ee304a1fad5f06a2d519a63ef8ce29a86ee22c089c2b843242e
f6a51e03aa9cf2d0a483c061ba9be96a4d8fe51550ba645bd62826a2f9a73a3ae14ba99586ef5562
e9c72fefd3f752f7da3f046f6977fa0a5980e4a91587b086019b09e6ad3b3ee593e990fd5a9e34d7
972cf0b7d9022b8b5196d5ac3a017da67dd1cf3ed67c7d2d281f9f25cfadf2b89b5ad6b4725a88f5
4ce029ac71e019a5e647b0acfded93fa9be8d3c48d283b57ccf8d5662979132e28785f0191ed7560
55f7960e44e3d35e8c15056dd488f46dba03a161250564f0bdc3eb9e153c9057a297271aeca93a07
2a1b3f6d9b1e6321f5f59c66fb26dcf3197533d928b155fdf5035634828aba3cbb28517711c20ad9
f8abcc5167ccad925f4de817513830dc8e379d58629320f991ea7a90c2fb3e7bce5121ce64774fbe
32a8b6e37ec3293d4648de53696413e680a2ae0810dd6db22469852dfd09072166b39a460a6445c0
dd586cdecf1c20c8ae5bbef7dd1b588d40ccd2017f6bb4e3bbdda26a7e3a59ff453e350a44bcb4cd
d572eacea8fa6484bb8d6612aebf3c6f47d29be463542f5d9eaec2771bf64e6370740e0d8de75b13
57f8721671af537d5d4040cb084eb4e2cc34d2466a0115af84e1b0042895983a1d06b89fb4ce6ea0
486f3f3b823520ab82011a1d4b277227f8611560b1e7933fdcbb3a792b344525bda08839e151ce79
4b2f32c9b7a01fbac9e01cc87ebcc7d1f6cf0111c3a1e8aac71a908749d44fbd9ad0dadecbd50ada
380339c32ac69136678df9317ce0b12b4ff79e59b743f5bb3af2d519ff27d9459cbf97222c15e6fc
2a0f91fc719b941525fae59361ceb69cebc2a8645912baa8d1b6c1075ee3056a0c10d25065cb03a4
42e0ec6e0e1698db3b4c98a0be3278e9649f1f9532e0d392dfd3a0342b8971f21e1b0a74414ba334
8cc5be7120c37632d8df359f8d9b992f2ee60b6f470fe3f11de54cda541edad891ce6279cfcd3e7e
6f1618b166fd2c1d05848fd2c5f6fb2299f523f357a632762393a8353156cccd02acf081625a75eb
b56e16369788d273ccde96629281b949d04c50901b71c65614e6c6c7bd327a140a45e1d006c3f27b
9ac9aa53fd62a80f00bb25bfe235bdd2f671126905b2040222b6cbcf7ccd769c2b53113ec01640e3
d338abbd602547adf0ba38209cf746ce7677afa1c52075606085cbfe4e8ae88dd87aaaf9b04cf9aa
7e1948c25c02fb8a8c01c36ae4d6ebe1f990d4f869a65cdea03f09252dc208e69fb74e6132ce77e2
5b578fdfe33ac372e6'''.split())
def test_hex_pi_nth_digits():
assert pi_hex_digits(0) == '3243f6a8885a30'
assert pi_hex_digits(1) == '243f6a8885a308'
assert pi_hex_digits(10000) == '68ac8fcfb8016c'
assert pi_hex_digits(13) == '08d313198a2e03'
assert pi_hex_digits(0, 3) == '324'
assert pi_hex_digits(0, 0) == ''
raises(ValueError, lambda: pi_hex_digits(-1))
raises(ValueError, lambda: pi_hex_digits(3.14))
# this will pick a random segment to compute every time
# it is run. If it ever fails, there is an error in the
# computation.
n = randint(0, len(dig))
prec = randint(0, len(dig) - n)
assert pi_hex_digits(n, prec) == dig[n: n + prec]
|
bf8c07c7e7dc7f27053549fcec73f59cf96b2fda8a5e3feb9cb455c95f3e8002 | from sympy.combinatorics.pc_groups import PolycyclicGroup, Collector
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
def test_pc_presentation():
Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2)]
S = SymmetricGroup(125).sylow_subgroup(5)
G = S.derived_series()[2]
Groups.append(G)
G = SymmetricGroup(25).sylow_subgroup(5)
Groups.append(G)
S = SymmetricGroup(11**2).sylow_subgroup(11)
G = S.derived_series()[2]
Groups.append(G)
for G in Groups:
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
pc_presentation = collector.pc_presentation
pcgs = PcGroup.pcgs
free_group = collector.free_group
free_to_perm = {}
for s, g in zip(free_group.symbols, pcgs):
free_to_perm[s] = g
for k, v in pc_presentation.items():
k_array = k.array_form
if v != ():
v_array = v.array_form
lhs = Permutation()
for gen in k_array:
s = gen[0]
e = gen[1]
lhs = lhs*free_to_perm[s]**e
if v == ():
assert lhs.is_identity
continue
rhs = Permutation()
for gen in v_array:
s = gen[0]
e = gen[1]
rhs = rhs*free_to_perm[s]**e
assert lhs == rhs
def test_exponent_vector():
Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2)]
for G in Groups:
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
pcgs = PcGroup.pcgs
free_group = collector.free_group
for gen in G.generators:
exp = collector.exponent_vector(gen)
g = Permutation()
for i in range(len(exp)):
g = g*pcgs[i]**exp[i] if exp[i] else g
assert g == gen
|
cc54837a3c80c2992557dae39dd78bf2f76038c6e6e5c839214fdc2771198722 | from sympy import (symbols, Symbol, product, factorial, rf, sqrt, cos,
Function, Product, Rational, Sum, oo, exp, log, S, pi)
from sympy.utilities.pytest import raises
from sympy import simplify
a, k, n, m, x = symbols('a,k,n,m,x', integer=True)
f = Function('f')
def test_karr_convention():
# Test the Karr product convention that we want to hold.
# See his paper "Summation in Finite Terms" for a detailed
# reasoning why we really want exactly this definition.
# The convention is described for sums on page 309 and
# essentially in section 1.4, definition 3. For products
# we can find in analogy:
#
# \prod_{m <= i < n} f(i) 'has the obvious meaning' for m < n
# \prod_{m <= i < n} f(i) = 0 for m = n
# \prod_{m <= i < n} f(i) = 1 / \prod_{n <= i < m} f(i) for m > n
#
# It is important to note that he defines all products with
# the upper limit being *exclusive*.
# In contrast, sympy and the usual mathematical notation has:
#
# prod_{i = a}^b f(i) = f(a) * f(a+1) * ... * f(b-1) * f(b)
#
# with the upper limit *inclusive*. So translating between
# the two we find that:
#
# \prod_{m <= i < n} f(i) = \prod_{i = m}^{n-1} f(i)
#
# where we intentionally used two different ways to typeset the
# products and its limits.
i = Symbol("i", integer=True)
k = Symbol("k", integer=True)
j = Symbol("j", integer=True)
# A simple example with a concrete factors and symbolic limits.
# The normal product: m = k and n = k + j and therefore m < n:
m = k
n = k + j
a = m
b = n - 1
S1 = Product(i**2, (i, a, b)).doit()
# The reversed product: m = k + j and n = k and therefore m > n:
m = k + j
n = k
a = m
b = n - 1
S2 = Product(i**2, (i, a, b)).doit()
assert simplify(S1 * S2) == 1
# Test the empty product: m = k and n = k and therefore m = n:
m = k
n = k
a = m
b = n - 1
Sz = Product(i**2, (i, a, b)).doit()
assert Sz == 1
# Another example this time with an unspecified factor and
# numeric limits. (We can not do both tests in the same example.)
f = Function("f")
# The normal product with m < n:
m = 2
n = 11
a = m
b = n - 1
S1 = Product(f(i), (i, a, b)).doit()
# The reversed product with m > n:
m = 11
n = 2
a = m
b = n - 1
S2 = Product(f(i), (i, a, b)).doit()
assert simplify(S1 * S2) == 1
# Test the empty product with m = n:
m = 5
n = 5
a = m
b = n - 1
Sz = Product(f(i), (i, a, b)).doit()
assert Sz == 1
def test_karr_proposition_2a():
# Test Karr, page 309, proposition 2, part a
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
def test_the_product(m, n):
# g
g = i**3 + 2*i**2 - 3*i
# f = Delta g
f = simplify(g.subs(i, i+1) / g)
# The product
a = m
b = n - 1
P = Product(f, (i, a, b)).doit()
# Test if Product_{m <= i < n} f(i) = g(n) / g(m)
assert simplify(P / (g.subs(i, n) / g.subs(i, m))) == 1
# m < n
test_the_product(u, u+v)
# m = n
test_the_product(u, u)
# m > n
test_the_product(u+v, u)
def test_karr_proposition_2b():
# Test Karr, page 309, proposition 2, part b
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
w = Symbol("w", integer=True)
def test_the_product(l, n, m):
# Productmand
s = i**3
# First product
a = l
b = n - 1
S1 = Product(s, (i, a, b)).doit()
# Second product
a = l
b = m - 1
S2 = Product(s, (i, a, b)).doit()
# Third product
a = m
b = n - 1
S3 = Product(s, (i, a, b)).doit()
# Test if S1 = S2 * S3 as required
assert simplify(S1 / (S2 * S3)) == 1
# l < m < n
test_the_product(u, u+v, u+v+w)
# l < m = n
test_the_product(u, u+v, u+v)
# l < m > n
test_the_product(u, u+v+w, v)
# l = m < n
test_the_product(u, u, u+v)
# l = m = n
test_the_product(u, u, u)
# l = m > n
test_the_product(u+v, u+v, u)
# l > m < n
test_the_product(u+v, u, u+w)
# l > m = n
test_the_product(u+v, u, u)
# l > m > n
test_the_product(u+v+w, u+v, u)
def test_simple_products():
assert product(2, (k, a, n)) == 2**(n - a + 1)
assert product(k, (k, 1, n)) == factorial(n)
assert product(k**3, (k, 1, n)) == factorial(n)**3
assert product(k + 1, (k, 0, n - 1)) == factorial(n)
assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a)
assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5)
assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5)
assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2)
assert isinstance(product(k**k, (k, 1, n)), Product)
assert Product(x**k, (k, 1, n)).variables == [k]
raises(ValueError, lambda: Product(n))
raises(ValueError, lambda: Product(n, k))
raises(ValueError, lambda: Product(n, k, 1))
raises(ValueError, lambda: Product(n, k, 1, 10))
raises(ValueError, lambda: Product(n, (k, 1)))
assert product(1, (n, 1, oo)) == 1 # issue 8301
assert product(2, (n, 1, oo)) == oo
assert product(-1, (n, 1, oo)).func is Product
def test_multiple_products():
assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2)
assert product(f(n), (
n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit()
assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \
Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \
product(f(n), (m, 1, k), (n, 1, k)) == \
product(product(f(n), (m, 1, k)), (n, 1, k)) == \
Product(f(n)**k, (n, 1, k))
assert Product(
x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n))
assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k]
def test_rational_products():
assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n)
def test_special_products():
# Wallis product
assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \
4**n*factorial(n)**2/rf(Rational(1, 2), n)/rf(Rational(3, 2), n)
# Euler's product formula for sin
assert product(1 + a/k**2, (k, 1, n)) == \
rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
def test__eval_product():
from sympy.abc import i, n
# issue 4809
a = Function('a')
assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n))
# issue 4810
assert product(2**i, (i, 1, n)) == 2**(n/2 + n**2/2)
def test_product_pow():
# issue 4817
assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n))
assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n))
def test_infinite_product():
# issue 5737
assert isinstance(Product(2**(1/factorial(n)), (n, 0, oo)), Product)
def test_conjugate_transpose():
p = Product(x**k, (k, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
A, B = symbols("A B", commutative=False)
p = Product(A*B**k, (k, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_simplify_prod():
y, t, b, c = symbols('y, t, b, c', integer = True)
_simplify = lambda e: simplify(e, doit=False)
assert _simplify(Product(x*y, (x, n, m), (y, a, k)) * \
Product(y, (x, n, m), (y, a, k))) == \
Product(x*y**2, (x, n, m), (y, a, k))
assert _simplify(3 * y* Product(x, (x, n, m)) * Product(x, (x, m + 1, a))) \
== 3 * y * Product(x, (x, n, a))
assert _simplify(Product(x, (x, k + 1, a)) * Product(x, (x, n, k))) == \
Product(x, (x, n, a))
assert _simplify(Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))) == \
Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))
assert _simplify(Product(x, (t, a, b)) * Product(y, (t, a, b)) * \
Product(x, (t, b+1, c))) == Product(x*y, (t, a, b)) * \
Product(x, (t, b+1, c))
assert _simplify(Product(x, (t, a, b)) * Product(x, (t, b+1, c)) * \
Product(y, (t, a, b))) == Product(x*y, (t, a, b)) * \
Product(x, (t, b+1, c))
def test_change_index():
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
assert Product(x, (x, a, b)).change_index(x, x + 1, y) == \
Product(y - 1, (y, a + 1, b + 1))
assert Product(x**2, (x, a, b)).change_index(x, x - 1) == \
Product((x + 1)**2, (x, a - 1, b - 1))
assert Product(x**2, (x, a, b)).change_index(x, -x, y) == \
Product((-y)**2, (y, -b, -a))
assert Product(x, (x, a, b)).change_index(x, -x - 1) == \
Product(-x - 1, (x, - b - 1, -a - 1))
assert Product(x*y, (x, a, b), (y, c, d)).change_index(x, x - 1, z) == \
Product((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
def test_reorder():
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
assert Product(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
Product(x*y, (y, c, d), (x, a, b))
assert Product(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
Product(x, (x, c, d), (x, a, b))
assert Product(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
(2, 0), (0, 1)) == Product(x*y + z, (z, m, n), (y, c, d), (x, a, b))
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(0, 1), (1, 2), (0, 2)) == \
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(x, y), (y, z), (x, z)) == \
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Product(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
Product(x*y, (y, c, d), (x, a, b))
assert Product(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
Product(x*y, (y, c, d), (x, a, b))
def test_Product_is_convergent():
assert Product(1/n**2, (n, 1, oo)).is_convergent() is S.false
assert Product(exp(1/n**2), (n, 1, oo)).is_convergent() is S.true
assert Product(1/n, (n, 1, oo)).is_convergent() is S.false
assert Product(1 + 1/n, (n, 1, oo)).is_convergent() is S.false
assert Product(1 + 1/n**2, (n, 1, oo)).is_convergent() is S.true
def test_reverse_order():
x, y, a, b, c, d= symbols('x, y, a, b, c, d', integer = True)
assert Product(x, (x, 0, 3)).reverse_order(0) == Product(1/x, (x, 4, -1))
assert Product(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
Product(x*y, (x, 6, 0), (y, 7, -1))
assert Product(x, (x, 1, 2)).reverse_order(0) == Product(1/x, (x, 3, 0))
assert Product(x, (x, 1, 3)).reverse_order(0) == Product(1/x, (x, 4, 0))
assert Product(x, (x, 1, a)).reverse_order(0) == Product(1/x, (x, a + 1, 0))
assert Product(x, (x, a, 5)).reverse_order(0) == Product(1/x, (x, 6, a - 1))
assert Product(x, (x, a + 1, a + 5)).reverse_order(0) == \
Product(1/x, (x, a + 6, a))
assert Product(x, (x, a + 1, a + 2)).reverse_order(0) == \
Product(1/x, (x, a + 3, a))
assert Product(x, (x, a + 1, a + 1)).reverse_order(0) == \
Product(1/x, (x, a + 2, a))
assert Product(x, (x, a, b)).reverse_order(0) == Product(1/x, (x, b + 1, a - 1))
assert Product(x, (x, a, b)).reverse_order(x) == Product(1/x, (x, b + 1, a - 1))
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
def test_issue_9983():
n = Symbol('n', integer=True, positive=True)
p = Product(1 + 1/n**(S(2)/3), (n, 1, oo))
assert p.is_convergent() is S.false
assert product(1 + 1/n**(S(2)/3), (n, 1, oo)) == p.doit()
def test_issue_13546():
n = Symbol('n')
k = Symbol('k')
p = Product(n + 1 / 2**k, (k, 0, n-1)).doit()
assert p.subs(n, 2).doit() == S(15)/2
def test_issue_14036():
a, n = symbols('a n')
assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0
def test_rewrite_Sum():
assert Product(1 - S.Half**2/k**2, (k, 1, oo)).rewrite(Sum) == \
exp(Sum(log(1 - 1/(4*k**2)), (k, 1, oo)))
|
11c402efa959e0d32f76036fce4531684b72a9ea8ea68f089f1520efacf8bec7 | from sympy import (
Abs, And, binomial, Catalan, cos, Derivative, E, Eq, exp, EulerGamma,
factorial, Function, harmonic, I, Integral, KroneckerDelta, log,
nan, oo, pi, Piecewise, Product, product, Rational, S, simplify,
sin, sqrt, Sum, summation, Symbol, symbols, sympify, zeta, gamma, Le,
Indexed, Idx, IndexedBase, prod, Dummy, lowergamma, Range)
from sympy.abc import a, b, c, d, k, m, x, y, z
from sympy.concrete.summations import telescopic
from sympy.concrete.expr_with_intlimits import ReorderError
from sympy.utilities.pytest import XFAIL, raises, slow
from sympy.matrices import \
Matrix, SparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix
from sympy.core.mod import Mod
from sympy.core.compatibility import range
n = Symbol('n', integer=True)
def test_karr_convention():
# Test the Karr summation convention that we want to hold.
# See his paper "Summation in Finite Terms" for a detailed
# reasoning why we really want exactly this definition.
# The convention is described on page 309 and essentially
# in section 1.4, definition 3:
#
# \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n
# \sum_{m <= i < n} f(i) = 0 for m = n
# \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n
#
# It is important to note that he defines all sums with
# the upper limit being *exclusive*.
# In contrast, sympy and the usual mathematical notation has:
#
# sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b)
#
# with the upper limit *inclusive*. So translating between
# the two we find that:
#
# \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i)
#
# where we intentionally used two different ways to typeset the
# sum and its limits.
i = Symbol("i", integer=True)
k = Symbol("k", integer=True)
j = Symbol("j", integer=True)
# A simple example with a concrete summand and symbolic limits.
# The normal sum: m = k and n = k + j and therefore m < n:
m = k
n = k + j
a = m
b = n - 1
S1 = Sum(i**2, (i, a, b)).doit()
# The reversed sum: m = k + j and n = k and therefore m > n:
m = k + j
n = k
a = m
b = n - 1
S2 = Sum(i**2, (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum: m = k and n = k and therefore m = n:
m = k
n = k
a = m
b = n - 1
Sz = Sum(i**2, (i, a, b)).doit()
assert Sz == 0
# Another example this time with an unspecified summand and
# numeric limits. (We can not do both tests in the same example.)
f = Function("f")
# The normal sum with m < n:
m = 2
n = 11
a = m
b = n - 1
S1 = Sum(f(i), (i, a, b)).doit()
# The reversed sum with m > n:
m = 11
n = 2
a = m
b = n - 1
S2 = Sum(f(i), (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum with m = n:
m = 5
n = 5
a = m
b = n - 1
Sz = Sum(f(i), (i, a, b)).doit()
assert Sz == 0
e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True))
s = Sum(e, (i, 0, 11))
assert s.n(3) == s.doit().n(3)
def test_karr_proposition_2a():
# Test Karr, page 309, proposition 2, part a
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
def test_the_sum(m, n):
# g
g = i**3 + 2*i**2 - 3*i
# f = Delta g
f = simplify(g.subs(i, i+1) - g)
# The sum
a = m
b = n - 1
S = Sum(f, (i, a, b)).doit()
# Test if Sum_{m <= i < n} f(i) = g(n) - g(m)
assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0
# m < n
test_the_sum(u, u+v)
# m = n
test_the_sum(u, u )
# m > n
test_the_sum(u+v, u )
def test_karr_proposition_2b():
# Test Karr, page 309, proposition 2, part b
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
w = Symbol("w", integer=True)
def test_the_sum(l, n, m):
# Summand
s = i**3
# First sum
a = l
b = n - 1
S1 = Sum(s, (i, a, b)).doit()
# Second sum
a = l
b = m - 1
S2 = Sum(s, (i, a, b)).doit()
# Third sum
a = m
b = n - 1
S3 = Sum(s, (i, a, b)).doit()
# Test if S1 = S2 + S3 as required
assert S1 - (S2 + S3) == 0
# l < m < n
test_the_sum(u, u+v, u+v+w)
# l < m = n
test_the_sum(u, u+v, u+v )
# l < m > n
test_the_sum(u, u+v+w, v )
# l = m < n
test_the_sum(u, u, u+v )
# l = m = n
test_the_sum(u, u, u )
# l = m > n
test_the_sum(u+v, u+v, u )
# l > m < n
test_the_sum(u+v, u, u+w )
# l > m = n
test_the_sum(u+v, u, u )
# l > m > n
test_the_sum(u+v+w, u+v, u )
def test_arithmetic_sums():
assert summation(1, (n, a, b)) == b - a + 1
assert Sum(S.NaN, (n, a, b)) is S.NaN
assert Sum(x, (n, a, a)).doit() == x
assert Sum(x, (x, a, a)).doit() == a
assert Sum(x, (n, 1, a)).doit() == a*x
assert Sum(x, (x, Range(1, 11))).doit() == 55
assert Sum(x, (x, Range(1, 11, 2))).doit() == 25
assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2)))
lo, hi = 1, 2
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 3 and s2.doit() == 0
lo, hi = x, x + 1
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 2*x + 1 and s2.doit() == 0
assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \
y**2 + 2
assert summation(1, (n, 1, 10)) == 10
assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000
assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \
2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2
assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1)
assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2)
assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum)
assert summation(k, (k, 0, oo)) == oo
assert summation(k, (k, Range(1, 11))) == 55
def test_polynomial_sums():
assert summation(n**2, (n, 3, 8)) == 199
assert summation(n, (n, a, b)) == \
((a + b)*(b - a + 1)/2).expand()
assert summation(n**2, (n, 1, b)) == \
((2*b**3 + 3*b**2 + b)/6).expand()
assert summation(n**3, (n, 1, b)) == \
((b**4 + 2*b**3 + b**2)/4).expand()
assert summation(n**6, (n, 1, b)) == \
((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand()
def test_geometric_sums():
assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
assert summation(Rational(1, 2)**n, (n, 1, oo)) == 1
assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
assert summation(2**n, (n, 1, oo)) == oo
assert summation(2**(-n), (n, 1, oo)) == 1
assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15)
assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1)
# issue 6664:
assert summation(x**n, (n, 0, oo)) == \
Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))
assert summation(-2**n, (n, 0, oo)) == -oo
assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))
# issue 6802:
assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1
assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - S(4)/3
assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S(1)/2
assert summation(y**x, (x, a, b)) == \
Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
assert summation((-2)**(y*x + 2), (x, 0, n)) == \
4*Piecewise((n + 1, Eq((-2)**y, 1)),
((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))
# issue 8251:
assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) == oo
#issue 9908:
assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2))
#issue 11642:
result = Sum(0.5**n, (n, 1, oo)).doit()
assert result == 1
assert result.is_Float
result = Sum(0.25**n, (n, 1, oo)).doit()
assert result == 1/3.
assert result.is_Float
result = Sum(0.99999**n, (n, 1, oo)).doit()
assert result == 99999
assert result.is_Float
result = Sum(Rational(1, 2)**n, (n, 1, oo)).doit()
assert result == 1
assert not result.is_Float
result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit()
assert result == S(3)/2
assert not result.is_Float
assert Sum(1.0**n, (n, 1, oo)).doit() == oo
assert Sum(2.43**n, (n, 1, oo)).doit() == oo
# Issue 13979:
i, k, q = symbols('i k q', integer=True)
result = summation(
exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1)
)
assert result.simplify() == Piecewise(
(1, Eq(exp(2*I*pi*(-k + q)/n), 1)), (0, True)
)
def test_harmonic_sums():
assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n))
assert summation(1/k, (k, 1, n)) == harmonic(n)
assert summation(n/k, (k, 1, n)) == n*harmonic(n)
assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4)
def test_composite_sums():
f = Rational(1, 2)*(7 - 6*n + Rational(1, 7)*n**3)
s = summation(f, (n, a, b))
assert not isinstance(s, Sum)
A = 0
for i in range(-3, 5):
A += f.subs(n, i)
B = s.subs(a, -3).subs(b, 4)
assert A == B
def test_hypergeometric_sums():
assert summation(
binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n
def test_other_sums():
f = m**2 + m*exp(m)
g = 3*exp(S(3)/2)/2 + exp(S(1)/2)/2 - exp(-S(1)/2)/2 - 3*exp(-S(3)/2)/2 + 5
assert summation(f, (m, -S(3)/2, S(3)/2)).expand() == g
assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10)
fac = factorial
def NS(e, n=15, **options):
return str(sympify(e).evalf(n, **options))
def test_evalf_fast_series():
# Euler transformed series for sqrt(1+x)
assert NS(Sum(
fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)
# Some series for exp(1)
estr = NS(E, 100)
assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr
pistr = NS(pi, 100)
# Ramanujan series for pi
assert NS(9801/sqrt(8)/Sum(fac(
4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
assert NS(1/Sum(
binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
# Machin's formula for pi
assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr
# Apery's constant
astr = NS(zeta(3), 100)
P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
n + 12463
assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
def test_evalf_fast_series_issue_4021():
# Catalan's constant
assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3*
fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \
NS(Catalan, 100)
astr = NS(zeta(3), 100)
assert NS(5*Sum(
(-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr
assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1)
**3 / fac(3*n), (n, 1, oo))/4, 100) == astr
def test_evalf_slow_series():
assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15)
assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50)
assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15)
assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100)
assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50)
def test_euler_maclaurin():
# Exact polynomial sums with E-M
def check_exact(f, a, b, m, n):
A = Sum(f, (k, a, b))
s, e = A.euler_maclaurin(m, n)
assert (e == 0) and (s.expand() == A.doit())
check_exact(k**4, a, b, 0, 2)
check_exact(k**4 + 2*k, a, b, 1, 2)
check_exact(k**4 + k**2, a, b, 1, 5)
check_exact(k**5, 2, 6, 1, 2)
check_exact(k**5, 2, 6, 1, 3)
assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
# Not exact
assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
# Numerical test
for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
A = Sum(1/k**3, (k, 1, oo))
s, e = A.euler_maclaurin(m, n)
assert abs((s - zeta(3)).evalf()) < e.evalf()
raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
@slow
def test_evalf_euler_maclaurin():
assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266'
assert NS(Sum(1/k**k, (k, 1, oo)),
50) == '1.2912859970626635404072825905956005414986193682745'
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15)
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50)
assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844'
assert NS(Sum(log(k)/k**2, (k, 1, oo)),
50) == '0.93754825431584375370257409456786497789786028861483'
assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008'
assert NS(Sum(1/k, (k, 1000000, 2000000)),
50) == '0.69314793056000780941723211364567656807940638436025'
def test_evalf_symbolic():
f, g = symbols('f g', cls=Function)
# issue 6328
expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3))
assert expr.evalf() == expr
def test_evalf_issue_3273():
assert Sum(0, (k, 1, oo)).evalf() == 0
def test_simple_products():
assert Product(S.NaN, (x, 1, 3)) is S.NaN
assert product(S.NaN, (x, 1, 3)) is S.NaN
assert Product(x, (n, a, a)).doit() == x
assert Product(x, (x, a, a)).doit() == a
assert Product(x, (y, 1, a)).doit() == x**a
lo, hi = 1, 2
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == 2
assert s2.doit() == 1
lo, hi = x, x + 1
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
s3 = 1 / Product(n, (n, hi + 1, lo - 1))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == x*(x + 1)
assert s2.doit() == 1
assert s3.doit() == x*(x + 1)
assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \
(y**2 + 1)*(y**2 + 3)
assert product(2, (n, a, b)) == 2**(b - a + 1)
assert product(n, (n, 1, b)) == factorial(b)
assert product(n**3, (n, 1, b)) == factorial(b)**3
assert product(3**(2 + n), (n, a, b)) \
== 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2)
assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5)
assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2)
assert isinstance(product(cos(n), (n, x, x + S.Half)), Product)
# If Product managed to evaluate this one, it most likely got it wrong!
assert isinstance(Product(n**n, (n, 1, b)), Product)
def test_rational_products():
assert simplify(product(1 + 1/n, (n, a, b))) == (1 + b)/a
assert simplify(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a)
assert simplify(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1))
assert simplify(product(n/(n + 1)/(n + 2), (n, a, b))) == \
a*gamma(a + 2)/(b + 1)/gamma(b + 3)
assert simplify(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \
b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2))
def test_wallis_product():
# Wallis product, given in two different forms to ensure that Product
# can factor simple rational expressions
A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b))
B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b))
R = pi*gamma(b + 1)**2/(2*gamma(b + S(1)/2)*gamma(b + S(3)/2))
assert simplify(A.doit()) == R
assert simplify(B.doit()) == R
# This one should eventually also be doable (Euler's product formula for sin)
# assert Product(1+x/n**2, (n, 1, b)) == ...
def test_telescopic_sums():
#checks also input 2 of comment 1 issue 4127
assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n)
f = Function("f")
assert Sum(
f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m)
assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \
cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3)
# dummy variable shouldn't matter
assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \
telescopic(1/k, -k/(1 + k), (k, n - 1, n))
assert Sum(1/x/(x - 1), (x, a, b)).doit() == -((a - b - 1)/(b*(a - 1)))
def test_sum_reconstruct():
s = Sum(n**2, (n, -1, 1))
assert s == Sum(*s.args)
raises(ValueError, lambda: Sum(x, x))
raises(ValueError, lambda: Sum(x, (x, 1)))
def test_limit_subs():
for F in (Sum, Product, Integral):
assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2)
assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \
F(a, (a, c, 4))
assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
def test_function_subs():
f = Function("f")
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
assert S.subs(f(x),x) == S
raises(ValueError, lambda: S.subs(f(y),x+y) )
S = Sum(x*log(y),(x,0,oo),(y,0,oo))
assert S.subs(log(y),y) == S
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
def test_equality():
# if this fails remove special handling below
raises(ValueError, lambda: Sum(x, x))
r = symbols('x', real=True)
for F in (Sum, Product, Integral):
try:
assert F(x, x) != F(y, y)
assert F(x, (x, 1, 2)) != F(x, x)
assert F(x, (x, x)) != F(x, x) # or else they print the same
assert F(1, x) != F(1, y)
except ValueError:
pass
assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit
assert F(a, (x, 1, x)) != F(a, (y, 1, y))
assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression
assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions
assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff
assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x)))
# issue 5265
assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))
def test_Sum_doit():
f = Function('f')
assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
3*Integral(a**2)
assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)
# test nested sum evaluation
s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()
assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((1, And(-oo < n, n < oo)), (0, True))
assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((x, And(-oo < n, n < oo)), (0, True))
assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
3 * Piecewise((1, And(S(1) <= k, k <= 3)), (0, True))
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
f(1) + f(2) + f(3)
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
Sum(Piecewise((f(n), And(Le(0, n), n < oo)), (0, True)), (n, 1, oo))
l = Symbol('l', integer=True, positive=True)
assert Sum(f(l) * Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \
Sum(f(l), (l, 1, oo))
# issue 2597
nmax = symbols('N', integer=True, positive=True)
pw = Piecewise((1, And(S(1) <= n, n <= nmax)), (0, True))
assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax))
q, s = symbols('q, s')
assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
(Sum(n**(-2*s), (n, 1, oo)), True))
assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
(Sum((n + 1)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
(zeta(s, q), And(q > 0, s > 1)),
(Sum((n + q)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
(zeta(s, 2*q), And(2*q > 0, s > 1)),
(Sum((n + q)**(-s), (n, q, oo)), True))
assert summation(1/n**2, (n, 1, oo)) == zeta(2)
assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
def test_Product_doit():
assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9
assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \
6*Integral(a**2)**3
assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3
def test_Sum_interface():
assert isinstance(Sum(0, (n, 0, 2)), Sum)
assert Sum(nan, (n, 0, 2)) is nan
assert Sum(nan, (n, 0, oo)) is nan
assert Sum(0, (n, 0, 2)).doit() == 0
assert isinstance(Sum(0, (n, 0, oo)), Sum)
assert Sum(0, (n, 0, oo)).doit() == 0
raises(ValueError, lambda: Sum(1))
raises(ValueError, lambda: summation(1))
def test_diff():
assert Sum(x, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2))
e = Sum(x*y, (x, 1, a))
assert e.diff(a) == Derivative(e, a)
assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \
Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24
assert Sum(x, (x, 1, 2)).diff(y) == 0
def test_hypersum():
from sympy import sin
assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
assert simplify(summation((-1)**n*x**(2*n + 1) /
factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120
assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3)
assert summation(1/n**4, (n, 1, oo)) == pi**4/90
s = summation(x**n*n, (n, -oo, 0))
assert s.is_Piecewise
assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
assert s.args[0].args[1] == (abs(1/x) < 1)
m = Symbol('n', integer=True, positive=True)
assert summation(binomial(m, k), (k, 0, m)) == 2**m
def test_issue_4170():
assert summation(1/factorial(k), (k, 0, oo)) == E
def test_is_commutative():
from sympy.physics.secondquant import NO, F, Fd
m = Symbol('m', commutative=False)
for f in (Sum, Product, Integral):
assert f(z, (z, 1, 1)).is_commutative is True
assert f(z*y, (z, 1, 6)).is_commutative is True
assert f(m*x, (x, 1, 2)).is_commutative is False
assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
def test_is_zero():
for func in [Sum, Product]:
assert func(0, (x, 1, 1)).is_zero is True
assert func(x, (x, 1, 1)).is_zero is None
def test_is_number():
# is number should not rely on evaluation or assumptions,
# it should be equivalent to `not foo.free_symbols`
assert Sum(1, (x, 1, 1)).is_number is True
assert Sum(1, (x, 1, x)).is_number is False
assert Sum(0, (x, y, z)).is_number is False
assert Sum(x, (y, 1, 2)).is_number is False
assert Sum(x, (y, 1, 1)).is_number is False
assert Sum(x, (x, 1, 2)).is_number is True
assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Product(2, (x, 1, 1)).is_number is True
assert Product(2, (x, 1, y)).is_number is False
assert Product(0, (x, y, z)).is_number is False
assert Product(1, (x, y, z)).is_number is False
assert Product(x, (y, 1, x)).is_number is False
assert Product(x, (y, 1, 2)).is_number is False
assert Product(x, (y, 1, 1)).is_number is False
assert Product(x, (x, 1, 2)).is_number is True
def test_free_symbols():
for func in [Sum, Product]:
assert func(1, (x, 1, 2)).free_symbols == set()
assert func(0, (x, 1, y)).free_symbols == {y}
assert func(2, (x, 1, y)).free_symbols == {y}
assert func(x, (x, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y)).free_symbols == {x, y}
assert func(x, (y, 1, 2)).free_symbols == {x}
assert func(x, (y, 1, 1)).free_symbols == {x}
assert func(x, (y, 1, z)).free_symbols == {x, z}
assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z}
assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z}
assert Sum(1, (x, 1, y)).free_symbols == {y}
# free_symbols answers whether the object *as written* has free symbols,
# not whether the evaluated expression has free symbols
assert Product(1, (x, 1, y)).free_symbols == {y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Sum(A*B**n, (n, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_issue_4171():
assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) == oo
assert summation(2*k + 1, (k, 0, oo)) == oo
def test_issue_6273():
assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == 1
def test_issue_6274():
assert Sum(x, (x, 1, 0)).doit() == 0
assert NS(Sum(x, (x, 1, 0))) == '0'
assert Sum(n, (n, 10, 5)).doit() == -30
assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000'
def test_simplify_sum():
y, t, v = symbols('y, t, v')
_simplify = lambda e: simplify(e, doit=False)
assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \
Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k))
assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \
Sum(x, (x, n, a))
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \
Sum(x, (x, n, a))
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \
Sum(x, (x, n, a)) + Sum(1, (x, n, k))
assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \
4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6))
assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \
Sum(x*(3*x + 1), (x, a, b))
assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \
4 * y * Sum(z, (z, n, k))) + 1 == \
4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1
assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \
1 + Sum(x, (x, a, c))
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \
Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \
Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \
_simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c)))
assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \
Sum(x, (x, a, b)) * Sum(x**2, (x, a, b))
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \
== (x + y + z) * Sum(1, (t, a, b)) # issue 8596
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \
Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596
assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \
(Sum(x, (x, a, b)) / 3)
assert _simplify(Sum(Function('f')(x) * y * z, (x, a, b)) / (y * z)) \
== Sum(Function('f')(x), (x, a, b))
assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0
assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b)))
assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \
c * (y + 1) * Sum(x, (x, a, b))
assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum(x, (x, a, b), (y, a, b))
assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b))
assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \
c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b))
assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \
Sum(d * t, (x, b, c)), (t, a, b))) == \
d * Sum(1, (x, a, c)) * Sum(t, (t, a, b))
def test_change_index():
b, v = symbols('b, v', integer = True)
assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \
Sum(y - 1, (y, a + 1, b + 1))
assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \
Sum((x+1)**2, (x, a - 1, b - 1))
assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \
Sum((-y)**2, (y, -b, -a))
assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \
Sum(-x - 1, (x, -b - 1, -a - 1))
assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \
Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
assert Sum(x, (x, a, b)).change_index( x, x + v) == \
Sum(-v + x, (x, a + v, b + v))
assert Sum(x, (x, a, b)).change_index( x, -x - v) == \
Sum(-v - x, (x, -b - v, -a - v))
def test_reorder():
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
Sum(x, (x, c, d), (x, a, b))
assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
(2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
Sum(x*y, (y, c, d), (x, a, b))
def test_reverse_order():
assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1))
assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
Sum(x*y, (x, 6, 0), (y, 7, -1))
assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0))
assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0))
assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0))
assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1))
assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \
Sum(-x, (x, a + 6, a))
assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \
Sum(-x, (x, a + 3, a))
assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \
Sum(-x, (x, a + 2, a))
assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
def test_issue_7097():
assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400))
def test_factor_expand_subs():
# test factoring
assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y))
assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y))
assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y))
assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y))
# test expand
assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y))
assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand() \
== Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \
== Sum(n*x**(n+1), (n, -1, oo)) + Sum(x**(n+1), (n, -1, oo))
assert Sum(a*n+a*n**2,(n,0,4)).expand() \
== Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4))
assert Sum(x**a*x**n,(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=True)
assert Sum(x**(a+n),(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=False)
# test subs
assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3))
assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3))
assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10))
def test_distribution_over_equality():
f = Function('f')
assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3))
assert Sum(Eq(f(x), x**2), (x, 0, y)) == \
Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y)))
def test_issue_2787():
n, k = symbols('n k', positive=True, integer=True)
p = symbols('p', positive=True)
binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k)
s = Sum(binomial_dist*k, (k, 0, n))
res = s.doit().simplify()
assert res == Piecewise(
(n*p, p/Abs(p - 1) <= 1),
((-p + 1)**n*Sum(k*p**k*(-p + 1)**(-k)*binomial(n, k), (k, 0, n)),
True))
def test_issue_4668():
assert summation(1/n, (n, 2, oo)) == oo
def test_matrix_sum():
A = Matrix([[0, 1], [n, 0]])
result = Sum(A, (n, 0, 3)).doit()
assert result == Matrix([[0, 4], [6, 0]])
assert result.__class__ == ImmutableDenseMatrix
A = SparseMatrix([[0, 1], [n, 0]])
result = Sum(A, (n, 0, 3)).doit()
assert result.__class__ == ImmutableSparseMatrix
@XFAIL
def test_failing_matrix_sum():
n = Symbol('n', nonnegative=True)
# TODO Implement matrix geometric series summation.
A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])
assert Sum(A ** n, (n, 1, 4)).doit() == \
Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
def test_indexed_idx_sum():
i = symbols('i', cls=Idx)
r = Indexed('r', i)
assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)])
assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)])
j = symbols('j', integer=True)
assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)])
assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)])
k = Idx('k', range=(1, 3))
A = IndexedBase('A')
assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)])
assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)])
raises(ValueError, lambda: Sum(A[k], (k, 1, 4)))
raises(ValueError, lambda: Sum(A[k], (k, 0, 3)))
raises(ValueError, lambda: Sum(A[k], (k, 2, oo)))
raises(ValueError, lambda: Product(A[k], (k, 1, 4)))
raises(ValueError, lambda: Product(A[k], (k, 0, 3)))
raises(ValueError, lambda: Product(A[k], (k, 2, oo)))
def test_is_convergent():
# divergence tests --
assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false
assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false
assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false
# root test --
assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false
# integral test --
# p-series test --
assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true
assert Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() is S.true
assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false
# comparison test --
assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false
assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false
assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true
assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true
assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false
assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false
assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false
assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true
assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true
# alternating series tests --
assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true
# with -negativeInfinite Limits
assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true
assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false
assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true
# piecewise functions
f = Piecewise((n**(-2), n <= 1), (n**2, n > 1))
assert Sum(f, (n, 1, oo)).is_convergent() is S.false
assert Sum(f, (n, -oo, oo)).is_convergent() is S.false
#assert Sum(f, (n, -oo, 1)).is_convergent() is S.true
# integral test
assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
# the following function has maxima located at (x, y) =
# (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050)
eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x)
assert Sum(eq, (x, 1, oo)).is_convergent() is S.true
assert Sum(eq, (x, 1, 2)).is_convergent() is S.true
assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true
assert Sum(1/(x**(S(1)/2)), (x, 1, oo)).is_convergent() is S.false
def test_is_absolutely_convergent():
assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true
@XFAIL
def test_convergent_failing():
# dirichlet tests
assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true
def test_issue_6966():
i, k, m = symbols('i k m', integer=True)
z_i, q_i = symbols('z_i q_i')
a_k = Sum(-q_i*z_i/k,(i,1,m))
b_k = a_k.diff(z_i)
assert isinstance(b_k, Sum)
assert b_k == Sum(-q_i/k,(i,1,m))
def test_issue_10156():
cx = Sum(2*y**2*x, (x, 1,3))
e = 2*y*Sum(2*cx*x**2, (x, 1, 9))
assert e.factor() == \
8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9))
def test_issue_14129():
assert Sum( k*x**k, (k, 0, n-1)).doit() == \
Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n -
n*x**n - x*x**n + x)/(x - 1)**2, True))
assert Sum( x**k, (k, 0, n-1)).doit() == \
Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True))
assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \
Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))),
(x*(y + 1)*(n*x*y*(x + x/y)**n/(x + x/y)
+ n*x*(x + x/y)**n/(x + x/y) - n*y*(x
+ x/y)**n/(x + x/y) - x*y*(x + x/y)**n/(x
+ x/y) - x*(x + x/y)**n/(x + x/y) + y)/(x*y
+ x - y)**2, True))
def test_issue_14112():
assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false
def test_sin_times_absolutely_convergent():
assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true
def test_issue_14111():
assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false
def test_issue_14484():
raises(NotImplementedError, lambda: Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent())
def test_issue_14640():
i, n = symbols("i n", integer=True)
a, b, c = symbols("a b c")
assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum(
1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(1/a, 1)),
((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b)
assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(a**(-2), 1)),
((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2
s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit()
assert not s.has(Sum)
assert s.subs({a: 2, b: 3, n: 5}) == 122
def test_issue_15943():
assert Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit() == -E*(
n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2
) + E*gamma(n + 1)
def test_Sum_dummy_eq():
assert not Sum(x, (x, a, b)).dummy_eq(1)
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2)))
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b)))
d = Dummy()
assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c)))
assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)))
def test_issue_15852():
assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo))
def test_exceptions():
S = Sum(x, (x, a, b))
raises(ValueError, lambda: S.change_index(x, x**2, y))
S = Sum(x, (x, a, b), (x, 1, 4))
raises(ValueError, lambda: S.index(x))
S = Sum(x, (x, a, b), (y, 1, 4))
raises(ValueError, lambda: S.reorder([x]))
S = Sum(x, (x, y, b), (y, 1, 4))
raises(ReorderError, lambda: S.reorder_limit(0, 1))
S = Sum(x*y, (x, a, b), (y, 1, 4))
raises(NotImplementedError, lambda: S.is_convergent())
|
e9777fdcac96d364229130dbd1a272bf35592962b1e76413a4e6d38c2d7443cd | from sympy import (symbols, factorial, sqrt, Rational, atan, I, log, fps, O,
Sum, oo, S, pi, cos, sin, Function, exp, Derivative, asin,
airyai, acos, acosh, gamma, erf, asech, Add, Integral, Mul,
integrate)
from sympy.series.formal import (rational_algorithm, FormalPowerSeries,
rational_independent, simpleDE, exp_re,
hyper_re)
from sympy.utilities.pytest import raises, XFAIL, slow
x, y, z = symbols('x y z')
n, m, k = symbols('n m k', integer=True)
f, r = Function('f'), Function('r')
def test_rational_algorithm():
f = 1 / ((x - 1)**2 * (x - 2))
assert rational_algorithm(f, x, k) == \
(-2**(-k - 1) + 1 - (factorial(k + 1) / factorial(k)), 0, 0)
f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2))
assert rational_algorithm(f, x, k) == \
(-15*2**(-k - 1) + 4, x + 4, 0)
f = z / (y*m - m*x - y*x + x**2)
assert rational_algorithm(f, x, k) == \
(((-y**(-k - 1)*z) / (y - m)) + ((m**(-k - 1)*z) / (y - m)), 0, 0)
f = x / (1 - x - x**2)
assert rational_algorithm(f, x, k) is None
assert rational_algorithm(f, x, k, full=True) == \
(((-Rational(1, 2) + sqrt(5)/2)**(-k - 1) *
(-sqrt(5)/10 + Rational(1, 2))) +
((-sqrt(5)/2 - Rational(1, 2))**(-k - 1) *
(sqrt(5)/10 + Rational(1, 2))), 0, 0)
f = 1 / (x**2 + 2*x + 2)
assert rational_algorithm(f, x, k) is None
assert rational_algorithm(f, x, k, full=True) == \
((I*(-1 + I)**(-k - 1)) / 2 - (I*(-1 - I)**(-k - 1)) / 2, 0, 0)
f = log(1 + x)
assert rational_algorithm(f, x, k) == \
(-(-1)**(-k) / k, 0, 1)
f = atan(x)
assert rational_algorithm(f, x, k) is None
assert rational_algorithm(f, x, k, full=True) == \
(((I*I**(-k)) / 2 - (I*(-I)**(-k)) / 2) / k, 0, 1)
f = x*atan(x) - log(1 + x**2) / 2
assert rational_algorithm(f, x, k) is None
assert rational_algorithm(f, x, k, full=True) == \
(((I*I**(-k + 1)) / 2 - (I*(-I)**(-k + 1)) / 2) /
(k*(k - 1)), 0, 2)
f = log((1 + x) / (1 - x)) / 2 - atan(x)
assert rational_algorithm(f, x, k) is None
assert rational_algorithm(f, x, k, full=True) == \
((-(-1)**(-k) / 2 - (I*I**(-k)) / 2 + (I*(-I)**(-k)) / 2 +
Rational(1, 2)) / k, 0, 1)
assert rational_algorithm(cos(x), x, k) is None
def test_rational_independent():
ri = rational_independent
assert ri([], x) == []
assert ri([cos(x), sin(x)], x) == [cos(x), sin(x)]
assert ri([x**2, sin(x), x*sin(x), x**3], x) == \
[x**3 + x**2, x*sin(x) + sin(x)]
assert ri([S.One, x*log(x), log(x), sin(x)/x, cos(x), sin(x), x], x) == \
[x + 1, x*log(x) + log(x), sin(x)/x + sin(x), cos(x)]
def test_simpleDE():
# Tests just the first valid DE
for DE in simpleDE(exp(x), x, f):
assert DE == (-f(x) + Derivative(f(x), x), 1)
break
for DE in simpleDE(sin(x), x, f):
assert DE == (f(x) + Derivative(f(x), x, x), 2)
break
for DE in simpleDE(log(1 + x), x, f):
assert DE == ((x + 1)*Derivative(f(x), x, 2) + Derivative(f(x), x), 2)
break
for DE in simpleDE(asin(x), x, f):
assert DE == (x*Derivative(f(x), x) + (x**2 - 1)*Derivative(f(x), x, x),
2)
break
for DE in simpleDE(exp(x)*sin(x), x, f):
assert DE == (2*f(x) - 2*Derivative(f(x)) + Derivative(f(x), x, x), 2)
break
for DE in simpleDE(((1 + x)/(1 - x))**n, x, f):
assert DE == (2*n*f(x) + (x**2 - 1)*Derivative(f(x), x), 1)
break
for DE in simpleDE(airyai(x), x, f):
assert DE == (-x*f(x) + Derivative(f(x), x, x), 2)
break
def test_exp_re():
d = -f(x) + Derivative(f(x), x)
assert exp_re(d, r, k) == -r(k) + r(k + 1)
d = f(x) + Derivative(f(x), x, x)
assert exp_re(d, r, k) == r(k) + r(k + 2)
d = f(x) + Derivative(f(x), x) + Derivative(f(x), x, x)
assert exp_re(d, r, k) == r(k) + r(k + 1) + r(k + 2)
d = Derivative(f(x), x) + Derivative(f(x), x, x)
assert exp_re(d, r, k) == r(k) + r(k + 1)
d = Derivative(f(x), x, 3) + Derivative(f(x), x, 4) + Derivative(f(x))
assert exp_re(d, r, k) == r(k) + r(k + 2) + r(k + 3)
def test_hyper_re():
d = f(x) + Derivative(f(x), x, x)
assert hyper_re(d, r, k) == r(k) + (k+1)*(k+2)*r(k + 2)
d = -x*f(x) + Derivative(f(x), x, x)
assert hyper_re(d, r, k) == (k + 2)*(k + 3)*r(k + 3) - r(k)
d = 2*f(x) - 2*Derivative(f(x), x) + Derivative(f(x), x, x)
assert hyper_re(d, r, k) == \
(-2*k - 2)*r(k + 1) + (k + 1)*(k + 2)*r(k + 2) + 2*r(k)
d = 2*n*f(x) + (x**2 - 1)*Derivative(f(x), x)
assert hyper_re(d, r, k) == \
k*r(k) + 2*n*r(k + 1) + (-k - 2)*r(k + 2)
d = (x**10 + 4)*Derivative(f(x), x) + x*(x**10 - 1)*Derivative(f(x), x, x)
assert hyper_re(d, r, k) == \
(k*(k - 1) + k)*r(k) + (4*k - (k + 9)*(k + 10) + 40)*r(k + 10)
d = ((x**2 - 1)*Derivative(f(x), x, 3) + 3*x*Derivative(f(x), x, x) +
Derivative(f(x), x))
assert hyper_re(d, r, k) == \
((k*(k - 2)*(k - 1) + 3*k*(k - 1) + k)*r(k) +
(-k*(k + 1)*(k + 2))*r(k + 2))
def test_fps():
assert fps(1) == 1
assert fps(2, x) == 2
assert fps(2, x, dir='+') == 2
assert fps(2, x, dir='-') == 2
assert fps(1/x + 1/x**2) == 1/x + 1/x**2
assert fps(log(1 + x), hyper=False, rational=False) == log(1 + x)
f = fps(x**2 + x + 1)
assert isinstance(f, FormalPowerSeries)
assert f.function == x**2 + x + 1
assert f[0] == 1
assert f[2] == x**2
assert f.truncate(4) == x**2 + x + 1 + O(x**4)
assert f.polynomial() == x**2 + x + 1
f = fps(log(1 + x))
assert isinstance(f, FormalPowerSeries)
assert f.function == log(1 + x)
assert f.subs(x, y) == f
assert f[:5] == [0, x, -x**2/2, x**3/3, -x**4/4]
assert f.as_leading_term(x) == x
assert f.polynomial(6) == x - x**2/2 + x**3/3 - x**4/4 + x**5/5
k = f.ak.variables[0]
assert f.infinite == Sum((-(-1)**(-k)*x**k)/k, (k, 1, oo))
ft, s = f.truncate(n=None), f[:5]
for i, t in enumerate(ft):
if i == 5:
break
assert s[i] == t
f = sin(x).fps(x)
assert isinstance(f, FormalPowerSeries)
assert f.truncate() == x - x**3/6 + x**5/120 + O(x**6)
raises(NotImplementedError, lambda: fps(y*x))
raises(ValueError, lambda: fps(x, dir=0))
@slow
def test_fps__rational():
assert fps(1/x) == (1/x)
assert fps((x**2 + x + 1) / x**3, dir=-1) == (x**2 + x + 1) / x**3
f = 1 / ((x - 1)**2 * (x - 2))
assert fps(f, x).truncate() == \
(-Rational(1, 2) - 5*x/4 - 17*x**2/8 - 49*x**3/16 - 129*x**4/32 -
321*x**5/64 + O(x**6))
f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2))
assert fps(f, x).truncate() == \
(Rational(1, 2) + 5*x/4 + 17*x**2/8 + 49*x**3/16 + 113*x**4/32 +
241*x**5/64 + O(x**6))
f = x / (1 - x - x**2)
assert fps(f, x, full=True).truncate() == \
x + x**2 + 2*x**3 + 3*x**4 + 5*x**5 + O(x**6)
f = 1 / (x**2 + 2*x + 2)
assert fps(f, x, full=True).truncate() == \
Rational(1, 2) - x/2 + x**2/4 - x**4/8 + x**5/8 + O(x**6)
f = log(1 + x)
assert fps(f, x).truncate() == \
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
assert fps(f, x, dir=1).truncate() == fps(f, x, dir=-1).truncate()
assert fps(f, x, 2).truncate() == \
(log(3) - Rational(2, 3) - (x - 2)**2/18 + (x - 2)**3/81 -
(x - 2)**4/324 + (x - 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))
assert fps(f, x, 2, dir=-1).truncate() == \
(log(3) - Rational(2, 3) - (-x + 2)**2/18 - (-x + 2)**3/81 -
(-x + 2)**4/324 - (-x + 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))
f = atan(x)
assert fps(f, x, full=True).truncate() == x - x**3/3 + x**5/5 + O(x**6)
assert fps(f, x, full=True, dir=1).truncate() == \
fps(f, x, full=True, dir=-1).truncate()
assert fps(f, x, 2, full=True).truncate() == \
(atan(2) - Rational(2, 5) - 2*(x - 2)**2/25 + 11*(x - 2)**3/375 -
6*(x - 2)**4/625 + 41*(x - 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))
assert fps(f, x, 2, full=True, dir=-1).truncate() == \
(atan(2) - Rational(2, 5) - 2*(-x + 2)**2/25 - 11*(-x + 2)**3/375 -
6*(-x + 2)**4/625 - 41*(-x + 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))
f = x*atan(x) - log(1 + x**2) / 2
assert fps(f, x, full=True).truncate() == x**2/2 - x**4/12 + O(x**6)
f = log((1 + x) / (1 - x)) / 2 - atan(x)
assert fps(f, x, full=True).truncate(n=10) == 2*x**3/3 + 2*x**7/7 + O(x**10)
@slow
def test_fps__hyper():
f = sin(x)
assert fps(f, x).truncate() == x - x**3/6 + x**5/120 + O(x**6)
f = cos(x)
assert fps(f, x).truncate() == 1 - x**2/2 + x**4/24 + O(x**6)
f = exp(x)
assert fps(f, x).truncate() == \
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
f = atan(x)
assert fps(f, x).truncate() == x - x**3/3 + x**5/5 + O(x**6)
f = exp(acos(x))
assert fps(f, x).truncate() == \
(exp(pi/2) - x*exp(pi/2) + x**2*exp(pi/2)/2 - x**3*exp(pi/2)/3 +
5*x**4*exp(pi/2)/24 - x**5*exp(pi/2)/6 + O(x**6))
f = exp(acosh(x))
assert fps(f, x).truncate() == I + x - I*x**2/2 - I*x**4/8 + O(x**6)
f = atan(1/x)
assert fps(f, x).truncate() == pi/2 - x + x**3/3 - x**5/5 + O(x**6)
f = x*atan(x) - log(1 + x**2) / 2
assert fps(f, x, rational=False).truncate() == x**2/2 - x**4/12 + O(x**6)
f = log(1 + x)
assert fps(f, x, rational=False).truncate() == \
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
f = airyai(x**2)
assert fps(f, x).truncate() == \
(3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) -
3**Rational(2, 3)*x**2/(3*gamma(Rational(1, 3))) + O(x**6))
f = exp(x)*sin(x)
assert fps(f, x).truncate() == x + x**2 + x**3/3 - x**5/30 + O(x**6)
f = exp(x)*sin(x)/x
assert fps(f, x).truncate() == 1 + x + x**2/3 - x**4/30 - x**5/90 + O(x**6)
f = sin(x) * cos(x)
assert fps(f, x).truncate() == x - 2*x**3/3 + 2*x**5/15 + O(x**6)
def test_fps_shift():
f = x**-5*sin(x)
assert fps(f, x).truncate() == \
1/x**4 - 1/(6*x**2) + S.One/120 - x**2/5040 + x**4/362880 + O(x**6)
f = x**2*atan(x)
assert fps(f, x, rational=False).truncate() == \
x**3 - x**5/3 + O(x**6)
f = cos(sqrt(x))*x
assert fps(f, x).truncate() == \
x - x**2/2 + x**3/24 - x**4/720 + x**5/40320 + O(x**6)
f = x**2*cos(sqrt(x))
assert fps(f, x).truncate() == \
x**2 - x**3/2 + x**4/24 - x**5/720 + O(x**6)
def test_fps__Add_expr():
f = x*atan(x) - log(1 + x**2) / 2
assert fps(f, x).truncate() == x**2/2 - x**4/12 + O(x**6)
f = sin(x) + cos(x) - exp(x) + log(1 + x)
assert fps(f, x).truncate() == x - 3*x**2/2 - x**4/4 + x**5/5 + O(x**6)
f = 1/x + sin(x)
assert fps(f, x).truncate() == 1/x + x - x**3/6 + x**5/120 + O(x**6)
f = sin(x) - cos(x) + 1/(x - 1)
assert fps(f, x).truncate() == \
-2 - x**2/2 - 7*x**3/6 - 25*x**4/24 - 119*x**5/120 + O(x**6)
def test_fps__asymptotic():
f = exp(x)
assert fps(f, x, oo) == f
assert fps(f, x, -oo).truncate() == O(1/x**6, (x, oo))
f = erf(x)
assert fps(f, x, oo).truncate() == 1 + O(1/x**6, (x, oo))
assert fps(f, x, -oo).truncate() == -1 + O(1/x**6, (x, oo))
f = atan(x)
assert fps(f, x, oo, full=True).truncate() == \
-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(1/x**6, (x, oo))
assert fps(f, x, -oo, full=True).truncate() == \
-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(1/x**6, (x, oo))
f = log(1 + x)
assert fps(f, x, oo) != \
(-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x - log(1/x) +
O(1/x**6, (x, oo)))
assert fps(f, x, -oo) != \
(-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x + I*pi -
log(-1/x) + O(1/x**6, (x, oo)))
def test_fps__fractional():
f = sin(sqrt(x)) / x
assert fps(f, x).truncate() == \
(1/sqrt(x) - sqrt(x)/6 + x**Rational(3, 2)/120 -
x**Rational(5, 2)/5040 + x**Rational(7, 2)/362880 -
x**Rational(9, 2)/39916800 + x**Rational(11, 2)/6227020800 + O(x**6))
f = sin(sqrt(x)) * x
assert fps(f, x).truncate() == \
(x**Rational(3, 2) - x**Rational(5, 2)/6 + x**Rational(7, 2)/120 -
x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6))
f = atan(sqrt(x)) / x**2
assert fps(f, x).truncate() == \
(x**Rational(-3, 2) - x**Rational(-1, 2)/3 + x**Rational(1, 2)/5 -
x**Rational(3, 2)/7 + x**Rational(5, 2)/9 - x**Rational(7, 2)/11 +
x**Rational(9, 2)/13 - x**Rational(11, 2)/15 + O(x**6))
f = exp(sqrt(x))
assert fps(f, x).truncate().expand() == \
(1 + x/2 + x**2/24 + x**3/720 + x**4/40320 + x**5/3628800 + sqrt(x) +
x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + x**Rational(7, 2)/5040 +
x**Rational(9, 2)/362880 + x**Rational(11, 2)/39916800 + O(x**6))
f = exp(sqrt(x))*x
assert fps(f, x).truncate().expand() == \
(x + x**2/2 + x**3/24 + x**4/720 + x**5/40320 + x**Rational(3, 2) +
x**Rational(5, 2)/6 + x**Rational(7, 2)/120 + x**Rational(9, 2)/5040 +
x**Rational(11, 2)/362880 + O(x**6))
def test_fps__logarithmic_singularity():
f = log(1 + 1/x)
assert fps(f, x) != \
-log(x) + x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
assert fps(f, x, rational=False) != \
-log(x) + x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
@XFAIL
def test_fps__logarithmic_singularity_fail():
f = asech(x) # Algorithms for computing limits probably needs improvemnts
assert fps(f, x) == log(2) - log(x) - x**2/4 - 3*x**4/64 + O(x**6)
def test_fps_symbolic():
f = x**n*sin(x**2)
assert fps(f, x).truncate(8) == x**(n + 2) - x**(n + 6)/6 + O(x**(n + 8), x)
f = x**n*log(1 + x)
fp = fps(f, x)
k = fp.ak.variables[0]
assert fp.infinite == \
Sum((-(-1)**(-k)*x**(k + n))/k, (k, 1, oo))
f = (x - 2)**n*log(1 + x)
assert fps(f, x, 2).truncate() == \
((x - 2)**n*log(3) + (x - 2)**(n + 1)/3 - (x - 2)**(n + 2)/18 + (x - 2)**(n + 3)/81 -
(x - 2)**(n + 4)/324 + (x - 2)**(n + 5)/1215 + O((x - 2)**(n + 6), (x, 2)))
f = x**(n - 2)*cos(x)
assert fps(f, x).truncate() == \
(x**(n - 2) - x**n/2 + x**(n + 2)/24 - x**(n + 4)/720 + O(x**(n + 6), x))
f = x**(n - 2)*sin(x) + x**n*exp(x)
assert fps(f, x).truncate() == \
(x**(n - 1) + x**n + 5*x**(n + 1)/6 + x**(n + 2)/2 + 7*x**(n + 3)/40 +
x**(n + 4)/24 + 41*x**(n + 5)/5040 + O(x**(n + 6), x))
f = x**n*atan(x)
assert fps(f, x, oo).truncate() == \
(-x**(n - 5)/5 + x**(n - 3)/3 + x**n*(pi/2 - 1/x) +
O((1/x)**(-n)/x**6, (x, oo)))
f = x**(n/2)*cos(x)
assert fps(f, x).truncate() == \
x**(n/2) - x**(n/2 + 2)/2 + x**(n/2 + 4)/24 + O(x**(n/2 + 6), x)
f = x**(n + m)*sin(x)
assert fps(f, x).truncate() == \
x**(m + n + 1) - x**(m + n + 3)/6 + x**(m + n + 5)/120 + O(x**(m + n + 6), x)
def test_fps__slow():
f = x*exp(x)*sin(2*x) # TODO: rsolve needs improvement
assert fps(f, x).truncate() == 2*x**2 + 2*x**3 - x**4/3 - x**5 + O(x**6)
def test_fps__operations():
f1, f2 = fps(sin(x)), fps(cos(x))
fsum = f1 + f2
assert fsum.function == sin(x) + cos(x)
assert fsum.truncate() == \
1 + x - x**2/2 - x**3/6 + x**4/24 + x**5/120 + O(x**6)
fsum = f1 + 1
assert fsum.function == sin(x) + 1
assert fsum.truncate() == 1 + x - x**3/6 + x**5/120 + O(x**6)
fsum = 1 + f2
assert fsum.function == cos(x) + 1
assert fsum.truncate() == 2 - x**2/2 + x**4/24 + O(x**6)
assert (f1 + x) == Add(f1, x)
assert -f2.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
assert (f1 - f1) == S.Zero
fsub = f1 - f2
assert fsub.function == sin(x) - cos(x)
assert fsub.truncate() == \
-1 + x + x**2/2 - x**3/6 - x**4/24 + x**5/120 + O(x**6)
fsub = f1 - 1
assert fsub.function == sin(x) - 1
assert fsub.truncate() == -1 + x - x**3/6 + x**5/120 + O(x**6)
fsub = 1 - f2
assert fsub.function == -cos(x) + 1
assert fsub.truncate() == x**2/2 - x**4/24 + O(x**6)
raises(ValueError, lambda: f1 + fps(exp(x), dir=-1))
raises(ValueError, lambda: f1 + fps(exp(x), x0=1))
fm = f1 * 3
assert fm.function == 3*sin(x)
assert fm.truncate() == 3*x - x**3/2 + x**5/40 + O(x**6)
fm = 3 * f2
assert fm.function == 3*cos(x)
assert fm.truncate() == 3 - 3*x**2/2 + x**4/8 + O(x**6)
assert (f1 * f2) == Mul(f1, f2)
assert (f1 * x) == Mul(f1, x)
fd = f1.diff()
assert fd.function == cos(x)
assert fd.truncate() == 1 - x**2/2 + x**4/24 + O(x**6)
fd = f2.diff()
assert fd.function == -sin(x)
assert fd.truncate() == -x + x**3/6 - x**5/120 + O(x**6)
fd = f2.diff().diff()
assert fd.function == -cos(x)
assert fd.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
f3 = fps(exp(sqrt(x)))
fd = f3.diff()
assert fd.truncate().expand() == \
(1/(2*sqrt(x)) + S(1)/2 + x/12 + x**2/240 + x**3/10080 + x**4/725760 +
x**5/79833600 + sqrt(x)/4 + x**(S(3)/2)/48 + x**(S(5)/2)/1440 +
x**(S(7)/2)/80640 + x**(S(9)/2)/7257600 + x**(S(11)/2)/958003200 +
O(x**6))
assert f1.integrate((x, 0, 1)) == -cos(1) + 1
assert integrate(f1, (x, 0, 1)) == -cos(1) + 1
fi = integrate(f1, x)
assert fi.function == -cos(x)
assert fi.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
fi = f2.integrate(x)
assert fi.function == sin(x)
assert fi.truncate() == x - x**3/6 + x**5/120 + O(x**6)
def test_fps__convolution():
f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x))
raises(ValueError, lambda: f1.product(exp(x), x))
raises(ValueError, lambda: f1.product(fps(exp(x), dir=-1), x, 4))
raises(ValueError, lambda: f1.product(fps(exp(x), x0=1), x, 4))
raises(ValueError, lambda: f1.product(fps(exp(y)), x, 4))
assert f1.product(f2, x, 3) == x + x**2 + O(x**3)
assert f1.product(f2, x, 4) == x + x**2 + x**3/3 + O(x**4)
assert f1.product(f3, x, 4) == x - 2*x**3/3 + O(x**4)
def test_fps__composition():
f1, f2, f3 = fps(exp(x)), fps(sin(x)), fps(cos(x))
raises(ValueError, lambda: f1.compose(sin(x), x))
raises(ValueError, lambda: f1.compose(fps(sin(x), dir=-1), x, 4))
raises(ValueError, lambda: f1.compose(fps(sin(x), x0=1), x, 4))
raises(ValueError, lambda: f1.compose(fps(sin(y)), x, 4))
raises(ValueError, lambda: f1.compose(f3, x))
raises(ValueError, lambda: f2.compose(f3, x))
assert f1.compose(f2, x) == 1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
assert f1.compose(f2, x, n=4) == 1 + x + x**2/2 + O(x**4)
assert f1.compose(f2, x, n=8) == \
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
assert f2.compose(f2, x, n=4) == x - x**3/3 + O(x**4)
assert f2.compose(f2, x, n=8) == x - x**3/3 + x**5/10 - 8*x**7/315 + O(x**8)
def test_fps__inverse():
f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x))
raises(ValueError, lambda: f1.inverse(x))
raises(ValueError, lambda: f1.inverse(x, n=8))
assert f2.inverse(x) == 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
assert f2.inverse(x, n=8) == \
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + x**6/720 - x**7/5040 + O(x**8)
assert f3.inverse(x) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
assert f3.inverse(x, n=8) == 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
|
bb08ecfd968adf05a82668ffc68ee1d366b4e2668a9236f93135dd87a538f46f | from sympy import (residue, Symbol, Function, sin, S, I, exp, log, pi,
factorial, sqrt)
from sympy.utilities.pytest import XFAIL, raises
from sympy.abc import x, z, a, s
def test_basic1():
assert residue(1/x, x, 0) == 1
assert residue(-2/x, x, 0) == -2
assert residue(81/x, x, 0) == 81
assert residue(1/x**2, x, 0) == 0
assert residue(0, x, 0) == 0
assert residue(5, x, 0) == 0
assert residue(x, x, 0) == 0
assert residue(x**2, x, 0) == 0
def test_basic2():
assert residue(1/x, x, 1) == 0
assert residue(-2/x, x, 1) == 0
assert residue(81/x, x, -1) == 0
assert residue(1/x**2, x, 1) == 0
assert residue(0, x, 1) == 0
assert residue(5, x, 1) == 0
assert residue(x, x, 1) == 0
assert residue(x**2, x, 5) == 0
def test_f():
f = Function("f")
assert residue(f(x)/x**5, x, 0) == f(x).diff(x, 4).subs(x, 0)/24
def test_functions():
assert residue(1/sin(x), x, 0) == 1
assert residue(2/sin(x), x, 0) == 2
assert residue(1/sin(x)**2, x, 0) == 0
assert residue(1/sin(x)**5, x, 0) == S(3)/8
def test_expressions():
assert residue(1/(x + 1), x, 0) == 0
assert residue(1/(x + 1), x, -1) == 1
assert residue(1/(x**2 + 1), x, -1) == 0
assert residue(1/(x**2 + 1), x, I) == -I/2
assert residue(1/(x**2 + 1), x, -I) == I/2
assert residue(1/(x**4 + 1), x, 0) == 0
assert residue(1/(x**4 + 1), x, exp(I*pi/4)).equals(-(S(1)/4 + I/4)/sqrt(2))
assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/4/a**3
@XFAIL
def test_expressions_failing():
n = Symbol('n', integer=True, positive=True)
assert residue(exp(z)/(z - pi*I/4*a)**n, z, I*pi*a) == \
exp(I*pi*a/4)/factorial(n - 1)
def test_NotImplemented():
raises(NotImplementedError, lambda: residue(exp(1/z), z, 0))
def test_bug():
assert residue(2**(z)*(s + z)*(1 - s - z)/z**2, z, 0) == \
1 + s*log(2) - s**2*log(2) - 2*s
def test_issue_5654():
assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/(4*a**3)
def test_issue_6499():
assert residue(1/(exp(z) - 1), z, 0) == 1
|
8b7efc5d17eeef2d29ffb526c0d411d26b6141334bcfd18733b1d47d4f5c458f | from sympy import sqrt, root, S, Symbol, sqrtdenest, Integral, cos
from sympy.simplify.sqrtdenest import _subsets as subsets
from sympy.utilities.pytest import slow
r2, r3, r5, r6, r7, r10, r15, r29 = [sqrt(x) for x in [2, 3, 5, 6, 7, 10,
15, 29]]
def test_sqrtdenest():
d = {sqrt(5 + 2 * r6): r2 + r3,
sqrt(5. + 2 * r6): sqrt(5. + 2 * r6),
sqrt(5. + 4*sqrt(5 + 2 * r6)): sqrt(5.0 + 4*r2 + 4*r3),
sqrt(r2): sqrt(r2),
sqrt(5 + r7): sqrt(5 + r7),
sqrt(3 + sqrt(5 + 2*r7)):
3*r2*(5 + 2*r7)**(S(1)/4)/(2*sqrt(6 + 3*r7)) +
r2*sqrt(6 + 3*r7)/(2*(5 + 2*r7)**(S(1)/4)),
sqrt(3 + 2*r3): 3**(S(3)/4)*(r6/2 + 3*r2/2)/3}
for i in d:
assert sqrtdenest(i) == d[i]
def test_sqrtdenest2():
assert sqrtdenest(sqrt(16 - 2*r29 + 2*sqrt(55 - 10*r29))) == \
r5 + sqrt(11 - 2*r29)
e = sqrt(-r5 + sqrt(-2*r29 + 2*sqrt(-10*r29 + 55) + 16))
assert sqrtdenest(e) == root(-2*r29 + 11, 4)
r = sqrt(1 + r7)
assert sqrtdenest(sqrt(1 + r)) == sqrt(1 + r)
e = sqrt(((1 + sqrt(1 + 2*sqrt(3 + r2 + r5)))**2).expand())
assert sqrtdenest(e) == 1 + sqrt(1 + 2*sqrt(r2 + r5 + 3))
assert sqrtdenest(sqrt(5*r3 + 6*r2)) == \
sqrt(2)*root(3, 4) + root(3, 4)**3
assert sqrtdenest(sqrt(((1 + r5 + sqrt(1 + r3))**2).expand())) == \
1 + r5 + sqrt(1 + r3)
assert sqrtdenest(sqrt(((1 + r5 + r7 + sqrt(1 + r3))**2).expand())) == \
1 + sqrt(1 + r3) + r5 + r7
e = sqrt(((1 + cos(2) + cos(3) + sqrt(1 + r3))**2).expand())
assert sqrtdenest(e) == cos(3) + cos(2) + 1 + sqrt(1 + r3)
e = sqrt(-2*r10 + 2*r2*sqrt(-2*r10 + 11) + 14)
assert sqrtdenest(e) == sqrt(-2*r10 - 2*r2 + 4*r5 + 14)
# check that the result is not more complicated than the input
z = sqrt(-2*r29 + cos(2) + 2*sqrt(-10*r29 + 55) + 16)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(r6 + sqrt(15))) == sqrt(r6 + sqrt(15))
z = sqrt(15 - 2*sqrt(31) + 2*sqrt(55 - 10*r29))
assert sqrtdenest(z) == z
def test_sqrtdenest_rec():
assert sqrtdenest(sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 33)) == \
-r2 + r3 + 2*r7
assert sqrtdenest(sqrt(-28*r7 - 14*r5 + 4*sqrt(35) + 82)) == \
-7 + r5 + 2*r7
assert sqrtdenest(sqrt(6*r2/11 + 2*sqrt(22)/11 + 6*sqrt(11)/11 + 2)) == \
sqrt(11)*(r2 + 3 + sqrt(11))/11
assert sqrtdenest(sqrt(468*r3 + 3024*r2 + 2912*r6 + 19735)) == \
9*r3 + 26 + 56*r6
z = sqrt(-490*r3 - 98*sqrt(115) - 98*sqrt(345) - 2107)
assert sqrtdenest(z) == sqrt(-1)*(7*r5 + 7*r15 + 7*sqrt(23))
z = sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 34)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(-8*r2 - 2*r5 + 18)) == -r10 + 1 + r2 + r5
assert sqrtdenest(sqrt(8*r2 + 2*r5 - 18)) == \
sqrt(-1)*(-r10 + 1 + r2 + r5)
assert sqrtdenest(sqrt(8*r2/3 + 14*r5/3 + S(154)/9)) == \
-r10/3 + r2 + r5 + 3
assert sqrtdenest(sqrt(sqrt(2*r6 + 5) + sqrt(2*r7 + 8))) == \
sqrt(1 + r2 + r3 + r7)
assert sqrtdenest(sqrt(4*r15 + 8*r5 + 12*r3 + 24)) == 1 + r3 + r5 + r15
w = 1 + r2 + r3 + r5 + r7
assert sqrtdenest(sqrt((w**2).expand())) == w
z = sqrt((w**2).expand() + 1)
assert sqrtdenest(z) == z
z = sqrt(2*r10 + 6*r2 + 4*r5 + 12 + 10*r15 + 30*r3)
assert sqrtdenest(z) == z
def test_issue_6241():
z = sqrt( -320 + 32*sqrt(5) + 64*r15)
assert sqrtdenest(z) == z
def test_sqrtdenest3():
z = sqrt(13 - 2*r10 + 2*r2*sqrt(-2*r10 + 11))
assert sqrtdenest(z) == -1 + r2 + r10
assert sqrtdenest(z, max_iter=1) == -1 + sqrt(2) + sqrt(10)
z = sqrt(sqrt(r2 + 2) + 2)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(-2*r10 + 4*r2*sqrt(-2*r10 + 11) + 20)) == \
sqrt(-2*r10 - 4*r2 + 8*r5 + 20)
assert sqrtdenest(sqrt((112 + 70*r2) + (46 + 34*r2)*r5)) == \
r10 + 5 + 4*r2 + 3*r5
z = sqrt(5 + sqrt(2*r6 + 5)*sqrt(-2*r29 + 2*sqrt(-10*r29 + 55) + 16))
r = sqrt(-2*r29 + 11)
assert sqrtdenest(z) == sqrt(r2*r + r3*r + r10 + r15 + 5)
@slow
def test_sqrtdenest3_slow():
# Slow because of the equals, not the sqrtdenest
# Using == does not work as 7*(sqrt(-2*r29 + 11) + r5) is expanded
# automatically
n = sqrt(2*r6/7 + 2*r7/7 + 2*sqrt(42)/7 + 2)
d = sqrt(16 - 2*r29 + 2*sqrt(55 - 10*r29))
assert sqrtdenest(n/d).equals(
r7*(1 + r6 + r7)/(7*(sqrt(-2*r29 + 11) + r5)))
def test_sqrtdenest4():
# see Denest_en.pdf in https://github.com/sympy/sympy/issues/3192
z = sqrt(8 - r2*sqrt(5 - r5) - sqrt(3)*(1 + r5))
z1 = sqrtdenest(z)
c = sqrt(-r5 + 5)
z1 = ((-r15*c - r3*c + c + r5*c - r6 - r2 + r10 + sqrt(30))/4).expand()
assert sqrtdenest(z) == z1
z = sqrt(2*r2*sqrt(r2 + 2) + 5*r2 + 4*sqrt(r2 + 2) + 8)
assert sqrtdenest(z) == r2 + sqrt(r2 + 2) + 2
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
z = sqrt((w**2).expand())
assert sqrtdenest(z) == w.expand()
def test_sqrt_symbolic_denest():
x = Symbol('x')
z = sqrt(((1 + sqrt(sqrt(2 + x) + 3))**2).expand())
assert sqrtdenest(z) == sqrt((1 + sqrt(sqrt(2 + x) + 3))**2)
z = sqrt(((1 + sqrt(sqrt(2 + cos(1)) + 3))**2).expand())
assert sqrtdenest(z) == 1 + sqrt(sqrt(2 + cos(1)) + 3)
z = ((1 + cos(2))**4 + 1).expand()
assert sqrtdenest(z) == z
z = sqrt(((1 + sqrt(sqrt(2 + cos(3*x)) + 3))**2 + 1).expand())
assert sqrtdenest(z) == z
c = cos(3)
c2 = c**2
assert sqrtdenest(sqrt(2*sqrt(1 + r3)*c + c2 + 1 + r3*c2)) == \
-1 - sqrt(1 + r3)*c
ra = sqrt(1 + r3)
z = sqrt(20*ra*sqrt(3 + 3*r3) + 12*r3*ra*sqrt(3 + 3*r3) + 64*r3 + 112)
assert sqrtdenest(z) == z
def test_issue_5857():
from sympy.abc import x, y
z = sqrt(1/(4*r3 + 7) + 1)
ans = (r2 + r6)/(r3 + 2)
assert sqrtdenest(z) == ans
assert sqrtdenest(1 + z) == 1 + ans
assert sqrtdenest(Integral(z + 1, (x, 1, 2))) == \
Integral(1 + ans, (x, 1, 2))
assert sqrtdenest(x + sqrt(y)) == x + sqrt(y)
ans = (r2 + r6)/(r3 + 2)
assert sqrtdenest(z) == ans
assert sqrtdenest(1 + z) == 1 + ans
assert sqrtdenest(Integral(z + 1, (x, 1, 2))) == \
Integral(1 + ans, (x, 1, 2))
assert sqrtdenest(x + sqrt(y)) == x + sqrt(y)
def test_subsets():
assert subsets(1) == [[1]]
assert subsets(4) == [
[1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 0], [1, 0, 1, 0],
[0, 1, 1, 0], [1, 1, 1, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1],
[1, 1, 0, 1], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]]
def test_issue_5653():
assert sqrtdenest(
sqrt(2 + sqrt(2 + sqrt(2)))) == sqrt(2 + sqrt(2 + sqrt(2)))
def test_sqrt_ratcomb():
assert sqrtdenest(sqrt(1 + r3) + sqrt(3 + 3*r3) - sqrt(10 + 6*r3)) == 0
|
c1135783da2517763a232a54aae715e3cf0a9b3ba9154568084a62d7c5fb2739 | from sympy import (
Add, Mul, S, Symbol, cos, cot, pi, I, sin, sqrt, tan, root, csc, sec,
powsimp, symbols, sinh, cosh, tanh, coth, sech, csch, Dummy)
from sympy.simplify.fu import (
L, TR1, TR10, TR10i, TR11, TR12, TR12i, TR13, TR14, TR15, TR16,
TR111, TR2, TR2i, TR3, TR5, TR6, TR7, TR8, TR9, TRmorrie, _TR56 as T,
TRpower, hyper_as_trig, fu, process_common_addends, trig_split,
as_f_sign_1)
from sympy.utilities.randtest import verify_numerically
from sympy.core.compatibility import range
from sympy.abc import a, b, c, x, y, z
def test_TR1():
assert TR1(2*csc(x) + sec(x)) == 1/cos(x) + 2/sin(x)
def test_TR2():
assert TR2(tan(x)) == sin(x)/cos(x)
assert TR2(cot(x)) == cos(x)/sin(x)
assert TR2(tan(tan(x) - sin(x)/cos(x))) == 0
def test_TR2i():
# just a reminder that ratios of powers only simplify if both
# numerator and denominator satisfy the condition that each
# has a positive base or an integer exponent; e.g. the following,
# at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
assert powsimp(2**x/y**x) != (2/y)**x
assert TR2i(sin(x)/cos(x)) == tan(x)
assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2
assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(S.Half)
assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(5*S.Half)
assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(S.Half)
assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(5*S.Half)
assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(S.Half)**a
assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(S.Half)**(-a)
assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)
i = symbols('i', integer=True)
assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**(-i)
assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**i
def test_TR3():
assert TR3(cos(y - x*(y - x))) == cos(x*(x - y) + y)
assert cos(pi/2 + x) == -sin(x)
assert cos(30*pi/2 + x) == -cos(x)
for f in (cos, sin, tan, cot, csc, sec):
i = f(3*pi/7)
j = TR3(i)
assert verify_numerically(i, j) and i.func != j.func
def test__TR56():
h = lambda x: 1 - x
assert T(sin(x)**3, sin, cos, h, 4, False) == sin(x)**3
assert T(sin(x)**10, sin, cos, h, 4, False) == sin(x)**10
assert T(sin(x)**6, sin, cos, h, 6, False) == (-cos(x)**2 + 1)**3
assert T(sin(x)**6, sin, cos, h, 6, True) == sin(x)**6
assert T(sin(x)**8, sin, cos, h, 10, True) == (-cos(x)**2 + 1)**4
# issue 17137
assert T(sin(x)**I, sin, cos, h, 4, True) == sin(x)**I
assert T(sin(x)**(2*I + 1), sin, cos, h, 4, True) == sin(x)**(2*I + 1)
def test_TR5():
assert TR5(sin(x)**2) == -cos(x)**2 + 1
assert TR5(sin(x)**-2) == sin(x)**(-2)
assert TR5(sin(x)**4) == (-cos(x)**2 + 1)**2
def test_TR6():
assert TR6(cos(x)**2) == -sin(x)**2 + 1
assert TR6(cos(x)**-2) == cos(x)**(-2)
assert TR6(cos(x)**4) == (-sin(x)**2 + 1)**2
def test_TR7():
assert TR7(cos(x)**2) == cos(2*x)/2 + S(1)/2
assert TR7(cos(x)**2 + 1) == cos(2*x)/2 + S(3)/2
def test_TR8():
assert TR8(cos(2)*cos(3)) == cos(5)/2 + cos(1)/2
assert TR8(cos(2)*sin(3)) == sin(5)/2 + sin(1)/2
assert TR8(sin(2)*sin(3)) == -cos(5)/2 + cos(1)/2
assert TR8(sin(1)*sin(2)*sin(3)) == sin(4)/4 - sin(6)/4 + sin(2)/4
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)) == \
cos(4)/4 + cos(10)/8 + cos(2)/8 + cos(8)/8 + cos(14)/8 + \
cos(6)/8 + S(1)/8
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)*cos(6)) == \
cos(10)/8 + cos(4)/8 + 3*cos(2)/16 + cos(16)/16 + cos(8)/8 + \
cos(14)/16 + cos(20)/16 + cos(12)/16 + S(1)/16 + cos(6)/8
assert TR8(sin(3*pi/7)**2*cos(3*pi/7)**2/(16*sin(pi/7)**2)) == S(1)/64
def test_TR9():
a = S(1)/2
b = 3*a
assert TR9(a) == a
assert TR9(cos(1) + cos(2)) == 2*cos(a)*cos(b)
assert TR9(cos(1) - cos(2)) == 2*sin(a)*sin(b)
assert TR9(sin(1) - sin(2)) == -2*sin(a)*cos(b)
assert TR9(sin(1) + sin(2)) == 2*sin(b)*cos(a)
assert TR9(cos(1) + 2*sin(1) + 2*sin(2)) == cos(1) + 4*sin(b)*cos(a)
assert TR9(cos(4) + cos(2) + 2*cos(1)*cos(3)) == 4*cos(1)*cos(3)
assert TR9((cos(4) + cos(2))/cos(3)/2 + cos(3)) == 2*cos(1)*cos(2)
assert TR9(cos(3) + cos(4) + cos(5) + cos(6)) == \
4*cos(S(1)/2)*cos(1)*cos(S(9)/2)
assert TR9(cos(3) + cos(3)*cos(2)) == cos(3) + cos(2)*cos(3)
assert TR9(-cos(y) + cos(x*y)) == -2*sin(x*y/2 - y/2)*sin(x*y/2 + y/2)
assert TR9(-sin(y) + sin(x*y)) == 2*sin(x*y/2 - y/2)*cos(x*y/2 + y/2)
c = cos(x)
s = sin(x)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for a in ((c, s), (s, c), (cos(x), cos(x*y)), (sin(x), sin(x*y))):
args = zip(si, a)
ex = Add(*[Mul(*ai) for ai in args])
t = TR9(ex)
assert not (a[0].func == a[1].func and (
not verify_numerically(ex, t.expand(trig=True)) or t.is_Add)
or a[1].func != a[0].func and ex != t)
def test_TR10():
assert TR10(cos(a + b)) == -sin(a)*sin(b) + cos(a)*cos(b)
assert TR10(sin(a + b)) == sin(a)*cos(b) + sin(b)*cos(a)
assert TR10(sin(a + b + c)) == \
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
assert TR10(cos(a + b + c)) == \
(-sin(a)*sin(b) + cos(a)*cos(b))*cos(c) - \
(sin(a)*cos(b) + sin(b)*cos(a))*sin(c)
def test_TR10i():
assert TR10i(cos(1)*cos(3) + sin(1)*sin(3)) == cos(2)
assert TR10i(cos(1)*cos(3) - sin(1)*sin(3)) == cos(4)
assert TR10i(cos(1)*sin(3) - sin(1)*cos(3)) == sin(2)
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3)) == sin(4)
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + 7) == sin(4) + 7
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) == cos(3) + sin(4)
assert TR10i(2*cos(1)*sin(3) + 2*sin(1)*cos(3) + cos(3)) == \
2*sin(4) + cos(3)
assert TR10i(cos(2)*cos(3) + sin(2)*(cos(1)*sin(2) + cos(2)*sin(1))) == \
cos(1)
eq = (cos(2)*cos(3) + sin(2)*(
cos(1)*sin(2) + cos(2)*sin(1)))*cos(5) + sin(1)*sin(5)
assert TR10i(eq) == TR10i(eq.expand()) == cos(4)
assert TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) == \
2*sqrt(2)*x*sin(x + pi/6)
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
cos(x)/sqrt(6)/3 + sin(x)/sqrt(2)/3) == 4*sqrt(6)*sin(x + pi/6)/9
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
cos(y)/sqrt(6)/3 + sin(y)/sqrt(2)/3) == \
sqrt(6)*sin(x + pi/6)/3 + sqrt(6)*sin(y + pi/6)/9
assert TR10i(cos(x) + sqrt(3)*sin(x) + 2*sqrt(3)*cos(x + pi/6)) == 4*cos(x)
assert TR10i(cos(x) + sqrt(3)*sin(x) +
2*sqrt(3)*cos(x + pi/6) + 4*sin(x)) == 4*sqrt(2)*sin(x + pi/4)
assert TR10i(cos(2)*sin(3) + sin(2)*cos(4)) == \
sin(2)*cos(4) + sin(3)*cos(2)
A = Symbol('A', commutative=False)
assert TR10i(sqrt(2)*cos(x)*A + sqrt(6)*sin(x)*A) == \
2*sqrt(2)*sin(x + pi/6)*A
c = cos(x)
s = sin(x)
h = sin(y)
r = cos(y)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for a in ((c*r, s*h), (c*h, s*r)): # explicit 2-args
args = zip(si, a)
ex = Add(*[Mul(*ai) for ai in args])
t = TR10i(ex)
assert not (ex - t.expand(trig=True) or t.is_Add)
c = cos(x)
s = sin(x)
h = sin(pi/6)
r = cos(pi/6)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for a in ((c*r, s*h), (c*h, s*r)): # induced
args = zip(si, a)
ex = Add(*[Mul(*ai) for ai in args])
t = TR10i(ex)
assert not (ex - t.expand(trig=True) or t.is_Add)
def test_TR11():
assert TR11(sin(2*x)) == 2*sin(x)*cos(x)
assert TR11(sin(4*x)) == 4*((-sin(x)**2 + cos(x)**2)*sin(x)*cos(x))
assert TR11(sin(4*x/3)) == \
4*((-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3))
assert TR11(cos(2*x)) == -sin(x)**2 + cos(x)**2
assert TR11(cos(4*x)) == \
(-sin(x)**2 + cos(x)**2)**2 - 4*sin(x)**2*cos(x)**2
assert TR11(cos(2)) == cos(2)
assert TR11(cos(3*pi/7), 2*pi/7) == -cos(2*pi/7)**2 + sin(2*pi/7)**2
assert TR11(cos(4), 2) == -sin(2)**2 + cos(2)**2
assert TR11(cos(6), 2) == cos(6)
assert TR11(sin(x)/cos(x/2), x/2) == 2*sin(x/2)
def test_TR12():
assert TR12(tan(x + y)) == (tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
assert TR12(tan(x + y + z)) ==\
(tan(z) + (tan(x) + tan(y))/(-tan(x)*tan(y) + 1))/(
1 - (tan(x) + tan(y))*tan(z)/(-tan(x)*tan(y) + 1))
assert TR12(tan(x*y)) == tan(x*y)
def test_TR13():
assert TR13(tan(3)*tan(2)) == -tan(2)/tan(5) - tan(3)/tan(5) + 1
assert TR13(cot(3)*cot(2)) == 1 + cot(3)*cot(5) + cot(2)*cot(5)
assert TR13(tan(1)*tan(2)*tan(3)) == \
(-tan(2)/tan(5) - tan(3)/tan(5) + 1)*tan(1)
assert TR13(tan(1)*tan(2)*cot(3)) == \
(-tan(2)/tan(3) + 1 - tan(1)/tan(3))*cot(3)
def test_L():
assert L(cos(x) + sin(x)) == 2
def test_fu():
assert fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) == S(3)/2
assert fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) == 2*sqrt(2)*sin(x + pi/3)
eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
assert fu(eq) == cos(x)**4 - 2*cos(y)**2 + 2
assert fu(S.Half - cos(2*x)/2) == sin(x)**2
assert fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) == \
sqrt(2)*sin(a + b + pi/4)
assert fu(sqrt(3)*cos(x)/2 + sin(x)/2) == sin(x + pi/3)
assert fu(1 - sin(2*x)**2/4 - sin(y)**2 - cos(x)**4) == \
-cos(x)**2 + cos(y)**2
assert fu(cos(4*pi/9)) == sin(pi/18)
assert fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)) == S(1)/16
assert fu(
tan(7*pi/18) + tan(5*pi/18) - sqrt(3)*tan(5*pi/18)*tan(7*pi/18)) == \
-sqrt(3)
assert fu(tan(1)*tan(2)) == tan(1)*tan(2)
expr = Mul(*[cos(2**i) for i in range(10)])
assert fu(expr) == sin(1024)/(1024*sin(1))
def test_objective():
assert fu(sin(x)/cos(x), measure=lambda x: x.count_ops()) == \
tan(x)
assert fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) == \
sin(x)/cos(x)
def test_process_common_addends():
# this tests that the args are not evaluated as they are given to do
# and that key2 works when key1 is False
do = lambda x: Add(*[i**(i%2) for i in x.args])
process_common_addends(Add(*[1, 2, 3, 4], evaluate=False), do,
key2=lambda x: x%2, key1=False) == 1**1 + 3**1 + 2**0 + 4**0
def test_trig_split():
assert trig_split(cos(x), cos(y)) == (1, 1, 1, x, y, True)
assert trig_split(2*cos(x), -2*cos(y)) == (2, 1, -1, x, y, True)
assert trig_split(cos(x)*sin(y), cos(y)*sin(y)) == \
(sin(y), 1, 1, x, y, True)
assert trig_split(cos(x), -sqrt(3)*sin(x), two=True) == \
(2, 1, -1, x, pi/6, False)
assert trig_split(cos(x), sin(x), two=True) == \
(sqrt(2), 1, 1, x, pi/4, False)
assert trig_split(cos(x), -sin(x), two=True) == \
(sqrt(2), 1, -1, x, pi/4, False)
assert trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) == \
(2*sqrt(2), 1, -1, x, pi/6, False)
assert trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) == \
(-2*sqrt(2), 1, 1, x, pi/3, False)
assert trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) == \
(sqrt(6)/3, 1, 1, x, pi/6, False)
assert trig_split(-sqrt(6)*cos(x)*sin(y),
-sqrt(2)*sin(x)*sin(y), two=True) == \
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
assert trig_split(cos(x), sin(x)) is None
assert trig_split(cos(x), sin(z)) is None
assert trig_split(2*cos(x), -sin(x)) is None
assert trig_split(cos(x), -sqrt(3)*sin(x)) is None
assert trig_split(cos(x)*cos(y), sin(x)*sin(z)) is None
assert trig_split(cos(x)*cos(y), sin(x)*sin(y)) is None
assert trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) is \
None
assert trig_split(sqrt(3)*sqrt(x), cos(3), two=True) is None
assert trig_split(sqrt(3)*root(x, 3), sin(3)*cos(2), two=True) is None
assert trig_split(cos(5)*cos(6), cos(7)*sin(5), two=True) is None
def test_TRmorrie():
assert TRmorrie(7*Mul(*[cos(i) for i in range(10)])) == \
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
assert TRmorrie(x) == x
assert TRmorrie(2*x) == 2*x
e = cos(pi/7)*cos(2*pi/7)*cos(4*pi/7)
assert TR8(TRmorrie(e)) == -S(1)/8
e = Mul(*[cos(2**i*pi/17) for i in range(1, 17)])
assert TR8(TR3(TRmorrie(e))) == S(1)/65536
# issue 17063
eq = cos(x)/cos(x/2)
assert TRmorrie(eq) == eq
def test_TRpower():
assert TRpower(1/sin(x)**2) == 1/sin(x)**2
assert TRpower(cos(x)**3*sin(x/2)**4) == \
(3*cos(x)/4 + cos(3*x)/4)*(-cos(x)/2 + cos(2*x)/8 + S(3)/8)
for k in range(2, 8):
assert verify_numerically(sin(x)**k, TRpower(sin(x)**k))
assert verify_numerically(cos(x)**k, TRpower(cos(x)**k))
def test_hyper_as_trig():
from sympy.simplify.fu import _osborne as o, _osbornei as i, TR12
eq = sinh(x)**2 + cosh(x)**2
t, f = hyper_as_trig(eq)
assert f(fu(t)) == cosh(2*x)
e, f = hyper_as_trig(tanh(x + y))
assert f(TR12(e)) == (tanh(x) + tanh(y))/(tanh(x)*tanh(y) + 1)
d = Dummy()
assert o(sinh(x), d) == I*sin(x*d)
assert o(tanh(x), d) == I*tan(x*d)
assert o(coth(x), d) == cot(x*d)/I
assert o(cosh(x), d) == cos(x*d)
assert o(sech(x), d) == sec(x*d)
assert o(csch(x), d) == csc(x*d)/I
for func in (sinh, cosh, tanh, coth, sech, csch):
h = func(pi)
assert i(o(h, d), d) == h
# /!\ the _osborne functions are not meant to work
# in the o(i(trig, d), d) direction so we just check
# that they work as they are supposed to work
assert i(cos(x*y + z), y) == cosh(x + z*I)
assert i(sin(x*y + z), y) == sinh(x + z*I)/I
assert i(tan(x*y + z), y) == tanh(x + z*I)/I
assert i(cot(x*y + z), y) == coth(x + z*I)*I
assert i(sec(x*y + z), y) == sech(x + z*I)
assert i(csc(x*y + z), y) == csch(x + z*I)*I
def test_TR12i():
ta, tb, tc = [tan(i) for i in (a, b, c)]
assert TR12i((ta + tb)/(-ta*tb + 1)) == tan(a + b)
assert TR12i((ta + tb)/(ta*tb - 1)) == -tan(a + b)
assert TR12i((-ta - tb)/(ta*tb - 1)) == tan(a + b)
eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
assert TR12i(eq.expand()) == \
-3*tan(a + b)*tan(a + c)/(tan(a) + tan(b) - 1)/2
assert TR12i(tan(x)/sin(x)) == tan(x)/sin(x)
eq = (ta + cos(2))/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = (ta + tb + 2)**2/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = ta/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = (((ta + tb)*(a + 1)).expand())**2/(ta*tb - 1)
assert TR12i(eq) == -(a + 1)**2*tan(a + b)
def test_TR14():
eq = (cos(x) - 1)*(cos(x) + 1)
ans = -sin(x)**2
assert TR14(eq) == ans
assert TR14(1/eq) == 1/ans
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**2) == ans**2
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**3) == ans**2*(cos(x) + 1)
assert TR14((cos(x) - 1)**3*(cos(x) + 1)**2) == ans**2*(cos(x) - 1)
eq = (cos(x) - 1)**y*(cos(x) + 1)**y
assert TR14(eq) == eq
eq = (cos(x) - 2)**y*(cos(x) + 1)
assert TR14(eq) == eq
eq = (tan(x) - 2)**2*(cos(x) + 1)
assert TR14(eq) == eq
i = symbols('i', integer=True)
assert TR14((cos(x) - 1)**i*(cos(x) + 1)**i) == ans**i
assert TR14((sin(x) - 1)**i*(sin(x) + 1)**i) == (-cos(x)**2)**i
# could use extraction in this case
eq = (cos(x) - 1)**(i + 1)*(cos(x) + 1)**i
assert TR14(eq) in [(cos(x) - 1)*ans**i, eq]
assert TR14((sin(x) - 1)*(sin(x) + 1)) == -cos(x)**2
p1 = (cos(x) + 1)*(cos(x) - 1)
p2 = (cos(y) - 1)*2*(cos(y) + 1)
p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
assert TR14(p1*p2*p3*(x - 1)) == -18*((x - 1)*sin(x)**2*sin(y)**4)
def test_TR15_16_17():
assert TR15(1 - 1/sin(x)**2) == -cot(x)**2
assert TR16(1 - 1/cos(x)**2) == -tan(x)**2
assert TR111(1 - 1/tan(x)**2) == 1 - cot(x)**2
def test_as_f_sign_1():
assert as_f_sign_1(x + 1) == (1, x, 1)
assert as_f_sign_1(x - 1) == (1, x, -1)
assert as_f_sign_1(-x + 1) == (-1, x, -1)
assert as_f_sign_1(-x - 1) == (-1, x, 1)
assert as_f_sign_1(2*x + 2) == (2, x, 1)
assert as_f_sign_1(x*y - y) == (y, x, -1)
assert as_f_sign_1(-x*y + y) == (-y, x, -1)
|
2602ea570e38306ec367b6691e45423f837e98cb2b4a94ff8828cde9294d4529 | from sympy import (
Abs, acos, Add, asin, atan, Basic, binomial, besselsimp,
collect,cos, cosh, cot, coth, count_ops, csch, Derivative, diff, E,
Eq, erf, exp, exp_polar, expand, expand_multinomial, factor,
factorial, Float, fraction, Function, gamma, GoldenRatio, hyper,
hypersimp, I, Integral, integrate, KroneckerDelta, log, logcombine, Lt,
Matrix, MatrixSymbol, Mul, nsimplify, O, oo, pi, Piecewise, posify, rad,
Rational, root, S, separatevars, signsimp, simplify, sign, sin,
sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan, tanh,
zoo)
from sympy.core.mul import _keep_coeff
from sympy.core.expr import unchanged
from sympy.simplify.simplify import nthroot, inversecombine
from sympy.utilities.pytest import XFAIL, slow, raises
from sympy.core.compatibility import range, PY3
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, k
def test_issue_7263():
assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \
673.447451402970) < 1e-12
@XFAIL
def test_factorial_simplify():
# There are more tests in test_factorials.py. These are just to
# ensure that simplify() calls factorial_simplify correctly
from sympy.specfun.factorials import factorial
x = Symbol('x')
assert simplify(factorial(x)/x) == factorial(x - 1)
assert simplify(factorial(factorial(x))) == factorial(factorial(x))
def test_simplify_expr():
x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
f = Function('f')
assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])
e = 1/x + 1/y
assert e != (x + y)/(x*y)
assert simplify(e) == (x + y)/(x*y)
e = A**2*s**4/(4*pi*k*m**3)
assert simplify(e) == e
e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x)
assert simplify(e) == 0
e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2
assert simplify(e) == -2*y
e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2
assert simplify(e) == -2*y
e = (x + x*y)/x
assert simplify(e) == 1 + y
e = (f(x) + y*f(x))/f(x)
assert simplify(e) == 1 + y
e = (2 * (1/n - cos(n * pi)/n))/pi
assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2
e = integrate(1/(x**3 + 1), x).diff(x)
assert simplify(e) == 1/(x**3 + 1)
e = integrate(x/(x**2 + 3*x + 1), x).diff(x)
assert simplify(e) == x/(x**2 + 3*x + 1)
f = Symbol('f')
A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv()
assert simplify((A*Matrix([0, f]))[1]) == \
-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2))
f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t)
assert simplify(f) == (y + a*z)/(z + t)
# issue 10347
expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1)
/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2
+ y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 +
y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*
(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt(
(-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 -
1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*(
y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*
(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2
*y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 -
1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2
+ 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2
+ 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(
z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2*
y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(
-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt((
-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 -
1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2
+ x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin(
z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2)
**2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 -
1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2
- 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)
**2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 -
1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos(
z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1)
)*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)
) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(
z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*(
y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*(
x**2 - y**2)*(y**2 - 1))
assert simplify(expr) == 2*x/(a**2*(x**2 - y**2))
A, B = symbols('A,B', commutative=False)
assert simplify(A*B - B*A) == A*B - B*A
assert simplify(A/(1 + y/x)) == x*A/(x + y)
assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y)
assert simplify(log(2) + log(3)) == log(6)
assert simplify(log(2*x) - log(2)) == log(x)
assert simplify(hyper([], [], x)) == exp(x)
def test_issue_3557():
f_1 = x*a + y*b + z*c - 1
f_2 = x*d + y*e + z*f - 1
f_3 = x*g + y*h + z*i - 1
solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False)
assert simplify(solutions[y]) == \
(a*i + c*d + f*g - a*f - c*g - d*i)/ \
(a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g)
def test_simplify_other():
assert simplify(sin(x)**2 + cos(x)**2) == 1
assert simplify(gamma(x + 1)/gamma(x)) == x
assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
assert simplify(
Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1)
nc = symbols('nc', commutative=False)
assert simplify(x + x*nc) == x*(1 + nc)
# issue 6123
# f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
# ans = integrate(f, (k, -oo, oo), conds='none')
ans = I*(-pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))*erf(x*exp(-3*I*pi/4)/
(2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))/
(2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
(-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
assert simplify(ans) == -(-1)**(S(3)/4)*sqrt(pi)/sqrt(t)
# issue 6370
assert simplify(2**(2 + x)/4) == 2**x
def test_simplify_complex():
cosAsExp = cos(x)._eval_rewrite_as_exp(x)
tanAsExp = tan(x)._eval_rewrite_as_exp(x)
assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341
# issue 10124
assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1),
-sin(1)], [sin(1), cos(1)]])
def test_simplify_ratio():
# roots of x**3-3*x+5
roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - '
'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))',
'1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + '
'(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)',
'-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)']
for r in roots:
r = S(r)
assert count_ops(simplify(r, ratio=1)) <= count_ops(r)
# If ratio=oo, simplify() is always applied:
assert simplify(r, ratio=oo) is not r
def test_simplify_measure():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
assert measure1(simplify(expr, measure=measure1)) <= measure1(expr)
assert measure2(simplify(expr, measure=measure2)) <= measure2(expr)
expr2 = Eq(sin(x)**2 + cos(x)**2, 1)
assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2)
assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2)
def test_simplify_rational():
expr = 2**x*2.**y
assert simplify(expr, rational = True) == 2**(x+y)
assert simplify(expr, rational = None) == 2.0**(x+y)
assert simplify(expr, rational = False) == expr
def test_simplify_issue_1308():
assert simplify(exp(-Rational(1, 2)) + exp(-Rational(3, 2))) == \
(1 + E)*exp(-Rational(3, 2))
def test_issue_5652():
assert simplify(E + exp(-E)) == exp(-E) + E
n = symbols('n', commutative=False)
assert simplify(n + n**(-n)) == n + n**(-n)
def test_simplify_fail1():
x = Symbol('x')
y = Symbol('y')
e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y)
assert simplify(e) == 1 / (-2*y)
def test_nthroot():
assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3
q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2)
assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2)
expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15)
assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15)
q = 1 + sqrt(2) + sqrt(3) + sqrt(5)
assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q
q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10)
assert nthroot(expand_multinomial(q**5), 5, 8) == q
q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(expand_multinomial(q**6), 6) == q
def test_nthroot1():
q = 1 + sqrt(2) + sqrt(3) + S(1)/10**20
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
q = 1 + sqrt(2) + sqrt(3) + S(1)/10**30
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
def test_separatevars():
x, y, z, n = symbols('x,y,z,n')
assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y)
assert separatevars(x*z + x*y*z) == x*z*(1 + y)
assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y)
assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
x*(sin(y) + y**2)*sin(x)
assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x)
assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z
assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1)
assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
y*exp(x/cos(n))*exp(-z/cos(n))/pi
assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2
# issue 4858
p = Symbol('p', positive=True)
assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x)
assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x))
assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
p*sqrt(y)*sqrt(1 + x)
# issue 4865
assert separatevars(sqrt(x*y)).is_Pow
assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y)
# issue 4957
# any type sequence for symbols is fine
assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
{'coeff': 1, x: 2*x + 2, y: y}
# separable
assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
{'coeff': y, x: 2*x + 2}
assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
{'coeff': y*(2*x + 2)}
# not separable
assert separatevars(3, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=()) is None
assert separatevars(2*x + y, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y}
# issue 4808
n, m = symbols('n,m', commutative=False)
assert separatevars(m + n*m) == (1 + n)*m
assert separatevars(x + x*n) == x*(1 + n)
# issue 4910
f = Function('f')
assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x)
# a noncommutable object present
eq = x*(1 + hyper((), (), y*z))
assert separatevars(eq) == eq
def test_separatevars_advanced_factor():
x, y, z = symbols('x,y,z')
assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \
(log(x) + 1)*(log(y) + 1)
assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) -
x*exp(y)*log(z) + x*exp(y) + exp(y)) == \
-((x + 1)*(log(z) - 1)*(exp(y) + 1))
x, y = symbols('x,y', positive=True)
assert separatevars(1 + log(x**log(y)) + log(x*y)) == \
(log(x) + 1)*(log(y) + 1)
def test_hypersimp():
n, k = symbols('n,k', integer=True)
assert hypersimp(factorial(k), k) == k + 1
assert hypersimp(factorial(k**2), k) is None
assert hypersimp(1/factorial(k), k) == 1/(k + 1)
assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2
assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1)
assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1)
term = (4*k + 1)*factorial(k)/factorial(2*k + 1)
assert hypersimp(term, k) == (S(1)/2)*((4*k + 5)/(3 + 14*k + 8*k**2))
term = 1/((2*k - 1)*factorial(2*k + 1))
assert hypersimp(term, k) == (k - S(1)/2)/((k + 1)*(2*k + 1)*(2*k + 3))
term = binomial(n, k)*(-1)**k/factorial(k)
assert hypersimp(term, k) == (k - n)/(k + 1)**2
def test_nsimplify():
x = Symbol("x")
assert nsimplify(0) == 0
assert nsimplify(-1) == -1
assert nsimplify(1) == 1
assert nsimplify(1 + x) == 1 + x
assert nsimplify(2.7) == Rational(27, 10)
assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
assert nsimplify(exp(5*pi*I/3, evaluate=False)) == \
sympify('1/2 - sqrt(3)*I/2')
assert nsimplify(sin(3*pi/5, evaluate=False)) == \
sympify('sqrt(sqrt(5)/8 + 5/8)')
assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
sqrt(pi) + sqrt(pi)/2*I
assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
2**Rational(1, 3)
assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
assert nsimplify(log(3).n(), rational=True) == \
sympify('109861228866811/100000000000000')
assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
-pi/4 - log(2) + S(7)/4
assert nsimplify(x/7.0) == x/7
assert nsimplify(pi/1e2) == pi/100
assert nsimplify(pi/1e2, rational=False) == pi/100.0
assert nsimplify(pi/1e-7) == 10000000*pi
assert not nsimplify(
factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
e = x**0.0
assert e.is_Pow and nsimplify(x**0.0) == 1
assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
assert nsimplify(-203.1) == -S(2031)/10
assert nsimplify(.2, tolerance=0) == S.One/5
assert nsimplify(-.2, tolerance=0) == -S.One/5
assert nsimplify(.2222, tolerance=0) == S(1111)/5000
assert nsimplify(-.2222, tolerance=0) == -S(1111)/5000
# issue 7211, PR 4112
assert nsimplify(S(2e-8)) == S(1)/50000000
# issue 7322 direct test
assert nsimplify(1e-42, rational=True) != 0
# issue 10336
inf = Float('inf')
infs = (-oo, oo, inf, -inf)
for i in infs:
ans = sign(i)*oo
assert nsimplify(i) == ans
assert nsimplify(i + x) == x + ans
assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)
# Make sure nsimplify on expressions uses full precision
assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x
def test_issue_9448():
tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))")
assert nsimplify(tmp) == S(1)/2
def test_extract_minus_sign():
x = Symbol("x")
y = Symbol("y")
a = Symbol("a")
b = Symbol("b")
assert simplify(-x/-y) == x/y
assert simplify(-x/y) == -x/y
assert simplify(x/y) == x/y
assert simplify(x/-y) == -x/y
assert simplify(-x/0) == zoo*x
assert simplify(S(-5)/0) == zoo
assert simplify(-a*x/(-y - b)) == a*x/(b + y)
def test_diff():
x = Symbol("x")
y = Symbol("y")
f = Function("f")
g = Function("g")
assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0
assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0
assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0
assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0
def test_logcombine_1():
x, y = symbols("x,y")
a = Symbol("a")
z, w = symbols("z,w", positive=True)
b = Symbol("b", real=True)
assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y)
assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2)
assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z)
assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x)
assert logcombine(b*log(z) - log(w)) == log(z**b/w)
assert logcombine(log(x)*log(z)) == log(x)*log(z)
assert logcombine(log(w)*log(x)) == log(w)*log(x)
assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)),
cos(log(z**2/w**b))]
assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \
log(log(x/y)/z)
assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x)
assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \
(x**2 + log(x/y))/(x*y)
# the following could also give log(z*x**log(y**2)), what we
# are testing is that a canonical result is obtained
assert logcombine(log(x)*2*log(y) + log(z), force=True) == \
log(z*y**log(x**2))
assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)*
sqrt(y)**3), force=True) == (
x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**(S(2)/3)*y**(S(3)/2))
assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \
acos(-log(x/y))*gamma(-log(x/y))
assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \
log(z**log(w**2))*log(x) + log(w*z)
assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3)
assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6)
assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3)
# a single unknown can combine
assert logcombine(log(x) + log(2)) == log(2*x)
eq = log(abs(x)) + log(abs(y))
assert logcombine(eq) == eq
reps = {x: 0, y: 0}
assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps)
def test_logcombine_complex_coeff():
i = Integral((sin(x**2) + cos(x**3))/x, x)
assert logcombine(i, force=True) == i
assert logcombine(i + 2*log(x), force=True) == \
i + log(x**2)
def test_issue_5950():
x, y = symbols("x,y", positive=True)
assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False)
assert logcombine(log(x) - log(y)) == log(x/y)
assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \
log(Rational(3,4), evaluate=False)
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
# issue 16438
k = Symbol('k', finite=True)
eq, rep = posify(k)
assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
'nonnegative': True, 'negative': False, 'complex': True, 'finite': True,
'infinite': False, 'extended_real':True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True}
def test_issue_4194():
# simplify should call cancel
from sympy.abc import x, y
f = Function('f')
assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2
@XFAIL
def test_simplify_float_vs_integer():
# Test for issue 4473:
# https://github.com/sympy/sympy/issues/4473
assert simplify(x**2.0 - x**2) == 0
assert simplify(x**2 - x**2.0) == 0
def test_as_content_primitive():
assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y)
assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y)
assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y))
assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y))
# although the _as_content_primitive methods do not alter the underlying structure,
# the as_content_primitive function will touch up the expression and join
# bases that would otherwise have not been joined.
assert ((x*(2 + 2*x)*(3*x + 3)**2)).as_content_primitive() == \
(18, x*(x + 1)**3)
assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(2, x + 3*y*(y + 1) + 1)
assert ((2 + 6*x)**2).as_content_primitive() == \
(4, (3*x + 1)**2)
assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
(1, (_keep_coeff(S(2), (3*x + 1)))**(2*y))
assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(1, 10*x + 6*y*(y + 1) + 5)
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() == \
(11, x*(y + 1))
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
(121, x**2*(y + 1)**2)
assert (y**2).as_content_primitive() == \
(1, y**2)
assert (S.Infinity).as_content_primitive() == (1, oo)
eq = x**(2 + y)
assert (eq).as_content_primitive() == (1, eq)
assert (S.Half**(2 + x)).as_content_primitive() == (S(1)/4, 2**-x)
assert ((-S.Half)**(2 + x)).as_content_primitive() == \
(S(1)/4, (-S.Half)**x)
assert ((-S.Half)**(2 + x)).as_content_primitive() == \
(S(1)/4, (-S.Half)**x)
assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
assert (3**((1 + y)/2)).as_content_primitive() == \
(1, 3**(Mul(S(1)/2, 1 + y, evaluate=False)))
assert (5**(S(3)/4)).as_content_primitive() == (1, 5**(S(3)/4))
assert (5**(S(7)/4)).as_content_primitive() == (5, 5**(S(3)/4))
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).as_content_primitive() == \
(S(1)/14, 7.0*x + 21*y + 10*z)
assert (2**(S(3)/4) + 2**(S(1)/4)*sqrt(3)).as_content_primitive(radical=True) == \
(1, 2**(S(1)/4)*(sqrt(2) + sqrt(3)))
def test_signsimp():
e = x*(-x + 1) + x*(x - 1)
assert signsimp(Eq(e, 0)) is S.true
assert Abs(x - 1) == Abs(1 - x)
assert signsimp(y - x) == y - x
assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_besselsimp():
from sympy import besselj, besseli, exp_polar, cosh, cosine_transform
assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
besselj(y, z)
assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
besselj(a, 2*sqrt(x))
assert besselsimp(sqrt(2)*sqrt(pi)*x**(S(1)/4)*exp(I*pi/4)*exp(-I*pi*a/2) *
besseli(-S(1)/2, sqrt(x)*exp_polar(I*pi/2)) *
besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
besselj(a, sqrt(x)) * cos(sqrt(x))
assert besselsimp(besseli(S(-1)/2, z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
exp(-I*pi*a/2)*besselj(a, z)
assert cosine_transform(1/t*sin(a/t), t, y) == \
sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
s1 = simplify(e1)
s2 = simplify(e2)
s3 = simplify(e3)
assert simplify(Piecewise((e1, x < e2), (e3, True))) == \
Piecewise((s1, x < s2), (s3, True))
def test_polymorphism():
class A(Basic):
def _eval_simplify(x, **kwargs):
return S.One
a = A(5, 2)
assert simplify(a) == 1
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert simplify(I*sqrt(n1)) == -sqrt(-n1)
def test_issue_6811():
eq = (x + 2*y)*(2*x + 2)
assert simplify(eq) == (x + 1)*(x + 2*y)*2
# reject the 2-arg Mul -- these are a headache for test writing
assert simplify(eq.expand()) == \
2*x**2 + 4*x*y + 2*x + 4*y
def test_issue_6920():
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
# wrap in f to show that the change happens wherever ei occurs
f = Function('f')
assert [simplify(f(ei)).args[0] for ei in e] == ok
def test_issue_7001():
from sympy.abc import r, R
assert simplify(-(r*Piecewise((4*pi/3, r <= R),
(-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((4*pi*r/3, r <= R),
(4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \
Piecewise((-1, r <= R), (0, True))
def test_inequality_no_auto_simplify():
# no simplify on creation but can be simplified
lhs = cos(x)**2 + sin(x)**2
rhs = 2
e = Lt(lhs, rhs, evaluate=False)
assert e is not S.true
assert simplify(e)
def test_issue_9398():
from sympy import Number, cancel
assert cancel(1e-14) != 0
assert cancel(1e-14*I) != 0
assert simplify(1e-14) != 0
assert simplify(1e-14*I) != 0
assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0
assert cancel(1e-20) != 0
assert cancel(1e-20*I) != 0
assert simplify(1e-20) != 0
assert simplify(1e-20*I) != 0
assert cancel(1e-100) != 0
assert cancel(1e-100*I) != 0
assert simplify(1e-100) != 0
assert simplify(1e-100*I) != 0
f = Float("1e-1000")
assert cancel(f) != 0
assert cancel(f*I) != 0
assert simplify(f) != 0
assert simplify(f*I) != 0
def test_issue_9324_simplify():
M = MatrixSymbol('M', 10, 10)
e = M[0, 0] + M[5, 4] + 1304
assert simplify(e) == e
def test_issue_13474():
x = Symbol('x')
assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
def test_simplify_function_inverse():
# "inverse" attribute does not guarantee that f(g(x)) is x
# so this simplification should not happen automatically.
# See issue #12140
x, y = symbols('x, y')
g = Function('g')
class f(Function):
def inverse(self, argindex=1):
return g
assert simplify(f(g(x))) == f(g(x))
assert inversecombine(f(g(x))) == x
assert simplify(f(g(x)), inverse=True) == x
assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1
assert simplify(f(g(x, y)), inverse=True) == f(g(x, y))
assert unchanged(asin, sin(x))
assert simplify(asin(sin(x))) == asin(sin(x))
assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x
assert simplify(log(exp(x))) == log(exp(x))
assert simplify(log(exp(x)), inverse=True) == x
assert simplify(log(exp(x), 2), inverse=True) == x/log(2)
assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2)
def test_clear_coefficients():
from sympy.simplify.simplify import clear_coefficients
assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), S(1)/6)
assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + S(1)/6)
assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
assert clear_coefficients(S(3), x) == (0, x - 3)
assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
def test_nc_simplify():
from sympy.simplify.simplify import nc_simplify
from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul,
MatPow, Identity)
from sympy.core import Pow
from functools import reduce
a, b, c, d = symbols('a b c d', commutative = False)
x = Symbol('x')
A = MatrixSymbol("A", x, x)
B = MatrixSymbol("B", x, x)
C = MatrixSymbol("C", x, x)
D = MatrixSymbol("D", x, x)
subst = {a: A, b: B, c: C, d:D}
funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y }
def _to_matrix(expr):
if expr in subst:
return subst[expr]
if isinstance(expr, Pow):
return MatPow(_to_matrix(expr.args[0]), expr.args[1])
elif isinstance(expr, (Add, Mul)):
return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args])
else:
return expr*Identity(x)
def _check(expr, simplified, deep=True, matrix=True):
assert nc_simplify(expr, deep=deep) == simplified
assert expand(expr) == expand(simplified)
if matrix:
m_simp = _to_matrix(simplified).doit(inv_expand=False)
assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp
_check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2)
_check(a*b*(a*b)**-2*a*b, 1)
_check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False)
_check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3)
_check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2)
_check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3)
_check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3)
_check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2)
_check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2)
_check(b**-1*a**-1*(a*b)**2, a*b)
_check(a**-1*b*c**-1, (c*b**-1*a)**-1)
expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2
for i in range(10):
expr *= a*b
_check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10)
_check((a*b*a*b)**2, (a*b*a*b)**2, deep=False)
_check(a*b*(c*d)**2, a*b*(c*d)**2)
expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1
assert nc_simplify(expr) == (1-c)**-1
# commutative expressions should be returned without an error
assert nc_simplify(2*x**2) == 2*x**2
def test_issue_15965():
A = Sum(z*x**y, (x, 1, a))
anew = z*Sum(x**y, (x, 1, a))
B = Integral(x*y, x)
bdo = x**2*y/2
assert simplify(A + B) == anew + bdo
assert simplify(A) == anew
assert simplify(B) == bdo
assert simplify(B, doit=False) == y*Integral(x, x)
def test_issue_17137():
assert simplify(cos(x)**I) == cos(x)**I
assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I)
def test_issue_7971():
z = Integral(x, (x, 1, 1))
assert z != 0
assert simplify(z) is S.Zero
def test_issue_17141():
# Check that there is no RecursionError
assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2))))
assert simplify(acos(-I)**2*acos(I)**2) == \
log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16
assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4)
p = 2**acos(I+1)**2
assert simplify(p) == p
# However, for a complex number it still happens
if PY3:
raises(RecursionError, lambda: simplify((2**acos(I+1)**2).rewrite('log')))
else:
raises(RuntimeError, lambda: simplify((2**acos(I+1)**2).rewrite('log')))
def test_simplify_kroneckerdelta():
i, j = symbols("i j")
K = KroneckerDelta
assert simplify(K(i, j)) == K(i, j)
assert simplify(K(0, j)) == K(0, j)
assert simplify(K(i, 0)) == K(i, 0)
assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0
assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j)
# issue 17214
assert simplify(K(0, j) * K(1, j)) == 0
n = Symbol('n', integer=True)
assert simplify(K(0, n) * K(1, n)) == 0
M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0)
assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0],
[0, K(0, n), 0, K(1, n)],
[0, 0, K(0, n), 0],
[0, 0, 0, K(0, n)]])
|
ad3817cf2e3d9f46f5b10112bff8d7b12d46468b440b455249b5173ee045b745 | from sympy import (
Rational, gammasimp, factorial, gamma, binomial, pi, S,
sin, exp, powsimp, sqrt, simplify, symbols, cos, rf)
from sympy.abc import x, y, n, k
def test_gammasimp():
R = Rational
# was part of test_combsimp_gamma() in test_combsimp.py
assert gammasimp(gamma(x)) == gamma(x)
assert gammasimp(gamma(x + 1)/x) == gamma(x)
assert gammasimp(gamma(x)/(x - 1)) == gamma(x - 1)
assert gammasimp(x*gamma(x)) == gamma(x + 1)
assert gammasimp((x + 1)*gamma(x + 1)) == gamma(x + 2)
assert gammasimp(gamma(x + y)*(x + y)) == gamma(x + y + 1)
assert gammasimp(x/gamma(x + 1)) == 1/gamma(x)
assert gammasimp((x + 1)**2/gamma(x + 2)) == (x + 1)/gamma(x + 1)
assert gammasimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \
(x + 2)*gamma(x + 1)
assert gammasimp(gamma(2*x)*x) == gamma(2*x + 1)/2
assert gammasimp(gamma(2*x)/(x - S(1)/2)) == 2*gamma(2*x - 1)
assert gammasimp(gamma(x)*gamma(1 - x)) == pi/sin(pi*x)
assert gammasimp(gamma(x)*gamma(-x)) == -pi/(x*sin(pi*x))
assert gammasimp(1/gamma(x + 3)/gamma(1 - x)) == \
sin(pi*x)/(pi*x*(x + 1)*(x + 2))
assert gammasimp(factorial(n + 2)) == gamma(n + 3)
assert gammasimp(binomial(n, k)) == \
gamma(n + 1)/(gamma(k + 1)*gamma(-k + n + 1))
assert powsimp(gammasimp(
gamma(x)*gamma(x + S(1)/2)*gamma(y)/gamma(x + y))) == \
2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y)
assert gammasimp(1/gamma(x)/gamma(x - S(1)/3)/gamma(x + S(1)/3)) == \
3**(3*x - S(3)/2)/(2*pi*gamma(3*x - 1))
assert simplify(
gamma(S(1)/2 + x/2)*gamma(1 + x/2)/gamma(1 + x)/sqrt(pi)*2**x) == 1
assert gammasimp(gamma(S(-1)/4)*gamma(S(-3)/4)) == 16*sqrt(2)*pi/3
assert powsimp(gammasimp(gamma(2*x)/gamma(x))) == \
2**(2*x - 1)*gamma(x + S(1)/2)/sqrt(pi)
# issue 6792
e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
assert gammasimp(e) == -k
assert gammasimp(1/e) == -1/k
e = (gamma(x) + gamma(x + 1))/gamma(x)
assert gammasimp(e) == x + 1
assert gammasimp(1/e) == 1/(x + 1)
e = (gamma(x) + gamma(x + 2))*(gamma(x - 1) + gamma(x))/gamma(x)
assert gammasimp(e) == (x**2 + x + 1)*gamma(x + 1)/(x - 1)
e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
assert gammasimp(e**2) == k**2
assert gammasimp(e**2/gamma(k + 1)) == k/gamma(k)
a = R(1, 2) + R(1, 3)
b = a + R(1, 3)
assert gammasimp(gamma(2*k)/gamma(k)*gamma(k + a)*gamma(k + b))
3*2**(2*k + 1)*3**(-3*k - 2)*sqrt(pi)*gamma(3*k + R(3, 2))/2
# issue 9699
assert gammasimp((x + 1)*factorial(x)/gamma(y)) == gamma(x + 2)/gamma(y)
assert gammasimp(rf(x + n, k)*binomial(n, k)) == gamma(n + 1)*gamma(k + n
+ x)/(gamma(k + 1)*gamma(n + x)*gamma(-k + n + 1))
A, B = symbols('A B', commutative=False)
assert gammasimp(e*B*A) == gammasimp(e)*B*A
# check iteration
assert gammasimp(gamma(2*k)/gamma(k)*gamma(-k - R(1, 2))) == (
-2**(2*k + 1)*sqrt(pi)/(2*((2*k + 1)*cos(pi*k))))
assert gammasimp(
gamma(k)*gamma(k + R(1, 3))*gamma(k + R(2, 3))/gamma(3*k/2)) == (
3*2**(3*k + 1)*3**(-3*k - S.Half)*sqrt(pi)*gamma(3*k/2 + S.Half)/2)
# issue 6153
assert gammasimp(gamma(S(1)/4)/gamma(S(5)/4)) == 4
# was part of test_combsimp() in test_combsimp.py
assert gammasimp(binomial(n + 2, k + S(1)/2)) == gamma(n + 3)/ \
(gamma(k + S(3)/2)*gamma(-k + n + S(5)/2))
assert gammasimp(binomial(n + 2, k + 2.0)) == \
gamma(n + 3)/(gamma(k + 3.0)*gamma(-k + n + 1))
# issue 11548
assert gammasimp(binomial(0, x)) == sin(pi*x)/(pi*x)
e = gamma(n + S(1)/3)*gamma(n + S(2)/3)
assert gammasimp(e) == e
assert gammasimp(gamma(4*n + S(1)/2)/gamma(2*n - S(3)/4)) == \
2**(4*n - S(5)/2)*(8*n - 3)*gamma(2*n + S(3)/4)/sqrt(pi)
i, m = symbols('i m', integer = True)
e = gamma(exp(i))
assert gammasimp(e) == e
e = gamma(m + 3)
assert gammasimp(e) == e
e = gamma(m + 1)/(gamma(i + 1)*gamma(-i + m + 1))
assert gammasimp(e) == e
p = symbols("p", integer=True, positive=True)
assert gammasimp(gamma(-p+4)) == gamma(-p+4)
|
000a46b0da1feb72085fc1eac38c005110206ceb42ba39b1bdf1a2cbccc697e7 | from __future__ import print_function, division
from sympy.core import S, sympify, Dummy, Mod
from sympy.core.cache import cacheit
from sympy.core.compatibility import reduce, range, HAS_GMPY
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_and
from sympy.core.numbers import Integer, pi
from sympy.core.relational import Eq
from sympy.ntheory import sieve
from sympy.polys.polytools import Poly
from math import sqrt as _sqrt
class CombinatorialFunction(Function):
"""Base class for combinatorial functions. """
def _eval_simplify(self, **kwargs):
from sympy.simplify.combsimp import combsimp
# combinatorial function with non-integer arguments is
# automatically passed to gammasimp
expr = combsimp(self)
measure = kwargs['measure']
if measure(expr) <= kwargs['ratio']*measure(self):
return expr
return self
###############################################################################
######################## FACTORIAL and MULTI-FACTORIAL ########################
###############################################################################
class factorial(CombinatorialFunction):
r"""Implementation of factorial function over nonnegative integers.
By convention (consistent with the gamma function and the binomial
coefficients), factorial of a negative integer is complex infinity.
The factorial is very important in combinatorics where it gives
the number of ways in which `n` objects can be permuted. It also
arises in calculus, probability, number theory, etc.
There is strict relation of factorial with gamma function. In
fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this
kind is very useful in case of combinatorial simplification.
Computation of the factorial is done using two algorithms. For
small arguments a precomputed look up table is used. However for bigger
input algorithm Prime-Swing is used. It is the fastest algorithm
known and computes `n!` via prime factorization of special class
of numbers, called here the 'Swing Numbers'.
Examples
========
>>> from sympy import Symbol, factorial, S
>>> n = Symbol('n', integer=True)
>>> factorial(0)
1
>>> factorial(7)
5040
>>> factorial(-2)
zoo
>>> factorial(n)
factorial(n)
>>> factorial(2*n)
factorial(2*n)
>>> factorial(S(1)/2)
factorial(1/2)
See Also
========
factorial2, RisingFactorial, FallingFactorial
"""
def fdiff(self, argindex=1):
from sympy import gamma, polygamma
if argindex == 1:
return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1)
else:
raise ArgumentIndexError(self, argindex)
_small_swing = [
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395,
12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075,
35102025, 5014575, 145422675, 9694845, 300540195, 300540195
]
_small_factorials = []
@classmethod
def _swing(cls, n):
if n < 33:
return cls._small_swing[n]
else:
N, primes = int(_sqrt(n)), []
for prime in sieve.primerange(3, N + 1):
p, q = 1, n
while True:
q //= prime
if q > 0:
if q & 1 == 1:
p *= prime
else:
break
if p > 1:
primes.append(p)
for prime in sieve.primerange(N + 1, n//3 + 1):
if (n // prime) & 1 == 1:
primes.append(prime)
L_product = R_product = 1
for prime in sieve.primerange(n//2 + 1, n + 1):
L_product *= prime
for prime in primes:
R_product *= prime
return L_product*R_product
@classmethod
def _recursive(cls, n):
if n < 2:
return 1
else:
return (cls._recursive(n//2)**2)*cls._swing(n)
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Number:
if n is S.Zero:
return S.One
elif n is S.Infinity:
return S.Infinity
elif n.is_Integer:
if n.is_negative:
return S.ComplexInfinity
else:
n = n.p
if n < 20:
if not cls._small_factorials:
result = 1
for i in range(1, 20):
result *= i
cls._small_factorials.append(result)
result = cls._small_factorials[n-1]
# GMPY factorial is faster, use it when available
elif HAS_GMPY:
from sympy.core.compatibility import gmpy
result = gmpy.fac(n)
else:
bits = bin(n).count('1')
result = cls._recursive(n)*2**(n - bits)
return Integer(result)
def _facmod(self, n, q):
res, N = 1, int(_sqrt(n))
# Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ...
# for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m,
# occur consecutively and are grouped together in pw[m] for
# simultaneous exponentiation at a later stage
pw = [1]*N
m = 2 # to initialize the if condition below
for prime in sieve.primerange(2, n + 1):
if m > 1:
m, y = 0, n // prime
while y:
m += y
y //= prime
if m < N:
pw[m] = pw[m]*prime % q
else:
res = res*pow(prime, m, q) % q
for ex, bs in enumerate(pw):
if ex == 0 or bs == 1:
continue
if bs == 0:
return 0
res = res*pow(bs, ex, q) % q
return res
def _eval_Mod(self, q):
n = self.args[0]
if n.is_integer and n.is_nonnegative and q.is_integer:
aq = abs(q)
d = aq - n
if d.is_nonpositive:
return 0
else:
isprime = aq.is_prime
if d == 1:
# Apply Wilson's theorem (if a natural number n > 1
# is a prime number, then (n-1)! = -1 mod n) and
# its inverse (if n > 4 is a composite number, then
# (n-1)! = 0 mod n)
if isprime:
return -1 % q
elif isprime is False and (aq - 6).is_nonnegative:
return 0
elif n.is_Integer and q.is_Integer:
n, d, aq = map(int, (n, d, aq))
if isprime and (d - 1 < n):
fc = self._facmod(d - 1, aq)
fc = pow(fc, aq - 2, aq)
if d%2:
fc = -fc
else:
fc = self._facmod(n, aq)
return Integer(fc % q)
def _eval_rewrite_as_gamma(self, n, **kwargs):
from sympy import gamma
return gamma(n + 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy import Product
if n.is_nonnegative and n.is_integer:
i = Dummy('i', integer=True)
return Product(i, (i, 1, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_even(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 2).is_nonnegative
def _eval_is_composite(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 3).is_nonnegative
def _eval_is_real(self):
x = self.args[0]
if x.is_nonnegative or x.is_noninteger:
return True
class MultiFactorial(CombinatorialFunction):
pass
class subfactorial(CombinatorialFunction):
r"""The subfactorial counts the derangements of n items and is
defined for non-negative integers as:
.. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\
(n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases}
It can also be written as ``int(round(n!/exp(1)))`` but the
recursive definition with caching is implemented for this function.
An interesting analytic expression is the following [2]_
.. math:: !x = \Gamma(x + 1, -1)/e
which is valid for non-negative integers `x`. The above formula
is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is
single-valued only for integral arguments `x`, elsewhere on the positive
real axis it has an infinite number of branches none of which are real.
References
==========
.. [1] https://en.wikipedia.org/wiki/Subfactorial
.. [2] http://mathworld.wolfram.com/Subfactorial.html
Examples
========
>>> from sympy import subfactorial
>>> from sympy.abc import n
>>> subfactorial(n + 1)
subfactorial(n + 1)
>>> subfactorial(5)
44
See Also
========
sympy.functions.combinatorial.factorials.factorial,
sympy.utilities.iterables.generate_derangements,
sympy.functions.special.gamma_functions.uppergamma
"""
@classmethod
@cacheit
def _eval(self, n):
if not n:
return S.One
elif n == 1:
return S.Zero
return (n - 1)*(self._eval(n - 1) + self._eval(n - 2))
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg.is_Integer and arg.is_nonnegative:
return cls._eval(arg)
elif arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
def _eval_is_even(self):
if self.args[0].is_odd and self.args[0].is_nonnegative:
return True
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_rewrite_as_uppergamma(self, arg, **kwargs):
from sympy import uppergamma
return uppergamma(arg + 1, -1)/S.Exp1
def _eval_is_nonnegative(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_odd(self):
if self.args[0].is_even and self.args[0].is_nonnegative:
return True
class factorial2(CombinatorialFunction):
r"""The double factorial `n!!`, not to be confused with `(n!)!`
The double factorial is defined for nonnegative integers and for odd
negative integers as:
.. math:: n!! = \begin{cases} 1 & n = 0 \\
n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\
n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\
(n+2)!!/(n+2) & n\ \text{negative odd} \end{cases}
References
==========
.. [1] https://en.wikipedia.org/wiki/Double_factorial
Examples
========
>>> from sympy import factorial2, var
>>> var('n')
n
>>> factorial2(n + 1)
factorial2(n + 1)
>>> factorial2(5)
15
>>> factorial2(-1)
1
>>> factorial2(-5)
1/3
See Also
========
factorial, RisingFactorial, FallingFactorial
"""
@classmethod
def eval(cls, arg):
# TODO: extend this to complex numbers?
if arg.is_Number:
if not arg.is_Integer:
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
# This implementation is faster than the recursive one
# It also avoids "maximum recursion depth exceeded" runtime error
if arg.is_nonnegative:
if arg.is_even:
k = arg / 2
return 2**k * factorial(k)
return factorial(arg) / factorial2(arg - 1)
if arg.is_odd:
return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg)
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
def _eval_is_even(self):
# Double factorial is even for every positive even input
n = self.args[0]
if n.is_integer:
if n.is_odd:
return False
if n.is_even:
if n.is_positive:
return True
if n.is_zero:
return False
def _eval_is_integer(self):
# Double factorial is an integer for every nonnegative input, and for
# -1 and -3
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return (n + 3).is_nonnegative
def _eval_is_odd(self):
# Double factorial is odd for every odd input not smaller than -3, and
# for 0
n = self.args[0]
if n.is_odd:
return (n + 3).is_nonnegative
if n.is_even:
if n.is_positive:
return False
if n.is_zero:
return True
def _eval_is_positive(self):
# Double factorial is positive for every nonnegative input, and for
# every odd negative input which is of the form -1-4k for an
# nonnegative integer k
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return ((n + 1) / 2).is_even
def _eval_rewrite_as_gamma(self, n, **kwargs):
from sympy import gamma, Piecewise, sqrt
return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)),
(sqrt(2/pi), Eq(Mod(n, 2), 1)))
###############################################################################
######################## RISING and FALLING FACTORIALS ########################
###############################################################################
class RisingFactorial(CombinatorialFunction):
r"""
Rising factorial (also called Pochhammer symbol) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by:
.. math:: rf(x,k) = x \cdot (x+1) \cdots (x+k-1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or visit http://mathworld.wolfram.com/RisingFactorial.html page.
When `x` is a Poly instance of degree >= 1 with a single variable,
`rf(x,k) = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the
variable of `x`. This is as described in Peter Paule, "Greatest
Factorial Factorization and Symbolic Summation", Journal of
Symbolic Computation, vol. 20, pp. 235-268, 1995.
Examples
========
>>> from sympy import rf, symbols, factorial, ff, binomial, Poly
>>> from sympy.abc import x
>>> n, k = symbols('n k', integer=True)
>>> rf(x, 0)
1
>>> rf(1, 5)
120
>>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
True
>>> rf(Poly(x**3, x), 2)
Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ')
Rewrite
>>> rf(x, k).rewrite(ff)
FallingFactorial(k + x - 1, k)
>>> rf(x, k).rewrite(binomial)
binomial(k + x - 1, k)*factorial(k)
>>> rf(n, k).rewrite(factorial)
factorial(k + n - 1)/factorial(n - 1)
See Also
========
factorial, factorial2, FallingFactorial
References
==========
.. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif x is S.One:
return factorial(k)
elif k.is_Integer:
if k is S.Zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(i).expand()),
range(0, int(k)), 1)
else:
return reduce(lambda r, i: r*(x + i),
range(0, int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(-i).expand()),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i:
r*(x - i),
range(1, abs(int(k)) + 1), 1)
if k.is_integer == False:
if x.is_integer and x.is_negative:
return S.Zero
def _eval_rewrite_as_gamma(self, x, k, **kwargs):
from sympy import gamma
return gamma(x + k) / gamma(x)
def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs):
return FallingFactorial(x + k - 1, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
if x.is_integer and k.is_integer:
return factorial(k + x - 1) / factorial(x - 1)
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x + k - 1, k)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
def _sage_(self):
import sage.all as sage
return sage.rising_factorial(self.args[0]._sage_(),
self.args[1]._sage_())
class FallingFactorial(CombinatorialFunction):
r"""
Falling factorial (related to rising factorial) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by
.. math:: ff(x,k) = x \cdot (x-1) \cdots (x-k+1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or visit http://mathworld.wolfram.com/FallingFactorial.html page.
When `x` is a Poly instance of degree >= 1 with single variable,
`ff(x,k) = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the
variable of `x`. This is as described in Peter Paule, "Greatest
Factorial Factorization and Symbolic Summation", Journal of
Symbolic Computation, vol. 20, pp. 235-268, 1995.
>>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols, Poly
>>> from sympy.abc import x, k
>>> n, m = symbols('n m', integer=True)
>>> ff(x, 0)
1
>>> ff(5, 5)
120
>>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4)
True
>>> ff(Poly(x**2, x), 2)
Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ')
>>> ff(n, n)
factorial(n)
Rewrite
>>> ff(x, k).rewrite(gamma)
(-1)**k*gamma(k - x)/gamma(-x)
>>> ff(x, k).rewrite(rf)
RisingFactorial(-k + x + 1, k)
>>> ff(x, m).rewrite(binomial)
binomial(x, m)*factorial(m)
>>> ff(n, m).rewrite(factorial)
factorial(n)/factorial(-m + n)
See Also
========
factorial, factorial2, RisingFactorial
References
==========
.. [1] http://mathworld.wolfram.com/FallingFactorial.html
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif k.is_integer and x == k:
return factorial(x)
elif k.is_Integer:
if k is S.Zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("ff only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(-i).expand()),
range(0, int(k)), 1)
else:
return reduce(lambda r, i: r*(x - i),
range(0, int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(i).expand()),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i: r*(x + i),
range(1, abs(int(k)) + 1), 1)
def _eval_rewrite_as_gamma(self, x, k, **kwargs):
from sympy import gamma
return (-1)**k*gamma(k - x) / gamma(-x)
def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs):
return rf(x - k + 1, k)
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
if x.is_integer and k.is_integer:
return factorial(x) / factorial(x - k)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
def _sage_(self):
import sage.all as sage
return sage.falling_factorial(self.args[0]._sage_(),
self.args[1]._sage_())
rf = RisingFactorial
ff = FallingFactorial
###############################################################################
########################### BINOMIAL COEFFICIENTS #############################
###############################################################################
class binomial(CombinatorialFunction):
r"""Implementation of the binomial coefficient. It can be defined
in two ways depending on its desired interpretation:
.. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\
\binom{n}{k} = \frac{ff(n, k)}{k!}
First, in a strict combinatorial sense it defines the
number of ways we can choose `k` elements from a set of
`n` elements. In this case both arguments are nonnegative
integers and binomial is computed using an efficient
algorithm based on prime factorization.
The other definition is generalization for arbitrary `n`,
however `k` must also be nonnegative. This case is very
useful when evaluating summations.
For the sake of convenience for negative integer `k` this function
will return zero no matter what valued is the other argument.
To expand the binomial when `n` is a symbol, use either
``expand_func()`` or ``expand(func=True)``. The former will keep
the polynomial in factored form while the latter will expand the
polynomial itself. See examples for details.
Examples
========
>>> from sympy import Symbol, Rational, binomial, expand_func
>>> n = Symbol('n', integer=True, positive=True)
>>> binomial(15, 8)
6435
>>> binomial(n, -1)
0
Rows of Pascal's triangle can be generated with the binomial function:
>>> for N in range(8):
... print([binomial(N, i) for i in range(N + 1)])
...
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
As can a given diagonal, e.g. the 4th diagonal:
>>> N = -4
>>> [binomial(N, i) for i in range(1 - N)]
[1, -4, 10, -20, 35]
>>> binomial(Rational(5, 4), 3)
-5/128
>>> binomial(Rational(-5, 4), 3)
-195/128
>>> binomial(n, 3)
binomial(n, 3)
>>> binomial(n, 3).expand(func=True)
n**3/6 - n**2/2 + n/3
>>> expand_func(binomial(n, 3))
n*(n - 2)*(n - 1)/6
References
==========
.. [1] https://www.johndcook.com/blog/binomial_coefficients/
"""
def fdiff(self, argindex=1):
from sympy import polygamma
if argindex == 1:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
n, k = self.args
return binomial(n, k)*(polygamma(0, n + 1) - \
polygamma(0, n - k + 1))
elif argindex == 2:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
n, k = self.args
return binomial(n, k)*(polygamma(0, n - k + 1) - \
polygamma(0, k + 1))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def _eval(self, n, k):
# n.is_Number and k.is_Integer and k != 1 and n != k
if k.is_Integer:
if n.is_Integer and n >= 0:
n, k = int(n), int(k)
if k > n:
return S.Zero
elif k > n // 2:
k = n - k
if HAS_GMPY:
from sympy.core.compatibility import gmpy
return Integer(gmpy.bincoef(n, k))
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result = result * d // i
return Integer(result)
else:
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result *= d
result /= i
return result
@classmethod
def eval(cls, n, k):
n, k = map(sympify, (n, k))
d = n - k
n_nonneg, n_isint = n.is_nonnegative, n.is_integer
if k.is_zero or ((n_nonneg or n_isint is False)
and d.is_zero):
return S.One
if (k - 1).is_zero or ((n_nonneg or n_isint is False)
and (d - 1).is_zero):
return n
if k.is_integer:
if k.is_negative or (n_nonneg and n_isint and d.is_negative):
return S.Zero
elif n.is_number:
res = cls._eval(n, k)
return res.expand(basic=True) if res else res
elif n_nonneg is False and n_isint:
# a special case when binomial evaluates to complex infinity
return S.ComplexInfinity
elif k.is_number:
from sympy import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_Mod(self, q):
n, k = self.args
if any(x.is_integer is False for x in (n, k, q)):
raise ValueError("Integers expected for binomial Mod")
if all(x.is_Integer for x in (n, k, q)):
n, k = map(int, (n, k))
aq, res = abs(q), 1
# handle negative integers k or n
if k < 0:
return 0
if n < 0:
n = -n + k - 1
res = -1 if k%2 else 1
# non negative integers k and n
if k > n:
return 0
isprime = aq.is_prime
aq = int(aq)
if isprime:
if aq < n:
# use Lucas Theorem
N, K = n, k
while N or K:
res = res*binomial(N % aq, K % aq) % aq
N, K = N // aq, K // aq
else:
# use Factorial Modulo
d = n - k
if k > d:
k, d = d, k
kf = 1
for i in range(2, k + 1):
kf = kf*i % aq
df = kf
for i in range(k + 1, d + 1):
df = df*i % aq
res *= df
for i in range(d + 1, n + 1):
res = res*i % aq
res *= pow(kf*df % aq, aq - 2, aq)
res %= aq
else:
# Binomial Factorization is performed by calculating the
# exponents of primes <= n in `n! /(k! (n - k)!)`,
# for non-negative integers n and k. As the exponent of
# prime in n! is e_p(n) = [n/p] + [n/p**2] + ...
# the exponent of prime in binomial(n, k) would be
# e_p(n) - e_p(k) - e_p(n - k)
M = int(_sqrt(n))
for prime in sieve.primerange(2, n + 1):
if prime > n - k:
res = res*prime % aq
elif prime > n // 2:
continue
elif prime > M:
if n % prime < k % prime:
res = res*prime % aq
else:
N, K = n, k
exp = a = 0
while N > 0:
a = int((N % prime) < (K % prime + a))
N, K = N // prime, K // prime
exp += a
if exp > 0:
res *= pow(prime, exp, aq)
res %= aq
return Integer(res % q)
def _eval_expand_func(self, **hints):
"""
Function to expand binomial(n, k) when m is positive integer
Also,
n is self.args[0] and k is self.args[1] while using binomial(n, k)
"""
n = self.args[0]
if n.is_Number:
return binomial(*self.args)
k = self.args[1]
if k.is_Add and n in k.args:
k = n - k
if k.is_Integer:
if k == S.Zero:
return S.One
elif k < 0:
return S.Zero
else:
n, result = self.args[0], 1
for i in range(1, k + 1):
result *= n - k + i
result /= i
return result
else:
return binomial(*self.args)
def _eval_rewrite_as_factorial(self, n, k, **kwargs):
return factorial(n)/(factorial(k)*factorial(n - k))
def _eval_rewrite_as_gamma(self, n, k, **kwargs):
from sympy import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_rewrite_as_tractable(self, n, k, **kwargs):
return self._eval_rewrite_as_gamma(n, k).rewrite('tractable')
def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs):
if k.is_integer:
return ff(n, k) / factorial(k)
def _eval_is_integer(self):
n, k = self.args
if n.is_integer and k.is_integer:
return True
elif k.is_integer is False:
return False
def _eval_is_nonnegative(self):
n, k = self.args
if n.is_integer and k.is_integer:
if n.is_nonnegative or k.is_negative or k.is_even:
return True
elif k.is_even is False:
return False
|
d0769ca4a6200a3176bc375881e3e578beb0de75c4cb4668fd7a2135966c8142 | from __future__ import print_function, division
from sympy.core.add import Add
from sympy.core.basic import sympify, cacheit
from sympy.core.compatibility import range
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import igcdex, Rational, pi
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh,
coth, HyperbolicFunction, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.sets import FiniteSet
from sympy.utilities.iterables import numbered_symbols
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = self.args[0]
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
def _peeloff_pi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of pi/2.
This assumes ARG to be an Add.
The multiple of pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> peel(x + pi/2)
(x, pi/2)
>>> peel(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, pi/2)
"""
for a in Add.make_args(arg):
if a is S.Pi:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p is S.Pi and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half) * S.Pi
m2 = K*S.Pi - m1
return arg - m2, m2
def _pi_coeff(arg, cycles=1):
"""
When arg is a Number times pi (e.g. 3*pi/2) then return the Number
normalized to be in the range [0, 2], else None.
When an even multiple of pi is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x, y
>>> coeff(3*x*pi)
3*x
>>> coeff(11*pi/7)
11/7
>>> coeff(-11*pi/7)
3/7
>>> coeff(4*pi)
0
>>> coeff(5*pi)
1
>>> coeff(5.0*pi)
1
>>> coeff(5.5*pi)
3/2
>>> coeff(2 + pi)
>>> coeff(2*Dummy(integer=True)*pi)
2
>>> coeff(2*Dummy(even=True)*pi)
0
"""
arg = sympify(arg)
if arg is S.Pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(S.Pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return S(2)
else:
return c2*x
return cx
class sin(TrigonometricFunction):
"""
The sine function.
Returns the sine of x (measured in radians).
Notes
=====
This function will evaluate automatically in the
case x/pi is some rational number [4]_. For example,
if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/(2*S.Pi))
if min is not S.NegativeInfinity:
min = min - d*2*S.Pi
if max is not S.Infinity:
max = max - d*2*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2,
7*S.Pi/2)) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2, 8*S.Pi/2)) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*S.Pi)
if 2*x > 1:
return cls((1 - x)*S.Pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*S.Pi != arg:
return cls(pi_coeff*S.Pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return sin(m)*cos(x) + cos(m)*sin(x)
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x / sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y / sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1 / (sqrt(1 + 1 / x**2) * x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1 / x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1 / x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p * x**2 / (n*(n - 1))
else:
return (-1)**(n//2) * x**(n)/factorial(n)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I)) / (2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I / 2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return 2*cot_half/(1 + cot_half**2)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1 / sec(arg - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy import expand_mul
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
else:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return (-1)**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n -
1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.util import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.One
elif arg is S.Infinity or arg is S.NegativeInfinity:
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + S.Pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are performed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
}
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1]
nvala, nvalb = cls(a), cls(b)
if None == nvala or None == nvalb:
return None
return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b)
if q > 12:
return None
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*S.Pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return cos(m)*cos(x) - sin(m)*sin(x)
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1 / sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x / sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1 / sqrt(1 + 1 / x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1 / x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1 / x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p * x**2 / (n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I)) / 2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + S.Pi / 2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return (cot_half - 1)/(cot_half + 1)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calcuation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
from sympy.ntheory import factorint
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*S.Pi)
if not pi_coeff.is_Rational:
return None
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) +
sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17))
*sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# http://www.susqu.edu/brakke/constructions/65537-gon.m.txt
}
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*S.Pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1 / sec(arg)._eval_rewrite_as_csc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.One
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/S.Pi)
if min is not S.NegativeInfinity:
min = min - d*S.Pi
if max is not S.Infinity:
max = max - d*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 3*S.Pi/2)):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % q
# ensure simplified results are returned for n*pi/5, n*pi/10
table10 = {
1: sqrt(1 - 2*sqrt(5)/5),
2: sqrt(5 - 2*sqrt(5)),
3: sqrt(1 + 2*sqrt(5)/5),
4: sqrt(5 + 2*sqrt(5))
}
if q == 5 or q == 10:
n = 10 * p / q
if n > 5:
n = 10 - n
return -table10[n]
else:
return table10[n]
if not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return 1/sresult - cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x / sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2) / x
if isinstance(arg, acot):
x = arg.args[0]
return 1 / x
if isinstance(arg, acsc):
x = arg.args[0]
return 1 / (sqrt(1 - 1 / x**2) * x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1 / x**2) * x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**a * b*(b - 1) * B/F * x**n
def _eval_nseries(self, x, n, logx):
i = self.args[0].limit(x, 0)*2/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - S.Pi / 2, evaluate=False) / cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg)
cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg)
return sin_in_sec_form / cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg)
cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg)
return sin_in_csc_form / cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg / pi - S.Half).is_integer is False:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg is S.Zero:
return S.ComplexInfinity
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q == 5 or pi_coeff.q == 10:
return tan(S.Pi/2 - arg)
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return 1/sresult + cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
q = pi_coeff.q
p = pi_coeff.p % q
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult / sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1 / x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2) / x
if isinstance(arg, acos):
x = arg.args[0]
return x / sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1 / x**2) * x
if isinstance(arg, asec):
x = arg.args[0]
return 1 / (sqrt(1 - 1 / x**2) * x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**((n + 1)//2) * 2**(n + 1) * B/F * x**n
def _eval_nseries(self, x, n, logx):
i = self.args[0].limit(x, 0)/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, -sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x) / cos(x - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg)
sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg)
return cos_in_sec_form / sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg)
sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg)
return cos_in_csc_form / sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg)
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
def _eval_subs(self, old, new):
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/S.Pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
_is_even = None # optional, to be defined in subclass
_is_odd = None # optional, to be defined in subclass
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t is None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = self.args[0]
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0])._eval_is_extended_real()
def _eval_as_leading_term(self, x):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1 / cos(arg)._eval_rewrite_as_sin(arg))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1 / cos(arg)._eval_rewrite_as_tan(arg))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi / 2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k)
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1 / sin(arg)._eval_rewrite_as_cos(arg))
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi / 2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1 / sin(arg)._eval_rewrite_as_tan(arg))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
class sinc(Function):
r"""
Represents an unnormalized sinc function:
.. math::
\operatorname{sinc}(x) =
\begin{cases}
\frac{\sin x}{x} & \qquad x \neq 0 \\
1 & \qquad x = 0
\end{cases}
Examples
========
>>> from sympy import sinc, oo, jn, Product, Symbol
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
(x*cos(x) - sin(x))/x**2
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
return (x*cos(x) - sin(x)) / x**2
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, -S.Infinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half) / arg
def _eval_nseries(self, x, n, logx):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, 0)), (1, True))
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
@staticmethod
def _asin_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/2: S.Pi/3,
sqrt(2)/2: S.Pi/4,
1/sqrt(2): S.Pi/4,
sqrt((5 - sqrt(5))/8): S.Pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/4: S.Pi/5,
sqrt((5 + sqrt(5))/8): 2*S.Pi/5,
sqrt(2)*sqrt(5 + sqrt(5))/4: 2*S.Pi/5,
S.Half: S.Pi/6,
sqrt(2 - sqrt(2))/2: S.Pi/8,
sqrt(S.Half - sqrt(2)/4): S.Pi/8,
sqrt(2 + sqrt(2))/2: 3*S.Pi/8,
sqrt(S.Half + sqrt(2)/4): 3*S.Pi/8,
(sqrt(5) - 1)/4: S.Pi/10,
(1 - sqrt(5))/4: -S.Pi/10,
(sqrt(5) + 1)/4: 3*S.Pi/10,
sqrt(6)/4 - sqrt(2)/4: S.Pi/12,
-sqrt(6)/4 + sqrt(2)/4: -S.Pi/12,
(sqrt(3) - 1)/sqrt(8): S.Pi/12,
(1 - sqrt(3))/sqrt(8): -S.Pi/12,
sqrt(6)/4 + sqrt(2)/4: 5*S.Pi/12,
(1 + sqrt(3))/sqrt(8): 5*S.Pi/12
}
@staticmethod
def _atan_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/3: S.Pi/6,
1/sqrt(3): S.Pi/6,
sqrt(3): S.Pi/3,
sqrt(2) - 1: S.Pi/8,
1 - sqrt(2): -S.Pi/8,
1 + sqrt(2): 3*S.Pi/8,
sqrt(5 - 2*sqrt(5)): S.Pi/5,
sqrt(5 + 2*sqrt(5)): 2*S.Pi/5,
sqrt(1 - 2*sqrt(5)/5): S.Pi/10,
sqrt(1 + 2*sqrt(5)/5): 3*S.Pi/10,
2 - sqrt(3): S.Pi/12,
-2 + sqrt(3): -S.Pi/12,
2 + sqrt(3): 5*S.Pi/12
}
@staticmethod
def _acsc_table():
# Keys for which could_extract_minus_sign()
# will obviously return True are omitted.
return {
2*sqrt(3)/3: S.Pi/3,
sqrt(2): S.Pi/4,
sqrt(2 + 2*sqrt(5)/5): S.Pi/5,
1/sqrt(S(5)/8 - sqrt(5)/8): S.Pi/5,
sqrt(2 - 2*sqrt(5)/5): 2*S.Pi/5,
1/sqrt(S(5)/8 + sqrt(5)/8): 2*S.Pi/5,
2: S.Pi/6,
sqrt(4 + 2*sqrt(2)): S.Pi/8,
2/sqrt(2 - sqrt(2)): S.Pi/8,
sqrt(4 - 2*sqrt(2)): 3*S.Pi/8,
2/sqrt(2 + sqrt(2)): 3*S.Pi/8,
1 + sqrt(5): S.Pi/10,
sqrt(5) - 1: 3*S.Pi/10,
-(sqrt(5) - 1): -3*S.Pi/10,
sqrt(6) + sqrt(2): S.Pi/12,
sqrt(6) - sqrt(2): 5*S.Pi/12,
-(sqrt(6) - sqrt(2)): -5*S.Pi/12
}
class asin(InverseTrigonometricFunction):
"""
The inverse sine function.
Returns the arcsine of x in radians.
Notes
=====
``asin(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
A purely imaginary argument will lead to an asinh expression.
Examples
========
>>> from sympy import asin, oo, pi
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_extended_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_extended_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity * S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity * S.ImaginaryUnit
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return S.Pi / 2
elif arg is S.NegativeOne:
return -S.Pi / 2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return asin_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * asinh(i_coeff)
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R / F * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_acos(self, x, **kwargs):
return S.Pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Notes
=====
``acos(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when
the result is a rational multiple of pi (see the eval class method).
``acos(zoo)`` evaluates to ``zoo``
(see note in :class:`sympy.functions.elementary.trigonometric.asec`)
A purely imaginary argument will be rewritten to asinh.
Examples
========
>>> from sympy import acos, oo, pi
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity * S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity * S.ImaginaryUnit
elif arg is S.Zero:
return S.Pi / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return pi/2 - asin_table[arg]
elif -arg in asin_table:
return pi/2 + asin_table[-arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return pi/2 - asin(arg)
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_extended_real()
def _eval_nseries(self, x, n, logx):
return self._eval_rewrite_as_log(self.args[0])._eval_nseries(x, n, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.Pi/2 + S.ImaginaryUnit * \
log(S.ImaginaryUnit * x + sqrt(1 - x**2))
def _eval_rewrite_as_asin(self, x, **kwargs):
return S.Pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_extended_real is False:
return r
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Notes
=====
``atan(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the
result is a rational multiple of pi (see the eval class method).
Examples
========
>>> from sympy import atan, oo, pi
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_extended_positive
def _eval_is_nonnegative(self):
return self.args[0].is_extended_nonnegative
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi / 2
elif arg is S.NegativeInfinity:
return -S.Pi / 2
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return S.Pi / 4
elif arg is S.NegativeOne:
return -S.Pi / 4
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return AccumBounds(-S.Pi/2, S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
return atan_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * atanh(i_coeff)
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n - 1)//2) * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2 * (log(S(1) - S.ImaginaryUnit * x)
- log(S(1) + S.ImaginaryUnit * x))
def _eval_aseries(self, n, args0, x, logx):
if args0[0] == S.Infinity:
return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] == S.NegativeInfinity:
return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
r"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
Notes
=====
``acot(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``zoo``, ``0``, ``1``, ``-1`` and for some instances when the result is a
rational multiple of pi (see the eval class method).
A purely imaginary argument will lead to an ``acoth`` expression.
``acot(x)`` has a branch cut along `(-i, i)`, hence it is discontinuous
at 0. Its range for real ``x`` is `(-\frac{\pi}{2}, \frac{\pi}{2}]`.
Examples
========
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] http://dlmf.nist.gov/4.23
.. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1 / (1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.Pi/ 2
elif arg is S.One:
return S.Pi / 4
elif arg is S.NegativeOne:
return -S.Pi / 4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
ang = pi/2 - atan_table[arg]
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * acoth(i_coeff)
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi / 2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n + 1)//2) * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_aseries(self, n, args0, x, logx):
if args0[0] == S.Infinity:
return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] == S.NegativeInfinity:
return (3*S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2 * (log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Notes
=====
``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments,
it can be defined [4]_ as
.. math::
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z}
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z}
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which
ultimately evaluates to ``zoo``.
As ``acos(x)`` = ``asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo, pi
>>> asec(1)
0
>>> asec(-1)
pi
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Pi/2
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return pi/2 - acsc_table[arg]
elif -arg in acsc_table:
return pi/2 + acsc_table[-arg]
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if Order(1,x).contains(arg):
return log(arg)
else:
return self.func(arg)
def _eval_is_extended_real(self):
x = self.args[0]
if x.is_extended_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return S.Pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1)))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Notes
=====
``acsc(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
Examples
========
>>> from sympy import acsc, oo, pi
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return acsc_table[arg]
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if Order(1,x).contains(arg):
return log(arg)
else:
return self.func(arg)
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return S.Pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\
+\frac{\pi}{2} & \qquad y > 0 , x = 0 \\
-\frac{\pi}{2} & \qquad y < 0 , x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
If either `x` or `y` is complex:
.. math::
\operatorname{atan2}(y, x) =
-i\log\left(\frac{x + iy}{\sqrt{x**2 + y**2}}\right)
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1) / -1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, x < 0), (0, x > 0), (nan, True))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy import Heaviside, im, re
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return S.Pi
return 2*S.Pi*(Heaviside(re(y))) - S.Pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_extended_real and y.is_extended_real:
if x.is_positive:
return atan(y / x)
elif x.is_negative:
if y.is_negative:
return atan(y / x) - S.Pi
elif y.is_nonnegative:
return atan(y / x) + S.Pi
elif x.is_zero:
if y.is_positive:
return S.Pi/2
elif y.is_negative:
return -S.Pi/2
elif y.is_zero:
return S.NaN
if y.is_zero and x.is_extended_real and fuzzy_not(x.is_zero):
return S.Pi * (S.One - Heaviside(x))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y) / sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, x < 0), (0, x > 0), (S.NaN, True))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
from sympy import arg
if x.is_extended_real and y.is_extended_real:
return arg(x + y*S.ImaginaryUnit)
I = S.ImaginaryUnit
n = x + I*y
d = x**2 + y**2
return arg(n/sqrt(d)) - I*log(abs(n)/sqrt(abs(d)))
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_extended_real and y.is_extended_real:
super(atan2, self)._eval_evalf(prec)
|
55d84c3d3b877237406d7bdb12d423ea7dc51ac66705dcdac4e97bbc27f333d9 | from __future__ import print_function, division
from sympy.core import Basic, S, Function, diff, Tuple, Dummy, Symbol
from sympy.core.basic import as_Basic
from sympy.core.compatibility import range
from sympy.core.numbers import Rational, NumberSymbol
from sympy.core.relational import (Equality, Unequality, Relational,
_canonical)
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or,
true, false, Or, ITE, simplify_logic)
from sympy.utilities.iterables import uniq, ordered, product, sift
from sympy.utilities.misc import filldedent, func_name
Undefined = S.NaN # Piecewise()
class ExprCondPair(Tuple):
"""Represents an expression, condition pair."""
def __new__(cls, expr, cond):
expr = as_Basic(expr)
if cond == True:
return Tuple.__new__(cls, expr, true)
elif cond == False:
return Tuple.__new__(cls, expr, false)
elif isinstance(cond, Basic) and cond.has(Piecewise):
cond = piecewise_fold(cond)
if isinstance(cond, Piecewise):
cond = cond.rewrite(ITE)
if not isinstance(cond, Boolean):
raise TypeError(filldedent('''
Second argument must be a Boolean,
not `%s`''' % func_name(cond)))
return Tuple.__new__(cls, expr, cond)
@property
def expr(self):
"""
Returns the expression of this pair.
"""
return self.args[0]
@property
def cond(self):
"""
Returns the condition of this pair.
"""
return self.args[1]
@property
def is_commutative(self):
return self.expr.is_commutative
def __iter__(self):
yield self.expr
yield self.cond
def _eval_simplify(self, **kwargs):
return self.func(*[a.simplify(**kwargs) for a in self.args])
class Piecewise(Function):
"""
Represents a piecewise function.
Usage:
Piecewise( (expr,cond), (expr,cond), ... )
- Each argument is a 2-tuple defining an expression and condition
- The conds are evaluated in turn returning the first that is True.
If any of the evaluated conds are not determined explicitly False,
e.g. x < 1, the function is returned in symbolic form.
- If the function is evaluated at a place where all conditions are False,
nan will be returned.
- Pairs where the cond is explicitly False, will be removed.
Examples
========
>>> from sympy import Piecewise, log, ITE, piecewise_fold
>>> from sympy.abc import x, y
>>> f = x**2
>>> g = log(x)
>>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True))
>>> p.subs(x,1)
1
>>> p.subs(x,5)
log(5)
Booleans can contain Piecewise elements:
>>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond
Piecewise((2, x < 0), (3, True)) < y
The folded version of this results in a Piecewise whose
expressions are Booleans:
>>> folded_cond = piecewise_fold(cond); folded_cond
Piecewise((2 < y, x < 0), (3 < y, True))
When a Boolean containing Piecewise (like cond) or a Piecewise
with Boolean expressions (like folded_cond) is used as a condition,
it is converted to an equivalent ITE object:
>>> Piecewise((1, folded_cond))
Piecewise((1, ITE(x < 0, y > 2, y > 3)))
When a condition is an ITE, it will be converted to a simplified
Boolean expression:
>>> piecewise_fold(_)
Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0))))
See Also
========
piecewise_fold, ITE
"""
nargs = None
is_Piecewise = True
def __new__(cls, *args, **options):
if len(args) == 0:
raise TypeError("At least one (expr, cond) pair expected.")
# (Try to) sympify args first
newargs = []
for ec in args:
# ec could be a ExprCondPair or a tuple
pair = ExprCondPair(*getattr(ec, 'args', ec))
cond = pair.cond
if cond is false:
continue
newargs.append(pair)
if cond is true:
break
if options.pop('evaluate', True):
r = cls.eval(*newargs)
else:
r = None
if r is None:
return Basic.__new__(cls, *newargs, **options)
else:
return r
@classmethod
def eval(cls, *_args):
"""Either return a modified version of the args or, if no
modifications were made, return None.
Modifications that are made here:
1) relationals are made canonical
2) any False conditions are dropped
3) any repeat of a previous condition is ignored
3) any args past one with a true condition are dropped
If there are no args left, nan will be returned.
If there is a single arg with a True condition, its
corresponding expression will be returned.
"""
if not _args:
return Undefined
if len(_args) == 1 and _args[0][-1] == True:
return _args[0][0]
newargs = [] # the unevaluated conditions
current_cond = set() # the conditions up to a given e, c pair
# make conditions canonical
args = []
for e, c in _args:
if not c.is_Atom and not isinstance(c, Relational):
free = c.free_symbols
if len(free) == 1:
funcs = [i for i in c.atoms(Function)
if not isinstance(i, Boolean)]
if len(funcs) == 1 and len(
c.xreplace({list(funcs)[0]: Dummy()}
).free_symbols) == 1:
# we can treat function like a symbol
free = funcs
_c = c
x = free.pop()
try:
c = c.as_set().as_relational(x)
except NotImplementedError:
pass
else:
reps = {}
for i in c.atoms(Relational):
ic = i.canonical
if ic.rhs in (S.Infinity, S.NegativeInfinity):
if not _c.has(ic.rhs):
# don't accept introduction of
# new Relationals with +/-oo
reps[i] = S.true
elif ('=' not in ic.rel_op and
c.xreplace({x: i.rhs}) !=
_c.xreplace({x: i.rhs})):
reps[i] = Relational(
i.lhs, i.rhs, i.rel_op + '=')
c = c.xreplace(reps)
args.append((e, _canonical(c)))
for expr, cond in args:
# Check here if expr is a Piecewise and collapse if one of
# the conds in expr matches cond. This allows the collapsing
# of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)).
# This is important when using piecewise_fold to simplify
# multiple Piecewise instances having the same conds.
# Eventually, this code should be able to collapse Piecewise's
# having different intervals, but this will probably require
# using the new assumptions.
if isinstance(expr, Piecewise):
unmatching = []
for i, (e, c) in enumerate(expr.args):
if c in current_cond:
# this would already have triggered
continue
if c == cond:
if c != True:
# nothing past this condition will ever
# trigger and only those args before this
# that didn't match a previous condition
# could possibly trigger
if unmatching:
expr = Piecewise(*(
unmatching + [(e, c)]))
else:
expr = e
break
else:
unmatching.append((e, c))
# check for condition repeats
got = False
# -- if an And contains a condition that was
# already encountered, then the And will be
# False: if the previous condition was False
# then the And will be False and if the previous
# condition is True then then we wouldn't get to
# this point. In either case, we can skip this condition.
for i in ([cond] +
(list(cond.args) if isinstance(cond, And) else
[])):
if i in current_cond:
got = True
break
if got:
continue
# -- if not(c) is already in current_cond then c is
# a redundant condition in an And. This does not
# apply to Or, however: (e1, c), (e2, Or(~c, d))
# is not (e1, c), (e2, d) because if c and d are
# both False this would give no results when the
# true answer should be (e2, True)
if isinstance(cond, And):
nonredundant = []
for c in cond.args:
if (isinstance(c, Relational) and
c.negated.canonical in current_cond):
continue
nonredundant.append(c)
cond = cond.func(*nonredundant)
elif isinstance(cond, Relational):
if cond.negated.canonical in current_cond:
cond = S.true
current_cond.add(cond)
# collect successive e,c pairs when exprs or cond match
if newargs:
if newargs[-1].expr == expr:
orcond = Or(cond, newargs[-1].cond)
if isinstance(orcond, (And, Or)):
orcond = distribute_and_over_or(orcond)
newargs[-1] = ExprCondPair(expr, orcond)
continue
elif newargs[-1].cond == cond:
orexpr = Or(expr, newargs[-1].expr)
if isinstance(orexpr, (And, Or)):
orexpr = distribute_and_over_or(orexpr)
newargs[-1] == ExprCondPair(orexpr, cond)
continue
newargs.append(ExprCondPair(expr, cond))
# some conditions may have been redundant
missing = len(newargs) != len(_args)
# some conditions may have changed
same = all(a == b for a, b in zip(newargs, _args))
# if either change happened we return the expr with the
# updated args
if not newargs:
raise ValueError(filldedent('''
There are no conditions (or none that
are not trivially false) to define an
expression.'''))
if missing or not same:
return cls(*newargs)
def doit(self, **hints):
"""
Evaluate this piecewise function.
"""
newargs = []
for e, c in self.args:
if hints.get('deep', True):
if isinstance(e, Basic):
newe = e.doit(**hints)
if newe != self:
e = newe
if isinstance(c, Basic):
c = c.doit(**hints)
newargs.append((e, c))
return self.func(*newargs)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import simplify
args = [simplify(a, **kwargs) for a in self.args]
_blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and (
getattr(e.rhs, '_diff_wrt', None) or
isinstance(e.rhs, (Rational, NumberSymbol)))
for i, (expr, cond) in enumerate(args):
# try to simplify conditions and the expression for
# equalities that are part of the condition, e.g.
# Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True))
# -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True))
if isinstance(cond, And):
eqs, other = sift(cond.args,
lambda i: isinstance(i, Equality), binary=True)
elif isinstance(cond, Equality):
eqs, other = [cond], []
else:
eqs = other = []
if eqs:
eqs = list(ordered(eqs))
for j, e in enumerate(eqs):
# these blessed lhs objects behave like Symbols
# and the rhs are simple replacements for the "symbols"
if _blessed(e):
expr = expr.subs(*e.args)
eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]]
other = [ei.subs(*e.args) for ei in other]
cond = And(*(eqs + other))
args[i] = args[i].func(expr, cond)
# See if expressions valid for an Equal expression happens to evaluate
# to the same function as in the next piecewise segment, see:
# https://github.com/sympy/sympy/issues/8458
prevexpr = None
for i, (expr, cond) in reversed(list(enumerate(args))):
if prevexpr is not None:
if isinstance(cond, And):
eqs, other = sift(cond.args,
lambda i: isinstance(i, Equality), binary=True)
elif isinstance(cond, Equality):
eqs, other = [cond], []
else:
eqs = other = []
_prevexpr = prevexpr
_expr = expr
if eqs and not other:
eqs = list(ordered(eqs))
for e in eqs:
# these blessed lhs objects behave like Symbols
# and the rhs are simple replacements for the "symbols"
if _blessed(e):
_prevexpr = _prevexpr.subs(*e.args)
_expr = _expr.subs(*e.args)
# Did it evaluate to the same?
if _prevexpr == _expr:
# Set the expression for the Not equal section to the same
# as the next. These will be merged when creating the new
# Piecewise
args[i] = args[i].func(args[i+1][0], cond)
else:
# Update the expression that we compare against
prevexpr = expr
else:
prevexpr = expr
return self.func(*args)
def _eval_as_leading_term(self, x):
for e, c in self.args:
if c == True or c.subs(x, 0) == True:
return e.as_leading_term(x)
def _eval_adjoint(self):
return self.func(*[(e.adjoint(), c) for e, c in self.args])
def _eval_conjugate(self):
return self.func(*[(e.conjugate(), c) for e, c in self.args])
def _eval_derivative(self, x):
return self.func(*[(diff(e, x), c) for e, c in self.args])
def _eval_evalf(self, prec):
return self.func(*[(e._evalf(prec), c) for e, c in self.args])
def piecewise_integrate(self, x, **kwargs):
"""Return the Piecewise with each expression being
replaced with its antiderivative. To obtain a continuous
antiderivative, use the `integrate` function or method.
Examples
========
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
Note that this does not give a continuous function, e.g.
at x = 1 the 3rd condition applies and the antiderivative
there is 2*x so the value of the antiderivative is 2:
>>> anti = _
>>> anti.subs(x, 1)
2
The continuous derivative accounts for the integral *up to*
the point of interest, however:
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
>>> _.subs(x, 1)
1
See Also
========
Piecewise._eval_integral
"""
from sympy.integrals import integrate
return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args])
def _handle_irel(self, x, handler):
"""Return either None (if the conditions of self depend only on x) else
a Piecewise expression whose expressions (handled by the handler that
was passed) are paired with the governing x-independent relationals,
e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) ->
Piecewise(
(handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)),
(handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)),
(handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)),
(handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True))
"""
# identify governing relationals
rel = self.atoms(Relational)
irel = list(ordered([r for r in rel if x not in r.free_symbols
and r not in (S.true, S.false)]))
if irel:
args = {}
exprinorder = []
for truth in product((1, 0), repeat=len(irel)):
reps = dict(zip(irel, truth))
# only store the true conditions since the false are implied
# when they appear lower in the Piecewise args
if 1 not in truth:
cond = None # flag this one so it doesn't get combined
else:
andargs = Tuple(*[i for i in reps if reps[i]])
free = list(andargs.free_symbols)
if len(free) == 1:
from sympy.solvers.inequalities import (
reduce_inequalities, _solve_inequality)
try:
t = reduce_inequalities(andargs, free[0])
# ValueError when there are potentially
# nonvanishing imaginary parts
except (ValueError, NotImplementedError):
# at least isolate free symbol on left
t = And(*[_solve_inequality(
a, free[0], linear=True)
for a in andargs])
else:
t = And(*andargs)
if t is S.false:
continue # an impossible combination
cond = t
expr = handler(self.xreplace(reps))
if isinstance(expr, self.func) and len(expr.args) == 1:
expr, econd = expr.args[0]
cond = And(econd, True if cond is None else cond)
# the ec pairs are being collected since all possibilities
# are being enumerated, but don't put the last one in since
# its expr might match a previous expression and it
# must appear last in the args
if cond is not None:
args.setdefault(expr, []).append(cond)
# but since we only store the true conditions we must maintain
# the order so that the expression with the most true values
# comes first
exprinorder.append(expr)
# convert collected conditions as args of Or
for k in args:
args[k] = Or(*args[k])
# take them in the order obtained
args = [(e, args[e]) for e in uniq(exprinorder)]
# add in the last arg
args.append((expr, True))
# if any condition reduced to True, it needs to go last
# and there should only be one of them or else the exprs
# should agree
trues = [i for i in range(len(args)) if args[i][1] is S.true]
if not trues:
# make the last one True since all cases were enumerated
e, c = args[-1]
args[-1] = (e, S.true)
else:
assert len(set([e for e, c in [args[i] for i in trues]])) == 1
args.append(args.pop(trues.pop()))
while trues:
args.pop(trues.pop())
return Piecewise(*args)
def _eval_integral(self, x, _first=True, **kwargs):
"""Return the indefinite integral of the
Piecewise such that subsequent substitution of x with a
value will give the value of the integral (not including
the constant of integration) up to that point. To only
integrate the individual parts of Piecewise, use the
`piecewise_integrate` method.
Examples
========
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
See Also
========
Piecewise.piecewise_integrate
"""
from sympy.integrals.integrals import integrate
if _first:
def handler(ipw):
if isinstance(ipw, self.func):
return ipw._eval_integral(x, _first=False, **kwargs)
else:
return ipw.integrate(x, **kwargs)
irv = self._handle_irel(x, handler)
if irv is not None:
return irv
# handle a Piecewise from -oo to oo with and no x-independent relationals
# -----------------------------------------------------------------------
try:
abei = self._intervals(x)
except NotImplementedError:
from sympy import Integral
return Integral(self, x) # unevaluated
pieces = [(a, b) for a, b, _, _ in abei]
oo = S.Infinity
done = [(-oo, oo, -1)]
for k, p in enumerate(pieces):
if p == (-oo, oo):
# all undone intervals will get this key
for j, (a, b, i) in enumerate(done):
if i == -1:
done[j] = a, b, k
break # nothing else to consider
N = len(done) - 1
for j, (a, b, i) in enumerate(reversed(done)):
if i == -1:
j = N - j
done[j: j + 1] = _clip(p, (a, b), k)
done = [(a, b, i) for a, b, i in done if a != b]
# append an arg if there is a hole so a reference to
# argument -1 will give Undefined
if any(i == -1 for (a, b, i) in done):
abei.append((-oo, oo, Undefined, -1))
# return the sum of the intervals
args = []
sum = None
for a, b, i in done:
anti = integrate(abei[i][-2], x, **kwargs)
if sum is None:
sum = anti
else:
sum = sum.subs(x, a)
if sum == Undefined:
sum = 0
sum += anti._eval_interval(x, a, x)
# see if we know whether b is contained in original
# condition
if b is S.Infinity:
cond = True
elif self.args[abei[i][-1]].cond.subs(x, b) == False:
cond = (x < b)
else:
cond = (x <= b)
args.append((sum, cond))
return Piecewise(*args)
def _eval_interval(self, sym, a, b, _first=True):
"""Evaluates the function along the sym in a given interval [a, b]"""
# FIXME: Currently complex intervals are not supported. A possible
# replacement algorithm, discussed in issue 5227, can be found in the
# following papers;
# http://portal.acm.org/citation.cfm?id=281649
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf
from sympy.core.symbol import Dummy
if a is None or b is None:
# In this case, it is just simple substitution
return super(Piecewise, self)._eval_interval(sym, a, b)
else:
x, lo, hi = map(as_Basic, (sym, a, b))
if _first: # get only x-dependent relationals
def handler(ipw):
if isinstance(ipw, self.func):
return ipw._eval_interval(x, lo, hi, _first=None)
else:
return ipw._eval_interval(x, lo, hi)
irv = self._handle_irel(x, handler)
if irv is not None:
return irv
if (lo < hi) is S.false or (
lo is S.Infinity or hi is S.NegativeInfinity):
rv = self._eval_interval(x, hi, lo, _first=False)
if isinstance(rv, Piecewise):
rv = Piecewise(*[(-e, c) for e, c in rv.args])
else:
rv = -rv
return rv
if (lo < hi) is S.true or (
hi is S.Infinity or lo is S.NegativeInfinity):
pass
else:
_a = Dummy('lo')
_b = Dummy('hi')
a = lo if lo.is_comparable else _a
b = hi if hi.is_comparable else _b
pos = self._eval_interval(x, a, b, _first=False)
if a == _a and b == _b:
# it's purely symbolic so just swap lo and hi and
# change the sign to get the value for when lo > hi
neg, pos = (-pos.xreplace({_a: hi, _b: lo}),
pos.xreplace({_a: lo, _b: hi}))
else:
# at least one of the bounds was comparable, so allow
# _eval_interval to use that information when computing
# the interval with lo and hi reversed
neg, pos = (-self._eval_interval(x, hi, lo, _first=False),
pos.xreplace({_a: lo, _b: hi}))
# allow simplification based on ordering of lo and hi
p = Dummy('', positive=True)
if lo.is_Symbol:
pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo})
neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi})
elif hi.is_Symbol:
pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo})
neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi})
# assemble return expression; make the first condition be Lt
# b/c then the first expression will look the same whether
# the lo or hi limit is symbolic
if a == _a: # the lower limit was symbolic
rv = Piecewise(
(pos,
lo < hi),
(neg,
True))
else:
rv = Piecewise(
(neg,
hi < lo),
(pos,
True))
if rv == Undefined:
raise ValueError("Can't integrate across undefined region.")
if any(isinstance(i, Piecewise) for i in (pos, neg)):
rv = piecewise_fold(rv)
return rv
# handle a Piecewise with lo <= hi and no x-independent relationals
# -----------------------------------------------------------------
try:
abei = self._intervals(x)
except NotImplementedError:
from sympy import Integral
# not being able to do the interval of f(x) can
# be stated as not being able to do the integral
# of f'(x) over the same range
return Integral(self.diff(x), (x, lo, hi)) # unevaluated
pieces = [(a, b) for a, b, _, _ in abei]
done = [(lo, hi, -1)]
oo = S.Infinity
for k, p in enumerate(pieces):
if p[:2] == (-oo, oo):
# all undone intervals will get this key
for j, (a, b, i) in enumerate(done):
if i == -1:
done[j] = a, b, k
break # nothing else to consider
N = len(done) - 1
for j, (a, b, i) in enumerate(reversed(done)):
if i == -1:
j = N - j
done[j: j + 1] = _clip(p, (a, b), k)
done = [(a, b, i) for a, b, i in done if a != b]
# return the sum of the intervals
sum = S.Zero
upto = None
for a, b, i in done:
if i == -1:
if upto is None:
return Undefined
# TODO simplify hi <= upto
return Piecewise((sum, hi <= upto), (Undefined, True))
sum += abei[i][-2]._eval_interval(x, a, b)
upto = b
return sum
def _intervals(self, sym):
"""Return a list of unique tuples, (a, b, e, i), where a and b
are the lower and upper bounds in which the expression e of
argument i in self is defined and a < b (when involving
numbers) or a <= b when involving symbols.
If there are any relationals not involving sym, or any
relational cannot be solved for sym, NotImplementedError is
raised. The calling routine should have removed such
relationals before calling this routine.
The evaluated conditions will be returned as ranges.
Discontinuous ranges will be returned separately with
identical expressions. The first condition that evaluates to
True will be returned as the last tuple with a, b = -oo, oo.
"""
from sympy.solvers.inequalities import _solve_inequality
from sympy.logic.boolalg import to_cnf, distribute_or_over_and
assert isinstance(self, Piecewise)
def _solve_relational(r):
if sym not in r.free_symbols:
nonsymfail(r)
rv = _solve_inequality(r, sym)
if isinstance(rv, Relational):
free = rv.args[1].free_symbols
if rv.args[0] != sym or sym in free:
raise NotImplementedError(filldedent('''
Unable to solve relational
%s for %s.''' % (r, sym)))
if rv.rel_op == '==':
# this equality has been affirmed to have the form
# Eq(sym, rhs) where rhs is sym-free; it represents
# a zero-width interval which will be ignored
# whether it is an isolated condition or contained
# within an And or an Or
rv = S.false
elif rv.rel_op == '!=':
try:
rv = Or(sym < rv.rhs, sym > rv.rhs)
except TypeError:
# e.g. x != I ==> all real x satisfy
rv = S.true
elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
rv = S.true
return rv
def nonsymfail(cond):
raise NotImplementedError(filldedent('''
A condition not involving
%s appeared: %s''' % (sym, cond)))
# make self canonical wrt Relationals
reps = dict([
(r, _solve_relational(r)) for r in self.atoms(Relational)])
# process args individually so if any evaluate, their position
# in the original Piecewise will be known
args = [i.xreplace(reps) for i in self.args]
# precondition args
expr_cond = []
default = idefault = None
for i, (expr, cond) in enumerate(args):
if cond is S.false:
continue
elif cond is S.true:
default = expr
idefault = i
break
cond = to_cnf(cond)
if isinstance(cond, And):
cond = distribute_or_over_and(cond)
if isinstance(cond, Or):
expr_cond.extend(
[(i, expr, o) for o in cond.args
if not isinstance(o, Equality)])
elif cond is not S.false:
expr_cond.append((i, expr, cond))
# determine intervals represented by conditions
int_expr = []
for iarg, expr, cond in expr_cond:
if isinstance(cond, And):
lower = S.NegativeInfinity
upper = S.Infinity
for cond2 in cond.args:
if isinstance(cond2, Equality):
lower = upper # ignore
break
elif cond2.lts == sym:
upper = Min(cond2.gts, upper)
elif cond2.gts == sym:
lower = Max(cond2.lts, lower)
else:
nonsymfail(cond2) # should never get here
elif isinstance(cond, Relational):
lower, upper = cond.lts, cond.gts # part 1: initialize with givens
if cond.lts == sym: # part 1a: expand the side ...
lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0
elif cond.gts == sym: # part 1a: ... that can be expanded
upper = S.Infinity # e.g. x >= 0 ---> oo >= 0
else:
nonsymfail(cond)
else:
raise NotImplementedError(
'unrecognized condition: %s' % cond)
lower, upper = lower, Max(lower, upper)
if (lower >= upper) is not S.true:
int_expr.append((lower, upper, expr, iarg))
if default is not None:
int_expr.append(
(S.NegativeInfinity, S.Infinity, default, idefault))
return list(uniq(int_expr))
def _eval_nseries(self, x, n, logx):
args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args]
return self.func(*args)
def _eval_power(self, s):
return self.func(*[(e**s, c) for e, c in self.args])
def _eval_subs(self, old, new):
# this is strictly not necessary, but we can keep track
# of whether True or False conditions arise and be
# somewhat more efficient by avoiding other substitutions
# and avoiding invalid conditions that appear after a
# True condition
args = list(self.args)
args_exist = False
for i, (e, c) in enumerate(args):
c = c._subs(old, new)
if c != False:
args_exist = True
e = e._subs(old, new)
args[i] = (e, c)
if c == True:
break
if not args_exist:
args = ((Undefined, True),)
return self.func(*args)
def _eval_transpose(self):
return self.func(*[(e.transpose(), c) for e, c in self.args])
def _eval_template_is_attr(self, is_attr):
b = None
for expr, _ in self.args:
a = getattr(expr, is_attr)
if a is None:
return
if b is None:
b = a
elif b is not a:
return
return b
_eval_is_finite = lambda self: self._eval_template_is_attr(
'is_finite')
_eval_is_complex = lambda self: self._eval_template_is_attr('is_complex')
_eval_is_even = lambda self: self._eval_template_is_attr('is_even')
_eval_is_imaginary = lambda self: self._eval_template_is_attr(
'is_imaginary')
_eval_is_integer = lambda self: self._eval_template_is_attr('is_integer')
_eval_is_irrational = lambda self: self._eval_template_is_attr(
'is_irrational')
_eval_is_negative = lambda self: self._eval_template_is_attr('is_negative')
_eval_is_nonnegative = lambda self: self._eval_template_is_attr(
'is_nonnegative')
_eval_is_nonpositive = lambda self: self._eval_template_is_attr(
'is_nonpositive')
_eval_is_nonzero = lambda self: self._eval_template_is_attr(
'is_nonzero')
_eval_is_odd = lambda self: self._eval_template_is_attr('is_odd')
_eval_is_polar = lambda self: self._eval_template_is_attr('is_polar')
_eval_is_positive = lambda self: self._eval_template_is_attr('is_positive')
_eval_is_extended_real = lambda self: self._eval_template_is_attr(
'is_extended_real')
_eval_is_extended_positive = lambda self: self._eval_template_is_attr(
'is_extended_positive')
_eval_is_extended_negative = lambda self: self._eval_template_is_attr(
'is_extended_negative')
_eval_is_extended_nonzero = lambda self: self._eval_template_is_attr(
'is_extended_nonzero')
_eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr(
'is_extended_nonpositive')
_eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr(
'is_extended_nonnegative')
_eval_is_real = lambda self: self._eval_template_is_attr('is_real')
_eval_is_zero = lambda self: self._eval_template_is_attr(
'is_zero')
@classmethod
def __eval_cond(cls, cond):
"""Return the truth value of the condition."""
if cond == True:
return True
if isinstance(cond, Equality):
try:
diff = cond.lhs - cond.rhs
if diff.is_commutative:
return diff.is_zero
except TypeError:
pass
def as_expr_set_pairs(self, domain=S.Reals):
"""Return tuples for each argument of self that give
the expression and the interval in which it is valid
which is contained within the given domain.
If a condition cannot be converted to a set, an error
will be raised. The variable of the conditions is
assumed to be real; sets of real values are returned.
Examples
========
>>> from sympy import Piecewise, Interval
>>> from sympy.abc import x
>>> p = Piecewise(
... (1, x < 2),
... (2,(x > 0) & (x < 4)),
... (3, True))
>>> p.as_expr_set_pairs()
[(1, Interval.open(-oo, 2)),
(2, Interval.Ropen(2, 4)),
(3, Interval(4, oo))]
>>> p.as_expr_set_pairs(Interval(0, 3))
[(1, Interval.Ropen(0, 2)),
(2, Interval(2, 3)), (3, EmptySet())]
"""
exp_sets = []
U = domain
complex = not domain.is_subset(S.Reals)
for expr, cond in self.args:
if complex:
for i in cond.atoms(Relational):
if not isinstance(i, (Equality, Unequality)):
raise ValueError(filldedent('''
Inequalities in the complex domain are
not supported. Try the real domain by
setting domain=S.Reals'''))
cond_int = U.intersect(cond.as_set())
U = U - cond_int
exp_sets.append((expr, cond_int))
return exp_sets
def _eval_rewrite_as_ITE(self, *args, **kwargs):
byfree = {}
args = list(args)
default = any(c == True for b, c in args)
for i, (b, c) in enumerate(args):
if not isinstance(b, Boolean) and b != True:
raise TypeError(filldedent('''
Expecting Boolean or bool but got `%s`
''' % func_name(b)))
if c == True:
break
# loop over independent conditions for this b
for c in c.args if isinstance(c, Or) else [c]:
free = c.free_symbols
x = free.pop()
try:
byfree[x] = byfree.setdefault(
x, S.EmptySet).union(c.as_set())
except NotImplementedError:
if not default:
raise NotImplementedError(filldedent('''
A method to determine whether a multivariate
conditional is consistent with a complete coverage
of all variables has not been implemented so the
rewrite is being stopped after encountering `%s`.
This error would not occur if a default expression
like `(foo, True)` were given.
''' % c))
if byfree[x] in (S.UniversalSet, S.Reals):
# collapse the ith condition to True and break
args[i] = list(args[i])
c = args[i][1] = True
break
if c == True:
break
if c != True:
raise ValueError(filldedent('''
Conditions must cover all reals or a final default
condition `(foo, True)` must be given.
'''))
last, _ = args[i] # ignore all past ith arg
for a, c in reversed(args[:i]):
last = ITE(c, a, last)
return _canonical(last)
def _eval_rewrite_as_KroneckerDelta(self, *args):
from sympy import Ne, Eq, Not, KroneckerDelta
rules = {
And: [False, False],
Or: [True, True],
Not: [True, False],
Eq: [None, None],
Ne: [None, None]
}
class UnrecognizedCondition(Exception):
pass
def rewrite(cond):
if isinstance(cond, Eq):
return KroneckerDelta(*cond.args)
if isinstance(cond, Ne):
return 1 - KroneckerDelta(*cond.args)
cls, args = type(cond), cond.args
if cls not in rules:
raise UnrecognizedCondition(cls)
b1, b2 = rules[cls]
k = 1
for c in args:
if b1:
k *= 1 - rewrite(c)
else:
k *= rewrite(c)
if b2:
return 1 - k
return k
conditions = []
true_value = None
for value, cond in args:
if type(cond) in rules:
conditions.append((value, cond))
elif cond is S.true:
if true_value is None:
true_value = value
else:
return
if true_value is not None:
result = true_value
for value, cond in conditions[::-1]:
try:
k = rewrite(cond)
result = k * value + (1 - k) * result
except UnrecognizedCondition:
return
return result
def piecewise_fold(expr):
"""
Takes an expression containing a piecewise function and returns the
expression in piecewise form. In addition, any ITE conditions are
rewritten in negation normal form and simplified.
Examples
========
>>> from sympy import Piecewise, piecewise_fold, sympify as S
>>> from sympy.abc import x
>>> p = Piecewise((x, x < 1), (1, S(1) <= x))
>>> piecewise_fold(x*p)
Piecewise((x**2, x < 1), (x, True))
See Also
========
Piecewise
"""
if not isinstance(expr, Basic) or not expr.has(Piecewise):
return expr
new_args = []
if isinstance(expr, (ExprCondPair, Piecewise)):
for e, c in expr.args:
if not isinstance(e, Piecewise):
e = piecewise_fold(e)
# we don't keep Piecewise in condition because
# it has to be checked to see that it's complete
# and we convert it to ITE at that time
assert not c.has(Piecewise) # pragma: no cover
if isinstance(c, ITE):
c = c.to_nnf()
c = simplify_logic(c, form='cnf')
if isinstance(e, Piecewise):
new_args.extend([(piecewise_fold(ei), And(ci, c))
for ei, ci in e.args])
else:
new_args.append((e, c))
else:
from sympy.utilities.iterables import cartes, sift, common_prefix
# Given
# P1 = Piecewise((e11, c1), (e12, c2), A)
# P2 = Piecewise((e21, c1), (e22, c2), B)
# ...
# the folding of f(P1, P2) is trivially
# Piecewise(
# (f(e11, e21), c1),
# (f(e12, e22), c2),
# (f(Piecewise(A), Piecewise(B)), True))
# Certain objects end up rewriting themselves as thus, so
# we do that grouping before the more generic folding.
# The following applies this idea when f = Add or f = Mul
# (and the expression is commutative).
if expr.is_Add or expr.is_Mul and expr.is_commutative:
p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
pc = sift(p, lambda x: tuple([c for e,c in x.args]))
for c in list(ordered(pc)):
if len(pc[c]) > 1:
pargs = [list(i.args) for i in pc[c]]
# the first one is the same; there may be more
com = common_prefix(*[
[i.cond for i in j] for j in pargs])
n = len(com)
collected = []
for i in range(n):
collected.append((
expr.func(*[ai[i].expr for ai in pargs]),
com[i]))
remains = []
for a in pargs:
if n == len(a): # no more args
continue
if a[n].cond == True: # no longer Piecewise
remains.append(a[n].expr)
else: # restore the remaining Piecewise
remains.append(
Piecewise(*a[n:], evaluate=False))
if remains:
collected.append((expr.func(*remains), True))
args.append(Piecewise(*collected, evaluate=False))
continue
args.extend(pc[c])
else:
args = expr.args
# fold
folded = list(map(piecewise_fold, args))
for ec in cartes(*[
(i.args if isinstance(i, Piecewise) else
[(i, true)]) for i in folded]):
e, c = zip(*ec)
new_args.append((expr.func(*e), And(*c)))
return Piecewise(*new_args)
def _clip(A, B, k):
"""Return interval B as intervals that are covered by A (keyed
to k) and all other intervals of B not covered by A keyed to -1.
The reference point of each interval is the rhs; if the lhs is
greater than the rhs then an interval of zero width interval will
result, e.g. (4, 1) is treated like (1, 1).
Examples
========
>>> from sympy.functions.elementary.piecewise import _clip
>>> from sympy import Tuple
>>> A = Tuple(1, 3)
>>> B = Tuple(2, 4)
>>> _clip(A, B, 0)
[(2, 3, 0), (3, 4, -1)]
Interpretation: interval portion (2, 3) of interval (2, 4) is
covered by interval (1, 3) and is keyed to 0 as requested;
interval (3, 4) was not covered by (1, 3) and is keyed to -1.
"""
a, b = B
c, d = A
c, d = Min(Max(c, a), b), Min(Max(d, a), b)
a, b = Min(a, b), b
p = []
if a != c:
p.append((a, c, -1))
else:
pass
if c != d:
p.append((c, d, k))
else:
pass
if b != d:
if d == c and p and p[-1][-1] == -1:
p[-1] = p[-1][0], b, -1
else:
p.append((d, b, -1))
else:
pass
return p
|
0d052d240fe6203bcf56075dc8036c106a4f26574f9ac4f95a59652492703ef3 | from __future__ import print_function, division
from sympy.core import Add, S
from sympy.core.evalf import get_integer_part, PrecisionExhausted
from sympy.core.function import Function
from sympy.core.logic import fuzzy_or
from sympy.core.numbers import Integer
from sympy.core.relational import Gt, Lt, Ge, Le, Relational
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
###############################################################################
######################### FLOOR and CEILING FUNCTIONS #########################
###############################################################################
class RoundFunction(Function):
"""The base class for rounding functions."""
@classmethod
def eval(cls, arg):
from sympy import im
if arg.is_integer or arg.is_finite is False:
return arg
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
i = im(arg)
if not i.has(S.ImaginaryUnit):
return cls(i)*S.ImaginaryUnit
return cls(arg, evaluate=False)
v = cls._eval_number(arg)
if v is not None:
return v
# Integral, numerical, symbolic part
ipart = npart = spart = S.Zero
# Extract integral (or complex integral) terms
terms = Add.make_args(arg)
for t in terms:
if t.is_integer or (t.is_imaginary and im(t).is_integer):
ipart += t
elif t.has(Symbol):
spart += t
else:
npart += t
if not (npart or spart):
return ipart
# Evaluate npart numerically if independent of spart
if npart and (
not spart or
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
npart.is_imaginary and spart.is_real):
try:
r, i = get_integer_part(
npart, cls._dir, {}, return_ints=True)
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
npart = S.Zero
except (PrecisionExhausted, NotImplementedError):
pass
spart += npart
if not spart:
return ipart
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
else:
return ipart + cls(spart, evaluate=False)
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_integer(self):
return self.args[0].is_real
class floor(RoundFunction):
"""
Floor is a univariate function which returns the largest integer
value not greater than its argument. This implementation
generalizes floor to complex numbers by taking the floor of the
real and imaginary parts separately.
Examples
========
>>> from sympy import floor, E, I, S, Float, Rational
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
>>> floor(S(5)/2 + 5*I/2)
2 + 2*I
See Also
========
sympy.functions.elementary.integers.ceiling
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/FloorFunction.html
"""
_dir = -1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.floor()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[0]
def _eval_nseries(self, x, n, logx):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r
else:
return r - 1
else:
return r
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return -ceiling(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg - frac(arg)
def _eval_Eq(self, other):
if isinstance(self, floor):
if (self.rewrite(ceiling) == other) or \
(self.rewrite(frac) == other):
return S.true
def __le__(self, other):
if self.args[0] == other and other.is_real:
return S.true
if other is S.Infinity and self.is_finite:
return S.true
return Le(self, other, evaluate=False)
def __gt__(self, other):
if self.args[0] == other and other.is_real:
return S.false
return Gt(self, other, evaluate=False)
class ceiling(RoundFunction):
"""
Ceiling is a univariate function which returns the smallest integer
value not less than its argument. This implementation
generalizes ceiling to complex numbers by taking the ceiling of the
real and imaginary parts separately.
Examples
========
>>> from sympy import ceiling, E, I, S, Float, Rational
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
>>> ceiling(S(5)/2 + 5*I/2)
3 + 3*I
See Also
========
sympy.functions.elementary.integers.floor
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/CeilingFunction.html
"""
_dir = 1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.ceiling()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[1]
def _eval_nseries(self, x, n, logx):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r + 1
else:
return r
else:
return r
def _eval_rewrite_as_floor(self, arg, **kwargs):
return -floor(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg + frac(-arg)
def _eval_Eq(self, other):
if isinstance(self, ceiling):
if (self.rewrite(floor) == other) or \
(self.rewrite(frac) == other):
return S.true
def __lt__(self, other):
if self.args[0] == other and other.is_real:
return S.false
return Lt(self, other, evaluate=False)
def __ge__(self, other):
if self.args[0] == other and other.is_real:
return S.true
if other is S.NegativeInfinity and self.is_real:
return S.true
return Ge(self, other, evaluate=False)
class frac(Function):
r"""Represents the fractional part of x
For real numbers it is defined [1]_ as
.. math::
x - \left\lfloor{x}\right\rfloor
Examples
========
>>> from sympy import Symbol, frac, Rational, floor, ceiling, I
>>> frac(Rational(4, 3))
1/3
>>> frac(-Rational(4, 3))
2/3
returns zero for integer arguments
>>> n = Symbol('n', integer=True)
>>> frac(n)
0
rewrite as floor
>>> x = Symbol('x')
>>> frac(x).rewrite(floor)
x - floor(x)
for complex arguments
>>> r = Symbol('r', real=True)
>>> t = Symbol('t', real=True)
>>> frac(t + I*r)
I*frac(r) + frac(t)
See Also
========
sympy.functions.elementary.integers.floor
sympy.functions.elementary.integers.ceiling
References
===========
.. [1] https://en.wikipedia.org/wiki/Fractional_part
.. [2] http://mathworld.wolfram.com/FractionalPart.html
"""
@classmethod
def eval(cls, arg):
from sympy import AccumBounds, im
def _eval(arg):
if arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(0, 1)
if arg.is_integer:
return S.Zero
if arg.is_number:
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
else:
return arg - floor(arg)
return cls(arg, evaluate=False)
terms = Add.make_args(arg)
real, imag = S.Zero, S.Zero
for t in terms:
# Two checks are needed for complex arguments
# see issue-7649 for details
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
i = im(t)
if not i.has(S.ImaginaryUnit):
imag += i
else:
real += t
else:
real += t
real = _eval(real)
imag = _eval(imag)
return real + S.ImaginaryUnit*imag
def _eval_rewrite_as_floor(self, arg, **kwargs):
return arg - floor(arg)
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return arg + ceiling(-arg)
def _eval_Eq(self, other):
if isinstance(self, frac):
if (self.rewrite(floor) == other) or \
(self.rewrite(ceiling) == other):
return S.true
# Check if other < 0
if other.is_extended_negative:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return S.false
def _eval_is_finite(self):
return True
def _eval_is_real(self):
return self.args[0].is_extended_real
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_integer
def _eval_is_zero(self):
return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])
def _eval_is_negative(self):
return False
def __ge__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.true
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return not(res)
return Ge(self, other, evaluate=False)
def __gt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
res = self._value_one_or_more(other)
if res is not None:
return not(res)
# Check if other >= 1
if other.is_extended_negative:
return S.true
return Gt(self, other, evaluate=False)
def __le__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
if other.is_extended_negative:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Le(self, other, evaluate=False)
def __lt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Lt(self, other, evaluate=False)
def _value_one_or_more(self, other):
if other.is_extended_real:
if other.is_number:
res = other >= 1
if res and not isinstance(res, Relational):
return S.true
if other.is_integer and other.is_positive:
return S.true
|
1f96314737d00866d60c0810d967e74989ef06c32562005286b19b5ab04530cb | from __future__ import print_function, division
from sympy.core import sympify
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.compatibility import range
from sympy.core.function import (Function, ArgumentIndexError, _coeff_isneg,
expand_mul)
from sympy.core.logic import fuzzy_not
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy.functions import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_infinite:
if arg.is_negative:
return True
if arg.is_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.exp is S.Zero:
return True
elif s.exp.is_rational and fuzzy_not(s.exp.is_zero):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return (self.args[0] is S.NegativeInfinity)
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
expr = 1
for x in arg.args:
expr *= self.func(x)
return expr
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a 'polar number' (see g-function Sphinx documentation).
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers don't "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See Also
========
sympy.simplify.simplify.powsimp
sympy.functions.elementary.complexes.polar_lift
sympy.functions.elementary.complexes.periodic_argument
sympy.functions.elementary.complexes.principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
from sympy.functions.elementary.complexes import re
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
from sympy import im, pi, re
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S(1)
return ExpBase.as_base_exp(self)
class exp(ExpBase):
"""
The exponential function, :math:`e^x`.
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = S.ImaginaryUnit*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -S.ImaginaryUnit
elif ask(Q.odd(coeff + S.Half)):
return S.ImaginaryUnit
@classmethod
def eval(cls, arg):
from sympy.assumptions import ask, Q
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
from sympy.matrices.matrices import MatrixBase
from sympy import logcombine
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -S.ImaginaryUnit
elif (coeff + S.Half).is_odd:
return S.ImaginaryUnit
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return cls(ncoeff*S.Pi*S.ImaginaryUnit)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
term_ = logcombine(term)
if isinstance(term_, log):
if log_term is None:
log_term = term_.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
if newa.args[0] != a:
add.append(newa.args[0])
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*cls(Add(*add), evaluate=False)
elif isinstance(arg, MatrixBase):
return arg.exp()
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import exp
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
import sympy
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = sympy.cos(im), sympy.sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp/S.Pi).is_rational:
return False
else:
return s.is_algebraic
def _eval_is_extended_positive(self):
if self.args[0].is_extended_real:
return not self.args[0] is S.NegativeInfinity
elif self.args[0].is_imaginary:
arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_nseries(self, x, n, logx):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import limit, oo, Order, powsimp, Wild, expand_complex
arg = self.args[0]
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 in [-oo, oo]:
return self
t = Dummy("t")
exp_series = exp(t)._taylor(t, n)
o = exp_series.getO()
exp_series = exp_series.removeO()
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
r += Order(o.expr.subs(t, (arg_series - arg0)), x)
r = r.expand()
r = powsimp(r, deep=True, combine='exp')
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
w = Wild('w', properties=[simplerat])
r = r.replace((-1)**w, expand_complex((-1)**w))
return r
def _taylor(self, x, n):
from sympy import Order
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g)
return Add(*l) + Order(x**n, x)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0]
if arg.is_Add:
return Mul(*[exp(f).as_leading_term(x) for f in arg.args])
arg = self.args[0].as_leading_term(x)
if Order(1, x).contains(arg):
return S.One
return exp(arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I*arg + S.Pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I*arg) + I*cos(I*arg + S.Pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(S.Pi*S.ImaginaryUnit)
if coeff and coeff.is_number:
cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + S.ImaginaryUnit*sine
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if arg.is_Mul:
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
if logs:
return Pow(logs[0].args[0], arg.coeff(logs[0]))
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
Examples
========
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
See Also
========
exp
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy import unpolarify
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
from sympy.functions.elementary.complexes import Abs, re, im
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
return n + log(arg / base**n) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg is S.Zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
if isinstance(arg, exp) and arg.args[0].is_extended_real:
return arg.args[0]
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
else:
return
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
I = S.ImaginaryUnit
if arg.is_negative:
return S.Pi * I + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff)
else:
return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff)
if arg.is_number and arg.is_algebraic:
I = S.ImaginaryUnit
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
coeff, arg_ = arg.as_independent(I, as_Add=False)
if coeff.is_negative:
coeff *= -1
arg_ *= -1
arg_ = expand_mul(arg_, deep=False)
r_, i_ = arg_.as_independent(I, as_Add=True)
i_ = i_.as_coefficient(I)
if coeff.is_real and i_ and i_.is_real and r_.is_real:
if r_.is_zero:
if i_.is_positive:
return S.Pi * I * S.Half + cls(coeff * i_)
elif i_.is_negative:
return -S.Pi * I * S.Half + cls(coeff * -i_)
elif i_.is_zero:
return zoo
else:
from sympy.simplify import ratsimp
# Check for arguments involving rational multiples of pi
t = (i_/r_).cancel()
atan_table = {
# first quadrant only
sqrt(3): S.Pi/3,
1: S.Pi/4,
sqrt(5 - 2*sqrt(5)): S.Pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/(1 + sqrt(5)): S.Pi/5,
sqrt(5 + 2*sqrt(5)): 2*S.Pi/5,
sqrt(2)*sqrt(sqrt(5) + 5)/(-1 + sqrt(5)): 2*S.Pi/5,
sqrt(3)/3: S.Pi/6,
sqrt(2) - 1: S.Pi/8,
sqrt(2 - sqrt(2))/sqrt(sqrt(2) + 2): S.Pi/8,
sqrt(2) + 1: 3*S.Pi/8,
sqrt(sqrt(2) + 2)/sqrt(2 - sqrt(2)): 3*S.Pi/8,
sqrt(1 - 2*sqrt(5)/5): S.Pi/10,
(-sqrt(2) + sqrt(10))/(2*sqrt(sqrt(5) + 5)): S.Pi/10,
sqrt(1 + 2*sqrt(5)/5): 3*S.Pi/10,
(sqrt(2) + sqrt(10))/(2*sqrt(5 - sqrt(5))): 3*S.Pi/10,
2 - sqrt(3): S.Pi/12,
(-1 + sqrt(3))/(1 + sqrt(3)): S.Pi/12,
2 + sqrt(3): 5*S.Pi/12,
(1 + sqrt(3))/(-1 + sqrt(3)): 5*S.Pi/12
}
if t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * atan_table[t]
else:
return cls(modulus) + I * (atan_table[t] - S.Pi)
elif -t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * (-atan_table[-t])
else:
return cls(modulus) + I * (S.Pi - atan_table[-t])
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy import unpolarify, expand_log
from sympy.concrete import Sum, Product
force = hints.get('force', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(int(arg))
if p is not False:
return p[1]*self.func(p[0])
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if len(self.args) == 2: # it's unevaluated
return simplify(self.func(*self.args), **kwargs)
expr = self.func(simplify(self.args[0], **kwargs))
if kwargs['inverse']:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=kwargs['measure'])
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import log
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
from sympy import Abs, arg
sarg = self.args[0]
if deep:
sarg = self.args[0].expand(deep, **hints)
abs = Abs(sarg)
if abs == sarg:
return self, S.Zero
arg = arg(sarg)
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(abs).expand(deep, **hints), arg)
else:
return log(abs), arg
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_extended_real(self):
return self.args[0].is_extended_positive
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_extended_positive(self):
return (self.args[0] - 1).is_extended_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_extended_nonnegative(self):
return (self.args[0] - 1).is_extended_nonnegative
def _eval_nseries(self, x, n, logx):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import cancel, Order
if not logx:
logx = log(x)
if self.args[0] == x:
return logx
arg = self.args[0]
k, l = Wild("k"), Wild("l")
r = arg.match(k*x**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(x) and not k.has(x):
r = log(k) + l*logx # XXX true regardless of assumptions?
return r
# TODO new and probably slow
s = self.args[0].nseries(x, n=n, logx=logx)
while s.is_Order:
n += 1
s = self.args[0].nseries(x, n=n, logx=logx)
a, b = s.leadterm(x)
p = cancel(s/(a*x**b) - 1)
g = None
l = []
for i in range(n + 2):
g = log.taylor_term(i, p, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
return log(a) + b*logx + Add(*l) + Order(p**n, x)
def _eval_as_leading_term(self, x):
arg = self.args[0].as_leading_term(x)
if arg is S.One:
return (self.args[0] - 1).as_leading_term(x)
return self.func(arg)
class LambertW(Function):
r"""
The Lambert W function `W(z)` is defined as the inverse
function of `w \exp(w)` [1]_.
In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))`
for any complex number `z`. The Lambert W function is a multivalued
function with infinitely many branches `W_k(z)`, indexed by
`k \in \mathbb{Z}`. Each branch gives a different solution `w`
of the equation `z = w \exp(w)`.
The Lambert W function has two partially real branches: the
principal branch (`k = 0`) is real for real `z > -1/e`, and the
`k = -1` branch is real for `-1/e < z < 0`. All branches except
`k = 0` have a logarithmic singularity at `z = 0`.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
@classmethod
def eval(cls, x, k=None):
if k is S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k is S.Zero:
if x is S.Zero:
return S.Zero
if x is S.Exp1:
return S.One
if x == -1/S.Exp1:
return S.NegativeOne
if x == -log(2)/2:
return -log(2)
if x is S.Infinity:
return S.Infinity
if fuzzy_not(k.is_zero):
if x is S.Zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -S.Pi/2:
return -S.ImaginaryUnit*S.Pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_extended_real:
return False
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
|
9dbdc3ed89b71fd505c192c9528d31048d36f6de8110f432585aa812f15ab29c | from __future__ import print_function, division
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef)
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import pi, I, oo
from sympy.core.relational import Eq
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, atan2
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use Basic.as_real_imag() or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E
>>> from sympy.abc import x, y
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
See Also
========
im
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return arg
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
elif not term.has(S.ImaginaryUnit) and term.is_extended_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - S.ImaginaryUnit*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
def _sage_(self):
import sage.all as sage
return sage.real_part(self.args[0]._sage_())
class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use Basic.as_real_imag() or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> re(2*I + 17)
17
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
See Also
========
re
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return S.Zero
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return -S.ImaginaryUnit * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(S.ImaginaryUnit) or not term.is_extended_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
Examples
========
>>> from sympy.functions import im
>>> from sympy import I
>>> im(2 + 3*I).as_real_imag()
(3, 0)
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* re(Derivative(self.args[0], x, evaluate=True))
def _sage_(self):
import sage.all as sage
return sage.imag_part(self.args[0]._sage_())
def _eval_rewrite_as_re(self, arg, **kwargs):
return -S.ImaginaryUnit*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_extended_real
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
class sign(Function):
"""
Returns the complex sign of an expression:
If the expression is real the sign will be:
* 1 if expression is positive
* 0 if expression is equal to zero
* -1 if expression is negative
If the expression is imaginary the sign will be:
* I if im(expression) is positive
* -I if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy.functions import sign
>>> from sympy.core.numbers import I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
See Also
========
Abs, conjugate
"""
is_finite = True
is_complex = True
def doit(self, **hints):
if self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return self
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_extended_negative:
s = -s
elif a.is_extended_positive:
pass
else:
ai = im(a)
if a.is_imaginary and ai.is_comparable: # i.e. a = I*real
s *= S.ImaginaryUnit
if ai.is_extended_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_extended_positive:
return S.One
if arg.is_extended_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return S.ImaginaryUnit
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_positive:
return S.ImaginaryUnit
if arg2.is_extended_negative:
return -S.ImaginaryUnit
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_extended_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-S.ImaginaryUnit * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _sage_(self):
import sage.all as sage
return sage.sgn(self.args[0]._sage_())
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return Heaviside(arg)*2 - 1
def _eval_simplify(self, **kwargs):
return self.func(self.args[0].factor()) # XXX include doit?
class Abs(Function):
"""
Return the absolute value of the argument.
This is an extension of the built-in function abs() to accept symbolic
values. If you pass a SymPy expression to the built-in abs(), it will
pass it automatically to Abs().
Examples
========
>>> from sympy import Abs, Symbol, S
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a sympy object.
See Also
========
sign, conjugate
"""
is_extended_real = True
is_extended_negative = False
is_extended_nonnegative = True
unbranched = True
def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
Examples
========
>>> from sympy.abc import x
>>> from sympy.functions import Abs
>>> Abs(-x).fdiff()
sign(x)
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
from sympy.core.function import expand_mul
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(tnew.args[0])
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.Infinity
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_extended_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
if isinstance(base, cls) and exponent is S.NegativeOne:
return arg
return Abs(base)**exponent
if base.is_extended_nonnegative:
return base**re(exponent)
if base.is_extended_negative:
return (-base)**re(exponent)*exp(-S.Pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
return
if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return S.Infinity
if arg.is_zero:
return S.Zero
if arg.is_extended_nonnegative:
return arg
if arg.is_extended_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_nonnegative:
return arg2
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_real(self):
if self.args[0].is_finite:
return True
def _eval_is_integer(self):
if self.args[0].is_extended_real:
return self.args[0].is_integer
def _eval_is_extended_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_extended_positive(self):
is_z = self.is_zero
if is_z is not None:
return not is_z
def _eval_is_rational(self):
if self.args[0].is_extended_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_extended_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_extended_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_extended_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx):
direction = self.args[0].leadterm(x)[0]
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
when = Eq(direction, 0)
return Piecewise(
((s.subs(direction, 0)), when),
(sign(direction)*s, True),
)
def _sage_(self):
import sage.all as sage
return sage.abs_symbolic(self.args[0]._sage_())
def _eval_derivative(self, x):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
return rv.rewrite(sign)
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((arg, arg >= 0), (-arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
class arg(Function):
"""
Returns the argument (in radians) of a complex number. For a positive
number, the argument is always 0.
Examples
========
>>> from sympy.functions import arg
>>> from sympy import I, sqrt
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
"""
is_extended_real = True
is_real = True
is_finite = True
@classmethod
def eval(cls, arg):
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if arg_.atoms(AppliedUndef):
return
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
x, y = self.args[0].as_real_imag()
return atan2(y, x)
class conjugate(Function):
"""
Returns the `complex conjugate` Ref[1] of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where a and b are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp))
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm(u'\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
class periodic_argument(Function):
"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period P, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.
>>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp(5*I*pi))
pi
>>> unbranched_argument(exp_polar(5*I*pi))
5*pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_extended_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S(1)/2)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec)
def unbranched_argument(arg):
return periodic_argument(arg, oo)
class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number of infinity, `p`.
The result is "z mod exp_polar(I*p)".
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
from sympy import exp, pi, I
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like 1 + x will generally not be altered.
Note also that this function does not promote exp(x) to exp_polar(x).
If ``subs`` is True, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like posify.
If ``lift`` is True, both addition statements and non-polar symbols are
changed to their polar_lift()ed versions.
Note that lift=True implies subs=False.
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs={}, exponents_only=False):
"""
If p denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version eq' of `eq` such that
p(eq') == p(eq).
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes polarify.)
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs != {}:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
# /cyclic/
from sympy.core import basic as _
_.abs_ = Abs
del _
|
b6d47f3cb6f9f4442f0359011850d7aa7a6aebda2905b19a7151d8c3f213d7a7 | """Hypergeometric and Meijer G-functions"""
from __future__ import print_function, division
from sympy.core import S, I, pi, oo, zoo, ilcm, Mod
from sympy.core.function import Function, Derivative, ArgumentIndexError
from sympy.core.compatibility import reduce, range
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.symbol import Dummy
from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan,
sinh, cosh, asinh, acosh, atanh, acoth, Abs)
from sympy.utilities.iterables import default_sort_key
class TupleArg(Tuple):
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return TupleArg(*[limit(f, x, xlim, dir) for f in self.args])
# TODO should __new__ accept **options?
# TODO should constructors should check if parameters are sensible?
def _prep_tuple(v):
"""
Turn an iterable argument V into a Tuple and unpolarify, since both
hypergeometric and meijer g-functions are unbranched in their parameters.
Examples
========
>>> from sympy.functions.special.hyper import _prep_tuple
>>> _prep_tuple([1, 2, 3])
(1, 2, 3)
>>> _prep_tuple((4, 5))
(4, 5)
>>> _prep_tuple((7, 8, 9))
(7, 8, 9)
"""
from sympy import unpolarify
return TupleArg(*[unpolarify(x) for x in v])
class TupleParametersBase(Function):
""" Base class that takes care of differentiation, when some of
the arguments are actually tuples. """
# This is not deduced automatically since there are Tuples as arguments.
is_commutative = True
def _eval_derivative(self, s):
try:
res = 0
if self.args[0].has(s) or self.args[1].has(s):
for i, p in enumerate(self._diffargs):
m = self._diffargs[i].diff(s)
if m != 0:
res += self.fdiff((1, i))*m
return res + self.fdiff(3)*self.args[2].diff(s)
except (ArgumentIndexError, NotImplementedError):
return Derivative(self, s)
class hyper(TupleParametersBase):
r"""
The (generalized) hypergeometric function is defined by a series where
the ratios of successive terms are a rational function of the summation
index. When convergent, it is continued analytically to the largest
possible domain.
The hypergeometric function depends on two vectors of parameters, called
the numerator parameters :math:`a_p`, and the denominator parameters
:math:`b_q`. It also has an argument :math:`z`. The series definition is
.. math ::
{}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix}
\middle| z \right)
= \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n}
\frac{z^n}{n!},
where :math:`(a)_n = (a)(a+1)\cdots(a+n-1)` denotes the rising factorial.
If one of the :math:`b_q` is a non-positive integer then the series is
undefined unless one of the `a_p` is a larger (i.e. smaller in
magnitude) non-positive integer. If none of the :math:`b_q` is a
non-positive integer and one of the :math:`a_p` is a non-positive
integer, then the series reduces to a polynomial. To simplify the
following discussion, we assume that none of the :math:`a_p` or
:math:`b_q` is a non-positive integer. For more details, see the
references.
The series converges for all :math:`z` if :math:`p \le q`, and thus
defines an entire single-valued function in this case. If :math:`p =
q+1` the series converges for :math:`|z| < 1`, and can be continued
analytically into a half-plane. If :math:`p > q+1` the series is
divergent for all :math:`z`.
Note: The hypergeometric function constructor currently does *not* check
if the parameters actually yield a well-defined function.
Examples
========
The parameters :math:`a_p` and :math:`b_q` can be passed as arbitrary
iterables, for example:
>>> from sympy.functions import hyper
>>> from sympy.abc import x, n, a
>>> hyper((1, 2, 3), [3, 4], x)
hyper((1, 2, 3), (3, 4), x)
There is also pretty printing (it looks better using unicode):
>>> from sympy import pprint
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
_
|_ /1, 2, 3 | \
| | | x|
3 2 \ 3, 4 | /
The parameters must always be iterables, even if they are vectors of
length one or zero:
>>> hyper((1, ), [], x)
hyper((1,), (), x)
But of course they may be variables (but if they depend on x then you
should not expect much implemented functionality):
>>> hyper((n, a), (n**2,), x)
hyper((n, a), (n**2,), x)
The hypergeometric function generalizes many named special functions.
The function hyperexpand() tries to express a hypergeometric function
using named special functions.
For example:
>>> from sympy import hyperexpand
>>> hyperexpand(hyper([], [], x))
exp(x)
You can also use expand_func:
>>> from sympy import expand_func
>>> expand_func(x*hyper([1, 1], [2], -x))
log(x + 1)
More examples:
>>> from sympy import S
>>> hyperexpand(hyper([], [S(1)/2], -x**2/4))
cos(x)
>>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2))
asin(x)
We can also sometimes hyperexpand parametric functions:
>>> from sympy.abc import a
>>> hyperexpand(hyper([-a], [], x))
(1 - x)**a
See Also
========
sympy.simplify.hyperexpand
sympy.functions.special.gamma_functions.gamma
meijerg
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
"""
def __new__(cls, ap, bq, z):
# TODO should we check convergence conditions?
return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z)
@classmethod
def eval(cls, ap, bq, z):
from sympy import unpolarify
if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True):
nz = unpolarify(z)
if z != nz:
return hyper(ap, bq, nz)
def fdiff(self, argindex=3):
if argindex != 3:
raise ArgumentIndexError(self, argindex)
nap = Tuple(*[a + 1 for a in self.ap])
nbq = Tuple(*[b + 1 for b in self.bq])
fac = Mul(*self.ap)/Mul(*self.bq)
return fac*hyper(nap, nbq, self.argument)
def _eval_expand_func(self, **hints):
from sympy import gamma, hyperexpand
if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1:
a, b = self.ap
c = self.bq[0]
return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
return hyperexpand(self)
def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs):
from sympy.functions import factorial, RisingFactorial, Piecewise
from sympy import Sum
n = Dummy("n", integer=True)
rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
coeff = Mul(*rfap) / Mul(*rfbq)
return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)),
self.convergence_statement), (self, True))
@property
def argument(self):
""" Argument of the hypergeometric function. """
return self.args[2]
@property
def ap(self):
""" Numerator parameters of the hypergeometric function. """
return Tuple(*self.args[0])
@property
def bq(self):
""" Denominator parameters of the hypergeometric function. """
return Tuple(*self.args[1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def eta(self):
""" A quantity related to the convergence of the series. """
return sum(self.ap) - sum(self.bq)
@property
def radius_of_convergence(self):
"""
Compute the radius of convergence of the defining series.
Note that even if this is not oo, the function may still be evaluated
outside of the radius of convergence by analytic continuation. But if
this is zero, then the function is not actually defined anywhere else.
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyper((1, 2), [3], z).radius_of_convergence
1
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
0
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
oo
"""
if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq):
aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True]
bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True]
if len(aints) < len(bints):
return S(0)
popped = False
for b in bints:
cancelled = False
while aints:
a = aints.pop()
if a >= b:
cancelled = True
break
popped = True
if not cancelled:
return S(0)
if aints or popped:
# There are still non-positive numerator parameters.
# This is a polynomial.
return oo
if len(self.ap) == len(self.bq) + 1:
return S(1)
elif len(self.ap) <= len(self.bq):
return oo
else:
return S(0)
@property
def convergence_statement(self):
""" Return a condition on z under which the series converges. """
from sympy import And, Or, re, Ne, oo
R = self.radius_of_convergence
if R == 0:
return False
if R == oo:
return True
# The special functions and their approximations, page 44
e = self.eta
z = self.argument
c1 = And(re(e) < 0, abs(z) <= 1)
c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1))
c3 = And(re(e) >= 1, abs(z) < 1)
return Or(c1, c2, c3)
def _eval_simplify(self, **kwargs):
from sympy.simplify.hyperexpand import hyperexpand
return hyperexpand(self)
def _sage_(self):
import sage.all as sage
ap = [arg._sage_() for arg in self.args[0]]
bq = [arg._sage_() for arg in self.args[1]]
return sage.hypergeometric(ap, bq, self.argument._sage_())
class meijerg(TupleParametersBase):
r"""
The Meijer G-function is defined by a Mellin-Barnes type integral that
resembles an inverse Mellin transform. It generalizes the hypergeometric
functions.
The Meijer G-function depends on four sets of parameters. There are
"*numerator parameters*"
:math:`a_1, \ldots, a_n` and :math:`a_{n+1}, \ldots, a_p`, and there are
"*denominator parameters*"
:math:`b_1, \ldots, b_m` and :math:`b_{m+1}, \ldots, b_q`.
Confusingly, it is traditionally denoted as follows (note the position
of `m`, `n`, `p`, `q`, and how they relate to the lengths of the four
parameter vectors):
.. math ::
G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\
b_1, \cdots, b_m & b_{m+1}, \cdots, b_q
\end{matrix} \middle| z \right).
However, in sympy the four parameter vectors are always available
separately (see examples), so that there is no need to keep track of the
decorating sub- and super-scripts on the G symbol.
The G function is defined as the following integral:
.. math ::
\frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s)
\prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s)
\prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s,
where :math:`\Gamma(z)` is the gamma function. There are three possible
contours which we will not describe in detail here (see the references).
If the integral converges along more than one of them the definitions
agree. The contours all separate the poles of :math:`\Gamma(1-a_j+s)`
from the poles of :math:`\Gamma(b_k-s)`, so in particular the G function
is undefined if :math:`a_j - b_k \in \mathbb{Z}_{>0}` for some
:math:`j \le n` and :math:`k \le m`.
The conditions under which one of the contours yields a convergent integral
are complicated and we do not state them here, see the references.
Note: Currently the Meijer G-function constructor does *not* check any
convergence conditions.
Examples
========
You can pass the parameters either as four separate vectors:
>>> from sympy.functions import meijerg
>>> from sympy.abc import x, a
>>> from sympy.core.containers import Tuple
>>> from sympy import pprint
>>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False)
__1, 2 /1, 2 a, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
or as two nested vectors:
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False)
__1, 2 /1, 2 3, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
As with the hypergeometric function, the parameters may be passed as
arbitrary iterables. Vectors of length zero and one also have to be
passed as iterables. The parameters need not be constants, but if they
depend on the argument then not much implemented functionality should be
expected.
All the subvectors of parameters are available:
>>> from sympy import pprint
>>> g = meijerg([1], [2], [3], [4], x)
>>> pprint(g, use_unicode=False)
__1, 1 /1 2 | \
/__ | | x|
\_|2, 2 \3 4 | /
>>> g.an
(1,)
>>> g.ap
(1, 2)
>>> g.aother
(2,)
>>> g.bm
(3,)
>>> g.bq
(3, 4)
>>> g.bother
(4,)
The Meijer G-function generalizes the hypergeometric functions.
In some cases it can be expressed in terms of hypergeometric functions,
using Slater's theorem. For example:
>>> from sympy import hyperexpand
>>> from sympy.abc import a, b, c
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,),
(-b + c + 1,), -x)/gamma(-b + c + 1)
Thus the Meijer G-function also subsumes many named functions as special
cases. You can use expand_func or hyperexpand to (try to) rewrite a
Meijer G-function in terms of named special functions. For example:
>>> from sympy import expand_func, S
>>> expand_func(meijerg([[],[]], [[0],[]], -x))
exp(x)
>>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2))
sin(x)/sqrt(pi)
See Also
========
hyper
sympy.simplify.hyperexpand
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Meijer_G-function
"""
def __new__(cls, *args):
if len(args) == 5:
args = [(args[0], args[1]), (args[2], args[3]), args[4]]
if len(args) != 3:
raise TypeError("args must be either as, as', bs, bs', z or "
"as, bs, z")
def tr(p):
if len(p) != 2:
raise TypeError("wrong argument")
return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1]))
arg0, arg1 = tr(args[0]), tr(args[1])
if Tuple(arg0, arg1).has(oo, zoo, -oo):
raise ValueError("G-function parameters must be finite")
if any((a - b).is_Integer and a - b > 0
for a in arg0[0] for b in arg1[0]):
raise ValueError("no parameter a1, ..., an may differ from "
"any b1, ..., bm by a positive integer")
# TODO should we check convergence conditions?
return Function.__new__(cls, arg0, arg1, args[2])
def fdiff(self, argindex=3):
if argindex != 3:
return self._diff_wrt_parameter(argindex[1])
if len(self.an) >= 1:
a = list(self.an)
a[0] -= 1
G = meijerg(a, self.aother, self.bm, self.bother, self.argument)
return 1/self.argument * ((self.an[0] - 1)*self + G)
elif len(self.bm) >= 1:
b = list(self.bm)
b[0] += 1
G = meijerg(self.an, self.aother, b, self.bother, self.argument)
return 1/self.argument * (self.bm[0]*self - G)
else:
return S.Zero
def _diff_wrt_parameter(self, idx):
# Differentiation wrt a parameter can only be done in very special
# cases. In particular, if we want to differentiate with respect to
# `a`, all other gamma factors have to reduce to rational functions.
#
# Let MT denote mellin transform. Suppose T(-s) is the gamma factor
# appearing in the definition of G. Then
#
# MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ...
#
# Thus d/da G(z) = log(z)G(z) - ...
# The ... can be evaluated as a G function under the above conditions,
# the formula being most easily derived by using
#
# d Gamma(s + n) Gamma(s + n) / 1 1 1 \
# -- ------------ = ------------ | - + ---- + ... + --------- |
# ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 /
#
# which follows from the difference equation of the digamma function.
# (There is a similar equation for -n instead of +n).
# We first figure out how to pair the parameters.
an = list(self.an)
ap = list(self.aother)
bm = list(self.bm)
bq = list(self.bother)
if idx < len(an):
an.pop(idx)
else:
idx -= len(an)
if idx < len(ap):
ap.pop(idx)
else:
idx -= len(ap)
if idx < len(bm):
bm.pop(idx)
else:
bq.pop(idx - len(bm))
pairs1 = []
pairs2 = []
for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]:
while l1:
x = l1.pop()
found = None
for i, y in enumerate(l2):
if not Mod((x - y).simplify(), 1):
found = i
break
if found is None:
raise NotImplementedError('Derivative not expressible '
'as G-function?')
y = l2[i]
l2.pop(i)
pairs.append((x, y))
# Now build the result.
res = log(self.argument)*self
for a, b in pairs1:
sign = 1
n = a - b
base = b
if n < 0:
sign = -1
n = b - a
base = a
for k in range(n):
res -= sign*meijerg(self.an + (base + k + 1,), self.aother,
self.bm, self.bother + (base + k + 0,),
self.argument)
for a, b in pairs2:
sign = 1
n = b - a
base = a
if n < 0:
sign = -1
n = a - b
base = b
for k in range(n):
res -= sign*meijerg(self.an, self.aother + (base + k + 1,),
self.bm + (base + k + 0,), self.bother,
self.argument)
return res
def get_period(self):
"""
Return a number P such that G(x*exp(I*P)) == G(x).
>>> from sympy.functions.special.hyper import meijerg
>>> from sympy.abc import z
>>> from sympy import pi, S
>>> meijerg([1], [], [], [], z).get_period()
2*pi
>>> meijerg([pi], [], [], [], z).get_period()
oo
>>> meijerg([1, 2], [], [], [], z).get_period()
oo
>>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period()
12*pi
"""
# This follows from slater's theorem.
def compute(l):
# first check that no two differ by an integer
for i, b in enumerate(l):
if not b.is_Rational:
return oo
for j in range(i + 1, len(l)):
if not Mod((b - l[j]).simplify(), 1):
return oo
return reduce(ilcm, (x.q for x in l), 1)
beta = compute(self.bm)
alpha = compute(self.an)
p, q = len(self.ap), len(self.bq)
if p == q:
if beta == oo or alpha == oo:
return oo
return 2*pi*ilcm(alpha, beta)
elif p < q:
return 2*pi*beta
else:
return 2*pi*alpha
def _eval_expand_func(self, **hints):
from sympy import hyperexpand
return hyperexpand(self)
def _eval_evalf(self, prec):
# The default code is insufficient for polar arguments.
# mpmath provides an optional argument "r", which evaluates
# G(z**(1/r)). I am not sure what its intended use is, but we hijack it
# here in the following way: to evaluate at a number z of |argument|
# less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
# (carefully so as not to loose the branch information), and evaluate
# G(z'**(1/r)) = G(z'**n) = G(z).
from sympy.functions import exp_polar, ceiling
from sympy import Expr
import mpmath
znum = self.argument._eval_evalf(prec)
if znum.has(exp_polar):
znum, branch = znum.as_coeff_mul(exp_polar)
if len(branch) != 1:
return
branch = branch[0].args[0]/I
else:
branch = S(0)
n = ceiling(abs(branch/S.Pi)) + 1
znum = znum**(S(1)/n)*exp(I*branch / n)
# Convert all args to mpf or mpc
try:
[z, r, ap, bq] = [arg._to_mpmath(prec)
for arg in [znum, 1/n, self.args[0], self.args[1]]]
except ValueError:
return
with mpmath.workprec(prec):
v = mpmath.meijerg(ap, bq, z, r)
return Expr._from_mpmath(v, prec)
def integrand(self, s):
""" Get the defining integrand D(s). """
from sympy import gamma
return self.argument**s \
* Mul(*(gamma(b - s) for b in self.bm)) \
* Mul(*(gamma(1 - a + s) for a in self.an)) \
/ Mul(*(gamma(1 - b + s) for b in self.bother)) \
/ Mul(*(gamma(a - s) for a in self.aother))
@property
def argument(self):
""" Argument of the Meijer G-function. """
return self.args[2]
@property
def an(self):
""" First set of numerator parameters. """
return Tuple(*self.args[0][0])
@property
def ap(self):
""" Combined numerator parameters. """
return Tuple(*(self.args[0][0] + self.args[0][1]))
@property
def aother(self):
""" Second set of numerator parameters. """
return Tuple(*self.args[0][1])
@property
def bm(self):
""" First set of denominator parameters. """
return Tuple(*self.args[1][0])
@property
def bq(self):
""" Combined denominator parameters. """
return Tuple(*(self.args[1][0] + self.args[1][1]))
@property
def bother(self):
""" Second set of denominator parameters. """
return Tuple(*self.args[1][1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def nu(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return sum(self.bq) - sum(self.ap)
@property
def delta(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2
@property
def is_number(self):
""" Returns true if expression has numeric data only. """
return not self.free_symbols
class HyperRep(Function):
"""
A base class for "hyper representation functions".
This is used exclusively in hyperexpand(), but fits more logically here.
pFq is branched at 1 if p == q+1. For use with slater-expansion, we want
define an "analytic continuation" to all polar numbers, which is
continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want
a "nice" expression for the various cases.
This base class contains the core logic, concrete derived classes only
supply the actual functions.
"""
@classmethod
def eval(cls, *args):
from sympy import unpolarify
newargs = tuple(map(unpolarify, args[:-1])) + args[-1:]
if args != newargs:
return cls(*newargs)
@classmethod
def _expr_small(cls, x):
""" An expression for F(x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_small_minus(cls, x):
""" An expression for F(-x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_big(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """
raise NotImplementedError
@classmethod
def _expr_big_minus(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """
raise NotImplementedError
def _eval_rewrite_as_nonrep(self, *args, **kwargs):
from sympy import Piecewise
x, n = self.args[-1].extract_branch_factor(allow_half=True)
minus = False
newargs = self.args[:-1] + (x,)
if not n.is_Integer:
minus = True
n -= S(1)/2
newerargs = newargs + (n,)
if minus:
small = self._expr_small_minus(*newargs)
big = self._expr_big_minus(*newerargs)
else:
small = self._expr_small(*newargs)
big = self._expr_big(*newerargs)
if big == small:
return small
return Piecewise((big, abs(x) > 1), (small, True))
def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs):
x, n = self.args[-1].extract_branch_factor(allow_half=True)
args = self.args[:-1] + (x,)
if not n.is_Integer:
return self._expr_small_minus(*args)
return self._expr_small(*args)
class HyperRep_power1(HyperRep):
""" Return a representative for hyper([-a], [], z) == (1 - z)**a. """
@classmethod
def _expr_small(cls, a, x):
return (1 - x)**a
@classmethod
def _expr_small_minus(cls, a, x):
return (1 + x)**a
@classmethod
def _expr_big(cls, a, x, n):
if a.is_integer:
return cls._expr_small(a, x)
return (x - 1)**a*exp((2*n - 1)*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
if a.is_integer:
return cls._expr_small_minus(a, x)
return (1 + x)**a*exp(2*n*pi*I*a)
class HyperRep_power2(HyperRep):
""" Return a representative for hyper([a, a - 1/2], [2*a], z). """
@classmethod
def _expr_small(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a)
@classmethod
def _expr_small_minus(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a)
@classmethod
def _expr_big(cls, a, x, n):
sgn = -1
if n.is_odd:
sgn = 1
n -= 1
return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \
*exp(-2*n*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
sgn = 1
if n.is_odd:
sgn = -1
return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n)
class HyperRep_log1(HyperRep):
""" Represent -z*hyper([1, 1], [2], z) == log(1 - z). """
@classmethod
def _expr_small(cls, x):
return log(1 - x)
@classmethod
def _expr_small_minus(cls, x):
return log(1 + x)
@classmethod
def _expr_big(cls, x, n):
return log(x - 1) + (2*n - 1)*pi*I
@classmethod
def _expr_big_minus(cls, x, n):
return log(1 + x) + 2*n*pi*I
class HyperRep_atanh(HyperRep):
""" Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, x):
return atanh(sqrt(x))/sqrt(x)
def _expr_small_minus(cls, x):
return atan(sqrt(x))/sqrt(x)
def _expr_big(cls, x, n):
if n.is_even:
return (acoth(sqrt(x)) + I*pi/2)/sqrt(x)
else:
return (acoth(sqrt(x)) - I*pi/2)/sqrt(x)
def _expr_big_minus(cls, x, n):
if n.is_even:
return atan(sqrt(x))/sqrt(x)
else:
return (atan(sqrt(x)) - pi)/sqrt(x)
class HyperRep_asin1(HyperRep):
""" Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, z):
return asin(sqrt(z))/sqrt(z)
@classmethod
def _expr_small_minus(cls, z):
return asinh(sqrt(z))/sqrt(z)
@classmethod
def _expr_big(cls, z, n):
return S(-1)**n*((S(1)/2 - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z))
@classmethod
def _expr_big_minus(cls, z, n):
return S(-1)**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z))
class HyperRep_asin2(HyperRep):
""" Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """
# TODO this can be nicer
@classmethod
def _expr_small(cls, z):
return HyperRep_asin1._expr_small(z) \
/HyperRep_power1._expr_small(S(1)/2, z)
@classmethod
def _expr_small_minus(cls, z):
return HyperRep_asin1._expr_small_minus(z) \
/HyperRep_power1._expr_small_minus(S(1)/2, z)
@classmethod
def _expr_big(cls, z, n):
return HyperRep_asin1._expr_big(z, n) \
/HyperRep_power1._expr_big(S(1)/2, z, n)
@classmethod
def _expr_big_minus(cls, z, n):
return HyperRep_asin1._expr_big_minus(z, n) \
/HyperRep_power1._expr_big_minus(S(1)/2, z, n)
class HyperRep_sqrts1(HyperRep):
""" Return a representative for hyper([-a, 1/2 - a], [1/2], z). """
@classmethod
def _expr_small(cls, a, z):
return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return (1 + z)**a*cos(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) +
(sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2
else:
n -= 1
return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) +
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2
@classmethod
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_sqrts2(HyperRep):
""" Return a representative for
sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a]
== -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)"""
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
else:
n -= 1
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \
*sin(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_log2(HyperRep):
""" Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """
@classmethod
def _expr_small(cls, z):
return log(S(1)/2 + sqrt(1 - z)/2)
@classmethod
def _expr_small_minus(cls, z):
return log(S(1)/2 + sqrt(1 + z)/2)
@classmethod
def _expr_big(cls, z, n):
if n.is_even:
return (n - S(1)/2)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z))
else:
return (n - S(1)/2)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
def _expr_big_minus(cls, z, n):
if n.is_even:
return pi*I*n + log(S(1)/2 + sqrt(1 + z)/2)
else:
return pi*I*n + log(sqrt(1 + z)/2 - S(1)/2)
class HyperRep_cosasin(HyperRep):
""" Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """
# Note there are many alternative expressions, e.g. as powers of a sum of
# square roots.
@classmethod
def _expr_small(cls, a, z):
return cos(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return cosh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class HyperRep_sinasin(HyperRep):
""" Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z)
== sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class appellf1(Function):
r"""
This is the Appell hypergeometric function of two variables as:
.. math ::
F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}}
\frac{x^m y^n}{m! n!}.
References
==========
.. [1] https://en.wikipedia.org/wiki/Appell_series
.. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/
"""
@classmethod
def eval(cls, a, b1, b2, c, x, y):
if default_sort_key(b1) > default_sort_key(b2):
b1, b2 = b2, b1
x, y = y, x
return cls(a, b1, b2, c, x, y)
elif b1 == b2 and default_sort_key(x) > default_sort_key(y):
x, y = y, x
return cls(a, b1, b2, c, x, y)
if x == 0 and y == 0:
return S.One
def fdiff(self, argindex=5):
a, b1, b2, c, x, y = self.args
if argindex == 5:
return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y)
elif argindex == 6:
return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)
elif argindex in (1, 2, 3, 4):
return Derivative(self, self.args[argindex-1])
else:
raise ArgumentIndexError(self, argindex)
|
1da4f49999f17869d6c7738680950f1b81df3903b5ca452252fa7c2c97f071fa | from __future__ import print_function, division
from sympy.core import Add, S, sympify, oo, pi, Symbol, Dummy, expand_func
from sympy.core.compatibility import range, as_int
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.logic import fuzzy_and, fuzzy_not
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.error_functions import erf, erfc
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
def intlike(n):
try:
as_int(n, strict=False)
return True
except ValueError:
return False
###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################
class gamma(Function):
r"""
The gamma function
.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
The ``gamma`` function implements the function which passes through the
values of the factorial function, i.e. `\Gamma(n) = (n - 1)!` when n is
an integer. More general, `\Gamma(z)` is defined in the whole complex
plane except at the negative integers where there are simple poles.
Examples
========
>>> from sympy import S, I, pi, oo, gamma
>>> from sympy.abc import x
Several special values are known:
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2
The Gamma function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
See Also
========
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/GammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return self.func(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif intlike(arg):
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q
if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1
if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne
for i in range(3, 2*k, 2):
coeff *= i
if arg.is_positive:
return coeff*sqrt(S.Pi) / 2**n
else:
return 2**n*sqrt(S.Pi) / coeff
def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
if arg.is_Add:
coeff, tail = arg.as_coeff_add()
if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return self.func(tail)*RisingFactorial(tail, coeff)
return self.func(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
x = self.args[0]
if x.is_nonpositive and x.is_integer:
return False
if intlike(x) and x <= 0:
return False
if x.is_positive or x.is_noninteger:
return True
def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even
def _eval_rewrite_as_tractable(self, z, **kwargs):
return exp(loggamma(z))
def _eval_rewrite_as_factorial(self, z, **kwargs):
return factorial(z - 1)
def _eval_nseries(self, x, n, logx):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super(gamma, self)._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
def _sage_(self):
import sage.all as sage
return sage.gamma(self.args[0]._sage_())
###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################
class lowergamma(Function):
r"""
The lower incomplete gamma function.
It can be defined as the meromorphic continuation of
.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
This can be shown to be the same as
.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where :math:`{}_1F_1` is the (confluent) hypergeometric function.
Examples
========
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
# function of x.
# 3) For fixed non-positive integers s,
# lowergamma(s, exp(I*2*pi*n)*x) =
# 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
# (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
# lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
# where lowergamma_unbranched(s, x) is an entire function (in fact
# of both s and x), i.e.
# lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
from sympy import unpolarify, I
if x == 0:
return S.Zero
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
else:
return gamma(a) * (lowergamma(S.Half, x)/sqrt(pi) - exp(-x) * Add(*[x**(k-S.Half) / gamma(S.Half+k) for k in range(1, a+S.Half)]))
if not a.is_Integer:
return (-1)**(S.Half - a) * pi*erf(sqrt(x)) / gamma(1-a) + exp(-x) * Add(*[x**(k+a-1)*gamma(a) / gamma(a+k) for k in range(1, S(3)/2-a)])
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)
else:
return self
def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
return gamma(s) - uppergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)
class uppergamma(Function):
r"""
The upper incomplete gamma function.
It can be defined as the meromorphic continuation of
.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
where `\gamma(s, x)` is the lower incomplete gamma function,
:class:`lowergamma`. This can be shown to be the same as
.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where :math:`{}_1F_1` is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:
.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
Examples
========
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)
return self
@classmethod
def eval(cls, a, z):
from sympy import unpolarify, I, expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
return S.Zero
elif z is S.Zero:
# TODO: Holds only for Re(a) > 0:
return gamma(a)
# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and (a > 0) == True:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and (a <= 0) == True:
if n != 0:
return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)])
else:
return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)])
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)
if not a.is_Integer:
return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)])
def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
return gamma(s) - lowergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
return expint(1 - s, x)*x**s
def _sage_(self):
import sage.all as sage
return sage.gamma(self.args[0]._sage_(), self.args[1]._sage_())
###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################
class polygamma(Function):
r"""
The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
It is a meromorphic function on `\mathbb{C}` and defined as the (n+1)-th
derivative of the logarithm of the gamma function:
.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
Examples
========
Several special values are known:
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
1 - EulerGamma
>>> polygamma(0, 23)
19093197/5173168 - EulerGamma
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo
Differentiation with respect to x is supported:
>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)
>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)
We can rewrite polygamma functions in terms of harmonic numbers:
>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Polygamma_function
.. [2] http://mathworld.wolfram.com/PolygammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_positive(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_odd
def _eval_is_negative(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_even
def _eval_is_real(self):
return self.args[0].is_real
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super(polygamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]
if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
r -= Add(*l)
o = Order(1/z**(2*m), x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
# quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
@classmethod
def eval(cls, n, z):
n, z = map(sympify, (n, z))
from sympy import unpolarify
if n.is_integer:
if n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)
if n == -1:
return loggamma(z)
else:
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
if n.is_Number:
if n is S.Zero:
return S.Infinity
else:
return S.Zero
elif z.is_Integer:
if z.is_nonpositive:
return S.ComplexInfinity
else:
if n is S.Zero:
return -S.EulerGamma + harmonic(z - 1, 1)
elif n.is_odd:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
if n == 0:
if z is S.NaN:
return S.NaN
elif z.is_Rational:
p, q = z.as_numer_denom()
# only expand for small denominators to avoid creating long expressions
if q <= 5:
return expand_func(polygamma(n, z, evaluate=False))
elif z in (S.Infinity, S.NegativeInfinity):
return S.Infinity
else:
t = z.extract_multiplicatively(S.ImaginaryUnit)
if t in (S.Infinity, S.NegativeInfinity):
return S.Infinity
# TODO n == 1 also can do some rational z
def _eval_expand_func(self, **hints):
n, z = self.args
if n.is_Integer and n.is_nonnegative:
if z.is_Add:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
tail = Add(*[Pow(
z - i, e) for i in range(1, int(coeff) + 1)])
else:
tail = -Add(*[Pow(
z + i, e) for i in range(0, int(-coeff))])
return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail
elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [ polygamma(n, z + Rational(
i, coeff)) for i in range(0, int(coeff)) ]
if n == 0:
return Add(*tail)/coeff + log(coeff)
else:
return Add(*tail)/coeff**(n + 1)
z *= coeff
if n == 0 and z.is_Rational:
p, q = z.as_numer_denom()
# Reference:
# Values of the polygamma functions at rational arguments, J. Choi, 2007
part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
*[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
if z > 0:
n = floor(z)
z0 = z - n
return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
return polygamma(n, z)
def _eval_rewrite_as_zeta(self, n, z, **kwargs):
if n >= S.One:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
else:
return self
def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
if n.is_integer:
if n == S.Zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
def _eval_as_leading_term(self, x):
from sympy import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
return o.getn() * log(x)
else:
return self.func(n, z)
class loggamma(Function):
r"""
The ``loggamma`` function implements the logarithm of the
gamma function i.e, `\log\Gamma(x)`.
Examples
========
Several special values are known. For numerical integral
arguments we have:
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
and for symbolic values:
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
for half-integral values:
>>> from sympy import S, pi
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
and general rational arguments:
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The loggamma function has the following limits towards infinity:
>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo
The loggamma function obeys the mirror symmetry
if `x \in \mathbb{C} \setminus \{-\infty, 0\}`:
>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(loggamma(x), x, 0, 4)
-log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4)
We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:
>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/LogGammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
z = sympify(z)
if z.is_integer:
if z.is_nonpositive:
return S.Infinity
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
if z is S.Infinity:
return S.Infinity
elif abs(z) is S.Infinity:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN
def _eval_expand_func(self, **hints):
from sympy import Sum
z = self.args[0]
if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)
return self
def _eval_nseries(self, x, n, logx=None):
x0 = self.args[0].limit(x, 0)
if x0 is S.Zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super(loggamma, self)._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[0] != oo:
return super(loggamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[0]
m = min(n, ceiling((n + S(1))/2))
r = log(z)*(z - S(1)/2) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)]
o = None
if m == 0:
o = Order(1, x)
else:
o = Order(1/z**(2*m - 1), x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o
def _eval_rewrite_as_intractable(self, z, **kwargs):
return log(gamma(z))
def _eval_is_real(self):
return self.args[0].is_real
def _eval_conjugate(self):
z = self.args[0]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())
def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _sage_(self):
import sage.all as sage
return sage.log_gamma(self.args[0]._sage_())
def digamma(x):
r"""
The digamma function is the first derivative of the loggamma function i.e,
.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }
In this case, ``digamma(z) = polygamma(0, z)``.
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Digamma_function
.. [2] http://mathworld.wolfram.com/DigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(0, x)
def trigamma(x):
r"""
The trigamma function is the second derivative of the loggamma function i.e,
.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
In this case, ``trigamma(z) = polygamma(1, z)``.
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigamma_function
.. [2] http://mathworld.wolfram.com/TrigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(1, x)
###############################################################################
##################### COMPLETE MULTIVARIATE GAMMA FUNCTION ####################
###############################################################################
class multigamma(Function):
r"""
The multivariate gamma function is a generalization of the gamma function i.e,
.. math::
\Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].
Special case, multigamma(x, 1) = gamma(x)
Parameters
==========
p: order or dimension of the multivariate gamma function
Examples
========
>>> from sympy import S, I, pi, oo, gamma, multigamma
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> p = Symbol('p', positive=True, integer=True)
>>> multigamma(x, p)
pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
Several special values are known:
>>> multigamma(1, 1)
1
>>> multigamma(4, 1)
6
>>> multigamma(S(3)/2, 1)
sqrt(pi)/2
Writing multigamma in terms of gamma function
>>> multigamma(x, 1)
gamma(x)
>>> multigamma(x, 2)
sqrt(pi)*gamma(x)*gamma(x - 1/2)
>>> multigamma(x, 3)
pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
See Also
========
gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma
sympy.functions.special.beta_functions.beta
References
==========
.. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function
"""
unbranched = True
def fdiff(self, argindex=2):
from sympy import Sum
if argindex == 2:
x, p = self.args
k = Dummy("k")
return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, p):
from sympy import Product
x, p = map(sympify, (x, p))
if p.is_positive is False or p.is_integer is False:
raise ValueError('Order parameter p must be positive integer.')
k = Dummy("k")
return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2),
(k, 1, p))).doit()
def _eval_conjugate(self):
x, p = self.args
return self.func(x.conjugate(), p)
def _eval_is_real(self):
x, p = self.args
y = 2*x
if y.is_integer and (y <= (p - 1)) is True:
return False
if intlike(y) and (y <= (p - 1)):
return False
if y > (p - 1) or y.is_noninteger:
return True
|
65099b5c22b818c13d79eb01a8d48984b91f8b57ffcc07a92338c886cc8151e2 | from __future__ import print_function, division
from sympy.core import S, sympify, diff
from sympy.core.decorators import deprecated
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_not
from sympy.core.relational import Eq
from sympy.functions.elementary.complexes import im, sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.polyerrors import PolynomialError
from sympy.utilities import filldedent
###############################################################################
################################ DELTA FUNCTION ###############################
###############################################################################
class DiracDelta(Function):
"""
The DiracDelta function and its derivatives.
DiracDelta is not an ordinary function. It can be rigorously defined either
as a distribution or as a measure.
DiracDelta only makes sense in definite integrals, and in particular, integrals
of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``, where it equals
``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally, DiracDelta acts
in some ways like a function that is ``0`` everywhere except at ``0``,
but in many ways it also does not. It can often be useful to treat DiracDelta
in formal ways, building up and manipulating expressions with delta functions
(which may eventually be integrated), but care must be taken to not treat it
as a real function.
SymPy's ``oo`` is similar. It only truly makes sense formally in certain contexts
(such as integration limits), but SymPy allows its use everywhere, and it tries to be
consistent with operations on it (like ``1/oo``), but it is easy to get into trouble
and get wrong results if ``oo`` is treated too much like a number.
Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong
or nonsensical results.
DiracDelta function has the following properties:
1) ``diff(Heaviside(x), x) = DiracDelta(x)``
2) ``integrate(DiracDelta(x - a)*f(x),(x, -oo, oo)) = f(a)`` and
``integrate(DiracDelta(x - a)*f(x),(x, a - e, a + e)) = f(a)``
3) ``DiracDelta(x) = 0`` for all ``x != 0``
4) ``DiracDelta(g(x)) = Sum_i(DiracDelta(x - x_i)/abs(g'(x_i)))``
Where ``x_i``-s are the roots of ``g``
5) ``DiracDelta(-x) = DiracDelta(x)``
Derivatives of ``k``-th order of DiracDelta have the following property:
6) ``DiracDelta(x, k) = 0``, for all ``x != 0``
7) ``DiracDelta(-x, k) = -DiracDelta(x, k)`` for odd ``k``
8) ``DiracDelta(-x, k) = DiracDelta(x, k)`` for even ``k``
Examples
========
>>> from sympy import DiracDelta, diff, pi, Piecewise
>>> from sympy.abc import x, y
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(1)
0
>>> DiracDelta(-1)
0
>>> DiracDelta(pi)
0
>>> DiracDelta(x - 4).subs(x, 4)
DiracDelta(0)
>>> diff(DiracDelta(x))
DiracDelta(x, 1)
>>> diff(DiracDelta(x - 1),x,2)
DiracDelta(x - 1, 2)
>>> diff(DiracDelta(x**2 - 1),x,2)
2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1))
>>> DiracDelta(3*x).is_simple(x)
True
>>> DiracDelta(x**2).is_simple(x)
False
>>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y))
See Also
========
Heaviside
simplify, is_simple
sympy.functions.special.tensor_functions.KroneckerDelta
References
==========
.. [1] http://mathworld.wolfram.com/DeltaFunction.html
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a DiracDelta Function.
The difference between ``diff()`` and ``fdiff()`` is:-
``diff()`` is the user-level function and ``fdiff()`` is an object method.
``fdiff()`` is just a convenience method available in the ``Function`` class.
It returns the derivative of the function without considering the chain rule.
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls
``fdiff()`` internally to compute the derivative of the function.
Examples
========
>>> from sympy import DiracDelta, diff
>>> from sympy.abc import x
>>> DiracDelta(x).fdiff()
DiracDelta(x, 1)
>>> DiracDelta(x, 1).fdiff()
DiracDelta(x, 2)
>>> DiracDelta(x**2 - 1).fdiff()
DiracDelta(x**2 - 1, 1)
>>> diff(DiracDelta(x, 1)).fdiff()
DiracDelta(x, 3)
"""
if argindex == 1:
#I didn't know if there is a better way to handle default arguments
k = 0
if len(self.args) > 1:
k = self.args[1]
return self.func(self.args[0], k + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg, k=0):
"""
Returns a simplified form or a value of DiracDelta depending on the
argument passed by the DiracDelta object.
The ``eval()`` method is automatically called when the ``DiracDelta`` class
is about to be instantiated and it returns either some simplified instance
or the unevaluated instance depending on the argument passed. In other words,
``eval()`` method is not needed to be called explicitly, it is being called
and evaluated once the object is called.
Examples
========
>>> from sympy import DiracDelta, S, Subs
>>> from sympy.abc import x
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(-x, 1)
-DiracDelta(x, 1)
>>> DiracDelta(1)
0
>>> DiracDelta(5, 1)
0
>>> DiracDelta(0)
DiracDelta(0)
>>> DiracDelta(-1)
0
>>> DiracDelta(S.NaN)
nan
>>> DiracDelta(x).eval(1)
0
>>> DiracDelta(x - 100).subs(x, 5)
0
>>> DiracDelta(x - 100).subs(x, 100)
DiracDelta(0)
"""
k = sympify(k)
if not k.is_Integer or k.is_negative:
raise ValueError("Error: the second argument of DiracDelta must be \
a non-negative integer, %s given instead." % (k,))
arg = sympify(arg)
if arg is S.NaN:
return S.NaN
if arg.is_nonzero:
return S.Zero
if fuzzy_not(im(arg).is_zero):
raise ValueError(filldedent('''
Function defined only for Real Values.
Complex part: %s found in %s .''' % (
repr(im(arg)), repr(arg))))
c, nc = arg.args_cnc()
if c and c[0] == -1:
# keep this fast and simple instead of using
# could_extract_minus_sign
if k % 2 == 1:
return -cls(-arg, k)
elif k % 2 == 0:
return cls(-arg, k) if k else cls(-arg)
@deprecated(useinstead="expand(diracdelta=True, wrt=x)", issue=12859, deprecated_since_version="1.1")
def simplify(self, x, **kwargs):
return self.expand(diracdelta=True, wrt=x)
def _eval_expand_diracdelta(self, **hints):
"""Compute a simplified representation of the function using
property number 4. Pass wrt as a hint to expand the expression
with respect to a particular variable.
wrt is:
- a variable with respect to which a DiracDelta expression will
get expanded.
Examples
========
>>> from sympy import DiracDelta
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=x)
DiracDelta(x)/Abs(y)
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=y)
DiracDelta(y)/Abs(x)
>>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
See Also
========
is_simple, Diracdelta
"""
from sympy.polys.polyroots import roots
wrt = hints.get('wrt', None)
if wrt is None:
free = self.free_symbols
if len(free) == 1:
wrt = free.pop()
else:
raise TypeError(filldedent('''
When there is more than 1 free symbol or variable in the expression,
the 'wrt' keyword is required as a hint to expand when using the
DiracDelta hint.'''))
if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ):
return self
try:
argroots = roots(self.args[0], wrt)
result = 0
valid = True
darg = abs(diff(self.args[0], wrt))
for r, m in argroots.items():
if r.is_real is not False and m == 1:
result += self.func(wrt - r)/darg.subs(wrt, r)
else:
# don't handle non-real and if m != 1 then
# a polynomial will have a zero in the derivative (darg)
# at r
valid = False
break
if valid:
return result
except PolynomialError:
pass
return self
def is_simple(self, x):
"""is_simple(self, x)
Tells whether the argument(args[0]) of DiracDelta is a linear
expression in x.
x can be:
- a symbol
Examples
========
>>> from sympy import DiracDelta, cos
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True
>>> DiracDelta(x**2 + x - 2).is_simple(x)
False
>>> DiracDelta(cos(x)).is_simple(x)
False
See Also
========
simplify, Diracdelta
"""
p = self.args[0].as_poly(x)
if p:
return p.degree() == 1
return False
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
"""Represents DiracDelta in a Piecewise form
Examples
========
>>> from sympy import DiracDelta, Piecewise, Symbol, SingularityFunction
>>> x = Symbol('x')
>>> DiracDelta(x).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x, 0)), (0, True))
>>> DiracDelta(x - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True))
>>> DiracDelta(x**2 - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x**2 - 5, 0)), (0, True))
>>> DiracDelta(x - 5, 4).rewrite(Piecewise)
DiracDelta(x - 5, 4)
"""
if len(args) == 1:
return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True))
def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs):
"""
Returns the DiracDelta expression written in the form of Singularity Functions.
"""
from sympy.solvers import solve
from sympy.functions import SingularityFunction
if self == DiracDelta(0):
return SingularityFunction(0, 0, -1)
if self == DiracDelta(0, 1):
return SingularityFunction(0, 0, -2)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
if len(args) == 1:
return SingularityFunction(x, solve(args[0], x)[0], -1)
return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1)
else:
# I don't know how to handle the case for DiracDelta expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) doesn't support
arguments with more that 1 variable.'''))
def _sage_(self):
import sage.all as sage
return sage.dirac_delta(self.args[0]._sage_())
###############################################################################
############################## HEAVISIDE FUNCTION #############################
###############################################################################
class Heaviside(Function):
"""Heaviside Piecewise function
Heaviside function has the following properties [1]_:
1) ``diff(Heaviside(x),x) = DiracDelta(x)``
``( 0, if x < 0``
2) ``Heaviside(x) = < ( undefined if x==0 [1]``
``( 1, if x > 0``
3) ``Max(0,x).diff(x) = Heaviside(x)``
.. [1] Regarding to the value at 0, Mathematica defines ``H(0) = 1``,
but Maple uses ``H(0) = undefined``. Different application areas
may have specific conventions. For example, in control theory, it
is common practice to assume ``H(0) == 0`` to match the Laplace
transform of a DiracDelta distribution.
To specify the value of Heaviside at x=0, a second argument can be given.
Omit this 2nd argument or pass ``None`` to recover the default behavior.
>>> from sympy import Heaviside, S
>>> from sympy.abc import x
>>> Heaviside(9)
1
>>> Heaviside(-9)
0
>>> Heaviside(0)
Heaviside(0)
>>> Heaviside(0, S.Half)
1/2
>>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1))
Heaviside(x, 1) + 1
See Also
========
DiracDelta
References
==========
.. [2] http://mathworld.wolfram.com/HeavisideStepFunction.html
.. [3] http://dlmf.nist.gov/1.16#iv
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a Heaviside Function.
Examples
========
>>> from sympy import Heaviside, diff
>>> from sympy.abc import x
>>> Heaviside(x).fdiff()
DiracDelta(x)
>>> Heaviside(x**2 - 1).fdiff()
DiracDelta(x**2 - 1)
>>> diff(Heaviside(x)).fdiff()
DiracDelta(x, 1)
"""
if argindex == 1:
# property number 1
return DiracDelta(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def __new__(cls, arg, H0=None, **options):
if H0 is None:
return super(cls, cls).__new__(cls, arg, **options)
else:
return super(cls, cls).__new__(cls, arg, H0, **options)
@classmethod
def eval(cls, arg, H0=None):
"""
Returns a simplified form or a value of Heaviside depending on the
argument passed by the Heaviside object.
The ``eval()`` method is automatically called when the ``Heaviside`` class
is about to be instantiated and it returns either some simplified instance
or the unevaluated instance depending on the argument passed. In other words,
``eval()`` method is not needed to be called explicitly, it is being called
and evaluated once the object is called.
Examples
========
>>> from sympy import Heaviside, S
>>> from sympy.abc import x
>>> Heaviside(x)
Heaviside(x)
>>> Heaviside(19)
1
>>> Heaviside(0)
Heaviside(0)
>>> Heaviside(0, 1)
1
>>> Heaviside(-5)
0
>>> Heaviside(S.NaN)
nan
>>> Heaviside(x).eval(100)
1
>>> Heaviside(x - 100).subs(x, 5)
0
>>> Heaviside(x - 100).subs(x, 105)
1
"""
H0 = sympify(H0)
arg = sympify(arg)
if arg.is_extended_negative:
return S.Zero
elif arg.is_extended_positive:
return S.One
elif arg.is_zero:
return H0
elif arg is S.NaN:
return S.NaN
elif fuzzy_not(im(arg).is_zero):
raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) )
def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs):
"""Represents Heaviside in a Piecewise form
Examples
========
>>> from sympy import Heaviside, Piecewise, Symbol, pprint
>>> x = Symbol('x')
>>> Heaviside(x).rewrite(Piecewise)
Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0))
>>> Heaviside(x - 5).rewrite(Piecewise)
Piecewise((0, x - 5 < 0), (Heaviside(0), Eq(x - 5, 0)), (1, x - 5 > 0))
>>> Heaviside(x**2 - 1).rewrite(Piecewise)
Piecewise((0, x**2 - 1 < 0), (Heaviside(0), Eq(x**2 - 1, 0)), (1, x**2 - 1 > 0))
"""
if H0 is None:
return Piecewise((0, arg < 0), (Heaviside(0), Eq(arg, 0)), (1, arg > 0))
if H0 == 0:
return Piecewise((0, arg <= 0), (1, arg > 0))
if H0 == 1:
return Piecewise((0, arg < 0), (1, arg >= 0))
return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, arg > 0))
def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs):
"""Represents the Heaviside function in the form of sign function.
The value of the second argument of Heaviside must specify Heaviside(0)
= 1/2 for rewritting as sign to be strictly equivalent. For easier
usage, we also allow this rewriting when Heaviside(0) is undefined.
Examples
========
>>> from sympy import Heaviside, Symbol, sign
>>> x = Symbol('x', real=True)
>>> Heaviside(x).rewrite(sign)
sign(x)/2 + 1/2
>>> Heaviside(x, 0).rewrite(sign)
Heaviside(x, 0)
>>> Heaviside(x - 2).rewrite(sign)
sign(x - 2)/2 + 1/2
>>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
sign(x**2 - 2*x + 1)/2 + 1/2
>>> y = Symbol('y')
>>> Heaviside(y).rewrite(sign)
Heaviside(y)
>>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
Heaviside(y**2 - 2*y + 1)
See Also
========
sign
"""
if arg.is_extended_real:
if H0 is None or H0 == S.Half:
return (sign(arg)+1)/2
def _eval_rewrite_as_SingularityFunction(self, args, **kwargs):
"""
Returns the Heaviside expression written in the form of Singularity Functions.
"""
from sympy.solvers import solve
from sympy.functions import SingularityFunction
if self == Heaviside(0):
return SingularityFunction(0, 0, 0)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
return SingularityFunction(x, solve(args, x)[0], 0)
# TODO
# ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output
# SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0)
else:
# I don't know how to handle the case for Heaviside expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) doesn't
support arguments with more that 1 variable.'''))
def _sage_(self):
import sage.all as sage
return sage.heaviside(self.args[0]._sage_())
|
4964ee367968aac2e2ea34ee6ede5077ed75a37318a79362392c82769967ac53 | from __future__ import print_function, division
from functools import wraps
from sympy import S, pi, I, Rational, Wild, cacheit, sympify
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.power import Pow
from sympy.core.compatibility import range
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.trigonometric import sin, cos, csc, cot
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt, root
from sympy.functions.elementary.complexes import re, im
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.polys.orthopolys import spherical_bessel_fn as fn
# TODO
# o Scorer functions G1 and G2
# o Asymptotic expansions
# These are possible, e.g. for fixed order, but since the bessel type
# functions are oscillatory they are not actually tractable at
# infinity, so this is not particularly useful right now.
# o Series Expansions for functions of the second kind about zero
# o Nicer series expansions.
# o More rewriting.
# o Add solvers to ode.py (or rather add solvers for the hypergeometric equation).
class BesselBase(Function):
"""
Abstract base class for bessel-type functions.
This class is meant to reduce code duplication.
All Bessel type functions can 1) be differentiated, and the derivatives
expressed in terms of similar functions and 2) be rewritten in terms
of other bessel-type functions.
Here "bessel-type functions" are assumed to have one complex parameter.
To use this base class, define class attributes ``_a`` and ``_b`` such that
``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.
"""
@property
def order(self):
""" The order of the bessel-type function. """
return self.args[0]
@property
def argument(self):
""" The argument of the bessel-type function. """
return self.args[1]
@classmethod
def eval(cls, nu, z):
return
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return (self._b/2 * self.__class__(self.order - 1, self.argument) -
self._a/2 * self.__class__(self.order + 1, self.argument))
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return self.__class__(self.order.conjugate(), z.conjugate())
def _eval_expand_func(self, **hints):
nu, z, f = self.order, self.argument, self.__class__
if nu.is_extended_real:
if (nu - 1).is_extended_positive:
return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() +
2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z)
elif (nu + 1).is_extended_negative:
return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z -
self._a*self._b*f(nu + 2, z)._eval_expand_func())
return self
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import besselsimp
return besselsimp(self)
class besselj(BesselBase):
r"""
Bessel function of the first kind.
The Bessel `J` function of order `\nu` is defined to be the function
satisfying Bessel's differential equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,
with Laurent expansion
.. math ::
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),
if :math:`\nu` is not a negative integer. If :math:`\nu=-n \in \mathbb{Z}_{<0}`
*is* a negative integer, then the definition is
.. math ::
J_{-n}(z) = (-1)^n J_n(z).
Examples
========
Create a Bessel function object:
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
Differentiate it:
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
Rewrite in terms of spherical Bessel functions:
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
Access the parameter and argument:
>>> b.order
n
>>> b.argument
z
See Also
========
bessely, besseli, besselk
References
==========
.. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables
.. [2] Luke, Y. L. (1969), The Special Functions and Their
Approximations, Volume 1
.. [3] https://en.wikipedia.org/wiki/Bessel_function
.. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z is S.Infinity or (z is S.NegativeInfinity):
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besselj(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return S(-1)**(-nu)*besselj(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(nu)*besseli(nu, newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besselj(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besselj(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besselj(nnu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return sqrt(2*z/pi)*jn(nu - S.Half, self.argument)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_())
class bessely(BesselBase):
r"""
Bessel function of the second kind.
The Bessel `Y` function of order `\nu` is defined as
.. math ::
Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
- J_{-\mu}(z)}{\sin(\pi \mu)},
where :math:`J_\mu(z)` is the Bessel function of the first kind.
It is a solution to Bessel's equation, and linearly independent from
:math:`J_\nu`.
Examples
========
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
See Also
========
besselj, besseli, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.NegativeInfinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z is S.Infinity or z is S.NegativeInfinity:
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return S(-1)**(-nu)*bessely(-nu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z))
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(besseli)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return sqrt(2*z/pi) * yn(nu - S.Half, self.argument)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_())
class besseli(BesselBase):
r"""
Modified Bessel function of the first kind.
The Bessel I function is a solution to the modified Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.
It can be defined as
.. math ::
I_\nu(z) = i^{-\nu} J_\nu(iz),
where :math:`J_\nu(z)` is the Bessel function of the first kind.
Examples
========
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
See Also
========
besselj, bessely, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
"""
_a = -S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z.is_imaginary:
if im(z) is S.Infinity or im(z) is S.NegativeInfinity:
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besseli(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return besseli(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(-nu)*besselj(nu, -newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besseli(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besseli(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besseli(nnu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return self._eval_rewrite_as_besselj(*self.args).rewrite(jn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_())
class besselk(BesselBase):
r"""
Modified Bessel function of the second kind.
The Bessel K function of order :math:`\nu` is defined as
.. math ::
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
\frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},
where :math:`I_\mu(z)` is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent
from :math:`Y_\nu`.
Examples
========
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
See Also
========
besselj, besseli, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
"""
_a = S.One
_b = -S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.Infinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z.is_imaginary:
if im(z) is S.Infinity or im(z) is S.NegativeInfinity:
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return besselk(-nu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
if nu.is_integer is False:
return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
ai = self._eval_rewrite_as_besseli(*self.args)
if ai:
return ai.rewrite(besselj)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
ay = self._eval_rewrite_as_bessely(*self.args)
if ay:
return ay.rewrite(yn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_())
class hankel1(BesselBase):
r"""
Hankel function of the first kind.
This function is defined as
.. math ::
H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind, and
:math:`Y_\nu(z)` is the Bessel function of the second kind.
It is a solution to Bessel's equation.
Examples
========
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
See Also
========
hankel2, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel2(self.order.conjugate(), z.conjugate())
class hankel2(BesselBase):
r"""
Hankel function of the second kind.
This function is defined as
.. math ::
H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind, and
:math:`Y_\nu(z)` is the Bessel function of the second kind.
It is a solution to Bessel's equation, and linearly independent from
:math:`H_\nu^{(1)}`.
Examples
========
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
See Also
========
hankel1, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel1(self.order.conjugate(), z.conjugate())
def assume_integer_order(fn):
@wraps(fn)
def g(self, nu, z):
if nu.is_integer:
return fn(self, nu, z)
return g
class SphericalBesselBase(BesselBase):
"""
Base class for spherical Bessel functions.
These are thin wrappers around ordinary Bessel functions,
since spherical Bessel functions differ from the ordinary
ones just by a slight change in order.
To use this class, define the ``_rewrite`` and ``_expand`` methods.
"""
def _expand(self, **hints):
""" Expand self into a polynomial. Nu is guaranteed to be Integer. """
raise NotImplementedError('expansion')
def _rewrite(self):
""" Rewrite self in terms of ordinary Bessel functions. """
raise NotImplementedError('rewriting')
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
return self
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self._rewrite()._eval_evalf(prec)
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return self.__class__(self.order - 1, self.argument) - \
self * (self.order + 1)/self.argument
def _jn(n, z):
return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z)
def _yn(n, z):
# (-1)**(n + 1) * _jn(-n - 1, z)
return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z)
class jn(SphericalBesselBase):
r"""
Spherical Bessel function of the first kind.
This function is a solution to the spherical Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.
It can be defined as
.. math ::
j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind.
The spherical Bessel functions of integral order are
calculated using the formula:
.. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},
where the coefficients :math:`f_n(z)` are available as
:func:`polys.orthopolys.spherical_bessel_fn`.
Examples
========
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
>>> from sympy import simplify
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
See Also
========
besselj, bessely, besselk, yn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return (-1)**(nu) * yn(-nu - 1, z)
def _expand(self, **hints):
return _jn(self.order, self.argument)
class yn(SphericalBesselBase):
r"""
Spherical Bessel function of the second kind.
This function is another solution to the spherical Bessel equation, and
linearly independent from :math:`j_n`. It can be defined as
.. math ::
y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),
where :math:`Y_\nu(z)` is the Bessel function of the second kind.
For integral orders :math:`n`, :math:`y_n` is calculated using the formula:
.. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
True
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
See Also
========
besselj, bessely, besselk, jn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
def _rewrite(self):
return self._eval_rewrite_as_bessely(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return (-1)**(nu + 1) * jn(-nu - 1, z)
def _expand(self, **hints):
return _yn(self.order, self.argument)
class SphericalHankelBase(SphericalBesselBase):
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
# jn +- I*yn
# jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
# yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) +
hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z))
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
# jn +- I*yn
# jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
# yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) +
hks*I*bessely(nu + S.Half, z))
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn)
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
else:
nu = self.order
z = self.argument
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z)
def _expand(self, **hints):
n = self.order
z = self.argument
hks = self._hankel_kind_sign
# fully expanded version
# return ((fn(n, z) * sin(z) +
# (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn
# (hks * I * (-1)**(n + 1) *
# (fn(-n - 1, z) * hk * I * sin(z) +
# (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn
# )
return (_jn(n, z) + hks*I*_yn(n, z)).expand()
class hn1(SphericalHankelBase):
r"""
Spherical Hankel function of the first kind.
This function is defined as
.. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),
where :math:`j_\nu(z)` and :math:`y_\nu(z)` are the spherical
Bessel function of the first and second kinds.
For integral orders :math:`n`, :math:`h_n^(1)` is calculated using the formula:
.. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn1(nu, z)))
jn(nu, z) + I*yn(nu, z)
>>> print(expand_func(hn1(0, z)))
sin(z)/z - I*cos(z)/z
>>> print(expand_func(hn1(1, z)))
-I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
>>> hn1(nu, z).rewrite(jn)
(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn1(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
>>> hn1(nu, z).rewrite(hankel1)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
See Also
========
hn2, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = S.One
@assume_integer_order
def _eval_rewrite_as_hankel1(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel1(nu, z)
class hn2(SphericalHankelBase):
r"""
Spherical Hankel function of the second kind.
This function is defined as
.. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),
where :math:`j_\nu(z)` and :math:`y_\nu(z)` are the spherical
Bessel function of the first and second kinds.
For integral orders :math:`n`, :math:`h_n^(2)` is calculated using the formula:
.. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn2(nu, z)))
jn(nu, z) - I*yn(nu, z)
>>> print(expand_func(hn2(0, z)))
sin(z)/z + I*cos(z)/z
>>> print(expand_func(hn2(1, z)))
I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
>>> hn2(nu, z).rewrite(hankel2)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
>>> hn2(nu, z).rewrite(jn)
-(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn2(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
See Also
========
hn1, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = -S.One
@assume_integer_order
def _eval_rewrite_as_hankel2(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel2(nu, z)
def jn_zeros(n, k, method="sympy", dps=15):
"""
Zeros of the spherical Bessel function of the first kind.
This returns an array of zeros of jn up to the k-th zero.
* method = "sympy": uses :func:`mpmath.besseljzero`
* method = "scipy": uses the
`SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
and
`newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
to find all
roots, which is faster than computing the zeros using a general
numerical solver, but it requires SciPy and only works with low
precision floating point numbers. [The function used with
method="sympy" is a recent addition to mpmath, before that a general
solver was used.]
Examples
========
>>> from sympy import jn_zeros
>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
See Also
========
jn, yn, besselj, besselk, bessely
"""
from math import pi
if method == "sympy":
from mpmath import besseljzero
from mpmath.libmp.libmpf import dps_to_prec
from sympy import Expr
prec = dps_to_prec(dps)
return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec),
int(l)), prec)
for l in range(1, k + 1)]
elif method == "scipy":
from scipy.optimize import newton
try:
from scipy.special import spherical_jn
f = lambda x: spherical_jn(n, x)
except ImportError:
from scipy.special import sph_jn
f = lambda x: sph_jn(n, x)[0][-1]
else:
raise NotImplementedError("Unknown method.")
def solver(f, x):
if method == "scipy":
root = newton(f, x)
else:
raise NotImplementedError("Unknown method.")
return root
# we need to approximate the position of the first root:
root = n + pi
# determine the first root exactly:
root = solver(f, root)
roots = [root]
for i in range(k - 1):
# estimate the position of the next root using the last root + pi:
root = solver(f, root + pi)
roots.append(root)
return roots
class AiryBase(Function):
"""
Abstract base class for Airy functions.
This class is meant to reduce code duplication.
"""
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def as_real_imag(self, deep=True, **hints):
x, y = self._as_real_imag(deep=deep, **hints)
sq = -y**2/x**2
re = S.Half*(self.func(x+x*sqrt(sq))+self.func(x-x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x-x*sqrt(sq)) - self.func(x+x*sqrt(sq)))
return (re, im)
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
class airyai(AiryBase):
r"""
The Airy function `\operatorname{Ai}` of the first kind.
The Airy function `\operatorname{Ai}(z)` is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real `z`
.. math::
\operatorname{Ai}(z) := \frac{1}{\pi}
\int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airyai
>>> from sympy.abc import z
>>> airyai(z)
airyai(z)
Several special values are known:
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
Rewrite Ai(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airyaiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return ((3**(S(1)/3)*x)**(-n)*(3**(S(1)/3)*x)**(n + 1)*sin(pi*(2*n/3 + S(4)/3))*factorial(n) *
gamma(n/3 + S(2)/3)/(sin(pi*(2*n/3 + S(2)/3))*factorial(n + 1)*gamma(n/3 + S(1)/3)) * p)
else:
return (S.One/(3**(S(2)/3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a))
else:
return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (3**(S(2)/3)*gamma(S(2)/3))
pf2 = z / (root(3, 3)*gamma(S(1)/3))
return pf1 * hyper([], [S(2)/3], z**3/9) - pf2 * hyper([], [S(4)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.05.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg))
class airybi(AiryBase):
r"""
The Airy function `\operatorname{Bi}` of the second kind.
The Airy function `\operatorname{Bi}(z)` is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real `z`
.. math::
\operatorname{Bi}(z) := \frac{1}{\pi}
\int_0^\infty
\exp\left(-\frac{t^3}{3} + z t\right)
+ \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airybi
>>> from sympy.abc import z
>>> airybi(z)
airybi(z)
Several special values are known:
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> from sympy import oo
>>> airybi(oo)
oo
>>> airybi(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
Rewrite Bi(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airyai: Airy function of the first kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airybiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (3**(S(1)/3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) /
((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p)
else:
return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a))
else:
b = Pow(a, ot)
c = Pow(a, -ot)
return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (root(3, 6)*gamma(S(2)/3))
pf2 = z*root(3, 6) / gamma(S(1)/3)
return pf1 * hyper([], [S(2)/3], z**3/9) + pf2 * hyper([], [S(4)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.06.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg))
class airyaiprime(AiryBase):
r"""
The derivative `\operatorname{Ai}^\prime` of the Airy function of the first kind.
The Airy function `\operatorname{Ai}^\prime(z)` is defined to be the function
.. math::
\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airyaiprime
>>> from sympy.abc import z
>>> airyaiprime(z)
airyaiprime(z)
Several special values are known:
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
Rewrite Ai'(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyaiprime(z).rewrite(hyper)
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.Zero:
return -S.One / (3**Rational(1, 3) * gamma(Rational(1, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airyai(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airyai(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/3 * (besseli(tt, a) - besseli(-tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*3**(S(2)/3)*gamma(S(2)/3))
pf2 = 1 / (root(3, 3)*gamma(S(1)/3))
return pf1 * hyper([], [S(5)/3], z**3/9) - pf2 * hyper([], [S(1)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.07.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg))
class airybiprime(AiryBase):
r"""
The derivative `\operatorname{Bi}^\prime` of the Airy function of the first kind.
The Airy function `\operatorname{Bi}^\prime(z)` is defined to be the function
.. math::
\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airybiprime
>>> from sympy.abc import z
>>> airybiprime(z)
airybiprime(z)
Several special values are known:
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> from sympy import oo
>>> airybiprime(oo)
oo
>>> airybiprime(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
Rewrite Bi'(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airybi(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airybi(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = tt * Pow(-z, Rational(3, 2))
if re(z).is_negative:
return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*root(3, 6)*gamma(S(2)/3))
pf2 = root(3, 6) / gamma(S(1)/3)
return pf1 * hyper([], [S(5)/3], z**3/9) + pf2 * hyper([], [S(1)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.08.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg))
|
2751aa9130ce5b22e5ea43007c92ee63bbba06430d077e5bd24b44cc695c59e8 | from __future__ import print_function, division
from sympy.core import S, Integer
from sympy.core.compatibility import range, SYMPY_INTS
from sympy.core.function import Function
from sympy.core.logic import fuzzy_not
from sympy.core.mul import prod
from sympy.utilities.iterables import (has_dups, default_sort_key)
###############################################################################
###################### Kronecker Delta, Levi-Civita etc. ######################
###############################################################################
def Eijk(*args, **kwargs):
"""
Represent the Levi-Civita symbol.
This is just compatibility wrapper to ``LeviCivita()``.
See Also
========
LeviCivita
"""
return LeviCivita(*args, **kwargs)
def eval_levicivita(*args):
"""Evaluate Levi-Civita symbol."""
from sympy import factorial
n = len(args)
return prod(
prod(args[j] - args[i] for j in range(i + 1, n))
/ factorial(i) for i in range(n))
# converting factorial(i) to int is slightly faster
class LeviCivita(Function):
"""Represent the Levi-Civita symbol.
For even permutations of indices it returns 1, for odd permutations -1, and
for everything else (a repeated index) it returns 0.
Thus it represents an alternating pseudotensor.
Examples
========
>>> from sympy import LeviCivita
>>> from sympy.abc import i, j, k
>>> LeviCivita(1, 2, 3)
1
>>> LeviCivita(1, 3, 2)
-1
>>> LeviCivita(1, 2, 2)
0
>>> LeviCivita(i, j, k)
LeviCivita(i, j, k)
>>> LeviCivita(i, j, i)
0
See Also
========
Eijk
"""
is_integer = True
@classmethod
def eval(cls, *args):
if all(isinstance(a, (SYMPY_INTS, Integer)) for a in args):
return eval_levicivita(*args)
if has_dups(args):
return S.Zero
def doit(self):
return eval_levicivita(*self.args)
class KroneckerDelta(Function):
"""The discrete, or Kronecker, delta function.
A function that takes in two integers `i` and `j`. It returns `0` if `i` and `j` are
not equal or it returns `1` if `i` and `j` are equal.
Parameters
==========
i : Number, Symbol
The first index of the delta function.
j : Number, Symbol
The second index of the delta function.
Examples
========
A simple example with integer indices::
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> KroneckerDelta(1, 2)
0
>>> KroneckerDelta(3, 3)
1
Symbolic indices::
>>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
See Also
========
eval
sympy.functions.special.delta_functions.DiracDelta
References
==========
.. [1] https://en.wikipedia.org/wiki/Kronecker_delta
"""
is_integer = True
@classmethod
def eval(cls, i, j):
"""
Evaluates the discrete delta function.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
# indirect doctest
"""
diff = i - j
if diff.is_zero:
return S.One
elif fuzzy_not(diff.is_zero):
return S.Zero
if i.assumptions0.get("below_fermi") and \
j.assumptions0.get("above_fermi"):
return S.Zero
if j.assumptions0.get("below_fermi") and \
i.assumptions0.get("above_fermi"):
return S.Zero
# to make KroneckerDelta canonical
# following lines will check if inputs are in order
# if not, will return KroneckerDelta with correct order
if i is not min(i, j, key=default_sort_key):
return cls(j, i)
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative and not -expt is S.One:
return 1/self
@property
def is_above_fermi(self):
"""
True if Delta can be non-zero above fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_above_fermi
True
>>> KroneckerDelta(p, i).is_above_fermi
False
>>> KroneckerDelta(p, q).is_above_fermi
True
See Also
========
is_below_fermi, is_only_below_fermi, is_only_above_fermi
"""
if self.args[0].assumptions0.get("below_fermi"):
return False
if self.args[1].assumptions0.get("below_fermi"):
return False
return True
@property
def is_below_fermi(self):
"""
True if Delta can be non-zero below fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_below_fermi
False
>>> KroneckerDelta(p, i).is_below_fermi
True
>>> KroneckerDelta(p, q).is_below_fermi
True
See Also
========
is_above_fermi, is_only_above_fermi, is_only_below_fermi
"""
if self.args[0].assumptions0.get("above_fermi"):
return False
if self.args[1].assumptions0.get("above_fermi"):
return False
return True
@property
def is_only_above_fermi(self):
"""
True if Delta is restricted to above fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_only_above_fermi
True
>>> KroneckerDelta(p, q).is_only_above_fermi
False
>>> KroneckerDelta(p, i).is_only_above_fermi
False
See Also
========
is_above_fermi, is_below_fermi, is_only_below_fermi
"""
return ( self.args[0].assumptions0.get("above_fermi")
or
self.args[1].assumptions0.get("above_fermi")
) or False
@property
def is_only_below_fermi(self):
"""
True if Delta is restricted to below fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, i).is_only_below_fermi
True
>>> KroneckerDelta(p, q).is_only_below_fermi
False
>>> KroneckerDelta(p, a).is_only_below_fermi
False
See Also
========
is_above_fermi, is_below_fermi, is_only_above_fermi
"""
return ( self.args[0].assumptions0.get("below_fermi")
or
self.args[1].assumptions0.get("below_fermi")
) or False
@property
def indices_contain_equal_information(self):
"""
Returns True if indices are either both above or below fermi.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, q).indices_contain_equal_information
True
>>> KroneckerDelta(p, q+1).indices_contain_equal_information
True
>>> KroneckerDelta(i, p).indices_contain_equal_information
False
"""
if (self.args[0].assumptions0.get("below_fermi") and
self.args[1].assumptions0.get("below_fermi")):
return True
if (self.args[0].assumptions0.get("above_fermi")
and self.args[1].assumptions0.get("above_fermi")):
return True
# if both indices are general we are True, else false
return self.is_below_fermi and self.is_above_fermi
@property
def preferred_index(self):
"""
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi
level. If indices contain same information, 'a' is preferred before
'b'.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).preferred_index
i
>>> KroneckerDelta(p, a).preferred_index
a
>>> KroneckerDelta(i, j).preferred_index
i
See Also
========
killable_index
"""
if self._get_preferred_index():
return self.args[1]
else:
return self.args[0]
@property
def killable_index(self):
"""
Returns the index which is preferred to substitute in the final
expression.
The index to substitute is the index with less information regarding
fermi level. If indices contain same information, 'a' is preferred
before 'b'.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).killable_index
p
>>> KroneckerDelta(p, a).killable_index
p
>>> KroneckerDelta(i, j).killable_index
j
See Also
========
preferred_index
"""
if self._get_preferred_index():
return self.args[0]
else:
return self.args[1]
def _get_preferred_index(self):
"""
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi
level. If indices contain same information, index 0 is returned.
"""
if not self.is_above_fermi:
if self.args[0].assumptions0.get("below_fermi"):
return 0
else:
return 1
elif not self.is_below_fermi:
if self.args[0].assumptions0.get("above_fermi"):
return 0
else:
return 1
else:
return 0
@property
def indices(self):
return self.args[0:2]
def _sage_(self):
import sage.all as sage
return sage.kronecker_delta(self.args[0]._sage_(), self.args[1]._sage_())
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.core.relational import Ne
i, j = args
return Piecewise((0, Ne(i, j)), (1, True))
|
f0bb14f8af272aca93c891fa8830dd4f39c438fd5344acfa48be1ef2805c590a | from sympy import (S, Symbol, symbols, factorial, factorial2, Float, binomial,
rf, ff, gamma, polygamma, EulerGamma, O, pi, nan,
oo, zoo, simplify, expand_func, Product, Mul, Piecewise,
Mod, Eq, sqrt, Poly, Dummy, I)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.functions.combinatorial.factorials import subfactorial
from sympy.functions.special.gamma_functions import uppergamma
from sympy.utilities.pytest import XFAIL, raises, slow
#Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
def test_rf_eval_apply():
x, y = symbols('x,y')
n, k = symbols('n k', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
assert rf(nan, y) == nan
assert rf(x, nan) == nan
assert unchanged(rf, x, y)
assert rf(oo, 0) == 1
assert rf(-oo, 0) == 1
assert rf(oo, 6) == oo
assert rf(-oo, 7) == -oo
assert rf(-oo, 6) == oo
assert rf(oo, -6) == oo
assert rf(-oo, -7) == oo
assert rf(-1, pi) == 0
assert rf(-5, 1 + I) == 0
assert unchanged(rf, -3, k)
assert unchanged(rf, x, Symbol('k', integer=False))
assert rf(-3, Symbol('k', integer=False)) == 0
assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0
assert rf(x, 0) == 1
assert rf(x, 1) == x
assert rf(x, 2) == x*(x + 1)
assert rf(x, 3) == x*(x + 1)*(x + 2)
assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)
assert rf(x, -1) == 1/(x - 1)
assert rf(x, -2) == 1/((x - 1)*(x - 2))
assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))
assert rf(1, 100) == factorial(100)
assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
assert isinstance(rf(x**2 + 3*x, 2), Mul)
assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))
assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))
assert rf(x, m).is_integer is None
assert rf(n, k).is_integer is None
assert rf(n, m).is_integer is True
assert rf(n, k + pi).is_integer is False
assert rf(n, m + pi).is_integer is False
assert rf(pi, m).is_integer is False
assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
assert rf(n, k).rewrite(factorial) == \
factorial(n + k - 1) / factorial(n - 1)
assert rf(x, y).rewrite(factorial) == rf(x, y)
assert rf(x, y).rewrite(binomial) == rf(x, y)
import random
from mpmath import rf as mpmath_rf
for i in range(100):
x = -500 + 500 * random.random()
k = -500 + 500 * random.random()
assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
def test_ff_eval_apply():
x, y = symbols('x,y')
n, k = symbols('n k', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
assert ff(nan, y) == nan
assert ff(x, nan) == nan
assert unchanged(ff, x, y)
assert ff(oo, 0) == 1
assert ff(-oo, 0) == 1
assert ff(oo, 6) == oo
assert ff(-oo, 7) == -oo
assert ff(-oo, 6) == oo
assert ff(oo, -6) == oo
assert ff(-oo, -7) == oo
assert ff(x, 0) == 1
assert ff(x, 1) == x
assert ff(x, 2) == x*(x - 1)
assert ff(x, 3) == x*(x - 1)*(x - 2)
assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
assert ff(x, -1) == 1/(x + 1)
assert ff(x, -2) == 1/((x + 1)*(x + 2))
assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))
assert ff(100, 100) == factorial(100)
assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1)
assert isinstance(ff(2*x**2 - 5*x, 2), Mul)
assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2))
assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x)
assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly)
raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2))
assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)
raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2))
assert ff(x, m).is_integer is None
assert ff(n, k).is_integer is None
assert ff(n, m).is_integer is True
assert ff(n, k + pi).is_integer is False
assert ff(n, m + pi).is_integer is False
assert ff(pi, m).is_integer is False
assert isinstance(ff(x, x), ff)
assert ff(n, n) == factorial(n)
assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x)
assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
assert ff(x, y).rewrite(factorial) == ff(x, y)
assert ff(x, y).rewrite(binomial) == ff(x, y)
import random
from mpmath import ff as mpmath_ff
for i in range(100):
x = -500 + 500 * random.random()
k = -500 + 500 * random.random()
assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15))
def test_rf_ff_eval_hiprec():
maple = Float('6.9109401292234329956525265438452')
us = ff(18, S(2)/3).evalf(32)
assert abs(us - maple)/us < 1e-31
maple = Float('6.8261540131125511557924466355367')
us = rf(18, S(2)/3).evalf(32)
assert abs(us - maple)/us < 1e-31
maple = Float('34.007346127440197150854651814225')
us = rf(Float('4.4', 32), Float('2.2', 32));
assert abs(us - maple)/us < 1e-31
def test_rf_lambdify_mpmath():
from sympy import lambdify
x, y = symbols('x,y')
f = lambdify((x,y), rf(x, y), 'mpmath')
maple = Float('34.007346127440197')
us = f(4.4, 2.2)
assert abs(us - maple)/us < 1e-15
def test_factorial():
x = Symbol('x')
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, nonnegative=True)
r = Symbol('r', integer=False)
s = Symbol('s', integer=False, negative=True)
t = Symbol('t', nonnegative=True)
u = Symbol('u', noninteger=True)
assert factorial(-2) == zoo
assert factorial(0) == 1
assert factorial(7) == 5040
assert factorial(19) == 121645100408832000
assert factorial(31) == 8222838654177922817725562880000000
assert factorial(n).func == factorial
assert factorial(2*n).func == factorial
assert factorial(x).is_integer is None
assert factorial(n).is_integer is None
assert factorial(k).is_integer
assert factorial(r).is_integer is None
assert factorial(n).is_positive is None
assert factorial(k).is_positive
assert factorial(x).is_real is None
assert factorial(n).is_real is None
assert factorial(k).is_real is True
assert factorial(r).is_real is None
assert factorial(s).is_real is True
assert factorial(t).is_real is True
assert factorial(u).is_real is True
assert factorial(x).is_composite is None
assert factorial(n).is_composite is None
assert factorial(k).is_composite is None
assert factorial(k + 3).is_composite is True
assert factorial(r).is_composite is None
assert factorial(s).is_composite is None
assert factorial(t).is_composite is None
assert factorial(u).is_composite is None
assert factorial(oo) == oo
def test_factorial_Mod():
pr = Symbol('pr', prime=True)
p, q = 10**9 + 9, 10**9 + 33 # prime modulo
r, s = 10**7 + 5, 33333333 # composite modulo
assert Mod(factorial(pr - 1), pr) == pr - 1
assert Mod(factorial(pr - 1), -pr) == -1
assert Mod(factorial(r - 1, evaluate=False), r) == 0
assert Mod(factorial(s - 1, evaluate=False), s) == 0
assert Mod(factorial(p - 1, evaluate=False), p) == p - 1
assert Mod(factorial(q - 1, evaluate=False), q) == q - 1
assert Mod(factorial(p - 50, evaluate=False), p) == 854928834
assert Mod(factorial(q - 1800, evaluate=False), q) == 905504050
assert Mod(factorial(153, evaluate=False), r) == Mod(factorial(153), r)
assert Mod(factorial(255, evaluate=False), s) == Mod(factorial(255), s)
def test_factorial_diff():
n = Symbol('n', integer=True)
assert factorial(n).diff(n) == \
gamma(1 + n)*polygamma(0, 1 + n)
assert factorial(n**2).diff(n) == \
2*n*gamma(1 + n**2)*polygamma(0, 1 + n**2)
raises(ArgumentIndexError, lambda: factorial(n**2).fdiff(2))
def test_factorial_series():
n = Symbol('n', integer=True)
assert factorial(n).series(n, 0, 3) == \
1 - n*EulerGamma + n**2*(EulerGamma**2/2 + pi**2/12) + O(n**3)
def test_factorial_rewrite():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, nonnegative=True)
assert factorial(n).rewrite(gamma) == gamma(n + 1)
_i = Dummy('i')
assert factorial(k).rewrite(Product).dummy_eq(Product(_i, (_i, 1, k)))
assert factorial(n).rewrite(Product) == factorial(n)
def test_factorial2():
n = Symbol('n', integer=True)
assert factorial2(-1) == 1
assert factorial2(0) == 1
assert factorial2(7) == 105
assert factorial2(8) == 384
# The following is exhaustive
tt = Symbol('tt', integer=True, nonnegative=True)
tte = Symbol('tte', even=True, nonnegative=True)
tpe = Symbol('tpe', even=True, positive=True)
tto = Symbol('tto', odd=True, nonnegative=True)
tf = Symbol('tf', integer=True, nonnegative=False)
tfe = Symbol('tfe', even=True, nonnegative=False)
tfo = Symbol('tfo', odd=True, nonnegative=False)
ft = Symbol('ft', integer=False, nonnegative=True)
ff = Symbol('ff', integer=False, nonnegative=False)
fn = Symbol('fn', integer=False)
nt = Symbol('nt', nonnegative=True)
nf = Symbol('nf', nonnegative=False)
nn = Symbol('nn')
z = Symbol('z', zero=True)
#Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
raises(ValueError, lambda: factorial2(oo))
raises(ValueError, lambda: factorial2(S(5)/2))
raises(ValueError, lambda: factorial2(-4))
assert factorial2(n).is_integer is None
assert factorial2(tt - 1).is_integer
assert factorial2(tte - 1).is_integer
assert factorial2(tpe - 3).is_integer
assert factorial2(tto - 4).is_integer
assert factorial2(tto - 2).is_integer
assert factorial2(tf).is_integer is None
assert factorial2(tfe).is_integer is None
assert factorial2(tfo).is_integer is None
assert factorial2(ft).is_integer is None
assert factorial2(ff).is_integer is None
assert factorial2(fn).is_integer is None
assert factorial2(nt).is_integer is None
assert factorial2(nf).is_integer is None
assert factorial2(nn).is_integer is None
assert factorial2(n).is_positive is None
assert factorial2(tt - 1).is_positive is True
assert factorial2(tte - 1).is_positive is True
assert factorial2(tpe - 3).is_positive is True
assert factorial2(tpe - 1).is_positive is True
assert factorial2(tto - 2).is_positive is True
assert factorial2(tto - 1).is_positive is True
assert factorial2(tf).is_positive is None
assert factorial2(tfe).is_positive is None
assert factorial2(tfo).is_positive is None
assert factorial2(ft).is_positive is None
assert factorial2(ff).is_positive is None
assert factorial2(fn).is_positive is None
assert factorial2(nt).is_positive is None
assert factorial2(nf).is_positive is None
assert factorial2(nn).is_positive is None
assert factorial2(tt).is_even is None
assert factorial2(tt).is_odd is None
assert factorial2(tte).is_even is None
assert factorial2(tte).is_odd is None
assert factorial2(tte + 2).is_even is True
assert factorial2(tpe).is_even is True
assert factorial2(tpe).is_odd is False
assert factorial2(tto).is_odd is True
assert factorial2(tf).is_even is None
assert factorial2(tf).is_odd is None
assert factorial2(tfe).is_even is None
assert factorial2(tfe).is_odd is None
assert factorial2(tfo).is_even is False
assert factorial2(tfo).is_odd is None
assert factorial2(z).is_even is False
assert factorial2(z).is_odd is True
def test_factorial2_rewrite():
n = Symbol('n', integer=True)
assert factorial2(n).rewrite(gamma) == \
2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
assert factorial2(2*n + 1).rewrite(gamma) == \
sqrt(2)*2**(n + S(1)/2)*gamma(n + S(3)/2)/sqrt(pi)
def test_binomial():
x = Symbol('x')
n = Symbol('n', integer=True)
nz = Symbol('nz', integer=True, nonzero=True)
k = Symbol('k', integer=True)
kp = Symbol('kp', integer=True, positive=True)
kn = Symbol('kn', integer=True, negative=True)
u = Symbol('u', negative=True)
v = Symbol('v', nonnegative=True)
p = Symbol('p', positive=True)
z = Symbol('z', zero=True)
nt = Symbol('nt', integer=False)
kt = Symbol('kt', integer=False)
a = Symbol('a', integer=True, nonnegative=True)
b = Symbol('b', integer=True, nonnegative=True)
assert binomial(0, 0) == 1
assert binomial(1, 1) == 1
assert binomial(10, 10) == 1
assert binomial(n, z) == 1
assert binomial(1, 2) == 0
assert binomial(-1, 2) == 1
assert binomial(1, -1) == 0
assert binomial(-1, 1) == -1
assert binomial(-1, -1) == 0
assert binomial(S.Half, S.Half) == 1
assert binomial(-10, 1) == -10
assert binomial(-10, 7) == -11440
assert binomial(n, -1) == 0 # holds for all integers (negative, zero, positive)
assert binomial(kp, -1) == 0
assert binomial(nz, 0) == 1
assert expand_func(binomial(n, 1)) == n
assert expand_func(binomial(n, 2)) == n*(n - 1)/2
assert expand_func(binomial(n, n - 2)) == n*(n - 1)/2
assert expand_func(binomial(n, n - 1)) == n
assert binomial(n, 3).func == binomial
assert binomial(n, 3).expand(func=True) == n**3/6 - n**2/2 + n/3
assert expand_func(binomial(n, 3)) == n*(n - 2)*(n - 1)/6
assert binomial(n, n).func == binomial # e.g. (-1, -1) == 0, (2, 2) == 1
assert binomial(n, n + 1).func == binomial # e.g. (-1, 0) == 1
assert binomial(kp, kp + 1) == 0
assert binomial(kn, kn) == 0 # issue #14529
assert binomial(n, u).func == binomial
assert binomial(kp, u).func == binomial
assert binomial(n, p).func == binomial
assert binomial(n, k).func == binomial
assert binomial(n, n + p).func == binomial
assert binomial(kp, kp + p).func == binomial
assert expand_func(binomial(n, n - 3)) == n*(n - 2)*(n - 1)/6
assert binomial(n, k).is_integer
assert binomial(nt, k).is_integer is None
assert binomial(x, nt).is_integer is False
assert binomial(gamma(25), 6) == 79232165267303928292058750056084441948572511312165380965440075720159859792344339983120618959044048198214221915637090855535036339620413440000
assert binomial(1324, 47) == 906266255662694632984994480774946083064699457235920708992926525848438478406790323869952
assert binomial(1735, 43) == 190910140420204130794758005450919715396159959034348676124678207874195064798202216379800
assert binomial(2512, 53) == 213894469313832631145798303740098720367984955243020898718979538096223399813295457822575338958939834177325304000
assert binomial(3383, 52) == 27922807788818096863529701501764372757272890613101645521813434902890007725667814813832027795881839396839287659777235
assert binomial(4321, 51) == 124595639629264868916081001263541480185227731958274383287107643816863897851139048158022599533438936036467601690983780576
assert binomial(a, b).is_nonnegative is True
assert binomial(-1, 2, evaluate=False).is_nonnegative is True
assert binomial(10, 5, evaluate=False).is_nonnegative is True
assert binomial(10, -3, evaluate=False).is_nonnegative is True
assert binomial(-10, -3, evaluate=False).is_nonnegative is True
assert binomial(-10, 2, evaluate=False).is_nonnegative is True
assert binomial(-10, 1, evaluate=False).is_nonnegative is False
assert binomial(-10, 7, evaluate=False).is_nonnegative is False
# issue #14625
for _ in (pi, -pi, nt, v, a):
assert binomial(_, _) == 1
assert binomial(_, _ - 1) == _
assert isinstance(binomial(u, u), binomial)
assert isinstance(binomial(u, u - 1), binomial)
assert isinstance(binomial(x, x), binomial)
assert isinstance(binomial(x, x - 1), binomial)
# issue #13980 and #13981
assert binomial(-7, -5) == 0
assert binomial(-23, -12) == 0
assert binomial(S(13)/2, -10) == 0
assert binomial(-49, -51) == 0
assert binomial(19, S(-7)/2) == S(-68719476736)/(911337863661225*pi)
assert binomial(0, S(3)/2) == S(-2)/(3*pi)
assert binomial(-3, S(-7)/2) == zoo
assert binomial(kn, kt) == zoo
assert binomial(nt, kt).func == binomial
assert binomial(nt, S(15)/6) == 8*gamma(nt + 1)/(15*sqrt(pi)*gamma(nt - S(3)/2))
assert binomial(S(20)/3, S(-10)/8) == gamma(S(23)/3)/(gamma(S(-1)/4)*gamma(S(107)/12))
assert binomial(S(19)/2, S(-7)/2) == S(-1615)/8388608
assert binomial(S(-13)/5, S(-7)/8) == gamma(S(-8)/5)/(gamma(S(-29)/40)*gamma(S(1)/8))
assert binomial(S(-19)/8, S(-13)/5) == gamma(S(-11)/8)/(gamma(S(-8)/5)*gamma(S(49)/40))
# binomial for complexes
from sympy import I
assert binomial(I, S(-89)/8) == gamma(1 + I)/(gamma(S(-81)/8)*gamma(S(97)/8 + I))
assert binomial(I, 2*I) == gamma(1 + I)/(gamma(1 - I)*gamma(1 + 2*I))
assert binomial(-7, I) == zoo
assert binomial(-7/S(6), I) == gamma(-1/S(6))/(gamma(-1/S(6) - I)*gamma(1 + I))
assert binomial((1+2*I), (1+3*I)) == gamma(2 + 2*I)/(gamma(1 - I)*gamma(2 + 3*I))
assert binomial(I, 5) == S(1)/3 - I/S(12)
assert binomial((2*I + 3), 7) == -13*I/S(63)
assert isinstance(binomial(I, n), binomial)
assert expand_func(binomial(3, 2, evaluate=False)) == 3
assert expand_func(binomial(n, 0, evaluate=False)) == 1
assert expand_func(binomial(n, -2, evaluate=False)) == 0
assert expand_func(binomial(n, k)) == binomial(n, k)
def test_binomial_Mod():
p, q = 10**5 + 3, 10**9 + 33 # prime modulo
r, s = 10**7 + 5, 33333333 # composite modulo
# A few tests to get coverage
# Lucas Theorem
assert Mod(binomial(156675, 4433, evaluate=False), p) == Mod(binomial(156675, 4433), p)
# factorial Mod
assert Mod(binomial(1234, 432, evaluate=False), q) == Mod(binomial(1234, 432), q)
# binomial factorize
assert Mod(binomial(253, 113, evaluate=False), r) == Mod(binomial(253, 113), r)
@slow
def test_binomial_Mod_slow():
p, q = 10**5 + 3, 10**9 + 33 # prime modulo
r, s = 10**7 + 5, 33333333 # composite modulo
n, k, m = symbols('n k m')
assert (binomial(n, k) % q).subs({n: s, k: p}) == Mod(binomial(s, p), q)
assert (binomial(n, k) % m).subs({n: 8, k: 5, m: 13}) == 4
assert (binomial(9, k) % 7).subs(k, 2) == 1
# Lucas Theorem
assert Mod(binomial(123456, 43253, evaluate=False), p) == Mod(binomial(123456, 43253), p)
assert Mod(binomial(-178911, 237, evaluate=False), p) == Mod(-binomial(178911 + 237 - 1, 237), p)
assert Mod(binomial(-178911, 238, evaluate=False), p) == Mod(binomial(178911 + 238 - 1, 238), p)
# factorial Mod
assert Mod(binomial(9734, 451, evaluate=False), q) == Mod(binomial(9734, 451), q)
assert Mod(binomial(-10733, 4459, evaluate=False), q) == Mod(binomial(-10733, 4459), q)
assert Mod(binomial(-15733, 4458, evaluate=False), q) == Mod(binomial(-15733, 4458), q)
# binomial factorize
assert Mod(binomial(753, 119, evaluate=False), r) == Mod(binomial(753, 119), r)
assert Mod(binomial(3781, 948, evaluate=False), s) == Mod(binomial(3781, 948), s)
assert Mod(binomial(25773, 1793, evaluate=False), s) == Mod(binomial(25773, 1793), s)
assert Mod(binomial(-753, 118, evaluate=False), r) == Mod(binomial(-753, 118), r)
assert Mod(binomial(-25773, 1793, evaluate=False), s) == Mod(binomial(-25773, 1793), s)
def test_binomial_diff():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
assert binomial(n, k).diff(n) == \
(-polygamma(0, 1 + n - k) + polygamma(0, 1 + n))*binomial(n, k)
assert binomial(n**2, k**3).diff(n) == \
2*n*(-polygamma(
0, 1 + n**2 - k**3) + polygamma(0, 1 + n**2))*binomial(n**2, k**3)
assert binomial(n, k).diff(k) == \
(-polygamma(0, 1 + k) + polygamma(0, 1 + n - k))*binomial(n, k)
assert binomial(n**2, k**3).diff(k) == \
3*k**2*(-polygamma(
0, 1 + k**3) + polygamma(0, 1 + n**2 - k**3))*binomial(n**2, k**3)
raises(ArgumentIndexError, lambda: binomial(n, k).fdiff(3))
def test_binomial_rewrite():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
x = Symbol('x')
assert binomial(n, k).rewrite(
factorial) == factorial(n)/(factorial(k)*factorial(n - k))
assert binomial(
n, k).rewrite(gamma) == gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k)
assert binomial(n, x).rewrite(ff) == binomial(n, x)
@XFAIL
def test_factorial_simplify_fail():
# simplify(factorial(x + 1).diff(x) - ((x + 1)*factorial(x)).diff(x))) == 0
from sympy.abc import x
assert simplify(x*polygamma(0, x + 1) - x*polygamma(0, x + 2) +
polygamma(0, x + 1) - polygamma(0, x + 2) + 1) == 0
def test_subfactorial():
assert all(subfactorial(i) == ans for i, ans in enumerate(
[1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496]))
assert subfactorial(oo) == oo
assert subfactorial(nan) == nan
assert unchanged(subfactorial, 2.2)
x = Symbol('x')
assert subfactorial(x).rewrite(uppergamma) == uppergamma(x + 1, -1)/S.Exp1
tt = Symbol('tt', integer=True, nonnegative=True)
tf = Symbol('tf', integer=True, nonnegative=False)
tn = Symbol('tf', integer=True)
ft = Symbol('ft', integer=False, nonnegative=True)
ff = Symbol('ff', integer=False, nonnegative=False)
fn = Symbol('ff', integer=False)
nt = Symbol('nt', nonnegative=True)
nf = Symbol('nf', nonnegative=False)
nn = Symbol('nf')
te = Symbol('te', even=True, nonnegative=True)
to = Symbol('to', odd=True, nonnegative=True)
assert subfactorial(tt).is_integer
assert subfactorial(tf).is_integer is None
assert subfactorial(tn).is_integer is None
assert subfactorial(ft).is_integer is None
assert subfactorial(ff).is_integer is None
assert subfactorial(fn).is_integer is None
assert subfactorial(nt).is_integer is None
assert subfactorial(nf).is_integer is None
assert subfactorial(nn).is_integer is None
assert subfactorial(tt).is_nonnegative
assert subfactorial(tf).is_nonnegative is None
assert subfactorial(tn).is_nonnegative is None
assert subfactorial(ft).is_nonnegative is None
assert subfactorial(ff).is_nonnegative is None
assert subfactorial(fn).is_nonnegative is None
assert subfactorial(nt).is_nonnegative is None
assert subfactorial(nf).is_nonnegative is None
assert subfactorial(nn).is_nonnegative is None
assert subfactorial(tt).is_even is None
assert subfactorial(tt).is_odd is None
assert subfactorial(te).is_odd is True
assert subfactorial(to).is_even is True
|
dbd447130c8420b24d1116769a8767eb9886effadeb9f03e42258e30f4751615 | import string
from sympy import (
Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I, floor, limit,
expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael,
TribonacciConstant)
from sympy.functions import (
bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan,
genocchi, partition, binomial, gamma, sqrt, cbrt, hyper, log, digamma,
trigamma, polygamma, factorial, sin, cos, cot, zeta)
from sympy.functions.combinatorial.numbers import _nT
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.core.numbers import GoldenRatio
from sympy.utilities.pytest import XFAIL, raises
x = Symbol('x')
def test_carmichael():
assert carmichael.find_carmichael_numbers_in_range(0, 561) == []
assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561]
assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561,
562)
assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821]
assert carmichael.is_prime(2821) == False
assert carmichael.is_prime(2465) == False
assert carmichael.is_prime(1729) == False
assert carmichael.is_prime(1105) == False
assert carmichael.is_prime(561) == False
raises(ValueError, lambda: carmichael.is_carmichael(-2))
raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2))
raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2))
def test_bernoulli():
assert bernoulli(0) == 1
assert bernoulli(1) == Rational(-1, 2)
assert bernoulli(2) == Rational(1, 6)
assert bernoulli(3) == 0
assert bernoulli(4) == Rational(-1, 30)
assert bernoulli(5) == 0
assert bernoulli(6) == Rational(1, 42)
assert bernoulli(7) == 0
assert bernoulli(8) == Rational(-1, 30)
assert bernoulli(10) == Rational(5, 66)
assert bernoulli(1000001) == 0
assert bernoulli(0, x) == 1
assert bernoulli(1, x) == x - Rational(1, 2)
assert bernoulli(2, x) == x**2 - x + Rational(1, 6)
assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2
# Should be fast; computed with mpmath
b = bernoulli(1000)
assert b.p % 10**10 == 7950421099
assert b.q == 342999030
b = bernoulli(10**6, evaluate=False).evalf()
assert str(b) == '-2.23799235765713e+4767529'
# Issue #8527
l = Symbol('l', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
n = Symbol('n', integer=True, positive=True)
assert isinstance(bernoulli(2 * l + 1), bernoulli)
assert isinstance(bernoulli(2 * m + 1), bernoulli)
assert bernoulli(2 * n + 1) == 0
raises(ValueError, lambda: bernoulli(-2))
def test_fibonacci():
assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3]
assert fibonacci(100) == 354224848179261915075
assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7]
assert lucas(100) == 792070839848372253127
assert fibonacci(1, x) == 1
assert fibonacci(2, x) == x
assert fibonacci(3, x) == x**2 + 1
assert fibonacci(4, x) == x**3 + 2*x
# issue #8800
n = Dummy('n')
assert fibonacci(n).limit(n, S.Infinity) == S.Infinity
assert lucas(n).limit(n, S.Infinity) == S.Infinity
assert fibonacci(n).rewrite(sqrt) == \
2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10)
assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
fibonacci(10)
assert lucas(n).rewrite(sqrt) == \
(fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify()
assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10)
raises(ValueError, lambda: fibonacci(-3, x))
def test_tribonacci():
assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24]
assert tribonacci(100) == 98079530178586034536500564
assert tribonacci(0, x) == 0
assert tribonacci(1, x) == 1
assert tribonacci(2, x) == x**2
assert tribonacci(3, x) == x**4 + x
assert tribonacci(4, x) == x**6 + 2*x**3 + 1
assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2
n = Dummy('n')
assert tribonacci(n).limit(n, S.Infinity) == S.Infinity
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
assert tribonacci(n).rewrite(sqrt) == \
(a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4)
assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
tribonacci(10)
assert tribonacci(n).rewrite(TribonacciConstant) == floor(
3*TribonacciConstant**n*(102*sqrt(33) + 586)**(S(1)/3)/
(-2*(102*sqrt(33) + 586)**(S(1)/3) + 4 + (102*sqrt(33)
+ 586)**(S(2)/3)) + S(1)/2)
raises(ValueError, lambda: tribonacci(-1, x))
def test_bell():
assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877]
assert bell(0, x) == 1
assert bell(1, x) == x
assert bell(2, x) == x**2 + x
assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x
assert bell(oo) == S.Infinity
raises(ValueError, lambda: bell(oo, x))
raises(ValueError, lambda: bell(-1))
raises(ValueError, lambda: bell(S(1)/2))
X = symbols('x:6')
# X = (x0, x1, .. x5)
# at the same time: X[1] = x1, X[2] = x2 for standard readablity.
# but we must supply zero-based indexed object X[1:] = (x1, .. x5)
assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2
assert bell(
6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3
X = (1, 10, 100, 1000, 10000)
assert bell(6, 2, X) == (6 + 15 + 10)*10000
X = (1, 2, 3, 3, 5)
assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2
X = (1, 2, 3, 5)
assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3
# Dobinski's formula
n = Symbol('n', integer=True, nonnegative=True)
# For large numbers, this is too slow
# For nonintegers, there are significant precision errors
for i in [0, 2, 3, 7, 13, 42, 55]:
assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i})
m = Symbol("m")
assert bell(m).rewrite(Sum) == bell(m)
assert bell(n, m).rewrite(Sum) == bell(n, m)
# issue 9184
n = Dummy('n')
assert bell(n).limit(n, S.Infinity) == S.Infinity
def test_harmonic():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n, 0) == n
assert harmonic(n).evalf() == harmonic(n)
assert harmonic(n, 1) == harmonic(n)
assert harmonic(1, n).evalf() == harmonic(1, n)
assert harmonic(0, 1) == 0
assert harmonic(1, 1) == 1
assert harmonic(2, 1) == Rational(3, 2)
assert harmonic(3, 1) == Rational(11, 6)
assert harmonic(4, 1) == Rational(25, 12)
assert harmonic(0, 2) == 0
assert harmonic(1, 2) == 1
assert harmonic(2, 2) == Rational(5, 4)
assert harmonic(3, 2) == Rational(49, 36)
assert harmonic(4, 2) == Rational(205, 144)
assert harmonic(0, 3) == 0
assert harmonic(1, 3) == 1
assert harmonic(2, 3) == Rational(9, 8)
assert harmonic(3, 3) == Rational(251, 216)
assert harmonic(4, 3) == Rational(2035, 1728)
assert harmonic(oo, -1) == S.NaN
assert harmonic(oo, 0) == oo
assert harmonic(oo, S.Half) == oo
assert harmonic(oo, 1) == oo
assert harmonic(oo, 2) == (pi**2)/6
assert harmonic(oo, 3) == zeta(3)
assert harmonic(0, m) == 0
def test_harmonic_rational():
ne = S(6)
no = S(5)
pe = S(8)
po = S(9)
qe = S(10)
qo = S(13)
Heee = harmonic(ne + pe/qe)
Aeee = (-log(10) + 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ pi*sqrt(2*sqrt(5)/5 + 1)/2 + 13944145/S(4720968))
Heeo = harmonic(ne + pe/qo)
Aeeo = (-log(26) + 2*log(sin(3*pi/13))*cos(4*pi/13) + 2*log(sin(2*pi/13))*cos(32*pi/13)
+ 2*log(sin(5*pi/13))*cos(80*pi/13) - 2*log(sin(6*pi/13))*cos(5*pi/13)
- 2*log(sin(4*pi/13))*cos(pi/13) + pi*cot(5*pi/13)/2 - 2*log(sin(pi/13))*cos(3*pi/13)
+ 2422020029/S(702257080))
Heoe = harmonic(ne + po/qe)
Aeoe = (-log(20) + 2*(1/S(4) + sqrt(5)/4)*log(-1/S(4) + sqrt(5)/4)
+ 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 + 1/S(4))*log(1/S(4) + sqrt(5)/4)
+ 11818877030/S(4286604231) + pi*sqrt(2*sqrt(5) + 5)/2)
Heoo = harmonic(ne + po/qo)
Aeoo = (-log(26) + 2*log(sin(3*pi/13))*cos(54*pi/13) + 2*log(sin(4*pi/13))*cos(6*pi/13)
+ 2*log(sin(6*pi/13))*cos(108*pi/13) - 2*log(sin(5*pi/13))*cos(pi/13)
- 2*log(sin(pi/13))*cos(5*pi/13) + pi*cot(4*pi/13)/2
- 2*log(sin(2*pi/13))*cos(3*pi/13) + 11669332571/S(3628714320))
Hoee = harmonic(no + pe/qe)
Aoee = (-log(10) + 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ pi*sqrt(2*sqrt(5)/5 + 1)/2 + 779405/S(277704))
Hoeo = harmonic(no + pe/qo)
Aoeo = (-log(26) + 2*log(sin(3*pi/13))*cos(4*pi/13) + 2*log(sin(2*pi/13))*cos(32*pi/13)
+ 2*log(sin(5*pi/13))*cos(80*pi/13) - 2*log(sin(6*pi/13))*cos(5*pi/13)
- 2*log(sin(4*pi/13))*cos(pi/13) + pi*cot(5*pi/13)/2
- 2*log(sin(pi/13))*cos(3*pi/13) + 53857323/S(16331560))
Hooe = harmonic(no + po/qe)
Aooe = (-log(20) + 2*(1/S(4) + sqrt(5)/4)*log(-1/S(4) + sqrt(5)/4)
+ 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 + 1/S(4))*log(1/S(4) + sqrt(5)/4)
+ 486853480/S(186374097) + pi*sqrt(2*sqrt(5) + 5)/2)
Hooo = harmonic(no + po/qo)
Aooo = (-log(26) + 2*log(sin(3*pi/13))*cos(54*pi/13) + 2*log(sin(4*pi/13))*cos(6*pi/13)
+ 2*log(sin(6*pi/13))*cos(108*pi/13) - 2*log(sin(5*pi/13))*cos(pi/13)
- 2*log(sin(pi/13))*cos(5*pi/13) + pi*cot(4*pi/13)/2
- 2*log(sin(2*pi/13))*cos(3*pi/13) + 383693479/S(125128080))
H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]
for h, a in zip(H, A):
e = expand_func(h).doit()
assert cancel(e/a) == 1
assert abs(h.n() - a.n()) < 1e-12
def test_harmonic_evalf():
assert str(harmonic(1.5).evalf(n=10)) == '1.280372306'
assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443
def test_harmonic_rewrite():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2
assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)
assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma)
_k = Dummy("k")
assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n)))
assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n)))
@XFAIL
def test_harmonic_limit_fail():
n = Symbol("n")
m = Symbol("m")
# For m > 1:
assert limit(harmonic(n, m), n, oo) == zeta(m)
def test_euler():
assert euler(0) == 1
assert euler(1) == 0
assert euler(2) == -1
assert euler(3) == 0
assert euler(4) == 5
assert euler(6) == -61
assert euler(8) == 1385
assert euler(20, evaluate=False) != 370371188237525
n = Symbol('n', integer=True)
assert euler(n) != -1
assert euler(n).subs(n, 2) == -1
raises(ValueError, lambda: euler(-2))
raises(ValueError, lambda: euler(-3))
raises(ValueError, lambda: euler(2.3))
assert euler(20).evalf() == 370371188237525.0
assert euler(20, evaluate=False).evalf() == 370371188237525.0
assert euler(n).rewrite(Sum) == euler(n)
n = Symbol('n', integer=True, nonnegative=True)
assert euler(2*n + 1).rewrite(Sum) == 0
_j = Dummy('j')
_k = Dummy('k')
assert euler(2*n).rewrite(Sum).dummy_eq(
I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)*
binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1)))
def test_euler_odd():
n = Symbol('n', odd=True, positive=True)
assert euler(n) == 0
n = Symbol('n', odd=True)
assert euler(n) != 0
def test_euler_polynomials():
assert euler(0, x) == 1
assert euler(1, x) == x - Rational(1, 2)
assert euler(2, x) == x**2 - x
assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4)
m = Symbol('m')
assert isinstance(euler(m, x), euler)
from sympy import Float
A = Float('-0.46237208575048694923364757452876131e8') # from Maple
B = euler(19, S.Pi.evalf(32))
assert abs((A - B)/A) < 1e-31 # expect low relative error
C = euler(19, S.Pi, evaluate=False).evalf(32)
assert abs((A - C)/A) < 1e-31
def test_euler_polynomial_rewrite():
m = Symbol('m')
A = euler(m, x).rewrite('Sum');
assert A.subs({m:3, x:5}).doit() == euler(3, 5)
def test_catalan():
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, positive=True)
k = Symbol('k', integer=True, nonnegative=True)
p = Symbol('p', nonnegative=True)
catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
for i, c in enumerate(catalans):
assert catalan(i) == c
assert catalan(n).rewrite(factorial).subs(n, i) == c
assert catalan(n).rewrite(Product).subs(n, i).doit() == c
assert unchanged(catalan, x)
assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi)
assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\
8 / (3 * pi)
assert catalan(3*x).rewrite(gamma) == 4**(
3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2))
assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)
assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
* factorial(n))
assert isinstance(catalan(n).rewrite(Product), catalan)
assert isinstance(catalan(m).rewrite(Product), Product)
assert diff(catalan(x), x) == (polygamma(
0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x)
assert catalan(x).evalf() == catalan(x)
c = catalan(S.Half).evalf()
assert str(c) == '0.848826363156775'
c = catalan(I).evalf(3)
assert str((re(c), im(c))) == '(0.398, -0.0209)'
# Assumptions
assert catalan(p).is_positive is True
assert catalan(k).is_integer is True
assert catalan(m+3).is_composite is True
def test_genocchi():
genocchis = [1, -1, 0, 1, 0, -3, 0, 17]
for n, g in enumerate(genocchis):
assert genocchi(n + 1) == g
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, positive=True)
assert unchanged(genocchi, m)
assert genocchi(2*n + 1) == 0
assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2
assert genocchi(2 * n).is_odd
assert genocchi(2 * n).is_even is False
assert genocchi(2 * n + 1).is_even
assert genocchi(n).is_integer
assert genocchi(4 * n).is_positive
# these are the only 2 prime Genocchi numbers
assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime
assert genocchi(8, evaluate=False).is_prime
assert genocchi(4 * n + 2).is_negative
assert genocchi(4 * n + 1).is_negative is False
assert genocchi(4 * n - 2).is_negative
raises(ValueError, lambda: genocchi(S(5)/4))
raises(ValueError, lambda: genocchi(-2))
def test_partition():
partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22]
for n, p in enumerate(partition_nums):
assert partition(n) == p
x = Symbol('x')
y = Symbol('y', real=True)
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, negative=True)
p = Symbol('p', integer=True, nonnegative=True)
assert partition(m).is_integer
assert not partition(m).is_negative
assert partition(m).is_nonnegative
assert partition(n).is_zero
assert partition(p).is_positive
assert partition(x).subs(x, 7) == 15
assert partition(y).subs(y, 8) == 22
raises(ValueError, lambda: partition(S(5)/4))
def test__nT():
assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [
1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0]
check = [_nT(10, i) for i in range(11)]
assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1]
assert all(type(i) is int for i in check)
assert _nT(10, 5) == 7
assert _nT(100, 98) == 2
assert _nT(100, 100) == 1
assert _nT(10, 3) == 8
def test_nC_nP_nT():
from sympy.utilities.iterables import (
multiset_permutations, multiset_combinations, multiset_partitions,
partitions, subsets, permutations)
from sympy.functions.combinatorial.numbers import (
nP, nC, nT, stirling, _multiset_histogram, _AOP_product)
from sympy.combinatorics.permutations import Permutation
from sympy.core.numbers import oo
from random import choice
c = string.ascii_lowercase
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nP(s, i)
tot += check
assert len(list(multiset_permutations(s, i))) == check
if u:
assert nP(len(s), i) == check
assert nP(s) == tot
except AssertionError:
print(s, i, 'failed perm test')
raise ValueError()
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nC(s, i)
tot += check
assert len(list(multiset_combinations(s, i))) == check
if u:
assert nC(len(s), i) == check
assert nC(s) == tot
if u:
assert nC(len(s)) == tot
except AssertionError:
print(s, i, 'failed combo test')
raise ValueError()
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(i, j)
assert check.is_Integer
tot += check
assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
assert nT(i) == tot
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(range(i), j)
tot += check
assert len(list(multiset_partitions(list(range(i)), j))) == check
assert nT(range(i)) == tot
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(1, 8):
check = nT(s, i)
tot += check
assert len(list(multiset_partitions(s, i))) == check
if u:
assert nT(range(len(s)), i) == check
if u:
assert nT(range(len(s))) == tot
assert nT(s) == tot
except AssertionError:
print(s, i, 'failed partition test')
raise ValueError()
# tests for Stirling numbers of the first kind that are not tested in the
# above
assert [stirling(9, i, kind=1) for i in range(11)] == [
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
perms = list(permutations(range(4)))
assert [sum(1 for p in perms if Permutation(p).cycles == i)
for i in range(5)] == [0, 6, 11, 6, 1] == [
stirling(4, i, kind=1) for i in range(5)]
# http://oeis.org/A008275
assert [stirling(n, k, signed=1)
for n in range(10) for k in range(1, n + 1)] == [
1, -1,
1, 2, -3,
1, -6, 11, -6,
1, 24, -50, 35, -10,
1, -120, 274, -225, 85, -15,
1, 720, -1764, 1624, -735, 175, -21,
1, -5040, 13068, -13132, 6769, -1960, 322, -28,
1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
assert [stirling(n, k, kind=1)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 2, 3, 1,
0, 6, 11, 6, 1,
0, 24, 50, 35, 10, 1,
0, 120, 274, 225, 85, 15, 1,
0, 720, 1764, 1624, 735, 175, 21, 1,
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
assert [stirling(n, k, kind=2)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 1, 3, 1,
0, 1, 7, 6, 1,
0, 1, 15, 25, 10, 1,
0, 1, 31, 90, 65, 15, 1,
0, 1, 63, 301, 350, 140, 21, 1,
0, 1, 127, 966, 1701, 1050, 266, 28, 1,
0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
raises(ValueError, lambda: stirling(-2, 2))
def delta(p):
if len(p) == 1:
return oo
return min(abs(i[0] - i[1]) for i in subsets(p, 2))
parts = multiset_partitions(range(5), 3)
d = 2
assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
stirling(5, 3, d=d) == 7)
# other coverage tests
assert nC('abb', 2) == nC('aab', 2) == 2
assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
assert nP(3, 4) == 0
assert nP('aabc', 5) == 0
assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
len(list(multiset_combinations('aabbccdd', 2))) == 10
assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
assert nC(list('abcdd'), 4) == 4
assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa
assert dict(_AOP_product((4,1,1,1))) == {
0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
# the following was the first t that showed a problem in a previous form of
# the function, so it's not as random as it may appear
t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
raises(ValueError, lambda: _multiset_histogram({1:'a'}))
def test_PR_14617():
from sympy.functions.combinatorial.numbers import nT
for n in (0, []):
for k in (-1, 0, 1):
if k == 0:
assert nT(n, k) == 1
else:
assert nT(n, k) == 0
def test_issue_8496():
n = Symbol("n")
k = Symbol("k")
raises(TypeError, lambda: catalan(n, k))
def test_issue_8601():
n = Symbol('n', integer=True, negative=True)
assert catalan(n - 1) == S.Zero
assert catalan(-S.Half) == S.ComplexInfinity
assert catalan(-S.One) == -S.Half
c1 = catalan(-5.6).evalf()
assert str(c1) == '6.93334070531408e-5'
c2 = catalan(-35.4).evalf()
assert str(c2) == '-4.14189164517449e-24'
|
e86fc14d76af69dd04117a7250c956a8fee4d58b68e4761a1b2893d5a189f313 | from sympy import (
symbols, log, ln, Float, nan, oo, zoo, I, pi, E, exp, Symbol,
LambertW, sqrt, Rational, expand_log, S, sign, conjugate, refine,
sin, cos, sinh, cosh, tanh, exp_polar, re, Function, simplify,
AccumBounds, MatrixSymbol, Pow, gcd)
from sympy.abc import x, y, z
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.utilities.pytest import raises, XFAIL
def test_exp_values():
k = Symbol('k', integer=True)
assert exp(nan) == nan
assert exp(oo) == oo
assert exp(-oo) == 0
assert exp(0) == 1
assert exp(1) == E
assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)
assert exp(pi*I/2) == I
assert exp(pi*I) == -1
assert exp(3*pi*I/2) == -I
assert exp(2*pi*I) == 1
assert refine(exp(pi*I*2*k)) == 1
assert refine(exp(pi*I*2*(k + Rational(1, 2)))) == -1
assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I
assert exp(log(x)) == x
assert exp(2*log(x)) == x**2
assert exp(pi*log(x)) == x**pi
assert exp(17*log(x) + E*log(y)) == x**17 * y**E
assert exp(x*log(x)) != x**x
assert exp(sin(x)*log(x)) != x
assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))
assert exp(-oo, evaluate=False).is_finite is True
assert exp(oo, evaluate=False).is_finite is False
def test_exp_period():
assert exp(9*I*pi/4) == exp(I*pi/4)
assert exp(46*I*pi/18) == exp(5*I*pi/9)
assert exp(25*I*pi/7) == exp(-3*I*pi/7)
assert exp(-19*I*pi/3) == exp(-I*pi/3)
assert exp(37*I*pi/8) - exp(-11*I*pi/8) == 0
assert exp(-5*I*pi/3) / exp(11*I*pi/5) * exp(148*I*pi/15) == 1
assert exp(2 - 17*I*pi/5) == exp(2 + 3*I*pi/5)
assert exp(log(3) + 29*I*pi/9) == 3 * exp(-7*I*pi/9)
n = Symbol('n', integer=True)
e = Symbol('e', even=True)
assert exp(e*I*pi) == 1
assert exp((e + 1)*I*pi) == -1
assert exp((1 + 4*n)*I*pi/2) == I
assert exp((-1 + 4*n)*I*pi/2) == -I
def test_exp_log():
x = Symbol("x", real=True)
assert log(exp(x)) == x
assert exp(log(x)) == x
assert log(x).inverse() == exp
assert exp(x).inverse() == log
y = Symbol("y", polar=True)
assert log(exp_polar(z)) == z
assert exp(log(y)) == y
def test_exp_expand():
e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
assert e.expand() == 2
assert exp(x + y) != exp(x)*exp(y)
assert exp(x + y).expand() == exp(x)*exp(y)
def test_exp__as_base_exp():
assert exp(x).as_base_exp() == (E, x)
assert exp(2*x).as_base_exp() == (E, 2*x)
assert exp(x*y).as_base_exp() == (E, x*y)
assert exp(-x).as_base_exp() == (E, -x)
# Pow( *expr.as_base_exp() ) == expr invariant should hold
assert E**x == exp(x)
assert E**(2*x) == exp(2*x)
assert E**(x*y) == exp(x*y)
assert exp(x).base is S.Exp1
assert exp(x).exp == x
def test_exp_infinity():
assert exp(I*y) != nan
assert refine(exp(I*oo)) == nan
assert refine(exp(-I*oo)) == nan
assert exp(y*I*oo) != nan
assert exp(zoo) == nan
def test_exp_subs():
x = Symbol('x')
e = (exp(3*log(x), evaluate=False)) # evaluates to x**3
assert e.subs(x**3, y**3) == e
assert e.subs(x**2, 5) == e
assert (x**3).subs(x**2, y) != y**(3/S(2))
assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
assert exp(x).subs(E, y) == y**x
x = symbols('x', real=True)
assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
x = symbols('x', positive=True)
assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
# differentiate between E and exp
assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
assert exp(3).subs(E, sin) == sin(3)
def test_exp_conjugate():
assert conjugate(exp(x)) == exp(conjugate(x))
def test_exp_rewrite():
from sympy.concrete.summations import Sum
assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
assert exp(pi*I/3).rewrite(sqrt) == S(1)/2 + sqrt(3)*I/2
assert exp(x*log(y)).rewrite(Pow) == y**x
assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)]
assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y
n = Symbol('n', integer=True)
assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == S(4)/5 + 2*I/5
assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
assert Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(S(3)/4 - sqrt(3)*I/4)
def test_exp_leading_term():
assert exp(x).as_leading_term(x) == 1
assert exp(1/x).as_leading_term(x) == exp(1/x)
assert exp(2 + x).as_leading_term(x) == exp(2)
def test_exp_taylor_term():
x = symbols('x')
assert exp(x).taylor_term(1, x) == x
assert exp(x).taylor_term(3, x) == x**3/6
assert exp(x).taylor_term(4, x) == x**4/24
assert exp(x).taylor_term(-1, x) == S.Zero
def test_exp_MatrixSymbol():
A = MatrixSymbol("A", 2, 2)
assert exp(A).has(exp)
def test_exp_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: exp(x).fdiff(2))
def test_log_values():
assert log(nan) == nan
assert log(oo) == oo
assert log(-oo) == oo
assert log(zoo) == zoo
assert log(-zoo) == zoo
assert log(0) == zoo
assert log(1) == 0
assert log(-1) == I*pi
assert log(E) == 1
assert log(-E).expand() == 1 + I*pi
assert unchanged(log, pi)
assert log(-pi).expand() == log(pi) + I*pi
assert unchanged(log, 17)
assert log(-17) == log(17) + I*pi
assert log(I) == I*pi/2
assert log(-I) == -I*pi/2
assert log(17*I) == I*pi/2 + log(17)
assert log(-17*I).expand() == -I*pi/2 + log(17)
assert log(oo*I) == oo
assert log(-oo*I) == oo
assert log(0, 2) == zoo
assert log(0, 5) == zoo
assert exp(-log(3))**(-1) == 3
assert log(S.Half) == -log(2)
assert log(2*3).func is log
assert log(2*3**2).func is log
def test_log_exact():
# check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10:
for n in range(-23, 24):
if gcd(n, 24) != 1:
assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24
for n in range(-9, 10):
assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10
assert log(S.Half - I*sqrt(3)/2) == -I*pi/3
assert log(-S.Half + I*sqrt(3)/2) == I*2*pi/3
assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*3*pi/4
assert log(-sqrt(3)/2 - I*S.Half) == -I*5*pi/6
assert log(-S(1)/4 + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + S(5)/8)) == -I*2*pi/5
assert log(sqrt(S(5)/8 - sqrt(5)/8) + I*(S(1)/4 + sqrt(5)/4)) == I*3*pi/10
assert log(-sqrt(sqrt(2)/4 + S(1)/2) + I*sqrt(S(1)/2 - sqrt(2)/4)) == I*7*pi/8
assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*11*pi/12
assert log(-1 + I*sqrt(3)) == log(2) + I*2*pi/3
assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4
assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2
assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*7*pi/12
assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - 5*I*pi/8
assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8
assert log(cos(7*pi/12) + I*sin(7*pi/12)) == 7*I*pi/12
assert log(cos(6*pi/5) + I*sin(6*pi/5)) == -4*I*pi/5
assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4
assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*7*pi/12
assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + 2*I*pi/3
assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8
zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2)
assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2
assert unchanged(log, zero + I*zero) or log(zero + zero*I) == zoo
# bail quickly if no obvious simplification is possible:
assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000)
# beware of non-real coefficients
assert unchanged(log, sqrt(2-sqrt(5))*(1 + I))
def test_log_base():
assert log(1, 2) == 0
assert log(2, 2) == 1
assert log(3, 2) == log(3)/log(2)
assert log(6, 2) == 1 + log(3)/log(2)
assert log(6, 3) == 1 + log(2)/log(3)
assert log(2**3, 2) == 3
assert log(3**3, 3) == 3
assert log(5, 1) == zoo
assert log(1, 1) == nan
assert log(Rational(2, 3), 10) == log(S(2)/3)/log(10)
assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
assert log(Rational(2, 3), Rational(2, 5)) == \
log(S(2)/3)/log(S(2)/5)
# issue 17148
assert log(S(8)/3, 2) == -log(3)/log(2) + 3
def test_log_symbolic():
assert log(x, exp(1)) == log(x)
assert log(exp(x)) != x
assert log(x, exp(1)) == log(x)
assert log(x*y) != log(x) + log(y)
assert log(x/y).expand() != log(x) - log(y)
assert log(x/y).expand(force=True) == log(x) - log(y)
assert log(x**y).expand() != y*log(x)
assert log(x**y).expand(force=True) == y*log(x)
assert log(x, 2) == log(x)/log(2)
assert log(E, 2) == 1/log(2)
p, q = symbols('p,q', positive=True)
r = Symbol('r', real=True)
assert log(p**2) != 2*log(p)
assert log(p**2).expand() == 2*log(p)
assert log(x**2).expand() != 2*log(x)
assert log(p**q) != q*log(p)
assert log(exp(p)) == p
assert log(p*q) != log(p) + log(q)
assert log(p*q).expand() == log(p) + log(q)
assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
assert log(-exp(p)) != p + I*pi
assert log(-exp(x)).expand() != x + I*pi
assert log(-exp(r)).expand() == r + I*pi
assert log(x**y) != y*log(x)
assert (log(x**-5)**-1).expand() != -1/log(x)/5
assert (log(p**-5)**-1).expand() == -1/log(p)/5
assert log(-x).func is log and log(-x).args[0] == -x
assert log(-p).func is log and log(-p).args[0] == -p
def test_exp_assumptions():
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
for e in exp, exp_polar:
assert e(x).is_real is None
assert e(x).is_imaginary is None
assert e(i).is_real is None
assert e(i).is_imaginary is None
assert e(r).is_real is True
assert e(r).is_imaginary is False
assert e(re(x)).is_extended_real is True
assert e(re(x)).is_imaginary is False
assert exp(0, evaluate=False).is_algebraic
a = Symbol('a', algebraic=True)
an = Symbol('an', algebraic=True, nonzero=True)
r = Symbol('r', rational=True)
rn = Symbol('rn', rational=True, nonzero=True)
assert exp(a).is_algebraic is None
assert exp(an).is_algebraic is False
assert exp(pi*r).is_algebraic is None
assert exp(pi*rn).is_algebraic is False
def test_exp_AccumBounds():
assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)
def test_log_assumptions():
p = symbols('p', positive=True)
n = symbols('n', negative=True)
z = symbols('z', zero=True)
x = symbols('x', infinite=True, extended_positive=True)
assert log(z).is_positive is False
assert log(x).is_extended_positive is True
assert log(2) > 0
assert log(1, evaluate=False).is_zero
assert log(1 + z).is_zero
assert log(p).is_zero is None
assert log(n).is_zero is False
assert log(0.5).is_negative is True
assert log(exp(p) + 1).is_positive
assert log(1, evaluate=False).is_algebraic
assert log(42, evaluate=False).is_algebraic is False
assert log(1 + z).is_rational
def test_log_hashing():
assert x != log(log(x))
assert hash(x) != hash(log(log(x)))
assert log(x) != log(log(log(x)))
e = 1/log(log(x) + log(log(x)))
assert e.base.func is log
e = 1/log(log(x) + log(log(log(x))))
assert e.base.func is log
e = log(log(x))
assert e.func is log
assert not x.func is log
assert hash(log(log(x))) != hash(x)
assert e != x
def test_log_sign():
assert sign(log(2)) == 1
def test_log_expand_complex():
assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi
def test_log_apply_evalf():
value = (log(3)/log(2) - 1).evalf()
assert value.epsilon_eq(Float("0.58496250072115618145373"))
def test_log_expand():
w = Symbol("w", positive=True)
e = log(w**(log(5)/log(3)))
assert e.expand() == log(5)/log(3) * log(w)
x, y, z = symbols('x,y,z', positive=True)
assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
log((log(y) + log(z))*log(x)) + log(2)]
assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
assert log(x**log(x**2)).expand() == 2*log(x)**2
x, y = symbols('x,y')
assert log(x*y).expand(force=True) == log(x) + log(y)
assert log(x**y).expand(force=True) == y*log(x)
assert log(exp(x)).expand(force=True) == x
# there's generally no need to expand out logs since this requires
# factoring and if simplification is sought, it's cheaper to put
# logs together than it is to take them apart.
assert log(2*3**2).expand() != 2*log(3) + log(2)
@XFAIL
def test_log_expand_fail():
x, y, z = symbols('x,y,z', positive=True)
assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log(
x) + y*log(y + z) + z*log(x) + z*log(y + z)
def test_log_simplify():
x = Symbol("x", positive=True)
assert log(x**2).expand() == 2*log(x)
assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)
z = Symbol('z')
assert log(sqrt(z)).expand() == log(z)/2
assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
assert log(z**(-1)).expand() != -log(z)
assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)
def test_log_AccumBounds():
assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
def test_lambertw():
k = Symbol('k')
assert LambertW(x, 0) == LambertW(x)
assert LambertW(x, 0, evaluate=False) != LambertW(x)
assert LambertW(0) == 0
assert LambertW(E) == 1
assert LambertW(-1/E) == -1
assert LambertW(-log(2)/2) == -log(2)
assert LambertW(oo) == oo
assert LambertW(0, 1) == -oo
assert LambertW(0, 42) == -oo
assert LambertW(-pi/2, -1) == -I*pi/2
assert LambertW(-1/E, -1) == -1
assert LambertW(-2*exp(-2), -1) == -2
assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))
assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
Float("0.701338383413663009202120278965", 30), 1e-29)
assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))
assert LambertW(-1).is_real is False # issue 5215
assert LambertW(2, evaluate=False).is_real
p = Symbol('p', positive=True)
assert LambertW(p, evaluate=False).is_real
assert LambertW(p - 1, evaluate=False).is_real is None
assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
assert LambertW(S.Half, -1, evaluate=False).is_real is False
assert LambertW(-S.One/10, -1, evaluate=False).is_real
assert LambertW(-10, -1, evaluate=False).is_real is False
assert LambertW(-2, 2, evaluate=False).is_real is False
assert LambertW(0, evaluate=False).is_algebraic
na = Symbol('na', nonzero=True, algebraic=True)
assert LambertW(na).is_algebraic is False
def test_issue_5673():
e = LambertW(-1)
assert e.is_comparable is False
assert e.is_positive is not True
e2 = 1 - 1/(1 - exp(-1000))
assert e2.is_positive is not True
e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
assert e3.is_nonzero is not True
def test_log_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: log(x).fdiff(2))
def test_log_taylor_term():
x = symbols('x')
assert log(x).taylor_term(0, x) == x
assert log(x).taylor_term(1, x) == -x**2/2
assert log(x).taylor_term(4, x) == x**5/5
assert log(x).taylor_term(-1, x) == S.Zero
def test_exp_expand_NC():
A, B, C = symbols('A,B,C', commutative=False)
assert exp(A + B).expand() == exp(A + B)
assert exp(A + B + C).expand() == exp(A + B + C)
assert exp(x + y).expand() == exp(x)*exp(y)
assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)
def test_as_numer_denom():
n = symbols('n', negative=True)
assert exp(x).as_numer_denom() == (exp(x), 1)
assert exp(-x).as_numer_denom() == (1, exp(x))
assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
assert exp(-2).as_numer_denom() == (1, exp(2))
assert exp(n).as_numer_denom() == (1, exp(-n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
def test_polar():
x, y = symbols('x y', polar=True)
assert abs(exp_polar(I*4)) == 1
assert abs(exp_polar(0)) == 1
assert abs(exp_polar(2 + 3*I)) == exp(2)
assert exp_polar(I*10).n() == exp_polar(I*10)
assert log(exp_polar(z)) == z
assert log(x*y).expand() == log(x) + log(y)
assert log(x**z).expand() == z*log(x)
assert exp_polar(3).exp == 3
# Compare exp(1.0*pi*I).
assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0
assert exp_polar(0).is_rational is True # issue 8008
def test_log_product():
from sympy.abc import n, m
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
from sympy.concrete import Product
assert simplify(log(Product(x**i, (i, 1, n)))) == log(Product(x**i, (i, 1, n)))
assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
expr = log(Product(-2, (n, 0, 4)))
assert simplify(expr) == expr
@XFAIL
def test_log_product_simplify_to_sum():
from sympy.abc import n, m
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
from sympy.concrete import Product, Sum
assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
def test_issue_8866():
assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))
y = Symbol('y', positive=True)
l1 = log(exp(y), exp(10))
b1 = log(exp(y), exp(5))
l2 = log(exp(y), exp(10), evaluate=False)
b2 = log(exp(y), exp(5), evaluate=False)
assert simplify(log(l1, b1)) == simplify(log(l2, b2))
assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))
def test_issue_9116():
n = Symbol('n', positive=True, integer=True)
assert ln(n).is_nonnegative is True
assert log(n).is_nonnegative is True
|
43bfc80989e0829652680f6174b1831246bc2207226028feff78da1da9bc820a | from sympy import AccumBounds, Symbol, floor, nan, oo, zoo, E, symbols, \
ceiling, pi, Rational, Float, I, sin, exp, log, factorial, frac, Eq, \
Le, Ge, Gt, Lt, Ne, sqrt
from sympy.core.expr import unchanged
from sympy.utilities.pytest import XFAIL
x = Symbol('x')
i = Symbol('i', imaginary=True)
y = Symbol('y', real=True)
k, n = symbols('k,n', integer=True)
def test_floor():
assert floor(nan) == nan
assert floor(oo) == oo
assert floor(-oo) == -oo
assert floor(zoo) == zoo
assert floor(0) == 0
assert floor(1) == 1
assert floor(-1) == -1
assert floor(E) == 2
assert floor(-E) == -3
assert floor(2*E) == 5
assert floor(-2*E) == -6
assert floor(pi) == 3
assert floor(-pi) == -4
assert floor(Rational(1, 2)) == 0
assert floor(-Rational(1, 2)) == -1
assert floor(Rational(7, 3)) == 2
assert floor(-Rational(7, 3)) == -3
assert floor(Float(17.0)) == 17
assert floor(-Float(17.0)) == -17
assert floor(Float(7.69)) == 7
assert floor(-Float(7.69)) == -8
assert floor(I) == I
assert floor(-I) == -I
e = floor(i)
assert e.func is floor and e.args[0] == i
assert floor(oo*I) == oo*I
assert floor(-oo*I) == -oo*I
assert floor(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
assert floor(2*I) == 2*I
assert floor(-2*I) == -2*I
assert floor(I/2) == 0
assert floor(-I/2) == -I
assert floor(E + 17) == 19
assert floor(pi + 2) == 5
assert floor(E + pi) == 5
assert floor(I + pi) == 3 + I
assert floor(floor(pi)) == 3
assert floor(floor(y)) == floor(y)
assert floor(floor(x)) == floor(x)
assert unchanged(floor, x)
assert unchanged(floor, 2*x)
assert unchanged(floor, k*x)
assert floor(k) == k
assert floor(2*k) == 2*k
assert floor(k*n) == k*n
assert unchanged(floor, k/2)
assert unchanged(floor, x + y)
assert floor(x + 3) == floor(x) + 3
assert floor(x + k) == floor(x) + k
assert floor(y + 3) == floor(y) + 3
assert floor(y + k) == floor(y) + k
assert floor(3 + I*y + pi) == 6 + floor(y)*I
assert floor(k + n) == k + n
assert unchanged(floor, x*I)
assert floor(k*I) == k*I
assert floor(Rational(23, 10) - E*I) == 2 - 3*I
assert floor(sin(1)) == 0
assert floor(sin(-1)) == -1
assert floor(exp(2)) == 7
assert floor(log(8)/log(2)) != 2
assert int(floor(log(8)/log(2)).evalf(chop=True)) == 3
assert floor(factorial(50)/exp(1)) == \
11188719610782480504630258070757734324011354208865721592720336800
assert (floor(y) <= y) == True
assert (floor(y) > y) == False
assert (floor(x) <= x).is_Relational # x could be non-real
assert (floor(x) > x).is_Relational
assert (floor(x) <= y).is_Relational # arg is not same as rhs
assert (floor(x) > y).is_Relational
assert (floor(y) <= oo) == True
assert floor(y).rewrite(frac) == y - frac(y)
assert floor(y).rewrite(ceiling) == -ceiling(-y)
assert floor(y).rewrite(frac).subs(y, -pi) == floor(-pi)
assert floor(y).rewrite(frac).subs(y, E) == floor(E)
assert floor(y).rewrite(ceiling).subs(y, E) == -ceiling(-E)
assert floor(y).rewrite(ceiling).subs(y, -pi) == -ceiling(pi)
assert Eq(floor(y), y - frac(y))
assert Eq(floor(y), -ceiling(-y))
def test_ceiling():
assert ceiling(nan) == nan
assert ceiling(oo) == oo
assert ceiling(-oo) == -oo
assert ceiling(zoo) == zoo
assert ceiling(0) == 0
assert ceiling(1) == 1
assert ceiling(-1) == -1
assert ceiling(E) == 3
assert ceiling(-E) == -2
assert ceiling(2*E) == 6
assert ceiling(-2*E) == -5
assert ceiling(pi) == 4
assert ceiling(-pi) == -3
assert ceiling(Rational(1, 2)) == 1
assert ceiling(-Rational(1, 2)) == 0
assert ceiling(Rational(7, 3)) == 3
assert ceiling(-Rational(7, 3)) == -2
assert ceiling(Float(17.0)) == 17
assert ceiling(-Float(17.0)) == -17
assert ceiling(Float(7.69)) == 8
assert ceiling(-Float(7.69)) == -7
assert ceiling(I) == I
assert ceiling(-I) == -I
e = ceiling(i)
assert e.func is ceiling and e.args[0] == i
assert ceiling(oo*I) == oo*I
assert ceiling(-oo*I) == -oo*I
assert ceiling(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
assert ceiling(2*I) == 2*I
assert ceiling(-2*I) == -2*I
assert ceiling(I/2) == I
assert ceiling(-I/2) == 0
assert ceiling(E + 17) == 20
assert ceiling(pi + 2) == 6
assert ceiling(E + pi) == 6
assert ceiling(I + pi) == I + 4
assert ceiling(ceiling(pi)) == 4
assert ceiling(ceiling(y)) == ceiling(y)
assert ceiling(ceiling(x)) == ceiling(x)
assert unchanged(ceiling, x)
assert unchanged(ceiling, 2*x)
assert unchanged(ceiling, k*x)
assert ceiling(k) == k
assert ceiling(2*k) == 2*k
assert ceiling(k*n) == k*n
assert unchanged(ceiling, k/2)
assert unchanged(ceiling, x + y)
assert ceiling(x + 3) == ceiling(x) + 3
assert ceiling(x + k) == ceiling(x) + k
assert ceiling(y + 3) == ceiling(y) + 3
assert ceiling(y + k) == ceiling(y) + k
assert ceiling(3 + pi + y*I) == 7 + ceiling(y)*I
assert ceiling(k + n) == k + n
assert unchanged(ceiling, x*I)
assert ceiling(k*I) == k*I
assert ceiling(Rational(23, 10) - E*I) == 3 - 2*I
assert ceiling(sin(1)) == 1
assert ceiling(sin(-1)) == 0
assert ceiling(exp(2)) == 8
assert ceiling(-log(8)/log(2)) != -2
assert int(ceiling(-log(8)/log(2)).evalf(chop=True)) == -3
assert ceiling(factorial(50)/exp(1)) == \
11188719610782480504630258070757734324011354208865721592720336801
assert (ceiling(y) >= y) == True
assert (ceiling(y) < y) == False
assert (ceiling(x) >= x).is_Relational # x could be non-real
assert (ceiling(x) < x).is_Relational
assert (ceiling(x) >= y).is_Relational # arg is not same as rhs
assert (ceiling(x) < y).is_Relational
assert (ceiling(y) >= -oo) == True
assert ceiling(y).rewrite(floor) == -floor(-y)
assert ceiling(y).rewrite(frac) == y + frac(-y)
assert ceiling(y).rewrite(floor).subs(y, -pi) == -floor(pi)
assert ceiling(y).rewrite(floor).subs(y, E) == -floor(-E)
assert ceiling(y).rewrite(frac).subs(y, pi) == ceiling(pi)
assert ceiling(y).rewrite(frac).subs(y, -E) == ceiling(-E)
assert Eq(ceiling(y), y + frac(-y))
assert Eq(ceiling(y), -floor(-y))
def test_frac():
assert isinstance(frac(x), frac)
assert frac(oo) == AccumBounds(0, 1)
assert frac(-oo) == AccumBounds(0, 1)
assert frac(zoo) is nan
assert frac(n) == 0
assert frac(nan) == nan
assert frac(Rational(4, 3)) == Rational(1, 3)
assert frac(-Rational(4, 3)) == Rational(2, 3)
r = Symbol('r', real=True)
assert frac(I*r) == I*frac(r)
assert frac(1 + I*r) == I*frac(r)
assert frac(0.5 + I*r) == 0.5 + I*frac(r)
assert frac(n + I*r) == I*frac(r)
assert frac(n + I*k) == 0
assert unchanged(frac, x + I*x)
assert frac(x + I*n) == frac(x)
assert frac(x).rewrite(floor) == x - floor(x)
assert frac(x).rewrite(ceiling) == x + ceiling(-x)
assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)
assert Eq(frac(y), y - floor(y))
assert Eq(frac(y), y + ceiling(-y))
r = Symbol('r', real=True)
p_i = Symbol('p_i', integer=True, positive=True)
n_i = Symbol('p_i', integer=True, negative=True)
np_i = Symbol('np_i', integer=True, nonpositive=True)
nn_i = Symbol('nn_i', integer=True, nonnegative=True)
p_r = Symbol('p_r', real=True, positive=True)
n_r = Symbol('n_r', real=True, negative=True)
np_r = Symbol('np_r', real=True, nonpositive=True)
nn_r = Symbol('nn_r', real=True, nonnegative=True)
# Real frac argument, integer rhs
assert frac(r) <= p_i
assert not frac(r) <= n_i
assert (frac(r) <= np_i).has(Le)
assert (frac(r) <= nn_i).has(Le)
assert frac(r) < p_i
assert not frac(r) < n_i
assert not frac(r) < np_i
assert (frac(r) < nn_i).has(Lt)
assert not frac(r) >= p_i
assert frac(r) >= n_i
assert frac(r) >= np_i
assert (frac(r) >= nn_i).has(Ge)
assert not frac(r) > p_i
assert frac(r) > n_i
assert (frac(r) > np_i).has(Gt)
assert (frac(r) > nn_i).has(Gt)
assert not Eq(frac(r), p_i)
assert not Eq(frac(r), n_i)
assert Eq(frac(r), np_i).has(Eq)
assert Eq(frac(r), nn_i).has(Eq)
assert Ne(frac(r), p_i)
assert Ne(frac(r), n_i)
assert Ne(frac(r), np_i).has(Ne)
assert Ne(frac(r), nn_i).has(Ne)
# Real frac argument, real rhs
assert (frac(r) <= p_r).has(Le)
assert not frac(r) <= n_r
assert (frac(r) <= np_r).has(Le)
assert (frac(r) <= nn_r).has(Le)
assert (frac(r) < p_r).has(Lt)
assert not frac(r) < n_r
assert not frac(r) < np_r
assert (frac(r) < nn_r).has(Lt)
assert (frac(r) >= p_r).has(Ge)
assert frac(r) >= n_r
assert frac(r) >= np_r
assert (frac(r) >= nn_r).has(Ge)
assert (frac(r) > p_r).has(Gt)
assert frac(r) > n_r
assert (frac(r) > np_r).has(Gt)
assert (frac(r) > nn_r).has(Gt)
assert not Eq(frac(r), n_r)
assert Eq(frac(r), p_r).has(Eq)
assert Eq(frac(r), np_r).has(Eq)
assert Eq(frac(r), nn_r).has(Eq)
assert Ne(frac(r), p_r).has(Ne)
assert Ne(frac(r), n_r)
assert Ne(frac(r), np_r).has(Ne)
assert Ne(frac(r), nn_r).has(Ne)
# Real frac argument, +/- oo rhs
assert frac(r) < oo
assert frac(r) <= oo
assert not frac(r) > oo
assert not frac(r) >= oo
assert not frac(r) < -oo
assert not frac(r) <= -oo
assert frac(r) > -oo
assert frac(r) >= -oo
assert frac(r) < 1
assert frac(r) <= 1
assert not frac(r) > 1
assert not frac(r) >= 1
assert not frac(r) < 0
assert (frac(r) <= 0).has(Le)
assert (frac(r) > 0).has(Gt)
assert frac(r) >= 0
# Some test for numbers
assert frac(r) <= sqrt(2)
assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
assert not frac(r) <= sqrt(2) - sqrt(3)
assert not frac(r) >= sqrt(2)
assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
assert frac(r) >= sqrt(2) - sqrt(3)
assert not Eq(frac(r), sqrt(2))
assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
assert not Eq(frac(r), sqrt(2) - sqrt(3))
assert Ne(frac(r), sqrt(2))
assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
assert Ne(frac(r), sqrt(2) - sqrt(3))
assert frac(p_i, evaluate=False).is_zero
assert frac(p_i, evaluate=False).is_finite
assert frac(p_i, evaluate=False).is_integer
assert frac(p_i, evaluate=False).is_real
assert frac(r).is_finite
assert frac(r).is_real
assert frac(r).is_zero is None
assert frac(r).is_integer is None
assert frac(oo).is_finite
assert frac(oo).is_real
def test_series():
x, y = symbols('x,y')
assert floor(x).nseries(x, y, 100) == floor(y)
assert ceiling(x).nseries(x, y, 100) == ceiling(y)
assert floor(x).nseries(x, pi, 100) == 3
assert ceiling(x).nseries(x, pi, 100) == 4
assert floor(x).nseries(x, 0, 100) == 0
assert ceiling(x).nseries(x, 0, 100) == 1
assert floor(-x).nseries(x, 0, 100) == -1
assert ceiling(-x).nseries(x, 0, 100) == 0
@XFAIL
def test_issue_4149():
assert floor(3 + pi*I + y*I) == 3 + floor(pi + y)*I
assert floor(3*I + pi*I + y*I) == floor(3 + pi + y)*I
assert floor(3 + E + pi*I + y*I) == 5 + floor(pi + y)*I
def test_issue_11207():
assert floor(floor(x)) == floor(x)
assert floor(ceiling(x)) == ceiling(x)
assert ceiling(floor(x)) == floor(x)
assert ceiling(ceiling(x)) == ceiling(x)
def test_nested_floor_ceiling():
assert floor(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
assert ceiling(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
assert floor(ceiling(-floor(x**Rational(7, 2)/y))) == -floor(x**Rational(7, 2)/y)
assert -ceiling(-ceiling(floor(x)/y)) == ceiling(floor(x)/y)
|
0616a98a72640900614b21d39bada17e2a5699e2f965db71a1234c432864abd3 | from sympy import (symbols, Symbol, nan, oo, zoo, I, sinh, sin, pi, atan,
acos, Rational, sqrt, asin, acot, coth, E, S, tan, tanh, cos,
cosh, atan2, exp, log, asinh, acoth, atanh, O, cancel, Matrix, re, im,
Float, Pow, gcd, sec, csc, cot, diff, simplify, Heaviside, arg,
conjugate, series, FiniteSet, asec, acsc, Mul, sinc, jn,
AccumBounds, Interval, ImageSet, Lambda)
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.core.relational import Ne, Eq
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.setexpr import SetExpr
from sympy.utilities.pytest import XFAIL, slow, raises
x, y, z = symbols('x y z')
r = Symbol('r', real=True)
k = Symbol('k', integer=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
np = Symbol('p', nonpositive=True)
nn = Symbol('n', nonnegative=True)
nz = Symbol('nz', nonzero=True)
ep = Symbol('ep', extended_positive=True)
en = Symbol('en', extended_negative=True)
enp = Symbol('ep', extended_nonpositive=True)
enn = Symbol('en', extended_nonnegative=True)
enz = Symbol('enz', extended_nonzero=True)
a = Symbol('a', algebraic=True)
na = Symbol('na', nonzero=True, algebraic=True)
def test_sin():
x, y = symbols('x y')
assert sin.nargs == FiniteSet(1)
assert sin(nan) == nan
assert sin(zoo) == nan
assert sin(oo) == AccumBounds(-1, 1)
assert sin(oo) - sin(oo) == AccumBounds(-2, 2)
assert sin(oo*I) == oo*I
assert sin(-oo*I) == -oo*I
assert 0*sin(oo) == S.Zero
assert 0/sin(oo) == S.Zero
assert 0 + sin(oo) == AccumBounds(-1, 1)
assert 5 + sin(oo) == AccumBounds(4, 6)
assert sin(0) == 0
assert sin(asin(x)) == x
assert sin(atan(x)) == x / sqrt(1 + x**2)
assert sin(acos(x)) == sqrt(1 - x**2)
assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x)
assert sin(acsc(x)) == 1 / x
assert sin(asec(x)) == sqrt(1 - 1 / x**2)
assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2)
assert sin(pi*I) == sinh(pi)*I
assert sin(-pi*I) == -sinh(pi)*I
assert sin(-2*I) == -sinh(2)*I
assert sin(pi) == 0
assert sin(-pi) == 0
assert sin(2*pi) == 0
assert sin(-2*pi) == 0
assert sin(-3*10**73*pi) == 0
assert sin(7*10**103*pi) == 0
assert sin(pi/2) == 1
assert sin(-pi/2) == -1
assert sin(5*pi/2) == 1
assert sin(7*pi/2) == -1
ne = symbols('ne', integer=True, even=False)
e = symbols('e', even=True)
assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half)
assert sin(pi*k/2).func == sin
assert sin(pi*e/2) == 0
assert sin(pi*k) == 0
assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298
assert sin(pi/3) == S.Half*sqrt(3)
assert sin(-2*pi/3) == -S.Half*sqrt(3)
assert sin(pi/4) == S.Half*sqrt(2)
assert sin(-pi/4) == -S.Half*sqrt(2)
assert sin(17*pi/4) == S.Half*sqrt(2)
assert sin(-3*pi/4) == -S.Half*sqrt(2)
assert sin(pi/6) == S.Half
assert sin(-pi/6) == -S.Half
assert sin(7*pi/6) == -S.Half
assert sin(-5*pi/6) == -S.Half
assert sin(1*pi/5) == sqrt((5 - sqrt(5)) / 8)
assert sin(2*pi/5) == sqrt((5 + sqrt(5)) / 8)
assert sin(3*pi/5) == sin(2*pi/5)
assert sin(4*pi/5) == sin(1*pi/5)
assert sin(6*pi/5) == -sin(1*pi/5)
assert sin(8*pi/5) == -sin(2*pi/5)
assert sin(-1273*pi/5) == -sin(2*pi/5)
assert sin(pi/8) == sqrt((2 - sqrt(2))/4)
assert sin(pi/10) == -S(1)/4 + sqrt(5)/4
assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4
assert sin(5*pi/12) == sqrt(2)/4 + sqrt(6)/4
assert sin(-7*pi/12) == -sqrt(2)/4 - sqrt(6)/4
assert sin(-11*pi/12) == sqrt(2)/4 - sqrt(6)/4
assert sin(104*pi/105) == sin(pi/105)
assert sin(106*pi/105) == -sin(pi/105)
assert sin(-104*pi/105) == -sin(pi/105)
assert sin(-106*pi/105) == sin(pi/105)
assert sin(x*I) == sinh(x)*I
assert sin(k*pi) == 0
assert sin(17*k*pi) == 0
assert sin(k*pi*I) == sinh(k*pi)*I
assert sin(r).is_real is True
assert sin(0, evaluate=False).is_algebraic
assert sin(a).is_algebraic is None
assert sin(na).is_algebraic is False
q = Symbol('q', rational=True)
assert sin(pi*q).is_algebraic
qn = Symbol('qn', rational=True, nonzero=True)
assert sin(qn).is_rational is False
assert sin(q).is_rational is None # issue 8653
assert isinstance(sin( re(x) - im(y)), sin) is True
assert isinstance(sin(-re(x) + im(y)), sin) is False
assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)),
Interval(0, 1)))
for d in list(range(1, 22)) + [60, 85]:
for n in range(0, d*2 + 1):
x = n*pi/d
e = abs( float(sin(x)) - sin(float(x)) )
assert e < 1e-12
def test_sin_cos():
for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive...
for n in range(-2*d, d*2):
x = n*pi/d
assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d)
assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d)
assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d)
assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d)
def test_sin_series():
assert sin(x).series(x, 0, 9) == \
x - x**3/6 + x**5/120 - x**7/5040 + O(x**9)
def test_sin_rewrite():
assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2
assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2)
assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2)
assert sin(sinh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n()
assert sin(cosh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n()
assert sin(tanh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n()
assert sin(coth(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n()
assert sin(sin(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n()
assert sin(cos(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n()
assert sin(tan(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n()
assert sin(cot(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n()
assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2
assert sin(x).rewrite(csc) == 1/csc(x)
assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False)
assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False)
assert sin(cos(x)).rewrite(Pow) == sin(cos(x))
def test_sin_expansion():
# Note: these formulas are not unique. The ones here come from the
# Chebyshev formulas.
assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y)
assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y)
assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y)
assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x)
assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x)
assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x)
assert sin(2).expand(trig=True) == 2*sin(1)*cos(1)
assert sin(3).expand(trig=True) == -4*sin(1)**3 + 3*sin(1)
def test_sin_AccumBounds():
assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1)
assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, 3*S.Pi/4)) == AccumBounds(0, 1)
assert sin(AccumBounds(3*S.Pi/4, 7*S.Pi/4)) == AccumBounds(-1, sin(3*S.Pi/4))
assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3))
assert sin(AccumBounds(3*S.Pi/4, 5*S.Pi/6)) == AccumBounds(sin(5*S.Pi/6), sin(3*S.Pi/4))
def test_sin_fdiff():
assert sin(x).fdiff() == cos(x)
raises(ArgumentIndexError, lambda: sin(x).fdiff(2))
def test_trig_symmetry():
assert sin(-x) == -sin(x)
assert cos(-x) == cos(x)
assert tan(-x) == -tan(x)
assert cot(-x) == -cot(x)
assert sin(x + pi) == -sin(x)
assert sin(x + 2*pi) == sin(x)
assert sin(x + 3*pi) == -sin(x)
assert sin(x + 4*pi) == sin(x)
assert sin(x - 5*pi) == -sin(x)
assert cos(x + pi) == -cos(x)
assert cos(x + 2*pi) == cos(x)
assert cos(x + 3*pi) == -cos(x)
assert cos(x + 4*pi) == cos(x)
assert cos(x - 5*pi) == -cos(x)
assert tan(x + pi) == tan(x)
assert tan(x - 3*pi) == tan(x)
assert cot(x + pi) == cot(x)
assert cot(x - 3*pi) == cot(x)
assert sin(pi/2 - x) == cos(x)
assert sin(3*pi/2 - x) == -cos(x)
assert sin(5*pi/2 - x) == cos(x)
assert cos(pi/2 - x) == sin(x)
assert cos(3*pi/2 - x) == -sin(x)
assert cos(5*pi/2 - x) == sin(x)
assert tan(pi/2 - x) == cot(x)
assert tan(3*pi/2 - x) == cot(x)
assert tan(5*pi/2 - x) == cot(x)
assert cot(pi/2 - x) == tan(x)
assert cot(3*pi/2 - x) == tan(x)
assert cot(5*pi/2 - x) == tan(x)
assert sin(pi/2 + x) == cos(x)
assert cos(pi/2 + x) == -sin(x)
assert tan(pi/2 + x) == -cot(x)
assert cot(pi/2 + x) == -tan(x)
def test_cos():
x, y = symbols('x y')
assert cos.nargs == FiniteSet(1)
assert cos(nan) == nan
assert cos(oo) == AccumBounds(-1, 1)
assert cos(oo) - cos(oo) == AccumBounds(-2, 2)
assert cos(oo*I) == oo
assert cos(-oo*I) == oo
assert cos(zoo) == nan
assert cos(0) == 1
assert cos(acos(x)) == x
assert cos(atan(x)) == 1 / sqrt(1 + x**2)
assert cos(asin(x)) == sqrt(1 - x**2)
assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2)
assert cos(acsc(x)) == sqrt(1 - 1 / x**2)
assert cos(asec(x)) == 1 / x
assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2)
assert cos(pi*I) == cosh(pi)
assert cos(-pi*I) == cosh(pi)
assert cos(-2*I) == cosh(2)
assert cos(pi/2) == 0
assert cos(-pi/2) == 0
assert cos(pi/2) == 0
assert cos(-pi/2) == 0
assert cos((-3*10**73 + 1)*pi/2) == 0
assert cos((7*10**103 + 1)*pi/2) == 0
n = symbols('n', integer=True, even=False)
e = symbols('e', even=True)
assert cos(pi*n/2) == 0
assert cos(pi*e/2) == (-1)**(e/2)
assert cos(pi) == -1
assert cos(-pi) == -1
assert cos(2*pi) == 1
assert cos(5*pi) == -1
assert cos(8*pi) == 1
assert cos(pi/3) == S.Half
assert cos(-2*pi/3) == -S.Half
assert cos(pi/4) == S.Half*sqrt(2)
assert cos(-pi/4) == S.Half*sqrt(2)
assert cos(11*pi/4) == -S.Half*sqrt(2)
assert cos(-3*pi/4) == -S.Half*sqrt(2)
assert cos(pi/6) == S.Half*sqrt(3)
assert cos(-pi/6) == S.Half*sqrt(3)
assert cos(7*pi/6) == -S.Half*sqrt(3)
assert cos(-5*pi/6) == -S.Half*sqrt(3)
assert cos(1*pi/5) == (sqrt(5) + 1)/4
assert cos(2*pi/5) == (sqrt(5) - 1)/4
assert cos(3*pi/5) == -cos(2*pi/5)
assert cos(4*pi/5) == -cos(1*pi/5)
assert cos(6*pi/5) == -cos(1*pi/5)
assert cos(8*pi/5) == cos(2*pi/5)
assert cos(-1273*pi/5) == -cos(2*pi/5)
assert cos(pi/8) == sqrt((2 + sqrt(2))/4)
assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4
assert cos(5*pi/12) == -sqrt(2)/4 + sqrt(6)/4
assert cos(7*pi/12) == sqrt(2)/4 - sqrt(6)/4
assert cos(11*pi/12) == -sqrt(2)/4 - sqrt(6)/4
assert cos(104*pi/105) == -cos(pi/105)
assert cos(106*pi/105) == -cos(pi/105)
assert cos(-104*pi/105) == -cos(pi/105)
assert cos(-106*pi/105) == -cos(pi/105)
assert cos(x*I) == cosh(x)
assert cos(k*pi*I) == cosh(k*pi)
assert cos(r).is_real is True
assert cos(0, evaluate=False).is_algebraic
assert cos(a).is_algebraic is None
assert cos(na).is_algebraic is False
q = Symbol('q', rational=True)
assert cos(pi*q).is_algebraic
assert cos(2*pi/7).is_algebraic
assert cos(k*pi) == (-1)**k
assert cos(2*k*pi) == 1
for d in list(range(1, 22)) + [60, 85]:
for n in range(0, 2*d + 1):
x = n*pi/d
e = abs( float(cos(x)) - cos(float(x)) )
assert e < 1e-12
def test_issue_6190():
c = Float('123456789012345678901234567890.25', '')
for cls in [sin, cos, tan, cot]:
assert cls(c*pi) == cls(pi/4)
assert cls(4.125*pi) == cls(pi/8)
assert cls(4.7*pi) == cls((4.7 % 2)*pi)
def test_cos_series():
assert cos(x).series(x, 0, 9) == \
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9)
def test_cos_rewrite():
assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2
assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2)
assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2)
assert cos(sinh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n()
assert cos(cosh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n()
assert cos(tanh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n()
assert cos(coth(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n()
assert cos(sin(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n()
assert cos(cos(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n()
assert cos(tan(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n()
assert cos(cot(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n()
assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2
assert cos(x).rewrite(sec) == 1/sec(x)
assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False)
assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False)
assert cos(sin(x)).rewrite(Pow) == cos(sin(x))
def test_cos_expansion():
assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y)
assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1
assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x)
assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1
assert cos(2).expand(trig=True) == 2*cos(1)**2 - 1
assert cos(3).expand(trig=True) == 4*cos(1)**3 - 3*cos(1)
def test_cos_AccumBounds():
assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1)
assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1)
assert cos(AccumBounds(3*S.Pi/4, 5*S.Pi/4)) == AccumBounds(-1, cos(3*S.Pi/4))
assert cos(AccumBounds(5*S.Pi/4, 4*S.Pi/3)) == AccumBounds(cos(5*S.Pi/4), cos(4*S.Pi/3))
assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4))
def test_cos_fdiff():
assert cos(x).fdiff() == -sin(x)
raises(ArgumentIndexError, lambda: cos(x).fdiff(2))
def test_tan():
assert tan(nan) == nan
assert tan(zoo) == nan
assert tan(oo) == AccumBounds(-oo, oo)
assert tan(oo) - tan(oo) == AccumBounds(-oo, oo)
assert tan.nargs == FiniteSet(1)
assert tan(oo*I) == I
assert tan(-oo*I) == -I
assert tan(0) == 0
assert tan(atan(x)) == x
assert tan(asin(x)) == x / sqrt(1 - x**2)
assert tan(acos(x)) == sqrt(1 - x**2) / x
assert tan(acot(x)) == 1 / x
assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x
assert tan(atan2(y, x)) == y/x
assert tan(pi*I) == tanh(pi)*I
assert tan(-pi*I) == -tanh(pi)*I
assert tan(-2*I) == -tanh(2)*I
assert tan(pi) == 0
assert tan(-pi) == 0
assert tan(2*pi) == 0
assert tan(-2*pi) == 0
assert tan(-3*10**73*pi) == 0
assert tan(pi/2) == zoo
assert tan(3*pi/2) == zoo
assert tan(pi/3) == sqrt(3)
assert tan(-2*pi/3) == sqrt(3)
assert tan(pi/4) == S.One
assert tan(-pi/4) == -S.One
assert tan(17*pi/4) == S.One
assert tan(-3*pi/4) == S.One
assert tan(pi/5) == sqrt(5 - 2*sqrt(5))
assert tan(2*pi/5) == sqrt(5 + 2*sqrt(5))
assert tan(18*pi/5) == -sqrt(5 + 2*sqrt(5))
assert tan(-16*pi/5) == -sqrt(5 - 2*sqrt(5))
assert tan(pi/6) == 1/sqrt(3)
assert tan(-pi/6) == -1/sqrt(3)
assert tan(7*pi/6) == 1/sqrt(3)
assert tan(-5*pi/6) == 1/sqrt(3)
assert tan(pi/8) == -1 + sqrt(2)
assert tan(3*pi/8) == 1 + sqrt(2) # issue 15959
assert tan(5*pi/8) == -1 - sqrt(2)
assert tan(7*pi/8) == 1 - sqrt(2)
assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5)
assert tan(3*pi/10) == sqrt(1 + 2*sqrt(5)/5)
assert tan(17*pi/10) == -sqrt(1 + 2*sqrt(5)/5)
assert tan(-31*pi/10) == -sqrt(1 - 2*sqrt(5)/5)
assert tan(pi/12) == -sqrt(3) + 2
assert tan(5*pi/12) == sqrt(3) + 2
assert tan(7*pi/12) == -sqrt(3) - 2
assert tan(11*pi/12) == sqrt(3) - 2
assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6)
assert tan(5*pi/24).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6)
assert tan(7*pi/24).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6)
assert tan(11*pi/24).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6)
assert tan(13*pi/24).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6)
assert tan(17*pi/24).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6)
assert tan(19*pi/24).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6)
assert tan(23*pi/24).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6)
assert tan(x*I) == tanh(x)*I
assert tan(k*pi) == 0
assert tan(17*k*pi) == 0
assert tan(k*pi*I) == tanh(k*pi)*I
assert tan(r).is_real is None
assert tan(r).is_extended_real is True
assert tan(0, evaluate=False).is_algebraic
assert tan(a).is_algebraic is None
assert tan(na).is_algebraic is False
assert tan(10*pi/7) == tan(3*pi/7)
assert tan(11*pi/7) == -tan(3*pi/7)
assert tan(-11*pi/7) == tan(3*pi/7)
assert tan(15*pi/14) == tan(pi/14)
assert tan(-15*pi/14) == -tan(pi/14)
assert tan(r).is_finite is None
assert tan(I*r).is_finite is True
def test_tan_series():
assert tan(x).series(x, 0, 9) == \
x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9)
def test_tan_rewrite():
neg_exp, pos_exp = exp(-x*I), exp(x*I)
assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x)
assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x)
assert tan(x).rewrite(cot) == 1/cot(x)
assert tan(sinh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n()
assert tan(cosh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n()
assert tan(tanh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n()
assert tan(coth(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n()
assert tan(sin(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n()
assert tan(cos(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n()
assert tan(tan(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n()
assert tan(cot(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n()
assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I)
assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow)
assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow)
assert tan(pi/19).rewrite(pow) == tan(pi/19)
assert tan(8*pi/19).rewrite(sqrt) == tan(8*pi/19)
assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False)
assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x)
assert tan(sin(x)).rewrite(Pow) == tan(sin(x))
assert tan(2*pi/5, evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 +
S(5)/8)/(-S(1)/4 + sqrt(5)/4)
def test_tan_subs():
assert tan(x).subs(tan(x), y) == y
assert tan(x).subs(x, y) == tan(y)
assert tan(x).subs(x, S.Pi/2) == zoo
assert tan(x).subs(x, 3*S.Pi/2) == zoo
def test_tan_expansion():
assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand()
assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand()
assert tan(x + y + z).expand(trig=True) == (
(tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/
(1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand()
assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7
assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37
assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1
def test_tan_AccumBounds():
assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
assert tan(AccumBounds(S.Pi/3, 2*S.Pi/3)) == AccumBounds(-oo, oo)
assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3))
def test_tan_fdiff():
assert tan(x).fdiff() == tan(x)**2 + 1
raises(ArgumentIndexError, lambda: tan(x).fdiff(2))
def test_cot():
assert cot(nan) == nan
assert cot.nargs == FiniteSet(1)
assert cot(oo*I) == -I
assert cot(-oo*I) == I
assert cot(zoo) == nan
assert cot(0) == zoo
assert cot(2*pi) == zoo
assert cot(acot(x)) == x
assert cot(atan(x)) == 1 / x
assert cot(asin(x)) == sqrt(1 - x**2) / x
assert cot(acos(x)) == x / sqrt(1 - x**2)
assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x
assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
assert cot(atan2(y, x)) == x/y
assert cot(pi*I) == -coth(pi)*I
assert cot(-pi*I) == coth(pi)*I
assert cot(-2*I) == coth(2)*I
assert cot(pi) == cot(2*pi) == cot(3*pi)
assert cot(-pi) == cot(-2*pi) == cot(-3*pi)
assert cot(pi/2) == 0
assert cot(-pi/2) == 0
assert cot(5*pi/2) == 0
assert cot(7*pi/2) == 0
assert cot(pi/3) == 1/sqrt(3)
assert cot(-2*pi/3) == 1/sqrt(3)
assert cot(pi/4) == S.One
assert cot(-pi/4) == -S.One
assert cot(17*pi/4) == S.One
assert cot(-3*pi/4) == S.One
assert cot(pi/6) == sqrt(3)
assert cot(-pi/6) == -sqrt(3)
assert cot(7*pi/6) == sqrt(3)
assert cot(-5*pi/6) == sqrt(3)
assert cot(pi/8) == 1 + sqrt(2)
assert cot(3*pi/8) == -1 + sqrt(2)
assert cot(5*pi/8) == 1 - sqrt(2)
assert cot(7*pi/8) == -1 - sqrt(2)
assert cot(pi/12) == sqrt(3) + 2
assert cot(5*pi/12) == -sqrt(3) + 2
assert cot(7*pi/12) == sqrt(3) - 2
assert cot(11*pi/12) == -sqrt(3) - 2
assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6)
assert cot(5*pi/24).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6)
assert cot(7*pi/24).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6)
assert cot(11*pi/24).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6)
assert cot(13*pi/24).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6)
assert cot(17*pi/24).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6)
assert cot(19*pi/24).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6)
assert cot(23*pi/24).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6)
assert cot(x*I) == -coth(x)*I
assert cot(k*pi*I) == -coth(k*pi)*I
assert cot(r).is_real is None
assert cot(r).is_extended_real is True
assert cot(a).is_algebraic is None
assert cot(na).is_algebraic is False
assert cot(10*pi/7) == cot(3*pi/7)
assert cot(11*pi/7) == -cot(3*pi/7)
assert cot(-11*pi/7) == cot(3*pi/7)
assert cot(39*pi/34) == cot(5*pi/34)
assert cot(-41*pi/34) == -cot(7*pi/34)
assert cot(x).is_finite is None
assert cot(r).is_finite is None
i = Symbol('i', imaginary=True)
assert cot(i).is_finite is True
assert cot(x).subs(x, 3*pi) == zoo
def test_tan_cot_sin_cos_evalf():
assert abs((tan(8*pi/15)*cos(8*pi/15)/sin(8*pi/15) - 1).evalf()) < 1e-14
assert abs((cot(4*pi/15)*sin(4*pi/15)/cos(4*pi/15) - 1).evalf()) < 1e-14
@XFAIL
def test_tan_cot_sin_cos_ratsimp():
assert 1 == (tan(8*pi/15)*cos(8*pi/15)/sin(8*pi/15)).ratsimp()
assert 1 == (cot(4*pi/15)*sin(4*pi/15)/cos(4*pi/15)).ratsimp()
def test_cot_series():
assert cot(x).series(x, 0, 9) == \
1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9)
# issue 6210
assert cot(x**4 + x**5).series(x, 0, 1) == \
x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x)
assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3)
assert cot(x).taylor_term(0, x) == 1/x
assert cot(x).taylor_term(2, x) == S.Zero
assert cot(x).taylor_term(3, x) == -x**3/45
def test_cot_rewrite():
neg_exp, pos_exp = exp(-x*I), exp(x*I)
assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2))
assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False)
assert cot(x).rewrite(tan) == 1/tan(x)
assert cot(sinh(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sinh(3)).n()
assert cot(cosh(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, cosh(3)).n()
assert cot(tanh(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tanh(3)).n()
assert cot(coth(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, coth(3)).n()
assert cot(sin(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sin(3)).n()
assert cot(tan(x)).rewrite(
exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tan(3)).n()
assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I)
assert cot(4*pi/34).rewrite(pow).ratsimp() == (cos(4*pi/34)/sin(4*pi/34)).rewrite(pow).ratsimp()
assert cot(4*pi/17).rewrite(pow) == (cos(4*pi/17)/sin(4*pi/17)).rewrite(pow)
assert cot(pi/19).rewrite(pow) == cot(pi/19)
assert cot(pi/19).rewrite(sqrt) == cot(pi/19)
assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x)
assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False)
assert cot(sin(x)).rewrite(Pow) == cot(sin(x))
assert cot(2*pi/5, evaluate=False).rewrite(sqrt) == (-S(1)/4 + sqrt(5)/4)/\
sqrt(sqrt(5)/8 + S(5)/8)
def test_cot_subs():
assert cot(x).subs(cot(x), y) == y
assert cot(x).subs(x, y) == cot(y)
assert cot(x).subs(x, 0) == zoo
assert cot(x).subs(x, S.Pi) == zoo
def test_cot_expansion():
assert cot(x + y).expand(trig=True) == ((cot(x)*cot(y) - 1)/(cot(x) + cot(y))).expand()
assert cot(x - y).expand(trig=True) == (-(cot(x)*cot(y) + 1)/(cot(x) - cot(y))).expand()
assert cot(x + y + z).expand(trig=True) == (
(cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/
(-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z))).expand()
assert cot(3*x).expand(trig=True) == ((cot(x)**3 - 3*cot(x))/(3*cot(x)**2 - 1)).expand()
assert 0 == cot(2*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 3))])*3 + 4
assert 0 == cot(3*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 5))])*55 - 37
assert 0 == cot(4*x - pi/4).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 7))])*863 + 191
def test_cot_AccumBounds():
assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo)
assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6))
def test_cot_fdiff():
assert cot(x).fdiff() == -cot(x)**2 - 1
raises(ArgumentIndexError, lambda: cot(x).fdiff(2))
def test_sinc():
assert isinstance(sinc(x), sinc)
s = Symbol('s', zero=True)
assert sinc(s) == S.One
assert sinc(S.Infinity) == S.Zero
assert sinc(-S.Infinity) == S.Zero
assert sinc(S.NaN) == S.NaN
assert sinc(S.ComplexInfinity) == S.NaN
n = Symbol('n', integer=True, nonzero=True)
assert sinc(n*pi) == S.Zero
assert sinc(-n*pi) == S.Zero
assert sinc(pi/2) == 2 / pi
assert sinc(-pi/2) == 2 / pi
assert sinc(5*pi/2) == 2 / (5*pi)
assert sinc(7*pi/2) == -2 / (7*pi)
assert sinc(-x) == sinc(x)
assert sinc(x).diff() == (x*cos(x) - sin(x)) / x**2
assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6)
assert sinc(x).rewrite(jn) == jn(0, x)
assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True))
def test_asin():
assert asin(nan) == nan
assert asin.nargs == FiniteSet(1)
assert asin(oo) == -I*oo
assert asin(-oo) == I*oo
assert asin(zoo) == zoo
# Note: asin(-x) = - asin(x)
assert asin(0) == 0
assert asin(1) == pi/2
assert asin(-1) == -pi/2
assert asin(sqrt(3)/2) == pi/3
assert asin(-sqrt(3)/2) == -pi/3
assert asin(sqrt(2)/2) == pi/4
assert asin(-sqrt(2)/2) == -pi/4
assert asin(sqrt((5 - sqrt(5))/8)) == pi/5
assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5
assert asin(Rational(1, 2)) == pi/6
assert asin(-Rational(1, 2)) == -pi/6
assert asin((sqrt(2 - sqrt(2)))/2) == pi/8
assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8
assert asin((sqrt(5) - 1)/4) == pi/10
assert asin(-(sqrt(5) - 1)/4) == -pi/10
assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12
assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for n in range(-(d//2), d//2 + 1):
if gcd(n, d) == 1:
assert asin(sin(n*pi/d)) == n*pi/d
assert asin(x).diff(x) == 1/sqrt(1 - x**2)
assert asin(0.2).is_real is True
assert asin(-2).is_real is False
assert asin(r).is_real is None
assert asin(-2*I) == -I*asinh(2)
assert asin(Rational(1, 7), evaluate=False).is_positive is True
assert asin(Rational(-1, 7), evaluate=False).is_positive is False
assert asin(p).is_positive is None
assert asin(sin(S(7)/2)) == -S(7)/2 + pi
assert asin(sin(-S(7)/4)) == S(7)/4 - pi
assert unchanged(asin, cos(x))
def test_asin_series():
assert asin(x).series(x, 0, 9) == \
x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9)
t5 = asin(x).taylor_term(5, x)
assert t5 == 3*x**5/40
assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112
def test_asin_rewrite():
assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2))
assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2)))
assert asin(x).rewrite(acos) == S.Pi/2 - acos(x)
assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x)
assert asin(x).rewrite(asec) == -asec(1/x) + pi/2
assert asin(x).rewrite(acsc) == acsc(1/x)
def test_asin_fdiff():
assert asin(x).fdiff() == 1/sqrt(1 - x**2)
raises(ArgumentIndexError, lambda: asin(x).fdiff(2))
def test_acos():
assert acos(nan) == nan
assert acos(zoo) == zoo
assert acos.nargs == FiniteSet(1)
assert acos(oo) == I*oo
assert acos(-oo) == -I*oo
# Note: acos(-x) = pi - acos(x)
assert acos(0) == pi/2
assert acos(Rational(1, 2)) == pi/3
assert acos(-Rational(1, 2)) == (2*pi)/3
assert acos(1) == 0
assert acos(-1) == pi
assert acos(sqrt(2)/2) == pi/4
assert acos(-sqrt(2)/2) == (3*pi)/4
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for num in range(d):
if gcd(num, d) == 1:
assert acos(cos(num*pi/d)) == num*pi/d
assert acos(2*I) == pi/2 - asin(2*I)
assert acos(x).diff(x) == -1/sqrt(1 - x**2)
assert acos(0.2).is_real is True
assert acos(-2).is_real is False
assert acos(r).is_real is None
assert acos(Rational(1, 7), evaluate=False).is_positive is True
assert acos(Rational(-1, 7), evaluate=False).is_positive is True
assert acos(Rational(3, 2), evaluate=False).is_positive is False
assert acos(p).is_positive is None
assert acos(2 + p).conjugate() != acos(10 + p)
assert acos(-3 + n).conjugate() != acos(-3 + n)
assert acos(S.One/3).conjugate() == acos(S.One/3)
assert acos(-S.One/3).conjugate() == acos(-S.One/3)
assert acos(p + n*I).conjugate() == acos(p - n*I)
assert acos(z).conjugate() != acos(conjugate(z))
def test_acos_series():
assert acos(x).series(x, 0, 8) == \
pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8)
assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8)
t5 = acos(x).taylor_term(5, x)
assert t5 == -3*x**5/40
assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112
assert acos(x).taylor_term(0, x) == pi/2
assert acos(x).taylor_term(2, x) == S.Zero
def test_acos_rewrite():
assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
assert acos(x).rewrite(atan) == \
atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2))
assert acos(0).rewrite(atan) == S.Pi/2
assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
assert acos(x).rewrite(asin) == S.Pi/2 - asin(x)
assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2
assert acos(x).rewrite(asec) == asec(1/x)
assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2
def test_acos_fdiff():
assert acos(x).fdiff() == -1/sqrt(1 - x**2)
raises(ArgumentIndexError, lambda: acos(x).fdiff(2))
def test_atan():
assert atan(nan) == nan
assert atan.nargs == FiniteSet(1)
assert atan(oo) == pi/2
assert atan(-oo) == -pi/2
assert atan(zoo) == AccumBounds(-pi/2, pi/2)
assert atan(0) == 0
assert atan(1) == pi/4
assert atan(sqrt(3)) == pi/3
assert atan(-(1 + sqrt(2))) == -3*pi/8
assert atan(sqrt((5 - 2 * sqrt(5)))) == pi/5
assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10
assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == 3*pi/10
assert atan(-2 + sqrt(3)) == -pi/12
assert atan(2 + sqrt(3)) == 5*pi/12
assert atan(-2 - sqrt(3)) == -5*pi/12
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for num in range(-(d//2), d//2 + 1):
if gcd(num, d) == 1:
assert atan(tan(num*pi/d)) == num*pi/d
assert atan(oo) == pi/2
assert atan(x).diff(x) == 1/(1 + x**2)
assert atan(r).is_real is True
assert atan(-2*I) == -I*atanh(2)
assert unchanged(atan, cot(x))
assert atan(cot(S(1)/4)) == -S(1)/4 + pi/2
assert acot(S(1)/4).is_rational is False
for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz):
if s.is_real or s.is_extended_real is None:
assert s.is_nonzero is atan(s).is_nonzero
assert s.is_positive is atan(s).is_positive
assert s.is_negative is atan(s).is_negative
assert s.is_nonpositive is atan(s).is_nonpositive
assert s.is_nonnegative is atan(s).is_nonnegative
else:
assert s.is_extended_nonzero is atan(s).is_nonzero
assert s.is_extended_positive is atan(s).is_positive
assert s.is_extended_negative is atan(s).is_negative
assert s.is_extended_nonpositive is atan(s).is_nonpositive
assert s.is_extended_nonnegative is atan(s).is_nonnegative
assert s.is_extended_nonzero is atan(s).is_extended_nonzero
assert s.is_extended_positive is atan(s).is_extended_positive
assert s.is_extended_negative is atan(s).is_extended_negative
assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive
assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative
def test_atan_rewrite():
assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2
assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x
assert atan(x).rewrite(acot) == acot(1/x)
assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x
assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I})
assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I})
def test_atan_fdiff():
assert atan(x).fdiff() == 1/(x**2 + 1)
raises(ArgumentIndexError, lambda: atan(x).fdiff(2))
def test_atan2():
assert atan2.nargs == FiniteSet(2)
assert atan2(0, 0) == S.NaN
assert atan2(0, 1) == 0
assert atan2(1, 1) == pi/4
assert atan2(1, 0) == pi/2
assert atan2(1, -1) == 3*pi/4
assert atan2(0, -1) == pi
assert atan2(-1, -1) == -3*pi/4
assert atan2(-1, 0) == -pi/2
assert atan2(-1, 1) == -pi/4
i = symbols('i', imaginary=True)
r = symbols('r', real=True)
eq = atan2(r, i)
ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
reps = ((r, 2), (i, I))
assert eq.subs(reps) == ans.subs(reps)
x = Symbol('x', negative=True)
y = Symbol('y', negative=True)
assert atan2(y, x) == atan(y/x) - pi
y = Symbol('y', nonnegative=True)
assert atan2(y, x) == atan(y/x) + pi
y = Symbol('y')
assert atan2(y, x) == atan2(y, x, evaluate=False)
u = Symbol("u", positive=True)
assert atan2(0, u) == 0
u = Symbol("u", negative=True)
assert atan2(0, u) == pi
assert atan2(y, oo) == 0
assert atan2(y, -oo)== 2*pi*Heaviside(re(y)) - pi
assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
assert atan2(0, 0).rewrite(atan) == S.NaN
w = Symbol('w')
assert atan2(0, w).rewrite(atan) == Piecewise((pi, w < 0), (0, w > 0), (S.NaN, True))
ex = atan2(y, x) - arg(x + I*y)
assert ex.subs({x:2, y:3}).rewrite(arg) == 0
assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(2/S(3)) + atan(3/S(2))
i = symbols('i', imaginary=True)
r = symbols('r', real=True)
e = atan2(i, r)
rewrite = e.rewrite(arg)
reps = {i: I, r: -2}
assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
assert (e - rewrite).subs(reps).equals(0)
assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))
assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
assert diff(atan2(y, x), y) == x/(x**2 + y**2)
assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2)
assert str(atan2(1, 2).evalf(5)) == '0.46365'
raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3))
def test_acot():
assert acot(nan) == nan
assert acot.nargs == FiniteSet(1)
assert acot(-oo) == 0
assert acot(oo) == 0
assert acot(zoo) == 0
assert acot(1) == pi/4
assert acot(0) == pi/2
assert acot(sqrt(3)/3) == pi/3
assert acot(1/sqrt(3)) == pi/3
assert acot(-1/sqrt(3)) == -pi/3
assert acot(x).diff(x) == -1/(1 + x**2)
assert acot(r).is_extended_real is True
assert acot(I*pi) == -I*acoth(pi)
assert acot(-2*I) == I*acoth(2)
assert acot(x).is_positive is None
assert acot(n).is_positive is False
assert acot(p).is_positive is True
assert acot(I).is_positive is False
assert acot(S(1)/4).is_rational is False
assert unchanged(acot, cot(x))
assert unchanged(acot, tan(x))
assert acot(cot(S(1)/4)) == S(1)/4
assert acot(tan(-S(1)/4)) == S(1)/4 - pi/2
def test_acot_rewrite():
assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2
assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2))
assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1))
assert acot(x).rewrite(atan) == atan(1/x)
assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2))
assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2))
assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5})
assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5})
def test_acot_fdiff():
assert acot(x).fdiff() == -1/(x**2 + 1)
raises(ArgumentIndexError, lambda: acot(x).fdiff(2))
def test_attributes():
assert sin(x).args == (x,)
def test_sincos_rewrite():
assert sin(pi/2 - x) == cos(x)
assert sin(pi - x) == sin(x)
assert cos(pi/2 - x) == sin(x)
assert cos(pi - x) == -cos(x)
def _check_even_rewrite(func, arg):
"""Checks that the expr has been rewritten using f(-x) -> f(x)
arg : -x
"""
return func(arg).args[0] == -arg
def _check_odd_rewrite(func, arg):
"""Checks that the expr has been rewritten using f(-x) -> -f(x)
arg : -x
"""
return func(arg).func.is_Mul
def _check_no_rewrite(func, arg):
"""Checks that the expr is not rewritten"""
return func(arg).args[0] == arg
def test_evenodd_rewrite():
a = cos(2) # negative
b = sin(1) # positive
even = [cos]
odd = [sin, tan, cot, asin, atan, acot]
with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y]
for func in even:
for expr in with_minus:
assert _check_even_rewrite(func, expr)
assert _check_no_rewrite(func, a*b)
assert func(
x - y) == func(y - x) # it doesn't matter which form is canonical
for func in odd:
for expr in with_minus:
assert _check_odd_rewrite(func, expr)
assert _check_no_rewrite(func, a*b)
assert func(
x - y) == -func(y - x) # it doesn't matter which form is canonical
def test_issue_4547():
assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2)
assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2)
assert tan(x).rewrite(cot) == 1/cot(x)
assert cot(x).fdiff() == -1 - cot(x)**2
def test_as_leading_term_issue_5272():
assert sin(x).as_leading_term(x) == x
assert cos(x).as_leading_term(x) == 1
assert tan(x).as_leading_term(x) == x
assert cot(x).as_leading_term(x) == 1/x
assert asin(x).as_leading_term(x) == x
assert acos(x).as_leading_term(x) == x
assert atan(x).as_leading_term(x) == x
assert acot(x).as_leading_term(x) == x
def test_leading_terms():
for func in [sin, cos, tan, cot, asin, acos, atan, acot]:
for arg in (1/x, S.Half):
eq = func(arg)
assert eq.as_leading_term(x) == eq
def test_atan2_expansion():
assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0
assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5)
+ atan2(0, x) - atan(0)) == O(y**5)
assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4)
+ atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1))
assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3)
+ atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1))
assert Matrix([atan2(y, x)]).jacobian([y, x]) == \
Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]])
def test_aseries():
def t(n, v, d, e):
assert abs(
n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e
t(atan, 0.1, '+', 1e-5)
t(atan, -0.1, '-', 1e-5)
t(acot, 0.1, '+', 1e-5)
t(acot, -0.1, '-', 1e-5)
def test_issue_4420():
i = Symbol('i', integer=True)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
# unknown parity for variable
assert cos(4*i*pi) == 1
assert sin(4*i*pi) == 0
assert tan(4*i*pi) == 0
assert cot(4*i*pi) == zoo
assert cos(3*i*pi) == cos(pi*i) # +/-1
assert sin(3*i*pi) == 0
assert tan(3*i*pi) == 0
assert cot(3*i*pi) == zoo
assert cos(4.0*i*pi) == 1
assert sin(4.0*i*pi) == 0
assert tan(4.0*i*pi) == 0
assert cot(4.0*i*pi) == zoo
assert cos(3.0*i*pi) == cos(pi*i) # +/-1
assert sin(3.0*i*pi) == 0
assert tan(3.0*i*pi) == 0
assert cot(3.0*i*pi) == zoo
assert cos(4.5*i*pi) == cos(0.5*pi*i)
assert sin(4.5*i*pi) == sin(0.5*pi*i)
assert tan(4.5*i*pi) == tan(0.5*pi*i)
assert cot(4.5*i*pi) == cot(0.5*pi*i)
# parity of variable is known
assert cos(4*e*pi) == 1
assert sin(4*e*pi) == 0
assert tan(4*e*pi) == 0
assert cot(4*e*pi) == zoo
assert cos(3*e*pi) == 1
assert sin(3*e*pi) == 0
assert tan(3*e*pi) == 0
assert cot(3*e*pi) == zoo
assert cos(4.0*e*pi) == 1
assert sin(4.0*e*pi) == 0
assert tan(4.0*e*pi) == 0
assert cot(4.0*e*pi) == zoo
assert cos(3.0*e*pi) == 1
assert sin(3.0*e*pi) == 0
assert tan(3.0*e*pi) == 0
assert cot(3.0*e*pi) == zoo
assert cos(4.5*e*pi) == cos(0.5*pi*e)
assert sin(4.5*e*pi) == sin(0.5*pi*e)
assert tan(4.5*e*pi) == tan(0.5*pi*e)
assert cot(4.5*e*pi) == cot(0.5*pi*e)
assert cos(4*o*pi) == 1
assert sin(4*o*pi) == 0
assert tan(4*o*pi) == 0
assert cot(4*o*pi) == zoo
assert cos(3*o*pi) == -1
assert sin(3*o*pi) == 0
assert tan(3*o*pi) == 0
assert cot(3*o*pi) == zoo
assert cos(4.0*o*pi) == 1
assert sin(4.0*o*pi) == 0
assert tan(4.0*o*pi) == 0
assert cot(4.0*o*pi) == zoo
assert cos(3.0*o*pi) == -1
assert sin(3.0*o*pi) == 0
assert tan(3.0*o*pi) == 0
assert cot(3.0*o*pi) == zoo
assert cos(4.5*o*pi) == cos(0.5*pi*o)
assert sin(4.5*o*pi) == sin(0.5*pi*o)
assert tan(4.5*o*pi) == tan(0.5*pi*o)
assert cot(4.5*o*pi) == cot(0.5*pi*o)
# x could be imaginary
assert cos(4*x*pi) == cos(4*pi*x)
assert sin(4*x*pi) == sin(4*pi*x)
assert tan(4*x*pi) == tan(4*pi*x)
assert cot(4*x*pi) == cot(4*pi*x)
assert cos(3*x*pi) == cos(3*pi*x)
assert sin(3*x*pi) == sin(3*pi*x)
assert tan(3*x*pi) == tan(3*pi*x)
assert cot(3*x*pi) == cot(3*pi*x)
assert cos(4.0*x*pi) == cos(4.0*pi*x)
assert sin(4.0*x*pi) == sin(4.0*pi*x)
assert tan(4.0*x*pi) == tan(4.0*pi*x)
assert cot(4.0*x*pi) == cot(4.0*pi*x)
assert cos(3.0*x*pi) == cos(3.0*pi*x)
assert sin(3.0*x*pi) == sin(3.0*pi*x)
assert tan(3.0*x*pi) == tan(3.0*pi*x)
assert cot(3.0*x*pi) == cot(3.0*pi*x)
assert cos(4.5*x*pi) == cos(4.5*pi*x)
assert sin(4.5*x*pi) == sin(4.5*pi*x)
assert tan(4.5*x*pi) == tan(4.5*pi*x)
assert cot(4.5*x*pi) == cot(4.5*pi*x)
def test_inverses():
raises(AttributeError, lambda: sin(x).inverse())
raises(AttributeError, lambda: cos(x).inverse())
assert tan(x).inverse() == atan
assert cot(x).inverse() == acot
raises(AttributeError, lambda: csc(x).inverse())
raises(AttributeError, lambda: sec(x).inverse())
assert asin(x).inverse() == sin
assert acos(x).inverse() == cos
assert atan(x).inverse() == tan
assert acot(x).inverse() == cot
def test_real_imag():
a, b = symbols('a b', real=True)
z = a + b*I
for deep in [True, False]:
assert sin(
z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b))
assert cos(
z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b))
assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) +
cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b)))
assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) -
cosh(2*b)), -sinh(2*b)/(cos(2*a) - cosh(2*b)))
assert sin(a).as_real_imag(deep=deep) == (sin(a), 0)
assert cos(a).as_real_imag(deep=deep) == (cos(a), 0)
assert tan(a).as_real_imag(deep=deep) == (tan(a), 0)
assert cot(a).as_real_imag(deep=deep) == (cot(a), 0)
@XFAIL
def test_sin_cos_with_infinity():
# Test for issue 5196
# https://github.com/sympy/sympy/issues/5196
assert sin(oo) == S.NaN
assert cos(oo) == S.NaN
@slow
def test_sincos_rewrite_sqrt():
# equivalent to testing rewrite(pow)
for p in [1, 3, 5, 17]:
for t in [1, 8]:
n = t*p
# The vertices `exp(i*pi/n)` of a regular `n`-gon can
# be expressed by means of nested square roots if and
# only if `n` is a product of Fermat primes, `p`, and
# powers of 2, `t'. The code aims to check all vertices
# not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`).
# For large `n` this makes the test too slow, therefore
# the vertices are limited to those of index `i < 10`.
for i in range(1, min((n + 1)//2 + 1, 10)):
if 1 == gcd(i, n):
x = i*pi/n
s1 = sin(x).rewrite(sqrt)
c1 = cos(x).rewrite(sqrt)
assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n)
assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half)
assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64)
assert cos(-15*pi/2/11, evaluate=False).rewrite(
sqrt) == -sqrt(-cos(4*pi/11)/2 + S.Half)
assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite(
sqrt) == -1
e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation
a = (
-3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 -
3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) +
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17)
+ 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - S(1)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128
+ 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) +
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32
+ sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/8 -
5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 -
3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/32
+ sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/2 +
S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) +
17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
6*sqrt(17) + 34)/32 + S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
S(15)/32)/32)/2)
assert e.rewrite(sqrt) == a
assert e.n() == a.n()
# coverage of fermatCoords: multiplicity > 1; the following could be
# different but that portion of the code should be tested in some way
assert cos(pi/9/17).rewrite(sqrt) == \
sin(pi/9)*sin(2*pi/17) + cos(pi/9)*cos(2*pi/17)
@slow
def test_tancot_rewrite_sqrt():
# equivalent to testing rewrite(pow)
for p in [1, 3, 5, 17]:
for t in [1, 8]:
n = t*p
for i in range(1, min((n + 1)//2 + 1, 10)):
if 1 == gcd(i, n):
x = i*pi/n
if 2*i != n and 3*i != 2*n:
t1 = tan(x).rewrite(sqrt)
assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
if i != 0 and i != n:
c1 = cot(x).rewrite(sqrt)
assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
def test_sec():
x = symbols('x', real=True)
z = symbols('z')
assert sec.nargs == FiniteSet(1)
assert sec(zoo) == nan
assert sec(0) == 1
assert sec(pi) == -1
assert sec(pi/2) == zoo
assert sec(-pi/2) == zoo
assert sec(pi/6) == 2*sqrt(3)/3
assert sec(pi/3) == 2
assert sec(5*pi/2) == zoo
assert sec(9*pi/7) == -sec(2*pi/7)
assert sec(3*pi/4) == -sqrt(2) # issue 8421
assert sec(I) == 1/cosh(1)
assert sec(x*I) == 1/cosh(x)
assert sec(-x) == sec(x)
assert sec(asec(x)) == x
assert sec(z).conjugate() == sec(conjugate(z))
assert (sec(z).as_real_imag() ==
(cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2),
sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2)))
assert sec(x).expand(trig=True) == 1/cos(x)
assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
assert sec(x).is_extended_real == True
assert sec(z).is_real == None
assert sec(a).is_algebraic is None
assert sec(na).is_algebraic is False
assert sec(x).as_leading_term() == sec(x)
assert sec(0).is_finite == True
assert sec(x).is_finite == None
assert sec(pi/2).is_finite == False
assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
# https://github.com/sympy/sympy/issues/7166
assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
# https://github.com/sympy/sympy/issues/7167
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - 3*pi/2) + (x - 3*pi/2)**(S(3)/2)/12 +
(x - 3*pi/2)**(S(7)/2)/160 + O((x - 3*pi/2)**4, (x, 3*pi/2)))
assert sec(x).diff(x) == tan(x)*sec(x)
# Taylor Term checks
assert sec(z).taylor_term(4, z) == 5*z**4/24
assert sec(z).taylor_term(6, z) == 61*z**6/720
assert sec(z).taylor_term(5, z) == 0
def test_sec_rewrite():
assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
assert sec(x).rewrite(cos) == 1/cos(x)
assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
assert sec(x).rewrite(pow) == sec(x)
assert sec(x).rewrite(sqrt) == sec(x)
assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1)
assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False)
assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1)
assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)
def test_sec_fdiff():
assert sec(x).fdiff() == tan(x)*sec(x)
raises(ArgumentIndexError, lambda: sec(x).fdiff(2))
def test_csc():
x = symbols('x', real=True)
z = symbols('z')
# https://github.com/sympy/sympy/issues/6707
cosecant = csc('x')
alternate = 1/sin('x')
assert cosecant.equals(alternate) == True
assert alternate.equals(cosecant) == True
assert csc.nargs == FiniteSet(1)
assert csc(0) == zoo
assert csc(pi) == zoo
assert csc(zoo) == nan
assert csc(pi/2) == 1
assert csc(-pi/2) == -1
assert csc(pi/6) == 2
assert csc(pi/3) == 2*sqrt(3)/3
assert csc(5*pi/2) == 1
assert csc(9*pi/7) == -csc(2*pi/7)
assert csc(3*pi/4) == sqrt(2) # issue 8421
assert csc(I) == -I/sinh(1)
assert csc(x*I) == -I/sinh(x)
assert csc(-x) == -csc(x)
assert csc(acsc(x)) == x
assert csc(z).conjugate() == csc(conjugate(z))
assert (csc(z).as_real_imag() ==
(sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2),
-cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2)))
assert csc(x).expand(trig=True) == 1/sin(x)
assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x))
assert csc(x).is_extended_real == True
assert csc(z).is_real == None
assert csc(a).is_algebraic is None
assert csc(na).is_algebraic is False
assert csc(x).as_leading_term() == csc(x)
assert csc(0).is_finite == False
assert csc(x).is_finite == None
assert csc(pi/2).is_finite == True
assert series(csc(x), x, x0=pi/2, n=6) == \
1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
assert series(csc(x), x, x0=0, n=6) == \
1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)
assert csc(x).diff(x) == -cot(x)*csc(x)
assert csc(x).taylor_term(2, x) == 0
assert csc(x).taylor_term(3, x) == 7*x**3/360
assert csc(x).taylor_term(5, x) == 31*x**5/15120
raises(ArgumentIndexError, lambda: csc(x).fdiff(2))
def test_asec():
z = Symbol('z', zero=True)
assert asec(z) == zoo
assert asec(nan) == nan
assert asec(1) == 0
assert asec(-1) == pi
assert asec(oo) == pi/2
assert asec(-oo) == pi/2
assert asec(zoo) == pi/2
assert asec(sec(13*pi/4)) == 3*pi/4
assert asec(1 + sqrt(5)) == 2*pi/5
assert asec(2/sqrt(3)) == pi/6
assert asec(sqrt(4 - 2*sqrt(2))) == pi/8
assert asec(-sqrt(4 + 2*sqrt(2))) == 5*pi/8
assert asec(sqrt(2 + 2*sqrt(5)/5)) == 3*pi/10
assert asec(-sqrt(2 + 2*sqrt(5)/5)) == 7*pi/10
assert asec(sqrt(2) - sqrt(6)) == 11*pi/12
assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2))
assert asec(x).as_leading_term(x) == log(x)
assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2
assert asec(x).rewrite(asin) == -asin(1/x) + pi/2
assert asec(x).rewrite(acos) == acos(1/x)
assert asec(x).rewrite(atan) == (2*atan(x + sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x
assert asec(x).rewrite(acot) == (2*acot(x - sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x
assert asec(x).rewrite(acsc) == -acsc(x) + pi/2
raises(ArgumentIndexError, lambda: asec(x).fdiff(2))
def test_asec_is_real():
assert asec(S(1)/2).is_real is False
n = Symbol('n', positive=True, integer=True)
assert asec(n).is_extended_real is True
assert asec(x).is_real is None
assert asec(r).is_real is None
t = Symbol('t', real=False, finite=True)
assert asec(t).is_real is False
def test_acsc():
assert acsc(nan) == nan
assert acsc(1) == pi/2
assert acsc(-1) == -pi/2
assert acsc(oo) == 0
assert acsc(-oo) == 0
assert acsc(zoo) == 0
assert acsc(0) == zoo
assert acsc(csc(3)) == -3 + pi
assert acsc(csc(4)) == -4 + pi
assert acsc(csc(6)) == 6 - 2*pi
assert unchanged(acsc, csc(x))
assert unchanged(acsc, sec(x))
assert acsc(2/sqrt(3)) == pi/3
assert acsc(csc(13*pi/4)) == -pi/4
assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5
assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5
assert acsc(-2) == -pi/6
assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8
assert acsc(sqrt(4 - 2*sqrt(2))) == 3*pi/8
assert acsc(1 + sqrt(5)) == pi/10
assert acsc(sqrt(2) - sqrt(6)) == -5*pi/12
assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2))
assert acsc(x).as_leading_term(x) == log(x)
assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x)
assert acsc(x).rewrite(asin) == asin(1/x)
assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2
assert acsc(x).rewrite(atan) == (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
assert acsc(x).rewrite(asec) == -asec(x) + pi/2
raises(ArgumentIndexError, lambda: acsc(x).fdiff(2))
def test_csc_rewrite():
assert csc(x).rewrite(pow) == csc(x)
assert csc(x).rewrite(sqrt) == csc(x)
assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x))
assert csc(x).rewrite(sin) == 1/sin(x)
assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2))
assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2))
assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False)
assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False)
def test_issue_8653():
n = Symbol('n', integer=True)
assert sin(n).is_irrational is None
assert cos(n).is_irrational is None
assert tan(n).is_irrational is None
def test_issue_9157():
n = Symbol('n', integer=True, positive=True)
atan(n - 1).is_nonnegative is True
def test_trig_period():
x, y = symbols('x, y')
assert sin(x).period() == 2*pi
assert cos(x).period() == 2*pi
assert tan(x).period() == pi
assert cot(x).period() == pi
assert sec(x).period() == 2*pi
assert csc(x).period() == 2*pi
assert sin(2*x).period() == pi
assert cot(4*x - 6).period() == pi/4
assert cos((-3)*x).period() == 2*pi/3
assert cos(x*y).period(x) == 2*pi/abs(y)
assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x)
assert tan(3*x).period(y) == S.Zero
raises(NotImplementedError, lambda: sin(x**2).period(x))
def test_issue_7171():
assert sin(x).rewrite(sqrt) == sin(x)
assert sin(x).rewrite(pow) == sin(x)
def test_issue_11864():
w, k = symbols('w, k', real=True)
F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True))
soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True))
assert F.rewrite(sinc) == soln
def test_real_assumptions():
z = Symbol('z', real=False, finite=True)
assert sin(z).is_real is None
assert cos(z).is_real is None
assert tan(z).is_real is False
assert sec(z).is_real is None
assert csc(z).is_real is None
assert cot(z).is_real is False
assert asin(p).is_real is None
assert asin(n).is_real is None
assert asec(p).is_real is None
assert asec(n).is_real is None
assert acos(p).is_real is None
assert acos(n).is_real is None
assert acsc(p).is_real is None
assert acsc(n).is_real is None
assert atan(p).is_positive is True
assert atan(n).is_negative is True
assert acot(p).is_positive is True
assert acot(n).is_negative is True
def test_issue_14320():
assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi)
assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2)
assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2)
assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20)
assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi)
assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17)
assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15)
assert atan(cot(12)) == -12 + 7*pi/2 and (-pi/2 < -12 + 7*pi/2 < pi/2) and cot(12) == tan(-12 + 7*pi/2)
assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15)
assert acot(tan(19)) == -19 + 13*pi/2 and (-pi/2 < -19 + 13*pi/2 <= pi/2) and tan(19) == cot(-19 + 13*pi/2)
assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi)
assert asec(csc(13)) == -13 + 9*pi/2 and (0 <= -13 + 9*pi/2 <= pi) and sin(13) == cos(-13 + 9*pi/2)
assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14)
assert acsc(sec(10)) == -7*pi/2 + 10 and (-pi/2 <= -7*pi/2 + 10 <= pi/2) and cos(10) == sin(-7*pi/2 + 10)
def test_issue_14543():
assert sec(2*pi + 11) == sec(11)
assert sec(2*pi - 11) == sec(11)
assert sec(pi + 11) == -sec(11)
assert sec(pi - 11) == -sec(11)
assert csc(2*pi + 17) == csc(17)
assert csc(2*pi - 17) == -csc(17)
assert csc(pi + 17) == -csc(17)
assert csc(pi - 17) == csc(17)
x = Symbol('x')
assert csc(pi/2 + x) == sec(x)
assert csc(pi/2 - x) == sec(x)
assert csc(3*pi/2 + x) == -sec(x)
assert csc(3*pi/2 - x) == -sec(x)
assert sec(pi/2 - x) == csc(x)
assert sec(pi/2 + x) == -csc(x)
assert sec(3*pi/2 + x) == csc(x)
assert sec(3*pi/2 - x) == -csc(x)
|
354cbbee3cb45f4b8beb1c92185951a14fc9360cc77fd2312e7b5cffab483ca7 | from sympy import (
Abs, acos, adjoint, arg, atan, atan2, conjugate, cos, DiracDelta,
E, exp, expand, Expr, Function, Heaviside, I, im, log, nan, oo,
pi, Rational, re, S, sign, sin, sqrt, Symbol, symbols, transpose,
zoo, exp_polar, Piecewise, Interval, comp, Integral, Matrix,
ImmutableMatrix, SparseMatrix, ImmutableSparseMatrix, MatrixSymbol,
FunctionMatrix, Lambda, Derivative)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.utilities.pytest import XFAIL, raises
def N_equals(a, b):
"""Check whether two complex numbers are numerically close"""
return comp(a.n(), b.n(), 1.e-6)
def test_re():
x, y = symbols('x,y')
a, b = symbols('a,b', real=True)
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert re(nan) == nan
assert re(oo) == oo
assert re(-oo) == -oo
assert re(0) == 0
assert re(1) == 1
assert re(-1) == -1
assert re(E) == E
assert re(-E) == -E
assert unchanged(re, x)
assert re(x*I) == -im(x)
assert re(r*I) == 0
assert re(r) == r
assert re(i*I) == I * i
assert re(i) == 0
assert re(x + y) == re(x) + re(y)
assert re(x + r) == re(x) + r
assert re(re(x)) == re(x)
assert re(2 + I) == 2
assert re(x + I) == re(x)
assert re(x + y*I) == re(x) - im(y)
assert re(x + r*I) == re(x)
assert re(log(2*I)) == log(2)
assert re((2 + I)**2).expand(complex=True) == 3
assert re(conjugate(x)) == re(x)
assert conjugate(re(x)) == re(x)
assert re(x).as_real_imag() == (re(x), 0)
assert re(i*r*x).diff(r) == re(i*x)
assert re(i*r*x).diff(i) == I*r*im(x)
assert re(
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
assert re(a * (2 + b*I)) == 2*a
assert re((1 + sqrt(a + b*I))/2) == \
(a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2)
assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert re(S.ComplexInfinity) == S.NaN
n, m, l = symbols('n m l')
A = MatrixSymbol('A',n,m)
assert re(A) == (S(1)/2) * (A + conjugate(A))
A = Matrix([[1 + 4*I,2],[0, -3*I]])
assert re(A) == Matrix([[1, 2],[0, 0]])
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])
X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
assert re(X) - Matrix([[0, 0, 0, 0, 0],
[2, 2, 2, 2, 2],
[4, 4, 4, 4, 4],
[6, 6, 6, 6, 6],
[8, 8, 8, 8, 8]]) == Matrix.zeros(5)
assert im(X) - Matrix([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]) == Matrix.zeros(5)
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
def test_im():
x, y = symbols('x,y')
a, b = symbols('a,b', real=True)
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert im(nan) == nan
assert im(oo*I) == oo
assert im(-oo*I) == -oo
assert im(0) == 0
assert im(1) == 0
assert im(-1) == 0
assert im(E*I) == E
assert im(-E*I) == -E
assert unchanged(im, x)
assert im(x*I) == re(x)
assert im(r*I) == r
assert im(r) == 0
assert im(i*I) == 0
assert im(i) == -I * i
assert im(x + y) == im(x) + im(y)
assert im(x + r) == im(x)
assert im(x + r*I) == im(x) + r
assert im(im(x)*I) == im(x)
assert im(2 + I) == 1
assert im(x + I) == im(x) + 1
assert im(x + y*I) == im(x) + re(y)
assert im(x + r*I) == im(x) + r
assert im(log(2*I)) == pi/2
assert im((2 + I)**2).expand(complex=True) == 4
assert im(conjugate(x)) == -im(x)
assert conjugate(im(x)) == im(x)
assert im(x).as_real_imag() == (im(x), 0)
assert im(i*r*x).diff(r) == im(i*x)
assert im(i*r*x).diff(i) == -I * re(r*x)
assert im(
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
assert im(a * (2 + b*I)) == a*b
assert im((1 + sqrt(a + b*I))/2) == \
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2
assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert im(S.ComplexInfinity) == S.NaN
n, m, l = symbols('n m l')
A = MatrixSymbol('A',n,m)
assert im(A) == (S(1)/(2*I)) * (A - conjugate(A))
A = Matrix([[1 + 4*I, 2],[0, -3*I]])
assert im(A) == Matrix([[4, 0],[0, -3]])
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])
X = ImmutableSparseMatrix(
[[i*I + i for i in range(5)] for i in range(5)])
Y = SparseMatrix([[i for i in range(5)] for i in range(5)])
assert im(X).as_immutable() == Y
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
def test_sign():
assert sign(1.2) == 1
assert sign(-1.2) == -1
assert sign(3*I) == I
assert sign(-3*I) == -I
assert sign(0) == 0
assert sign(nan) == nan
assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
assert sign(2 + 2*I).simplify() == sign(1 + I)
assert sign(im(sqrt(1 - sqrt(3)))) == 1
assert sign(sqrt(1 - sqrt(3))) == I
x = Symbol('x')
assert sign(x).is_finite is True
assert sign(x).is_complex is True
assert sign(x).is_imaginary is None
assert sign(x).is_integer is None
assert sign(x).is_real is None
assert sign(x).is_zero is None
assert sign(x).doit() == sign(x)
assert sign(1.2*x) == sign(x)
assert sign(2*x) == sign(x)
assert sign(I*x) == I*sign(x)
assert sign(-2*I*x) == -I*sign(x)
assert sign(conjugate(x)) == conjugate(sign(x))
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
m = Symbol('m', negative=True)
assert sign(2*p*x) == sign(x)
assert sign(n*x) == -sign(x)
assert sign(n*m*x) == sign(x)
x = Symbol('x', imaginary=True)
assert sign(x).is_imaginary is True
assert sign(x).is_integer is False
assert sign(x).is_real is False
assert sign(x).is_zero is False
assert sign(x).diff(x) == 2*DiracDelta(-I*x)
assert sign(x).doit() == x / Abs(x)
assert conjugate(sign(x)) == -sign(x)
x = Symbol('x', real=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is None
assert sign(x).diff(x) == 2*DiracDelta(x)
assert sign(x).doit() == sign(x)
assert conjugate(sign(x)) == sign(x)
x = Symbol('x', nonzero=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is False
assert sign(x).doit() == x / Abs(x)
assert sign(Abs(x)) == 1
assert Abs(sign(x)) == 1
x = Symbol('x', positive=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is False
assert sign(x).doit() == x / Abs(x)
assert sign(Abs(x)) == 1
assert Abs(sign(x)) == 1
x = 0
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is True
assert sign(x).doit() == 0
assert sign(Abs(x)) == 0
assert Abs(sign(x)) == 0
nz = Symbol('nz', nonzero=True, integer=True)
assert sign(nz).is_imaginary is False
assert sign(nz).is_integer is True
assert sign(nz).is_real is True
assert sign(nz).is_zero is False
assert sign(nz)**2 == 1
assert (sign(nz)**3).args == (sign(nz), 3)
assert sign(Symbol('x', nonnegative=True)).is_nonnegative
assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None
assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None
assert sign(Symbol('x', nonpositive=True)).is_nonpositive
assert sign(Symbol('x', real=True)).is_nonnegative is None
assert sign(Symbol('x', real=True)).is_nonpositive is None
assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None
x, y = Symbol('x', real=True), Symbol('y')
assert sign(x).rewrite(Piecewise) == \
Piecewise((1, x > 0), (-1, x < 0), (0, True))
assert sign(y).rewrite(Piecewise) == sign(y)
assert sign(x).rewrite(Heaviside) == 2*Heaviside(x)-1
assert sign(y).rewrite(Heaviside) == sign(y)
# evaluate what can be evaluated
assert sign(exp_polar(I*pi)*pi) is S.NegativeOne
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
# if there is a fast way to know when and when you cannot prove an
# expression like this is zero then the equality to zero is ok
assert sign(eq).func is sign or sign(eq) == 0
# but sometimes it's hard to do this so it's better not to load
# abs down with tests that will be very slow
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
p = expand(q**3)**Rational(1, 3)
d = p - q
assert sign(d).func is sign or sign(d) == 0
def test_as_real_imag():
n = pi**1000
# the special code for working out the real
# and complex parts of a power with Integer exponent
# should not run if there is no imaginary part, hence
# this should not hang
assert n.as_real_imag() == (n, 0)
# issue 6261
x = Symbol('x')
assert sqrt(x).as_real_imag() == \
((re(x)**2 + im(x)**2)**(S(1)/4)*cos(atan2(im(x), re(x))/2),
(re(x)**2 + im(x)**2)**(S(1)/4)*sin(atan2(im(x), re(x))/2))
# issue 3853
a, b = symbols('a,b', real=True)
assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \
(
(a**2 + b**2)**Rational(
1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2),
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2)
assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0)
i = symbols('i', imaginary=True)
assert sqrt(i**2).as_real_imag() == (0, abs(i))
assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0)
@XFAIL
def test_sign_issue_3068():
n = pi**1000
i = int(n)
x = Symbol('x')
assert (n - i).round() == 1 # doesn't hang
assert sign(n - i) == 1
# perhaps it's not possible to get the sign right when
# only 1 digit is being requested for this situation;
# 2 digits works
assert (n - x).n(1, subs={x: i}) > 0
assert (n - x).n(2, subs={x: i}) > 0
def test_Abs():
raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717
x, y = symbols('x,y')
assert sign(sign(x)) == sign(x)
assert sign(x*y).func is sign
assert Abs(0) == 0
assert Abs(1) == 1
assert Abs(-1) == 1
assert Abs(I) == 1
assert Abs(-I) == 1
assert Abs(nan) == nan
assert Abs(zoo) == oo
assert Abs(I * pi) == pi
assert Abs(-I * pi) == pi
assert Abs(I * x) == Abs(x)
assert Abs(-I * x) == Abs(x)
assert Abs(-2*x) == 2*Abs(x)
assert Abs(-2.0*x) == 2.0*Abs(x)
assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
assert Abs(conjugate(x)) == Abs(x)
assert conjugate(Abs(x)) == Abs(x)
assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)
a = Symbol('a', positive=True)
assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)
x = Symbol('x', real=True)
n = Symbol('n', integer=True)
assert Abs((-1)**n) == 1
assert x**(2*n) == Abs(x)**(2*n)
assert Abs(x).diff(x) == sign(x)
assert abs(x) == Abs(x) # Python built-in
assert Abs(x)**3 == x**2*Abs(x)
assert Abs(x)**4 == x**4
assert (
Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged
assert (1/Abs(x)).args == (Abs(x), -1)
assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
assert Abs(x)**-3 == Abs(x)/(x**4)
assert Abs(x**3) == x**2*Abs(x)
assert Abs(I**I) == exp(-pi/2)
assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(S(5)/4))
y = Symbol('y', real=True)
assert Abs(I**y) == 1
y = Symbol('y')
assert Abs(I**y) == exp(-pi*im(y)/2)
x = Symbol('x', imaginary=True)
assert Abs(x).diff(x) == -sign(x)
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
# if there is a fast way to know when you can and when you cannot prove an
# expression like this is zero then the equality to zero is ok
assert abs(eq).func is Abs or abs(eq) == 0
# but sometimes it's hard to do this so it's better not to load
# abs down with tests that will be very slow
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
p = expand(q**3)**Rational(1, 3)
d = p - q
assert abs(d).func is Abs or abs(d) == 0
assert Abs(4*exp(pi*I/4)) == 4
assert Abs(3**(2 + I)) == 9
assert Abs((-3)**(1 - I)) == 3*exp(pi)
assert Abs(oo) is oo
assert Abs(-oo) is oo
assert Abs(oo + I) is oo
assert Abs(oo + I*oo) is oo
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert Abs(x).fdiff() == sign(x)
raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))
# doesn't have recursion error
arg = sqrt(acos(1 - I)*acos(1 + I))
assert abs(arg) == arg
def test_Abs_rewrite():
x = Symbol('x', real=True)
a = Abs(x).rewrite(Heaviside).expand()
assert a == x*Heaviside(x) - x*Heaviside(-x)
for i in [-2, -1, 0, 1, 2]:
assert a.subs(x, i) == abs(i)
y = Symbol('y')
assert Abs(y).rewrite(Heaviside) == Abs(y)
x, y = Symbol('x', real=True), Symbol('y')
assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
assert Abs(y).rewrite(Piecewise) == Abs(y)
assert Abs(y).rewrite(sign) == y/sign(y)
def test_Abs_real():
# test some properties of abs that only apply
# to real numbers
x = Symbol('x', complex=True)
assert sqrt(x**2) != Abs(x)
assert Abs(x**2) != x**2
x = Symbol('x', real=True)
assert sqrt(x**2) == Abs(x)
assert Abs(x**2) == x**2
# if the symbol is zero, the following will still apply
nn = Symbol('nn', nonnegative=True, real=True)
np = Symbol('np', nonpositive=True, real=True)
assert Abs(nn) == nn
assert Abs(np) == -np
def test_Abs_properties():
x = Symbol('x')
assert Abs(x).is_real is None
assert Abs(x).is_extended_real is True
assert Abs(x).is_rational is None
assert Abs(x).is_positive is None
assert Abs(x).is_nonnegative is None
assert Abs(x).is_extended_positive is None
assert Abs(x).is_extended_nonnegative is True
f = Symbol('x', finite=True)
assert Abs(f).is_real is True
assert Abs(f).is_extended_real is True
assert Abs(f).is_rational is None
assert Abs(f).is_positive is None
assert Abs(f).is_nonnegative is True
assert Abs(f).is_extended_positive is None
assert Abs(f).is_extended_nonnegative is True
z = Symbol('z', complex=True, zero=False)
assert Abs(z).is_real is None
assert Abs(z).is_extended_real is True
assert Abs(z).is_rational is None
assert Abs(z).is_positive is None
assert Abs(z).is_extended_positive is True
assert Abs(z).is_zero is False
p = Symbol('p', positive=True)
assert Abs(p).is_real is True
assert Abs(p).is_extended_real is True
assert Abs(p).is_rational is None
assert Abs(p).is_positive is True
assert Abs(p).is_zero is False
q = Symbol('q', rational=True)
assert Abs(q).is_real is True
assert Abs(q).is_rational is True
assert Abs(q).is_integer is None
assert Abs(q).is_positive is None
assert Abs(q).is_nonnegative is True
i = Symbol('i', integer=True)
assert Abs(i).is_real is True
assert Abs(i).is_integer is True
assert Abs(i).is_positive is None
assert Abs(i).is_nonnegative is True
e = Symbol('n', even=True)
ne = Symbol('ne', real=True, even=False)
assert Abs(e).is_even is True
assert Abs(ne).is_even is False
assert Abs(i).is_even is None
o = Symbol('n', odd=True)
no = Symbol('no', real=True, odd=False)
assert Abs(o).is_odd is True
assert Abs(no).is_odd is False
assert Abs(i).is_odd is None
def test_abs():
# this tests that abs calls Abs; don't rename to
# test_Abs since that test is already above
a = Symbol('a', positive=True)
assert abs(I*(1 + a)**2) == (1 + a)**2
def test_arg():
assert arg(0) == nan
assert arg(1) == 0
assert arg(-1) == pi
assert arg(I) == pi/2
assert arg(-I) == -pi/2
assert arg(1 + I) == pi/4
assert arg(-1 + I) == 3*pi/4
assert arg(1 - I) == -pi/4
assert arg(exp_polar(4*pi*I)) == 4*pi
assert arg(exp_polar(-7*pi*I)) == -7*pi
assert arg(exp_polar(5 - 3*pi*I/4)) == -3*pi/4
f = Function('f')
assert not arg(f(0) + I*f(1)).atoms(re)
p = Symbol('p', positive=True)
assert arg(p) == 0
n = Symbol('n', negative=True)
assert arg(n) == pi
x = Symbol('x')
assert conjugate(arg(x)) == arg(x)
e = p + I*p**2
assert arg(e) == arg(1 + p*I)
# make sure sign doesn't swap
e = -2*p + 4*I*p**2
assert arg(e) == arg(-1 + 2*p*I)
# make sure sign isn't lost
x = symbols('x', real=True) # could be zero
e = x + I*x
assert arg(e) == arg(x*(1 + I))
assert arg(e/p) == arg(x*(1 + I))
e = p*cos(p) + I*log(p)*exp(p)
assert arg(e).args[0] == e
# keep it simple -- let the user do more advanced cancellation
e = (p + 1) + I*(p**2 - 1)
assert arg(e).args[0] == e
f = Function('f')
e = 2*x*(f(0) - 1) - 2*x*f(0)
assert arg(e) == arg(-2*x)
assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),)
def test_arg_rewrite():
assert arg(1 + I) == atan2(1, 1)
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert arg(x + I*y).rewrite(atan2) == atan2(y, x)
def test_adjoint():
a = Symbol('a', antihermitian=True)
b = Symbol('b', hermitian=True)
assert adjoint(a) == -a
assert adjoint(I*a) == I*a
assert adjoint(b) == b
assert adjoint(I*b) == -I*b
assert adjoint(a*b) == -b*a
assert adjoint(I*a*b) == I*b*a
x, y = symbols('x y')
assert adjoint(adjoint(x)) == x
assert adjoint(x + y) == adjoint(x) + adjoint(y)
assert adjoint(x - y) == adjoint(x) - adjoint(y)
assert adjoint(x * y) == adjoint(x) * adjoint(y)
assert adjoint(x / y) == adjoint(x) / adjoint(y)
assert adjoint(-x) == -adjoint(x)
x, y = symbols('x y', commutative=False)
assert adjoint(adjoint(x)) == x
assert adjoint(x + y) == adjoint(x) + adjoint(y)
assert adjoint(x - y) == adjoint(x) - adjoint(y)
assert adjoint(x * y) == adjoint(y) * adjoint(x)
assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x)
assert adjoint(-x) == -adjoint(x)
def test_conjugate():
a = Symbol('a', real=True)
b = Symbol('b', imaginary=True)
assert conjugate(a) == a
assert conjugate(I*a) == -I*a
assert conjugate(b) == -b
assert conjugate(I*b) == I*b
assert conjugate(a*b) == -a*b
assert conjugate(I*a*b) == I*a*b
x, y = symbols('x y')
assert conjugate(conjugate(x)) == x
assert conjugate(x + y) == conjugate(x) + conjugate(y)
assert conjugate(x - y) == conjugate(x) - conjugate(y)
assert conjugate(x * y) == conjugate(x) * conjugate(y)
assert conjugate(x / y) == conjugate(x) / conjugate(y)
assert conjugate(-x) == -conjugate(x)
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
def test_conjugate_transpose():
x = Symbol('x')
assert conjugate(transpose(x)) == adjoint(x)
assert transpose(conjugate(x)) == adjoint(x)
assert adjoint(transpose(x)) == conjugate(x)
assert transpose(adjoint(x)) == conjugate(x)
assert adjoint(conjugate(x)) == transpose(x)
assert conjugate(adjoint(x)) == transpose(x)
class Symmetric(Expr):
def _eval_adjoint(self):
return None
def _eval_conjugate(self):
return None
def _eval_transpose(self):
return self
x = Symmetric()
assert conjugate(x) == adjoint(x)
assert transpose(x) == x
def test_transpose():
a = Symbol('a', complex=True)
assert transpose(a) == a
assert transpose(I*a) == I*a
x, y = symbols('x y')
assert transpose(transpose(x)) == x
assert transpose(x + y) == transpose(x) + transpose(y)
assert transpose(x - y) == transpose(x) - transpose(y)
assert transpose(x * y) == transpose(x) * transpose(y)
assert transpose(x / y) == transpose(x) / transpose(y)
assert transpose(-x) == -transpose(x)
x, y = symbols('x y', commutative=False)
assert transpose(transpose(x)) == x
assert transpose(x + y) == transpose(x) + transpose(y)
assert transpose(x - y) == transpose(x) - transpose(y)
assert transpose(x * y) == transpose(y) * transpose(x)
assert transpose(x / y) == 1 / transpose(y) * transpose(x)
assert transpose(-x) == -transpose(x)
def test_polarify():
from sympy import polar_lift, polarify
x = Symbol('x')
z = Symbol('z', polar=True)
f = Function('f')
ES = {}
assert polarify(-1) == (polar_lift(-1), ES)
assert polarify(1 + I) == (polar_lift(1 + I), ES)
assert polarify(exp(x), subs=False) == exp(x)
assert polarify(1 + x, subs=False) == 1 + x
assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x
assert polarify(x, lift=True) == polar_lift(x)
assert polarify(z, lift=True) == z
assert polarify(f(x), lift=True) == f(polar_lift(x))
assert polarify(1 + x, lift=True) == polar_lift(1 + x)
assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))
newex, subs = polarify(f(x) + z)
assert newex.subs(subs) == f(x) + z
mu = Symbol("mu")
sigma = Symbol("sigma", positive=True)
# Make sure polarify(lift=True) doesn't try to lift the integration
# variable
assert polarify(
Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
(x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)*
exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)**
(2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
def test_unpolarify():
from sympy import (exp_polar, polar_lift, exp, unpolarify,
principal_branch)
from sympy import gamma, erf, sin, tanh, uppergamma, Eq, Ne
from sympy.abc import x
p = exp_polar(7*I) + 1
u = exp(7*I) + 1
assert unpolarify(1) == 1
assert unpolarify(p) == u
assert unpolarify(p**2) == u**2
assert unpolarify(p**x) == p**x
assert unpolarify(p*x) == u*x
assert unpolarify(p + x) == u + x
assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))
# Test reduction to principal branch 2*pi.
t = principal_branch(x, 2*pi)
assert unpolarify(t) == x
assert unpolarify(sqrt(t)) == sqrt(t)
# Test exponents_only.
assert unpolarify(p**p, exponents_only=True) == p**u
assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)
# Test functions.
assert unpolarify(sin(p)) == sin(u)
assert unpolarify(tanh(p)) == tanh(u)
assert unpolarify(gamma(p)) == gamma(u)
assert unpolarify(erf(p)) == erf(u)
assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)
assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
uppergamma(sin(u), sin(u + 1))
assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
uppergamma(0, 2)
assert unpolarify(Eq(p, 0)) == Eq(u, 0)
assert unpolarify(Ne(p, 0)) == Ne(u, 0)
assert unpolarify(polar_lift(x) > 0) == (x > 0)
# Test bools
assert unpolarify(True) is True
def test_issue_4035():
x = Symbol('x')
assert Abs(x).expand(trig=True) == Abs(x)
assert sign(x).expand(trig=True) == sign(x)
assert arg(x).expand(trig=True) == arg(x)
def test_issue_3206():
x = Symbol('x')
assert Abs(Abs(x)) == Abs(x)
def test_issue_4754_derivative_conjugate():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
f = Function('f')
assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate()
assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate()
def test_derivatives_issue_4757():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
f = Function('f')
assert re(f(x)).diff(x) == re(f(x).diff(x))
assert im(f(x)).diff(x) == im(f(x).diff(x))
assert re(f(y)).diff(y) == -I*im(f(y).diff(y))
assert im(f(y)).diff(y) == -I*re(f(y).diff(y))
assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2)
assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4)
assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2)
assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4)
def test_issue_11413():
from sympy import Matrix, simplify
v0 = Symbol('v0')
v1 = Symbol('v1')
v2 = Symbol('v2')
V = Matrix([[v0],[v1],[v2]])
U = V.normalized()
assert U == Matrix([
[v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
[v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
[v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]])
U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2))
assert simplify(U.norm) == 1
def test_periodic_argument():
from sympy import (periodic_argument, unbranched_argument, oo,
principal_branch, polar_lift, pi)
x = Symbol('x')
p = Symbol('p', positive=True)
assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
assert N_equals(unbranched_argument((1 + I)**2), pi/2)
assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)
assert unbranched_argument(principal_branch(x, pi)) == \
periodic_argument(x, pi)
assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
assert periodic_argument(polar_lift(2 + I), 2*pi) == \
periodic_argument(2 + I, 2*pi)
assert periodic_argument(polar_lift(2 + I), 3*pi) == \
periodic_argument(2 + I, 3*pi)
assert periodic_argument(polar_lift(2 + I), pi) == \
periodic_argument(polar_lift(2 + I), pi)
assert unbranched_argument(polar_lift(1 + I)) == pi/4
assert periodic_argument(2*p, p) == periodic_argument(p, p)
assert periodic_argument(pi*p, p) == periodic_argument(p, p)
assert Abs(polar_lift(1 + I)) == Abs(1 + I)
@XFAIL
def test_principal_branch_fail():
# TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf?
from sympy import principal_branch
assert N_equals(principal_branch((1 + I)**2, pi/2), 0)
def test_principal_branch():
from sympy import principal_branch, polar_lift, exp_polar
p = Symbol('p', positive=True)
x = Symbol('x')
neg = Symbol('x', negative=True)
assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
assert principal_branch(2*x, p) == 2*principal_branch(x, p)
assert principal_branch(1, pi) == exp_polar(0)
assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
assert principal_branch(-1, pi) == exp_polar(0)
assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
principal_branch(exp_polar(I*pi)*x, 2*pi)
assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)
# related to issue #14692
assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \
exp_polar(-I*pi/2)/neg
assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)
# test argument sanitization
assert principal_branch(x, I).func is principal_branch
assert principal_branch(x, -4).func is principal_branch
assert principal_branch(x, -oo).func is principal_branch
assert principal_branch(x, zoo).func is principal_branch
@XFAIL
def test_issue_6167_6151():
n = pi**1000
i = int(n)
assert sign(n - i) == 1
assert abs(n - i) == n - i
x = Symbol('x')
eps = pi**-1500
big = pi**1000
one = cos(x)**2 + sin(x)**2
e = big*one - big + eps
from sympy import simplify
assert sign(simplify(e)) == 1
for xi in (111, 11, 1, S(1)/10):
assert sign(e.subs(x, xi)) == 1
def test_issue_14216():
from sympy.functions.elementary.complexes import unpolarify
A = MatrixSymbol("A", 2, 2)
assert unpolarify(A[0, 0]) == A[0, 0]
assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0]
def test_issue_14238():
# doesn't cause recursion error
r = Symbol('r', real=True)
assert Abs(r + Piecewise((0, r > 0), (1 - r, True)))
def test_zero_assumptions():
nr = Symbol('nonreal', real=False, finite=True)
ni = Symbol('nonimaginary', imaginary=False)
# imaginary implies not zero
nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False)
assert re(nr).is_zero is None
assert im(nr).is_zero is False
assert re(ni).is_zero is None
assert im(ni).is_zero is None
assert re(nzni).is_zero is False
assert im(nzni).is_zero is None
def test_issue_15893():
f = Function('f', real=True)
x = Symbol('x', real=True)
eq = Derivative(Abs(f(x)), f(x))
assert eq.doit() == sign(f(x))
|
f42b27b68fb59e007e16e190c2e03e6e3d123678363cf087717c5ccd1f9434c5 | from sympy import (
adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE,
Integral, integrate, Interval, KroneckerDelta, lambdify, log, Max, Min,
oo, Or, pi, Piecewise, piecewise_fold, Rational, solve, symbols, transpose,
cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Sum, Tuple, zoo,
DiracDelta, Heaviside, Add, Mul, factorial, Ge, Contains, Le)
from sympy.core.expr import unchanged
from sympy.functions.elementary.piecewise import Undefined, ExprCondPair
from sympy.printing import srepr
from sympy.utilities.pytest import raises, slow
a, b, c, d, x, y = symbols('a:d, x, y')
z = symbols('z', nonzero=True)
def test_piecewise1():
# Test canonicalization
assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1),
ExprCondPair(0, True))
assert Piecewise((x, x < 1), (0, True), (1, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
Piecewise((x, x < 1))
assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
Piecewise((x, Or(x < 1, x < 2)), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
assert Piecewise((x, True)) == x
# Explicitly constructed empty Piecewise not accepted
raises(TypeError, lambda: Piecewise())
# False condition is never retained
assert Piecewise((2*x, x < 0), (x, False)) == \
Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
Piecewise((2*x, x < 0))
assert Piecewise((x, False)) == Undefined
raises(TypeError, lambda: Piecewise(x))
assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False
raises(TypeError, lambda: Piecewise((x, 2)))
raises(TypeError, lambda: Piecewise((x, x**2)))
raises(TypeError, lambda: Piecewise(([1], True)))
assert Piecewise(((1, 2), True)) == Tuple(1, 2)
cond = (Piecewise((1, x < 0), (2, True)) < y)
assert Piecewise((1, cond)
) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))
assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
) == Piecewise((1, x > 0), (2, x > -1))
# test for supporting Contains in Piecewise
pwise = Piecewise(
(1, And(x <= 6, x > 1, Contains(x, S.Integers))),
(0, True))
assert pwise.subs(x, pi) == 0
assert pwise.subs(x, 2) == 1
assert pwise.subs(x, 7) == 0
# Test subs
p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
assert p.subs(x, x**2) == p_x2
assert p.subs(x, -5) == -1
assert p.subs(x, -1) == 1
assert p.subs(x, 1) == log(1)
# More subs tests
p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
assert p2.subs(x, 2) == 1
assert p2.subs(x, 4) == -1
assert p2.subs(x, 10) == 0
assert p3.subs(x, 0.0) == 1
assert p4.subs(x, 0.0) == 1
f, g, h = symbols('f,g,h', cls=Function)
pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
assert pg.subs(g, f) == pf
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
Piecewise((1, Eq(exp(z), cos(z))), (0, True))
p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))
assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1
p6 = Piecewise((x, x > 0))
n = symbols('n', negative=True)
assert p6.subs(x, n) == Undefined
# Test evalf
assert p.evalf() == p
assert p.evalf(subs={x: -2}) == -1
assert p.evalf(subs={x: -1}) == 1
assert p.evalf(subs={x: 1}) == log(1)
assert p6.evalf(subs={x: -5}) == Undefined
# Test doit
f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
assert f_int.doit() == Piecewise( (S(1)/2, x < 1) )
# Test differentiation
f = x
fp = x*p
dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
fp_dx = x*dp + p
assert diff(p, x) == dp
assert diff(f*p, x) == fp_dx
# Test simple arithmetic
assert x*p == fp
assert x*p + p == p + x*p
assert p + f == f + p
assert p + dp == dp + p
assert p - dp == -(dp - p)
# Test power
dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
assert dp**2 == dp2
# Test _eval_interval
f1 = x*y + 2
f2 = x*y**2 + 3
peval = Piecewise((f1, x < 0), (f2, x > 0))
peval_interval = f1.subs(
x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
assert peval._eval_interval(x, 0, 0) == 0
assert peval._eval_interval(x, -1, 1) == peval_interval
peval2 = Piecewise((f1, x < 0), (f2, True))
assert peval2._eval_interval(x, 0, 0) == 0
assert peval2._eval_interval(x, 1, -1) == -peval_interval
assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
assert peval2._eval_interval(x, -1, 1) == peval_interval
assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)
# Test integration
assert p.integrate() == Piecewise(
(-x, x < -1),
(x**3/3 + S(4)/3, x < 0),
(x*log(x) - x + S(4)/3, True))
p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
assert integrate(p, (x, -2, 2)) == S(5)/6
assert integrate(p, (x, 2, -2)) == -S(5)/6
p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
assert integrate(p, (x, -oo, oo)) == 2
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert integrate(p, (x, -2, 2)) == Undefined
# Test commutativity
assert isinstance(p, Piecewise) and p.is_commutative is True
def test_piecewise_free_symbols():
f = Piecewise((x, a < 0), (y, True))
assert f.free_symbols == {x, y, a}
def test_piecewise_integrate1():
x, y = symbols('x y', real=True, finite=True)
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert integrate(f, (x, -2, 2)) == Rational(14, 3)
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == Rational(43, 6)
assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == -Rational(701, 6)
assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True))
g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True))
assert integrate(g, (x, -2, 2)) == 2 * Rational(14, 3)
assert integrate(g, (x, -2, 5)) == -Rational(673, 6)
def test_piecewise_integrate1b():
g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0))
assert integrate(g, (x, -1, 1)) == 0
g = Piecewise((1, x - y < 0), (0, True))
assert integrate(g, (y, -oo, 0)) == -Min(0, x)
assert g.subs(x, -3).integrate((y, -oo, 0)) == 3
assert integrate(g, (y, 0, -oo)) == Min(0, x)
assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo
assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42
assert integrate(g, (y, -oo, oo)) == -x + oo
g = Piecewise((0, x < 0), (x, x <= 1), (1, True))
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
for yy in (-1, S.Half, 2):
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
assert gy1 == Piecewise(
(-Min(1, Max(0, y))**2/2 + S(1)/2, y < 1),
(-y + 1, True))
assert g1y == Piecewise(
(Min(1, Max(0, y))**2/2 - S(1)/2, y < 1),
(y - 1, True))
@slow
def test_piecewise_integrate1ca():
y = symbols('y', real=True)
g = Piecewise(
(1 - x, Interval(0, 1).contains(x)),
(1 + x, Interval(-1, 0).contains(x)),
(0, True)
)
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
# XXX Make test pass without simplify
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2).simplify()
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2).simplify()
assert piecewise_fold(gy1.rewrite(Piecewise)) == \
Piecewise(
(1, y <= -1),
(-y**2/2 - y + S(1)/2, y <= 0),
(y**2/2 - y + S(1)/2, y < 1),
(0, True))
assert piecewise_fold(g1y.rewrite(Piecewise)) == \
Piecewise(
(-1, y <= -1),
(y**2/2 + y - S(1)/2, y <= 0),
(-y**2/2 + y - S(1)/2, y < 1),
(0, True))
# g1y and gy1 should simplify if the condition that y < 1
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
# XXX Make test pass without simplify
assert gy1.simplify() == Piecewise(
(
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
Min(1, Max(0, y))**2 + S(1)/2, y < 1),
(0, True)
)
assert g1y.simplify() == Piecewise(
(
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
Min(1, Max(0, y))**2 - S(1)/2, y < 1),
(0, True))
@slow
def test_piecewise_integrate1cb():
y = symbols('y', real=True)
g = Piecewise(
(0, Or(x <= -1, x >= 1)),
(1 - x, x > 0),
(1 + x, True)
)
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
assert piecewise_fold(gy1.rewrite(Piecewise)) == \
Piecewise(
(1, y <= -1),
(-y**2/2 - y + S(1)/2, y <= 0),
(y**2/2 - y + S(1)/2, y < 1),
(0, True))
assert piecewise_fold(g1y.rewrite(Piecewise)) == \
Piecewise(
(-1, y <= -1),
(y**2/2 + y - S(1)/2, y <= 0),
(-y**2/2 + y - S(1)/2, y < 1),
(0, True))
# g1y and gy1 should simplify if the condition that y < 1
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
assert gy1 == Piecewise(
(
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
Min(1, Max(0, y))**2 + S(1)/2, y < 1),
(0, True)
)
assert g1y == Piecewise(
(
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
Min(1, Max(0, y))**2 - S(1)/2, y < 1),
(0, True))
def test_piecewise_integrate2():
from itertools import permutations
lim = Tuple(x, c, d)
p = Piecewise((1, x < a), (2, x > b), (3, True))
q = p.integrate(lim)
assert q == Piecewise(
(-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d),
(-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True))
for v in permutations((1, 2, 3, 4)):
r = dict(zip((a, b, c, d), v))
assert p.subs(r).integrate(lim.subs(r)) == q.subs(r)
def test_meijer_bypass():
# totally bypass meijerg machinery when dealing
# with Piecewise in integrate
assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3
def test_piecewise_integrate3_inequality_conditions():
from sympy.utilities.iterables import cartes
lim = (x, 0, 5)
# set below includes two pts below range, 2 pts in range,
# 2 pts above range, and the boundaries
N = (-2, -1, 0, 1, 2, 5, 6, 7)
p = Piecewise((1, x > a), (2, x > b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1
p = Piecewise((1, x > a), (2, x < b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
# delete old tests that involved c1 and c2 since those
# reduce to the above except that a value of 0 was used
# for two expressions whereas the above uses 3 different
# values
@slow
def test_piecewise_integrate4_symbolic_conditions():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, x < a), (0, x > b), (1, True))
p2 = Piecewise((0, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0, True))
p4 = Piecewise((0, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
lim = Tuple(x, y, oo)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a:3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
ans = Piecewise(
(0, x <= Min(a, b)),
(x - Min(a, b), x <= b),
(b - Min(a, b), True))
for i in (p0, p1, p2, p4):
assert i.integrate(x) == ans
assert p3.integrate(x) == Piecewise(
(0, x < a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
assert p5.integrate(x) == Piecewise(
(0, x <= a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
p1 = Piecewise((0, x < a), (0.5, x > b), (1, True))
p2 = Piecewise((0.5, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0.5, True))
p4 = Piecewise((0.5, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
def test_piecewise_integrate5_independent_conditions():
p = Piecewise((0, Eq(y, 0)), (x*y, True))
assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True))
def test_piecewise_simplify():
p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)),
((-1)**x*(-1), True))
assert p.simplify() == \
Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True))
# simplify when there are Eq in conditions
assert Piecewise(
(a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify(
) == Piecewise(
(0, And(Eq(a, 0), Eq(b, 0))), (1, True))
assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)),
Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y
+ a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify(
) == Piecewise(
(2*x, And(Eq(a, 0), Eq(y, 0))),
(2, And(Eq(a, 1), Eq(y, 0))),
(0, True))
args = (2, And(Eq(x, 2), Ge(y ,0))), (x, True)
assert Piecewise(*args).simplify() == Piecewise(*args)
args = (1, Eq(x, 0)), (sin(x)/x, True)
assert Piecewise(*args).simplify() == Piecewise(*args)
assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True)
).simplify() == x
# check that x or f(x) are recognized as being Symbol-like for lhs
args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True))
ans = x + sin(x) + 1
f = Function('f')
assert Piecewise(*args).simplify() == ans
assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x))
def test_piecewise_solve():
abs2 = Piecewise((-x, x <= 0), (x, x > 0))
f = abs2.subs(x, x - 2)
assert solve(f, x) == [2]
assert solve(f - 1, x) == [1, 3]
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert solve(f, x) == [2]
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2),
(-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0))
assert solve(g, x) == [5]
# if no symbol is given the piecewise detection must still work
assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5]
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
raises(NotImplementedError, lambda: solve(f, x))
def nona(ans):
return list(filter(lambda x: x is not S.NaN, ans))
p = Piecewise((x**2 - 4, x < y), (x - 2, True))
ans = solve(p, x)
assert nona([i.subs(y, -2) for i in ans]) == [2]
assert nona([i.subs(y, 2) for i in ans]) == [-2, 2]
assert nona([i.subs(y, 3) for i in ans]) == [-2, 2]
assert ans == [
Piecewise((-2, y > -2), (S.NaN, True)),
Piecewise((2, y <= 2), (S.NaN, True)),
Piecewise((2, y > 2), (S.NaN, True))]
# issue 6060
absxm3 = Piecewise(
(x - 3, S(0) <= x - 3),
(3 - x, S(0) > x - 3)
)
assert solve(absxm3 - y, x) == [
Piecewise((-y + 3, -y < 0), (S.NaN, True)),
Piecewise((y + 3, y >= 0), (S.NaN, True))]
p = Symbol('p', positive=True)
assert solve(absxm3 - p, x) == [-p + 3, p + 3]
# issue 6989
f = Function('f')
assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \
[Piecewise((-1, x > 0), (0, True))]
# issue 8587
f = Piecewise((2*x**2, And(S(0) < x, x < 1)), (2, True))
assert solve(f - 1) == [1/sqrt(2)]
def test_piecewise_fold():
p = Piecewise((x, x < 1), (1, 1 <= x))
assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x))
assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x))
assert piecewise_fold(Piecewise((1, x < 0), (2, True))
+ Piecewise((10, x < 0), (-10, True))) == \
Piecewise((11, x < 0), (-8, True))
p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True))
p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True))
p = 4*p1 + 2*p2
assert integrate(
piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1))
assert piecewise_fold(
Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True)
)) == Piecewise((1, y <= 0), (-2, y >= 0))
assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1)))
) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1))))
a, b = (Piecewise((2, Eq(x, 0)), (0, True)),
Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True)))
assert piecewise_fold(Mul(a, b, evaluate=False)
) == piecewise_fold(Mul(b, a, evaluate=False))
def test_piecewise_fold_piecewise_in_cond():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
assert p2.subs(x, -pi/2) == 0
assert p2.subs(x, 1) == 0
assert p2.subs(x, -pi/4) == 1
p4 = Piecewise((0, Eq(p1, 0)), (1,True))
ans = piecewise_fold(p4)
for i in range(-1, 1):
assert ans.subs(x, i) == p4.subs(x, i)
r1 = 1 < Piecewise((1, x < 1), (3, True))
ans = piecewise_fold(r1)
for i in range(2):
assert ans.subs(x, i) == r1.subs(x, i)
p5 = Piecewise((1, x < 0), (3, True))
p6 = Piecewise((1, x < 1), (3, True))
p7 = Piecewise((1, p5 < p6), (0, True))
ans = piecewise_fold(p7)
for i in range(-1, 2):
assert ans.subs(x, i) == p7.subs(x, i)
def test_piecewise_fold_piecewise_in_cond_2():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True))
p3 = Piecewise(
(0, (x >= 0) | Eq(cos(x), 0)),
(1/cos(x), x < 0),
(zoo, True)) # redundant b/c all x are already covered
assert(piecewise_fold(p2) == p3)
def test_piecewise_fold_expand():
p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True))
p2 = piecewise_fold(expand((1 - x)*p1))
assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True))
assert p2 == expand(piecewise_fold((1 - x)*p1))
def test_piecewise_duplicate():
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert p == Piecewise(*p.args)
def test_doit():
p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x))
assert p2.doit() == p1
assert p2.doit(deep=False) == p2
# issue 17165
p1 = Sum(y**x, (x, -1, oo)).doit()
assert p1.doit() == p1
def test_piecewise_interval():
p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True))
assert p1.subs(x, -0.5) == 0
assert p1.subs(x, 0.5) == 0.5
assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True))
assert integrate(p1, x) == Piecewise(
(0, x <= 0),
(x**2/2, x <= 1),
(S(1)/2, True))
def test_piecewise_collapse():
assert Piecewise((x, True)) == x
a = x < 1
assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a))
assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a))
b = x < 5
def canonical(i):
if isinstance(i, Piecewise):
return Piecewise(*i.args)
return i
for args in [
((1, a), (Piecewise((2, a), (3, b)), b)),
((1, a), (Piecewise((2, a), (3, b.reversed)), b)),
((1, a), (Piecewise((2, a), (3, b)), b), (4, True)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]:
for i in (0, 2, 10):
assert canonical(
Piecewise(*args, evaluate=False).subs(x, i)
) == canonical(Piecewise(*args).subs(x, i))
r1, r2, r3, r4 = symbols('r1:5')
a = x < r1
b = x < r2
c = x < r3
d = x < r4
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, a), (3, b), (5, c))
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c), (6, True)), c), (5, d)
) == Piecewise((1, a), (Piecewise(
(3, b), (4, c)), c), (5, d))
assert Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b)), b), (5, c))
assert Piecewise((1, c), (2, ~c), (3, S.true)
) == Piecewise((1, c), (2, S.true))
assert Piecewise((1, c), (2, And(~c, b)), (3,True)
) == Piecewise((1, c), (2, b), (3, True))
assert Piecewise((1, c), (2, Or(~c, b)), (3,True)
).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2
assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True))
def test_piecewise_lambdify():
p = Piecewise(
(x**2, x < 0),
(x, Interval(0, 1, False, True).contains(x)),
(2 - x, x >= 1),
(0, True)
)
f = lambdify(x, p)
assert f(-2.0) == 4.0
assert f(0.0) == 0.0
assert f(0.5) == 0.5
assert f(2.0) == 0.0
def test_piecewise_series():
from sympy import sin, cos, O
p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0))
p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0))
assert p1.nseries(x, n=2) == p2
def test_piecewise_as_leading_term():
p1 = Piecewise((1/x, x > 1), (0, True))
p2 = Piecewise((x, x > 1), (0, True))
p3 = Piecewise((1/x, x > 1), (x, True))
p4 = Piecewise((x, x > 1), (1/x, True))
p5 = Piecewise((1/x, x > 1), (x, True))
p6 = Piecewise((1/x, x < 1), (x, True))
p7 = Piecewise((x, x < 1), (1/x, True))
p8 = Piecewise((x, x > 1), (1/x, True))
assert p1.as_leading_term(x) == 0
assert p2.as_leading_term(x) == 0
assert p3.as_leading_term(x) == x
assert p4.as_leading_term(x) == 1/x
assert p5.as_leading_term(x) == x
assert p6.as_leading_term(x) == 1/x
assert p7.as_leading_term(x) == x
assert p8.as_leading_term(x) == 1/x
def test_piecewise_complex():
p1 = Piecewise((2, x < 0), (1, 0 <= x))
p2 = Piecewise((2*I, x < 0), (I, 0 <= x))
p3 = Piecewise((I*x, x > 1), (1 + I, True))
p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True))
assert conjugate(p1) == p1
assert conjugate(p2) == piecewise_fold(-p2)
assert conjugate(p3) == p4
assert p1.is_imaginary is False
assert p1.is_real is True
assert p2.is_imaginary is True
assert p2.is_real is False
assert p3.is_imaginary is None
assert p3.is_real is None
assert p1.as_real_imag() == (p1, 0)
assert p2.as_real_imag() == (0, -I*p2)
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Piecewise((A*B**2, x > 0), (A**2*B, True))
assert p.adjoint() == \
Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
assert p.conjugate() == \
Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
assert p.transpose() == \
Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
def test_piecewise_evaluate():
assert Piecewise((x, True)) == x
assert Piecewise((x, True), evaluate=True) == x
p = Piecewise((x, True), evaluate=False)
assert p != x
assert p.is_Piecewise
assert all(isinstance(i, Basic) for i in p.args)
assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),)
assert Piecewise((1, Eq(1, x)), evaluate=False).args == (
(1, Eq(1, x)),)
def test_as_expr_set_pairs():
assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \
[(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))]
assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \
[((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))]
def test_S_srepr_is_identity():
p = Piecewise((10, Eq(x, 0)), (12, True))
q = S(srepr(p))
assert p == q
def test_issue_12587():
# sort holes into intervals
p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True))
assert p.integrate((x, -5, 5)) == 23
p = Piecewise((1, x > 1), (2, x < y), (3, True))
lim = x, -3, 3
ans = p.integrate(lim)
for i in range(-1, 3):
assert ans.subs(y, i) == p.subs(y, i).integrate(lim)
def test_issue_11045():
assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3
# handle And with Or arguments
assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# hidden false
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# targetcond is Eq
assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True)
).integrate((x, 0, 4)) == 6
# And has Relational needing to be solved
assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# Or has Relational needing to be solved
assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True)
).integrate((x, 0, 3)) == 2
# ignore hidden false (handled in canonicalization)
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# watch for hidden True Piecewise
assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True)
).integrate((x, 0, 3)) == 6
# overlapping conditions of targetcond are recognized and ignored;
# the condition x > 3 will be pre-empted by the first condition
assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True)
).integrate((x, 0, 4)) == 6
# convert Ne to Or
assert Piecewise((1, Ne(x, 0)), (2, True)
).integrate((x, -1, 1)) == 2
# no default but well defined
assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))
).integrate((x, 1, 4)) == 5
p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)))
nan = Undefined
i = p.integrate((x, 1, y))
assert i == Piecewise(
(y - 1, y < 1),
(Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S(1)/2,
y <= Min(4, y)),
(nan, True))
assert p.integrate((x, 1, -1)) == i.subs(y, -1)
assert p.integrate((x, 1, 4)) == 5
assert p.integrate((x, 1, 5)) == nan
# handle Not
p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True))
assert p.integrate((x, 0, 3)) == 4
# handle updating of int_expr when there is overlap
p = Piecewise(
(1, And(5 > x, x > 1)),
(2, Or(x < 3, x > 7)),
(4, x < 8))
assert p.integrate((x, 0, 10)) == 20
# And with Eq arg handling
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1))
).integrate((x, 0, 3)) == S.NaN
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True)
).integrate((x, 0, 3)) == 7
assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True)
).integrate((x, -1, 1)) == 4
# middle condition doesn't matter: it's a zero width interval
assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True)
).integrate((x, 0, 3)) == 7
def test_holes():
nan = Undefined
assert Piecewise((1, x < 2)).integrate(x) == Piecewise(
(x, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise(
(nan, x < 1), (x - 1, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) == nan
assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2
# this also tests that the integrate method is used on non-Piecwise
# arguments in _eval_integral
A, B = symbols("A B")
a, b = symbols('a b', real=True)
assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2))
).integrate(x) == Piecewise(
(B*x, (a > 2)),
(Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1),
(Piecewise((B*x, x < 1), (nan, True)), True))
def test_issue_11922():
def f(x):
return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True))
autocorr = lambda k: (
f(x) * f(x + k)).integrate((x, -1, 1))
assert autocorr(1.9) > 0
k = symbols('k')
good_autocorr = lambda k: (
(1 - x**2) * f(x + k)).integrate((x, -1, 1))
a = good_autocorr(k)
assert a.subs(k, 3) == 0
k = symbols('k', positive=True)
a = good_autocorr(k)
assert a.subs(k, 3) == 0
assert Piecewise((0, x < 1), (10, (x >= 1))
).integrate() == Piecewise((0, x < 1), (10*x - 10, True))
def test_issue_5227():
f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539),
(-0.0160799238820171*x + 1.33215984776403, x < 2),
(Piecewise((0.3, x > 123), (0.7, True)) +
Piecewise((0.4, x > 2), (0.6, True)), x <=
123), (-0.00817409766454352*x + 2.10541401273885, x <
380.571428571429), (0, True))
i = integrate(f, (x, -oo, oo))
assert i == Integral(f, (x, -oo, oo)).doit()
assert str(i) == '1.00195081676351'
assert Piecewise((1, x - y < 0), (0, True)
).integrate(y) == Piecewise((0, y <= x), (-x + y, True))
def test_issue_10137():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, Or(a > x, b < x)), (1, True))
assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo))
p3 = Piecewise((1, And(0 < x, x < a)), (0, True))
p4 = Piecewise((1, And(a > x, x > 0)), (0, True))
ip3 = integrate(p3, x)
assert ip3 == Piecewise(
(0, x <= 0),
(x, x <= Max(0, a)),
(Max(0, a), True))
ip4 = integrate(p4, x)
assert ip4 == ip3
assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
def test_stackoverflow_43852159():
f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True))
Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo))
cx = Conv(x)
assert cx.subs(x, -1.5) == cx.subs(x, 1.5)
assert cx.subs(x, 3) == 0
assert piecewise_fold(f(x - y)*f(y)) == Piecewise(
(1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)),
(0, True))
def test_issue_12557():
'''
# 3200 seconds to compute the fourier part of issue
import sympy as sym
x,y,z,t = sym.symbols('x y z t')
k = sym.symbols("k", integer=True)
fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2),
(x, -sym.pi, sym.pi))
assert fourier == FourierSeries(
sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2,
Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi),
SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n,
0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n,
-k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) |
(Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n,
-k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2
- pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 -
2*pi*_n**2*k**2 + pi*k**4) +
(-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4),
True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo))))
'''
x = symbols("x", real=True)
k = symbols('k', integer=True, finite=True)
abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0))
assert integrate(abs2(x), (x, -pi, pi)) == pi**2
func = cos(k*x)*sqrt(x**2)
assert integrate(func, (x, -pi, pi)) == Piecewise(
(2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True))
def test_issue_6900():
from itertools import permutations
t0, t1, T, t = symbols('t0, t1 T t')
f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1))
g = f.integrate(t)
assert g == Piecewise(
(0, t <= t0),
(t*x - t0*x, t <= Max(t0, t1)),
(-t0*x + x*Max(t0, t1), True))
for i in permutations(range(2)):
reps = dict(zip((t0,t1), i))
for tt in range(-1,3):
assert (g.xreplace(reps).subs(t,tt) ==
f.xreplace(reps).integrate(t).subs(t,tt))
lim = Tuple(t, t0, T)
g = f.integrate(lim)
ans = Piecewise(
(-t0*x + x*Min(T, Max(t0, t1)), T > t0),
(0, True))
for i in permutations(range(3)):
reps = dict(zip((t0,t1,T), i))
tru = f.xreplace(reps).integrate(lim.xreplace(reps))
assert tru == ans.xreplace(reps)
assert g == ans
def test_issue_10122():
assert solve(abs(x) + abs(x - 1) - 1 > 0, x
) == Or(And(-oo < x, x < 0), And(S.One < x, x < oo))
def test_issue_4313():
u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True))
e = (u - u.subs(x, y))**2/(x - y)**2
M = Max(0, a)
assert integrate(e, x).expand() == Piecewise(
(Piecewise(
(0, x <= 0),
(-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 +
2*y*log(x - y)/a**2 - y/a**2, x <= M),
(-y**2/(-a**2*y + a**2*M) + 1/(-y + M) -
1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y +
M)/a**2 - y/a**2 + M/a**2, True)),
((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))),
(Piecewise(
(-1/(x - y), x <= 0),
(-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) -
y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a +
2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 -
y/a**2, x <= M),
(-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y +
a**2*M) - y**2/(-a**2*y + a**2*M) +
2*log(-y)/a - 2*log(-y + M)/a + 2/a -
2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 -
y/a**2 + M/a**2, True)),
a <= y),
(Piecewise(
(-y**2/(a**2*x - a**2*y), x <= 0),
(x/a**2 + y/a**2, x <= M),
(a**2/(-a**2*y + a**2*M) -
a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) +
2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) -
y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)),
True))
def test__intervals():
assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == []
assert Piecewise(
(1, x > x + 1),
(Piecewise((1, x < x + 1)), 2*x < 2*x + 1),
(1, True))._intervals(x) == [(-oo, oo, 1, 1)]
assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [
(-oo, oo, 1, 0)]
assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True)
)._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)]
# the following tests that duplicates are removed and that non-Eq
# generated zero-width intervals are removed
assert Piecewise((1, Abs(x**(-2)) > 1), (0, True)
)._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)]
def test_containment():
a, b, c, d, e = [1, 2, 3, 4, 5]
p = (Piecewise((d, x > 1), (e, True))*
Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True)))
assert p.integrate(x).diff(x) == Piecewise(
(c*e, x <= 0),
(a*e, x <= 1),
(a*d, x < 2), # this is what we want to get right
(b*d, x < 4),
(c*d, True))
def test_piecewise_with_DiracDelta():
d1 = DiracDelta(x - 1)
assert integrate(d1, (x, -oo, oo)) == 1
assert integrate(d1, (x, 0, 2)) == 1
assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0
assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise(
(Heaviside(x - 1), x < 2), (1, True))
# TODO raise error if function is discontinuous at limit of
# integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise(
# (d1, Eq(x ,1)
def test_issue_10258():
assert Piecewise((0, x < 1), (1, True)).is_zero is None
assert Piecewise((-1, x < 1), (1, True)).is_zero is False
a = Symbol('a', zero=True)
assert Piecewise((0, x < 1), (a, True)).is_zero
assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None
a = Symbol('a')
assert Piecewise((0, x < 1), (a, True)).is_zero is None
assert Piecewise((0, x < 1), (1, True)).is_nonzero is None
assert Piecewise((1, x < 1), (2, True)).is_nonzero
assert Piecewise((0, x < 1), (oo, True)).is_finite is None
assert Piecewise((0, x < 1), (1, True)).is_finite
b = Basic()
assert Piecewise((b, x < 1)).is_finite is None
# 10258
c = Piecewise((1, x < 0), (2, True)) < 3
assert c != True
assert piecewise_fold(c) == True
def test_issue_10087():
a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True))
m = a*b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
m = a + b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
def test_issue_8919():
c = symbols('c:5')
x = symbols("x")
f1 = Piecewise((c[1], x < 1), (c[2], True))
f2 = Piecewise((c[3], x < S(1)/3), (c[4], True))
assert integrate(f1*f2, (x, 0, 2)
) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4]
f1 = Piecewise((0, x < 1), (2, True))
f2 = Piecewise((3, x < 2), (0, True))
assert integrate(f1*f2, (x, 0, 3)) == 6
y = symbols("y", positive=True)
a, b, c, x, z = symbols("a,b,c,x,z", real=True)
I = Integral(Piecewise(
(0, (x >= y) | (x < 0) | (b > c)),
(a, True)), (x, 0, z))
ans = I.doit()
assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True))
for cond in (True, False):
for yy in range(1, 3):
for zz in range(-yy, 0, yy):
reps = [(b > c, cond), (y, yy), (z, zz)]
assert ans.subs(reps) == I.subs(reps).doit()
def test_unevaluated_integrals():
f = Function('f')
p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True))
assert p.integrate(x) == Integral(p, x)
assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5))
# test it by replacing f(x) with x%2 which will not
# affect the answer: the integrand is essentially 2 over
# the domain of integration
assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10
# this is a test of using _solve_inequality when
# solve_univariate_inequality fails
assert p.integrate(y) == Piecewise(
(y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))),
(2*y, (x >= -oo) & (x < 10)), (0, True))
def test_conditions_as_alternate_booleans():
a, b, c = symbols('a:c')
assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True)))
) == Piecewise((x, ITE(x > 0, y < 1, y > 1)))
def test_Piecewise_rewrite_as_ITE():
a, b, c, d = symbols('a:d')
def _ITE(*args):
return Piecewise(*args).rewrite(ITE)
assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < 2), (c, True)
) == ITE(x < 1, a, ITE(x < 2, b, c))
assert _ITE((a, x < 1), (b, y < 2), (c, True)
) == ITE(x < 1, a, ITE(y < 2, b, c))
assert _ITE((a, x < 1), (b, x < oo), (c, y < 1)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True)
) == ITE(x < 1, a, ITE(y < 1, c, b))
assert _ITE((a, x < 0), (b, Or(x < oo, y < 1))
) == ITE(x < 0, a, b)
raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True)))
# if `a` in the following were replaced with y then the coverage
# is complete but something other than as_set would need to be
# used to detect this
raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a)))
raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3)))
def test_issue_14052():
assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4
def test_issue_14240():
assert piecewise_fold(
Piecewise((1, a), (2, b), (4, True)) +
Piecewise((8, a), (16, True))
) == Piecewise((9, a), (18, b), (20, True))
assert piecewise_fold(
Piecewise((2, a), (3, b), (5, True)) *
Piecewise((7, a), (11, True))
) == Piecewise((14, a), (33, b), (55, True))
# these will hang if naive folding is used
assert piecewise_fold(Add(*[
Piecewise((i, a), (0, True)) for i in range(40)])
) == Piecewise((780, a), (0, True))
assert piecewise_fold(Mul(*[
Piecewise((i, a), (0, True)) for i in range(1, 41)])
) == Piecewise((factorial(40), a), (0, True))
def test_issue_14787():
x = Symbol('x')
f = Piecewise((x, x < 1), ((S(58) / 7), True))
assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))"
def test_issue_8458():
x, y = symbols('x y')
# Original issue
p1 = Piecewise((0, Eq(x, 0)), (sin(x), True))
assert p1.simplify() == sin(x)
# Slightly larger variant
p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
assert p2.simplify() == sin(x)
# Test for problem highlighted during review
p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True))
def test_eval_rewrite_as_KroneckerDelta():
x, y, z, n, t, m = symbols('x y z n t m')
K = KroneckerDelta
f = lambda p: expand(p.rewrite(K))
p1 = Piecewise((0, Eq(x, y)), (1, True))
assert f(p1) == 1 - K(x, y)
p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True))
assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \
x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t)
p3 = Piecewise((1, Ne(x, y)), (0, True))
assert f(p3) == 1 - K(x, y)
p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True))
assert f(p4) == 4 - 3*K(3, x)
p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True))
assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3
p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True))
assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y)
p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True))
assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1
p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True))
assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1
p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True))
assert f(p9) == 5 * K(1, y) * K(4, x) + 1
p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True))
assert f(p10) == -3 * K(-4, x) * K(1, y) + 4
p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True))
assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1
p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True))
assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1
p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True))
assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1
p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True))
assert f(p14) == 2 * K(0, x) * K(1, y) + 1
p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True))
assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \
2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2
p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\
*Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True))
assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))),
(1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True))
assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True))
assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4
p19 = Piecewise((0, x > 2), (1, True))
assert f(p19) == p19
p20 = Piecewise((0, And(x < 2, x > -5)), (1, True))
assert f(p20) == p20
p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True))
assert f(p21) == p21
p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True))
assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1
|
adabc6ab62b56b47e7c7d85335fe7efca7f79dcedf9e2e594832b1c54aea6fc0 | from sympy import (
adjoint, conjugate, Dummy, Eijk, KroneckerDelta, LeviCivita, Symbol,
symbols, transpose, Piecewise, Ne
)
from sympy.core.compatibility import range, long
from sympy.physics.secondquant import evaluate_deltas, F
x, y = symbols('x y')
def test_levicivita():
assert Eijk(1, 2, 3) == LeviCivita(1, 2, 3)
assert LeviCivita(1, 2, 3) == 1
assert LeviCivita(long(1), long(2), long(3)) == 1
assert LeviCivita(1, 3, 2) == -1
assert LeviCivita(1, 2, 2) == 0
i, j, k = symbols('i j k')
assert LeviCivita(i, j, k) == LeviCivita(i, j, k, evaluate=False)
assert LeviCivita(i, j, i) == 0
assert LeviCivita(1, i, i) == 0
assert LeviCivita(i, j, k).doit() == (j - i)*(k - i)*(k - j)/2
assert LeviCivita(1, 2, 3, 1) == 0
assert LeviCivita(4, 5, 1, 2, 3) == 1
assert LeviCivita(4, 5, 2, 1, 3) == -1
assert LeviCivita(i, j, k).is_integer is True
assert adjoint(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
assert conjugate(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
assert transpose(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
def test_kronecker_delta():
i, j = symbols('i j')
k = Symbol('k', nonzero=True)
assert KroneckerDelta(1, 1) == 1
assert KroneckerDelta(1, 2) == 0
assert KroneckerDelta(k, 0) == 0
assert KroneckerDelta(x, x) == 1
assert KroneckerDelta(x**2 - y**2, x**2 - y**2) == 1
assert KroneckerDelta(i, i) == 1
assert KroneckerDelta(i, i + 1) == 0
assert KroneckerDelta(0, 0) == 1
assert KroneckerDelta(0, 1) == 0
assert KroneckerDelta(i + k, i) == 0
assert KroneckerDelta(i + k, i + k) == 1
assert KroneckerDelta(i + k, i + 1 + k) == 0
assert KroneckerDelta(i, j).subs(dict(i=1, j=0)) == 0
assert KroneckerDelta(i, j).subs(dict(i=3, j=3)) == 1
assert KroneckerDelta(i, j)**0 == 1
for n in range(1, 10):
assert KroneckerDelta(i, j)**n == KroneckerDelta(i, j)
assert KroneckerDelta(i, j)**-n == 1/KroneckerDelta(i, j)
assert KroneckerDelta(i, j).is_integer is True
assert adjoint(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
assert conjugate(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
assert transpose(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
# to test if canonical
assert (KroneckerDelta(i, j) == KroneckerDelta(j, i)) == True
assert KroneckerDelta(i, j).rewrite(Piecewise) == Piecewise((0, Ne(i, j)), (1, True))
def test_kronecker_delta_secondquant():
"""secondquant-specific methods"""
D = KroneckerDelta
i, j, v, w = symbols('i j v w', below_fermi=True, cls=Dummy)
a, b, t, u = symbols('a b t u', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert D(i, a) == 0
assert D(i, t) == 0
assert D(i, j).is_above_fermi is False
assert D(a, b).is_above_fermi is True
assert D(p, q).is_above_fermi is True
assert D(i, q).is_above_fermi is False
assert D(q, i).is_above_fermi is False
assert D(q, v).is_above_fermi is False
assert D(a, q).is_above_fermi is True
assert D(i, j).is_below_fermi is True
assert D(a, b).is_below_fermi is False
assert D(p, q).is_below_fermi is True
assert D(p, j).is_below_fermi is True
assert D(q, b).is_below_fermi is False
assert D(i, j).is_only_above_fermi is False
assert D(a, b).is_only_above_fermi is True
assert D(p, q).is_only_above_fermi is False
assert D(i, q).is_only_above_fermi is False
assert D(q, i).is_only_above_fermi is False
assert D(a, q).is_only_above_fermi is True
assert D(i, j).is_only_below_fermi is True
assert D(a, b).is_only_below_fermi is False
assert D(p, q).is_only_below_fermi is False
assert D(p, j).is_only_below_fermi is True
assert D(q, b).is_only_below_fermi is False
assert not D(i, q).indices_contain_equal_information
assert not D(a, q).indices_contain_equal_information
assert D(p, q).indices_contain_equal_information
assert D(a, b).indices_contain_equal_information
assert D(i, j).indices_contain_equal_information
assert D(q, b).preferred_index == b
assert D(q, b).killable_index == q
assert D(q, t).preferred_index == t
assert D(q, t).killable_index == q
assert D(q, i).preferred_index == i
assert D(q, i).killable_index == q
assert D(q, v).preferred_index == v
assert D(q, v).killable_index == q
assert D(q, p).preferred_index == p
assert D(q, p).killable_index == q
EV = evaluate_deltas
assert EV(D(a, q)*F(q)) == F(a)
assert EV(D(i, q)*F(q)) == F(i)
assert EV(D(a, q)*F(a)) == D(a, q)*F(a)
assert EV(D(i, q)*F(i)) == D(i, q)*F(i)
assert EV(D(a, b)*F(a)) == F(b)
assert EV(D(a, b)*F(b)) == F(a)
assert EV(D(i, j)*F(i)) == F(j)
assert EV(D(i, j)*F(j)) == F(i)
assert EV(D(p, q)*F(q)) == F(p)
assert EV(D(p, q)*F(p)) == F(q)
assert EV(D(p, j)*D(p, i)*F(i)) == F(j)
assert EV(D(p, j)*D(p, i)*F(j)) == F(i)
assert EV(D(p, q)*D(p, i))*F(i) == D(q, i)*F(i)
|
313b5571f6f1736300a48a7cef081bae961acd25417bfa8c5db0c41d3a2e0869 | from sympy import (
Symbol, Dummy, gamma, I, oo, nan, zoo, factorial, sqrt, Rational,
multigamma, log, polygamma, EulerGamma, pi, uppergamma, S, expand_func,
loggamma, sin, cos, O, lowergamma, exp, erf, erfc, exp_polar, harmonic,
zeta, conjugate)
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.utilities.pytest import raises
from sympy.utilities.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx,
verify_numerically as tn)
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', integer=True)
w = Symbol('w', real=True)
def test_gamma():
assert gamma(nan) == nan
assert gamma(oo) == oo
assert gamma(-100) == zoo
assert gamma(0) == zoo
assert gamma(-100.0) == zoo
assert gamma(1) == 1
assert gamma(2) == 1
assert gamma(3) == 2
assert gamma(102) == factorial(101)
assert gamma(Rational(1, 2)) == sqrt(pi)
assert gamma(Rational(3, 2)) == Rational(1, 2)*sqrt(pi)
assert gamma(Rational(5, 2)) == Rational(3, 4)*sqrt(pi)
assert gamma(Rational(7, 2)) == Rational(15, 8)*sqrt(pi)
assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
assert gamma(Rational(-3, 2)) == Rational(4, 3)*sqrt(pi)
assert gamma(Rational(-5, 2)) == -Rational(8, 15)*sqrt(pi)
assert gamma(Rational(-15, 2)) == Rational(256, 2027025)*sqrt(pi)
assert gamma(Rational(
-11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
assert gamma(Rational(
-10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
assert gamma(Rational(
14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
assert gamma(Rational(
17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
assert gamma(Rational(
19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))
assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)
assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)
assert conjugate(gamma(x)) == gamma(conjugate(x))
assert expand_func(gamma(x + Rational(3, 2))) == \
(x + Rational(1, 2))*gamma(x + Rational(1, 2))
assert expand_func(gamma(x - Rational(1, 2))) == \
gamma(Rational(1, 2) + x)/(x - Rational(1, 2))
# Test a bug:
assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))
# XXX: Not sure about these tests. I can fix them by defining e.g.
# exp_polar.is_integer but I'm not sure if that makes sense.
assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
assert gamma(3*exp_polar(I*pi)/4).is_extended_nonpositive is True
y = Symbol('y', nonpositive=True, integer=True)
assert gamma(y).is_real == False
y = Symbol('y', positive=True, noninteger=True)
assert gamma(y).is_real == True
assert gamma(-1.0, evaluate=False).is_real == False
assert gamma(0, evaluate=False).is_real == False
assert gamma(-2, evaluate=False).is_real == False
def test_gamma_rewrite():
assert gamma(n).rewrite(factorial) == factorial(n - 1)
def test_gamma_series():
assert gamma(x + 1).series(x, 0, 3) == \
1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3)
assert gamma(x).series(x, -1, 3) == \
-1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \
EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \
polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1))
def tn_branch(s, func):
from sympy import I, pi, exp_polar
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_lowergamma():
from sympy import meijerg, exp_polar, I, expint
assert lowergamma(x, 0) == 0
assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
assert td(lowergamma(randcplx(), y), y)
assert td(lowergamma(x, randcplx()), x)
assert lowergamma(x, y).diff(x) == \
gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \
- meijerg([], [1, 1], [0, 0, x], [], y)
assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
assert not lowergamma(S.Half - 3, x).has(lowergamma)
assert not lowergamma(S.Half + 3, x).has(lowergamma)
assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
assert tn(lowergamma(S.Half + 3, x, evaluate=False),
lowergamma(S.Half + 3, x), x)
assert tn(lowergamma(S.Half - 3, x, evaluate=False),
lowergamma(S.Half - 3, x), x)
assert tn_branch(-3, lowergamma)
assert tn_branch(-4, lowergamma)
assert tn_branch(S(1)/3, lowergamma)
assert tn_branch(pi, lowergamma)
assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
assert lowergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I
assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
assert conjugate(lowergamma(x, 0)) == 0
assert unchanged(conjugate, lowergamma(x, -oo))
assert lowergamma(
x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
k = Symbol('k', integer=True)
assert lowergamma(
k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
k = Symbol('k', integer=True, positive=False)
assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_uppergamma():
from sympy import meijerg, exp_polar, I, expint
assert uppergamma(4, 0) == 6
assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
assert td(uppergamma(randcplx(), y), y)
assert uppergamma(x, y).diff(x) == \
uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
assert td(uppergamma(x, randcplx()), x)
assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
assert not uppergamma(S.Half - 3, x).has(uppergamma)
assert not uppergamma(S.Half + 3, x).has(uppergamma)
assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
assert tn(uppergamma(S.Half + 3, x, evaluate=False),
uppergamma(S.Half + 3, x), x)
assert tn(uppergamma(S.Half - 3, x, evaluate=False),
uppergamma(S.Half - 3, x), x)
assert unchanged(uppergamma, x, -oo)
assert tn_branch(-3, uppergamma)
assert tn_branch(-4, uppergamma)
assert tn_branch(S(1)/3, uppergamma)
assert tn_branch(pi, uppergamma)
assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
assert uppergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
gamma(y)*(1 - exp(4*pi*I*y))
assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I
assert uppergamma(-2, x) == expint(3, x)/x**2
assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
assert conjugate(uppergamma(x, 0)) == gamma(conjugate(x))
assert unchanged(conjugate, uppergamma(x, -oo))
assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)
assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_polygamma():
from sympy import I
assert polygamma(n, nan) == nan
assert polygamma(0, oo) == oo
assert polygamma(0, -oo) == oo
assert polygamma(0, I*oo) == oo
assert polygamma(0, -I*oo) == oo
assert polygamma(1, oo) == 0
assert polygamma(5, oo) == 0
assert polygamma(0, -9) == zoo
assert polygamma(0, -9) == zoo
assert polygamma(0, -1) == zoo
assert polygamma(0, 0) == zoo
assert polygamma(0, 1) == -EulerGamma
assert polygamma(0, 7) == Rational(49, 20) - EulerGamma
assert polygamma(1, 1) == pi**2/6
assert polygamma(1, 2) == pi**2/6 - 1
assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
assert polygamma(3, 1) == pi**4 / 15
assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
assert polygamma(5, 1) == 8 * pi**6 / 63
def t(m, n):
x = S(m)/n
r = polygamma(0, x)
if r.has(polygamma):
return False
return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)
assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)
assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
ni = Symbol("n", integer=True)
assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
+ zeta(ni + 1))*factorial(ni)
# Polygamma of non-negative integer order is unbranched:
from sympy import exp_polar
k = Symbol('n', integer=True, nonnegative=True)
assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)
# but negative integers are branched!
k = Symbol('n', integer=True)
assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)
# Polygamma of order -1 is loggamma:
assert polygamma(-1, x) == loggamma(x)
# But smaller orders are iterated integrals and don't have a special name
assert polygamma(-2, x).func is polygamma
# Test a bug
assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
def test_polygamma_expand_func():
assert polygamma(0, x).expand(func=True) == polygamma(0, x)
assert polygamma(0, 2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2)
assert polygamma(1, 2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4
assert polygamma(2, x).expand(func=True) == \
polygamma(2, x)
assert polygamma(0, -1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert polygamma(0, 1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert polygamma(0, 2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert polygamma(0, 3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert polygamma(0, 4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert polygamma(1, 1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert polygamma(0, x + y).expand(func=True) == \
polygamma(0, x + y)
assert polygamma(1, x + y).expand(func=True) == \
polygamma(1, x + y)
assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \
6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4
assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4
e = polygamma(3, 4*x + y + S(3)/2)
assert e.expand(func=True) == e
e = polygamma(3, x + y + S(3)/4)
assert e.expand(func=True, basic=False) == e
def test_loggamma():
raises(TypeError, lambda: loggamma(2, 3))
raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))
assert loggamma(-1) == oo
assert loggamma(-2) == oo
assert loggamma(0) == oo
assert loggamma(1) == 0
assert loggamma(2) == 0
assert loggamma(3) == log(2)
assert loggamma(4) == log(6)
n = Symbol("n", integer=True, positive=True)
assert loggamma(n) == log(gamma(n))
assert loggamma(-n) == oo
assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half))
from sympy import I
assert loggamma(oo) == oo
assert loggamma(-oo) == zoo
assert loggamma(I*oo) == zoo
assert loggamma(-I*oo) == zoo
assert loggamma(zoo) == zoo
assert loggamma(nan) == nan
L = loggamma(S(16)/3)
E = -5*log(3) + loggamma(S(1)/3) + log(4) + log(7) + log(10) + log(13)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(19/S(4))
E = -4*log(4) + loggamma(S(3)/4) + log(3) + log(7) + log(11) + log(15)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(S(23)/7)
E = -3*log(7) + log(2) + loggamma(S(2)/7) + log(9) + log(16)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(19/S(4)-7)
E = -log(9) - log(5) + loggamma(S(3)/4) + 3*log(4) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(23/S(7)-6)
E = -log(19) - log(12) - log(5) + loggamma(S(2)/7) + 3*log(7) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
assert loggamma(x).diff(x) == polygamma(0, x)
s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4)
s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
log(x)*x**2/2
assert (s1 - s2).expand(force=True).removeO() == 0
s1 = loggamma(1/x).series(x)
s2 = (1/x - S(1)/2)*log(1/x) - 1/x + log(2*pi)/2 + \
x/12 - x**3/360 + x**5/1260 + O(x**7)
assert ((s1 - s2).expand(force=True)).removeO() == 0
assert loggamma(x).rewrite('intractable') == log(gamma(x))
s1 = loggamma(x).series(x)
assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
assert s1 == loggamma(x).rewrite('intractable').series(x)
assert conjugate(loggamma(x)) == loggamma(conjugate(x))
assert conjugate(loggamma(0)) == oo
assert conjugate(loggamma(1)) == loggamma(conjugate(1))
assert conjugate(loggamma(-oo)) == conjugate(zoo)
assert loggamma(x).is_real is None
y, z = Symbol('y', real=True), Symbol('z', imaginary=True)
assert loggamma(y).is_real
assert loggamma(z).is_real is False
def tN(N, M):
assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M
tN(0, 0)
tN(1, 1)
tN(2, 3)
tN(3, 3)
tN(4, 5)
tN(5, 5)
def test_polygamma_expansion():
# A. & S., pa. 259 and 260
assert polygamma(0, 1/x).nseries(x, n=3) == \
-log(x) - x/2 - x**2/12 + O(x**4)
assert polygamma(1, 1/x).series(x, n=5) == \
x + x**2/2 + x**3/6 + O(x**5)
assert polygamma(3, 1/x).nseries(x, n=11) == \
2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11)
def test_issue_8657():
n = Symbol('n', negative=True, integer=True)
m = Symbol('m', integer=True)
o = Symbol('o', positive=True)
p = Symbol('p', negative=True, integer=False)
assert gamma(n).is_real is False
assert gamma(m).is_real is None
assert gamma(o).is_real is True
assert gamma(p).is_real is True
assert gamma(w).is_real is None
def test_issue_8524():
x = Symbol('x', positive=True)
y = Symbol('y', negative=True)
z = Symbol('z', positive=False)
p = Symbol('p', negative=False)
q = Symbol('q', integer=True)
r = Symbol('r', integer=False)
e = Symbol('e', even=True, negative=True)
assert gamma(x).is_positive is True
assert gamma(y).is_positive is None
assert gamma(z).is_positive is None
assert gamma(p).is_positive is None
assert gamma(q).is_positive is None
assert gamma(r).is_positive is None
assert gamma(e + S.Half).is_positive is True
assert gamma(e - S.Half).is_positive is False
def test_issue_14450():
assert uppergamma(S(3)/8, x).evalf() == uppergamma(S(3)/8, x)
assert lowergamma(x, S(3)/8).evalf() == lowergamma(x, S(3)/8)
# some values from Wolfram Alpha for comparison
assert abs(uppergamma(S(3)/8, 2).evalf() - 0.07105675881) < 1e-9
assert abs(lowergamma(S(3)/8, 2).evalf() - 2.2993794256) < 1e-9
def test_issue_14528():
k = Symbol('k', integer=True, nonpositive=True)
assert isinstance(gamma(k), gamma)
def test_multigamma():
from sympy import Product
p = Symbol('p')
_k = Dummy('_k')
assert multigamma(x, p).dummy_eq(pi**(p*(p - 1)/4)*\
Product(gamma(x + (1 - _k)/2), (_k, 1, p)))
assert conjugate(multigamma(x, p)).dummy_eq(pi**((conjugate(p) - 1)*\
conjugate(p)/4)*Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert conjugate(multigamma(x, 1)) == gamma(conjugate(x))
p = Symbol('p', positive=True)
assert conjugate(multigamma(x, p)).dummy_eq(pi**((p - 1)*p/4)*\
Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
assert multigamma(nan, 1) == nan
assert multigamma(oo, 1).doit() == oo
assert multigamma(1, 1) == 1
assert multigamma(2, 1) == 1
assert multigamma(3, 1) == 2
assert multigamma(102, 1) == factorial(101)
assert multigamma(Rational(1, 2), 1) == sqrt(pi)
assert multigamma(1, 2) == pi
assert multigamma(2, 2) == pi/2
assert multigamma(1, 3) == zoo
assert multigamma(2, 3) == pi**2/2
assert multigamma(3, 3) == 3*pi**2/2
assert multigamma(x, 1).diff(x) == gamma(x)*polygamma(0, x)
assert multigamma(x, 2).diff(x) == sqrt(pi)*gamma(x)*gamma(x - S(1)/2)*\
polygamma(0, x) + sqrt(pi)*gamma(x)*gamma(x - S(1)/2)*polygamma(0, x - S(1)/2)
assert multigamma(x - 1, 1).expand(func=True) == gamma(x)/(x - 1)
assert multigamma(x + 2, 1).expand(func=True, mul=False) == x*(x + 1)*\
gamma(x)
assert multigamma(x - 1, 2).expand(func=True) == sqrt(pi)*gamma(x)*\
gamma(x + S(1)/2)/(x**3 - 3*x**2 + 11*x/4 - S(3)/4)
assert multigamma(x - 1, 3).expand(func=True) == pi**(S(3)/2)*gamma(x)**2*\
gamma(x + S(1)/2)/(x**5 - 6*x**4 + 55*x**3/4 - 15*x**2 + 31*x/4 - S(3)/2)
assert multigamma(n, 1).rewrite(factorial) == factorial(n - 1)
assert multigamma(n, 2).rewrite(factorial) == sqrt(pi)*\
factorial(n - S(3)/2)*factorial(n - 1)
assert multigamma(n, 3).rewrite(factorial) == pi**(S(3)/2)*\
factorial(n - 2)*factorial(n - S(3)/2)*factorial(n - 1)
assert multigamma(-S(1)/2, 3, evaluate=False).is_real == False
assert multigamma(S(1)/2, 3, evaluate=False).is_real == False
assert multigamma(0, 1, evaluate=False).is_real == False
assert multigamma(1, 3, evaluate=False).is_real == False
assert multigamma(-1.0, 3, evaluate=False).is_real == False
assert multigamma(0.7, 3, evaluate=False).is_real == True
assert multigamma(3, 3, evaluate=False).is_real == True
|
ed9b2963fadd1ed3457060ed33903b9b3648a666e4239d7ea2493b4ac83e255d | from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt,
Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
atanh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (Complement, EmptySet, FiniteSet,
Intersection, Interval, Union, imageset)
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.utilities.pytest import XFAIL, raises, skip, slow, SKIP
from sympy.utilities.randtest import verify_numerically as tn
from sympy.physics.units import cm
from sympy.core.containers import Dict
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic,
_solve_logarithm, _term_factors)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
c = Symbol('c', real=True)
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
q = Symbol('q', real=True)
m = Symbol('m', real=True)
n = Symbol('n', real=True)
def test_invert_real():
x = Symbol('x', real=True)
y = Symbol('y')
n = Symbol('n')
def ireal(x, s=S.Reals):
return Intersection(s, x)
# issue 14223
assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet)
assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
conditions = Contains(y, Interval(0, oo), evaluate=False)
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert invert_real(sin(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))
assert invert_real(sin(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))
assert invert_real(csc(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))
assert invert_real(csc(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))
assert invert_real(cos(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))
assert invert_real(cos(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))
assert invert_real(sec(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))
assert invert_real(sec(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))
assert invert_real(tan(x), y, x) == \
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))
assert invert_real(tan(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))
assert invert_real(cot(x), y, x) == \
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
assert invert_real(cot(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))
assert invert_real(tan(tan(x)), y, x) == \
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_complex(exp(x), y, x) == \
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_is_function_class_equation():
from sympy.abc import x, a
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([x], x))
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
FiniteSet(-b/a, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) == EmptySet()
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.One/2, x) == \
FiniteSet(erfinv(S.One/2))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S(1), S(1))
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** Rational(1, 2),
S(4),
-2 - 3 ** Rational(1, 2))
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) == ConditionSet(x,
Eq(x**6 + x**4 + I, 0), S.Reals)
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + S(7)/4
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6)
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S(1), S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
def test_solveset_sqrt_2():
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(-S(1)/2, -S(1)/3)
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((-S.Half + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')
rb = S(4)/5
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
set([i.n(chop=True) for i in ans]) == \
set([i.n(chop=True) for i in (ra, rb)])
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**(S(1)/5) - 9, x) == \
FiniteSet(-295244/S(59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, S(1)/3))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(S(1)/3)
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [S(5)/3 + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + S(5)/3 +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9)]
cset = [40*re(1/((-S(1)/2 + sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
S(5)/3 +
I*(40*im(1/((-S(1)/2 + sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S(0), S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) == EmptySet()
def test_no_sol():
assert solveset(1 - oo*x) == EmptySet()
assert solveset(oo*x, x) == EmptySet()
assert solveset(oo*x - oo, x) == EmptySet()
assert solveset_real(4, x) == EmptySet()
assert solveset_real(exp(x), x) == EmptySet()
assert solveset_real(x**2 + 1, x) == EmptySet()
assert solveset_real(-3*a/sqrt(x), x) == EmptySet()
assert solveset_real(1/x, x) == EmptySet()
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
EmptySet()
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S(1) / 3) - 3), x) == \
FiniteSet(S(0), S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(-Rational(3, 2), S.Half)
def test_solve_abs():
x = Symbol('x')
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals) == ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n})
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for i in sol.subs(reps):
assert not eqab.subs(x, i)
assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers)))
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= S(1)/3, x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
u = Union(Interval.open(0, 1), Interval.open(1, 2))
assert solveset_real(eq, x) == u
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half))
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, S(0) <= x - 3),
(3 - x, S(0) > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
def test_solveset_complex_polynomial():
from sympy.abc import x, a, b, c
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) == S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
from sympy.abc import x, n
assert solveset_complex(exp(x) - 1, x) == \
imageset(Lambda(n, I*2*n*pi), S.Integers)
assert solveset_complex(exp(x) - I, x) == \
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert solveset_complex(sinh(x).rewrite(exp), x) == \
imageset(Lambda(n, n*pi*I), S.Integers)
def test_solveset_real_exp():
from sympy.abc import x, y
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S(1), S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S(0), 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert s == imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers)
def test_solve_trig():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers))
assert solveset_real(sin(x) - 1, x) == \
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)
assert solveset_real(cos(x), x) == \
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + 3*pi/2), S.Integers))
assert solveset_real(sin(x) + cos(x), x) == \
Union(imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers),
imageset(Lambda(n, 2*n*pi + 7*pi/4), S.Integers))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
assert solveset_complex(cos(x) - S.Half, x) == \
Union(imageset(Lambda(n, 2*n*pi + 5*pi/3), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers))
y, a = symbols('y,a')
assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
Union(ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(ImageSet(Lambda(n, -I*(I*(
2*n*pi + arg(-exp(-2*I*y))) +
2*im(y))), S.Integers), S.Reals))
assert solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x) == \
ImageSet(Lambda(n, 2*n*pi/3 + pi/6), S.Integers)
# Tests for _solve_trig2() function
assert solveset_real(2*cos(x)*cos(2*x) - 1, x) == \
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**(S(1)/3)*(67 +
9*sqrt(57))**(S(2)/3) + 8*2**(S(2)/3) + 11*(67 +
9*sqrt(57))**(S(1)/3))/(3*(67 + 9*sqrt(57))**(S(1)/6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**(S(1)/3)*(67 +
9*sqrt(57))**(S(2)/3) + 8*2**(S(2)/3) + 11*(67 +
9*sqrt(57))**(S(1)/3))/(3*(67 + 9*sqrt(57))**(S(1)/6))) +
2*pi), S.Integers))
assert solveset_real(2*tan(x)*sin(x) + 1, x) == Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 +sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers))
assert solveset_real(cos(2*x)*cos(4*x) - 1, x) == \
ImageSet(Lambda(n, n*pi), S.Integers)
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
imageset(Lambda(n, n*pi), S.Integers)
assert solveset_real(cos(x), x) == \
imageset(Lambda(n, n*pi + pi/2), S.Integers)
assert solveset_real(cos(x) + sin(x), x) == \
imageset(Lambda(n, n*pi - pi/4), S.Integers)
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(-Rational(5, 3) +
LambertW(-10240*2**(S(1)/3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**(S(1)/3)*a**(S(1)/3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = S(6)/5
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
def test_solveset():
x = Symbol('x')
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
S.Integers)
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
ConditionSet(x, True, S.Reals)
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
) == ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals)
assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
) == imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)
assert solveset(x + sin(x) > 1, x, domain=S.Reals
) == ConditionSet(x, x + sin(x) > 1, S.Reals)
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
) == ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals)
assert solveset(y**x-z, x, S.Reals) == \
ConditionSet(x, Eq(y**x - z, 0), S.Reals)
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
x = Symbol('x')
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
x = Symbol('x')
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution == unsolved_object
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
def test_issue_9522():
x = Symbol('x')
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
def test_solvify():
x = Symbol('x')
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S(1)/2 - sqrt(3)*I/2,
S(1)/2 + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, 3*pi/2]
assert solvify(sin(x) + 1, x, S.Reals) == [3*pi/2]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
def test_abs_invert_solvify():
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
x, y, z = symbols('x, y, z')
a, b, c, d, e, f, g, h, i, j, k, l = symbols('a:l')
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise ValueError if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) there are non-symbols
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y]))
# 4) a nonlinear term is detected in the original expression
raises(ValueError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x)))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_issue_16577():
assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))
def test_linsolve():
x, y, z, u, v, w = symbols("x, y, z, u, v, w")
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, b = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, b, x1, x2))
#raise ValueError if equations are non-linear in given variables
raises(ValueError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(ValueError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [f]])
system2 = (A, B)
sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
b = Matrix([0, 0, 1])
assert linsolve((A, b), (x, y, z)) == EmptySet()
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
a, b, c, d, e = symbols('a, b, c, d, e')
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
Eqns = [8*kilo*newton + x + y, 28*kilo*newton*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {(-28000*newton/3, 4000*newton/3)}
# linsolve fully expands expressions, so removable singularities
# and other nonlinearity does not raise an error
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)}
def test_solve_decomposition():
x = Symbol('x')
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert solve_decomposition(f2, x, S.Reals) == s3
assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3)
assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5)
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
def test_nonlinsolve_abs():
soln = FiniteSet((x, Abs(x)))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y)))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditionset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi)), S.Integers)
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert nonlinsolve(sys, [x, y]) == soln
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 2*pi/3), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers))
assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y))
def test_nonlinsolve_positive_dimensional():
x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real = True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real = True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
x, y, z = symbols('x, y, z')
n = Dummy('n')
assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == {
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(S(1)/3))), S.Integers), S(1)/3)}
system = [exp(x) - sin(y), 1/exp(y) - 3]
assert nonlinsolve(system, [x, y]) == {
(ImageSet(Lambda(n, I*(2*n*pi + pi)
+ log(sin(log(3)))), S.Integers), -log(3)),
(ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
+ log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))}
system = [exp(x) - sin(y), y**2 - 4]
assert nonlinsolve(system, [x, y]) == {
(ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)}
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y, z = symbols('x, y, z', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert nonlinsolve(eqs, [y, z]) == soln
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert nonlinsolve(eqs, [x, z]) == soln
r, t = symbols('r, t')
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a,b,c,d = symbols('a, b, c, d', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114_solveset():
# slow testcase
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = 191/S(20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - 3*pi/2
intermediate_system = FiniteSet(2*f(x) - pi, 2*f(y) - 3*pi)
symbols = Tuple(x, y)
soln = ConditionSet(
symbols,
intermediate_system,
S.Complexes)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
set([x + 1]), [y, x]) == S.EmptySet
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2))
soln = soln_real + soln_complex
assert substitution(eqs, [y, z]) == soln
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
# end of tests for nonlinsolve
def test_issue_9556():
x = Symbol('x')
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
def test_issue_9611():
x = Symbol('x')
a = Symbol('a')
y = Symbol('y')
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
x = Symbol('x')
a = Symbol('a')
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**(S(3)/5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**(S(1)/3)*sign(y))
def test_issue_10214():
assert solveset(x**(S(3)/2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(S(-3)/2) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**(S(2)/3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**(2/S(3))) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)/3 - 100/
(3*(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)) + S(20)/3)
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals) == \
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals)
assert solveset(f(g(x)) - pi/2, g(x), S.Reals) == \
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals)
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
r, t = symbols('r t')
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x) == Interval.open(S(3)/4, oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
t = symbols('t')
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet()
def test_issue_14223():
x = Symbol('x')
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
def test_issue_10158():
x = Symbol('x')
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(2/S(3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(-4/S(3), -4/S(5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
x, y, n = symbols('x y n')
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert solveset(f, x) == \
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers)
def test_issue_14454():
x = Symbol('x')
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x, S.Reals))
assert invert_real(x**2, number, x, S.Reals) # no error
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == set([
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)])
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
# exponential tests
def test_exponential_real():
from sympy.abc import x, y, z
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(4/S(15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + S(4)/5)
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet()
@XFAIL
def test_exponential_complex():
from sympy.abc import x
from sympy import Dummy
n = Dummy('n')
assert solveset_complex(2**x + 4**x, x) == imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers)
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert solveset_complex(4**(x/2) - 2**(x/3), x) == imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers)
assert solveset(2**x + 32, x) == imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers)
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - 2*pi/3)/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + 2*pi/3)/log(2)), S.Integers)
assert solveset(2**x + 4**x + 8**x, x) == Union(union1, union2)
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert res == ans
def test_expo_conditionset():
from sympy.abc import x, y
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals) == ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals)
assert solveset(f2, x, S.Reals) == ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals)
assert solveset(f3, x, S.Reals) == ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals)
assert solveset(f4, x, S.Reals) == ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals)
assert solveset(f5, x, S.Reals) == ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
from sympy import simplify
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
w = symbols('w')
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
ans1 = solveset(f1, w, S.Reals)
ans2 = solveset(f2, w, S.Reals)
assert ans1 == simplify(ans2)
assert solveset(x**x, x, S.Reals) == S.EmptySet
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet(
(x - z)/log(2)) - FiniteSet(0)
a, b, x, y = symbols('a b x y')
assert solveset_real(a**x - b**x, x) == ConditionSet(
x, (a > 0) & (b > 0), FiniteSet(0))
assert solveset(a**x - b**x, x) == ConditionSet(
x, Ne(a, 0) & Ne(b, 0), FiniteSet(0))
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
x, y, z = symbols('x y z')
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(-S(1)/2 + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(-S(1)/2, S(1)/2)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) == EmptySet()
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) == EmptySet()
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
|
097d4f6421b3e8d46beb804c6a8fed3b3e2c65a98c699f3b31425427694a954d | from sympy import (
Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral,
LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne,
Wild, acos, asin, atan, atanh, cos, cosh, diff, erf, erfinv, erfc,
erfcinv, exp, im, log, pi, re, sec, sin,
sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh,
root, simplify, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo,
E, cbrt, denom, Add)
from sympy.core.compatibility import range
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, check_assumptions, denoms, \
failing_assumptions
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.utilities.pytest import slow, XFAIL, SKIP, raises
from sympy.utilities.randtest import verify_numerically as tn
from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0}
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == set([S(2), -S(2)])
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
# duplicate symbols removed
assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2}
# unordered symbols
# only 1
assert solve(y - 3, set([y])) == [3]
# more than 1
assert solve(y - 3, set([x, y])) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == \
[(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]
assert solve(*args, set=True) == \
([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]))
assert solve(*args, dict=True) == \
[{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}]
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
flags = dict(dict=True)
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}]
flags.update(dict(simplify=False))
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}]
# failing undetermined system
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x-1, False], [x], set=True) == ([], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == set([-S(1), S(1)])
assert set(solve(Eq(x**2, 1), x)) == set([-S(1), S(1)])
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {y: S.Zero, x: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == set([
-2 + 3**Rational(1, 2),
S(4),
-2 - 3**Rational(1, 2)
])
assert set(solve((x**2 - 1)**2 - a, x)) == \
set([sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))])
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == set([S(0), 1/a**2])
assert set(solve(x*(root(x, 3) - 3), x)) == set([S(0), S(27)])
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2],
[ Rational(1, 2) - I*sqrt(3)/2, Rational(1, 2) + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [-Rational(3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: -t - t/n, z: -t - t/n, y: 0}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == set([-b/a, log(3)])
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [-3*pi/4, pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [set([
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
]), set([
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)]),
set([
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)])]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == set([S(-4), log(8) + pi*I])
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
ans = [(log(2401) + 5*LambertW((-1 + sqrt(5) + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))* -1))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) - sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) + sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((-sqrt(5) + 1 + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(-3*log(7))]
assert result == ans
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, 3*pi/2]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [log(10)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = set((3*x - 1, 2*y - 4))
assert solve(eqns, set((x, y))) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \
{a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \
{a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \
{a: -2, b: 2, c: -1}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S(0) < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < 5*pi/6)
assert solve(Eq(False, x < 1)) == (S(1) <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S(1) <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(True, x)) == True
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == set([S(0), S(14)])
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [5*x/3]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [-295244/S(59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(-S.Half + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
set([log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)]),
set([2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)]),
set([log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)]),
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
set([log(-sqrt(3) + 2), log(sqrt(3) + 2)])
assert set(solve(x**y + x**(2*y) - 1, x)) == \
set([(-S.Half + sqrt(5)/2)**(1/y), (-S.Half - sqrt(5)/2)**(1/y)])
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(-S.Half - sqrt(3)*I/2)), log(E*(-S.Half + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == set([sqrt(y), S(0), -sqrt(y)])
assert set(solve(x*(x - y/x), x, check=True)) == set([sqrt(y), -sqrt(y)])
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert set(solve((
a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)])
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
set([log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a])
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
set([(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))])
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(S(1)/3)), S(1)/3)]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
set([(log(-sin(2)), -S(2)), (log(sin(2)), S(2))])
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([x, y], set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)})
assert set(solve(eqs, x, y)) == \
set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))])
assert set(solve(eqs, y, z)) == \
set([
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))])
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([x, y], set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)})
assert set(solve(eqs, x, y)) == set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))])
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], set([(S(1), S(3)), (S(3), S(1))]))
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
set([(S(1), S(3)), (S(3), S(1))])
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
set([(-sqrt(-y - 4),), (sqrt(-y - 4),)])
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
set([(S(1), S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))])
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S(1), []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == set([S(0), S(9)/16])
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
set([S.Zero, S(9)/16])
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == set([-S(1), S(2)])
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == set([S(5), S(13)])
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
set([-S(1)/2, -S(1)/3])
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == set([-S(8), S(2)])
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [-S(1)/11]
assert solve(p + 6*I) == []
# issue 8622
assert unrad((root(x + 1, 5) - root(x, 3))) == (
x**5 - x**3 - 3*x**2 - 3*x - 1, [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**(S(1)/3) + x)**(S(5)/2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**(S(1)/5)*s**4 + s**3 + 10*2**(S(2)/5)*s**3 +
10*2**(S(3)/5)*s**2 + 5*2**(S(4)/5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# is this needed?
#assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
# x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, [])
raises(NotImplementedError, lambda:
unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1))
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 - (-S(1)/2 -
sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 - S(13824)/343)**2)/2 -
S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 -
(-S(1)/2 + sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)/21 - (-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4,
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = 2*F/7 - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(-s*(-s**6 + sqrt(3)*s**6*I - 153*2**(S(2)/3)*3**(S(1)/3)*s**4 +
51*12**(S(1)/3)*s**4 - 102*2**(S(2)/3)*3**(S(5)/6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**(S(1)/3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*((1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, S(1)/3))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [S(1)/3]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
dQ4: I3 - I5,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6,
I1: I2 + I3,
Q4: -I3/2 + 3*I5/2 - dI4/2}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_2750 but solved with the matrix solver.'''
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == {
dI4: -I3 + 3*I5 - 2*Q4,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
dQ2: I2,
I1: I2 + I3,
Q2: 2*I3 + 2*I5 + 3*I6,
dQ4: I3 - I5,
I4: I3 - I5}
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[{f(x): 3*D, y: 9*D**2 + 4}]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([g(a)], set([
(-sqrt(h(a)**2*f(a)**2 + G)/f(a),),
(sqrt(h(a)**2*f(a)**2+ G)/f(a),)]))
args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)]
assert set(solve(*args)) == \
set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))])
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], set([
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))]))
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
set([-sqrt(-x), sqrt(-x)])
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
set([S(1)/2 + sqrt(35)/10, -sqrt(35)/10 + S(1)/2])
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(S(1)/3) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
assert check_assumptions(1, x) == True
raises(AssertionError, lambda: check_assumptions(2*x, x, positive=True))
raises(TypeError, lambda: check_assumptions(1, 1))
def test_failing_assumptions():
x = Symbol('x', real=True, positive=True)
y = Symbol('y')
assert failing_assumptions(6*x + y, **x.assumptions0) == \
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
'negative': None, 'zero': None, 'extended_real': None, 'finite': None,
'infinite': None, 'extended_negative': None, 'extended_nonnegative': None,
'extended_nonpositive': None, 'extended_nonzero': None,
'extended_positive': None }
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
[-3*I*pi/4, -I*pi/4, I*pi/4, 3*I*pi/4]
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
[-3*I*pi/4, -I*pi/4, I*pi/4, 3*I*pi/4]
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + S(7)/4
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \
== 3
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \
== 3
assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1
assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,), (2,)]
assert set(solve(abs(x - 7) - 8)) == set([-S(1), S(15)])
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
-S(1)/2 + sqrt(61)/2, -sqrt(69)/2 + S(1)/2]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import x, y
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == set([x, exp(x)])
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
assert solve(x**3 - 3**x, x) == [3, -3*LambertW(-log(3)/3)/log(3)]
assert set(solve(3*log(x) - x*log(3))) == set( # 2.478... and 3
[3, -3*LambertW(-log(3)/3)/log(3)])
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
assert solve(3*sin(x) - x*sin(3), x) == [3]
assert set(solve(x**a - a**x), x) == set(
[a, -a*LambertW(-log(a)/a)/log(a)])
@slow
def test_lambert_bivariate():
# tests passing current implementation
assert solve((x**2 + x)*exp((x**2 + x)) - 1) == [
-S(1)/2 + sqrt(1 + 4*LambertW(1))/2,
-S(1)/2 - sqrt(1 + 4*LambertW(1))/2]
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
-S(1)/2 + sqrt(1 + 2*LambertW(2))/2,
-S(1)/2 - sqrt(1 + 2*LambertW(2))/2]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve((a/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
assert solve((1/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)/4), 4*LambertW(sqrt(2)/4), 4*LambertW(-sqrt(2)/4, -1)]
assert solve(x*log(x) + 3*x + 1, x) == \
[exp(-3 + LambertW(-exp(3)))]
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
-Rational(5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
# check collection
assert solve(3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
[log(-((b + 3)*LambertW(S(1)/(b + 3))/a**5)**(S(1)/3)*(1 - sqrt(3)*I)/2)/log(a), \
log(-((b + 3)*LambertW(S(1)/(b + 3))/a**5)**(S(1)/3)*(1 + sqrt(3)*I)/2)/log(a), \
log((b + 3)*LambertW(S(1)/(b + 3))/a**5)/(3*log(a))]
x0 = 1/log(a)
x1 = LambertW(S(1)/3)
x2 = a**(-5)
x3 = 3**(S(1)/3)
x4 = 3**(S(5)/6)*I
x5 = x1**(S(1)/3)*x2**(S(1)/3)/2
ans = solve(3*log(a**(3*x + 5)) + a**(3*x + 5), x)
assert ans == [
x0*log(3*x1*x2)/3, x0*log(-x5*(x3 - x4)), x0*log(-x5*(x3 + x4))]
# coverage
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
-S(3)/2 - LambertW(-4*log(2))/(2*log(2))]
assert set(solve(3**cos(x) - cos(x)**3)) == set(
[acos(3), acos(-3*LambertW(-log(3)/3)/log(3))])
# should give only one solution after using `uniq`
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
# cases when p != S.One
# issue 4271
assert solve((a/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW((-a)**(S(1)/3)/3), \
6*LambertW((-a)**(S(1)/3)*(-1 - sqrt(3)*I)/6), \
6*LambertW((-a)**(S(1)/3)*(-1 + sqrt(3)*I)/6)]
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW(-S(1)/3), 6*LambertW(S(1)/6 - sqrt(3)*I/6), \
6*LambertW(S(1)/6 + sqrt(3)*I/6), 6*LambertW(-S(1)/3, -1)]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(-S.Half + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [-2*atan(2 - sqrt(5)),
-2*atan(2 + sqrt(5))]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == set([(S(5)/3 + (-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3) + 40/(9*((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3))),), (S(5)/3 + 40/(9*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3)) + (S(251)/27 + sqrt(111)*I/9)**(S(1)/3),)])
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 2617
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = 191/S(20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == set([x**y])
assert _simple_dens(1/root(x, 3), [x]) == set([x])
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [set([tuple(i.evalf(2) for i in j) for j in R]) for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, -5*pi/3, -4*pi/3, -pi, -2*pi/3, -pi/3, pi/3, 2*pi/3, pi, 4*pi/3,
14*pi/9, 5*pi/3, 16*pi/9, 2*pi, -2*I*log(-(-1)**(S(1)/9)),
-2*I*log(-(-1)**(S(2)/9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)),
-2*I*log(-sin(pi/18) + I*cos(pi/18)),
-2*I*log(sin(pi/18) - I*cos(pi/18)),
-2*I*log(sin(pi/18) + I*cos(pi/18)),
-2*I*log(exp(-2*I*pi/9)), -2*I*log(exp(-I*pi/9)),
-2*I*log(exp(I*pi/9)), -2*I*log(exp(2*I*pi/9))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, -5*pi/3, -pi, -pi/3, pi/3, pi, 5*pi/3]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
s = solve(terms, [a, b, c, d, e, f, g], dict=True)
assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1),
c: -sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1),
c: sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == set([2, y])
assert denoms(x/2 + 1/y, y) == set([y])
assert denoms(x/2 + 1/y, [y]) == set([y])
assert denoms(1/x + 1/y + 1/z, [x, y]) == set([x, y])
assert denoms(1/x + 1/y + 1/z, x, y) == set([x, y])
assert denoms(1/x + 1/y + 1/z, set([x, y])) == set([x, y])
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: S(1)/6, x2: S(1)/6, x4: -S(2)/3, x1: -S(2)/3, x5: 1},
{x0: 1, x3: S(1)/2, x2: -S(1)/2, x4: 0, x1: 0, x5: -1},
{x0: 1, x3: -S(1)/3, x2: -S(1)/3, x4: S(1)/3, x1: S(1)/3, x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - S(9)/4) == [S(3)/2]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**(S(1)/4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S(1)/2]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**(S(1)/3)) == [S(2)/3]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
|
ad58a99c92ed21f12497fbd3163b474cfdbecea2bda74e783a4f079689d3fc56 | from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo, powsimp)
from sympy.core.function import _mexpand
from sympy.core.compatibility import range
from sympy.functions.elementary.trigonometric import sin
from sympy.solvers.diophantine import (descent, diop_bf_DN, diop_DN,
diop_solve, diophantine, divisible, equivalent, find_DN, ldescent, length,
reconstruct, partition, power_representation,
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
classify_diop, base_solution_linear, cornacchia, sqf_normal,
diop_ternary_quadratic_normal, _diop_ternary_quadratic_normal,
gaussian_reduce, holzer,diop_general_pythagorean,
_diop_general_sum_of_squares, _nint_or_floor, _odd, _even,
_remove_gcd, check_param, parametrize_ternary_quadratic,
diop_ternary_quadratic, diop_linear, diop_quadratic,
diop_general_sum_of_squares, sum_of_powers, sum_of_squares,
diop_general_sum_of_even_powers, _can_do_sum_of_squares)
from sympy.utilities import default_sort_key
from sympy.utilities.pytest import slow, raises, XFAIL
from sympy.utilities.iterables import (
signed_permutations)
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
m1, m2, m3 = symbols('m1:4', integer=True)
n1 = symbols('n1', integer=True)
def diop_simplify(eq):
return _mexpand(powsimp(_mexpand(eq)))
def test_input_format():
raises(TypeError, lambda: diophantine(sin(x)))
raises(TypeError, lambda: diophantine(3))
raises(TypeError, lambda: diophantine(x/pi - 3))
def test_univariate():
assert diop_solve((x - 1)*(x - 2)**2) == set([(1,), (2,)])
assert diop_solve((x - 1)*(x - 2)) == set([(1,), (2,)])
def test_classify_diop():
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
raises(ValueError, lambda: classify_diop(1))
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
assert classify_diop(14*x**2 + 15*x - 42) == (
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
assert classify_diop(x*y + z) == (
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
assert classify_diop(x*y + z + w + x**2) == (
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + x*z + x**2 + 1) == (
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z + w + 42) == (
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z*w) == (
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
assert classify_diop(x*y**2 + 1) == (
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
def test_linear():
assert diop_solve(x) == (0,)
assert diop_solve(1*x) == (0,)
assert diop_solve(3*x) == (0,)
assert diop_solve(x + 1) == (-1,)
assert diop_solve(2*x + 1) == (None,)
assert diop_solve(2*x + 4) == (-2,)
assert diop_solve(y + x) == (t_0, -t_0)
assert diop_solve(y + x + 0) == (t_0, -t_0)
assert diop_solve(y + x - 0) == (t_0, -t_0)
assert diop_solve(0*x - y - 5) == (-5,)
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
assert diop_solve(4*x + 6*y - 3) == (None, None)
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
# to ignore constant factors, use diophantine
raises(TypeError, lambda: diop_solve(x/2))
def test_quadratic_simple_hyperbolic_case():
# Simple Hyperbolic case: A = C = 0 and B != 0
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
set([(-133, -11), (5, -57)])
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set([])
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == set([(27, 0)])
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == set([(-14, -1)])
assert diop_solve(2*x*y + 5*x + 56*y + 7) == set([(-161, -3),\
(-47,-6), (-35, -12), (-29, -69),\
(-27, 64), (-21, 7),(-9, 1),\
(105, -2)])
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set([])
assert diop_solve(x*y + x + y + 1) == set([(-1, t), (t, -1)])
assert diophantine(48*x*y)
def test_quadratic_elliptical_case():
# Elliptical case: B**2 - 4AC < 0
# Two test cases highlighted require lot of memory due to quadratic_congruence() method.
# This above method should be replaced by Pernici's square_mod() method when his PR gets merged.
#assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == set([(-11, -1)])
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set([])
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == set([(-1, -1)])
#assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == set([(-15, 6)])
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
set([(-1, -1), (-1, 2), (1, -2), (1, 1)])
def test_quadratic_parabolic_case():
# Parabolic case: B**2 - 4AC = 0
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(y**2 - 41*x + 40)
def test_quadratic_perfect_square():
# B**2 - 4*A*C > 0
# B**2 - 4*A*C is a perfect square
assert check_solutions(48*x*y)
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
def test_quadratic_non_perfect_square():
# B**2 - 4*A*C is not a perfect square
# Used check_solutions() since the solutions are complex expressions involving
# square roots and exponents
assert check_solutions(x**2 - 2*x - 5*y**2)
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
assert check_solutions(x**2 - x*y - y**2 - 3*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
def test_issue_9106():
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
@slow
def test_quadratic_non_perfect_slow():
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
# This leads to very large numbers.
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
def test_DN():
# Most of the test cases were adapted from,
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
# http://www.jpr2718.org/pell.pdf
# others are verified using Wolfram Alpha.
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
# Solutions are straightforward in these cases.
assert diop_DN(3, 0) == [(0, 0)]
assert diop_DN(-17, -5) == []
assert diop_DN(-19, 23) == [(2, 1)]
assert diop_DN(-13, 17) == [(2, 1)]
assert diop_DN(-15, 13) == []
assert diop_DN(0, 5) == []
assert diop_DN(0, 9) == [(3, t)]
assert diop_DN(9, 0) == [(3*t, t)]
assert diop_DN(16, 24) == []
assert diop_DN(9, 180) == [(18, 4)]
assert diop_DN(9, -180) == [(12, 6)]
assert diop_DN(7, 0) == [(0, 0)]
# When equation is x**2 + y**2 = N
# Solutions are interchangeable
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
# D > 0 and D is not a square
# N = 1
assert diop_DN(13, 1) == [(649, 180)]
assert diop_DN(980, 1) == [(51841, 1656)]
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
assert diop_DN(986, 1) == [(49299, 1570)]
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
assert diop_DN(17, 1) == [(33, 8)]
assert diop_DN(19, 1) == [(170, 39)]
# N = -1
assert diop_DN(13, -1) == [(18, 5)]
assert diop_DN(991, -1) == []
assert diop_DN(41, -1) == [(32, 5)]
assert diop_DN(290, -1) == [(17, 1)]
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_DN(32, -1) == []
# |N| > 1
# Some tests were created using calculator at
# http://www.numbertheory.org/php/patz.html
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
# So (-3, 1) and (393, 109) should be in the same equivalent class
assert equivalent(-3, 1, 393, 109, 13, -4) == True
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
assert set(diop_DN(157, 12)) == \
set([(13, 1), (10663, 851), (579160, 46222), \
(483790960,38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)])
assert diop_DN(13, 25) == [(3245, 900)]
assert diop_DN(192, 18) == []
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
assert diop_DN(167, 2) == [(13, 1)]
assert diop_DN(167, -2) == []
assert diop_DN(123, -2) == [(11, 1)]
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
# the same equivalence class
assert equivalent(11, 1, -11, 1, 123, -2)
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
assert diop_DN(0, 0, t) == [(0, t)]
assert diop_DN(0, -1, t) == []
def test_bf_pell():
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
assert diop_bf_DN(167, -2) == []
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_bf_DN(340, -4) == [(756, 41)]
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
assert diop_bf_DN(0, 0, t) == [(0, t)]
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
assert diop_bf_DN(3, 0, t) == [(0, 0)]
assert diop_bf_DN(1, -2, t) == []
def test_length():
assert length(2, 1, 0) == 1
assert length(-2, 4, 5) == 3
assert length(-5, 4, 17) == 4
assert length(0, 4, 13) == 6
assert length(7, 13, 11) == 23
assert length(1, 6, 4) == 2
def is_pell_transformation_ok(eq):
"""
Test whether X*Y, X, or Y terms are present in the equation
after transforming the equation using the transformation returned
by transformation_to_pell(). If they are not present we are good.
Moreover, coefficient of X**2 should be a divisor of coefficient of
Y**2 and the constant term.
"""
A, B = transformation_to_DN(eq)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
for term in [X*Y, X, Y]:
if term in coeff.keys():
return False
for term in [X**2, Y**2, 1]:
if term not in coeff.keys():
coeff[term] = 0
if coeff[X**2] != 0:
return divisible(coeff[Y**2], coeff[X**2]) and \
divisible(coeff[1], coeff[X**2])
return True
def test_transformation_to_pell():
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
assert is_pell_transformation_ok(x**2 - y**2 + 17)
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
def test_find_DN():
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
def test_ldescent():
# Equations which have solutions
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
(4, 32), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = ldescent(a, b)
assert a*x**2 + b*y**2 == w**2
assert ldescent(-1, -1) is None
def test_diop_ternary_quadratic_normal():
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(23*x**2 + 616*y**2 - z**2)
assert check_solutions(5*x**2 + 4*y**2 - z**2)
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
assert check_solutions(x**2 + 3*y**2 - z**2)
assert check_solutions(4*x**2 + 5*y**2 - z**2)
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(16*x**2 + y**2 - 25*z**2)
assert check_solutions(6*x**2 - y**2 + 10*z**2)
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def is_normal_transformation_ok(eq):
A = transformation_to_normal(eq)
X, Y, Z = A*Matrix([x, y, z])
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
for term in [X*Y, Y*Z, X*Z]:
if term in coeff.keys():
return False
return True
def test_transformation_to_normal():
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
assert is_normal_transformation_ok(x**2 + 23*y*z)
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
assert is_normal_transformation_ok(2*x*z + 3*y*z)
def test_diop_ternary_quadratic():
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
assert check_solutions(3*x**2 - x*y - y*z - x*z)
assert check_solutions(x**2 - y*z - x*z)
assert check_solutions(5*x**2 - 3*x*y - x*z)
assert check_solutions(4*x**2 - 5*y**2 - x*z)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(8*x**2 - 12*y*z)
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert check_solutions(x*y - 7*y*z + 13*x*z)
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
raises(ValueError, lambda:
_diop_ternary_quadratic_normal((x, y, z),
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
assert diop_ternary_quadratic(eq) == (7, 2, 0)
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
(1, 0, 2)
assert diop_ternary_quadratic(x*y + 2*y*z) == \
(-2, 0, n1)
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
assert parametrize_ternary_quadratic(eq) == \
(64*p**2 - 24*p*q, -64*p*q + 64*q**2, 40*p*q)
# this cannot be tested with diophantine because it will
# factor into a product
assert diop_solve(x*y + 2*y*z) == (-4*p*q, -2*n1*p**2 + 2*p**2, 2*p*q)
def test_square_factor():
assert square_factor(1) == square_factor(-1) == 1
assert square_factor(0) == 1
assert square_factor(5) == square_factor(-5) == 1
assert square_factor(4) == square_factor(-4) == 2
assert square_factor(12) == square_factor(-12) == 2
assert square_factor(6) == 1
assert square_factor(18) == 3
assert square_factor(52) == 2
assert square_factor(49) == 7
assert square_factor(392) == 14
assert square_factor(factorint(-12)) == 2
def test_parametrize_ternary_quadratic():
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(x**2 + 2*x*y + z**2)
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(x**2 - y**2 - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
assert check_solutions(8*x*y + z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def test_no_square_ternary_quadratic():
assert check_solutions(2*x*y + y*z - 3*x*z)
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
assert check_solutions(23*x*y + 34*y*z)
assert check_solutions(x*y + y*z + z*x)
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
def test_descent():
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = descent(a, b)
assert a*x**2 + b*y**2 == w**2
# the docstring warns against bad input, so these are expected results
# - can't both be negative
raises(TypeError, lambda: descent(-1, -3))
# A can't be zero unless B != 1
raises(ZeroDivisionError, lambda: descent(0, 3))
# supposed to be square-free
raises(TypeError, lambda: descent(4, 3))
def test_diophantine():
assert check_solutions((x - y)*(y - z)*(z - x))
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
assert check_solutions((x**2 - 3*y**2 - 1))
assert check_solutions(y**2 + 7*x*y)
assert check_solutions(x**2 - 3*x*y + y**2)
assert check_solutions(z*(x**2 - y**2 - 15))
assert check_solutions(x*(2*y - 2*z + 5))
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
# Following test case caused problems in parametric representation
# But this can be solved by factroing out y.
# No need to use methods for ternary quadratic equations.
assert check_solutions(y**2 - 7*x*y + 4*y*z)
assert check_solutions(x**2 - 2*x + 1)
assert diophantine(x - y) == diophantine(Eq(x, y))
assert diophantine(3*x*pi - 2*y*pi) == set([(2*t_0, 3*t_0)])
eq = x**2 + y**2 + z**2 - 14
base_sol = set([(1, 2, 3)])
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
assert diophantine(x**2 + 15*x/14 - 3) == set()
# test issue 11049
eq = 92*x**2 - 99*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(9, 7, 51)
assert diophantine(eq) == set([(
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
5049*p**2 - 1386*p*q - 51*q**2)])
eq = 2*x**2 + 2*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(1, 1, 2)
assert diophantine(eq) == set([(
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)])
eq = 411*x**2+57*y**2-221*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(2021, 2645, 3066)
assert diophantine(eq) == \
set([(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)])
eq = 573*x**2+267*y**2-984*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(49, 233, 127)
assert diophantine(eq) == \
set([(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
11303*p**2 - 41474*p*q + 41656*q**2)])
# this produces factors during reconstruction
eq = x**2 + 3*y**2 - 12*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(0, 2, 1)
assert diophantine(eq) == \
set([(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)])
# solvers have not been written for every type
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
# rational expressions
assert diophantine(1/x) == set()
assert diophantine(1/x + 1/y - S.Half)
set([(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)])
assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
set([(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)])
def test_general_pythagorean():
from sympy.abc import a, b, c, d, e
assert check_solutions(a**2 + b**2 + c**2 - d**2)
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
def test_diop_general_sum_of_squares_quick():
for i in range(3, 10):
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2))
assert _diop_general_sum_of_squares((x, y, z), -2) == set()
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
assert diop_general_sum_of_squares(eq) == \
set([(1, 2, 3)])
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
assert len(diop_general_sum_of_squares(eq, 3)) == 3
# issue 11016
var = symbols(':5') + (symbols('6', negative=True),)
eq = Add(*[i**2 for i in var]) - 112
base_soln = set(
[(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7),
(0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8),
(0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7),
(0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6),
(0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7),
(0, 1, 5, 5, 5, -6)])
assert diophantine(eq) == base_soln
assert len(diophantine(eq, permute=True)) == 196800
# handle negated squares with signsimp
assert diophantine(12 - x**2 - y**2 - z**2) == set([(2, 2, 2)])
# diophantine handles simplification, so classify_diop should
# not have to look for additional patterns that are removed
# by diophantine
eq = a**2 + b**2 + c**2 + d**2 - 4
raises(NotImplementedError, lambda: classify_diop(-eq))
def test_diop_partition():
for n in [8, 10]:
for k in range(1, 8):
for p in partition(n, k):
assert len(p) == k
assert [p for p in partition(3, 5)] == []
assert [list(p) for p in partition(3, 5, 1)] == [
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
assert list(partition(0)) == [()]
assert list(partition(1, 0)) == [()]
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
def test_prime_as_sum_of_two_squares():
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
a, b = prime_as_sum_of_two_squares(i)
assert a**2 + b**2 == i
assert prime_as_sum_of_two_squares(7) is None
ans = prime_as_sum_of_two_squares(800029)
assert ans == (450, 773) and type(ans[0]) is int
def test_sum_of_three_squares():
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
800, 801, 802, 803, 804, 805, 806]:
a, b, c = sum_of_three_squares(i)
assert a**2 + b**2 + c**2 == i
assert sum_of_three_squares(7) is None
assert sum_of_three_squares((4**5)*15) is None
assert sum_of_three_squares(25) == (5, 0, 0)
assert sum_of_three_squares(4) == (0, 0, 2)
def test_sum_of_four_squares():
from random import randint
# this should never fail
n = randint(1, 100000000000000)
assert sum(i**2 for i in sum_of_four_squares(n)) == n
assert sum_of_four_squares(0) == (0, 0, 0, 0)
assert sum_of_four_squares(14) == (0, 1, 2, 3)
assert sum_of_four_squares(15) == (1, 1, 2, 3)
assert sum_of_four_squares(18) == (1, 2, 2, 3)
assert sum_of_four_squares(19) == (0, 1, 3, 3)
assert sum_of_four_squares(48) == (0, 4, 4, 4)
def test_power_representation():
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
(32760, 2, 3)]
for test in tests:
n, p, k = test
f = power_representation(n, p, k)
while True:
try:
l = next(f)
assert len(l) == k
chk_sum = 0
for l_i in l:
chk_sum = chk_sum + l_i**p
assert chk_sum == n
except StopIteration:
break
assert list(power_representation(20, 2, 4, True)) == \
[(1, 1, 3, 3), (0, 0, 2, 4)]
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
assert list(power_representation(-1, 2, 2)) == []
assert list(power_representation(1, 1, 1)) == [(1,)]
assert list(power_representation(3, 2, 1)) == []
assert list(power_representation(4, 2, 1)) == [(2,)]
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
assert list(power_representation(-2, 4, 2)) == []
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
assert list(power_representation(0, 3, 2, False)) == []
# when we are dealing with squares, do feasibility checks
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
# there will be a recursion error if these aren't recognized
big = 2**30
for i in [13, 10, 7, 5, 4, 2, 1]:
assert list(sum_of_powers(big, 2, big - i)) == []
def test_assumptions():
"""
Test whether diophantine respects the assumptions.
"""
#Test case taken from the below so question regarding assumptions in diophantine module
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
m, n = symbols('m n', integer=True, positive=True)
diof = diophantine(n ** 2 + m * n - 500)
assert diof == set([(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)])
a, b = symbols('a b', integer=True, positive=False)
diof = diophantine(a*b + 2*a + 3*b - 6)
assert diof == set([(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)])
def check_solutions(eq):
"""
Determines whether solutions returned by diophantine() satisfy the original
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
check_solutions_normal, check_solutions()
"""
s = diophantine(eq)
factors = Mul.make_args(eq)
var = list(eq.free_symbols)
var.sort(key=default_sort_key)
while s:
solution = s.pop()
for f in factors:
if diop_simplify(f.subs(zip(var, solution))) == 0:
break
else:
return False
return True
def test_diopcoverage():
eq = (2*x + y + 1)**2
assert diop_solve(eq) == set([(t_0, -2*t_0 - 1)])
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)])
assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)])
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
ans = (3*t - 1, -2*t + 1)
assert base_solution_linear(4, 8, 12, t) == ans
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
assert cornacchia(1, 1, 20) is None
assert cornacchia(1, 1, 5) == set([(2, 1)])
assert cornacchia(1, 2, 17) == set([(3, 2)])
raises(ValueError, lambda: reconstruct(4, 20, 1))
assert gaussian_reduce(4, 1, 3) == (1, 1)
eq = -w**2 - x**2 - y**2 + z**2
assert diop_general_pythagorean(eq) == \
diop_general_pythagorean(-eq) == \
(m1**2 + m2**2 - m3**2, 2*m1*m3,
2*m2*m3, m1**2 + m2**2 + m3**2)
assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None)
assert check_param(S(3)/2, S(4) + x, S(2), x) == (None, None)
assert check_param(S(4) + x, S(3)/2, S(2), x) == (None, None)
assert _nint_or_floor(16, 10) == 2
assert _odd(1) == (not _even(1)) == True
assert _odd(0) == (not _even(0)) == False
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) == \
(11, 1, 5)
# it's ok if these pass some day when the solvers are implemented
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)])
def test_holzer():
# if the input is good, don't let it diverge in holzer()
# (but see test_fail_holzer below)
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
# None in uv condition met; solution is not Holzer reduced
# so this will hopefully change but is here for coverage
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
@XFAIL
def test_fail_holzer():
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
a, b, c = 4, 79, 23
x, y, z = xyz = 26, 1, 11
X, Y, Z = ans = 2, 7, 13
assert eq(*xyz) == 0
assert eq(*ans) == 0
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
h = holzer(x, y, z, a, b, c)
assert h == ans # it would be nice to get the smaller soln
def test_issue_9539():
assert diophantine(6*w + 9*y + 20*x - z) == \
set([(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)])
def test_issue_8943():
assert diophantine(
(3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x))) == \
set([(0, 0, 0)])
def test_diop_sum_of_even_powers():
eq = x**4 + y**4 + z**4 - 2673
assert diop_solve(eq) == set([(3, 6, 6), (2, 4, 7)])
assert diop_general_sum_of_even_powers(eq, 2) == set(
[(3, 6, 6), (2, 4, 7)])
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
neg = symbols('neg', negative=True)
eq = x**4 + y**4 + neg**4 - 2673
assert diop_general_sum_of_even_powers(eq) == set([(-3, 6, 6)])
assert diophantine(x**4 + y**4 + 2) == set()
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
def test_sum_of_squares_powers():
tru = set([
(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9),
(0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7),
(1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)])
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
assert len(ans) == 14
assert ans == tru
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
assert list(sum_of_squares(-10, 2)) == []
assert list(sum_of_squares(2, 3)) == []
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
assert list(sum_of_squares(0, 3)) == []
assert list(sum_of_squares(4, 1)) == [(2,)]
assert list(sum_of_squares(5, 1)) == []
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
assert list(sum_of_squares(11, 5, True)) == [
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
1, 1, 1, 1, 2,
2, 1, 1, 2, 2,
2, 2, 2, 3, 2,
1, 3, 3, 3, 3,
4, 3, 3, 2, 2,
4, 4, 4, 4, 5]
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
0, 0, 0, 0, 0,
1, 0, 0, 1, 0,
0, 1, 0, 1, 1,
0, 1, 1, 0, 1,
2, 1, 1, 1, 1,
1, 1, 1, 1, 3]
for i in range(30):
s1 = set(sum_of_squares(i, 5, True))
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
s2 = set(sum_of_squares(i, 5))
assert all(sum(j**2 for j in t) == i for t in s2)
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
assert list(sum_of_powers(-2, 4, 2)) == []
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
assert list(sum_of_powers(6, 2, 2)) == []
assert list(sum_of_powers(3**5, 3, 1)) == []
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
assert list(sum_of_powers(2**1000, 5, 2)) == []
def test__can_do_sum_of_squares():
assert _can_do_sum_of_squares(3, -1) is False
assert _can_do_sum_of_squares(-3, 1) is False
assert _can_do_sum_of_squares(0, 1)
assert _can_do_sum_of_squares(4, 1)
assert _can_do_sum_of_squares(1, 2)
assert _can_do_sum_of_squares(2, 2)
assert _can_do_sum_of_squares(3, 2) is False
def test_diophantine_permute_sign():
from sympy.abc import a, b, c, d, e
eq = a**4 + b**4 - (2**4 + 3**4)
base_sol = set([(2, 3)])
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
assert len(diophantine(eq)) == 35
assert len(diophantine(eq, permute=True)) == 62000
soln = set([(-1, -1), (-1, 2), (1, -2), (1, 1)])
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
@XFAIL
def test_not_implemented():
eq = x**2 + y**4 - 1**2 - 3**4
assert diophantine(eq, syms=[x, y]) == set([(9, 1), (1, 3)])
def test_issue_9538():
eq = x - 3*y + 2
assert diophantine(eq, syms=[y,x]) == set([(t_0, 3*t_0 - 2)])
raises(TypeError, lambda: diophantine(eq, syms=set([y,x])))
|
3788e4dafac0626e6987b646882f6450df39be88295bce3be145dd3a989ffaaa | from sympy.solvers.decompogen import decompogen, compogen
from sympy import sin, cos, sqrt, Abs, exp, symbols
from sympy.utilities.pytest import XFAIL, raises
x, y = symbols('x y')
def test_decompogen():
assert decompogen(sin(cos(x)), x) == [sin(x), cos(x)]
assert decompogen(sin(x)**2 + sin(x) + 1, x) == [x**2 + x + 1, sin(x)]
assert decompogen(sqrt(6*x**2 - 5), x) == [sqrt(x), 6*x**2 - 5]
assert decompogen(sin(sqrt(cos(x**2 + 1))), x) == [sin(x), sqrt(x), cos(x), x**2 + 1]
assert decompogen(Abs(cos(x)**2 + 3*cos(x) - 4), x) == [Abs(x), x**2 + 3*x - 4, cos(x)]
assert decompogen(sin(x)**2 + sin(x) - sqrt(3)/2, x) == [x**2 + x - sqrt(3)/2, sin(x)]
assert decompogen(Abs(cos(y)**2 + 3*cos(x) - 4), x) == [Abs(x), 3*x + cos(y)**2 - 4, cos(x)]
assert decompogen(x, y) == [x]
assert decompogen(1, x) == [1]
raises(TypeError, lambda: decompogen(x < 5, x))
def test_decompogen_poly():
assert decompogen(x**4 + 2*x**2 + 1, x) == [x**2 + 2*x + 1, x**2]
assert decompogen(x**4 + 2*x**3 - x - 1, x) == [x**2 - x - 1, x**2 + x]
@XFAIL
def test_decompogen_fails():
A = lambda x: x**2 + 2*x + 3
B = lambda x: 4*x**2 + 5*x + 6
assert decompogen(A(x*exp(x)), x) == [x**2 + 2*x + 3, x*exp(x)]
assert decompogen(A(B(x)), x) == [x**2 + 2*x + 3, 4*x**2 + 5*x + 6]
assert decompogen(A(1/x + 1/x**2), x) == [x**2 + 2*x + 3, 1/x + 1/x**2]
assert decompogen(A(1/x + 2/(x + 1)), x) == [x**2 + 2*x + 3, 1/x + 2/(x + 1)]
def test_compogen():
assert compogen([sin(x), cos(x)], x) == sin(cos(x))
assert compogen([x**2 + x + 1, sin(x)], x) == sin(x)**2 + sin(x) + 1
assert compogen([sqrt(x), 6*x**2 - 5], x) == sqrt(6*x**2 - 5)
assert compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) == sin(sqrt(
cos(x**2 + 1)))
assert compogen([Abs(x), x**2 + 3*x - 4, cos(x)], x) == Abs(cos(x)**2 +
3*cos(x) - 4)
assert compogen([x**2 + x - sqrt(3)/2, sin(x)], x) == (sin(x)**2 + sin(x) -
sqrt(3)/2)
assert compogen([Abs(x), 3*x + cos(y)**2 - 4, cos(x)], x) == \
Abs(3*cos(x) + cos(y)**2 - 4)
assert compogen([x**2 + 2*x + 1, x**2], x) == x**4 + 2*x**2 + 1
# the result is in unsimplified form
assert compogen([x**2 - x - 1, x**2 + x], x) == -x**2 - x + (x**2 + x)**2 - 1
|
01750c7014795ad6e446974f97fded64c10b2701f5700c0ccd3f02e6a882a582 | from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff,
Dummy, Eq, Ne, erf, erfi, exp, Function, I, Integral, LambertW, log, O, pi,
Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh,
Piecewise, symbols, Poly, sec, Ei, re, im, atan2, collect)
from sympy.solvers.ode import (_undetermined_coefficients_match,
checkodesol, classify_ode, classify_sysode, constant_renumber,
constantsimp, homogeneous_order, infinitesimals, checkinfsol,
checksysodesol, solve_ics, dsolve, get_numbered_constants)
from sympy.solvers.deutils import ode_order
from sympy.utilities.pytest import XFAIL, skip, raises, slow, ON_TRAVIS
from sympy.utilities.misc import filldedent
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
# Note: the tests below may fail (but still be correct) if ODE solver,
# the integral engine, solve(), or even simplify() changes. Also, in
# differently formatted solutions, the arbitrary constants might not be
# equal. Using specific hints in tests can help to avoid this.
# Tests of order higher than 1 should run the solutions through
# constant_renumber because it will normalize it (constant_renumber causes
# dsolve() to return different results on different machines)
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol1 = [Eq(x(t), 9*C1*exp(6*sqrt(3)*t) + 9*C2*exp(-6*sqrt(3)*t)), \
Eq(y(t), 6*sqrt(3)*C1*exp(6*sqrt(3)*t) - 6*sqrt(3)*C2*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol2 = [Eq(x(t), 4*C1*exp(t*(sqrt(1713)/2 + S(43)/2)) + 4*C2*exp(t*(-sqrt(1713)/2 + S(43)/2))), \
Eq(y(t), C1*(S(39)/2 + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + S(43)/2)) + \
C2*(-sqrt(1713)/2 + S(39)/2)*exp(t*(-sqrt(1713)/2 + S(43)/2)))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol3 = [Eq(x(t), (C1*cos(sqrt(7)*t/2) + C2*sin(sqrt(7)*t/2))*exp(3*t/2)), \
Eq(y(t), (C1*(-sqrt(7)*sin(sqrt(7)*t/2)/2 + cos(sqrt(7)*t/2)/2) + \
C2*(sin(sqrt(7)*t/2)/2 + sqrt(7)*cos(sqrt(7)*t/2)/2))*exp(3*t/2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol4 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - S(22)/3), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - S(5)/3)]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol5 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - S(58)/3), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - S(185)/3)]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol6 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(S(5)/2*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(S(5)/2*t**2))]
s = dsolve(eq6)
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol7 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(S(5)/2*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(S(5)/2*t**2))]
assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol8 = [Eq(x(t), (C1*exp((sqrt(77)/2 + S(9)/2)*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + S(9)/2)*(t**3)/3))*exp(S(5)/2*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + S(9)/2)*exp((sqrt(77)/2 + S(9)/2)*(t**3)/3) + \
C2*(-sqrt(77)/2 + S(9)/2)*exp((-sqrt(77)/2 + S(9)/2)*(t**3)/3))*exp(S(5)/2*t**2))]
assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq10 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol10 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq10)
assert s == sol10 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_linear_2eq_order1_nonhomog_linear():
e = [Eq(diff(f(x), x), f(x) + g(x) + 5*x),
Eq(diff(g(x), x), f(x) - g(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_nonhomog():
# Note: once implemented, add some tests esp. with resonance
e = [Eq(diff(f(x), x), f(x) + exp(x)),
Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_type2_degen():
e = [Eq(diff(f(x), x), f(x) + 5),
Eq(diff(g(x), x), f(x) + 7)]
s1 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) - C2 + 2*x - 5)]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_dsolve_linear_2eq_order1_diag_triangular():
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
assert checksysodesol(e, s1) == (True, [0, 0])
e = [Eq(diff(f(x), x), 2*f(x)),
Eq(diff(g(x), x), 3*f(x) + 7*g(x))]
s1 = [Eq(f(x), -5*C2*exp(2*x)),
Eq(g(x), 5*C1*exp(7*x) + 3*C2*exp(2*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0():
e = [Eq(diff(f(x), x), -9*I*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -4*C1*exp(-4*I*x) - 4*C2*exp(-9*I*x)), \
Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0_b_eq_0():
e = [Eq(diff(f(x), x), -9*I*f(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -5*I*C2*exp(-9*I*x)), Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_many_zeros():
t = Symbol('t')
corner_cases = [(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, I),
(I, 0, 0, -I), (0, I, 0, 0), (0, I, I, 0)]
s1 = [[Eq(f(t), C1), Eq(g(t), C2)],
[Eq(f(t), C1*exp(t)), Eq(g(t), -C2)],
[Eq(f(t), C1 + C2*t), Eq(g(t), C2)],
[Eq(f(t), C2), Eq(g(t), C1 + C2*t)],
[Eq(f(t), -C2), Eq(g(t), C1*exp(t))],
[Eq(f(t), C1*(1 - I)*exp(t)), Eq(g(t), C2*(-1 + I)*exp(I*t))],
[Eq(f(t), 2*I*C1*exp(I*t)), Eq(g(t), -2*I*C2*exp(-I*t))],
[Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)],
[Eq(f(t), I*C1*exp(I*t) + I*C2*exp(-I*t)), \
Eq(g(t), I*C1*exp(I*t) - I*C2*exp(-I*t))]
]
for r, sol in zip(corner_cases, s1):
eq = [Eq(diff(f(t), t), r[0]*f(t) + r[1]*g(t)),
Eq(diff(g(t), t), r[2]*f(t) + r[3]*g(t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_dsolve_linsystem_symbol_piecewise():
u = Symbol('u') # XXX it's more complicated with real u
eq = (Eq(diff(f(x), x), 2*f(x) + g(x)),
Eq(diff(g(x), x), u*f(x)))
s1 = [Eq(f(x), Piecewise((C1*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1 + C2*(x +
Piecewise((0, Eq(sqrt(4*u + 4)/2 + 1, 2)), (1/(-sqrt(4*u + 4)/2 + 1),
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True))), Eq(g(x),
Piecewise((C1*(sqrt(4*u + 4)/2 - 1)*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*(-sqrt(4*u + 4)/2 - 1)*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4,
0)), ((C1*(sqrt(4*u + 4)/2 - 1) + C2*(x*(sqrt(4*u + 4)/2 - 1) +
Piecewise((1, Eq(sqrt(4*u + 4)/2 + 1, 2)), (0,
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True)))]
assert dsolve(eq) == s1
# FIXME: assert checksysodesol(eq, s) == (True, [0, 0])
# Remove lines below when checksysodesol works
s = [(l.lhs, l.rhs) for l in s1]
for v in [0, 7, -42, 5*I, 3 + 4*I]:
assert eq[0].subs(s).subs(u, v).doit().simplify()
assert eq[1].subs(s).subs(u, v).doit().simplify()
# example from https://groups.google.com/d/msg/sympy/xmzoqW6tWaE/sf0bgQrlCgAJ
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
sol = dsolve((eq1, eq2))
# FIXME: assert checksysodesol(eq, sol) == (True, [0, 0])
# Remove line below when checksysodesol works
assert all(s.has(Piecewise) for s in sol)
@slow
def test_linear_2eq_order2():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t, l = symbols('t, l')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
sol1 = [Eq(x(t), 43*C1*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + 43*C2*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
43*C3*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + 43*C4*exp(t*rootof(l**4 - 14*l**2 + 2, 3))), \
Eq(y(t), C1*(rootof(l**4 - 14*l**2 + 2, 0)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + \
C2*(rootof(l**4 - 14*l**2 + 2, 1)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
C3*(rootof(l**4 - 14*l**2 + 2, 2)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + \
C4*(rootof(l**4 - 14*l**2 + 2, 3)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 3)))]
assert dsolve(eq1) == sol1
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0]) # this one fails
eq2 = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
sol2 = [Eq(x(t), 3*C1*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + 3*C2*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
3*C3*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + 3*C4*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) - S(181)/29), \
Eq(y(t), C1*(rootof(l**4 - 15*l**2 + 29, 0)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + \
C2*(rootof(l**4 - 15*l**2 + 29, 1)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
C3*(rootof(l**4 - 15*l**2 + 29, 2)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + \
C4*(rootof(l**4 - 15*l**2 + 29, 3)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) + S(183)/29)]
assert dsolve(eq2) == sol2
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0]) # this one fails
eq3 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol3 = [Eq(x(t), C1*cos(t*(S(9)/2 + sqrt(109)/2)) + C2*sin(t*(S(9)/2 + sqrt(109)/2)) + C3*cos(t*(-sqrt(109)/2 + S(9)/2)) + \
C4*sin(t*(-sqrt(109)/2 + S(9)/2))), Eq(y(t), -C1*sin(t*(S(9)/2 + sqrt(109)/2)) + C2*cos(t*(S(9)/2 + sqrt(109)/2)) - \
C3*sin(t*(-sqrt(109)/2 + S(9)/2)) + C4*cos(t*(-sqrt(109)/2 + S(9)/2)))]
assert dsolve(eq3) == sol3
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
sol4 = [Eq(x(t), C3*t + t*Integral((9*C1*exp(3*sqrt(7)*t**2/2) + 9*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t)), \
Eq(y(t), C4*t + t*Integral((3*sqrt(7)*C1*exp(3*sqrt(7)*t**2/2) - 3*sqrt(7)*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t))]
assert dsolve(eq4) == sol4
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \
(log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t)))
sol5 = [Eq(x(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2 - \
C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4 - \
(sqrt(22) + 5)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2) + \
(-sqrt(22) + 5)*(C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C4))/88), \
Eq(y(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + \
C2 - C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4)/44)]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t,t), log(t)*t*diff(y(t),t) - log(t)*y(t)), Eq(diff(y(t),t,t), log(t)*t*diff(x(t),t) - log(t)*x(t)))
sol6 = [Eq(x(t), C3*t + t*Integral((C1*exp(Integral(t*log(t), t)) + \
C2*exp(-Integral(t*log(t), t)))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*exp(Integral(t*log(t), t)) - \
C2*exp(-Integral(t*log(t), t)))/t**2, t))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = (Eq(diff(x(t),t,t), log(t)*(t*diff(x(t),t) - x(t)) + exp(t)*(t*diff(y(t),t) - y(t))), \
Eq(diff(y(t),t,t), (t**2)*(t*diff(x(t),t) - x(t)) + (t)*(t*diff(y(t),t) - y(t))))
sol7 = [Eq(x(t), C3*t + t*Integral((C1*x0(t) + C2*x0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*\
exp(Integral(t*log(t), t))/x0(t)**2, t))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*y0(t) + \
C2*(y0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)**2, t) + \
exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)))/t**2, t))]
assert dsolve(eq7) == sol7
# FIXME: assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = (Eq(diff(x(t),t,t), t*(4*x(t) + 9*y(t))), Eq(diff(y(t),t,t), t*(12*x(t) - 6*y(t))))
assert filldedent(dsolve(eq8)) == filldedent('''
[Eq(x(t), -sqrt(133)*(-(-1 + sqrt(133))*(C2*(-sqrt(133)*t**3/6 -
t**3/6 + 1) + C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) + O(t**6)) +
(-sqrt(133) - 1)*(C2*(-t**3/6 + sqrt(133)*t**3/6 + 1) + C1*t*(-t**3/12
+ sqrt(133)*t**3/12 + 1) + O(t**6)) + 4*C2*(-sqrt(133)*t**3/6 - t**3/6
+ 1) - 4*C2*(-t**3/6 + sqrt(133)*t**3/6 + 1) +
4*C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) - 4*C1*t*(-t**3/12 +
sqrt(133)*t**3/12 + 1) + O(t**6))/3192), Eq(y(t),
-sqrt(133)*(C2*(-sqrt(133)*t**3/6 - t**3/6 + 1) - C2*(-t**3/6 +
sqrt(133)*t**3/6 + 1) + C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) -
C1*t*(-t**3/12 + sqrt(133)*t**3/12 + 1) + O(t**6))/266)]''')
# FIXME: assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq9 = (Eq(diff(x(t),t,t), t*(4*diff(x(t),t) + 9*diff(y(t),t))), Eq(diff(y(t),t,t), t*(12*diff(x(t),t) - 6*diff(y(t),t))))
sol9 = [Eq(x(t), -sqrt(133)*(4*C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + 4*C2 - \
4*C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - 4*C4 - (-1 + sqrt(133))*(C1*Integral(exp((-sqrt(133) - \
1)*Integral(t, t)), t) + C2) + (-sqrt(133) - 1)*(C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) + \
C4))/3192), Eq(y(t), -sqrt(133)*(C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + C2 - \
C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - C4)/266)]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0])
eq10 = (t**2*diff(x(t),t,t) + 3*t*diff(x(t),t) + 4*t*diff(y(t),t) + 12*x(t) + 9*y(t), \
t**2*diff(y(t),t,t) + 2*t*diff(x(t),t) - 5*t*diff(y(t),t) + 15*x(t) + 8*y(t))
sol10 = [Eq(x(t), -C1*(-2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13 + 2*sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) - \
C2*(-2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
13 - 2*sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) - C3*t**(1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*(2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13 + 2*sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))) - C4*t**(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2)*(-2*sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + 2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13)), Eq(y(t), C1*(-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14 + (-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) + C2*(-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + (-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2)*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) + C3*t**(1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*(sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + 14 + (1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2) + C4*t**(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2)*(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + \
8 + 346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))) + (-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2)**2 + sqrt(-346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14))]
assert dsolve(eq10) == sol10
# FIXME: assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this hangs or at least takes a while...
def test_linear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol1 = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol2 = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
eq3 = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol3 = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq3, sol3) == (True, [0, 0, 0])
f = t**3 + log(t)
g = t**2 + sin(t)
eq4 = (Eq(diff(x(t),t),(4*f+g)*x(t)-f*y(t)-2*f*z(t)), Eq(diff(y(t),t),2*f*x(t)+(f+g)*y(t)-2*f*z(t)), Eq(diff(z(t),t),5*f*x(t)+f*y(t)+(-3*f+g)*z(t)))
sol4 = [Eq(x(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 \
+ cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - \
sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*exp(Integral(-t**2 - sin(t), t))), Eq(y(t), \
(C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + \
C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*\
exp(Integral(-t**2 - sin(t), t))), Eq(z(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*cos(sqrt(3)*\
Integral(t**3 + log(t), t)) + C3*sin(sqrt(3)*Integral(t**3 + log(t), t)))*exp(Integral(-t**2 - sin(t), t)))]
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0, 0]) # this one fails
eq5 = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol5 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0])
eq6 = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol6 = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(y(t), C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(z(t), C1*exp(2*t) + C2*cos(t) + C3*sin(t))]
assert checksysodesol(eq6, sol6) == (True, [0, 0, 0])
def test_linear_3eq_order1_nonhomog():
e = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*g(x)),
Eq(diff(h(x), x), h(x) + exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
@XFAIL
def test_linear_3eq_order1_diagonal():
# code makes assumptions about coefficients being nonzero, breaks when assumptions are not true
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x)),
Eq(diff(h(x), x), h(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x)), Eq(h(x), C3*exp(x))]
s = dsolve(e)
assert s == s1
assert checksysodesol(e, s1) == (True, [0, 0, 0])
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(-S(1)/4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = S(2)/3
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))])
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(-S(1)/4))),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
def test_checksysodesol():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \
Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + S(43)/2)) + 4*C2*exp(t*(sqrt(1713)/2 + \
S(43)/2))), Eq(y(t), C1*(-sqrt(1713)/2 + S(39)/2)*exp(t*(-sqrt(1713)/2 + \
S(43)/2)) + C2*(S(39)/2 + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + S(43)/2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(3*t/2)), \
Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \
C2/2)*cos(sqrt(7)*t/2))*exp(3*t/2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \
S(22)/3), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \
sqrt(6))*exp(t*(sqrt(6) + 3)) - S(5)/3)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(58)/3), \
Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(185)/3)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*exp((Integral(2, t).doit())) + C2*exp(-(Integral(2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \
C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \
C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()) + \
C2*exp((sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \
Eq(y(t), (C1*(-sqrt(77)/2 + S(9)/2)*exp((-sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()) + \
C2*(sqrt(77)/2 + S(9)/2)*exp((sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
root0 = -sqrt(-sqrt(47) + 7)
root1 = sqrt(-sqrt(47) + 7)
root2 = -sqrt(sqrt(47) + 7)
root3 = sqrt(sqrt(47) + 7)
sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \
Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \
C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
root0 = -sqrt(-sqrt(109)/2 + S(15)/2)
root1 = sqrt(-sqrt(109)/2 + S(15)/2)
root2 = -sqrt(sqrt(109)/2 + S(15)/2)
root3 = sqrt(sqrt(109)/2 + S(15)/2)
sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - S(181)/29), \
Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \
C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + S(183)/29)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol = [Eq(x(t), C1*cos(t*(S(9)/2 + sqrt(109)/2)) + C2*sin(t*(S(9)/2 + sqrt(109)/2)) + \
C3*cos(t*(-sqrt(109)/2 + S(9)/2)) + C4*sin(t*(-sqrt(109)/2 + S(9)/2))), Eq(y(t), -C1*sin(t*(S(9)/2 + sqrt(109)/2)) \
+ C2*cos(t*(S(9)/2 + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + S(9)/2)) + C4*cos(t*(-sqrt(109)/2 + S(9)/2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
I1 = sqrt(6)*7**(S(1)/4)*sqrt(pi)*erfi(sqrt(6)*7**(S(1)/4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t
I2 = -sqrt(6)*7**(S(1)/4)*sqrt(pi)*erf(sqrt(6)*7**(S(1)/4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t
sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \
Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(-S(1)/4))), Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert checksysodesol(eq, sol) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
@slow
def test_checkodesol():
from sympy import Ei
# For the most part, checkodesol is well tested in the tests below.
# These tests only handle cases not checked below.
raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x)))
raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y),
x), f(x, y)))
assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \
(False, -f(x).diff(x) + f(x, y).diff(x) - 1)
assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True
assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1)
sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0)
assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \
(False, 60*x**4*((log(x) + 1)**2 + log(x))*(
log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \
(True, 0)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0),
solve_for_func=False) == (True, 0)
assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \
[(True, 0), (True, 0), (False, C2)]
assert checkodesol(f(x).diff(x, 2), set([Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)])) == \
set([(True, 0), (True, 0), (False, C2)])
assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \
[(True, 0), (True, 0)]
assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0)
# Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that
# checkodesol tries back substituting f(x) when it can.
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol3 = Eq(f(x), log(log(C1/x)**(-x)))
assert not checkodesol(eq3, sol3)[1].has(f(x))
# This case was failing intermittently depending on hash-seed:
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
@slow
def test_dsolve_options():
eq = x*f(x).diff(x) + f(x)
a = dsolve(eq, hint='all')
b = dsolve(eq, hint='all', simplify=False)
c = dsolve(eq, hint='all_Integral')
keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear',
'1st_linear_Integral', 'almost_linear', 'almost_linear_Integral',
'best', 'best_hint', 'default', 'lie_group',
'nth_linear_euler_eq_homogeneous', 'order',
'separable', 'separable_Integral']
Integral_keys = ['1st_exact_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral',
'almost_linear_Integral', 'best', 'best_hint', 'default',
'nth_linear_euler_eq_homogeneous',
'order', 'separable_Integral']
assert sorted(a.keys()) == keys
assert a['order'] == ode_order(eq, f(x))
assert a['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best') == Eq(f(x), C1/x)
assert a['default'] == 'separable'
assert a['best_hint'] == 'separable'
assert not a['1st_exact'].has(Integral)
assert not a['separable'].has(Integral)
assert not a['1st_homogeneous_coeff_best'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not a['1st_linear'].has(Integral)
assert a['1st_linear_Integral'].has(Integral)
assert a['1st_exact_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert a['separable_Integral'].has(Integral)
assert sorted(b.keys()) == keys
assert b['order'] == ode_order(eq, f(x))
assert b['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x)
assert b['default'] == 'separable'
assert b['best_hint'] == '1st_linear'
assert a['separable'] != b['separable']
assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \
b['1st_homogeneous_coeff_subs_dep_div_indep']
assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \
b['1st_homogeneous_coeff_subs_indep_div_dep']
assert not b['1st_exact'].has(Integral)
assert not b['separable'].has(Integral)
assert not b['1st_homogeneous_coeff_best'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not b['1st_linear'].has(Integral)
assert b['1st_linear_Integral'].has(Integral)
assert b['1st_exact_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert b['separable_Integral'].has(Integral)
assert sorted(c.keys()) == Integral_keys
raises(ValueError, lambda: dsolve(eq, hint='notarealhint'))
raises(ValueError, lambda: dsolve(eq, hint='Liouville'))
assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \
dsolve(f(x).diff(x) - 1/f(x)**2, hint='best')
assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x),
hint="1st_linear_Integral") == \
Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)*
exp(Integral(1, x)), x))*exp(-Integral(1, x)))
def test_classify_ode():
assert classify_ode(f(x).diff(x, 2), f(x)) == \
(
'nth_algebraic',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'Liouville',
'2nd_power_series_ordinary',
'nth_algebraic_Integral',
'Liouville_Integral',
)
assert classify_ode(f(x), f(x)) == ()
assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == (
'nth_algebraic',
'separable',
'1st_linear', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
assert classify_ode(f(x).diff(x)**2, f(x)) == (
'nth_algebraic',
'lie_group',
'nth_algebraic_Integral')
# issue 4749: f(x) should be cleared from highest derivative before classifying
a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x))
b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x))
c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x))
assert a == ('1st_linear',
'Bernoulli',
'almost_linear',
'1st_power_series', "lie_group",
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert b == c != ()
assert classify_ode(
2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x)
) == ('Bernoulli', 'almost_linear', 'lie_group',
'Bernoulli_Integral', 'almost_linear_Integral')
assert 'Riccati_special_minus2' in \
classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x))
raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff(
y), f(x, y)))
# issue 5176
k = Symbol('k')
assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) +
k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \
('separable', '1st_exact', '1st_power_series', 'lie_group',
'separable_Integral', '1st_exact_Integral')
# preprocessing
ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_algebraic_Integral',
'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral')
# w/o f(x) given
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans
# w/ f(x) and prep=True
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x),
prep=True) == ans
assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \
('nth_algebraic', 'separable', '1st_linear', '1st_power_series',
'lie_group', 'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral')
assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \
('nth_algebraic', 'separable', '1st_power_series', 'lie_group',
'nth_algebraic_Integral', 'separable_Integral')
# test issue 13864
assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \
('1st_power_series', 'lie_group')
assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict)
def test_classify_ode_ics():
# Dummy
eq = f(x).diff(x, x) - f(x)
# Not f(0) or f'(0)
ics = {x: 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
############################
# f(0) type (AppliedUndef) #
############################
# Wrong function
ics = {g(0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(0, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(0): f(1)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(0): 1}
classify_ode(eq, f(x), ics=ics)
#####################
# f'(0) type (Subs) #
#####################
# Wrong function
ics = {g(x).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Wrong variable
ics = {f(y).diff(y).subs(y, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, y).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, 0): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, 0): 1}
classify_ode(eq, f(x), ics=ics)
###########################
# f'(y) type (Derivative) #
###########################
# Wrong function
ics = {g(x).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, z).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, y): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, y): 1}
classify_ode(eq, f(x), ics=ics)
def test_classify_sysode():
# Here x is assumed to be x(t) and y as y(t) for simplicity.
# Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively.
k, l, m, n = symbols('k, l, m, n', Integer=True)
k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True)
P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function)
P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function)
x, y, z = symbols('x, y, z', cls=Function)
t = symbols('t')
x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; z1 = diff(z(t),t)
x2 = diff(x(t),t,t) ; y2 = diff(y(t),t,t) ; z2 = diff(z(t),t,t)
eq1 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -5*t, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): -5*t, (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -2, (1, y(t), 1): 1}, \
'type_of_equation': 'type3', 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-5*t*x(t) - 2*y(t) + \
Derivative(x(t), t), -5*t*y(t) - 2*x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq1) == sol1
eq2 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol2 = {'order': {y(t): 2, x(t): 2}, 'type_of_equation': 'type3', 'is_linear': True, 'eq': \
[-k*x(t) + l*Derivative(y(t), t) + Derivative(x(t), t, t), -k*y(t) - l*Derivative(x(t), t) + \
Derivative(y(t), t, t)], 'no_of_equation': 2, 'func_coeff': {(0, y(t), 0): 0, (0, x(t), 2): 1, \
(1, y(t), 1): 0, (1, y(t), 2): 1, (1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -k, (1, x(t), 1): \
-l, (0, x(t), 1): 0, (0, y(t), 1): l, (1, x(t), 0): 0, (1, y(t), 0): -k}, 'func': [x(t), y(t)]}
assert classify_sysode(eq2) == sol2
eq3 = (Eq(x2+4*x1+3*y1+9*x(t)+7*y(t), 11*exp(I*t)), Eq(y2+5*x1+8*y1+3*x(t)+12*y(t), 2*exp(I*t)))
sol3 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): 9, \
(1, x(t), 1): 5, (0, x(t), 1): 4, (0, y(t), 1): 3, (1, x(t), 0): 3, (1, y(t), 0): 12, (0, y(t), 0): 7, \
(0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): 8}, 'type_of_equation': 'type4', 'func': [x(t), y(t)], \
'is_linear': True, 'eq': [9*x(t) + 7*y(t) - 11*exp(I*t) + 4*Derivative(x(t), t) + 3*Derivative(y(t), t) + \
Derivative(x(t), t, t), 3*x(t) + 12*y(t) - 2*exp(I*t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + \
Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq3) == sol3
eq4 = (Eq((4*t**2 + 7*t + 1)**2*x2, 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*y2, x(t) + 9*y(t)))
sol4 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -5, \
(1, x(t), 1): 0, (0, x(t), 1): 0, (0, y(t), 1): 0, (1, x(t), 0): -1, (1, y(t), 0): -9, (0, y(t), 0): -35, \
(0, x(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, (1, y(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, \
(1, y(t), 1): 0}, 'type_of_equation': 'type10', 'func': [x(t), y(t)], 'is_linear': True, \
'eq': [(4*t**2 + 7*t + 1)**2*Derivative(x(t), t, t) - 5*x(t) - 35*y(t), (4*t**2 + 7*t + 1)**2*Derivative(y(t), t, t)\
- x(t) - 9*y(t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq4) == sol4
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol5 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -1, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): -5, \
(1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type2', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [-x(t) - y(t) + Derivative(x(t), t) - 9, -2*x(t) - 5*y(t) + \
Derivative(y(t), t) - 23], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq5) == sol5
eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t))))
sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \
[x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \
y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq6) == sol6
eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t)))
sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \
'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \
Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq7) == sol7
eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)))
sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \
[-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \
Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \
(1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2}
assert classify_sysode(eq8) == sol8
eq9 = (Eq(x1,3*y(t)-11*z(t)),Eq(y1,7*z(t)-3*x(t)),Eq(z1,11*x(t)-7*y(t)))
sol9 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 3, (0, z(t), 0): 11, (0, y(t), 0): -3, (1, z(t), 0): -7, (0, z(t), 1): 0, \
(2, x(t), 0): -11, (2, z(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-3*y(t) + 11*z(t) + Derivative(x(t), t), 3*x(t) - 7*z(t) + Derivative(y(t), t), \
-11*x(t) + 7*y(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq9) == sol9
eq10 = (x2 + log(t)*(t*x1 - x(t)) + exp(t)*(t*y1 - y(t)), y2 + (t**2)*(t*x1 - x(t)) + (t)*(t*y1 - y(t)))
sol10 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -log(t), \
(1, x(t), 1): t**3, (0, x(t), 1): t*log(t), (0, y(t), 1): t*exp(t), (1, x(t), 0): -t**2, (1, y(t), 0): -t, \
(0, y(t), 0): -exp(t), (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): t**2}, 'type_of_equation': 'type11', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [(t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - \
y(t))*exp(t) + Derivative(x(t), t, t), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) \
+ Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq10) == sol10
eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5))
sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \
'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \
-y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq11) == sol11
eq12 = (Eq(x1, y(t)), Eq(y1, x(t)))
sol12 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': \
[x(t), y(t)], 'is_linear': True, 'eq': [-y(t) + Derivative(x(t), t), -x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq12) == sol12
eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2))
sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \
'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \
Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq13) == sol13
eq14 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t)+3*y(t)), Eq(z1, 5*x(t)+7*y(t)+9*z(t)))
sol14 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -3, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -21, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -17, (0, z(t), 0): 0, (0, y(t), 0): 0, (1, z(t), 0): 0, (0, z(t), 1): 0, \
(2, x(t), 0): -5, (2, z(t), 0): -9, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-21*x(t) + Derivative(x(t), t), -17*x(t) - 3*y(t) + Derivative(y(t), t), -5*x(t) - \
7*y(t) - 9*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq14) == sol14
eq15 = (Eq(x1,4*x(t)+5*y(t)+2*z(t)),Eq(y1,x(t)+13*y(t)+9*z(t)),Eq(z1,32*x(t)+41*y(t)+11*z(t)))
sol15 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -13, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -4, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -41, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -1, (0, z(t), 0): -2, (0, y(t), 0): -5, (1, z(t), 0): -9, (0, z(t), 1): 0, \
(2, x(t), 0): -32, (2, z(t), 0): -11, (1, y(t), 1): 1}, 'type_of_equation': 'type6', 'func': \
[x(t), y(t), z(t)], 'is_linear': True, 'eq': [-4*x(t) - 5*y(t) - 2*z(t) + Derivative(x(t), t), -x(t) - 13*y(t) - \
9*z(t) + Derivative(y(t), t), -32*x(t) - 41*y(t) - 11*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq15) == sol15
eq16 = (Eq(3*x1,4*5*(y(t)-z(t))),Eq(4*y1,3*5*(z(t)-x(t))),Eq(5*z1,3*4*(x(t)-y(t))))
sol16 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 5, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 12, (0, x(t), 1): 3, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 15, (0, z(t), 0): 20, (0, y(t), 0): -20, (1, z(t), 0): -15, (0, z(t), 1): 0, \
(2, x(t), 0): -12, (2, z(t), 0): 0, (1, y(t), 1): 4}, 'type_of_equation': 'type3', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-20*y(t) + 20*z(t) + 3*Derivative(x(t), t), 15*x(t) - 15*z(t) + 4*Derivative(y(t), t), \
-12*x(t) + 12*y(t) + 5*Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq16) == sol16
# issue 8193: funcs parameter for classify_sysode has to actually work
assert classify_sysode(eq1, funcs=[x(t), y(t)]) == sol1
def test_solve_ics():
# Basic tests that things work from dsolve.
assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \
Eq(f(x), sqrt(2 * x + 2))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1,
f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x))
assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)],
[f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)),
Eq(g(x), exp(x)*sin(x))]
# Test cases where dsolve returns two solutions.
eq = (x**2*f(x)**2 - x).diff(x)
assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x),
-sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)]
assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x),
-sqrt(x - S(1)/2)/x), Eq(f(x), sqrt(x - S(1)/2)/x)]
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, S(1)/3)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, S(1)/3)
assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \
{C2: 1}
# Some more complicated tests Refer to PR #16098
assert dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0}) == \
[Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)]
assert dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0}) == \
[Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)]
K, r, f0 = symbols('K r f0')
sol = Eq(f(x), -K*f0*exp(r*x)/((K - f0)*(-f0*exp(r*x)/(K - f0) - 1)))
assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol
#Order dependent issues Refer to PR #16098
assert dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0}) == \
[Eq(f(x), 0), Eq(f(x), x ** 3 / 6)]
assert dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0}) == \
[Eq(f(x), 0), Eq(f(x), x ** 3 / 6)]
# XXX: Ought to be ValueError
raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1}))
# Degenerate case. f'(0) is identically 0.
raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0}))
EI, q, L = symbols('EI q L')
# eq = Eq(EI*diff(f(x), x, 4), q)
sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))]
funcs = [f(x)]
constants = [C1, C2, C3, C4]
# Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)),
# and Subs
ics1 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
f(L).diff(L, 2): 0,
f(L).diff(L, 3): 0}
ics2 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
Subs(f(x).diff(x, 2), x, L): 0,
Subs(f(x).diff(x, 3), x, L): 0}
solved_constants1 = solve_ics(sols, funcs, constants, ics1)
solved_constants2 = solve_ics(sols, funcs, constants, ics2)
assert solved_constants1 == solved_constants2 == {
C1: 0,
C2: 0,
C3: L**2*q/(4*EI),
C4: -L*q/(6*EI)}
def test_ode_order():
f = Function('f')
g = Function('g')
x = Symbol('x')
assert ode_order(3*x*exp(f(x)), f(x)) == 0
assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1
assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2
assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3
assert ode_order(diff(f(x), x, x), g(x)) == 0
assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2
assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0
# issue 5835: ode_order has to also work for unevaluated derivatives
# (ie, without using doit()).
assert ode_order(Derivative(x*f(x), x), f(x)) == 1
assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2
assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0
assert ode_order(Derivative(f(x), x, x), g(x)) == 0
assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1
assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3
assert ode_order(
x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3
# In all tests below, checkodesol has the order option set to prevent
# superfluous calls to ode_order(), and the solve_for_func flag set to False
# because dsolve() already tries to solve for the function, unless the
# simplify=False option is set.
def test_old_ode_tests():
# These are simple tests from the old ode module
eq1 = Eq(f(x).diff(x), 0)
eq2 = Eq(3*f(x).diff(x) - 5, 0)
eq3 = Eq(3*f(x).diff(x), 5)
eq4 = Eq(9*f(x).diff(x, x) + f(x), 0)
eq5 = Eq(9*f(x).diff(x, x), f(x))
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0)
eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0)
# Type: 2nd order, constant coefficients (two real different roots)
eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0)
# Type: 2nd order, constant coefficients (two real equal roots)
eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0)
# Type: 2nd order, constant coefficients (two complex roots)
eq10 = Eq(3*f(x).diff(x) - 1, 0)
eq11 = Eq(x*f(x).diff(x) - 1, 0)
sol1 = Eq(f(x), C1)
sol2 = Eq(f(x), C1 + 5*x/3)
sol3 = Eq(f(x), C1 + 5*x/3)
sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3))
sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))
sol6 = Eq(f(x), (C1 - cos(x))/x**3)
sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x))
sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))
sol10 = Eq(f(x), C1 + x/3)
sol11 = Eq(f(x), C1 + log(x))
assert dsolve(eq1) == sol1
assert dsolve(eq1.lhs) == sol1
assert dsolve(eq2) == sol2
assert dsolve(eq3) == sol3
assert dsolve(eq4) == sol4
assert dsolve(eq5) == sol5
assert dsolve(eq6) == sol6
assert dsolve(eq7) == sol7
assert dsolve(eq8) == sol8
assert dsolve(eq9) == sol9
assert dsolve(eq10) == sol10
assert dsolve(eq11) == sol11
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
def test_1st_linear():
# Type: first order linear form f'(x)+p(x)f(x)=q(x)
eq = Eq(f(x).diff(x) + x*f(x), x**2)
sol = Eq(f(x), (C1 + x*exp(x**2/2)
- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))
assert dsolve(eq, hint='1st_linear') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Bernoulli():
# Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n
eq = Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0)
sol = dsolve(eq, f(x), hint='Bernoulli')
assert sol == Eq(f(x), 1/(x*(C1 + 1/x)))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Riccati_special_minus2():
# Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2
eq = 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2)
sol = dsolve(eq, f(x), hint='Riccati_special_minus2')
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
@slow
def test_1st_exact1():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x)
eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x)
eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x)
sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))
sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1)
sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)
sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1)
sol5 = Eq(x**2*f(x) + f(x)**3/3, C1)
assert dsolve(eq1, f(x), hint='1st_exact') == sol1
assert dsolve(eq2, f(x), hint='1st_exact') == sol2
assert dsolve(eq3, f(x), hint='1st_exact') == sol3
assert dsolve(eq4, hint='1st_exact') == sol4
assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
# issue 5080 blocks the testing of this solution
# FIXME: assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
@slow
@XFAIL
def test_1st_exact2():
"""
This is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
"""
if ON_TRAVIS:
skip("Too slow for travis.")
eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) -
sqrt(x**2 + f(x)**2)))*f(x).diff(x))
sol = dsolve(eq)
assert sol == Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_separable1():
# test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and
# Pollard, pg. 55
eq1 = f(x).diff(x) - f(x)
eq2 = x*f(x).diff(x) - f(x)
eq3 = f(x).diff(x) + sin(x)
eq4 = f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x)
eq5 = f(x).diff(x)/tan(x) - f(x) - 2
eq6 = f(x).diff(x) * (1 - sin(f(x))) - 1
sol1 = Eq(f(x), C1*exp(x))
sol2 = Eq(f(x), C1*x)
sol3 = Eq(f(x), C1 + cos(x))
sol4 = Eq(f(x), tan(C1 + atan(x)))
sol5 = Eq(f(x), C1/cos(x) - 2)
sol6 = Eq(-x + f(x) + cos(f(x)), C1)
assert dsolve(eq1, hint='separable') == sol1
assert dsolve(eq2, hint='separable') == sol2
assert dsolve(eq3, hint='separable') == sol3
assert dsolve(eq4, hint='separable') == sol4
assert dsolve(eq5, hint='separable') == sol5
assert dsolve(eq6, hint='separable') == sol6
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
@slow
def test_separable2():
a = Symbol('a')
eq6 = f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x)
eq7 = f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x)
eq8 = x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2)
eq9 = exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x)
eq10 = (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) -
a**2*sin(f(x))*f(x).diff(x))
sol6 = Eq(Integral((u - 2)/u**3, (u, f(x))),
C1 + Integral(x**(-2), x))
sol7 = Eq(-log(-1 + f(x)**2)/2, C1 - log(2 + x))
sol8 = Eq(asinh(f(x)), C1 - log(log(x)))
# integrate cannot handle the integral on the lhs (cos/tan)
sol9 = Eq(Integral(cos(u)/tan(u), (u, f(x))),
C1 + Integral(-exp(1)*exp(x), x))
sol10 = Eq(-log(cos(f(x))), C1 - log(- a**2 + x**2)/2)
assert dsolve(eq6, hint='separable_Integral').dummy_eq(sol6)
assert dsolve(eq7, hint='separable', simplify=False) == sol7
assert dsolve(eq8, hint='separable', simplify=False) == sol8
assert dsolve(eq9, hint='separable_Integral').dummy_eq(sol9)
assert dsolve(eq10, hint='separable', simplify=False) == sol10
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
def test_separable3():
eq11 = f(x).diff(x) - f(x)*tan(x)
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
eq13 = f(x).diff(x) - f(x)*log(f(x))/tan(x)
sol11 = Eq(f(x), C1/cos(x))
sol12 = Eq(log(sin(f(x))), C1 + 2*x + 2*log(x - 1))
sol13 = Eq(log(log(f(x))), C1 + log(sin(x)))
assert dsolve(eq11, hint='separable') == sol11
assert dsolve(eq12, hint='separable', simplify=False) == sol12
assert dsolve(eq13, hint='separable', simplify=False) == sol13
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=1, solve_for_func=False)[0]
def test_separable4():
# This has a slow integral (1/((1 + y**2)*atan(y))), so we isolate it.
eq14 = x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x))
sol14 = Eq(log(atan(f(x))), C1 - log(x))
assert dsolve(eq14, hint='separable', simplify=False) == sol14
assert checkodesol(eq14, sol14, order=1, solve_for_func=False)[0]
def test_separable5():
eq15 = f(x).diff(x) + x*(f(x) + 1)
eq16 = exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x)
eq17 = f(x).diff(x) + f(x)
eq18 = sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x)
eq19 = (1 - x)*f(x).diff(x) - x*(f(x) + 1)
eq20 = f(x)*diff(f(x), x) + x - 3*x*f(x)**2
eq21 = f(x).diff(x) - exp(x + f(x))
sol15 = Eq(f(x), -1 + C1*exp(-x**2/2))
sol16 = Eq(-exp(-f(x)**2)/2, C1 - x - x**2/2)
sol17 = Eq(f(x), C1*exp(-x))
sol18 = Eq(-log(cos(2*f(x)))/2, C1 + log(cos(x)))
sol19 = Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))
sol20 = Eq(log(-1 + 3*f(x)**2)/6, C1 + x**2/2)
sol21 = Eq(-exp(-f(x)), C1 + exp(x))
assert dsolve(eq15, hint='separable') == sol15
assert dsolve(eq16, hint='separable', simplify=False) == sol16
assert dsolve(eq17, hint='separable') == sol17
assert dsolve(eq18, hint='separable', simplify=False) == sol18
assert dsolve(eq19, hint='separable') == sol19
assert dsolve(eq20, hint='separable', simplify=False) == sol20
assert dsolve(eq21, hint='separable', simplify=False) == sol21
assert checkodesol(eq15, sol15, order=1, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=1, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=1, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=1, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=1, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=1, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=1, solve_for_func=False)[0]
def test_separable_1_5_checkodesol():
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
sol12 = Eq(-log(1 - cos(f(x))**2)/2, C1 - 2*x - 2*log(1 - x))
assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0]
def test_homogeneous_order():
assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0
assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None
assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1
assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/
(pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6)
assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0
assert homogeneous_order(f(x), x, f(x)) == 1
assert homogeneous_order(f(x)**2, x, f(x)) == 2
assert homogeneous_order(x*y*z, x, y) == 2
assert homogeneous_order(x*y*z, x, y, z) == 3
assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2
assert homogeneous_order(f(x, y)**2, x, f(x), y) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None
assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None
assert homogeneous_order(f(y), f(x), x) is None
assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0
assert homogeneous_order(log(1/y) + log(x**2), x, y) is None
assert homogeneous_order(log(1/y) + log(x), x, y) == 0
assert homogeneous_order(log(x/y), x, y) == 0
assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0
a = Symbol('a')
assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0
assert homogeneous_order(f(x).diff(x), x, y) is None
assert homogeneous_order(-f(x).diff(x) + x, x, y) is None
assert homogeneous_order(O(x), x, y) is None
assert homogeneous_order(x + O(x**2), x, y) is None
assert homogeneous_order(x**pi, x) == pi
assert homogeneous_order(x**x, x) is None
raises(ValueError, lambda: homogeneous_order(x*y))
@slow
def test_1st_homogeneous_coeff_ode():
# Type: First order homogeneous, y'=f(y/x)
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))
sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))
sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x)))
sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)
sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))
# indep_div_dep actually has a simpler solution for eq2,
# but it runs too slow
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3
assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4
assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5
assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6
assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7
assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8
# FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?)
# previous code was testing with these other solutions:
sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1)
sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check2():
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
sol2 = Eq(x/tan(f(x)/(2*x)), C1)
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
@XFAIL
def test_1st_homogeneous_coeff_ode_check3():
skip('This is a known issue.')
# checker cannot determine that the following expression is zero:
# (False,
# x*(log(exp(-LambertW(C1*x))) +
# LambertW(C1*x))*exp(-LambertW(C1*x) + 1))
# This is blocked by issue 5080.
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x)))
assert checkodesol(eq3, sol3a, solve_for_func=True)[0]
# Checker can't verify this form either
# (False,
# C1*(log(C1*LambertW(C2*x)/x) + LambertW(C2*x) - 1)*LambertW(C2*x))
# It is because a = W(a)*exp(W(a)), so log(a) == log(W(a)) + W(a) and C2 =
# -E/C1 (which can be verified by solving with simplify=False).
sol3b = Eq(f(x), C1*LambertW(C2*x))
assert checkodesol(eq3, sol3b, solve_for_func=True)[0]
def test_1st_homogeneous_coeff_ode_check7():
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
sol7 = Eq(log(C1*f(x)) + 2*sqrt(1 - x/f(x)), 0)
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode2():
eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x)
eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x)
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))]
sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1))
sol3 = Eq(f(x), log((1/(C1 - log(x)))**x))
# specific hints are applied for speed reasons
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3
# FIXME: sol3 doesn't work with checkodesol (because of **x?)
# previous code was testing with this other solution:
sol3b = Eq(f(x), log(log(C1/x)**(-x)))
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check9():
_u2 = Dummy('u2')
__a = Dummy('a')
eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a,
x/f(x))) + log(C1*f(x)), 0)
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode3():
# The standard integration engine cannot handle one of the integrals
# involved (see issue 4551). meijerg code comes up with an answer, but in
# unconventional form.
# checkodesol fails for this equation, so its test is in
# test_1st_homogeneous_coeff_ode_check9 above. It has to compare string
# expressions because u2 is a dummy variable.
eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol = Eq(log(f(x)), C1 + Piecewise(
(acosh(f(x)/x), abs(f(x)**2)/x**2 > 1),
(-I*asin(f(x)/x), True)))
assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol
def test_1st_homogeneous_coeff_corner_case():
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
@slow
def test_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
eq1 = f(x).diff(x, 2) + 2*f(x).diff(x)
eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x)
eq3 = f(x).diff(x, 2) - f(x)
eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x)
eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0)
eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x)
eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x)
eq10 = f(x).diff(x, 4) - a**2*f(x)
eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x)
eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x)
eq13 = f(x).diff(x, 4)
eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x)
eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x)
eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x)
eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x)
eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x)
eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x)
eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x)
eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x)
eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x)
eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x)
eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x)
eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x)
eq28 = f(x).diff(x, 3) + 8*f(x)
eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x)
eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x)
sol1 = Eq(f(x), C1 + C2*exp(-2*x))
sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x))
sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(4*x/3))
sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))
sol7 = Eq(f(x),
C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2))))
sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sol9 = Eq(f(x),
C1*exp(x) + C2*exp(-x) + C3*exp(x*(-2 + sqrt(2))) +
C4*exp(x*(-2 - sqrt(2))))
sol10 = Eq(f(x),
C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) +
C4*exp(-x*sqrt(a)))
sol11 = Eq(f(x),
C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))
sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))
sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)
sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x))
sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))
sol16 = Eq(f(x), (C1 + C2*x + C3*x**2)*exp(2*x))
sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x))
sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))
sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(5*x/6))
sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))
sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))
sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))
sol25 = Eq(f(x),
C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) +
C4*cos(x*sqrt(2)))
sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))
sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))
sol28 = Eq(f(x),
(C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))
sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x))
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x)))
sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
sol28s = constant_renumber(sol28)
sol29s = constant_renumber(sol29)
sol30s = constant_renumber(sol30)
assert dsolve(eq1) in (sol1, sol1s)
assert dsolve(eq2) in (sol2, sol2s)
assert dsolve(eq3) in (sol3, sol3s)
assert dsolve(eq4) in (sol4, sol4s)
assert dsolve(eq5) in (sol5, sol5s)
assert dsolve(eq6) in (sol6, sol6s)
assert dsolve(eq7) in (sol7, sol7s)
assert dsolve(eq8) in (sol8, sol8s)
assert dsolve(eq9) in (sol9, sol9s)
assert dsolve(eq10) in (sol10, sol10s)
assert dsolve(eq11) in (sol11, sol11s)
assert dsolve(eq12) in (sol12, sol12s)
assert dsolve(eq13) in (sol13, sol13s)
assert dsolve(eq14) in (sol14, sol14s)
assert dsolve(eq15) in (sol15, sol15s)
assert dsolve(eq16) in (sol16, sol16s)
assert dsolve(eq17) in (sol17, sol17s)
assert dsolve(eq18) in (sol18, sol18s)
assert dsolve(eq19) in (sol19, sol19s)
assert dsolve(eq20) in (sol20, sol20s)
assert dsolve(eq21) in (sol21, sol21s)
assert dsolve(eq22) in (sol22, sol22s)
assert dsolve(eq23) in (sol23, sol23s)
assert dsolve(eq24) in (sol24, sol24s)
assert dsolve(eq25) in (sol25, sol25s)
assert dsolve(eq26) in (sol26, sol26s)
assert dsolve(eq27) in (sol27, sol27s)
assert dsolve(eq28) in (sol28, sol28s)
assert dsolve(eq29) in (sol29, sol29s)
assert dsolve(eq30) in (sol30, sol30s)
assert dsolve(eq31) in (sol31,)
assert dsolve(eq32) in (sol32,)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0]
assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0]
assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0]
assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0]
assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0]
# Issue #15237
eqn = Derivative(x*f(x), x, x, x)
hint = 'nth_linear_constant_coeff_homogeneous'
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True))
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False))
def test_nth_linear_constant_coeff_homogeneous_rootof():
# One real root, two complex conjugate pairs
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(r1*x)
+ exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x))
+ exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Three real roots, one complex conjugate pair
eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)]
sol = Eq(f(x),
C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x)
+ exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five distinct real roots
eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)]
sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x))
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Rational root and unsolvable quintic
eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x)
r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(5*x)
+ C6*exp(x*r2)
+ exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x))
+ exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five double roots (this is (x**5 - x + 1)**2)
eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)]
sol = Eq(f(x),
(C1 + C2 *x)*exp(r1*x)
+ exp(re(r2)*x) * ((C3 + C4*x)*sin(im(r2)*x) + (C5 + C6 *x)*cos(im(r2)*x))
+ exp(re(r4)*x) * ((C7 + C8*x)*sin(im(r4)*x) + (C9 + C10*x)*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
def test_nth_linear_constant_coeff_homogeneous_irrational():
our_hint='nth_linear_constant_coeff_homogeneous'
eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**(S(3)/4)*x/2) + C3*cos(2**(S(3)/4)*x/2))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
E = exp(1)
eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
@XFAIL
@slow
def test_nth_linear_constant_coeff_homogeneous_rootof_sol():
if ON_TRAVIS:
skip("Too slow for travis.")
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert checkodesol(eq, sol, order=5, solve_for_func=False)[0]
@XFAIL
def test_noncircularized_real_imaginary_parts():
# If this passes, lines numbered 3878-3882 (at the time of this commit)
# of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous
# should be removed.
y = sqrt(1+x)
i, r = im(y), re(y)
assert not (i.has(atan2) and r.has(atan2))
@XFAIL
def test_collect_respecting_exponentials():
# If this test passes, lines 1306-1311 (at the time of this commit)
# of sympy/solvers/ode.py should be removed.
sol = 1 + exp(x/2)
assert sol == collect( sol, exp(x/3))
def test_undetermined_coefficients_match():
assert _undetermined_coefficients_match(g(x), x) == {'test': False}
assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \
{'test': True, 'trialset':
set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])}
assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \
{'test': False}
s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)])
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
exp(2*x)*sin(x)*(x**2 + x + 1), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x),
cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x),
x*exp(2*x)*sin(x)])}
assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False}
assert _undetermined_coefficients_match(log(x), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])}
assert _undetermined_coefficients_match(x**y, x) == {'test': False}
assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \
{'test': True, 'trialset': set([exp(1 + 3*x)])}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x),
x**2*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \
{'test': False}
assert _undetermined_coefficients_match(
x**2*sin(x)*exp(x) + x*sin(x) + x, x
) == {
'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S(1),
exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x),
x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])}
assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == {
'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]),
'test': True,
}
assert _undetermined_coefficients_match(2**x*x, x) == \
{'test': True, 'trialset': set([2**x, x*2**x])}
assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \
{'test': True, 'trialset': set([2**x*exp(2*x)])}
assert _undetermined_coefficients_match(exp(-x)/x, x) == \
{'test': False}
# Below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
assert _undetermined_coefficients_match(S(4), x) == \
{'test': True, 'trialset': set([S(1)])}
assert _undetermined_coefficients_match(12*exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
assert _undetermined_coefficients_match(exp(I*x), x) == \
{'test': True, 'trialset': set([exp(I*x)])}
assert _undetermined_coefficients_match(sin(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(cos(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \
{'test': True, 'trialset': set([S(1), cos(x), sin(x), exp(x)])}
assert _undetermined_coefficients_match(x**2, x) == \
{'test': True, 'trialset': set([S(1), x, x**2])}
assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \
{'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])}
assert _undetermined_coefficients_match(x - sin(x), x) == \
{'test': True, 'trialset': set([S(1), x, cos(x), sin(x)])}
assert _undetermined_coefficients_match(x**2 + 2*x, x) == \
{'test': True, 'trialset': set([S(1), x, x**2])}
assert _undetermined_coefficients_match(4*x*sin(x), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(x*sin(2*x), x) == \
{'test': True, 'trialset':
set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])}
assert _undetermined_coefficients_match(x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \
{'test': True, 'trialset': set([S(1), x, x**2, exp(-2*x)])}
assert _undetermined_coefficients_match(x*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(x + exp(2*x), x) == \
{'test': True, 'trialset': set([S(1), x, exp(2*x)])}
assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])}
assert _undetermined_coefficients_match(exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
# converted from sin(x)**2
assert _undetermined_coefficients_match(S(1)/2 - cos(2*x)/2, x) == \
{'test': True, 'trialset': set([S(1), cos(2*x), sin(2*x)])}
# converted from exp(2*x)*sin(x)**2
assert _undetermined_coefficients_match(
exp(2*x)*(S(1)/2 + cos(2*x)/2), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x),
exp(2*x)])}
assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \
{'test': True, 'trialset': set([S(1), x, cos(x), sin(x)])}
# converted from sin(2*x)*sin(x)
assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \
{'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])}
assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False}
@slow
def test_nth_linear_constant_coeff_undetermined_coefficients():
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
# 3-27 below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
eq3 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x)
eq6 = f2 + 3*f(x).diff(x) + 2*f(x) - sin(x)
eq7 = f2 + 3*f(x).diff(x) + 2*f(x) - cos(x)
eq8 = f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x))
eq9 = f2 + f(x).diff(x) + f(x) - x**2
eq10 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq11 = f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x)
eq12 = f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x)
eq13 = f2 + f(x).diff(x) - x**2 - 2*x
eq14 = f2 + f(x).diff(x) - x - sin(2*x)
eq15 = f2 + f(x) - 4*x*sin(x)
eq16 = f2 + 4*f(x) - x*sin(2*x)
eq17 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq18 = f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \
x**2*exp(-x)
eq19 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2
eq20 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq21 = f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x)
eq22 = f2 + f(x) - sin(x) - exp(-x)
eq23 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
# sin(x)**2
eq24 = f2 + f(x) - S(1)/2 - cos(2*x)/2
# exp(2*x)*sin(x)**2
eq25 = f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S(1)/2 - cos(2*x)/2)
eq26 = (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x -
sin(x) - cos(x))
# sin(2*x)*sin(x), skip 3127 for now, match bug
eq27 = f2 + f(x) - cos(x)/2 + cos(3*x)/2
eq28 = f(x).diff(x) - 1
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol4 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(I*x)/10 - 3*I*exp(I*x)/10)
sol6 = Eq(f(x), -3*cos(x)/10 + sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol7 = Eq(f(x), cos(x)/10 + 3*sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol8 = Eq(f(x),
4 - 3*cos(x)/5 + sin(x)/5 + exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol9 = Eq(f(x),
-2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))
sol10 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol11 = Eq(f(x), C1 + C2*exp(3*x) + (-3*sin(x) - cos(x))*exp(2*x)/5)
sol12 = Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))
sol13 = Eq(f(x), C1 + x**3/3 + C2*exp(-x))
sol14 = Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))
sol15 = Eq(f(x), (C1 + x)*sin(x) + (C2 - x**2)*cos(x))
sol16 = Eq(f(x), (C1 + x/16)*sin(2*x) + (C2 - x**2/8)*cos(2*x))
sol17 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol18 = Eq(f(x), (C1 + C2*x + C3*x**2 - x**5/60 + x**3/3)*exp(-x))
sol19 = Eq(f(x), S(7)/4 - 3*x/2 + x**2/2 + C1*exp(-x) + (C2 - x)*exp(-2*x))
sol20 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol21 = Eq(f(x), -S(1)/36 - x/6 + C1*exp(-3*x) + (C2 + x/5)*exp(2*x))
sol22 = Eq(f(x), C1*sin(x) + (C2 - x/2)*cos(x) + exp(-x)/2)
sol23 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol24 = Eq(f(x), S(1)/2 - cos(2*x)/6 + C1*sin(x) + C2*cos(x))
sol25 = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) +
(-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
sol27 = Eq(f(x), cos(3*x)/16 + C1*cos(x) + (C2 + x/4)*sin(x))
sol28 = Eq(f(x), C1 + x)
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint) in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert dsolve(eq13, hint=hint) in (sol13, sol13s)
assert dsolve(eq14, hint=hint) in (sol14, sol14s)
assert dsolve(eq15, hint=hint) in (sol15, sol15s)
assert dsolve(eq16, hint=hint) in (sol16, sol16s)
assert dsolve(eq17, hint=hint) in (sol17, sol17s)
assert dsolve(eq18, hint=hint) in (sol18, sol18s)
assert dsolve(eq19, hint=hint) in (sol19, sol19s)
assert dsolve(eq20, hint=hint) in (sol20, sol20s)
assert dsolve(eq21, hint=hint) in (sol21, sol21s)
assert dsolve(eq22, hint=hint) in (sol22, sol22s)
assert dsolve(eq23, hint=hint) in (sol23, sol23s)
assert dsolve(eq24, hint=hint) in (sol24, sol24s)
assert dsolve(eq25, hint=hint) in (sol25, sol25s)
assert dsolve(eq26, hint=hint) in (sol26, sol26s)
assert dsolve(eq27, hint=hint) in (sol27, sol27s)
assert dsolve(eq28, hint=hint) == sol28
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=2, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=2, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=2, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=3, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=2, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=2, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=2, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=2, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=3, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=3, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=5, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=2, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=1, solve_for_func=False)[0]
def test_issue_5787():
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S(1)/2 - I)
our_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert our_hint in classify_ode(eq)
@XFAIL
def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp():
# Equivalent to eq26 in
# test_nth_linear_constant_coeff_undetermined_coefficients above.
# This fails because the algorithm for undetermined coefficients
# doesn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
assert dsolve(eq26a, hint=hint) == sol26
assert checkodesol(eq26a, sol26, order=5, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters():
hint = 'nth_linear_constant_coeff_variation_of_parameters'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
eq3 = f(x).diff(x) - 1
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x
eq11 = f2 + f(x) - 1/sin(x)*1/cos(x)
eq12 = f(x).diff(x, 4) - 1/x
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), C1 + x)
sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol7 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol9 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))
sol11 = Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2
)*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))
sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2)
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint + '_Integral') in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral'
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True)
sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False)
assert sol_simp != sol_nsimp
# /----------
# eq.subs(*sol_simp.args) doesn't simplify to zero without help
zero = checkodesol(eq, sol_simp, order=5, solve_for_func=False)[1]
# if this fails because zero.is_zero, replace this block with
# assert checkodesol(eq, sol_simp, order=5, solve_for_func=False)[0]
assert not zero.is_zero and zero.rewrite(exp).simplify() == 0
# \-----------
assert checkodesol(eq, sol_nsimp, order=5, solve_for_func=False)[0]
def test_Liouville_ODE():
hint = 'Liouville'
# The first part here used to be test_ODE_1() from test_solvers.py
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq1a = diff(x*exp(-f(x)), x, x)
# compare to test_unexpanded_Liouville_ODE() below
eq2 = (eq1*exp(-f(x))/exp(f(x))).expand()
eq3 = diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x)
eq4 = x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x)
eq5 = Eq((x*exp(f(x))).diff(x, x), 0)
sol1 = Eq(f(x), log(x/(C1 + C2*x)))
sol1a = Eq(C1 + C2/x - exp(-f(x)), 0)
sol2 = sol1
sol3 = set(
[Eq(f(x), -sqrt(C1 + C2*log(x))),
Eq(f(x), sqrt(C1 + C2*log(x)))])
sol4 = set([Eq(f(x), sqrt(C1 + C2*exp(x))*exp(-x/2)),
Eq(f(x), -sqrt(C1 + C2*exp(x))*exp(-x/2))])
sol5 = Eq(f(x), log(C1 + C2/x))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq1a, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert set(dsolve(eq3, hint=hint)) in (sol3, sol3s)
assert set(dsolve(eq4, hint=hint)) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq1a, sol1a, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False) == {(True, 0)}
assert checkodesol(eq4, sol4, order=2, solve_for_func=False) == {(True, 0)}
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 -
diff(f(x), x)**2/2, f(x))
not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 -
x*diff(f(x), x)**2/2, f(x))
assert hint not in not_Liouville1
assert hint not in not_Liouville2
assert hint + '_Integral' not in not_Liouville1
assert hint + '_Integral' not in not_Liouville2
def test_unexpanded_Liouville_ODE():
# This is the same as eq1 from test_Liouville_ODE() above.
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq2 = eq1*exp(-f(x))/exp(f(x))
sol2 = Eq(f(x), log(x/(C1 + C2*x)))
sol2s = constant_renumber(sol2)
assert dsolve(eq2) in (sol2, sol2s)
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
def test_issue_4785():
from sympy.abc import A
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral', 'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
# issue 4864
eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x)
assert classify_ode(eq, f(x)) == ('1st_exact',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group', '1st_exact_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
def test_issue_4825():
raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x)))
assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \
{'default': None, 'order': 0}
# See also issue 3793, test Z13.
raises(ValueError, lambda: dsolve(f(x).diff(x), f(y)))
assert classify_ode(f(x).diff(x), f(y), dict=True) == \
{'default': None, 'order': 0}
def test_constant_renumber_order_issue_5308():
from sympy.utilities.iterables import variations
eq = f(x).diff(x) - y - x
assert constant_renumber(C1*x + C2*y) == \
constant_renumber(C1*y + C2*x) == \
C1*x + C2*y
e = C1*(C2 + x)*(C3 + y)
for a, b, c in variations([C1, C2, C3], 3):
assert constant_renumber(a*(b + x)*(c + y)) == e
def test_issue_5770():
k = Symbol("k", real=True)
t = Symbol('t')
w = Function('w')
sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t))
assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6
assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \
C1*cos(x)*exp(x)
assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \
C1*cos(x) + C3*sin(x)
assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x)
assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x
assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x
def test_issue_5112_5430():
assert homogeneous_order(-log(x) + acosh(x), x) is None
assert homogeneous_order(y - log(x), x, y) is None
def test_nth_order_linear_euler_eq_homogeneous():
x, t, a, b, c = symbols('x t a b c')
y = Function('y')
our_hint = "nth_linear_euler_eq_homogeneous"
eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t)
assert our_hint in classify_ode(eq)
eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2)
assert our_hint in classify_ode(eq)
eq = Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1 + C2*x**Rational(5, 2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1*sqrt(x) + C2*x**3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0)
sol = (C1 + C2*log(x))/x**2
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = dsolve(eq, f(x), hint=our_hint)
sol = C1/x**2 + C2*x + C3*x**3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = x**5*(C1 + C2*log(x) + C3*log(x)**2)
sols = [sol, constant_renumber(sol)]
sols += [sols[-1].expand()]
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in sols
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = t**2*diff(y(t), t, 2) + t*diff(y(t), t) - 9*y(t)
sol = C1*t**3 + C2*t**-3
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, y(t), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x)
sol = C1*sin(log(x)) + C2*cos(log(x))
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients():
x, t = symbols('x t')
a, b, c, d = symbols('a b c d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x
assert our_hint in classify_ode(eq, f(x))
eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1)
sol = C1 + C2*log(x) + log(x)**2/2
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3)
sol = x*(C1 + C2*x + Rational(1, 2)*x**2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x)
sol = C1/x + C2*x**3 - Rational(1, 16)*log(x)/x - Rational(1, 8)*log(x)**2/x
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x))
sol = C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x))
sol = C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters():
x, t = symbols('x, t')
a, b, c, d = symbols('a, b, c, d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x))
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4)
sol = C1*x + C2*x**2 + x**4/6
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x))
sol = C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x))
sol = C1*x + C2*x**2 + x**2*exp(x) - 2*x*exp(x)
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
sol = C1*x + C2*x**2 + log(x)/2 + S(3)/4
sols = constant_renumber(sol)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_issue_5095():
f = Function('f')
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'separable'))
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf'))
def test_almost_linear():
from sympy import Ei
A = Symbol('A', positive=True)
our_hint = 'almost_linear'
f = Function('f')
d = f(x).diff(x)
eq = x**2*f(x)**2*d + f(x)**3 + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol[0].rhs == (C1*exp(3/x) - 1)**(S(1)/3)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*f(x)*d + 2*x*f(x)**2 + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol[0].rhs == -sqrt(C1 - 2*Ei(4*x))*exp(-2*x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*d + x*f(x) + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 - Ei(x))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
assert our_hint in classify_ode(eq, f(x))
eq = x*exp(f(x))*d + exp(f(x)) + 3*x
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == log(C1/x - 3*x/2)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 + Piecewise(
(x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_exact_enhancement():
f = Function('f')(x)
df = Derivative(f, x)
eq = f/x**2 + ((f*x - 1)/x)*df
sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x*f - 1) + df*(x**2 - x*f)
sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))),
Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x + 2)*sin(f) + df*x*cos(f)
sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi),
Eq(f, asin(C1*exp(-x)/x**2))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
@slow
def test_separable_reduced():
f = Function('f')
x = Symbol('x')
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
eq = x* df + f(x)* (1 / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - S(3)/2)/6
assert sol.rhs == C1 + log(x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced')
# FIXME: This one hangs
#assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4
assert len(sol) == 4
eq = x*df + f(x)*(x**2*f(x))
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_homogeneous_function():
f = Function('f')
eq1 = tan(x + f(x))
eq2 = sin((3*x)/(4*f(x)))
eq3 = cos(3*x/4*f(x))
eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x))
eq5 = exp((2*x**2)/(3*f(x)**2))
eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2)))
eq7 = sin((3*x)/(5*f(x) + x**2))
assert homogeneous_order(eq1, x, f(x)) == None
assert homogeneous_order(eq2, x, f(x)) == 0
assert homogeneous_order(eq3, x, f(x)) == None
assert homogeneous_order(eq4, x, f(x)) == 0
assert homogeneous_order(eq5, x, f(x)) == 0
assert homogeneous_order(eq6, x, f(x)) == 0
assert homogeneous_order(eq7, x, f(x)) == None
def test_linear_coeff_match():
from sympy.solvers.ode import _linear_coeff_match
n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11)
rat = n/d
eq1 = sin(rat) + cos(rat.expand())
eq2 = rat
eq3 = log(sin(rat))
ans = (4, -S(13)/3)
assert _linear_coeff_match(eq1, f(x)) == ans
assert _linear_coeff_match(eq2, f(x)) == ans
assert _linear_coeff_match(eq3, f(x)) == ans
# no c
eq4 = (3*x)/f(x)
# not x and f(x)
eq5 = (3*x + 2)/x
# denom will be zero
eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5)
# not rational coefficient
eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5)
assert _linear_coeff_match(eq4, f(x)) is None
assert _linear_coeff_match(eq5, f(x)) is None
assert _linear_coeff_match(eq6, f(x)) is None
assert _linear_coeff_match(eq7, f(x)) is None
def test_linear_coefficients():
f = Function('f')
sol = Eq(f(x), C1/(x**2 + 6*x + 9) - S(3)/2)
eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3)
assert dsolve(eq, hint='linear_coefficients') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_constantsimp_take_problem():
c = exp(C1) + 2
assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2
def test_issue_6879():
f = Function('f')
eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x))
sol = (C1 + C2*x)*exp(x) + cos(x)/2
assert dsolve(eq).rhs == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_issue_6989():
f = Function('f')
k = Symbol('k')
eq = f(x).diff(x) - x*exp(-k*x)
sol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = -f(x).diff(x) + x*exp(-k*x)
sol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(+x**2/2, True)
))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_heuristic1():
y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0")
f = Function('f')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
eq = Eq(df, x**2*f(x))
eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(S(-1)/2)
eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
i = infinitesimals(eq, hint='abaco1_simple')
assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
{eta(x, f(x)): f(x), xi(x, f(x)): 0},
{eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
i1 = infinitesimals(eq1, hint='abaco1_simple')
assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
i2 = infinitesimals(eq2, hint='abaco1_simple')
assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
i3 = infinitesimals(eq3, hint='abaco1_simple')
assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
{eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
i4 = infinitesimals(eq4, hint='abaco1_simple')
assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
{eta(x, f(x)): 0,
xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
i5 = infinitesimals(eq5, hint='abaco1_simple')
assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
ilist = [i, i1, i2, i3, i4, i5]
for eq, i in (zip(eqlist, ilist)):
check = checkinfsol(eq, i)
assert check[0]
def test_issue_6247():
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = Eq(f(x), 2*C1/(C1*x**2 - 1))
assert dsolve(eq, hint = 'separable_reduced') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x, x) + 4*f(x)
sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=1)[0]
def test_heuristic2():
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
# This ODE can be solved by the Lie Group method, when there are
# better assumptions
eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
i = infinitesimals(eq, hint='abaco1_product')
assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
@slow
def test_heuristic3():
xi = Function('xi')
eta = Function('eta')
a, b = symbols("a b")
df = f(x).diff(x)
eq = x**2*df + x*f(x) + f(x)**2 + x**2
i = infinitesimals(eq, hint='bivariate')
assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
assert checkinfsol(eq, i)[0]
eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
i = infinitesimals(eq, hint='bivariate')
assert checkinfsol(eq, i)[0]
def test_heuristic_4():
y, a = symbols("y a")
eq = x*(f(x).diff(x)) + 1 - f(x)**2
i = infinitesimals(eq, hint='chi')
assert checkinfsol(eq, i)[0]
def test_heuristic_function_sum():
xi = Function('xi')
eta = Function('eta')
eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
(1 - 3*f(x))*(x/f(x)**2))
i = infinitesimals(eq, hint='function_sum')
assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_similar():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
eq = f(x).diff(x) - F(a*x + b*f(x))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_unique_unknown():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
x = Symbol("x", positive=True)
eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
assert checkinfsol(eq, i)[0]
eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert checkinfsol(eq, i)[0]
def test_heuristic_linear():
a, b, m, n = symbols("a b m n")
eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
i = infinitesimals(eq, hint='linear')
assert checkinfsol(eq, i)[0]
@XFAIL
def test_kamke():
a, b, alpha, c = symbols("a b alpha c")
eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
i = infinitesimals(eq, hint='sum_function')
assert checkinfsol(eq, i)[0]
def test_series():
# FIXME: Maybe there should be a way to check series solutions
# checkodesol doesn't work with them.
C1 = Symbol("C1")
eq = f(x).diff(x) - f(x)
assert dsolve(eq, hint='1st_power_series') == Eq(f(x),
C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 +
C1*x**5/120 + O(x**6))
eq = f(x).diff(x) - x*f(x)
assert dsolve(eq, hint='1st_power_series') == Eq(f(x),
C1*x**4/8 + C1*x**2/2 + C1 + O(x**6))
eq = f(x).diff(x) - sin(x*f(x))
sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3))
assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol
@slow
def test_lie_group():
C1 = Symbol("C1")
x = Symbol("x") # assuming x is real generates an error!
a, b, c = symbols("a b c")
eq = f(x).diff(x)**2
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = Eq(f(x).diff(x), x**2*f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), C1*exp(x**3)**(S(1)/3))
assert checkodesol(eq, sol)[0]
eq = f(x).diff(x) + a*f(x) - c*exp(b*x)
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
sol = dsolve(eq, f(x), hint='lie_group')
actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
assert checkodesol(eq, sol)[0]
eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), log(C1/(2*x + 1) + 2))
assert checkodesol(eq, sol)[0]
eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x))
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), 2/(C1 + x**2))
assert checkodesol(eq, sol)[0]
@XFAIL
def test_lie_group_issue15219():
eqn = exp(f(x).diff(x)-f(x))
assert 'lie_group' not in classify_ode(eqn, f(x))
def test_user_infinitesimals():
x = Symbol("x") # assuming x is real generates an error
eq = x*(f(x).diff(x)) + 1 - f(x)**2
sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0}
assert dsolve(eq, hint='lie_group', **infinitesimals) == sol
assert checkodesol(eq, sol) == (True, 0)
raises(ValueError, lambda: dsolve(eq, hint='lie_group', xi=0, eta=f(x)))
def test_issue_7081():
eq = x*(f(x).diff(x)) + 1 - f(x)**2
s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))
assert dsolve(eq) == s
assert checkodesol(eq, s) == (True, 0)
@slow
def test_2nd_power_series_ordinary():
# FIXME: Maybe there should be a way to check series solutions
# checkodesol doesn't work with them.
C1, C2 = symbols("C1 C2")
eq = f(x).diff(x, 2) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x),
C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6))
assert dsolve(eq, x0=-2) == Eq(f(x),
C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1)
+ C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2))
+ O(x**6))
assert dsolve(eq, n=2) == Eq(f(x), C2*x + C1 + O(x**2))
eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x
+ O(x**6))
eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(
x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6))
eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(
-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2
+ 1) + O(x**6))
eq = f(x).diff(x, 2) + x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq, n=7) == Eq(f(x), C2*(
x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7))
def test_2nd_power_series_regular():
# FIXME: Maybe there should be a way to check series solutions
# checkodesol doesn't work with them.
C1, C2 = symbols("C1 C2")
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
assert dsolve(eq) == Eq(f(x), C1*x**2*(-16*x**3/9 +
4*x**2 - 4*x + 1) + O(x**6))
eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 +
1)*f(x)
assert dsolve(eq) == Eq(f(x), C1*sqrt(x)*(
x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6))
eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + (
x**2 - 2)*f(x)
assert dsolve(eq) == Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 +
x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1)
+ O(x**6))
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x)
assert dsolve(eq) == Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) +
C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6))
eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x)
assert dsolve(eq) == Eq(f(x), C2*(-x**4/2 + 1) + C1*x**2 + O(x**6))
def test_issue_7093():
x = Symbol("x") # assuming x is real leads to an error
sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5),
Eq(f(x), C1 + 2*x*sqrt(x**3)/5)]
eq = Derivative(f(x), x)**2 - x**3
assert set(dsolve(eq)) == set(sol)
assert checkodesol(eq, sol) == [(True, 0)] * 2
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_issue_15056():
t = Symbol('t')
C3 = Symbol('C3')
assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3
def test_issue_10379():
t,y = symbols('t,y')
eq = f(t).diff(t)-(1-51.05*y*f(t))
sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y)
dsolve_sol = dsolve(eq, rational=False)
assert str(dsolve_sol) == str(sol)
assert checkodesol(eq, dsolve_sol)[0]
def test_issue_10867():
x = Symbol('x')
eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3)
sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)
assert dsolve(eq, g(x)) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_11290():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact')
assert sol_1.dummy_eq(Eq(Subs(
Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) +
Integral(cos(u), x), u, f(x)), C1))
assert sol_1.doit() == sol_0
assert checkodesol(eq, sol_0, order=1, solve_for_func=False)
assert checkodesol(eq, sol_1, order=1, solve_for_func=False)
def test_issue_4838():
# Issue #15999
eq = f(x).diff(x) - C1*f(x)
sol = Eq(f(x), C2*exp(C1*x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
# Issue #13691
eq = f(x).diff(x) - C1*g(x).diff(x)
sol = Eq(f(x), C2 + C1*g(x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0)
# Issue #4838
eq = f(x).diff(x) - 3*C1 - 3*x**2
sol = Eq(f(x), C2 + 3*C1*x + x**3)
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
@slow
def test_issue_14395():
eq = Derivative(f(x), x, x) + 9*f(x) - sec(x)
sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))
assert dsolve(eq, f(x)) == sol
# FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_sysode_linear_neq_order1():
from sympy.abc import t
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eq = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t),
k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t),
t), k23*Z2(t) - k30*Z3(t)))
sols_eq = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*exp(t*(-
k01 - k10)) + C4*(k10*k20 + k10*k21 - k10*k30 - k20**2 - k20*k21 - k20*k23 + k20*k30 +
k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*exp(t*(-k01 - k10)) + C4*(k01*k20 + k01*k21
- k01*k30 - k20*k21 - k21**2 - k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 -
k21 - k23))),
Eq(Z2(t), C4*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C4*exp(t*(-k20 - k21 - k23)))]
assert dsolve(eq, simplify=False) == sols_eq
assert checksysodesol(eq, sols_eq) == (True, [0, 0, 0, 0])
@slow
def test_nth_order_reducible():
from sympy.solvers.ode import _nth_order_reducible_match
eqn = Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0)
sol = Eq(f(x),
C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
assert sol == dsolve(eqn, f(x))
F = lambda eq: _nth_order_reducible_match(eq, f(x))
D = Derivative
assert F(D(y*f(x), x, y) + D(f(x), x)) is None
assert F(D(y*f(y), y, y) + D(f(y), y)) is None
assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None
assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design
assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None
assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2)
eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x))
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
eqn = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**(S(3)/4)*x/2) + C3*cos(2**(S(3)/4)*x/2))
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert sol == dsolve(eqn, f(x))
assert sol == dsolve(eqn, f(x), hint='nth_order_reducible')
eqn = f(x).diff(x, 2) + 2*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(-2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
sol = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
sol = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
sol = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
sol = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
eqn = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
# These are equivalent:
sol1 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol2 = Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
assert checkodesol(eqn, sol1, order=2, solve_for_func=False) == (True, 0)
assert checkodesol(eqn, sol2, order=2, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x)) in (sol1, sol1s)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol2, sol2s)
# In this case the reduced ODE has two distinct solutions
eqn = f(x).diff(x, 2) - f(x).diff(x)**3
sol = [Eq(f(x), C2 - sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x))),
Eq(f(x), C2 + sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x)))]
sols = constant_renumber(sol)
assert checkodesol(eqn, sol, order=2, solve_for_func=False) == [(True, 0), (True, 0)]
assert dsolve(eqn, f(x)) in (sol, sols)
assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols)
def test_nth_algebraic():
eqn = Eq(Derivative(f(x), x), Derivative(g(x), x))
sol = Eq(f(x), C1 + g(x))
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic'), dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = (1 - sin(f(x))) * f(x).diff(x)
sol = Eq(f(x), C1)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
M, m, r, t = symbols('M m r t')
phi = Function('phi')
eqn = Eq(-M * phi(t).diff(t),
Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t))
solns = [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, phi(t), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, phi(t)))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x)
solns = [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, f(x)))
def test_nth_algebraic_issue15999():
eqn = f(x).diff(x) - C1
sol = Eq(f(x), C1*x + C2) # Correct solution
assert checkodesol(eqn, sol, order=1, solve_for_func=False) == (True, 0)
assert dsolve(eqn, f(x), hint='nth_algebraic') == sol
assert dsolve(eqn, f(x)) == sol
def test_nth_algebraic_redundant_solutions():
# This one has a redundant solution that should be removed
eqn = f(x)*f(x).diff(x)
soln = Eq(f(x), C1)
assert checkodesol(eqn, soln, order=1, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x), hint='nth_algebraic')
assert soln == dsolve(eqn, f(x))
# This has two integral solutions and no algebraic solutions
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert all(c[0] for c in checkodesol(eqn, sol, order=1, solve_for_func=False))
assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(sol) == set(dsolve(eqn, f(x)))
# This one doesn't work with dsolve at the time of writing but the
# redundancy checking code should not remove the algebraic solution.
from sympy.solvers.ode import _nth_algebraic_remove_redundant_solutions
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1 - x)]
solns_final = _nth_algebraic_remove_redundant_solutions(eqn, solns, 1, x)
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == set(solns_final)
solns = [Eq(f(x), exp(x)),
Eq(f(x), C1*exp(C2*x))]
solns_final = _nth_algebraic_remove_redundant_solutions(eqn, solns, 2, x)
assert solns_final == [Eq(f(x), C1*exp(C2*x))]
# This one needs a substitution f' = g.
eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x))
#
# These tests can be combined with the above test if they get fixed
# so that dsolve actually works in all these cases.
#
# Fails due to division by f(x) eliminating the solution before nth_algebraic
# is called.
@XFAIL
def test_nth_algebraic_find_multiple1():
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1 - x)]
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == set(dsolve(eqn, f(x)))
# prep = True breaks this
def test_nth_algebraic_noprep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# prep = True breaks this
def test_nth_algebraic_noprep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# This needs a combination of solutions from nth_algebraic and some other
# method from dsolve
@XFAIL
def test_nth_algebraic_find_multiple2():
eqn = f(x)**2 + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1*exp(-x))]
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == dsolve(eqn, f(x))
# Needs to be a way to know how to combine derivatives in the expression
@XFAIL
def test_factoring_ode():
eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x)
soln = Eq(f(x), (C1*x**2/2 + C2*x + C3 - x)/(1 + x))
assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x))
def test_issue_11542():
m = 96
g = 9.8
k = .2
f1 = g * m
t = Symbol('t')
v = Function('v')
v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0)
assert str(v_equation) == \
'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))'
def test_issue_15913():
eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x)
sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x)
assert checkodesol(eq, sol) == (True, 0)
sol = C1 + C2*exp(-x*y)
eq = Derivative(y*f(x), x) + f(x).diff(x, 2)
assert checkodesol(eq, sol, f(x)) == (True, 0)
def test_issue_16146():
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)]))
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)]))
|
577ccd5381f1c63b46b7409ecf3c82d48370677ce30396a55d832a42160166c5 | from itertools import product
from sympy import S, symbols, Function, exp, diff
from sympy.calculus.finite_diff import (
apply_finite_diff, differentiate_finite, finite_diff_weights,
as_finite_diff
)
from sympy.core.compatibility import range
from sympy.utilities.pytest import raises, warns_deprecated_sympy
def test_apply_finite_diff():
x, h = symbols('x h')
f = Function('f')
assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
(f(x+h)-f(x-h))/(2*h)).simplify() == 0
assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
(-S(3)/2*f(5) + 2*f(6) - S(1)/2*f(7))).simplify() == 0
raises(ValueError, lambda: apply_finite_diff(1, [x, h], [f(x)]))
def test_finite_diff_weights():
d = finite_diff_weights(1, [5, 6, 7], 5)
assert d[1][2] == [-S(3)/2, 2, -S(1)/2]
# Table 1, p. 702 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [0, 1, -1, 2, -2, 3, -3, 4, -4]
# d holds all coefficients
d = finite_diff_weights(4, xl, S(0))
# Zeroeth derivative
for i in range(5):
assert d[0][i] == [S(1)] + [S(0)]*8
# First derivative
assert d[1][0] == [S(0)]*9
assert d[1][2] == [S(0), S(1)/2, -S(1)/2] + [S(0)]*6
assert d[1][4] == [S(0), S(2)/3, -S(2)/3, -S(1)/12, S(1)/12] + [S(0)]*4
assert d[1][6] == [S(0), S(3)/4, -S(3)/4, -S(3)/20, S(3)/20,
S(1)/60, -S(1)/60] + [S(0)]*2
assert d[1][8] == [S(0), S(4)/5, -S(4)/5, -S(1)/5, S(1)/5,
S(4)/105, -S(4)/105, -S(1)/280, S(1)/280]
# Second derivative
for i in range(2):
assert d[2][i] == [S(0)]*9
assert d[2][2] == [-S(2), S(1), S(1)] + [S(0)]*6
assert d[2][4] == [-S(5)/2, S(4)/3, S(4)/3, -S(1)/12, -S(1)/12] + [S(0)]*4
assert d[2][6] == [-S(49)/18, S(3)/2, S(3)/2, -S(3)/20, -S(3)/20,
S(1)/90, S(1)/90] + [S(0)]*2
assert d[2][8] == [-S(205)/72, S(8)/5, S(8)/5, -S(1)/5, -S(1)/5,
S(8)/315, S(8)/315, -S(1)/560, -S(1)/560]
# Third derivative
for i in range(3):
assert d[3][i] == [S(0)]*9
assert d[3][4] == [S(0), -S(1), S(1), S(1)/2, -S(1)/2] + [S(0)]*4
assert d[3][6] == [S(0), -S(13)/8, S(13)/8, S(1), -S(1),
-S(1)/8, S(1)/8] + [S(0)]*2
assert d[3][8] == [S(0), -S(61)/30, S(61)/30, S(169)/120, -S(169)/120,
-S(3)/10, S(3)/10, S(7)/240, -S(7)/240]
# Fourth derivative
for i in range(4):
assert d[4][i] == [S(0)]*9
assert d[4][4] == [S(6), -S(4), -S(4), S(1), S(1)] + [S(0)]*4
assert d[4][6] == [S(28)/3, -S(13)/2, -S(13)/2, S(2), S(2),
-S(1)/6, -S(1)/6] + [S(0)]*2
assert d[4][8] == [S(91)/8, -S(122)/15, -S(122)/15, S(169)/60, S(169)/60,
-S(2)/5, -S(2)/5, S(7)/240, S(7)/240]
# Table 2, p. 703 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [[j/S(2) for j in list(range(-i*2+1, 0, 2))+list(range(1, i*2+1, 2))]
for i in range(1, 5)]
# d holds all coefficients
d = [finite_diff_weights({0: 1, 1: 2, 2: 4, 3: 4}[i], xl[i], 0) for
i in range(4)]
# Zeroth derivative
assert d[0][0][1] == [S(1)/2, S(1)/2]
assert d[1][0][3] == [-S(1)/16, S(9)/16, S(9)/16, -S(1)/16]
assert d[2][0][5] == [S(3)/256, -S(25)/256, S(75)/128, S(75)/128,
-S(25)/256, S(3)/256]
assert d[3][0][7] == [-S(5)/2048, S(49)/2048, -S(245)/2048, S(1225)/2048,
S(1225)/2048, -S(245)/2048, S(49)/2048, -S(5)/2048]
# First derivative
assert d[0][1][1] == [-S(1), S(1)]
assert d[1][1][3] == [S(1)/24, -S(9)/8, S(9)/8, -S(1)/24]
assert d[2][1][5] == [-S(3)/640, S(25)/384, -S(75)/64, S(75)/64,
-S(25)/384, S(3)/640]
assert d[3][1][7] == [S(5)/7168, -S(49)/5120, S(245)/3072, S(-1225)/1024,
S(1225)/1024, -S(245)/3072, S(49)/5120, -S(5)/7168]
# Reasonably the rest of the table is also correct... (testing of that
# deemed excessive at the moment)
raises(ValueError, lambda: finite_diff_weights(-1, [1, 2]))
raises(ValueError, lambda: finite_diff_weights(1.2, [1, 2]))
def test_as_finite_diff():
x = symbols('x')
f = Function('f')
dx = Function('dx')
with warns_deprecated_sympy():
as_finite_diff(f(x).diff(x), [x-2, x-1, x, x+1, x+2])
# Use of undefined functions in ``points``
df_true = -f(x+dx(x)/2-dx(x+dx(x)/2)/2) / dx(x+dx(x)/2) \
+ f(x+dx(x)/2+dx(x+dx(x)/2)/2) / dx(x+dx(x)/2)
df_test = diff(f(x), x).as_finite_difference(points=dx(x), x0=x+dx(x)/2)
assert (df_test - df_true).simplify() == 0
def test_differentiate_finite():
x, y = symbols('x y')
f = Function('f')
res0 = differentiate_finite(f(x, y) + exp(42), x, y, evaluate=True)
xm, xp, ym, yp = [v + sign*S(1)/2 for v, sign in product([x, y], [-1, 1])]
ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
assert (res0 - ref0).simplify() == 0
g = Function('g')
res1 = differentiate_finite(f(x)*g(x) + 42, x, evaluate=True)
ref1 = (-f(x - S(1)/2) + f(x + S(1)/2))*g(x) + \
(-g(x - S(1)/2) + g(x + S(1)/2))*f(x)
assert (res1 - ref1).simplify() == 0
res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1])
ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
assert (res2 - ref2).simplify() == 0
raises(ValueError, lambda: differentiate_finite(f(x)*g(x), x,
pints=[x-1, x+1]))
|
1565daa695ef38d6e8390d9e677ec1d8d630f535ca9906c9f2a601635be30f62 | from __future__ import (absolute_import, division, print_function)
from collections import namedtuple
from hashlib import sha256
import os
import shutil
import sys
import tempfile
from sympy.utilities.pytest import XFAIL
def may_xfail(func):
if sys.platform.lower() == 'darwin' or os.name == 'nt':
# sympy.utilities._compilation needs more testing on Windows and macOS
# once those two platforms are reliably supported this xfail decorator
# may be removed.
return XFAIL(func)
else:
return func
if sys.version_info[0] == 2:
class FileNotFoundError(IOError):
pass
class TemporaryDirectory(object):
def __init__(self):
self.path = tempfile.mkdtemp()
def __enter__(self):
return self.path
def __exit__(self, exc, value, tb):
shutil.rmtree(self.path)
else:
FileNotFoundError = FileNotFoundError
TemporaryDirectory = tempfile.TemporaryDirectory
class CompilerNotFoundError(FileNotFoundError):
pass
def get_abspath(path, cwd='.'):
""" Returns the aboslute path.
Parameters
==========
path : str
(relative) path.
cwd : str
Path to root of relative path.
"""
if os.path.isabs(path):
return path
else:
if not os.path.isabs(cwd):
cwd = os.path.abspath(cwd)
return os.path.abspath(
os.path.join(cwd, path)
)
def make_dirs(path):
""" Create directories (equivalent of ``mkdir -p``). """
if path[-1] == '/':
parent = os.path.dirname(path[:-1])
else:
parent = os.path.dirname(path)
if len(parent) > 0:
if not os.path.exists(parent):
make_dirs(parent)
if not os.path.exists(path):
os.mkdir(path, 0o777)
else:
assert os.path.isdir(path)
def copy(src, dst, only_update=False, copystat=True, cwd=None,
dest_is_dir=False, create_dest_dirs=False):
""" Variation of ``shutil.copy`` with extra options.
Parameters
==========
src : str
Path to source file.
dst : str
Path to destination.
only_update : bool
Only copy if source is newer than destination
(returns None if it was newer), default: ``False``.
copystat : bool
See ``shutil.copystat``. default: ``True``.
cwd : str
Path to working directory (root of relative paths).
dest_is_dir : bool
Ensures that dst is treated as a directory. default: ``False``
create_dest_dirs : bool
Creates directories if needed.
Returns
=======
Path to the copied file.
"""
if cwd: # Handle working directory
if not os.path.isabs(src):
src = os.path.join(cwd, src)
if not os.path.isabs(dst):
dst = os.path.join(cwd, dst)
if not os.path.exists(src): # Make sure source file extists
raise FileNotFoundError("Source: `{}` does not exist".format(src))
# We accept both (re)naming destination file _or_
# passing a (possible non-existent) destination directory
if dest_is_dir:
if not dst[-1] == '/':
dst = dst+'/'
else:
if os.path.exists(dst) and os.path.isdir(dst):
dest_is_dir = True
if dest_is_dir:
dest_dir = dst
dest_fname = os.path.basename(src)
dst = os.path.join(dest_dir, dest_fname)
else:
dest_dir = os.path.dirname(dst)
dest_fname = os.path.basename(dst)
if not os.path.exists(dest_dir):
if create_dest_dirs:
make_dirs(dest_dir)
else:
raise FileNotFoundError("You must create directory first.")
if only_update:
if not missing_or_other_newer(dst, src):
return
if os.path.islink(dst):
_cwd = os.path.dirname(dst)
dst = os.path.abspath(os.path.realpath(dst), cwd=cwd)
shutil.copy(src, dst)
if copystat:
shutil.copystat(src, dst)
return dst
Glob = namedtuple('Glob', 'pathname')
ArbitraryDepthGlob = namedtuple('ArbitraryDepthGlob', 'filename')
def glob_at_depth(filename_glob, cwd=None):
if cwd is not None:
cwd = '.'
globbed = []
for root, dirs, filenames in os.walk(cwd):
for fn in filenames:
if fnmatch.fnmatch(fn, filename_glob):
globbed.append(os.path.join(root, fn))
return globbed
def sha256_of_file(path, nblocks=128):
""" Computes the SHA256 hash of a file.
Parameters
==========
path : string
Path to file to compute hash of.
nblocks : int
Number of blocks to read per iteration.
Returns
=======
hashlib sha256 hash object. Use ``.digest()`` or ``.hexdigest()``
on returned object to get binary or hex encoded string.
"""
sh = sha256()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(nblocks*sh.block_size), b''):
sh.update(chunk)
return sh
def sha256_of_string(string):
""" Computes the SHA256 hash of a string. """
sh = sha256()
sh.update(string)
return sh
def pyx_is_cplus(path):
"""
Inspect a Cython source file (.pyx) and look for comment line like:
# distutils: language = c++
Returns True if such a file is present in the file, else False.
"""
for line in open(path, 'rt'):
if line.startswith('#') and '=' in line:
splitted = line.split('=')
if len(splitted) != 2:
continue
lhs, rhs = splitted
if lhs.strip().split()[-1].lower() == 'language' and \
rhs.strip().split()[0].lower() == 'c++':
return True
return False
def import_module_from_file(filename, only_if_newer_than=None):
""" Imports python extension (from shared object file)
Provide a list of paths in `only_if_newer_than` to check
timestamps of dependencies. import_ raises an ImportError
if any is newer.
Word of warning: The OS may cache shared objects which makes
reimporting same path of an shared object file very problematic.
It will not detect the new time stamp, nor new checksum, but will
instead silently use old module. Use unique names for this reason.
Parameters
==========
filename : str
Path to shared object.
only_if_newer_than : iterable of strings
Paths to dependencies of the shared object.
Raises
======
``ImportError`` if any of the files specified in ``only_if_newer_than`` are newer
than the file given by filename.
"""
path, name = os.path.split(filename)
name, ext = os.path.splitext(name)
name = name.split('.')[0]
if sys.version_info[0] == 2:
from imp import find_module, load_module
fobj, filename, data = find_module(name, [path])
if only_if_newer_than:
for dep in only_if_newer_than:
if os.path.getmtime(filename) < os.path.getmtime(dep):
raise ImportError("{} is newer than {}".format(dep, filename))
mod = load_module(name, fobj, filename, data)
else:
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
if spec is None:
raise ImportError("Failed to import: '%s'" % filename)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
return mod
def find_binary_of_command(candidates):
""" Finds binary first matching name among candidates.
Calls `find_executable` from distuils for provided candidates and returns
first hit.
Parameters
==========
candidates : iterable of str
Names of candidate commands
Raises
======
CompilerNotFoundError if no candidates match.
"""
from distutils.spawn import find_executable
for c in candidates:
binary_path = find_executable(c)
if c and binary_path:
return c, binary_path
raise CompilerNotFoundError('No binary located for candidates: {}'.format(candidates))
def unique_list(l):
""" Uniquify a list (skip duplicate items). """
result = []
for x in l:
if x not in result:
result.append(x)
return result
|
a70e4623ed2a662217cc04a32914d3f3017d07865672c667860409daef60a3b3 | from distutils.version import LooseVersion as V
from itertools import product
import math
import inspect
import mpmath
from sympy.utilities.pytest import XFAIL, raises
from sympy import (
symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational,
Float, Matrix, Lambda, Piecewise, exp, Integral, oo, I, Abs, Function,
true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum,
DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma,
digamma, RisingFactorial, besselj, bessely, besseli, besselk, S,
MatrixSymbol, chebyshevt, chebyshevu, legendre, hermite, laguerre,
gegenbauer, assoc_legendre, assoc_laguerre, jacobi)
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import NumPyPrinter
from sympy.utilities.lambdify import implemented_function, lambdastr
from sympy.utilities.pytest import skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.external import import_module
from sympy.functions.special.gamma_functions import uppergamma,lowergamma
import sympy
MutableDenseMatrix = Matrix
numpy = import_module('numpy')
scipy = import_module('scipy')
numexpr = import_module('numexpr')
tensorflow = import_module('tensorflow')
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w, x, y, z = symbols('w,x,y,z')
#================== Test different arguments =======================
def test_no_args():
f = lambdify([], 1)
raises(TypeError, lambda: f(-1))
assert f() == 1
def test_single_arg():
f = lambdify(x, 2*x)
assert f(1) == 2
def test_list_args():
f = lambdify([x, y], x + y)
assert f(1, 2) == 3
def test_nested_args():
f1 = lambdify([[w, x]], [w, x])
assert f1([91, 2]) == [91, 2]
raises(TypeError, lambda: f1(1, 2))
f2 = lambdify([(w, x), (y, z)], [w, x, y, z])
assert f2((18, 12), (73, 4)) == [18, 12, 73, 4]
raises(TypeError, lambda: f2(3, 4))
f3 = lambdify([w, [[[x]], y], z], [w, x, y, z])
assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44]
def test_str_args():
f = lambdify('x,y,z', 'z,y,x')
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_own_namespace_1():
myfunc = lambda x: 1
f = lambdify(x, sin(x), {"sin": myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_namespace_2():
def myfunc(x):
return 1
f = lambdify(x, sin(x), {'sin': myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0) == 0.0
def test_bad_args():
# no vargs given
raises(TypeError, lambda: lambdify(1))
# same with vector exprs
raises(TypeError, lambda: lambdify([1, 2]))
def test_atoms():
# Non-Symbol atoms should not be pulled out from the expression namespace
f = lambdify(x, pi + x, {"pi": 3.14})
assert f(0) == 3.14
f = lambdify(x, I + x, {"I": 1j})
assert f(1) == 1 + 1j
#================== Test different modules =========================
# high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted
@conserve_mpmath_dps
def test_sympy_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "sympy")
assert f(x) == sin(x)
prec = 1e-15
assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec
# arctan is in numpy module and should not be available
raises(NameError, lambda: lambdify(x, arctan(x), "sympy"))
@conserve_mpmath_dps
def test_math_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "math")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a python math function
@conserve_mpmath_dps
def test_mpmath_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a mpmath function
@conserve_mpmath_dps
def test_number_precision():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin02, "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(0) - sin02 < prec
@conserve_mpmath_dps
def test_mpmath_precision():
mpmath.mp.dps = 100
assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
#================== Test Translations ==============================
# We can only check if all translated functions are valid. It has to be checked
# by hand if they are complete.
def test_math_transl():
from sympy.utilities.lambdify import MATH_TRANSLATIONS
for sym, mat in MATH_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in math.__dict__
def test_mpmath_transl():
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
for sym, mat in MPMATH_TRANSLATIONS.items():
assert sym in sympy.__dict__ or sym == 'Matrix'
assert mat in mpmath.__dict__
def test_numpy_transl():
if not numpy:
skip("numpy not installed.")
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, nump in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert nump in numpy.__dict__
def test_scipy_transl():
if not scipy:
skip("scipy not installed.")
from sympy.utilities.lambdify import SCIPY_TRANSLATIONS
for sym, scip in SCIPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert scip in scipy.__dict__ or scip in scipy.special.__dict__
def test_tensorflow_transl():
if not tensorflow:
skip("tensorflow not installed")
from sympy.utilities.lambdify import TENSORFLOW_TRANSLATIONS
for sym, tens in TENSORFLOW_TRANSLATIONS.items():
assert sym in sympy.__dict__
# XXX __dict__ is not supported after tensorflow 1.14.0
assert tens in tensorflow.__all__
def test_numpy_translation_abs():
if not numpy:
skip("numpy not installed.")
f = lambdify(x, Abs(x), "numpy")
assert f(-1) == 1
assert f(1) == 1
def test_numexpr_printer():
if not numexpr:
skip("numexpr not installed.")
# if translation/printing is done incorrectly then evaluating
# a lambdified numexpr expression will throw an exception
from sympy.printing.lambdarepr import NumExprPrinter
blacklist = ('where', 'complex', 'contains')
arg_tuple = (x, y, z) # some functions take more than one argument
for sym in NumExprPrinter._numexpr_functions.keys():
if sym in blacklist:
continue
ssym = S(sym)
if hasattr(ssym, '_nargs'):
nargs = ssym._nargs[0]
else:
nargs = 1
args = arg_tuple[:nargs]
f = lambdify(args, ssym(*args), modules='numexpr')
assert f(*(1, )*nargs) is not None
def test_issue_9334():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
expr = S('b*a - sqrt(a**2)')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)
foo, bar = numpy.random.random((2, 4))
func_numexpr(foo, bar)
#================== Test some functions ============================
def test_exponentiation():
f = lambdify(x, x**2)
assert f(-1) == 1
assert f(0) == 0
assert f(1) == 1
assert f(-2) == 4
assert f(2) == 4
assert f(2.5) == 6.25
def test_sqrt():
f = lambdify(x, sqrt(x))
assert f(0) == 0.0
assert f(1) == 1.0
assert f(4) == 2.0
assert abs(f(2) - 1.414) < 0.001
assert f(6.25) == 2.5
def test_trig():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
prec = 1e-11
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
d = f(3.14159)
prec = 1e-5
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
#================== Test vectors ===================================
def test_vector_simple():
f = lambdify((x, y, z), (z, y, x))
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_vector_discontinuous():
f = lambdify(x, (-1/x, 1/x))
raises(ZeroDivisionError, lambda: f(0))
assert f(1) == (-1.0, 1.0)
assert f(2) == (-0.5, 0.5)
assert f(-2) == (0.5, -0.5)
def test_trig_symbolic():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_trig_float():
f = lambdify([x], [cos(x), sin(x)])
d = f(3.14159)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_docs():
f = lambdify(x, x**2)
assert f(2) == 4
f = lambdify([x, y, z], [z, y, x])
assert f(1, 2, 3) == [3, 2, 1]
f = lambdify(x, sqrt(x))
assert f(4) == 2.0
f = lambdify((x, y), sin(x*y)**2)
assert f(0, 5) == 0
def test_math():
f = lambdify((x, y), sin(x), modules="math")
assert f(0, 5) == 0
def test_sin():
f = lambdify(x, sin(x)**2)
assert isinstance(f(2), float)
f = lambdify(x, sin(x)**2, modules="math")
assert isinstance(f(2), float)
def test_matrix():
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol = Matrix([[1, 2], [sin(3) + 4, 1]])
f = lambdify((x, y, z), A, modules="sympy")
assert f(1, 2, 3) == sol
f = lambdify((x, y, z), (A, [A]), modules="sympy")
assert f(1, 2, 3) == (sol, [sol])
J = Matrix((x, x + y)).jacobian((x, y))
v = Matrix((x, y))
sol = Matrix([[1, 0], [1, 1]])
assert lambdify(v, J, modules='sympy')(1, 2) == sol
assert lambdify(v.T, J, modules='sympy')(1, 2) == sol
def test_numpy_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
#Lambdify array first, to ensure return to array as default
f = lambdify((x, y, z), A, ['numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
#Check that the types are arrays and matrices
assert isinstance(f(1, 2, 3), numpy.ndarray)
# gh-15071
class dot(Function):
pass
x_dot_mtx = dot(x, Matrix([[2], [1], [0]]))
f_dot1 = lambdify(x, x_dot_mtx)
inp = numpy.zeros((17, 3))
assert numpy.all(f_dot1(inp) == 0)
strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False)
p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw))
f_dot2 = lambdify(x, x_dot_mtx, printer=p2)
assert numpy.all(f_dot2(inp) == 0)
p3 = NumPyPrinter(strict_kw)
# The line below should probably fail upon construction (before calling with "(inp)"):
raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp))
def test_numpy_transpose():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A.T, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]]))
def test_numpy_dotproduct():
if not numpy:
skip("numpy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
numpy.array([14])
def test_numpy_inverse():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A**-1, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]]))
def test_numpy_old_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
assert isinstance(f(1, 2, 3), numpy.matrix)
def test_python_div_zero_issue_11306():
if not numpy:
skip("numpy not installed.")
p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True))
f = lambdify([x, y], p, modules='numpy')
numpy.seterr(divide='ignore')
assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0
assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf'
numpy.seterr(divide='warn')
def test_issue9474():
mods = [None, 'math']
if numpy:
mods.append('numpy')
if mpmath:
mods.append('mpmath')
for mod in mods:
f = lambdify(x, S(1)/x, modules=mod)
assert f(2) == 0.5
f = lambdify(x, floor(S(1)/x), modules=mod)
assert f(2) == 0
for absfunc, modules in product([Abs, abs], mods):
f = lambdify(x, absfunc(x), modules=modules)
assert f(-1) == 1
assert f(1) == 1
assert f(3+4j) == 5
def test_issue_9871():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
r = sqrt(x**2 + y**2)
expr = diff(1/r, x)
xn = yn = numpy.linspace(1, 10, 16)
# expr(xn, xn) = -xn/(sqrt(2)*xn)^3
fv_exact = -numpy.sqrt(2.)**-3 * xn**-2
fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn)
fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn)
numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10)
numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10)
def test_numpy_piecewise():
if not numpy:
skip("numpy not installed.")
pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True))
f = lambdify(x, pieces, modules="numpy")
numpy.testing.assert_array_equal(f(numpy.arange(10)),
numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81]))
# If we evaluate somewhere all conditions are False, we should get back NaN
nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0)))
numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])),
numpy.array([1, numpy.nan, 1]))
def test_numpy_logical_ops():
if not numpy:
skip("numpy not installed.")
and_func = lambdify((x, y), And(x, y), modules="numpy")
and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy")
or_func = lambdify((x, y), Or(x, y), modules="numpy")
or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy")
not_func = lambdify((x), Not(x), modules="numpy")
arr1 = numpy.array([True, True])
arr2 = numpy.array([False, True])
arr3 = numpy.array([True, False])
numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True]))
numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False]))
numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True]))
numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True]))
numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False]))
def test_numpy_matmul():
if not numpy:
skip("numpy not installed.")
xmat = Matrix([[x, y], [z, 1+z]])
ymat = Matrix([[x**2], [Abs(x)]])
mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
# Multiple matrices chained together in multiplication
f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
[159, 251]]))
def test_numpy_numexpr():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b, c = numpy.random.randn(3, 128, 128)
# ensure that numpy and numexpr return same value for complicated expression
expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \
Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2)
npfunc = lambdify((x, y, z), expr, modules='numpy')
nefunc = lambdify((x, y, z), expr, modules='numexpr')
assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
def test_numexpr_userfunctions():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b = numpy.random.randn(2, 10)
uf = type('uf', (Function, ),
{'eval' : classmethod(lambda x, y : y**2+1)})
func = lambdify(x, 1-uf(x), modules='numexpr')
assert numpy.allclose(func(a), -(a**2))
uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1)
func = lambdify((x, y), uf(x, y), modules='numexpr')
assert numpy.allclose(func(a, b), 2*a*b+1)
def test_tensorflow_basic_math():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.constant(0, dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s) == 0.5
def test_tensorflow_placeholders():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_variables():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.Variable(0, dtype=tensorflow.float32)
s = tensorflow.Session()
if V(tensorflow.__version__) < '1.0':
s.run(tensorflow.initialize_all_variables())
else:
s.run(tensorflow.global_variables_initializer())
assert func(a).eval(session=s) == 0.5
def test_tensorflow_logical_operations():
if not tensorflow:
skip("tensorflow not installed.")
expr = Not(And(Or(x, y), y))
func = lambdify([x, y], expr, modules="tensorflow")
a = tensorflow.constant(False)
b = tensorflow.constant(True)
s = tensorflow.Session()
assert func(a, b).eval(session=s) == 0
def test_tensorflow_piecewise():
if not tensorflow:
skip("tensorflow not installed.")
expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -1}) == -1
assert func(a).eval(session=s, feed_dict={a: 0}) == 0
assert func(a).eval(session=s, feed_dict={a: 1}) == 1
def test_tensorflow_multi_max():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -2}) == 4
def test_tensorflow_multi_min():
if not tensorflow:
skip("tensorflow not installed.")
expr = Min(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -2}) == -2
def test_tensorflow_relational():
if not tensorflow:
skip("tensorflow not installed.")
expr = x >= 0
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: 1})
def test_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(x) == Integral(exp(-x**2), (x, -oo, oo))
#================== Test symbolic ==================================
def test_sym_single_arg():
f = lambdify(x, x * y)
assert f(z) == z * y
def test_sym_list_args():
f = lambdify([x, y], x + y + z)
assert f(1, 2) == 3 + z
def test_sym_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(y).doit() == sqrt(pi)
def test_namespace_order():
# lambdify had a bug, such that module dictionaries or cached module
# dictionaries would pull earlier namespaces into themselves.
# Because the module dictionaries form the namespace of the
# generated lambda, this meant that the behavior of a previously
# generated lambda function could change as a result of later calls
# to lambdify.
n1 = {'f': lambda x: 'first f'}
n2 = {'f': lambda x: 'second f',
'g': lambda x: 'function g'}
f = sympy.Function('f')
g = sympy.Function('g')
if1 = lambdify(x, f(x), modules=(n1, "sympy"))
assert if1(1) == 'first f'
if2 = lambdify(x, g(x), modules=(n2, "sympy"))
# previously gave 'second f'
assert if1(1) == 'first f'
assert if2(1) == 'function g'
def test_namespace_type():
# lambdify had a bug where it would reject modules of type unicode
# on Python 2.
x = sympy.Symbol('x')
lambdify(x, x, modules=u'math')
def test_imps():
# Here we check if the default returned functions are anonymous - in
# the sense that we can have more than one function with the same name
f = implemented_function('f', lambda x: 2*x)
g = implemented_function('f', lambda x: math.sqrt(x))
l1 = lambdify(x, f(x))
l2 = lambdify(x, g(x))
assert str(f(x)) == str(g(x))
assert l1(3) == 6
assert l2(3) == math.sqrt(3)
# check that we can pass in a Function as input
func = sympy.Function('myfunc')
assert not hasattr(func, '_imp_')
my_f = implemented_function(func, lambda x: 2*x)
assert hasattr(my_f, '_imp_')
# Error for functions with same name and different implementation
f2 = implemented_function("f", lambda x: x + 101)
raises(ValueError, lambda: lambdify(x, f(f2(x))))
def test_imps_errors():
# Test errors that implemented functions can return, and still be able to
# form expressions.
# See: https://github.com/sympy/sympy/issues/10810
#
# XXX: Removed AttributeError here. This test was added due to issue 10810
# but that issue was about ValueError. It doesn't seem reasonable to
# "support" catching AttributeError in the same context...
for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)):
def myfunc(a):
if a == 0:
raise error_class
return 1
f = implemented_function('f', myfunc)
expr = f(val)
assert expr == f(val)
def test_imps_wrong_args():
raises(ValueError, lambda: implemented_function(sin, lambda x: x))
def test_lambdify_imps():
# Test lambdify with implemented functions
# first test basic (sympy) lambdify
f = sympy.cos
assert lambdify(x, f(x))(0) == 1
assert lambdify(x, 1 + f(x))(0) == 2
assert lambdify((x, y), y + f(x))(0, 1) == 2
# make an implemented function and test
f = implemented_function("f", lambda x: x + 100)
assert lambdify(x, f(x))(0) == 100
assert lambdify(x, 1 + f(x))(0) == 101
assert lambdify((x, y), y + f(x))(0, 1) == 101
# Can also handle tuples, lists, dicts as expressions
lam = lambdify(x, (f(x), x))
assert lam(3) == (103, 3)
lam = lambdify(x, [f(x), x])
assert lam(3) == [103, 3]
lam = lambdify(x, [f(x), (f(x), x)])
assert lam(3) == [103, (103, 3)]
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {x: f(x)})
assert lam(3) == {3: 103}
# Check that imp preferred to other namespaces by default
d = {'f': lambda x: x + 99}
lam = lambdify(x, f(x), d)
assert lam(3) == 103
# Unless flag passed
lam = lambdify(x, f(x), d, use_imps=False)
assert lam(3) == 102
def test_dummification():
t = symbols('t')
F = Function('F')
G = Function('G')
#"\alpha" is not a valid python variable name
#lambdify should sub in a dummy for it, and return
#without a syntax error
alpha = symbols(r'\alpha')
some_expr = 2 * F(t)**2 / G(t)
lam = lambdify((F(t), G(t)), some_expr)
assert lam(3, 9) == 2
lam = lambdify(sin(t), 2 * sin(t)**2)
assert lam(F(t)) == 2 * F(t)**2
#Test that \alpha was properly dummified
lam = lambdify((alpha, t), 2*alpha + t)
assert lam(2, 1) == 5
raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5))
def test_curly_matrix_symbol():
# Issue #15009
curlyv = sympy.MatrixSymbol("{v}", 2, 1)
lam = lambdify(curlyv, curlyv)
assert lam(1)==1
lam = lambdify(curlyv, curlyv, dummify=True)
assert lam(1)==1
def test_python_keywords():
# Test for issue 7452. The automatic dummification should ensure use of
# Python reserved keywords as symbol names will create valid lambda
# functions. This is an additional regression test.
python_if = symbols('if')
expr = python_if / 2
f = lambdify(python_if, expr)
assert f(4.0) == 2.0
def test_lambdify_docstring():
func = lambdify((w, x, y, z), w + x + y + z)
ref = (
"Created with lambdify. Signature:\n\n"
"func(w, x, y, z)\n\n"
"Expression:\n\n"
"w + x + y + z"
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
syms = symbols('a1:26')
func = lambdify(syms, sum(syms))
ref = (
"Created with lambdify. Signature:\n\n"
"func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n"
" a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n"
"Expression:\n\n"
"a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..."
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
#================== Test special printers ==========================
def test_special_printers():
from sympy.polys.numberfields import IntervalPrinter
def intervalrepr(expr):
return IntervalPrinter().doprint(expr)
expr = sqrt(sqrt(2) + sqrt(3)) + S(1)/2
func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())
mpi = type(mpmath.mpi(1, 2))
assert isinstance(func0(), mpi)
assert isinstance(func1(), mpi)
assert isinstance(func2(), mpi)
def test_true_false():
# We want exact is comparison here, not just ==
assert lambdify([], true)() is True
assert lambdify([], false)() is False
def test_issue_2790():
assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3
assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10
assert lambdify(x, x + 1, dummify=False)(1) == 2
def test_issue_12092():
f = implemented_function('f', lambda x: x**2)
assert f(f(2)).evalf() == Float(16)
def test_issue_14911():
class Variable(sympy.Symbol):
def _sympystr(self, printer):
return printer.doprint(self.name)
_lambdacode = _sympystr
_numpycode = _sympystr
x = Variable('x')
y = 2 * x
code = LambdaPrinter().doprint(y)
assert code.replace(' ', '') == '2*x'
def test_ITE():
assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5
assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3
def test_Min_Max():
# see gh-10375
assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1
assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
def test_Indexed():
# Issue #10934
if not numpy:
skip("numpy not installed")
a = IndexedBase('a')
i, j = symbols('i j')
b = numpy.array([[1, 2], [3, 4]])
assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10
def test_issue_12173():
#test for issue 12173
exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
assert exp1 == uppergamma(1, 2).evalf()
assert exp2 == lowergamma(1, 2).evalf()
def test_issue_13642():
if not numpy:
skip("numpy not installed")
f = lambdify(x, sinc(x))
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_sinc_mpmath():
f = lambdify(x, sinc(x), "mpmath")
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_lambdify_dummy_arg():
d1 = Dummy()
f1 = lambdify(d1, d1 + 1, dummify=False)
assert f1(2) == 3
f1b = lambdify(d1, d1 + 1)
assert f1b(2) == 3
d2 = Dummy('x')
f2 = lambdify(d2, d2 + 1)
assert f2(2) == 3
f3 = lambdify([[d2]], d2 + 1)
assert f3([2]) == 3
def test_lambdify_mixed_symbol_dummy_args():
d = Dummy()
# Contrived example of name clash
dsym = symbols(str(d))
f = lambdify([d, dsym], d - dsym)
assert f(4, 1) == 3
def test_numpy_array_arg():
# Test for issue 14655 (numpy part)
if not numpy:
skip("numpy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
assert f(numpy.array([2.0, 1.0])) == 5
def test_tensorflow_array_arg():
# Test for issue 14655 (tensorflow part)
if not tensorflow:
skip("tensorflow not installed.")
f = lambdify([[x, y]], x*x + y, 'tensorflow')
fcall = f(tensorflow.constant([2.0, 1.0]))
s = tensorflow.Session()
assert s.run(fcall) == 5
def test_scipy_fns():
if not scipy:
skip("scipy not installed")
single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma]
single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc,
scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln,
scipy.special.psi]
numpy.random.seed(0)
for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns):
f = lambdify(x, sympy_fn(x), modules="scipy")
for i in range(20):
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy thinks that factorial(z) is 0 when re(z) < 0.
# SymPy does not think so.
if sympy_fn == factorial and numpy.real(tv) < 0:
tv = tv + 2*numpy.abs(numpy.real(tv))
# SciPy supports gammaln for real arguments only,
# and there is also a branch cut along the negative real axis
if sympy_fn == loggamma:
tv = numpy.abs(tv)
# SymPy's digamma evaluates as polygamma(0, z)
# which SciPy supports for real arguments only
if sympy_fn == digamma:
tv = numpy.real(tv)
sympy_result = sympy_fn(tv).evalf()
assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result))
double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli,
besselk]
double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv,
scipy.special.yv, scipy.special.iv, scipy.special.kv]
for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns):
f = lambdify((x, y), sympy_fn(x, y), modules="scipy")
for i in range(20):
# SciPy supports only real orders of Bessel functions
tv1 = numpy.random.uniform(-10, 10)
tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports poch for real arguments only
if sympy_fn == RisingFactorial:
tv2 = numpy.real(tv2)
sympy_result = sympy_fn(tv1, tv2).evalf()
assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result))
def test_scipy_polys():
if not scipy:
skip("scipy not installed")
numpy.random.seed(0)
params = symbols('n k a b')
# list polynomials with the number of parameters
polys = [
(chebyshevt, 1),
(chebyshevu, 1),
(legendre, 1),
(hermite, 1),
(laguerre, 1),
(gegenbauer, 2),
(assoc_legendre, 2),
(assoc_laguerre, 2),
(jacobi, 3)
]
for sympy_fn, num_params in polys:
args = params[:num_params] + (x,)
f = lambdify(args, sympy_fn(*args))
for i in range(10):
tn = numpy.random.randint(3, 10)
tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1))
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports hermite for real arguments only
if sympy_fn == hermite:
tv = numpy.real(tv)
# assoc_legendre needs x in (-1, 1) and integer param at most n
if sympy_fn == assoc_legendre:
tv = numpy.random.uniform(-1, 1)
tparams = tuple(numpy.random.randint(1, tn, size=1))
vals = (tn,) + tparams + (tv,)
sympy_result = sympy_fn(*vals).evalf()
assert abs(f(*vals) - sympy_result) < 1e-13*(1 + abs(sympy_result))
def test_lambdify_inspect():
f = lambdify(x, x**2)
# Test that inspect.getsource works but don't hard-code implementation
# details
assert 'x**2' in inspect.getsource(f)
def test_issue_14941():
x, y = Dummy(), Dummy()
# test dict
f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy')
assert f1(2, 3) == {2: 3, 3: 3}
# test tuple
f2 = lambdify([x, y], (y, x), 'sympy')
assert f2(2, 3) == (3, 2)
# test list
f3 = lambdify([x, y], [y, x], 'sympy')
assert f3(2, 3) == [3, 2]
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
def test_imag_real():
f_re = lambdify([z], sympy.re(z))
val = 3+2j
assert f_re(val) == val.real
f_im = lambdify([z], sympy.im(z)) # see #15400
assert f_im(val) == val.imag
def test_MatrixSymbol_issue_15578():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol('A', 2, 2)
A0 = numpy.array([[1, 2], [3, 4]])
f = lambdify(A, A**(-1))
assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]]))
g = lambdify(A, A**3)
assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]]))
def test_issue_15654():
if not scipy:
skip("scipy not installed")
from sympy.abc import n, l, r, Z
from sympy.physics import hydrogen
nv, lv, rv, Zv = 1, 0, 3, 1
sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf()
f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z))
scipy_value = f(nv, lv, rv, Zv)
assert abs(sympy_value - scipy_value) < 1e-15
def test_issue_15827():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 2, 3)
C = MatrixSymbol("C", 3, 4)
D = MatrixSymbol("D", 4, 5)
k=symbols("k")
f = lambdify(A, (2*k)*A)
g = lambdify(A, (2+k)*A)
h = lambdify(A, 2*A)
i = lambdify((B, C, D), 2*B*C*D)
assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object))
assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \
[k + 2, 2*k + 4, 3*k + 6]], dtype=object))
assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]]))
assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \
numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \
[ 120, 240, 360, 480, 600]]))
def test_issue_16930():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f = lambda x: S.GoldenRatio * x**2
f_ = lambdify(x, f(x), modules='scipy')
assert f_(1) == scipy.constants.golden_ratio
|
cec7e2ed1080b102148e0d6ab95fda8904042a91a071e78eb4472fe23155c7a4 | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Or, Ne, Eq, Le, Lt, Min,
ask, refine, AlgebraicNumber, continued_fraction_iterator as cf_i,
continued_fraction_periodic as cf_p, continued_fraction_convergents as cf_c,
continued_fraction_reduce as cf_r, FiniteSet, elliptic_e, elliptic_f,
powsimp, hessian, wronskian, fibonacci, sign, Lambda, Piecewise, Subs,
residue, Derivative, logcombine, Symbol, Intersection, Union,
EmptySet, Interval, Integral, idiff, ImageSet, acos, Max, MatMul, conjugate)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.utilities.pytest import XFAIL, slow, SKIP, skip, ON_TRAVIS
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import vring
from sympy.polys.fields import vfield
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from sympy.core.compatibility import range, PY3
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
a, b, c = FiniteSet(j), FiniteSet(m), FiniteSet(j, k)
d, e = FiniteSet(i), FiniteSet(j, k, l)
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Union(a, Intersection(b, Union(c, Intersection(d, FiniteSet(l)))))
# {j} U Intersection({m}, {j, k} U Intersection({i}, {l}))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 == oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == Rational(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
Rational(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
def test_I1():
assert tan(7*pi/10) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) == nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
try:
# This should fail or return nan or something.
diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
except:
assert True
else:
assert False, "taking the derivative with a fraction equivalent to 0/0 should fail"
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S(1)/2, S(1)/2], [S(3)/2], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(S(4)/5) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
@XFAIL
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*2*pi/7) + I*sin(n*2*pi/7) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - 7*pi/4), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
def test_M15():
if PY3:
n = Dummy('n')
assert solveset(sin(x) - S.Half) in (Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers)))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet()
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(-S.Half + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)]
@XFAIL
def test_M28():
assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(-S(3)/2, S(3)/2)
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
variables = vring("k1:50", vfield("a,b,c", ZZ).to_domain())
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, variables) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(Q.is_true(E**pi > pi**E))
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(Q.is_true(x**4 - x + 1 > 0)) is True
assert ask(Q.is_true(x**4 - x + 1 > 1)) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 ))
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True
@XFAIL
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Q.is_true((x == y) & (y == z)),
Q.is_true((x >= y) & (y >= z) & (z >= x)))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O5():
assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[S(23)/19],
[S(63)/19],
[S(-47)/19]]),
Matrix([
[S(1692)/353],
[S(-1551)/706],
[S(-423)/706]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
from sympy.utilities.pytest import raises
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
M = Matrix([[x, y], [1, x*y]]).inv()
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[-x*y, y],
[ 1, -x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
assert (Matrix(sorted(MF.eigenvals())) - Matrix(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [(a, 3, [Matrix([[1],
[0],
[0],
[0],
[0]]),
Matrix([[0],
[0],
[1],
[0],
[0]]),
Matrix([[0],
[0],
[0],
[1],
[0]])]),
(1 - I, 1, [Matrix([[ 0],
[-1/(-1 + I)],
[ 0],
[ 0],
[ 1]])]),
(1 + I, 1, [Matrix([[ 0],
[-1/(-1 - I)],
[ 0],
[ 0],
[ 1]])])]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**Rational(1, 2) == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises ValueError: Matrix det == 0; not invertible
M**Rational(1,2)
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + Rational(1, 2))/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == Rational(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == Rational(1, 2)
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == Rational(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
@XFAIL
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == Rational(-9, 4)
@XFAIL
def test_U11():
assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**Rational(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**(Rational(7, 2)), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**Rational(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == -3*x/2 + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + Rational(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**Rational(1, 3)))
@XFAIL
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
# Correct result in python2.7.4, wrong result in python3.5
# https://github.com/sympy/sympy/issues/7157
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) == zoo
@XFAIL
@slow
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == S(4)/3
@XFAIL
@slow
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + S(4)/3
@XFAIL
@slow
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + S(8)/3
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, -3*pi/4, -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(2*pi/5)/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**Rational(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == S(1)/12
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == S(36)/35
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - S(17)/108 + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi) == pi*(-a + b)
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == S(46)/15
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
S(1)/12 - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - 3*pi/2) + (x - 3*pi/2)**(S(3)/2)/12 +
(x - 3*pi/2)**(S(7)/2)/160 + O((x - 3*pi/2)**4, (x, 3*pi/2)))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, sympy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S(1)/2*k)*sin(S(3)/4*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n),
{r(1): 1, r(2): 2}).simplify()
== 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) +
(-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10)
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
c5088fd6c65ad022297c0a23c77ceb43cef111d9e281c2131ff92efbb524ef0a | from __future__ import print_function, division
import itertools
from sympy.core import S
from sympy.core.compatibility import range, string_types
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.relational import Equality
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import xstr, hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], string_types):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
self.emptyPrinter = lambda x: prettyForm(xstr(x))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Rationals = _print_Atom
_print_Complexes = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(u' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
pretty_upper = self._print(lim[2])
pretty_lower = self._print(Equality(lim[0], lim[1]))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
if len(lim) == 3:
prettyUpper = self._print(lim[2])
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 2:
prettyUpper = self._print("")
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 1:
prettyUpper = self._print("")
prettyLower = self._print(lim[0])
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
_print_ImmutableMatrix = _print_MatrixBase
_print_Matrix = _print_MatrixBase
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = u"\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
prettyFunc = self._print(m.parent)
def ppslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice),
ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm(u'\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_Identity(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
else:
return prettyForm('I')
def _print_ZeroMatrix(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
else:
return prettyForm('0')
def _print_OneMatrix(self, expr):
if self._use_unicode:
return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
else:
return prettyForm('1')
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append(u"" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append(u"(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(u" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == u'\N{right parenthesis extension}':
tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}',
u'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}',
u'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm(u'\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _print_mathieuc(self, e):
return self._print_Function(e, func_name='C')
def _print_mathieus(self, e):
return self._print_Function(e, func_name='S')
def _print_mathieucprime(self, e):
return self._print_Function(e, func_name="C'")
def _print_mathieusprime(self, e):
return self._print_Function(e, func_name="S'")
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', '):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name:
func_name = func.__name__
prettyFunc = self._print(Symbol(func_name))
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg, "..."]
return self._helper_print_function(func, args, delimiter="")
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_dirichlet_eta(self, e):
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
return self._print_Function(e, func_name=func_name)
def _print_Heaviside(self, e):
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
return self._print_Function(e, func_name=func_name)
def _print_fresnels(self, e):
return self._print_Function(e, func_name="S")
def _print_fresnelc(self, e):
return self._print_Function(e, func_name="C")
def _print_airyai(self, e):
return self._print_Function(e, func_name="Ai")
def _print_airybi(self, e):
return self._print_Function(e, func_name="Bi")
def _print_airyaiprime(self, e):
return self._print_Function(e, func_name="Ai'")
def _print_airybiprime(self, e):
return self._print_Function(e, func_name="Bi'")
def _print_LambertW(self, e):
return self._print_Function(e, func_name="W")
def _print_Lambda(self, e):
vars, expr = e.args
if self._use_unicode:
arrow = u" \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(vars) == 1:
var_form = self._print(vars[0])
else:
var_form = self._print(tuple(vars))
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
pform = self._print(Mul(-coeff, *other, evaluate=False))
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) > 1 and not has_variety(p.sets):
from sympy import Pow
return self._print(Pow(p.sets[0], len(p.sets), evaluate=False))
else:
prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = ts.lamda.variables
expr = self._print(ts.lamda.expr)
bar = self._print("|")
sets = [self._print(i) for i in ts.args[1:]]
if len(sets) == 1:
return self._print_seq((expr, bar, variables[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(variables, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = u"\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print_seq(cond, "(", ")")
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = u" \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
try:
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
# XXX: Under the tests from #15686 this raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm(u"\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
pform = prettyForm(name)
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_euler(self, e):
return self._print_number_function(e, "E")
def _print_catalan(self, e):
return self._print_number_function(e, "C")
def _print_bernoulli(self, e):
return self._print_number_function(e, "B")
_print_bell = _print_bernoulli
def _print_lucas(self, e):
return self._print_number_function(e, "L")
def _print_fibonacci(self, e):
return self._print_number_function(e, "F")
def _print_tribonacci(self, e):
return self._print_number_function(e, "T")
def _print_stieltjes(self, e):
if self._use_unicode:
return self._print_number_function(e, u'\N{GREEK SMALL LETTER GAMMA}')
else:
return self._print_number_function(e, "stieltjes")
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right((prettyForm(','))))
pform = prettyForm(*pform.right((self._print(e.args[1]))))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index]
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print(u"\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, wrap_line=True, num_columns=None, use_unicode=None,
full_prec="auto", order=None, use_unicode_sqrt_char=True,
root_notation = True, mat_symbol_style="plain", imaginary_unit="i"):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, wrap_line=wrap_line, num_columns=num_columns,
use_unicode=use_unicode, full_prec=full_prec, order=order,
use_unicode_sqrt_char=use_unicode_sqrt_char,
root_notation=root_notation, mat_symbol_style=mat_symbol_style,
imaginary_unit=imaginary_unit))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
a9e8d4bc9c9980efcaad1ef6215cf33a09914b6f95d475892e6e34b3ca0f7ec4 | # -*- coding: utf-8 -*-
from __future__ import absolute_import
from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational
from sympy.core.singleton import S
from sympy.core.numbers import pi
from sympy.functions import acos, Piecewise, sign, sqrt
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter,
SymPyPrinter
)
from sympy.utilities.pytest import raises
from sympy.tensor import IndexedBase
x, y, z = symbols('x y z')
p = IndexedBase("p")
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
assert prntr.module_imports == {'math': {'pi', 'sqrt'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
def test_PythonCodePrinter_standard():
import sys
prntr = PythonCodePrinter({'standard':None})
python_version = sys.version_info.major
if python_version == 2:
assert prntr.standard == 'python2'
if python_version == 3:
assert prntr.standard == 'python3'
raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
def test_NumPyPrinter():
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
assert p.doprint(Identity(3)) == "numpy.eye(3)"
u = MatrixSymbol('x', 2, 1)
v = MatrixSymbol('y', 2, 1)
assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
# Workaround for numpy negative integer power errors
assert p.doprint(x**-1) == 'x**(-1.0)'
assert p.doprint(x**-2) == 'x**(-2.0)'
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == 'scipy.sparse.coo_matrix([3], ([0], [1]), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
def test_sqrt():
prntr = PythonCodePrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'
prntr = PythonCodePrinter({'standard' : 'python2'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1./2.)'
prntr = PythonCodePrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'
prntr = MpmathPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == \
"x**(mpmath.mpf(1)/mpmath.mpf(2))"
prntr = NumPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SciPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SymPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
def test_NumPyPrinter_print_seq():
n = NumPyPrinter()
assert n._print_seq(range(2)) == '(0, 1,)'
|
bb6897168fb1b9c1b1799392d55b3b92b22dc7baf5fb61553e1f175b3e5825e8 | from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, log, MatrixSymbol)
from sympy.core import Expr, Mul
from sympy.physics.units import second, joule
from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex
from sympy.geometry import Point, Circle
from sympy.utilities.pytest import raises
from sympy.core.compatibility import range
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
# TODO test other Geometry entities
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert str(p) == s
Permutation.print_cyclic = False
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert str(p) == s
Permutation.print_cyclic = True
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert str(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr(set([1])) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr(set([1, 2, 3])) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == '{1, 2, 3, ..., 48, 49, 50}'
assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \
"2*(X + Y)"
def test_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]'
assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "Xor(x, y)"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Reals \\ Naturals'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-(A + B) + A*B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
|
1a26aae50297207be6594292bc9f16c20afa266acb36cc9f81f4feac7a791fc5 | from sympy import (
Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform, Derivative,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Union, Ynm, Znm, arg, asin, acsc, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, Complement,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SymmetricDifference, SeqPer, SeqFormula,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, Intersection, LambertW)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.utilities.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import degree, radian, kg, meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.core.compatibility import range
from sympy.combinatorics.permutations import Cycle, Permutation
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, a, b, c = symbols('x y z t a b c')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = set(l.capitalize() for l in greek_letters_set)
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == \
r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == \
r'\left\{-2, -3, \ldots\right\}'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex(line * bigline * fset) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \
r'X\left[:5, 1:9:2\right]'
assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \
r'X\left[5, :5:2\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ {-1}}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ {-1}}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ {-1}}\right)^{-1}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"\sin\left({X^{T} X}\ldots\right)"
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.One/2, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_7117():
# See also issue #5031 (hence the evaluate=False in these).
e = Eq(x + 1, 2*x)
q = Mul(2, e, evaluate=False)
assert latex(q) == r"2 \left(x + 1 = 2 x\right)"
q = Add(6, e, evaluate=False)
assert latex(q) == r"6 + \left(x + 1 = 2 x\right)"
q = Pow(e, 2, evaluate=False)
assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_14041():
import sympy.physics.mechanics as me
A_frame = me.ReferenceFrame('A')
thetad, phid = me.dynamicsymbols('theta, phi', 1)
L = Symbol('L')
assert latex(L*(phid + thetad)**2*A_frame.x) == \
r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid + thetad)**2*A_frame.x) == \
r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid*thetad)**a*A_frame.x) == \
r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
K = tensorhead("K", [L, L, L, L], [[1], [1], [1], [1]])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, FiniteSet, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(Tuple(x, a), FiniteSet(sin(a*x), cos(a*x)), S.Complexes)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in '\
r'\mathbb{C} \wedge \left\{\sin{\left(a x \right)}, \cos{\left(a x '\
r'\right)}\right\} \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A = MatrixSymbol("A_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}"
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_DiffGeomMethods():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p)
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{rect_{0}}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987')
assert(latex(.3, decimal_separator='comma')== r'0{,}3')
assert(latex(S(.3), decimal_separator='comma')== r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8e-07')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
|
e0d2697409c56a0219267083452e88de8cd5ea12f8cc215fa34074c458fb55f9 | from sympy.core import (S, pi, oo, symbols, Rational, Integer,
GoldenRatio, EulerGamma, Catalan, Lambda, Dummy,
Eq, Ne, Le, Lt, Gt, Ge)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
sign)
from sympy.logic import ITE
from sympy.utilities.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy import rust_code
x, y, z = symbols('x,y,z')
def test_Integer():
assert rust_code(Integer(42)) == "42"
assert rust_code(Integer(-56)) == "-56"
def test_Relational():
assert rust_code(Eq(x, y)) == "x == y"
assert rust_code(Ne(x, y)) == "x != y"
assert rust_code(Le(x, y)) == "x <= y"
assert rust_code(Lt(x, y)) == "x < y"
assert rust_code(Gt(x, y)) == "x > y"
assert rust_code(Ge(x, y)) == "x >= y"
def test_Rational():
assert rust_code(Rational(3, 7)) == "3_f64/7.0"
assert rust_code(Rational(18, 9)) == "2"
assert rust_code(Rational(3, -7)) == "-3_f64/7.0"
assert rust_code(Rational(-3, -7)) == "3_f64/7.0"
assert rust_code(x + Rational(3, 7)) == "x + 3_f64/7.0"
assert rust_code(Rational(3, 7)*x) == "(3_f64/7.0)*x"
def test_basic_ops():
assert rust_code(x + y) == "x + y"
assert rust_code(x - y) == "x - y"
assert rust_code(x * y) == "x*y"
assert rust_code(x / y) == "x/y"
assert rust_code(-x) == "-x"
def test_printmethod():
class fabs(Abs):
def _rust_code(self, printer):
return "%s.fabs()" % printer._print(self.args[0])
assert rust_code(fabs(x)) == "x.fabs()"
def test_Functions():
assert rust_code(sin(x) ** cos(x)) == "x.sin().powf(x.cos())"
assert rust_code(abs(x)) == "x.abs()"
assert rust_code(ceiling(x)) == "x.ceil()"
def test_Pow():
assert rust_code(1/x) == "x.recip()"
assert rust_code(x**-1) == rust_code(x**-1.0) == "x.recip()"
assert rust_code(sqrt(x)) == "x.sqrt()"
assert rust_code(x**S.Half) == rust_code(x**0.5) == "x.sqrt()"
assert rust_code(1/sqrt(x)) == "x.sqrt().recip()"
assert rust_code(x**-S.Half) == rust_code(x**-0.5) == "x.sqrt().recip()"
assert rust_code(1/pi) == "PI.recip()"
assert rust_code(pi**-1) == rust_code(pi**-1.0) == "PI.recip()"
assert rust_code(pi**-0.5) == "PI.sqrt().recip()"
assert rust_code(x**Rational(1, 3)) == "x.cbrt()"
assert rust_code(2**x) == "x.exp2()"
assert rust_code(exp(x)) == "x.exp()"
assert rust_code(x**3) == "x.powi(3)"
assert rust_code(x**(y**3)) == "x.powf(y.powi(3))"
assert rust_code(x**Rational(2, 3)) == "x.powf(2_f64/3.0)"
g = implemented_function('g', Lambda(x, 2*x))
assert rust_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).powf(-x + y.powf(x))/(x.powi(2) + y)"
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi", 1),
(lambda base, exp: not exp.is_integer, "pow", 1)]
assert rust_code(x**3, user_functions={'Pow': _cond_cfunc}) == 'x.dpowi(3)'
assert rust_code(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'x.pow(3.2)'
def test_constants():
assert rust_code(pi) == "PI"
assert rust_code(oo) == "INFINITY"
assert rust_code(S.Infinity) == "INFINITY"
assert rust_code(-oo) == "NEG_INFINITY"
assert rust_code(S.NegativeInfinity) == "NEG_INFINITY"
assert rust_code(S.NaN) == "NAN"
assert rust_code(exp(1)) == "E"
assert rust_code(S.Exp1) == "E"
def test_constants_other():
assert rust_code(2*GoldenRatio) == "const GoldenRatio: f64 = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert rust_code(
2*Catalan) == "const Catalan: f64 = %s;\n2*Catalan" % Catalan.evalf(17)
assert rust_code(2*EulerGamma) == "const EulerGamma: f64 = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_boolean():
assert rust_code(True) == "true"
assert rust_code(S.true) == "true"
assert rust_code(False) == "false"
assert rust_code(S.false) == "false"
assert rust_code(x & y) == "x && y"
assert rust_code(x | y) == "x || y"
assert rust_code(~x) == "!x"
assert rust_code(x & y & z) == "x && y && z"
assert rust_code(x | y | z) == "x || y || z"
assert rust_code((x & y) | z) == "z || x && y"
assert rust_code((x | y) & z) == "z && (x || y)"
def test_Piecewise():
expr = Piecewise((x, x < 1), (x + 2, True))
assert rust_code(expr) == (
"if (x < 1) {\n"
" x\n"
"} else {\n"
" x + 2\n"
"}")
assert rust_code(expr, assign_to="r") == (
"r = if (x < 1) {\n"
" x\n"
"} else {\n"
" x + 2\n"
"};")
assert rust_code(expr, assign_to="r", inline=True) == (
"r = if (x < 1) { x } else { x + 2 };")
expr = Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True))
assert rust_code(expr, inline=True) == (
"if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }")
assert rust_code(expr, assign_to="r", inline=True) == (
"r = if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 };")
assert rust_code(expr, assign_to="r") == (
"r = if (x < 1) {\n"
" x\n"
"} else if (x < 5) {\n"
" x + 1\n"
"} else {\n"
" x + 2\n"
"};")
expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True))
assert rust_code(expr, inline=True) == (
"2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }")
expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True)) - 42
assert rust_code(expr, inline=True) == (
"2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 } - 42")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: rust_code(expr))
def test_dereference_printing():
expr = x + y + sin(z) + z
assert rust_code(expr, dereference=[z]) == "x + y + (*z) + (*z).sin()"
def test_sign():
expr = sign(x) * y
assert rust_code(expr) == "y*x.signum()"
assert rust_code(expr, assign_to='r') == "r = y*x.signum();"
expr = sign(x + y) + 42
assert rust_code(expr) == "(x + y).signum() + 42"
assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;"
expr = sign(cos(x))
assert rust_code(expr) == "x.cos().signum()"
def test_reserved_words():
x, y = symbols("x if")
expr = sin(y)
assert rust_code(expr) == "if_.sin()"
assert rust_code(expr, dereference=[y]) == "(*if_).sin()"
assert rust_code(expr, reserved_word_suffix='_unreserved') == "if_unreserved.sin()"
with raises(ValueError):
rust_code(expr, error_on_reserved=True)
def test_ITE():
expr = ITE(x < 1, y, z)
assert rust_code(expr) == (
"if (x < 1) {\n"
" y\n"
"} else {\n"
" z\n"
"}")
def test_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
x = IndexedBase('x')[j]
assert rust_code(x) == "x[j]"
A = IndexedBase('A')[i, j]
assert rust_code(A) == "A[m*i + j]"
B = IndexedBase('B')[i, j, k]
assert rust_code(B) == "B[m*o*i + o*j + k]"
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
assert rust_code(x[i], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = x[i];\n"
"}")
def test_loops():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
m, n = symbols('m n', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
assert rust_code(A[i, j]*x[j], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" y[i] = A[n*i + j]*x[j] + y[i];\n"
" }\n"
"}")
assert rust_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = x[i] + z[i];\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" y[i] = A[n*i + j]*x[j] + y[i];\n"
" }\n"
"}")
def test_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
assert rust_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" for k in 0..o {\n"
" for l in 0..p {\n"
" y[i] = a[%s]*b[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
" }\n"
" }\n"
" }\n"
"}")
def test_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
m, n, o, p = symbols('m n o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
code = rust_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert code == (
"for i in 0..m {\n"
" y[i] = 0;\n"
"}\n"
"for i in 0..m {\n"
" for j in 0..n {\n"
" for k in 0..o {\n"
" for l in 0..p {\n"
" y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
" }\n"
" }\n"
" }\n"
"}")
def test_settings():
raises(TypeError, lambda: rust_code(sin(x), method="garbage"))
def test_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert rust_code(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert rust_code(g(x)) == (
"const Catalan: f64 = %s;\n2*x/Catalan" % Catalan.evalf(17))
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert rust_code(g(A[i]), assign_to=A[i]) == (
"for i in 0..n {\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}")
def test_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "ceil",
"Abs": [(lambda x: not x.is_integer, "fabs", 4), (lambda x: x.is_integer, "abs", 4)],
}
assert rust_code(ceiling(x), user_functions=custom_functions) == "x.ceil()"
assert rust_code(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert rust_code(Abs(n), user_functions=custom_functions) == "abs(n)"
|
03c049140193ddd61ca6a88edf9a4630e642496aa2b0848d215a2e13da14f58c | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
from sympy.utilities.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
besselk, hankel1, hankel2, airyai,
airybi, airyaiprime, airybiprime)
from sympy.utilities.pytest import XFAIL
from sympy import julia_code
x, y, z = symbols('x,y,z')
def test_Integer():
assert julia_code(Integer(67)) == "67"
assert julia_code(Integer(-1)) == "-1"
def test_Rational():
assert julia_code(Rational(3, 7)) == "3/7"
assert julia_code(Rational(18, 9)) == "2"
assert julia_code(Rational(3, -7)) == "-3/7"
assert julia_code(Rational(-3, -7)) == "3/7"
assert julia_code(x + Rational(3, 7)) == "x + 3/7"
assert julia_code(Rational(3, 7)*x) == "3*x/7"
def test_Relational():
assert julia_code(Eq(x, y)) == "x == y"
assert julia_code(Ne(x, y)) == "x != y"
assert julia_code(Le(x, y)) == "x <= y"
assert julia_code(Lt(x, y)) == "x < y"
assert julia_code(Gt(x, y)) == "x > y"
assert julia_code(Ge(x, y)) == "x >= y"
def test_Function():
assert julia_code(sin(x) ** cos(x)) == "sin(x).^cos(x)"
assert julia_code(abs(x)) == "abs(x)"
assert julia_code(ceiling(x)) == "ceil(x)"
def test_Pow():
assert julia_code(x**3) == "x.^3"
assert julia_code(x**(y**3)) == "x.^(y.^3)"
assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)'
g = implemented_function('g', Lambda(x, 2*x))
assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
# For issue 14160
assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x./(y.*y)'
def test_basic_ops():
assert julia_code(x*y) == "x.*y"
assert julia_code(x + y) == "x + y"
assert julia_code(x - y) == "x - y"
assert julia_code(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert julia_code(1/x) == '1./x'
assert julia_code(x**-1) == julia_code(x**-1.0) == '1./x'
assert julia_code(1/sqrt(x)) == '1./sqrt(x)'
assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1./sqrt(x)'
assert julia_code(sqrt(x)) == 'sqrt(x)'
assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)'
assert julia_code(1/pi) == '1/pi'
assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1/pi'
assert julia_code(pi**-0.5) == '1/sqrt(pi)'
def test_mix_number_mult_symbols():
assert julia_code(3*x) == "3*x"
assert julia_code(pi*x) == "pi*x"
assert julia_code(3/x) == "3./x"
assert julia_code(pi/x) == "pi./x"
assert julia_code(x/3) == "x/3"
assert julia_code(x/pi) == "x/pi"
assert julia_code(x*y) == "x.*y"
assert julia_code(3*x*y) == "3*x.*y"
assert julia_code(3*pi*x*y) == "3*pi*x.*y"
assert julia_code(x/y) == "x./y"
assert julia_code(3*x/y) == "3*x./y"
assert julia_code(x*y/z) == "x.*y./z"
assert julia_code(x/y*z) == "x.*z./y"
assert julia_code(1/x/y) == "1./(x.*y)"
assert julia_code(2*pi*x/y/z) == "2*pi*x./(y.*z)"
assert julia_code(3*pi/x) == "3*pi./x"
assert julia_code(S(3)/5) == "3/5"
assert julia_code(S(3)/5*x) == "3*x/5"
assert julia_code(x/y/z) == "x./(y.*z)"
assert julia_code((x+y)/z) == "(x + y)./z"
assert julia_code((x+y)/(z+x)) == "(x + y)./(x + z)"
assert julia_code((x+y)/EulerGamma) == "(x + y)/eulergamma"
assert julia_code(x/3/pi) == "x/(3*pi)"
assert julia_code(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_mix_number_pow_symbols():
assert julia_code(pi**3) == 'pi^3'
assert julia_code(x**2) == 'x.^2'
assert julia_code(x**(pi**3)) == 'x.^(pi^3)'
assert julia_code(x**y) == 'x.^y'
assert julia_code(x**(y**z)) == 'x.^(y.^z)'
assert julia_code((x**y)**z) == '(x.^y).^z'
def test_imag():
I = S('I')
assert julia_code(I) == "im"
assert julia_code(5*I) == "5im"
assert julia_code((S(3)/2)*I) == "3*im/2"
assert julia_code(3+4*I) == "3 + 4im"
def test_constants():
assert julia_code(pi) == "pi"
assert julia_code(oo) == "Inf"
assert julia_code(-oo) == "-Inf"
assert julia_code(S.NegativeInfinity) == "-Inf"
assert julia_code(S.NaN) == "NaN"
assert julia_code(S.Exp1) == "e"
assert julia_code(exp(1)) == "e"
def test_constants_other():
assert julia_code(2*GoldenRatio) == "2*golden"
assert julia_code(2*Catalan) == "2*catalan"
assert julia_code(2*EulerGamma) == "2*eulergamma"
def test_boolean():
assert julia_code(x & y) == "x && y"
assert julia_code(x | y) == "x || y"
assert julia_code(~x) == "!x"
assert julia_code(x & y & z) == "x && y && z"
assert julia_code(x | y | z) == "x || y || z"
assert julia_code((x & y) | z) == "z || x && y"
assert julia_code((x | y) & z) == "z && (x || y)"
def test_Matrices():
assert julia_code(Matrix(1, 1, [10])) == "[10]"
A = Matrix([[1, sin(x/2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]]);
expected = ("[1 sin(x/2) abs(x);\n"
"0 1 pi;\n"
"0 e ceil(x)]")
assert julia_code(A) == expected
# row and columns
assert julia_code(A[:,0]) == "[1, 0, 0]"
assert julia_code(A[0,:]) == "[1 sin(x/2) abs(x)]"
# empty matrices
assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)'
assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)'
# annoying to read but correct
assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
assert julia_code(A) == "[1 sin(2./x) 3*pi./(5*x)]"
assert julia_code(A.T) == "[1, sin(2./x), 3*pi./(5*x)]"
@XFAIL
def test_Matrices_entries_not_hadamard():
# For Matrix with col >= 2, row >= 2, they need to be scalars
# FIXME: is it worth worrying about this? Its not wrong, just
# leave it user's responsibility to put scalar data for x.
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
"1 2 x*y]") # <- we give x.*y
assert julia_code(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert julia_code(A*B) == "A*B"
assert julia_code(B*A) == "B*A"
assert julia_code(2*A*B) == "2*A*B"
assert julia_code(B*2*A) == "2*B*A"
assert julia_code(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)"
assert julia_code(A**(x**2)) == "A^(x.^2)"
assert julia_code(A**3) == "A^3"
assert julia_code(A**(S.Half)) == "A^(1/2)"
def test_special_matrices():
assert julia_code(6*Identity(3)) == "6*eye(3)"
def test_containers():
assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
assert julia_code([1]) == "Any[1]"
assert julia_code((1,)) == "(1,)"
assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
assert julia_code((1, x*y, (3, x**2))) == "(1, x.*y, (3, x.^2))"
# scalar, matrix, empty matrix and empty list
assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
def test_julia_noninline():
source = julia_code((x+y)/Catalan, assign_to='me', inline=False)
expected = (
"const Catalan = %s\n"
"me = (x + y)/Catalan"
) % Catalan.evalf(17)
assert source == expected
def test_julia_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert julia_code(expr) == "((x < 1) ? (x) : (x.^2))"
assert julia_code(expr, assign_to="r") == (
"r = ((x < 1) ? (x) : (x.^2))")
assert julia_code(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x\n"
"else\n"
" r = x.^2\n"
"end")
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
expected = ("((x < 1) ? (x.^2) :\n"
"(x < 2) ? (x.^3) :\n"
"(x < 3) ? (x.^4) : (x.^5))")
assert julia_code(expr) == expected
assert julia_code(expr, assign_to="r") == "r = " + expected
assert julia_code(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x.^2\n"
"elseif (x < 2)\n"
" r = x.^3\n"
"elseif (x < 3)\n"
" r = x.^4\n"
"else\n"
" r = x.^5\n"
"end")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: julia_code(expr))
def test_julia_piecewise_times_const():
pw = Piecewise((x, x < 1), (x**2, True))
assert julia_code(2*pw) == "2*((x < 1) ? (x) : (x.^2))"
assert julia_code(pw/x) == "((x < 1) ? (x) : (x.^2))./x"
assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x.^2))./(x.*y)"
assert julia_code(pw/3) == "((x < 1) ? (x) : (x.^2))/3"
def test_julia_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert julia_code(A, assign_to='a') == "a = [1 2 3]"
A = Matrix([[1, 2], [3, 4]])
assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"
def test_julia_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert julia_code(A, assign_to=B) == "B = [1 2 3]"
raises(ValueError, lambda: julia_code(A, assign_to=x))
raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_matrix_1x1():
A = Matrix([[3]])
B = MatrixSymbol('B', 1, 1)
C = MatrixSymbol('C', 1, 2)
assert julia_code(A, assign_to=B) == "B = [3]"
# FIXME?
#assert julia_code(A, assign_to=x) == "x = [3]"
raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_matrix_elements():
A = Matrix([[x, 2, x*y]])
assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2"
A = MatrixSymbol('AA', 1, 3)
assert julia_code(A) == "AA"
assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
"sin(AA[1,2]) + AA[1,1].^2 + AA[1,3]"
assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
def test_julia_boolean():
assert julia_code(True) == "true"
assert julia_code(S.true) == "true"
assert julia_code(False) == "false"
assert julia_code(S.false) == "false"
def test_julia_not_supported():
assert julia_code(S.ComplexInfinity) == (
"# Not supported in Julia:\n"
"# ComplexInfinity\n"
"zoo"
)
f = Function('f')
assert julia_code(f(x).diff(x)) == (
"# Not supported in Julia:\n"
"# Derivative\n"
"Derivative(f(x), x)"
)
def test_trick_indent_with_end_else_words():
# words starting with "end" or "else" do not confuse the indenter
t1 = S('endless');
t2 = S('elsewhere');
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
assert julia_code(pw, inline=False) == (
"if (x < 0)\n"
" endless\n"
"elseif (x <= 1)\n"
" elsewhere\n"
"else\n"
" 1\n"
"end")
def test_haramard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
assert julia_code(C) == "A.*B"
assert julia_code(C*v) == "(A.*B)*v"
assert julia_code(h*C*v) == "h*(A.*B)*v"
assert julia_code(C*A) == "(A.*B)*A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert julia_code(C*x*y) == "(x.*y)*(A.*B)"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10;
M[1, 2] = 20;
M[1, 3] = 22;
M[0, 3] = 30;
M[3, 0] = x*y;
assert julia_code(M) == (
"sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x.*y, 20, 10, 30, 22], 5, 6)"
)
def test_specfun():
n = Symbol('n')
for f in [besselj, bessely, besseli, besselk]:
assert julia_code(f(n, x)) == f.__name__ + '(n, x)'
for f in [airyai, airyaiprime, airybi, airybiprime]:
assert julia_code(f(x)) == f.__name__ + '(x)'
assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)'
assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)'
assert julia_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
assert julia_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(julia_code(A[0, 0]) == "A[1,1]")
assert(julia_code(3 * A[0, 0]) == "3*A[1,1]")
F = C[0, 0].subs(C, A - B)
assert(julia_code(F) == "(A - B)[1,1]")
|
ad41463633045e0da91e2b536111e0f7d50ec20dab479c048914f640fb0dc2b5 | from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \
tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \
pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \
S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \
Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \
expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \
laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \
mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \
cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech
from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \
fresnelc, fresnels, Heaviside
from sympy.calculus.util import AccumBounds
from sympy.core.containers import Tuple
from sympy.functions.combinatorial.factorials import factorial, factorial2, \
binomial
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci, catalan
from sympy.functions.elementary.complexes import re, im, Abs, conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta
from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not
from sympy.matrices.expressions.determinant import Determinant
from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger
from sympy.printing.mathml import mathml, MathMLContentPrinter, \
MathMLPresentationPrinter, MathMLPrinter
from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \
SymmetricDifference, Interval, EmptySet
from sympy.stats.rv import RandomSymbol
from sympy.utilities.pytest import raises
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
x, y, z, a, b, c, d, e, n = symbols('x:z a:e n')
mp = MathMLContentPrinter()
mpp = MathMLPresentationPrinter()
def test_mathml_printer():
m = MathMLPrinter()
assert m.doprint(1+x) == mp.doprint(1+x)
def test_content_printmethod():
assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>'
def test_content_mathml_core():
mml_1 = mp._print(1 + x)
assert mml_1.nodeName == 'apply'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName == 'plus'
assert nodes[0].hasChildNodes() is False
assert nodes[0].nodeValue is None
assert nodes[1].nodeName in ['cn', 'ci']
if nodes[1].nodeName == 'cn':
assert nodes[1].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(x**2)
assert mml_2.nodeName == 'apply'
nodes = mml_2.childNodes
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '2'
mml_3 = mp._print(2*x)
assert mml_3.nodeName == 'apply'
nodes = mml_3.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '2'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'apply'
nodes = mml.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '1.0'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_content_mathml_functions():
mml_1 = mp._print(sin(x))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'sin'
assert mml_1.childNodes[1].nodeName == 'ci'
mml_2 = mp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'diff'
assert mml_2.childNodes[1].nodeName == 'bvar'
assert mml_2.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
mml_3 = mp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'partialdiff'
assert mml_3.childNodes[1].nodeName == 'bvar'
assert mml_3.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
def test_content_mathml_limits():
# XXX No unevaluated limits
lim_fun = sin(x)/x
mml_1 = mp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'limit'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml()
def test_content_mathml_integrals():
integrand = x
mml_1 = mp._print(Integral(integrand, (x, 0, 1)))
assert mml_1.childNodes[0].nodeName == 'int'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml()
def test_content_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mp._print(A)
assert mll_1.childNodes[0].nodeName == 'matrixrow'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[1].nodeName == 'matrixrow'
assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[2].nodeName == 'matrixrow'
assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mp._print(B)
assert mll_2.childNodes[0].nodeName == 'matrixrow'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[1].nodeName == 'matrixrow'
assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[2].nodeName == 'matrixrow'
assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9'
def test_content_mathml_sums():
summand = x
mml_1 = mp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'sum'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml()
def test_content_mathml_tuples():
mml_1 = mp._print([2])
assert mml_1.nodeName == 'list'
assert mml_1.childNodes[0].nodeName == 'cn'
assert len(mml_1.childNodes) == 1
mml_2 = mp._print([2, Integer(1)])
assert mml_2.nodeName == 'list'
assert mml_2.childNodes[0].nodeName == 'cn'
assert mml_2.childNodes[1].nodeName == 'cn'
assert len(mml_2.childNodes) == 2
def test_content_mathml_add():
mml = mp._print(x**5 - x**4 + x)
assert mml.childNodes[0].nodeName == 'plus'
assert mml.childNodes[1].childNodes[0].nodeName == 'minus'
assert mml.childNodes[1].childNodes[1].nodeName == 'apply'
def test_content_mathml_Rational():
mml_1 = mp._print(Rational(1, 1))
"""should just return a number"""
assert mml_1.nodeName == 'cn'
mml_2 = mp._print(Rational(2, 5))
assert mml_2.childNodes[0].nodeName == 'divide'
def test_content_mathml_constants():
mml = mp._print(I)
assert mml.nodeName == 'imaginaryi'
mml = mp._print(E)
assert mml.nodeName == 'exponentiale'
mml = mp._print(oo)
assert mml.nodeName == 'infinity'
mml = mp._print(pi)
assert mml.nodeName == 'pi'
assert mathml(GoldenRatio) == '<cn>φ</cn>'
mml = mathml(EulerGamma)
assert mml == '<eulergamma/>'
mml = mathml(EmptySet())
assert mml == '<emptyset/>'
mml = mathml(S.true)
assert mml == '<true/>'
mml = mathml(S.false)
assert mml == '<false/>'
mml = mathml(S.NaN)
assert mml == '<notanumber/>'
def test_content_mathml_trig():
mml = mp._print(sin(x))
assert mml.childNodes[0].nodeName == 'sin'
mml = mp._print(cos(x))
assert mml.childNodes[0].nodeName == 'cos'
mml = mp._print(tan(x))
assert mml.childNodes[0].nodeName == 'tan'
mml = mp._print(cot(x))
assert mml.childNodes[0].nodeName == 'cot'
mml = mp._print(csc(x))
assert mml.childNodes[0].nodeName == 'csc'
mml = mp._print(sec(x))
assert mml.childNodes[0].nodeName == 'sec'
mml = mp._print(asin(x))
assert mml.childNodes[0].nodeName == 'arcsin'
mml = mp._print(acos(x))
assert mml.childNodes[0].nodeName == 'arccos'
mml = mp._print(atan(x))
assert mml.childNodes[0].nodeName == 'arctan'
mml = mp._print(acot(x))
assert mml.childNodes[0].nodeName == 'arccot'
mml = mp._print(acsc(x))
assert mml.childNodes[0].nodeName == 'arccsc'
mml = mp._print(asec(x))
assert mml.childNodes[0].nodeName == 'arcsec'
mml = mp._print(sinh(x))
assert mml.childNodes[0].nodeName == 'sinh'
mml = mp._print(cosh(x))
assert mml.childNodes[0].nodeName == 'cosh'
mml = mp._print(tanh(x))
assert mml.childNodes[0].nodeName == 'tanh'
mml = mp._print(coth(x))
assert mml.childNodes[0].nodeName == 'coth'
mml = mp._print(csch(x))
assert mml.childNodes[0].nodeName == 'csch'
mml = mp._print(sech(x))
assert mml.childNodes[0].nodeName == 'sech'
mml = mp._print(asinh(x))
assert mml.childNodes[0].nodeName == 'arcsinh'
mml = mp._print(atanh(x))
assert mml.childNodes[0].nodeName == 'arctanh'
mml = mp._print(acosh(x))
assert mml.childNodes[0].nodeName == 'arccosh'
mml = mp._print(acoth(x))
assert mml.childNodes[0].nodeName == 'arccoth'
mml = mp._print(acsch(x))
assert mml.childNodes[0].nodeName == 'arccsch'
mml = mp._print(asech(x))
assert mml.childNodes[0].nodeName == 'arcsech'
def test_content_mathml_relational():
mml_1 = mp._print(Eq(x, 1))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'eq'
assert mml_1.childNodes[1].nodeName == 'ci'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[2].nodeName == 'cn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(Ne(1, x))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'neq'
assert mml_2.childNodes[1].nodeName == 'cn'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[2].nodeName == 'ci'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mp._print(Ge(1, x))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'geq'
assert mml_3.childNodes[1].nodeName == 'cn'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[2].nodeName == 'ci'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mp._print(Lt(1, x))
assert mml_4.nodeName == 'apply'
assert mml_4.childNodes[0].nodeName == 'lt'
assert mml_4.childNodes[1].nodeName == 'cn'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[2].nodeName == 'ci'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_content_symbol():
mml = mp._print(x)
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mp._print(Symbol("x^2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x__2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x^3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x__3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x_2_a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x^2^a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x__2__a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
def test_content_mathml_greek():
mml = mp._print(Symbol('alpha'))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>'
assert mp.doprint(Symbol('beta')) == '<ci>β</ci>'
assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>'
assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>'
assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>'
assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>'
assert mp.doprint(Symbol('eta')) == '<ci>η</ci>'
assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>'
assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>'
assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>'
assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>'
assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>'
assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>'
assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>'
assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>'
assert mp.doprint(Symbol('pi')) == '<ci>π</ci>'
assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>'
assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>'
assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>'
assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>'
assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>'
assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>'
assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>'
assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>'
assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>'
assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>'
assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>'
assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>'
assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>'
assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>'
assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>'
assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>'
assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>'
assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>'
assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>'
assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>'
assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>'
assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>'
assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>'
assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>'
assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>'
assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>'
assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>'
assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>'
assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>'
assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>'
assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>'
assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>'
assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>'
def test_content_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLContentPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4'
mp = MathMLContentPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3'
def test_content_settings():
raises(TypeError, lambda: mathml(x, method="garbage"))
def test_content_mathml_logic():
assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>'
def test_presentation_printmethod():
assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>'
assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>'
assert mpp.doprint(x**-2) == \
'<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>'
assert mpp.doprint(2*x) == \
'<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>'
def test_presentation_mathml_core():
mml_1 = mpp._print(1 + x)
assert mml_1.nodeName == 'mrow'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName in ['mi', 'mn']
assert nodes[1].nodeName == 'mo'
if nodes[0].nodeName == 'mn':
assert nodes[0].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(x**2)
assert mml_2.nodeName == 'msup'
nodes = mml_2.childNodes
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[1].childNodes[0].nodeValue == '2'
mml_3 = mpp._print(2*x)
assert mml_3.nodeName == 'mrow'
nodes = mml_3.childNodes
assert nodes[0].childNodes[0].nodeValue == '2'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mpp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'mrow'
nodes = mml.childNodes
assert nodes[0].childNodes[0].nodeValue == '1.0'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_functions():
mml_1 = mpp._print(sin(x))
assert mml_1.childNodes[0].childNodes[0
].nodeValue == 'sin'
assert mml_1.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'x'
mml_2 = mpp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'mrow'
assert mml_2.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
assert mml_2.childNodes[1].childNodes[1
].nodeName == 'mfenced'
assert mml_2.childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.childNodes[0].nodeName == 'mfrac'
assert mml_3.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '∂'
assert mml_3.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'cos'
def test_print_derivative():
f = Function('f')
d = Derivative(f(x, y, z), x, z, x, z, z, y)
assert mathml(d) == \
'<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>'
assert mathml(d, printer='presentation') == \
'<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>'
def test_presentation_mathml_limits():
lim_fun = sin(x)/x
mml_1 = mpp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'munder'
assert mml_1.childNodes[0].childNodes[0
].childNodes[0].nodeValue == 'lim'
assert mml_1.childNodes[0].childNodes[1
].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml_1.childNodes[0].childNodes[1
].childNodes[1].childNodes[0
].nodeValue == '→'
assert mml_1.childNodes[0].childNodes[1
].childNodes[2].childNodes[0
].nodeValue == '0'
def test_presentation_mathml_integrals():
assert mpp.doprint(Integral(x, (x, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(log(x), x)) == \
'<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y, x, y)) == \
'<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
z, w = symbols('z w')
assert mpp.doprint(Integral(x*y*z, x, y, z)) == \
'<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\
'<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \
'<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\
'<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\
'<mi>x</mi><mo>⁢</mo><mi>y</mi>'\
'<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\
'<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\
'<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, (x, 0))) == \
'<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\
'<mi>x</mi></mrow>'
def test_presentation_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mpp._print(A)
assert mll_1.childNodes[0].nodeName == 'mtable'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_1.childNodes[0].childNodes) == 3
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1
assert mll_1.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mpp._print(B)
assert mll_2.childNodes[0].nodeName == 'mtable'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_2.childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[0].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[0].childNodes[1].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[0].childNodes[1].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[0].childNodes[2].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[0].childNodes[2].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '9'
def test_presentation_mathml_sums():
summand = x
mml_1 = mpp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'munderover'
assert len(mml_1.childNodes[0].childNodes) == 3
assert mml_1.childNodes[0].childNodes[0].childNodes[0
].nodeValue == '∑'
assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3
assert mml_1.childNodes[0].childNodes[2].childNodes[0
].nodeValue == '10'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_add():
mml = mpp._print(x**5 - x**4 + x)
assert len(mml.childNodes) == 5
assert mml.childNodes[0].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0
].nodeValue == '5'
assert mml.childNodes[1].childNodes[0].nodeValue == '-'
assert mml.childNodes[2].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[2].childNodes[1].childNodes[0
].nodeValue == '4'
assert mml.childNodes[3].childNodes[0].nodeValue == '+'
assert mml.childNodes[4].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_Rational():
mml_1 = mpp._print(Rational(1, 1))
assert mml_1.nodeName == 'mn'
mml_2 = mpp._print(Rational(2, 5))
assert mml_2.nodeName == 'mfrac'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '2'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '5'
def test_presentation_mathml_constants():
mml = mpp._print(I)
assert mml.childNodes[0].nodeValue == 'ⅈ'
mml = mpp._print(E)
assert mml.childNodes[0].nodeValue == 'ⅇ'
mml = mpp._print(oo)
assert mml.childNodes[0].nodeValue == '∞'
mml = mpp._print(pi)
assert mml.childNodes[0].nodeValue == 'π'
assert mathml(GoldenRatio, printer='presentation') == '<mi>Φ</mi>'
assert mathml(zoo, printer='presentation') == \
'<mover><mo>∞</mo><mo>~</mo></mover>'
assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>'
def test_presentation_mathml_trig():
mml = mpp._print(sin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sin'
mml = mpp._print(cos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cos'
mml = mpp._print(tan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tan'
mml = mpp._print(asin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin'
mml = mpp._print(acos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos'
mml = mpp._print(atan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan'
mml = mpp._print(sinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh'
mml = mpp._print(cosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh'
mml = mpp._print(tanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh'
mml = mpp._print(asinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh'
mml = mpp._print(atanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh'
mml = mpp._print(acosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh'
def test_presentation_mathml_relational():
mml_1 = mpp._print(Eq(x, 1))
assert len(mml_1.childNodes) == 3
assert mml_1.childNodes[0].nodeName == 'mi'
assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[1].nodeName == 'mo'
assert mml_1.childNodes[1].childNodes[0].nodeValue == '='
assert mml_1.childNodes[2].nodeName == 'mn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(Ne(1, x))
assert len(mml_2.childNodes) == 3
assert mml_2.childNodes[0].nodeName == 'mn'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[1].nodeName == 'mo'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠'
assert mml_2.childNodes[2].nodeName == 'mi'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mpp._print(Ge(1, x))
assert len(mml_3.childNodes) == 3
assert mml_3.childNodes[0].nodeName == 'mn'
assert mml_3.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[1].nodeName == 'mo'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥'
assert mml_3.childNodes[2].nodeName == 'mi'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mpp._print(Lt(1, x))
assert len(mml_4.childNodes) == 3
assert mml_4.childNodes[0].nodeName == 'mn'
assert mml_4.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[1].nodeName == 'mo'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '<'
assert mml_4.childNodes[2].nodeName == 'mi'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_symbol():
mml = mpp._print(x)
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mpp._print(Symbol("x^2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x__2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x_2"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x^3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x__3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x_2_a"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x^2^a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x__2__a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
def test_presentation_mathml_greek():
mml = mpp._print(Symbol('alpha'))
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>'
assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>'
assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>'
assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>'
assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>'
assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>'
assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>'
assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>'
assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>'
assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>'
assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>'
assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>'
assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>'
assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>'
assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>'
assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>'
assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>'
assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>'
assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>'
assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>'
assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>'
assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>'
assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>'
assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>'
assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>'
assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>'
assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>'
assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>'
assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>'
assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>'
assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>'
assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>'
assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>'
assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>'
assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>'
assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>'
assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>'
assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>'
assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>'
assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>'
assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>'
assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>'
assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>'
assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>'
assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>'
assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>'
assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>'
assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>'
assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>'
def test_presentation_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLPresentationPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4'
mp = MathMLPresentationPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3'
def test_print_intervals():
a = Symbol('a', real=True)
assert mpp.doprint(Interval(0, a)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, False)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, False)) == \
'<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, True)) == \
'<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, True)) == \
'<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
def test_print_tuples():
assert mpp.doprint(Tuple(0,)) == \
'<mrow><mfenced><mn>0</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\
'</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>'
def test_print_re_im():
assert mpp.doprint(re(x)) == \
'<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(im(x)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(re(x + 1)) == \
'<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(im(x + 1)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_Abs():
assert mpp.doprint(Abs(x)) == \
'<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Abs(x + 1)) == \
'<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>'
def test_print_Determinant():
assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \
'<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>'
def test_presentation_settings():
raises(TypeError, lambda: mathml(x, printer='presentation',
method="garbage"))
def test_toprettyxml_hooking():
# test that the patch doesn't influence the behavior of the standard
# library
import xml.dom.minidom
doc1 = xml.dom.minidom.parseString(
"<apply><plus/><ci>x</ci><cn>1</cn></apply>")
doc2 = xml.dom.minidom.parseString(
"<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>")
prettyxml_old1 = doc1.toprettyxml()
prettyxml_old2 = doc2.toprettyxml()
mp.apply_patch()
mp.restore_patch()
assert prettyxml_old1 == doc1.toprettyxml()
assert prettyxml_old2 == doc2.toprettyxml()
def test_print_domains():
from sympy import Complexes, Integers, Naturals, Naturals0, Reals
assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>'
assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>'
assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>'
assert mpp.doprint(Naturals0) == \
'<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>'
assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>'
def test_print_expression_with_minus():
assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>'
assert mpp.doprint(-x/y) == \
'<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>'
assert mpp.doprint(-Rational(1, 2)) == \
'<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>'
def test_print_AssocOp():
from sympy.core.operations import AssocOp
class TestAssocOp(AssocOp):
identity = 0
expr = TestAssocOp(1, 2)
mpp.doprint(expr) == \
'<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>'
def test_print_basic():
expr = Basic(1, 2)
assert mpp.doprint(expr) == \
'<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>'
assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>'
def test_mat_delim_print():
expr = Matrix([[1, 2], [3, 4]])
assert mathml(expr, printer='presentation', mat_delim='[') == \
'<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\
'<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\
'</mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='(') == \
'<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\
'</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='') == \
'<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\
'<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>'
def test_ln_notation_print():
expr = log(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=False) == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=True) == \
'<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mul_symbol_print():
expr = x * y
assert mathml(expr, printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol=None) == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='dot') == \
'<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='ldot') == \
'<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='times') == \
'<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>'
def test_print_lerchphi():
assert mpp.doprint(lerchphi(1, 2, 3)) == \
'<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>'
def test_print_polylog():
assert mp.doprint(polylog(x, y)) == \
'<apply><polylog/><ci>x</ci><ci>y</ci></apply>'
assert mpp.doprint(polylog(x, y)) == \
'<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
def test_print_set_frozenset():
f = frozenset({1, 5, 3})
assert mpp.doprint(f) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>'
s = set({1, 2, 3})
assert mpp.doprint(s) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
def test_print_FiniteSet():
f1 = FiniteSet(x, 1, 3)
assert mpp.doprint(f1) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>'
def test_print_LambertW():
assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_EmptySet():
assert mpp.doprint(EmptySet()) == '<mo>∅</mo>'
def test_print_UniversalSet():
assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>'
def test_print_spaces():
assert mpp.doprint(HilbertSpace()) == '<mi>ℋ</mi>'
assert mpp.doprint(ComplexSpace(2)) == '<msup>𝒞<mn>2</mn></msup>'
assert mpp.doprint(FockSpace()) == '<mi>ℱ</mi>'
def test_print_constants():
assert mpp.doprint(hbar) == '<mi>ℏ</mi>'
assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>'
assert mpp.doprint(EulerGamma) == '<mi>γ</mi>'
def test_print_Contains():
assert mpp.doprint(Contains(x, S.Naturals)) == \
'<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></mrow>'
def test_print_Dagger():
assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>†</msup>'
def test_print_SetOp():
f1 = FiniteSet(x, 1, 3)
f2 = FiniteSet(y, 2, 4)
assert mpp.doprint(Union(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Intersection(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Complement(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(SymmetricDifference(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
def test_print_logic():
assert mpp.doprint(And(x, y)) == \
'<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>'
assert mpp.doprint(Or(x, y)) == \
'<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>'
assert mpp.doprint(Xor(x, y)) == \
'<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>'
assert mpp.doprint(Implies(x, y)) == \
'<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>'
assert mpp.doprint(Equivalent(x, y)) == \
'<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>'
assert mpp.doprint(And(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\
'</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>'
assert mpp.doprint(Or(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\
'<mn>3</mn></mrow></mrow></mfenced></mrow>'
assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>'
assert mpp.doprint(Not(And(x, y))) == \
'<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\
'<mi>y</mi></mrow></mfenced></mrow>'
def test_root_notation_print():
assert mathml(x**(S(1)/3), printer='presentation') == \
'<mroot><mi>x</mi><mn>3</mn></mroot>'
assert mathml(x**(S(1)/3), printer='presentation', root_notation=False) ==\
'<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>'
assert mathml(x**(S(1)/3), printer='content') == \
'<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>'
assert mathml(x**(S(1)/3), printer='content', root_notation=False) == \
'<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>'
assert mathml(x**(-S(1)/3), printer='presentation') == \
'<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>'
assert mathml(x**(-S(1)/3), printer='presentation', root_notation=False) \
== '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>'
def test_fold_frac_powers_print():
expr = x ** Rational(5, 2)
assert mathml(expr, printer='presentation') == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=True) == \
'<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=False) == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
def test_fold_short_frac_print():
expr = Rational(2, 5)
assert mathml(expr, printer='presentation') == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=True) == \
'<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=False) == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
def test_print_factorials():
assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>'
assert mpp.doprint(factorial(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>'
assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>'
assert mpp.doprint(factorial2(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>'
assert mpp.doprint(binomial(x, y)) == \
'<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>'
assert mpp.doprint(binomial(4, x + y)) == \
'<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\
'<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>'
def test_print_floor():
expr = floor(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>'
def test_print_ceiling():
expr = ceiling(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>'
def test_print_Lambda():
expr = Lambda(x, x+1)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow></mfenced>'
expr = Lambda((x, y), x + y)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\
'<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>'
def test_print_conjugate():
assert mpp.doprint(conjugate(x)) == \
'<menclose notation="top"><mi>x</mi></menclose>'
assert mpp.doprint(conjugate(x + 1)) == \
'<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>'
def test_print_AccumBounds():
a = Symbol('a', real=True)
assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>'
assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>'
assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>'
def test_print_Float():
assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>'
assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>'
assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>'
def test_print_different_functions():
assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_builtins():
assert mpp.doprint(None) == '<mi>None</mi>'
assert mpp.doprint(true) == '<mi>True</mi>'
assert mpp.doprint(false) == '<mi>False</mi>'
def test_mathml_Range():
assert mpp.doprint(Range(1, 51)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>'
assert mpp.doprint(Range(1, 4)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
assert mpp.doprint(Range(0, 3, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, 30, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>'
assert mpp.doprint(Range(30, 1, -1)) == \
'<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\
'<mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, oo, 2)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>'
assert mpp.doprint(Range(oo, -2, -2)) == \
'<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>'
assert mpp.doprint(Range(-2, -oo, -1)) == \
'<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>'
def test_print_exp():
assert mpp.doprint(exp(x)) == \
'<msup><mi>ⅇ</mi><mi>x</mi></msup>'
assert mpp.doprint(exp(1) + exp(2)) == \
'<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>'
def test_print_MinMax():
assert mpp.doprint(Min(x, y)) == \
'<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Min(x, 2, x**3)) == \
'<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
assert mpp.doprint(Max(x, y)) == \
'<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Max(x, 2, x**3)) == \
'<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
def test_mathml_presentation_numbers():
n = Symbol('n')
assert mathml(catalan(n), printer='presentation') == \
'<msub><mi>C</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(bell(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(euler(n), printer='presentation') == \
'<msub><mi>E</mi><mi>n</mi></msub>'
assert mathml(fibonacci(n), printer='presentation') == \
'<msub><mi>F</mi><mi>n</mi></msub>'
assert mathml(lucas(n), printer='presentation') == \
'<msub><mi>L</mi><mi>n</mi></msub>'
assert mathml(tribonacci(n), printer='presentation') == \
'<msub><mi>T</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(bell(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(euler(n, x), printer='presentation') == \
'<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(fibonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(tribonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_presentation_mathieu():
assert mathml(mathieuc(x, y, z), printer='presentation') == \
'<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieus(x, y, z), printer='presentation') == \
'<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieucprime(x, y, z), printer='presentation') == \
'<mrow><mi>C′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieusprime(x, y, z), printer='presentation') == \
'<mrow><mi>S′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_mathml_presentation_stieltjes():
assert mathml(stieltjes(n), printer='presentation') == \
'<msub><mi>γ</mi><mi>n</mi></msub>'
assert mathml(stieltjes(n, x), printer='presentation') == \
'<mrow><msub><mi>γ</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_matrix_symbol():
A = MatrixSymbol('A', 1, 2)
assert mpp.doprint(A) == '<mi>A</mi>'
assert mp.doprint(A) == '<ci>A</ci>'
assert mathml(A, printer='presentation', mat_symbol_style="bold") == \
'<mi mathvariant="bold">A</mi>'
# No effect in content printer
assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>'
def test_print_hadamard():
from sympy.matrices.expressions import HadamardProduct
from sympy.matrices.expressions import Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi>' \
'<mo>∘</mo>' \
'<msup><mi>Y</mi><mn>2</mn></msup>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \
'<mrow>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>⁢</mo><mi>Y</mi>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi><mo>∘</mo>' \
'<mi>Y</mi><mo>∘</mo>' \
'<mi>Y</mi>' \
'</mrow>'
assert mathml(
Transpose(HadamardProduct(X, Y)), printer="presentation") == \
'<msup>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>T</mo>' \
'</msup>'
def test_print_random_symbol():
R = RandomSymbol(Symbol('R'))
assert mpp.doprint(R) == '<mi>R</mi>'
assert mp.doprint(R) == '<ci>R</ci>'
def test_print_IndexedBase():
assert mathml(IndexedBase(a)[b], printer='presentation') == \
'<msub><mi>a</mi><mi>b</mi></msub>'
assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \
'<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>'
assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e),
printer='presentation') == \
'<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\
'</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>'
def test_print_Indexed():
assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>'
assert mathml(IndexedBase(a/b), printer='presentation') == \
'<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>'
assert mathml(IndexedBase((a, b)), printer='presentation') == \
'<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>'
def test_print_MatrixElement():
i, j = symbols('i j')
A = MatrixSymbol('A', i, j)
assert mathml(A[0,0],printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>'
assert mathml(A[i,j], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>'
assert mathml(A[i*j,0], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>'
def test_print_Vector():
ACS = CoordSys3D('A')
assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\
'A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\
'<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Gradient(ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Gradient(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Gradient(x*ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \
'<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>'
assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\
'<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Laplacian(ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Laplacian(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∆</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Laplacian(x*ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
def test_print_elliptic_f():
assert mathml(elliptic_f(x, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_e():
assert mathml(elliptic_e(x), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>'
assert mathml(elliptic_e(x, y), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_pi():
assert mathml(elliptic_pi(x, y), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_print_Ei():
assert mathml(Ei(x), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(Ei(x**y), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>'
def test_print_expint():
assert mathml(expint(x, y), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>'
def test_print_jacobi():
assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_gegenbauer():
assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevt():
assert mathml(chebyshevt(n, x), printer = 'presentation') == \
'<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevu():
assert mathml(chebyshevu(n, x), printer = 'presentation') == \
'<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_legendre():
assert mathml(legendre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_legendre():
assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_laguerre():
assert mathml(laguerre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_laguerre():
assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_hermite():
assert mathml(hermite(n, x), printer = 'presentation') == \
'<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_SingularityFunction():
assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>'
assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>'
assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \
'<mn>4</mn></msup>'
assert mathml(SingularityFunction(x, a, n), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \
'<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \
'<mi>n</mi></msup>'
assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>'
assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>'
def test_mathml_matrix_functions():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(Adjoint(X), printer='presentation') == \
'<msup><mi>X</mi><mo>†</mo></msup>'
assert mathml(Adjoint(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \
'<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \
'<mi>Y</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X*Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \
'<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \
'<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \
'</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X**2), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X)**2, printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>'
assert mathml(Adjoint(Inverse(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Inverse(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>'
assert mathml(Adjoint(Transpose(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>'
assert mathml(Transpose(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \
'<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \
'<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(X), printer='presentation') == \
'<msup><mi>X</mi><mo>T</mo></msup>'
assert mathml(Transpose(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
def test_mathml_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>'
assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>'
assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>𝟙</mn>'
|
4a411f096118c91e78e370c0a24f9f3ffb96b7f4b709f6c4d9a7f71cbf064894 | from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio,
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le,
Lt, Gt, Ge)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
sinh, cosh, tanh, asin, acos, acosh, Max, Min)
from sympy.utilities.pytest import raises
from sympy.printing.jscode import JavascriptCodePrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy import jscode
x, y, z = symbols('x,y,z')
def test_printmethod():
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_sqrt():
assert jscode(sqrt(x)) == "Math.sqrt(x)"
assert jscode(x**0.5) == "Math.sqrt(x)"
assert jscode(x**(S(1)/3)) == "Math.cbrt(x)"
def test_jscode_Pow():
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(x**3) == "Math.pow(x, 3)"
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))"
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)"
assert jscode(x**-1.0) == '1/x'
def test_jscode_constants_mathh():
assert jscode(exp(1)) == "Math.E"
assert jscode(pi) == "Math.PI"
assert jscode(oo) == "Number.POSITIVE_INFINITY"
assert jscode(-oo) == "Number.NEGATIVE_INFINITY"
def test_jscode_constants_other():
assert jscode(
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert jscode(
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_jscode_Rational():
assert jscode(Rational(3, 7)) == "3/7"
assert jscode(Rational(18, 9)) == "2"
assert jscode(Rational(3, -7)) == "-3/7"
assert jscode(Rational(-3, -7)) == "3/7"
def test_Relational():
assert jscode(Eq(x, y)) == "x == y"
assert jscode(Ne(x, y)) == "x != y"
assert jscode(Le(x, y)) == "x <= y"
assert jscode(Lt(x, y)) == "x < y"
assert jscode(Gt(x, y)) == "x > y"
assert jscode(Ge(x, y)) == "x >= y"
def test_jscode_Integer():
assert jscode(Integer(67)) == "67"
assert jscode(Integer(-1)) == "-1"
def test_jscode_functions():
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
def test_jscode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert jscode(g(A[i]), assign_to=A[i]) == (
"for (var i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_jscode_exceptions():
assert jscode(ceiling(x)) == "Math.ceil(x)"
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_boolean():
assert jscode(x & y) == "x && y"
assert jscode(x | y) == "x || y"
assert jscode(~x) == "!x"
assert jscode(x & y & z) == "x && y && z"
assert jscode(x | y | z) == "x || y || z"
assert jscode((x & y) | z) == "z || x && y"
assert jscode((x | y) & z) == "z && (x || y)"
def test_jscode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
p = jscode(expr)
s = \
"""\
((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
assert jscode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = Math.pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: jscode(expr))
def test_jscode_Piecewise_deep():
p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
s = \
"""\
2*((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
def test_jscode_settings():
raises(TypeError, lambda: jscode(sin(x), method="garbage"))
def test_jscode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = JavascriptCodePrinter()
p._not_c = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
assert p._not_c == set()
def test_jscode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = jscode(x[i], assign_to=y[i])
assert code == expected
def test_jscode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (var i=0; i<m; i++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = jscode(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert jscode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = Math.sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert jscode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + Math.sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert jscode(m, M) == (
"M[0] = Math.sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = Math.cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = Math.sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(jscode(A[0, 0]) == "A[0]")
assert(jscode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(jscode(F) == "(A - B)[0]")
|
96bfad2d9adb05b9525e34d1122fb8101beb7e184ffcabcb45a83d42be7c1019 | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple,
Derivative, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.integrals import Integral
from sympy.concrete import Sum
from sympy.functions import (exp, sin, cos, fresnelc, fresnels, conjugate, Max,
Min, gamma, polygamma, loggamma, erf, erfi, erfc,
erf2, expint, erfinv, erfcinv, Ei, Si, Ci, li,
Shi, Chi, uppergamma, beta, subfactorial, erf2inv,
factorial, factorial2, catalan, RisingFactorial,
FallingFactorial, harmonic, atan2, sec, acsc,
hermite, laguerre, assoc_laguerre, jacobi,
gegenbauer, chebyshevt, chebyshevu, legendre,
assoc_legendre, Li, LambertW)
from sympy import mathematica_code as mcode
x, y, z, w = symbols('x,y,z,w')
f = Function('f')
def test_Integer():
assert mcode(Integer(67)) == "67"
assert mcode(Integer(-1)) == "-1"
def test_Rational():
assert mcode(Rational(3, 7)) == "3/7"
assert mcode(Rational(18, 9)) == "2"
assert mcode(Rational(3, -7)) == "-3/7"
assert mcode(Rational(-3, -7)) == "3/7"
assert mcode(x + Rational(3, 7)) == "x + 3/7"
assert mcode(Rational(3, 7)*x) == "(3/7)*x"
def test_Relational():
assert mcode(Eq(x, y)) == "x == y"
assert mcode(Ne(x, y)) == "x != y"
assert mcode(Le(x, y)) == "x <= y"
assert mcode(Lt(x, y)) == "x < y"
assert mcode(Gt(x, y)) == "x > y"
assert mcode(Ge(x, y)) == "x >= y"
def test_Function():
assert mcode(f(x, y, z)) == "f[x, y, z]"
assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]"
assert mcode(atan2(x, y)) == "ArcTan[x, y]"
assert mcode(conjugate(x)) == "Conjugate[x]"
assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]"
assert mcode(fresnelc(x)) == "FresnelC[x]"
assert mcode(fresnels(x)) == "FresnelS[x]"
assert mcode(gamma(x)) == "Gamma[x]"
assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
assert mcode(loggamma(x)) == "LogGamma[x]"
assert mcode(erf(x)) == "Erf[x]"
assert mcode(erfc(x)) == "Erfc[x]"
assert mcode(erfi(x)) == "Erfi[x]"
assert mcode(erf2(x, y)) == "Erf[x, y]"
assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
assert mcode(erfcinv(x)) == "InverseErfc[x]"
assert mcode(erfinv(x)) == "InverseErf[x]"
assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
assert mcode(Ei(x)) == "ExpIntegralEi[x]"
assert mcode(Ci(x)) == "CosIntegral[x]"
assert mcode(li(x)) == "LogIntegral[x]"
assert mcode(Si(x)) == "SinIntegral[x]"
assert mcode(Shi(x)) == "SinhIntegral[x]"
assert mcode(Chi(x)) == "CoshIntegral[x]"
assert mcode(beta(x, y)) == "Beta[x, y]"
assert mcode(factorial(x)) == "Factorial[x]"
assert mcode(factorial2(x)) == "Factorial2[x]"
assert mcode(subfactorial(x)) == "Subfactorial[x]"
assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
assert mcode(catalan(x)) == "CatalanNumber[x]"
assert mcode(harmonic(x)) == "HarmonicNumber[x]"
assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]"
assert mcode(LambertW(x)) == "ProductLog[x]"
def test_special_polynomials():
assert mcode(hermite(x, y)) == "HermiteH[x, y]"
assert mcode(laguerre(x, y)) == "LaguerreL[x, y]"
assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]"
assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]"
assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]"
assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]"
assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]"
assert mcode(legendre(x, y)) == "LegendreP[x, y]"
assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]"
def test_Pow():
assert mcode(x**3) == "x^3"
assert mcode(x**(y**3)) == "x^(y^3)"
assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*f[x])^(-x + y^x)/(x^2 + y)"
assert mcode(x**-1.0) == 'x^(-1.0)'
assert mcode(x**Rational(2, 3)) == 'x^(2/3)'
def test_Mul():
A, B, C, D = symbols('A B C D', commutative=False)
assert mcode(x*y*z) == "x*y*z"
assert mcode(x*y*A) == "x*y*A"
assert mcode(x*y*A*B) == "x*y*A**B"
assert mcode(x*y*A*B*C) == "x*y*A**B**C"
assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A"
def test_constants():
assert mcode(S.Zero) == "0"
assert mcode(S.One) == "1"
assert mcode(S.NegativeOne) == "-1"
assert mcode(S.Half) == "1/2"
assert mcode(S.ImaginaryUnit) == "I"
assert mcode(oo) == "Infinity"
assert mcode(S.NegativeInfinity) == "-Infinity"
assert mcode(S.ComplexInfinity) == "ComplexInfinity"
assert mcode(S.NaN) == "Indeterminate"
assert mcode(S.Exp1) == "E"
assert mcode(pi) == "Pi"
assert mcode(S.GoldenRatio) == "GoldenRatio"
assert mcode(S.TribonacciConstant) == \
"(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
"(1/3)*(3*33^(1/2) + 19)^(1/3))"
assert mcode(2*S.TribonacciConstant) == \
"2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
"(1/3)*(3*33^(1/2) + 19)^(1/3))"
assert mcode(S.EulerGamma) == "EulerGamma"
assert mcode(S.Catalan) == "Catalan"
def test_containers():
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
assert mcode([1]) == "{1}"
assert mcode((1,)) == "{1}"
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
def test_matrices():
from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \
ImmutableDenseMatrix, ImmutableSparseMatrix
A = MutableDenseMatrix(
[[1, -1, 0, 0],
[0, 1, -1, 0],
[0, 0, 1, -1],
[0, 0, 0, 1]]
)
B = MutableSparseMatrix(A)
C = ImmutableDenseMatrix(A)
D = ImmutableSparseMatrix(A)
assert mcode(C) == mcode(A) == \
"{{1, -1, 0, 0}, " \
"{0, 1, -1, 0}, " \
"{0, 0, 1, -1}, " \
"{0, 0, 0, 1}}"
assert mcode(D) == mcode(B) == \
"SparseArray[{" \
"{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \
"{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \
"}, {4, 4}]"
# Trivial cases of matrices
assert mcode(MutableDenseMatrix(0, 0, [])) == '{}'
assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]'
assert mcode(MutableDenseMatrix(0, 3, [])) == '{}'
assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]'
assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}'
assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]'
def test_NDArray():
from sympy.tensor.array import (
MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray)
example = MutableDenseNDimArray(
[[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]]]
)
assert mcode(example) == \
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
example = ImmutableDenseNDimArray(example)
assert mcode(example) == \
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
example = MutableSparseNDimArray(example)
assert mcode(example) == \
"SparseArray[{" \
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
"}, {2, 3, 4}]"
example = ImmutableSparseNDimArray(example)
assert mcode(example) == \
"SparseArray[{" \
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
"}, {2, 3, 4}]"
def test_Integral():
assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]"
assert mcode(Integral(exp(-x**2 - y**2),
(x, -oo, oo),
(y, -oo, oo))) == \
"Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
"{y, -Infinity, Infinity}]]"
def test_Derivative():
assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]"
assert mcode(Derivative(x, x)) == "Hold[D[x, x]]"
assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]"
assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]"
assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]"
def test_Sum():
assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]"
assert mcode(Sum(exp(-x**2 - y**2),
(x, -oo, oo),
(y, -oo, oo))) == \
"Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
"{y, -Infinity, Infinity}]]"
def test_comment():
from sympy.printing.mathematica import MCodePrinter
assert MCodePrinter()._get_comment("Hello World") == \
"(* Hello World *)"
def test_userfuncs():
# Dictionary mutation test
some_function = symbols("some_function", cls=Function)
my_user_functions = {"some_function": "SomeFunction"}
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeFunction[z]'
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeFunction[z]'
# List argument test
my_user_functions = \
{"some_function": [(lambda x: True, "SomeOtherFunction")]}
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeOtherFunction[z]'
|
c5e5b578248530e711497009a09ed5bc6228816641596e3fbc27d43d4a8a2ea6 | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, EulerGamma, GoldenRatio, Catalan,
Lambda, Mul, Pow, Mod, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.functions import (arg, atan2, bernoulli, beta, ceiling, chebyshevu,
chebyshevt, conjugate, DiracDelta, exp, expint,
factorial, floor, harmonic, Heaviside, im,
laguerre, LambertW, log, Max, Min, Piecewise,
polylog, re, RisingFactorial, sign, sinc, sqrt,
zeta, binomial, legendre)
from sympy.functions import (sin, cos, tan, cot, sec, csc, asin, acos, acot,
atan, asec, acsc, sinh, cosh, tanh, coth, csch,
sech, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.utilities.pytest import raises, XFAIL
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
besselk, hankel1, hankel2, airyai,
airybi, airyaiprime, airybiprime)
from sympy.functions.special.gamma_functions import (gamma, lowergamma,
uppergamma, loggamma,
polygamma)
from sympy.functions.special.error_functions import (Chi, Ci, erf, erfc, erfi,
erfcinv, erfinv, fresnelc,
fresnels, li, Shi, Si, Li,
erf2)
from sympy import octave_code
from sympy import octave_code as mcode
x, y, z = symbols('x,y,z')
def test_Integer():
assert mcode(Integer(67)) == "67"
assert mcode(Integer(-1)) == "-1"
def test_Rational():
assert mcode(Rational(3, 7)) == "3/7"
assert mcode(Rational(18, 9)) == "2"
assert mcode(Rational(3, -7)) == "-3/7"
assert mcode(Rational(-3, -7)) == "3/7"
assert mcode(x + Rational(3, 7)) == "x + 3/7"
assert mcode(Rational(3, 7)*x) == "3*x/7"
def test_Relational():
assert mcode(Eq(x, y)) == "x == y"
assert mcode(Ne(x, y)) == "x != y"
assert mcode(Le(x, y)) == "x <= y"
assert mcode(Lt(x, y)) == "x < y"
assert mcode(Gt(x, y)) == "x > y"
assert mcode(Ge(x, y)) == "x >= y"
def test_Function():
assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
assert mcode(sign(x)) == "sign(x)"
assert mcode(exp(x)) == "exp(x)"
assert mcode(log(x)) == "log(x)"
assert mcode(factorial(x)) == "factorial(x)"
assert mcode(floor(x)) == "floor(x)"
assert mcode(atan2(y, x)) == "atan2(y, x)"
assert mcode(beta(x, y)) == 'beta(x, y)'
assert mcode(polylog(x, y)) == 'polylog(x, y)'
assert mcode(harmonic(x)) == 'harmonic(x)'
assert mcode(bernoulli(x)) == "bernoulli(x)"
assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
assert mcode(legendre(x, y)) == "legendre(x, y)"
def test_Function_change_name():
assert mcode(abs(x)) == "abs(x)"
assert mcode(ceiling(x)) == "ceil(x)"
assert mcode(arg(x)) == "angle(x)"
assert mcode(im(x)) == "imag(x)"
assert mcode(re(x)) == "real(x)"
assert mcode(conjugate(x)) == "conj(x)"
assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
assert mcode(Chi(x)) == "coshint(x)"
assert mcode(Shi(x)) == "sinhint(x)"
assert mcode(Ci(x)) == "cosint(x)"
assert mcode(Si(x)) == "sinint(x)"
assert mcode(li(x)) == "logint(x)"
assert mcode(loggamma(x)) == "gammaln(x)"
assert mcode(polygamma(x, y)) == "psi(x, y)"
assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
assert mcode(DiracDelta(x)) == "dirac(x)"
assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
assert mcode(Heaviside(x)) == "heaviside(x)"
assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
assert mcode(binomial(x, y)) == "bincoeff(x, y)"
assert mcode(Mod(x, y)) == "mod(x, y)"
def test_minmax():
assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)"
assert mcode(Max(x, y, z)) == "max(x, max(y, z))"
assert mcode(Min(x, y, z)) == "min(x, min(y, z))"
def test_Pow():
assert mcode(x**3) == "x.^3"
assert mcode(x**(y**3)) == "x.^(y.^3)"
assert mcode(x**Rational(2, 3)) == 'x.^(2/3)'
g = implemented_function('g', Lambda(x, 2*x))
assert mcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
# For issue 14160
assert mcode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x./(y.*y)'
def test_basic_ops():
assert mcode(x*y) == "x.*y"
assert mcode(x + y) == "x + y"
assert mcode(x - y) == "x - y"
assert mcode(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert mcode(1/x) == '1./x'
assert mcode(x**-1) == mcode(x**-1.0) == '1./x'
assert mcode(1/sqrt(x)) == '1./sqrt(x)'
assert mcode(x**-S.Half) == mcode(x**-0.5) == '1./sqrt(x)'
assert mcode(sqrt(x)) == 'sqrt(x)'
assert mcode(x**S.Half) == mcode(x**0.5) == 'sqrt(x)'
assert mcode(1/pi) == '1/pi'
assert mcode(pi**-1) == mcode(pi**-1.0) == '1/pi'
assert mcode(pi**-0.5) == '1/sqrt(pi)'
def test_mix_number_mult_symbols():
assert mcode(3*x) == "3*x"
assert mcode(pi*x) == "pi*x"
assert mcode(3/x) == "3./x"
assert mcode(pi/x) == "pi./x"
assert mcode(x/3) == "x/3"
assert mcode(x/pi) == "x/pi"
assert mcode(x*y) == "x.*y"
assert mcode(3*x*y) == "3*x.*y"
assert mcode(3*pi*x*y) == "3*pi*x.*y"
assert mcode(x/y) == "x./y"
assert mcode(3*x/y) == "3*x./y"
assert mcode(x*y/z) == "x.*y./z"
assert mcode(x/y*z) == "x.*z./y"
assert mcode(1/x/y) == "1./(x.*y)"
assert mcode(2*pi*x/y/z) == "2*pi*x./(y.*z)"
assert mcode(3*pi/x) == "3*pi./x"
assert mcode(S(3)/5) == "3/5"
assert mcode(S(3)/5*x) == "3*x/5"
assert mcode(x/y/z) == "x./(y.*z)"
assert mcode((x+y)/z) == "(x + y)./z"
assert mcode((x+y)/(z+x)) == "(x + y)./(x + z)"
assert mcode((x+y)/EulerGamma) == "(x + y)/%s" % EulerGamma.evalf(17)
assert mcode(x/3/pi) == "x/(3*pi)"
assert mcode(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_mix_number_pow_symbols():
assert mcode(pi**3) == 'pi^3'
assert mcode(x**2) == 'x.^2'
assert mcode(x**(pi**3)) == 'x.^(pi^3)'
assert mcode(x**y) == 'x.^y'
assert mcode(x**(y**z)) == 'x.^(y.^z)'
assert mcode((x**y)**z) == '(x.^y).^z'
def test_imag():
I = S('I')
assert mcode(I) == "1i"
assert mcode(5*I) == "5i"
assert mcode((S(3)/2)*I) == "3*1i/2"
assert mcode(3+4*I) == "3 + 4i"
assert mcode(sqrt(3)*I) == "sqrt(3)*1i"
def test_constants():
assert mcode(pi) == "pi"
assert mcode(oo) == "inf"
assert mcode(-oo) == "-inf"
assert mcode(S.NegativeInfinity) == "-inf"
assert mcode(S.NaN) == "NaN"
assert mcode(S.Exp1) == "exp(1)"
assert mcode(exp(1)) == "exp(1)"
def test_constants_other():
assert mcode(2*GoldenRatio) == "2*(1+sqrt(5))/2"
assert mcode(2*Catalan) == "2*%s" % Catalan.evalf(17)
assert mcode(2*EulerGamma) == "2*%s" % EulerGamma.evalf(17)
def test_boolean():
assert mcode(x & y) == "x & y"
assert mcode(x | y) == "x | y"
assert mcode(~x) == "~x"
assert mcode(x & y & z) == "x & y & z"
assert mcode(x | y | z) == "x | y | z"
assert mcode((x & y) | z) == "z | x & y"
assert mcode((x | y) & z) == "z & (x | y)"
def test_KroneckerDelta():
from sympy.functions import KroneckerDelta
assert mcode(KroneckerDelta(x, y)) == "double(x == y)"
assert mcode(KroneckerDelta(x, y + 1)) == "double(x == (y + 1))"
assert mcode(KroneckerDelta(2**x, y)) == "double((2.^x) == y)"
def test_Matrices():
assert mcode(Matrix(1, 1, [10])) == "10"
A = Matrix([[1, sin(x/2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]]);
expected = "[1 sin(x/2) abs(x); 0 1 pi; 0 exp(1) ceil(x)]"
assert mcode(A) == expected
# row and columns
assert mcode(A[:,0]) == "[1; 0; 0]"
assert mcode(A[0,:]) == "[1 sin(x/2) abs(x)]"
# empty matrices
assert mcode(Matrix(0, 0, [])) == '[]'
assert mcode(Matrix(0, 3, [])) == 'zeros(0, 3)'
# annoying to read but correct
assert mcode(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
assert mcode(A) == "[1 sin(2./x) 3*pi./(5*x)]"
assert mcode(A.T) == "[1; sin(2./x); 3*pi./(5*x)]"
@XFAIL
def test_Matrices_entries_not_hadamard():
# For Matrix with col >= 2, row >= 2, they need to be scalars
# FIXME: is it worth worrying about this? Its not wrong, just
# leave it user's responsibility to put scalar data for x.
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
"1 2 x*y]") # <- we give x.*y
assert mcode(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert mcode(A*B) == "A*B"
assert mcode(B*A) == "B*A"
assert mcode(2*A*B) == "2*A*B"
assert mcode(B*2*A) == "2*B*A"
assert mcode(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)"
assert mcode(A**(x**2)) == "A^(x.^2)"
assert mcode(A**3) == "A^3"
assert mcode(A**(S.Half)) == "A^(1/2)"
def test_MatrixSolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
assert mcode(MatrixSolve(A, x)) == "A \\ x"
def test_special_matrices():
assert mcode(6*Identity(3)) == "6*eye(3)"
def test_containers():
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
assert mcode([1]) == "{1}"
assert mcode((1,)) == "{1}"
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
assert mcode((1, x*y, (3, x**2))) == "{1, x.*y, {3, x.^2}}"
# scalar, matrix, empty matrix and empty list
assert mcode((1, eye(3), Matrix(0, 0, []), [])) == "{1, [1 0 0; 0 1 0; 0 0 1], [], {}}"
def test_octave_noninline():
source = mcode((x+y)/Catalan, assign_to='me', inline=False)
expected = (
"Catalan = %s;\n"
"me = (x + y)/Catalan;"
) % Catalan.evalf(17)
assert source == expected
def test_octave_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(expr, assign_to="r") == (
"r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));")
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x;\n"
"else\n"
" r = x.^2;\n"
"end")
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n"
"(x < 2).*(x.^3) + (~(x < 2)).*( ...\n"
"(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))")
assert mcode(expr) == expected
assert mcode(expr, assign_to="r") == "r = " + expected + ";"
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x.^2;\n"
"elseif (x < 2)\n"
" r = x.^3;\n"
"elseif (x < 3)\n"
" r = x.^4;\n"
"else\n"
" r = x.^5;\n"
"end")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: mcode(expr))
def test_octave_piecewise_times_const():
pw = Piecewise((x, x < 1), (x**2, True))
assert mcode(2*pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(pw/x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x"
assert mcode(pw/(x*y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)"
assert mcode(pw/3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3"
def test_octave_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert mcode(A, assign_to='a') == "a = [1 2 3];"
A = Matrix([[1, 2], [3, 4]])
assert mcode(A, assign_to='A') == "A = [1 2; 3 4];"
def test_octave_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert mcode(A, assign_to=B) == "B = [1 2 3];"
raises(ValueError, lambda: mcode(A, assign_to=x))
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_1x1():
A = Matrix([[3]])
B = MatrixSymbol('B', 1, 1)
C = MatrixSymbol('C', 1, 2)
assert mcode(A, assign_to=B) == "B = 3;"
# FIXME?
#assert mcode(A, assign_to=x) == "x = 3;"
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_elements():
A = Matrix([[x, 2, x*y]])
assert mcode(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2"
A = MatrixSymbol('AA', 1, 3)
assert mcode(A) == "AA"
assert mcode(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
"sin(AA(1, 2)) + AA(1, 1).^2 + AA(1, 3)"
assert mcode(sum(A)) == "AA(1, 1) + AA(1, 2) + AA(1, 3)"
def test_octave_boolean():
assert mcode(True) == "true"
assert mcode(S.true) == "true"
assert mcode(False) == "false"
assert mcode(S.false) == "false"
def test_octave_not_supported():
assert mcode(S.ComplexInfinity) == (
"% Not supported in Octave:\n"
"% ComplexInfinity\n"
"zoo"
)
f = Function('f')
assert mcode(f(x).diff(x)) == (
"% Not supported in Octave:\n"
"% Derivative\n"
"Derivative(f(x), x)"
)
def test_octave_not_supported_not_on_whitelist():
from sympy import assoc_laguerre
assert mcode(assoc_laguerre(x, y, z)) == (
"% Not supported in Octave:\n"
"% assoc_laguerre\n"
"assoc_laguerre(x, y, z)"
)
def test_octave_expint():
assert mcode(expint(1, x)) == "expint(x)"
assert mcode(expint(2, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(2, x)"
)
assert mcode(expint(y, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(y, x)"
)
def test_trick_indent_with_end_else_words():
# words starting with "end" or "else" do not confuse the indenter
t1 = S('endless');
t2 = S('elsewhere');
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
assert mcode(pw, inline=False) == (
"if (x < 0)\n"
" endless\n"
"elseif (x <= 1)\n"
" elsewhere\n"
"else\n"
" 1\n"
"end")
def test_haramard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
assert mcode(C) == "A.*B"
assert mcode(C*v) == "(A.*B)*v"
assert mcode(h*C*v) == "h*(A.*B)*v"
assert mcode(C*A) == "(A.*B)*A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert mcode(C*x*y) == "(x.*y)*(A.*B)"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10;
M[1, 2] = 20;
M[1, 3] = 22;
M[0, 3] = 30;
M[3, 0] = x*y;
assert mcode(M) == (
"sparse([4 2 3 1 2], [1 3 3 4 4], [x.*y 20 10 30 22], 5, 6)"
)
def test_sinc():
assert mcode(sinc(x)) == 'sinc(x/pi)'
assert mcode(sinc((x + 3))) == 'sinc((x + 3)/pi)'
assert mcode(sinc(pi*(x + 3))) == 'sinc(x + 3)'
def test_trigfun():
for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc,
sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth,
asech, acsch):
assert octave_code(f(x) == f.__name__ + '(x)')
def test_specfun():
n = Symbol('n')
for f in [besselj, bessely, besseli, besselk]:
assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
assert octave_code(f(x)) == f.__name__ + '(x)'
assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
assert octave_code(airyai(x)) == 'airy(0, x)'
assert octave_code(airyaiprime(x)) == 'airy(1, x)'
assert octave_code(airybi(x)) == 'airy(2, x)'
assert octave_code(airybiprime(x)) == 'airy(3, x)'
assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
assert octave_code(LambertW(x)) == 'lambertw(x)'
assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert mcode(A[0, 0]) == "A(1, 1)"
assert mcode(3 * A[0, 0]) == "3*A(1, 1)"
F = C[0, 0].subs(C, A - B)
assert mcode(F) == "(A - B)(1, 1)"
def test_zeta_printing_issue_14820():
assert octave_code(zeta(x)) == 'zeta(x)'
assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
def test_automatic_rewrite():
assert octave_code(Li(x)) == 'logint(x) - logint(2)'
assert octave_code(erf2(x, y)) == '-erf(x) + erf(y)'
|
f07866ba02a05bace2d0a362bb11a3d5f002a972faafef962ec230cf0d0ae218 | from sympy.core import (pi, symbols, Rational, Integer, GoldenRatio, EulerGamma,
Catalan, Lambda, Dummy, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.functions import Piecewise, sin, cos, Abs, exp, ceiling, sqrt
from sympy.utilities.pytest import raises
from sympy.printing.glsl import GLSLPrinter
from sympy.printing.str import StrPrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy.core import Tuple
from sympy import glsl_code
x, y, z = symbols('x,y,z')
def test_printmethod():
assert glsl_code(Abs(x)) == "abs(x)"
def test_print_without_operators():
assert glsl_code(x*y,use_operators = False) == 'mul(x, y)'
assert glsl_code(x**y+z,use_operators = False) == 'add(pow(x, y), z)'
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
assert glsl_code(x*(y+z**y**0.5),use_operators = False) == 'mul(x, add(y, pow(z, sqrt(y))))'
def test_glsl_code_sqrt():
assert glsl_code(sqrt(x)) == "sqrt(x)"
assert glsl_code(x**0.5) == "sqrt(x)"
assert glsl_code(sqrt(x)) == "sqrt(x)"
def test_glsl_code_Pow():
g = implemented_function('g', Lambda(x, 2*x))
assert glsl_code(x**3) == "pow(x, 3.0)"
assert glsl_code(x**(y**3)) == "pow(x, pow(y, 3.0))"
assert glsl_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2.0) + y)"
assert glsl_code(x**-1.0) == '1.0/x'
def test_glsl_code_Relational():
assert glsl_code(Eq(x, y)) == "x == y"
assert glsl_code(Ne(x, y)) == "x != y"
assert glsl_code(Le(x, y)) == "x <= y"
assert glsl_code(Lt(x, y)) == "x < y"
assert glsl_code(Gt(x, y)) == "x > y"
assert glsl_code(Ge(x, y)) == "x >= y"
def test_glsl_code_constants_mathh():
assert glsl_code(exp(1)) == "float E = 2.71828183;\nE"
assert glsl_code(pi) == "float pi = 3.14159265;\npi"
# assert glsl_code(oo) == "Number.POSITIVE_INFINITY"
# assert glsl_code(-oo) == "Number.NEGATIVE_INFINITY"
def test_glsl_code_constants_other():
assert glsl_code(2*GoldenRatio) == "float GoldenRatio = 1.61803399;\n2*GoldenRatio"
assert glsl_code(2*Catalan) == "float Catalan = 0.915965594;\n2*Catalan"
assert glsl_code(2*EulerGamma) == "float EulerGamma = 0.577215665;\n2*EulerGamma"
def test_glsl_code_Rational():
assert glsl_code(Rational(3, 7)) == "3.0/7.0"
assert glsl_code(Rational(18, 9)) == "2"
assert glsl_code(Rational(3, -7)) == "-3.0/7.0"
assert glsl_code(Rational(-3, -7)) == "3.0/7.0"
def test_glsl_code_Integer():
assert glsl_code(Integer(67)) == "67"
assert glsl_code(Integer(-1)) == "-1"
def test_glsl_code_functions():
assert glsl_code(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
def test_glsl_code_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert glsl_code(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert glsl_code(g(x)) == "float Catalan = 0.915965594;\n2*x/Catalan"
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert glsl_code(g(A[i]), assign_to=A[i]) == (
"for (int i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_glsl_code_exceptions():
assert glsl_code(ceiling(x)) == "ceil(x)"
assert glsl_code(Abs(x)) == "abs(x)"
def test_glsl_code_boolean():
assert glsl_code(x & y) == "x && y"
assert glsl_code(x | y) == "x || y"
assert glsl_code(~x) == "!x"
assert glsl_code(x & y & z) == "x && y && z"
assert glsl_code(x | y | z) == "x || y || z"
assert glsl_code((x & y) | z) == "z || x && y"
assert glsl_code((x | y) & z) == "z && (x || y)"
def test_glsl_code_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
p = glsl_code(expr)
s = \
"""\
((x < 1) ? (
x
)
: (
pow(x, 2.0)
))\
"""
assert p == s
assert glsl_code(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = pow(x, 2.0);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: glsl_code(expr))
def test_glsl_code_Piecewise_deep():
p = glsl_code(2*Piecewise((x, x < 1), (x**2, True)))
s = \
"""\
2*((x < 1) ? (
x
)
: (
pow(x, 2.0)
))\
"""
assert p == s
def test_glsl_code_settings():
raises(TypeError, lambda: glsl_code(sin(x), method="garbage"))
def test_glsl_code_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = GLSLPrinter()
p._not_c = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
assert p._not_c == set()
def test_glsl_code_list_tuple_Tuple():
assert glsl_code([1,2,3,4]) == 'vec4(1, 2, 3, 4)'
assert glsl_code([1,2,3],glsl_types=False) == 'float[3](1, 2, 3)'
assert glsl_code([1,2,3]) == glsl_code((1,2,3))
assert glsl_code([1,2,3]) == glsl_code(Tuple(1,2,3))
m = MatrixSymbol('A',3,4)
assert glsl_code([m[0],m[1]])
def test_glsl_code_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = glsl_code(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = glsl_code(x[i], assign_to=y[i])
assert code == expected
def test_glsl_code_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = glsl_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_glsl_code_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = glsl_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_glsl_code_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = glsl_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_glsl_code_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0.0;\n'
'}\n'
)
s1 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (int i=0; i<m; i++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = glsl_code(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert glsl_code(mat, assign_to=A) == (
'''A[0][0] = x*y;
if (y > 0) {
A[1][0] = x + 2;
}
else {
A[1][0] = y;
}
A[2][0] = sin(z);''' )
assert glsl_code(Matrix([A[0],A[1]]))
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert glsl_code(expr) == (
'''((x > 0) ? (
2*A[2][0]
)
: (
A[2][0]
)) + sin(A[1][0]) + A[0][0]''' )
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert glsl_code(m,M) == (
'''M[0][0] = sin(q[1]);
M[0][1] = 0;
M[0][2] = cos(q[2]);
M[1][0] = q[1] + q[2];
M[1][1] = q[3];
M[1][2] = 5;
M[2][0] = 2*q[4]/q[1];
M[2][1] = sqrt(q[0]) + 4;
M[2][2] = 0;'''
)
def test_Matrices_1x7():
gl = glsl_code
A = Matrix([1,2,3,4,5,6,7])
assert gl(A) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
assert gl(A.transpose()) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
def test_1xN_vecs():
gl = glsl_code
for i in range(1,10):
A = Matrix(range(i))
assert gl(A.transpose()) == gl(A)
assert gl(A,mat_transpose=True) == gl(A)
if i > 1:
if i <= 4:
assert gl(A) == 'vec%s(%s)' % (i,', '.join(str(s) for s in range(i)))
else:
assert gl(A) == 'float[%s](%s)' % (i,', '.join(str(s) for s in range(i)))
def test_MxN_mats():
generatedAssertions='def test_misc_mats():\n'
for i in range(1,6):
for j in range(1,6):
A = Matrix([[x + y*j for x in range(j)] for y in range(i)])
gl = glsl_code(A)
glTransposed = glsl_code(A,mat_transpose=True)
generatedAssertions+=' mat = '+StrPrinter()._print(A)+'\n\n'
generatedAssertions+=' gl = \'\'\''+gl+'\'\'\'\n'
generatedAssertions+=' glTransposed = \'\'\''+glTransposed+'\'\'\'\n\n'
generatedAssertions+=' assert glsl_code(mat) == gl\n'
generatedAssertions+=' assert glsl_code(mat,mat_transpose=True) == glTransposed\n'
if i == 1 and j == 1:
assert gl == '0'
elif i <= 4 and j <= 4 and i>1 and j>1:
assert gl.startswith('mat%s' % j)
assert glTransposed.startswith('mat%s' % i)
elif i == 1 and j <= 4:
assert gl.startswith('vec')
elif j == 1 and i <= 4:
assert gl.startswith('vec')
elif i == 1:
assert gl.startswith('float[%s]('% j*i)
assert glTransposed.startswith('float[%s]('% j*i)
elif j == 1:
assert gl.startswith('float[%s]('% i*j)
assert glTransposed.startswith('float[%s]('% i*j)
else:
assert gl.startswith('float[%s](' % (i*j))
assert glTransposed.startswith('float[%s](' % (i*j))
glNested = glsl_code(A,mat_nested=True)
glNestedTransposed = glsl_code(A,mat_transpose=True,mat_nested=True)
assert glNested.startswith('float[%s][%s]' % (i,j))
assert glNestedTransposed.startswith('float[%s][%s]' % (j,i))
generatedAssertions+=' glNested = \'\'\''+glNested+'\'\'\'\n'
generatedAssertions+=' glNestedTransposed = \'\'\''+glNestedTransposed+'\'\'\'\n\n'
generatedAssertions+=' assert glsl_code(mat,mat_nested=True) == glNested\n'
generatedAssertions+=' assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed\n\n'
generateAssertions = False # set this to true to write bake these generated tests to a file
if generateAssertions:
gen = open('test_glsl_generated_matrices.py','w')
gen.write(generatedAssertions)
gen.close()
# these assertions were generated from the previous function
# glsl has complicated rules and this makes it easier to look over all the cases
def test_misc_mats():
mat = Matrix([[0]])
gl = '''0'''
glTransposed = '''0'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1]])
gl = '''vec2(0, 1)'''
glTransposed = '''vec2(0, 1)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2]])
gl = '''vec3(0, 1, 2)'''
glTransposed = '''vec3(0, 1, 2)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2, 3]])
gl = '''vec4(0, 1, 2, 3)'''
glTransposed = '''vec4(0, 1, 2, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([[0, 1, 2, 3, 4]])
gl = '''float[5](0, 1, 2, 3, 4)'''
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0],
[1]])
gl = '''vec2(0, 1)'''
glTransposed = '''vec2(0, 1)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3]])
gl = '''mat2(0, 1, 2, 3)'''
glTransposed = '''mat2(0, 2, 1, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5]])
gl = '''mat3x2(0, 1, 2, 3, 4, 5)'''
glTransposed = '''mat2x3(0, 3, 1, 4, 2, 5)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7]])
gl = '''mat4x2(0, 1, 2, 3, 4, 5, 6, 7)'''
glTransposed = '''mat2x4(0, 4, 1, 5, 2, 6, 3, 7)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
gl = '''float[10](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9
) /* a 2x5 matrix */'''
glTransposed = '''float[10](
0, 5,
1, 6,
2, 7,
3, 8,
4, 9
) /* a 5x2 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[2][5](
float[](0, 1, 2, 3, 4),
float[](5, 6, 7, 8, 9)
)'''
glNestedTransposed = '''float[5][2](
float[](0, 5),
float[](1, 6),
float[](2, 7),
float[](3, 8),
float[](4, 9)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2]])
gl = '''vec3(0, 1, 2)'''
glTransposed = '''vec3(0, 1, 2)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5]])
gl = '''mat2x3(0, 1, 2, 3, 4, 5)'''
glTransposed = '''mat3x2(0, 2, 4, 1, 3, 5)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
gl = '''mat3(0, 1, 2, 3, 4, 5, 6, 7, 8)'''
glTransposed = '''mat3(0, 3, 6, 1, 4, 7, 2, 5, 8)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])
gl = '''mat4x3(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
glTransposed = '''mat3x4(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
gl = '''float[15](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14
) /* a 3x5 matrix */'''
glTransposed = '''float[15](
0, 5, 10,
1, 6, 11,
2, 7, 12,
3, 8, 13,
4, 9, 14
) /* a 5x3 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[3][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14)
)'''
glNestedTransposed = '''float[5][3](
float[](0, 5, 10),
float[](1, 6, 11),
float[](2, 7, 12),
float[](3, 8, 13),
float[](4, 9, 14)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2],
[3]])
gl = '''vec4(0, 1, 2, 3)'''
glTransposed = '''vec4(0, 1, 2, 3)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5],
[6, 7]])
gl = '''mat2x4(0, 1, 2, 3, 4, 5, 6, 7)'''
glTransposed = '''mat4x2(0, 2, 4, 6, 1, 3, 5, 7)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
gl = '''mat3x4(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
glTransposed = '''mat4x3(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
gl = '''mat4( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)'''
glTransposed = '''mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
gl = '''float[20](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19
) /* a 4x5 matrix */'''
glTransposed = '''float[20](
0, 5, 10, 15,
1, 6, 11, 16,
2, 7, 12, 17,
3, 8, 13, 18,
4, 9, 14, 19
) /* a 5x4 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[4][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14),
float[](15, 16, 17, 18, 19)
)'''
glNestedTransposed = '''float[5][4](
float[](0, 5, 10, 15),
float[](1, 6, 11, 16),
float[](2, 7, 12, 17),
float[](3, 8, 13, 18),
float[](4, 9, 14, 19)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[0],
[1],
[2],
[3],
[4]])
gl = '''float[5](0, 1, 2, 3, 4)'''
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
mat = Matrix([
[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
gl = '''float[10](
0, 1,
2, 3,
4, 5,
6, 7,
8, 9
) /* a 5x2 matrix */'''
glTransposed = '''float[10](
0, 2, 4, 6, 8,
1, 3, 5, 7, 9
) /* a 2x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][2](
float[](0, 1),
float[](2, 3),
float[](4, 5),
float[](6, 7),
float[](8, 9)
)'''
glNestedTransposed = '''float[2][5](
float[](0, 2, 4, 6, 8),
float[](1, 3, 5, 7, 9)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
gl = '''float[15](
0, 1, 2,
3, 4, 5,
6, 7, 8,
9, 10, 11,
12, 13, 14
) /* a 5x3 matrix */'''
glTransposed = '''float[15](
0, 3, 6, 9, 12,
1, 4, 7, 10, 13,
2, 5, 8, 11, 14
) /* a 3x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][3](
float[]( 0, 1, 2),
float[]( 3, 4, 5),
float[]( 6, 7, 8),
float[]( 9, 10, 11),
float[](12, 13, 14)
)'''
glNestedTransposed = '''float[3][5](
float[](0, 3, 6, 9, 12),
float[](1, 4, 7, 10, 13),
float[](2, 5, 8, 11, 14)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
gl = '''float[20](
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19
) /* a 5x4 matrix */'''
glTransposed = '''float[20](
0, 4, 8, 12, 16,
1, 5, 9, 13, 17,
2, 6, 10, 14, 18,
3, 7, 11, 15, 19
) /* a 4x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][4](
float[]( 0, 1, 2, 3),
float[]( 4, 5, 6, 7),
float[]( 8, 9, 10, 11),
float[](12, 13, 14, 15),
float[](16, 17, 18, 19)
)'''
glNestedTransposed = '''float[4][5](
float[](0, 4, 8, 12, 16),
float[](1, 5, 9, 13, 17),
float[](2, 6, 10, 14, 18),
float[](3, 7, 11, 15, 19)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
mat = Matrix([
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
gl = '''float[25](
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19,
20, 21, 22, 23, 24
) /* a 5x5 matrix */'''
glTransposed = '''float[25](
0, 5, 10, 15, 20,
1, 6, 11, 16, 21,
2, 7, 12, 17, 22,
3, 8, 13, 18, 23,
4, 9, 14, 19, 24
) /* a 5x5 matrix */'''
assert glsl_code(mat) == gl
assert glsl_code(mat,mat_transpose=True) == glTransposed
glNested = '''float[5][5](
float[]( 0, 1, 2, 3, 4),
float[]( 5, 6, 7, 8, 9),
float[](10, 11, 12, 13, 14),
float[](15, 16, 17, 18, 19),
float[](20, 21, 22, 23, 24)
)'''
glNestedTransposed = '''float[5][5](
float[](0, 5, 10, 15, 20),
float[](1, 6, 11, 16, 21),
float[](2, 7, 12, 17, 22),
float[](3, 8, 13, 18, 23),
float[](4, 9, 14, 19, 24)
)'''
assert glsl_code(mat,mat_nested=True) == glNested
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
2694f69bedcaac05b24f15eda194cb348e2ef747cfaea0c4dc2c7f938c527747 | from sympy import (
Piecewise, lambdify, Equality, Unequality, Sum, Mod, cbrt, sqrt,
MatrixSymbol, BlockMatrix, Identity
)
from sympy import eye
from sympy.abc import x, i, j, a, b, c, d
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Cbrt, Sqrt
from sympy.codegen.array_utils import (CodegenArrayContraction,
CodegenArrayTensorProduct, CodegenArrayDiagonal,
CodegenArrayPermuteDims, CodegenArrayElementwiseAdd)
from sympy.printing.lambdarepr import NumPyPrinter
from sympy.utilities.pytest import warns_deprecated_sympy
from sympy.utilities.pytest import skip, raises
from sympy.external import import_module
np = import_module('numpy')
def test_numpy_piecewise_regression():
"""
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
See gh-9747 and gh-9749 for details.
"""
p = Piecewise((1, x < 0), (0, True))
assert NumPyPrinter().doprint(p) == 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)'
def test_sum():
if not np:
skip("NumPy not installed")
s = Sum(x ** i, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
s = Sum(i * x, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
def test_multiple_sums():
if not np:
skip("NumPy not installed")
s = Sum((x + j) * i, (i, a, b), (j, c, d))
f = lambdify((a, b, c, d, x), s, 'numpy')
a_, b_ = 0, 10
c_, d_ = 11, 21
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, c_, d_, x_),
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
def test_codegen_einsum():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = CodegenArrayContraction.from_MatMul(M*N)
f = lambdify((M, N), cg, 'numpy')
ma = np.matrix([[1, 2], [3, 4]])
mb = np.matrix([[1,-2], [-1, 3]])
assert (f(ma, mb) == ma*mb).all()
def test_codegen_extra():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = np.matrix([[1, 2], [3, 4]])
mb = np.matrix([[1,-2], [-1, 3]])
mc = np.matrix([[2, 0], [1, 2]])
md = np.matrix([[1,-1], [4, 7]])
cg = CodegenArrayTensorProduct(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all()
cg = CodegenArrayElementwiseAdd(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == ma+mb).all()
cg = CodegenArrayElementwiseAdd(M, N, P)
f = lambdify((M, N, P), cg, 'numpy')
assert (f(ma, mb, mc) == ma+mb+mc).all()
cg = CodegenArrayElementwiseAdd(M, N, P, Q)
f = lambdify((M, N, P, Q), cg, 'numpy')
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
cg = CodegenArrayPermuteDims(M, [1, 0])
f = lambdify((M,), cg, 'numpy')
assert (f(ma) == ma.T).all()
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0])
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2))
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
def test_relational():
if not np:
skip("NumPy not installed")
e = Equality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, False])
e = Unequality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, True])
e = (x < 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, False])
e = (x <= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, True, False])
e = (x > 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, False, True])
e = (x >= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, True])
def test_mod():
if not np:
skip("NumPy not installed")
e = Mod(a, b)
f = lambdify((a, b), e)
a_ = np.array([0, 1, 2, 3])
b_ = 2
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([0, 1, 2, 3])
b_ = np.array([2, 2, 2, 2])
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([2, 3, 4, 5])
b_ = np.array([2, 3, 4, 5])
assert np.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_expm1():
if not np:
skip("NumPy not installed")
f = lambdify((a,), expm1(a), 'numpy')
assert abs(f(1e-10) - 1e-10 - 5e-21) < 1e-22
def test_log1p():
if not np:
skip("NumPy not installed")
f = lambdify((a,), log1p(a), 'numpy')
assert abs(f(1e-99) - 1e-99) < 1e-100
def test_hypot():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) < 1e-16
def test_log10():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) < 1e-16
def test_exp2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) < 1e-16
def test_log2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) < 1e-16
def test_Sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) < 1e-16
def test_sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) < 1e-16
def test_matsolve():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 3, 3)
x = MatrixSymbol("x", 3, 1)
expr = M**(-1) * x + x
matsolve_expr = MatrixSolve(M, x) + x
f = lambdify((M, x), expr)
f_matsolve = lambdify((M, x), matsolve_expr)
m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
assert np.linalg.matrix_rank(m0) == 3
x0 = np.array([3, 4, 5])
assert np.allclose(f_matsolve(m0, x0), f(m0, x0))
def test_issue_15601():
if not np:
skip("Numpy not installed")
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
expr = M*N
f = lambdify((M, N), expr, "numpy")
with warns_deprecated_sympy():
ans = f(eye(3), eye(3))
assert np.array_equal(ans, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]))
def test_16857():
if not np:
skip("NumPy not installed")
a_1 = MatrixSymbol('a_1', 10, 3)
a_2 = MatrixSymbol('a_2', 10, 3)
a_3 = MatrixSymbol('a_3', 10, 3)
a_4 = MatrixSymbol('a_4', 10, 3)
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
assert A.shape == (20, 6)
printer = NumPyPrinter()
assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])'
def test_issue_17006():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
f = lambdify(M, M + Identity(2))
ma = np.array([[1, 2], [3, 4]])
mr = np.array([[2, 2], [3, 5]])
assert (f(ma) == mr).all()
from sympy import symbols
n = symbols('n', integer=True)
N = MatrixSymbol("M", n, n)
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n)))
|
b21cadec862b4b1525e506b163e4ff02b46083a417012e3ab0231d19b5466892 | # -*- coding: utf-8 -*-
from sympy import (
Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio,
LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels,
Heaviside, dirichlet_eta)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.compatibility import range, u_decode as u, PY3
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
mathieusprime, mathieucprime)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.physics import mechanics
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent
from sympy.sets import ImageSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, tensorhead,
TensorElement)
from sympy.utilities.pytest import raises, XFAIL
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx'
assert pretty( u'xxx"xxx' ) == u'xxx\"xxx'
assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx'
assert pretty( u"xxx'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx'
assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx'
assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == u'∞'
assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁'
assert upretty( Symbol('beta') ) == u'β'
assert upretty(Symbol('lambda')) == u'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == u'β₁₂'
assert upretty( Symbol('Y00') ) == u'Y₀₀'
assert upretty( Symbol('Y_00') ) == u'Y₀₀'
assert upretty( Symbol('F^+-') ) == u'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == u'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == u'β²₁'
assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == u'Fᵦ'
assert upretty( Symbol('F_gamma') ) == u'Fᵧ'
assert upretty( Symbol('F_rho') ) == u'Fᵨ'
assert upretty( Symbol('F_phi') ) == u'Fᵩ'
assert upretty( Symbol('F_chi') ) == u'Fᵪ'
assert upretty( Symbol('F_a') ) == u'Fₐ'
assert upretty( Symbol('F_e') ) == u'Fₑ'
assert upretty( Symbol('F_i') ) == u'Fᵢ'
assert upretty( Symbol('F_o') ) == u'Fₒ'
assert upretty( Symbol('F_u') ) == u'Fᵤ'
assert upretty( Symbol('F_r') ) == u'Fᵣ'
assert upretty( Symbol('F_v') ) == u'Fᵥ'
assert upretty( Symbol('F_x') ) == u'Fₓ'
def test_missing_in_2X_issue_9047():
if PY3:
assert upretty( Symbol('F_h') ) == u'Fₕ'
assert upretty( Symbol('F_k') ) == u'Fₖ'
assert upretty( Symbol('F_l') ) == u'Fₗ'
assert upretty( Symbol('F_m') ) == u'Fₘ'
assert upretty( Symbol('F_n') ) == u'Fₙ'
assert upretty( Symbol('F_p') ) == u'Fₚ'
assert upretty( Symbol('F_s') ) == u'Fₛ'
assert upretty( Symbol('F_t') ) == u'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == u'F̊'
assert upretty( Symbol('Fddddot') ) == u'F⃜'
assert upretty( Symbol('Fdddot') ) == u'F⃛'
assert upretty( Symbol('Fddot') ) == u'F̈'
assert upretty( Symbol('Fdot') ) == u'Ḟ'
assert upretty( Symbol('Fcheck') ) == u'F̌'
assert upretty( Symbol('Fbreve') ) == u'F̆'
assert upretty( Symbol('Facute') ) == u'F́'
assert upretty( Symbol('Fgrave') ) == u'F̀'
assert upretty( Symbol('Ftilde') ) == u'F̃'
assert upretty( Symbol('Fhat') ) == u'F̂'
assert upretty( Symbol('Fbar') ) == u'F̅'
assert upretty( Symbol('Fvec') ) == u'F⃗'
assert upretty( Symbol('Fprime') ) == u'F′'
assert upretty( Symbol('Fprm') ) == u'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == u'Fbold'
assert upretty( Symbol('Fbm') ) == u'Fbm'
assert upretty( Symbol('Fcal') ) == u'Fcal'
assert upretty( Symbol('Fscr') ) == u'Fscr'
assert upretty( Symbol('Ffrak') ) == u'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == u'‖F‖'
assert upretty( Symbol('Favg') ) == u'⟨F⟩'
assert upretty( Symbol('Fabs') ) == u'|F|'
assert upretty( Symbol('Fmag') ) == u'|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == u'x⃗̇'
assert upretty( Symbol('xDotVec') ) == u'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == u'x_dot'
assert upretty( Symbol('x__dot') ) == u'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
u("""\
∞\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
u("""\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
("""\
-1.0\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
("""\
-1.0\n\
2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
u("""\
1/3\n\
x \
""")
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
1 \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
u("""\
x\n\
(-2) \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
u("""\
1\n\
3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
u("""\
2\n\
1 + x + x \
""")
ucode_str_2 = \
u("""\
2 \n\
x + x + 1\
""")
ucode_str_3 = \
u("""\
2 \n\
x + 1 + x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
u("""\
1 - x\
""")
ucode_str_2 = \
u("""\
-x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
u("""\
1 - 2⋅x\
""")
ucode_str_2 = \
u("""\
-2⋅x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
u("""\
x\n\
─\n\
y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
u("""\
2 + x\n\
─────\n\
y \
""")
ucode_str_2 = \
u("""\
x + 2\n\
─────\n\
y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
u("""\
y⋅(1 + x)\
""")
ucode_str_2 = \
u("""\
(1 + x)⋅y\
""")
ucode_str_3 = \
u("""\
y⋅(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
u("""\
-5⋅x \n\
──────\n\
10 + x\
""")
ucode_str_2 = \
u("""\
-5⋅x \n\
──────\n\
x + 10\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S(1)/2 - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
u("""\
-3⋅x - 1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S(1)/2 - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
u("""\
1/2 - 3⋅x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S(1)/2 - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
u("""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S(1)/2 - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
u("""\
1 3⋅x\n\
─ - ───\n\
2 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
u("""\
-x⋅z \n\
─────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
u("""\
2\n\
x \n\
──\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
u("""\
2 \n\
-x \n\
────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
u("""\
-x \n\
───\n\
y⋅z\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
b \n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-1 \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
u("""\
-10 \n\
────\n\
2 \n\
b \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
u("""\
-200 \n\
─────\n\
37 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
u("""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
""")
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
u("""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
""")
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == u"γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == u"φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
u("""\
x = y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
u("""\
x < y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
u("""\
x > y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
u("""\
x ≤ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
u("""\
x ≥ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
u("""\
x 2\n\
───── ≠ y \n\
1 + y \
""")
ucode_str_2 = \
u("""\
x 2\n\
───── ≠ y \n\
y + 1 \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
u("""\
x := y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
u("""\
x += y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
u("""\
x -= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
u("""\
x *= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
u("""\
x /= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
u("""\
x %= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_7117():
# See also issue #5031 (hence the evaluate=False in these).
e = Eq(x + 1, x/2)
q = Mul(2, e, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞\n\
2⋅⎜x + 1 = ─⎟\n\
⎝ 2⎠\
""")
q = Add(e, 6, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞\n\
6 + ⎜x + 1 = ─⎟\n\
⎝ 2⎠\
""")
q = Pow(e, 2, evaluate=False)
assert upretty(q) == u("""\
2\n\
⎛ x⎞ \n\
⎜x + 1 = ─⎟ \n\
⎝ 2⎠ \
""")
e2 = Eq(x, 2)
q = Mul(e, e2, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞ \n\
⎜x + 1 = ─⎟⋅(x = 2)\n\
⎝ 2⎠ \
""")
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
u("""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
u("""\
x\n\
2⋅x + ℯ \
""")
ucode_str_2 = \
u("""\
x \n\
ℯ + 2⋅x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
u("""\
│x│\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
u("""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
""")
ucode_str_2 = \
u("""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
| 1 |\n\
|-------|\n\
|y - |x||\
"""
ucode_str = \
u("""\
│ 1 │\n\
│───────│\n\
│y - │x││\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
u("""\
n!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
u("""\
(2⋅n)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
u("""\
((n!)!)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
u("""\
(1 + n)!\
""")
ucode_str_2 = \
u("""\
(n + 1)!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
u("""\
!n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
u("""\
!(2⋅n)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
u("""\
n!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
u("""\
(2⋅n)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
u("""\
((n!!)!!)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
u("""\
(1 + n)!!\
""")
ucode_str_2 = \
u("""\
(n + 1)!!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
u("""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
u("""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
u("""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n, x)
ascii_str = \
"""\
B (x)\n\
n \
"""
ucode_str = \
u("""\
B (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
u("""\
F \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
u("""\
L \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
u("""\
T \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n)
ascii_str = \
"""\
stieltjes \n\
n\
"""
ucode_str = \
u("""\
γ \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n, x)
ascii_str = \
"""\
stieltjes (x)\n\
n \
"""
ucode_str = \
u("""\
γ (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieuc(x, y, z)
ascii_str = 'C(x, y, z)'
ucode_str = u('C(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieus(x, y, z)
ascii_str = 'S(x, y, z)'
ucode_str = u('S(x, y, z)')
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieucprime(x, y, z)
ascii_str = "C'(x, y, z)"
ucode_str = u("C'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieusprime(x, y, z)
ascii_str = "S'(x, y, z)"
ucode_str = u("S'(x, y, z)")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
u("""\
_\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
u("""\
________\n\
f(1 + x)\
""")
ucode_str_2 = \
u("""\
________\n\
f(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
u("""\
f(x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
u("""\
f(x, y)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
u("""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
u("""\
2 \n\
sin (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
u("""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
""")
ucode_str_2 = \
u("""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
u("""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
u("""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
u("""\
E \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
u("""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
u("""\
E (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
u("""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
u"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
3 ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
1000___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
u("""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
u("""\
3 ________\n\
╲╱ 1 + √5 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
x ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
u("""\
_______\n\
╲╱ 2 + π \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
u("""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
u("""\
___\n\
╲╱ 2 \
""")
ucode_str2 = \
u"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
u("""\
____\n\
╲╱ C₁ \
""")
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
u("""\
δ \n\
x,y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
u("""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """)
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
u("""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """)
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == u"x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == u"x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
u("""\
2\n\
x ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
u("""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = u"(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
u("""\
2\n\
(x, y) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
u("""\
O(1)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
u("""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
u("""\
O(1; x → ∞)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
u("""\
d \n\
──(log(x))\n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
u("""\
d \n\
x + ──(log(x))\n\
dx \
""")
ucode_str_2 = \
u("""\
d \n\
──(log(x)) + x\n\
dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
u("""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
""")
ucode_str_2 = \
u("""\
∂ \n\
──(x + log(x + y))\n\
∂x \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
u("""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
""")
ucode_str_2 = \
u("""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
u("""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
""")
ucode_str_2 = \
u("""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
u("""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
u("""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
u("""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
u("""\
d \n\
──(β(α))\n\
dα \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
u("""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
u("""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
u("""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
u("""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
u("""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
u("""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
ucode_str_2 = \
u("""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
u("""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
""")
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
""")
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
u("""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
""")
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
u("""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
""")
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
u("""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
""")
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
u("""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
""")
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
u("""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
""")
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == u("ⅆ x∧ⅆ y")
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == u" †\nX "
assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y "
assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
u" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
u" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
u" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
u" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
u" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
u" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
u("""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
""")
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
u("""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
""")
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
Y = X[1:2:3, 4:5:6]
ascii_str = ucode_str = "X[1:3, 4:6]"
assert pretty(Y) == ascii_str
assert upretty(Y) == ucode_str
Z = X[1:10:2]
ascii_str = ucode_str = "X[1:10:2, :n]"
assert pretty(Z) == ascii_str
assert upretty(Z) == ucode_str
# Apply function elementwise:
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
sin\\X *X.../\
"""
ucode_str = u("""\
⎛ T ⎞\n\
sin⎝X ⋅X...⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == u"A*B"
assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == u"A⋅B"
assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
u("""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
u("""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ |1| \n\
| 0 for |-| < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
u("""\
⎧ │1│ \n\
⎪ 0 for │─│ < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
u("""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == u("""\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
""")
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
u("""\
()\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
u("""\
[]\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
u("""\
{}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
u("""\
{x: sin(x)}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
u("""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
u("""\
⎡ 2⎤\n\
⎣x ⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
u("""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == u"[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == u"{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == u'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == u'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
u"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
u"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(set([x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = u'{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = u('{30, 29, …, 2}')
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = u'{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = u('{…, 2, 0}')
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = u('{-2, -3, …}')
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = u("SetExpr([1, 3])")
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}'
ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = \
' 2 \n'\
'{x | x in Naturals}'
ucode_str = u('''\
⎧ 2 ⎫\n\
⎨x | x ∊ ℕ⎬\n\
⎩ ⎭''')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = u'{x | x ∊ ℝ ∧ sin(x) = 0}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet()"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}'
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}'
assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str
ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = u'[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = u'[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_paranthesis():
ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b, c = Interval(2, 3), Interval(4, 7), Interval(1, 9)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = u'[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = u'[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = u'[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = u'[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = u'[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = u'[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = u'[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = u'[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = u'[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = u'[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = u'[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = u'[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = u'[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = u'[0, b, 4*b]'
ucode_str = u'[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
u("""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
u("""\
lim x\n\
x─→∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
u("""\
2\n\
lim x \n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
u("""\
1\n\
lim ─\n\
x─→0⁺x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
u("""\
lim (x + sin(x))\n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
u("""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
u("""\
lim sin(x)\n\
x─→0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
u("""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
u("""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == u'𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == u"¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == u"x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == u"x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == u"x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == u"x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == u"x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == u"x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == u"y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == u"ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == u"ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == u"ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == u"ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == u"ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == u"ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == u"ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == u"ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == u"ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == u"ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from sympy.core.compatibility import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D(object):
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
u("""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
""")
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
u("""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
""")
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
u("""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
u("""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
""")
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
u("""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
""")
from sympy.physics.units import kg, m, s
assert upretty(expr) == u("joule")
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
u("""\
(f(x))│ 2\n\
│x=φ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == u"γ(x, y)"
assert upretty(uppergamma(x, y)) == u"Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)'
assert xpretty(gamma, use_unicode=True) == u'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)'
assert xpretty(beta, use_unicode=True) == u'Β'
assert xpretty(beta, use_unicode=False) == u'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == u'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == u'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
δ (x)\
""")
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
x⋅δ (x)\
""")
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
u("""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
u("""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
u("""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
""")
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
""")
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
u("""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
""")
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
""")
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
u("""\
-1\n\
A⋅B⋅C \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
u("""\
-1 \n\
C ⋅A⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
u("""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = u"E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
u("""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
""")
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
u("""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
""")
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == u"x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == u"x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
u("""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
""")
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
u("""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
""")
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
u("""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
""")
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
u("""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
""")
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
u("""\
1 \n\
──\n\
√x\
""")
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == u"A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == u"f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == u"id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == u"K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet()"
assert upretty(d) == u"∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \
"EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \
"EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}")
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \
"EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \
"EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}")
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == u"A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
u("""\
2\n\
ℚ[x, y] \
""")
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
u("""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
u("""\
╱ 2 ╲\n\
╲x , y╱\
""")
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
u("""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
u("""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
""")
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
u("""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
""")
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
u("""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
""")
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
u("""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
""")
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
u("""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
""")
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
u("""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
""")
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == u'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y'
assert upretty(Not(Implies(x, y))) == u'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == u'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.utilities.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == u'[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
u("""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
""")
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
u("""\
d \n\
-──(y(x))\n\
dx \
""")
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
u("""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
""")
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
u("""\
3\n\
2 \n\
───\n\
2\n\
10 \
""")
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
u("""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
""")
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
u("""\
11\n\
──\n\
13\n\
(sin(x)) \
""")
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
u("""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
""")
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = u("ν(n)")
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = u("Ω(n)")
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = u("x mod 7")
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = u("(x + 1) mod 7")
ascii_str3 = "2*x mod 7"
ucode_str3 = u("2⋅x mod 7")
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = u("(x mod 7) + 1")
ascii_str5 = "2*(x mod 7)"
ucode_str5 = u("2⋅(x mod 7)")
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert upretty(he) == ucode_str
ucode_str = \
u("""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
""")
assert upretty(he**2) == ucode_str
ucode_str = \
u("""\
1\n\
1 + ─\n\
x\
""")
assert upretty(he + 1) == ucode_str
ucode_str = \
u('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
u("""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
""")
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = u("A₀₀")
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = u("3⋅A₀₀")
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = u("(-B + A)[0, 0]")
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
u("""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
""")
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
u("""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
""")
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == u'90°'
expr2 = x*degree
assert pretty(expr2) == u'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == u'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)')
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)")
assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)")
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
u("""\
-i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
u("""\
i\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
u("""\
i₀\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
u("""\
\n\
A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
u("""\
\n\
-3⋅A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
u("""\
i \n\
H \n\
j\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
u("""\
L₀ \n\
H \n\
L₀\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
u("""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
u("""\
i\n\
(x + 1)⋅A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
A + 3*B \n\
\
"""
ucode_str = \
u("""\
i i\n\
A + 3⋅B \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
u("""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|B *C + 3*H |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜B ⋅C + 3⋅H ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-j), D(j))
ascii_str = \
"""\
/ i i\\ d / \\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ i i⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1, j:1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j:1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i:1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = u'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == u'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == u'-𝐀'
assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == u'𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == u'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == u'‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == u'𝐀₂'
def test_center_accent():
assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã'
assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã'
assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa'
assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa'
assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa'
assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert pretty(Identity(4)) == 'I'
assert upretty(Identity(4)) == u'𝕀'
assert pretty(ZeroMatrix(2, 2)) == '0'
assert upretty(ZeroMatrix(2, 2)) == u'𝟘'
assert pretty(OneMatrix(2, 2)) == '1'
assert upretty(OneMatrix(2, 2)) == u'𝟙'
def test_pretty_misc_functions():
assert pretty(LambertW(x)) == 'W(x)'
assert upretty(LambertW(x)) == u'W(x)'
assert pretty(LambertW(x, y)) == 'W(x, y)'
assert upretty(LambertW(x, y)) == u'W(x, y)'
assert pretty(airyai(x)) == 'Ai(x)'
assert upretty(airyai(x)) == u'Ai(x)'
assert pretty(airybi(x)) == 'Bi(x)'
assert upretty(airybi(x)) == u'Bi(x)'
assert pretty(airyaiprime(x)) == "Ai'(x)"
assert upretty(airyaiprime(x)) == u"Ai'(x)"
assert pretty(airybiprime(x)) == "Bi'(x)"
assert upretty(airybiprime(x)) == u"Bi'(x)"
assert pretty(fresnelc(x)) == 'C(x)'
assert upretty(fresnelc(x)) == u'C(x)'
assert pretty(fresnels(x)) == 'S(x)'
assert upretty(fresnels(x)) == u'S(x)'
assert pretty(Heaviside(x)) == 'Heaviside(x)'
assert upretty(Heaviside(x)) == u'θ(x)'
assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
assert upretty(Heaviside(x, y)) == u'θ(x, y)'
assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
assert upretty(dirichlet_eta(x)) == u'η(x)'
|
5da93c6dc9232b3342c26d685a4218b92ddeb639e645dadc29bab70000d21ee0 | '''
Rule Based Integration(RUBI) module in sympy uses set of transformation
rules to integrate an expression. All the transformation rules are compiled as a
discrimination-net which helps in matching expression with the rule efficiently.
Due to large number of rules, the module would normally take lot of time to load.
Hence, it is better to use Rubi while doing multiple integrations.
Rules are taken from Rubi version 4.10.8.
Note: This module has dependency on MatchPy library.
Basic Structure
===============
All rules in matchpy format are in rules folder. They are in separate files.
While matching a pattern, there are constraints that need to be checked.
These constraints are placed in a single file `constraints.py`.
A complete rule look like this:
```
def cons_f1(m, x):
return FreeQ(m, x)
cons1 = CustomConstraint(cons_f1)
def cons_f2(m):
return NonzeroQ(m + S(1))
cons2 = CustomConstraint(cons_f2)
pattern1 = Pattern(Integral(x_**WC('m', S(1)), x_), cons1, cons2)
def replacement1(m, x):
rubi.append(1)
return Simp(x**(m + S(1))/(m + S(1)), x)
rule1 = ReplacementRule(pattern1, replacement1)
```
As seen in the above example, a rule has 3 parts
1. Pattern with constraints. Expression is matched against this pattern.
2. Replacement function, which gives the resulting expression with which the original expression has to be replaced with.
There is also `rubi.append(1)`. This (rubi) is a list which keeps track of rules applied to an expression.
This can be accessed by `rules_applied` in `rubi.py`
3. Rule, which combines pattern and replacement function.
(For more details refer to matchpy documents)
Note:
The name of arguments of function for constraints and replacement should be taken care of.
They need to be exactly same as wildcard in the `Pattern`. Like, in the above example,
if `cons_f1` is written something like this:
```
def cons_f1(a, x):
return FreeQ(a, x)
```
This is not going to work because in the Pattern, `m` has been used as a wildcard. So only thing is
naming of arguments matters.
TODO
====
* Use code generation to implement all rules.
* Testing of all the tests from rubi test suit. See: http://www.apmaths.uwo.ca/~arich/IntegrationProblems/MathematicaSyntaxFiles/MathematicaSyntaxFiles.html
* Add support for `Piecewise` functions.
Debugging
=========
When an integration is not successful. We can see which rule is matching the
expression by using `get_matching_rule_definition()` function. We can cross-check
if correct rule is being applied by evaluating the same expression in Mathematica.
If the applied rule is same, then we need to check the `ReplacementRule` and
the utility functions used in the `ReplacementRule`.
Parsing Rules and Tests
=======================
Code for parsing rule and tests are included in sympy.
They have been properly explained with steps in `sympy/integrals/rubi/parsetools/rubi_parsing_guide.md`.
Running Tests
=============
The tests for rubi in `rubi_tests` have been blacklisted as it takes a very long time to run all the tests.
To run a test run the following in a python terminal:
```
>>> import sympy
>>> sympy.test("rubi_tests", blacklist = []) # doctest: +SKIP
```
For specific tests like `test_sine.py` use this `sympy.test("rubi_tests/tests/test_sine.py", blacklist = [])`.
References
==========
[1] http://www.apmaths.uwo.ca/~arich/
[2] https://github.com/sympy/sympy/issues/7749
[3] https://github.com/sympy/sympy/pull/12978
'''
|
753d132f5e668317cddbae5a2d7b3054d902bb84611e09583fefe83a21df780b | '''
Utility functions for Rubi integration.
See: http://www.apmaths.uwo.ca/~arich/IntegrationRules/PortableDocumentFiles/Integration%20utility%20functions.pdf
'''
from sympy.external import import_module
matchpy = import_module("matchpy")
from sympy.utilities.decorator import doctest_depends_on
from sympy.functions.elementary.integers import floor, frac
from sympy.functions import (log as sym_log , sin, cos, tan, cot, csc, sec, sqrt, erf, gamma, uppergamma, polygamma, digamma,
loggamma, factorial, zeta, LambertW)
from sympy.functions.elementary.hyperbolic import acosh, asinh, atanh, acoth, acsch, asech, cosh, sinh, tanh, coth, sech, csch
from sympy.functions.elementary.trigonometric import atan, acsc, asin, acot, acos, asec, atan2
from sympy.polys.polytools import Poly, quo, rem, total_degree, degree
from sympy.simplify.simplify import fraction, simplify, cancel, powsimp
from sympy.core.sympify import sympify
from sympy.utilities.iterables import postorder_traversal
from sympy.functions.special.error_functions import fresnelc, fresnels, erfc, erfi, Ei, expint, li, Si, Ci, Shi, Chi
from sympy.functions.elementary.complexes import im, re, Abs
from sympy.core.exprtools import factor_terms
from sympy import (Basic, E, polylog, N, Wild, WildFunction, factor, gcd, Sum, S, I, Mul, Integer, Float, Dict, Symbol, Rational,
Add, hyper, symbols, sqf_list, sqf, Max, factorint, factorrat, Min, sign, E, Function, collect, FiniteSet, nsimplify,
expand_trig, expand, poly, apart, lcm, And, Pow, pi, zoo, oo, Integral, UnevaluatedExpr, PolynomialError, Dummy, exp as sym_exp,
powdenest, PolynomialDivisionFailed, discriminant, UnificationFailed, appellf1)
from sympy.functions.special.hyper import TupleArg
from sympy.functions.special.elliptic_integrals import elliptic_f, elliptic_e, elliptic_pi
from sympy.utilities.iterables import flatten
from random import randint
from sympy.logic.boolalg import Or
class rubi_unevaluated_expr(UnevaluatedExpr):
'''
This is needed to convert `exp` as `Pow`.
sympy's UnevaluatedExpr has an issue with `is_commutative`.
'''
@property
def is_commutative(self):
from sympy.core.logic import fuzzy_and
return fuzzy_and(a.is_commutative for a in self.args)
_E = rubi_unevaluated_expr(E)
class rubi_exp(Function):
'''
sympy's exp is not identified as `Pow`. So it is not matched with `Pow`.
Like `a = exp(2)` is not identified as `Pow(E, 2)`. Rubi rules need it.
So, another exp has been created only for rubi module.
Examples
========
>>> from sympy import Pow, exp as sym_exp
>>> isinstance(sym_exp(2), Pow)
False
>>> from sympy.integrals.rubi.utility_function import rubi_exp
>>> isinstance(rubi_exp(2), Pow)
True
'''
@classmethod
def eval(cls, *args):
return Pow(_E, args[0])
class rubi_log(Function):
'''
For rule matching different `exp` has been used. So for proper results,
`log` is modified little only for case when it encounters rubi's `exp`.
For other cases it is same.
Examples
========
>>> from sympy.integrals.rubi.utility_function import rubi_exp, rubi_log
>>> a = rubi_exp(2)
>>> rubi_log(a)
2
'''
@classmethod
def eval(cls, *args):
if args[0].has(_E):
return sym_log(args[0]).doit()
else:
return sym_log(args[0])
if matchpy:
from matchpy import Arity, Operation, CommutativeOperation, AssociativeOperation, OneIdentityOperation, CustomConstraint, Pattern, ReplacementRule, ManyToOneReplacer
from matchpy.expressions.functions import op_iter, create_operation_expression, op_len
from sympy.integrals.rubi.symbol import WC
from matchpy import is_match, replace_all
from sympy.utilities.matchpy_connector import Operation
class UtilityOperator(Operation):
name = 'UtilityOperator'
arity = Arity.variadic
commutative=False
associative=True
Operation.register(rubi_log)
Operation.register(rubi_exp)
A_, B_, C_, F_, G_, a_, b_, c_, d_, e_, f_, g_, h_, i_, j_, k_, l_, m_, n_, p_, q_, r_, t_, u_, v_, s_, w_, x_, z_ = [WC(i) for i in 'ABCFGabcdefghijklmnpqrtuvswxz']
a, b, c, d, e = symbols('a b c d e')
class Int(Function):
'''
Integrates given `expr` by matching rubi rules.
'''
@classmethod
def eval(cls, expr, var):
if isinstance(expr, (int, Integer, float, Float)):
return S(expr)*var
from sympy.integrals.rubi.rubi import util_rubi_integrate
return util_rubi_integrate(expr, var)
def replace_pow_exp(z):
'''
This function converts back rubi's `exp` to general sympy's `exp`.
Examples
========
>>> from sympy.integrals.rubi.utility_function import rubi_exp, replace_pow_exp
>>> expr = rubi_exp(5)
>>> expr
E**5
>>> replace_pow_exp(expr)
exp(5)
'''
z = S(z)
if z.has(_E):
z = z.replace(_E, E)
return z
def Simplify(expr):
expr = simplify(expr)
return expr
def Set(expr, value):
return {expr: value}
def With(subs, expr):
if isinstance(subs, dict):
k = list(subs.keys())[0]
expr = expr.xreplace({k: subs[k]})
else:
for i in subs:
k = list(i.keys())[0]
expr = expr.xreplace({k: i[k]})
return expr
def Module(subs, expr):
return With(subs, expr)
def Scan(f, expr):
# evaluates f applied to each element of expr in turn.
for i in expr:
yield f(i)
def MapAnd(f, l, x=None):
# MapAnd[f,l] applies f to the elements of list l until False is returned; else returns True
if x:
for i in l:
if f(i, x) == False:
return False
return True
else:
for i in l:
if f(i) == False:
return False
return True
def FalseQ(u):
if isinstance(u, (Dict, dict)):
return FalseQ(*list(u.values()))
return u == False
def ZeroQ(*expr):
if len(expr) == 1:
if isinstance(expr[0], list):
return list(ZeroQ(i) for i in expr[0])
else:
return Simplify(expr[0]) == 0
else:
return all(ZeroQ(i) for i in expr)
def OneQ(a):
if a == S(1):
return True
return False
def NegativeQ(u):
u = Simplify(u)
if u in (zoo, oo):
return False
if u.is_comparable:
res = u < 0
if not res.is_Relational:
return res
return False
def NonzeroQ(expr):
return Simplify(expr) != 0
def FreeQ(nodes, var):
if var == Int:
return FreeQ(nodes, Integral)
if isinstance(nodes, list):
return not any(S(expr).has(var) for expr in nodes)
else:
nodes = S(nodes)
return not nodes.has(var)
def NFreeQ(nodes, var):
''' Note that in rubi 4.10.8 this function was not defined in `Integration Utility Functions.m`,
but was used in rules. So explicitly its returning `False`
'''
return False
# return not FreeQ(nodes, var)
def List(*var):
return list(var)
def PositiveQ(var):
var = Simplify(var)
if var in (zoo, oo):
return False
if var.is_comparable:
res = var > 0
if not res.is_Relational:
return res
return False
def PositiveIntegerQ(*args):
return all(var.is_Integer and PositiveQ(var) for var in args)
def NegativeIntegerQ(*args):
return all(var.is_Integer and NegativeQ(var) for var in args)
def IntegerQ(var):
var = Simplify(var)
if isinstance(var, (int, Integer)):
return True
else:
return var.is_Integer
def IntegersQ(*var):
return all(IntegerQ(i) for i in var)
def _ComplexNumberQ(var):
i = S(im(var))
if isinstance(i, (Integer, Float)):
return i != 0
else:
return False
def ComplexNumberQ(*var):
"""
ComplexNumberQ(m, n,...) returns True if m, n, ... are all explicit complex numbers, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import ComplexNumberQ
>>> from sympy import I
>>> ComplexNumberQ(1 + I*2, I)
True
>>> ComplexNumberQ(2, I)
False
"""
return all(_ComplexNumberQ(i) for i in var)
def PureComplexNumberQ(*var):
return all((_ComplexNumberQ(i) and re(i)==0) for i in var)
def RealNumericQ(u):
return u.is_real
def PositiveOrZeroQ(u):
return u.is_real and u >= 0
def NegativeOrZeroQ(u):
return u.is_real and u <= 0
def FractionOrNegativeQ(u):
return FractionQ(u) or NegativeQ(u)
def NegQ(var):
return Not(PosQ(var)) and NonzeroQ(var)
def Equal(a, b):
return a == b
def Unequal(a, b):
return a != b
def IntPart(u):
# IntPart[u] returns the sum of the integer terms of u.
if ProductQ(u):
if IntegerQ(First(u)):
return First(u)*IntPart(Rest(u))
elif IntegerQ(u):
return u
elif FractionQ(u):
return IntegerPart(u)
elif SumQ(u):
res = 0
for i in u.args:
res += IntPart(i)
return res
return 0
def FracPart(u):
# FracPart[u] returns the sum of the non-integer terms of u.
if ProductQ(u):
if IntegerQ(First(u)):
return First(u)*FracPart(Rest(u))
if IntegerQ(u):
return 0
elif FractionQ(u):
return FractionalPart(u)
elif SumQ(u):
res = 0
for i in u.args:
res += FracPart(i)
return res
else:
return u
def RationalQ(*nodes):
return all(var.is_Rational for var in nodes)
def ProductQ(expr):
return S(expr).is_Mul
def SumQ(expr):
return expr.is_Add
def NonsumQ(expr):
return not SumQ(expr)
def Subst(a, x, y):
if None in [a, x, y]:
return None
if a.has(Function('Integrate')):
# substituting in `Function(Integrate)` won't take care of properties of Integral
a = a.replace(Function('Integrate'), Integral)
return a.subs(x, y)
# return a.xreplace({x: y})
def First(expr, d=None):
"""
Gives the first element if it exists, or d otherwise.
Examples
========
>>> from sympy.integrals.rubi.utility_function import First
>>> from sympy.abc import a, b, c
>>> First(a + b + c)
a
>>> First(a*b*c)
a
"""
if isinstance(expr, list):
return expr[0]
if isinstance(expr, Symbol):
return expr
else:
if SumQ(expr) or ProductQ(expr):
l = Sort(expr.args)
return l[0]
else:
return expr.args[0]
def Rest(expr):
"""
Gives rest of the elements if it exists
Examples
========
>>> from sympy.integrals.rubi.utility_function import Rest
>>> from sympy.abc import a, b, c
>>> Rest(a + b + c)
b + c
>>> Rest(a*b*c)
b*c
"""
if isinstance(expr, list):
return expr[1:]
else:
if SumQ(expr) or ProductQ(expr):
l = Sort(expr.args)
return expr.func(*l[1:])
else:
return expr.args[1]
def SqrtNumberQ(expr):
# SqrtNumberQ[u] returns True if u^2 is a rational number; else it returns False.
if PowerQ(expr):
m = expr.base
n = expr.exp
return (IntegerQ(n) and SqrtNumberQ(m)) or (IntegerQ(n-S(1)/2) and RationalQ(m))
elif expr.is_Mul:
return all(SqrtNumberQ(i) for i in expr.args)
else:
return RationalQ(expr) or expr == I
def SqrtNumberSumQ(u):
return SumQ(u) and SqrtNumberQ(First(u)) and SqrtNumberQ(Rest(u)) or ProductQ(u) and SqrtNumberQ(First(u)) and SqrtNumberSumQ(Rest(u))
def LinearQ(expr, x):
"""
LinearQ(expr, x) returns True iff u is a polynomial of degree 1.
Examples
========
>>> from sympy.integrals.rubi.utility_function import LinearQ
>>> from sympy.abc import x, y, a
>>> LinearQ(a, x)
False
>>> LinearQ(3*x + y**2, x)
True
>>> LinearQ(3*x + y**2, y)
False
"""
if isinstance(expr, list):
return all(LinearQ(i, x) for i in expr)
elif expr.is_polynomial(x):
if degree(Poly(expr, x), gen=x) == 1:
return True
return False
def Sqrt(a):
return sqrt(a)
def ArcCosh(a):
return acosh(a)
class Util_Coefficient(Function):
def doit(self):
if len(self.args) == 2:
n = 1
else:
n = Simplify(self.args[2])
if NumericQ(n):
expr = expand(self.args[0])
if isinstance(n, (int, Integer)):
return expr.coeff(self.args[1], n)
else:
return expr.coeff(self.args[1]**n)
else:
return self
def Coefficient(expr, var, n=1):
"""
Coefficient(expr, var) gives the coefficient of form in the polynomial expr.
Coefficient(expr, var, n) gives the coefficient of var**n in expr.
Examples
========
>>> from sympy.integrals.rubi.utility_function import Coefficient
>>> from sympy.abc import x, a, b, c
>>> Coefficient(7 + 2*x + 4*x**3, x, 1)
2
>>> Coefficient(a + b*x + c*x**3, x, 0)
a
>>> Coefficient(a + b*x + c*x**3, x, 4)
0
>>> Coefficient(b*x + c*x**3, x, 3)
c
"""
if NumericQ(n):
if expr == 0 or n in (zoo, oo):
return 0
expr = expand(expr)
if isinstance(n, (int, Integer)):
return expr.coeff(var, n)
else:
return expr.coeff(var**n)
return Util_Coefficient(expr, var, n)
def Denominator(var):
var = Simplify(var)
if isinstance(var, Pow):
if isinstance(var.exp, Integer):
if var.exp > 0:
return Pow(Denominator(var.base), var.exp)
elif var.exp < 0:
return Pow(Numerator(var.base), -1*var.exp)
elif isinstance(var, Add):
var = factor(var)
return fraction(var)[1]
def Hypergeometric2F1(a, b, c, z):
return hyper([a, b], [c], z)
def Not(var):
if isinstance(var, bool):
return not var
elif var.is_Relational:
var = False
return not var
def FractionalPart(a):
return frac(a)
def IntegerPart(a):
return floor(a)
def AppellF1(a, b1, b2, c, x, y):
return appellf1(a, b1, b2, c, x, y)
def EllipticPi(*args):
return elliptic_pi(*args)
def EllipticE(*args):
return elliptic_e(*args)
def EllipticF(Phi, m):
return elliptic_f(Phi, m)
def ArcTan(a, b = None):
if b is None:
return atan(a)
else:
return atan2(a, b)
def ArcCot(a):
return acot(a)
def ArcCoth(a):
return acoth(a)
def ArcTanh(a):
return atanh(a)
def ArcSin(a):
return asin(a)
def ArcSinh(a):
return asinh(a)
def ArcCos(a):
return acos(a)
def ArcCsc(a):
return acsc(a)
def ArcSec(a):
return asec(a)
def ArcCsch(a):
return acsch(a)
def ArcSech(a):
return asech(a)
def Sinh(u):
return sinh(u)
def Tanh(u):
return tanh(u)
def Cosh(u):
return cosh(u)
def Sech(u):
return sech(u)
def Csch(u):
return csch(u)
def Coth(u):
return coth(u)
def LessEqual(*args):
for i in range(0, len(args) - 1):
try:
if args[i] > args[i + 1]:
return False
except:
return False
return True
def Less(*args):
for i in range(0, len(args) - 1):
try:
if args[i] >= args[i + 1]:
return False
except:
return False
return True
def Greater(*args):
for i in range(0, len(args) - 1):
try:
if args[i] <= args[i + 1]:
return False
except:
return False
return True
def GreaterEqual(*args):
for i in range(0, len(args) - 1):
try:
if args[i] < args[i + 1]:
return False
except:
return False
return True
def FractionQ(*args):
"""
FractionQ(m, n,...) returns True if m, n, ... are all explicit fractions, else it returns False.
Examples
========
>>> from sympy import S
>>> from sympy.integrals.rubi.utility_function import FractionQ
>>> FractionQ(S('3'))
False
>>> FractionQ(S('3')/S('2'))
True
"""
return all(i.is_Rational for i in args) and all(Denominator(i)!= S(1) for i in args)
def IntLinearcQ(a, b, c, d, m, n, x):
# returns True iff (a+b*x)^m*(c+d*x)^n is integrable wrt x in terms of non-hypergeometric functions.
return IntegerQ(m) or IntegerQ(n) or IntegersQ(S(3)*m, S(3)*n) or IntegersQ(S(4)*m, S(4)*n) or IntegersQ(S(2)*m, S(6)*n) or IntegersQ(S(6)*m, S(2)*n) or IntegerQ(m + n)
Defer = UnevaluatedExpr
def Expand(expr):
return expr.expand()
def IndependentQ(u, x):
"""
If u is free from x IndependentQ(u, x) returns True else False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import IndependentQ
>>> from sympy.abc import x, a, b
>>> IndependentQ(a + b*x, x)
False
>>> IndependentQ(a + b, x)
True
"""
return FreeQ(u, x)
def PowerQ(expr):
return expr.is_Pow or ExpQ(expr)
def IntegerPowerQ(u):
if isinstance(u, sym_exp): #special case for exp
return IntegerQ(u.args[0])
return PowerQ(u) and IntegerQ(u.args[1])
def PositiveIntegerPowerQ(u):
if isinstance(u, sym_exp):
return IntegerQ(u.args[0]) and PositiveQ(u.args[0])
return PowerQ(u) and IntegerQ(u.args[1]) and PositiveQ(u.args[1])
def FractionalPowerQ(u):
if isinstance(u, sym_exp):
return FractionQ(u.args[0])
return PowerQ(u) and FractionQ(u.args[1])
def AtomQ(expr):
expr = sympify(expr)
if isinstance(expr, list):
return False
if expr in [None, True, False, _E]: # [None, True, False] are atoms in mathematica and _E is also an atom
return True
# elif isinstance(expr, list):
# return all(AtomQ(i) for i in expr)
else:
return expr.is_Atom
def ExpQ(u):
u = replace_pow_exp(u)
return Head(u) in (sym_exp, rubi_exp)
def LogQ(u):
return u.func in (sym_log, Log)
def Head(u):
return u.func
def MemberQ(l, u):
if isinstance(l, list):
return u in l
else:
return u in l.args
def TrigQ(u):
if AtomQ(u):
x = u
else:
x = Head(u)
return MemberQ([sin, cos, tan, cot, sec, csc], x)
def SinQ(u):
return Head(u) == sin
def CosQ(u):
return Head(u) == cos
def TanQ(u):
return Head(u) == tan
def CotQ(u):
return Head(u) == cot
def SecQ(u):
return Head(u) == sec
def CscQ(u):
return Head(u) == csc
def Sin(u):
return sin(u)
def Cos(u):
return cos(u)
def Tan(u):
return tan(u)
def Cot(u):
return cot(u)
def Sec(u):
return sec(u)
def Csc(u):
return csc(u)
def HyperbolicQ(u):
if AtomQ(u):
x = u
else:
x = Head(u)
return MemberQ([sinh, cosh, tanh, coth, sech, csch], x)
def SinhQ(u):
return Head(u) == sinh
def CoshQ(u):
return Head(u) == cosh
def TanhQ(u):
return Head(u) == tanh
def CothQ(u):
return Head(u) == coth
def SechQ(u):
return Head(u) == sech
def CschQ(u):
return Head(u) == csch
def InverseTrigQ(u):
if AtomQ(u):
x = u
else:
x = Head(u)
return MemberQ([asin, acos, atan, acot, asec, acsc], x)
def SinCosQ(f):
return MemberQ([sin, cos, sec, csc], Head(f))
def SinhCoshQ(f):
return MemberQ([sinh, cosh, sech, csch], Head(f))
def LeafCount(expr):
return len(list(postorder_traversal(expr)))
def Numerator(u):
u = Simplify(u)
if isinstance(u, Pow):
if isinstance(u.exp, Integer):
if u.exp > 0:
return Pow(Numerator(u.base), u.exp)
elif u.exp < 0:
return Pow(Denominator(u.base), -1*u.exp)
elif isinstance(u, Add):
u = factor(u)
return fraction(u)[0]
def NumberQ(u):
if isinstance(u, (int, float)):
return True
return u.is_number
def NumericQ(u):
return N(u).is_number
def Length(expr):
"""
Returns number of elements in the expression just as sympy's len.
Examples
========
>>> from sympy.integrals.rubi.utility_function import Length
>>> from sympy.abc import x, a, b
>>> from sympy import cos, sin
>>> Length(a + b)
2
>>> Length(sin(a)*cos(a))
2
"""
if isinstance(expr, list):
return len(expr)
return len(expr.args)
def ListQ(u):
return isinstance(u, list)
def Im(u):
u = S(u)
return im(u.doit())
def Re(u):
u = S(u)
return re(u.doit())
def InverseHyperbolicQ(u):
if not u.is_Atom:
u = Head(u)
return u in [acosh, asinh, atanh, acoth, acsch, acsch]
def InverseFunctionQ(u):
# returns True if u is a call on an inverse function; else returns False.
return LogQ(u) or InverseTrigQ(u) and Length(u) <= 1 or InverseHyperbolicQ(u) or u.func == polylog
def TrigHyperbolicFreeQ(u, x):
# If u is free of trig, hyperbolic and calculus functions involving x, TrigHyperbolicFreeQ[u,x] returns true; else it returns False.
if AtomQ(u):
return True
else:
if TrigQ(u) | HyperbolicQ(u) | CalculusQ(u):
return FreeQ(u, x)
else:
for i in u.args:
if not TrigHyperbolicFreeQ(i, x):
return False
return True
def InverseFunctionFreeQ(u, x):
# If u is free of inverse, calculus and hypergeometric functions involving x, InverseFunctionFreeQ[u,x] returns true; else it returns False.
if AtomQ(u):
return True
else:
if InverseFunctionQ(u) or CalculusQ(u) or u.func == hyper or u.func == appellf1:
return FreeQ(u, x)
else:
for i in u.args:
if not ElementaryFunctionQ(i):
return False
return True
def RealQ(u):
if ListQ(u):
return MapAnd(RealQ, u)
elif NumericQ(u):
return ZeroQ(Im(N(u)))
elif PowerQ(u):
u = u.base
v = u.exp
return RealQ(u) & RealQ(v) & (IntegerQ(v) | PositiveOrZeroQ(u))
elif u.is_Mul:
return all(RealQ(i) for i in u.args)
elif u.is_Add:
return all(RealQ(i) for i in u.args)
elif u.is_Function:
f = u.func
u = u.args[0]
if f in [sin, cos, tan, cot, sec, csc, atan, acot, erf]:
return RealQ(u)
else:
if f in [asin, acos]:
return LE(-1, u, 1)
else:
if f == sym_log:
return PositiveOrZeroQ(u)
else:
return False
else:
return False
def EqQ(u, v):
return ZeroQ(u - v)
def FractionalPowerFreeQ(u):
if AtomQ(u):
return True
elif FractionalPowerQ(u):
return False
def ComplexFreeQ(u):
if AtomQ(u) and Not(ComplexNumberQ(u)):
return True
else:
return False
def PolynomialQ(u, x = None):
if x is None :
return u.is_polynomial()
if isinstance(x, Pow):
if isinstance(x.exp, Integer):
deg = degree(u, x.base)
if u.is_polynomial(x):
if deg % x.exp !=0 :
return False
try:
p = Poly(u, x.base)
except PolynomialError:
return False
c_list = p.all_coeffs()
coeff_list = c_list[:-1:x.exp]
coeff_list += [c_list[-1]]
for i in coeff_list:
if not i == 0:
index = c_list.index(i)
c_list[index] = 0
if all(i == 0 for i in c_list):
return True
else:
return False
return u.is_polynomial(x)
else:
return False
elif isinstance(x.exp, (Float, Rational)): #not full - proof
if FreeQ(simplify(u), x.base) and Exponent(u, x.base) == 0:
if not all(FreeQ(u, i) for i in x.base.free_symbols):
return False
if isinstance(x, Mul):
return all(PolynomialQ(u, i) for i in x.args)
return u.is_polynomial(x)
def FactorSquareFree(u):
return sqf(u)
def PowerOfLinearQ(expr, x):
u = Wild('u')
w = Wild('w')
m = Wild('m')
n = Wild('n')
Match = expr.match(u**m)
if PolynomialQ(Match[u], x) and FreeQ(Match[m], x):
if IntegerQ(Match[m]):
e = FactorSquareFree(Match[u]).match(w**n)
if FreeQ(e[n], x) and LinearQ(e[w], x):
return True
else:
return False
else:
return LinearQ(Match[u], x)
else:
return False
def Exponent(expr, x, h = None):
expr = Expand(S(expr))
if h is None:
if S(expr).is_number or (not expr.has(x)):
return 0
if PolynomialQ(expr, x):
if isinstance(x, Rational):
return degree(Poly(expr, x), x)
return degree(expr, gen = x)
else:
return 0
else:
if S(expr).is_number or (not expr.has(x)):
res = [0]
if expr.is_Add:
expr = collect(expr, x)
lst = []
k = 1
for t in expr.args:
if t.has(x):
if isinstance(x, Rational):
lst += [degree(Poly(t, x), x)]
else:
lst += [degree(t, gen = x)]
else:
if k == 1:
lst += [0]
k += 1
lst.sort()
res = lst
else:
if isinstance(x, Rational):
res = [degree(Poly(expr, x), x)]
else:
res = [degree(expr, gen = x)]
return h(*res)
def QuadraticQ(u, x):
# QuadraticQ(u, x) returns True iff u is a polynomial of degree 2 and not a monomial of the form a x^2
if ListQ(u):
for expr in u:
if Not(PolyQ(expr, x, 2) and Not(Coefficient(expr, x, 0) == 0 and Coefficient(expr, x, 1) == 0)):
return False
return True
else:
return PolyQ(u, x, 2) and Not(Coefficient(u, x, 0) == 0 and Coefficient(u, x, 1) == 0)
def LinearPairQ(u, v, x):
# LinearPairQ(u, v, x) returns True iff u and v are linear not equal x but u/v is a constant wrt x
return LinearQ(u, x) and LinearQ(v, x) and NonzeroQ(u-x) and ZeroQ(Coefficient(u, x, 0)*Coefficient(v, x, 1)-Coefficient(u, x, 1)*Coefficient(v, x, 0))
def BinomialParts(u, x):
if PolynomialQ(u, x):
if Exponent(u, x) > 0:
lst = Exponent(u, x, List)
if len(lst)==1:
return [0, Coefficient(u, x, Exponent(u, x)), Exponent(u,x)]
elif len(lst) == 2 and lst[0] == 0:
return [Coefficient(u, x, 0), Coefficient(u, x, Exponent(u, x)), Exponent(u, x)]
else:
return False
else:
return False
elif PowerQ(u):
if u.base == x and FreeQ(u.exp, x):
return [0, 1, u.exp]
else:
return False
elif ProductQ(u):
if FreeQ(First(u), x):
lst2 = BinomialParts(Rest(u), x)
if AtomQ(lst2):
return False
else:
return [First(u)*lst2[0], First(u)*lst2[1], lst2[2]]
elif FreeQ(Rest(u), x):
lst1 = BinomialParts(First(u), x)
if AtomQ(lst1):
return False
else:
return [Rest(u)*lst1[0], Rest(u)*lst1[1], lst1[2]]
lst1 = BinomialParts(First(u), x)
if AtomQ(lst1):
return False
lst2 = BinomialParts(Rest(u), x)
if AtomQ(lst2):
return False
a = lst1[0]
b = lst1[1]
m = lst1[2]
c = lst2[0]
d = lst2[1]
n = lst2[2]
if ZeroQ(a):
if ZeroQ(c):
return [0, b*d, m + n]
elif ZeroQ(m + n):
return [b*d, b*c, m]
else:
return False
if ZeroQ(c):
if ZeroQ(m + n):
return [b*d, a*d, n]
else:
return False
if EqQ(m, n) and ZeroQ(a*d + b*c):
return [a*c, b*d, 2*m]
else:
return False
elif SumQ(u):
if FreeQ(First(u),x):
lst2 = BinomialParts(Rest(u), x)
if AtomQ(lst2):
return False
else:
return [First(u) + lst2[0], lst2[1], lst2[2]]
elif FreeQ(Rest(u), x):
lst1 = BinomialParts(First(u), x)
if AtomQ(lst1):
return False
else:
return[Rest(u) + lst1[0], lst1[1], lst1[2]]
lst1 = BinomialParts(First(u), x)
if AtomQ(lst1):
return False
lst2 = BinomialParts(Rest(u),x)
if AtomQ(lst2):
return False
if EqQ(lst1[2], lst2[2]):
return [lst1[0] + lst2[0], lst1[1] + lst2[1], lst1[2]]
else:
return False
else:
return False
def TrinomialParts(u, x):
# If u is equivalent to a trinomial of the form a + b*x^n + c*x^(2*n) where n!=0, b!=0 and c!=0, TrinomialParts[u,x] returns the list {a,b,c,n}; else it returns False.
u = sympify(u)
if PolynomialQ(u, x):
lst = CoefficientList(u, x)
if len(lst)<3 or EvenQ(sympify(len(lst))) or ZeroQ((len(lst)+1)/2):
return False
#Catch(
# Scan(Function(if ZeroQ(lst), Null, Throw(False), Drop(Drop(Drop(lst, [(len(lst)+1)/2]), 1), -1];
# [First(lst), lst[(len(lst)+1)/2], Last(lst), (len(lst)-1)/2]):
if PowerQ(u):
if EqQ(u.exp, 2):
lst = BinomialParts(u.base, x)
if not lst or ZeroQ(lst[0]):
return False
else:
return [lst[0]**2, 2*lst[0]*lst[1], lst[1]**2, lst[2]]
else:
return False
if ProductQ(u):
if FreeQ(First(u), x):
lst2 = TrinomialParts(Rest(u), x)
if not lst2:
return False
else:
return [First(u)*lst2[0], First(u)*lst2[1], First(u)*lst2[2], lst2[3]]
if FreeQ(Rest(u), x):
lst1 = TrinomialParts(First(u), x)
if not lst1:
return False
else:
return [Rest(u)*lst1[0], Rest(u)*lst1[1], Rest(u)*lst1[2], lst1[3]]
lst1 = BinomialParts(First(u), x)
if not lst1:
return False
lst2 = BinomialParts(Rest(u), x)
if not lst2:
return False
a = lst1[0]
b = lst1[1]
m = lst1[2]
c = lst2[0]
d = lst2[1]
n = lst2[2]
if EqQ(m, n) and NonzeroQ(a*d+b*c):
return [a*c, a*d + b*c, b*d, m]
else:
return False
if SumQ(u):
if FreeQ(First(u), x):
lst2 = TrinomialParts(Rest(u), x)
if not lst2:
return False
else:
return [First(u)+lst2[0], lst2[1], lst2[2], lst2[3]]
if FreeQ(Rest(u), x):
lst1 = TrinomialParts(First(u), x)
if not lst1:
return False
else:
return [Rest(u)+lst1[0], lst1[1], lst1[2], lst1[3]]
lst1 = TrinomialParts(First(u), x)
if not lst1:
lst3 = BinomialParts(First(u), x)
if not lst3:
return False
lst2 = TrinomialParts(Rest(u), x)
if not lst2:
lst4 = BinomialParts(Rest(u), x)
if not lst4:
return False
if EqQ(lst3[2], 2*lst4[2]):
return [lst3[0]+lst4[0], lst4[1], lst3[1], lst4[2]]
if EqQ(lst4[2], 2*lst3[2]):
return [lst3[0]+lst4[0], lst3[1], lst4[1], lst3[2]]
else:
return False
if EqQ(lst3[2], lst2[3]) and NonzeroQ(lst3[1]+lst2[1]):
return [lst3[0]+lst2[0], lst3[1]+lst2[1], lst2[2], lst2[3]]
if EqQ(lst3[2], 2*lst2[3]) and NonzeroQ(lst3[1]+lst2[2]):
return [lst3[0]+lst2[0], lst2[1], lst3[1]+lst2[2], lst2[3]]
else:
return False
lst2 = TrinomialParts(Rest(u), x)
if AtomQ(lst2):
lst4 = BinomialParts(Rest(u), x)
if not lst4:
return False
if EqQ(lst4[2], lst1[3]) and NonzeroQ(lst1[1]+lst4[0]):
return [lst1[0]+lst4[0], lst1[1]+lst4[1], lst1[2], lst1[3]]
if EqQ(lst4[2], 2*lst1[3]) and NonzeroQ(lst1[2]+lst4[1]):
return [lst1[0]+lst4[0], lst1[1], lst1[2]+lst4[1], lst1[3]]
else:
return False
if EqQ(lst1[3], lst2[3]) and NonzeroQ(lst1[1]+lst2[1]) and NonzeroQ(lst1[2]+lst2[2]):
return [lst1[0]+lst2[0], lst1[1]+lst2[1], lst1[2]+lst2[2], lst1[3]]
else:
return False
else:
return False
def PolyQ(u, x, n=None):
# returns True iff u is a polynomial of degree n.
if ListQ(u):
return all(PolyQ(i, x) for i in u)
if n==None:
if u == x:
return False
elif isinstance(x, Pow):
n = x.exp
x_base = x.base
if FreeQ(n, x_base):
if PositiveIntegerQ(n):
return PolyQ(u, x_base) and (PolynomialQ(u, x) or PolynomialQ(Together(u), x))
elif AtomQ(n):
return PolynomialQ(u, x) and FreeQ(CoefficientList(u, x), x_base)
else:
return False
return PolynomialQ(u, x) or PolynomialQ(u, Together(x))
else:
return PolynomialQ(u, x) and Coefficient(u, x, n) != 0 and Exponent(u, x) == n
def EvenQ(u):
# gives True if expr is an even integer, and False otherwise.
return isinstance(u, (Integer, int)) and u%2 == 0
def OddQ(u):
# gives True if expr is an odd integer, and False otherwise.
return isinstance(u, (Integer, int)) and u%2 == 1
def PerfectSquareQ(u):
# (* If u is a rational number whose squareroot is rational or if u is of the form u1^n1 u2^n2 ...
# and n1, n2, ... are even, PerfectSquareQ[u] returns True; else it returns False. *)
if RationalQ(u):
return Greater(u, 0) and RationalQ(Sqrt(u))
elif PowerQ(u):
return EvenQ(u.exp)
elif ProductQ(u):
return PerfectSquareQ(First(u)) and PerfectSquareQ(Rest(u))
elif SumQ(u):
s = Simplify(u)
if NonsumQ(s):
return PerfectSquareQ(s)
return False
else:
return False
def NiceSqrtAuxQ(u):
if RationalQ(u):
return u > 0
elif PowerQ(u):
return EvenQ(u.exp)
elif ProductQ(u):
return NiceSqrtAuxQ(First(u)) and NiceSqrtAuxQ(Rest(u))
elif SumQ(u):
s = Simplify(u)
return NonsumQ(s) and NiceSqrtAuxQ(s)
else:
return False
def NiceSqrtQ(u):
return Not(NegativeQ(u)) and NiceSqrtAuxQ(u)
def Together(u):
return factor(u)
def PosAux(u):
if RationalQ(u):
return u>0
elif NumberQ(u):
if ZeroQ(Re(u)):
return Im(u) > 0
else:
return Re(u) > 0
elif NumericQ(u):
v = N(u)
if ZeroQ(Re(v)):
return Im(v) > 0
else:
return Re(v) > 0
elif PowerQ(u):
if OddQ(u.exp):
return PosAux(u.base)
else:
return True
elif ProductQ(u):
if PosAux(First(u)):
return PosAux(Rest(u))
else:
return not PosAux(Rest(u))
elif SumQ(u):
return PosAux(First(u))
else:
res = u > 0
if res in(True, False):
return res
return True
def PosQ(u):
# If u is not 0 and has a positive form, PosQ[u] returns True, else it returns False.
return PosAux(TogetherSimplify(u))
def CoefficientList(u, x):
if PolynomialQ(u, x):
return list(reversed(Poly(u, x).all_coeffs()))
else:
return []
def ReplaceAll(expr, args):
if isinstance(args, list):
n_args = {}
for i in args:
n_args.update(i)
return expr.subs(n_args)
return expr.subs(args)
def ExpandLinearProduct(v, u, a, b, x):
# If u is a polynomial in x, ExpandLinearProduct[v,u,a,b,x] expands v*u into a sum of terms of the form c*v*(a+b*x)^n.
if FreeQ([a, b], x) and PolynomialQ(u, x):
lst = CoefficientList(ReplaceAll(u, {x: (x - a)/b}), x)
lst = [SimplifyTerm(i, x) for i in lst]
res = 0
for k in range(1, len(lst)+1):
res = res + Simplify(v*lst[k-1]*(a + b*x)**(k - 1))
return res
return u*v
def GCD(*args):
args = S(args)
if len(args) == 1:
if isinstance(args[0], (int, Integer)):
return args[0]
else:
return S(1)
return gcd(*args)
def ContentFactor(expn):
return factor_terms(expn)
def NumericFactor(u):
# returns the real numeric factor of u.
if NumberQ(u):
if ZeroQ(Im(u)):
return u
elif ZeroQ(Re(u)):
return Im(u)
else:
return S(1)
elif PowerQ(u):
if RationalQ(u.base) and RationalQ(u.exp):
if u.exp > 0:
return 1/Denominator(u.base)
else:
return 1/(1/Denominator(u.base))
else:
return S(1)
elif ProductQ(u):
return Mul(*[NumericFactor(i) for i in u.args])
elif SumQ(u):
if LeafCount(u) < 50:
c = ContentFactor(u)
if SumQ(c):
return S(1)
else:
return NumericFactor(c)
else:
m = NumericFactor(First(u))
n = NumericFactor(Rest(u))
if m < 0 and n < 0:
return -GCD(-m, -n)
else:
return GCD(m, n)
return S(1)
def NonnumericFactors(u):
if NumberQ(u):
if ZeroQ(Im(u)):
return S(1)
elif ZeroQ(Re(u)):
return I
return u
elif PowerQ(u):
if RationalQ(u.base) and FractionQ(u.exp):
return u/NumericFactor(u)
return u
elif ProductQ(u):
result = 1
for i in u.args:
result *= NonnumericFactors(i)
return result
elif SumQ(u):
if LeafCount(u) < 50:
i = ContentFactor(u)
if SumQ(i):
return u
else:
return NonnumericFactors(i)
n = NumericFactor(u)
result = 0
for i in u.args:
result += i/n
return result
return u
def MakeAssocList(u, x, alst=None):
# (* MakeAssocList[u,x,alst] returns an association list of gensymed symbols with the nonatomic
# parameters of a u that are not integer powers, products or sums. *)
if alst is None:
alst = []
u = replace_pow_exp(u)
x = replace_pow_exp(x)
if AtomQ(u):
return alst
elif IntegerPowerQ(u):
return MakeAssocList(u.base, x, alst)
elif ProductQ(u) or SumQ(u):
return MakeAssocList(Rest(u), x, MakeAssocList(First(u), x, alst))
elif FreeQ(u, x):
tmp = []
for i in alst:
if PowerQ(i):
if i.exp == u:
tmp.append(i)
break
elif len(i.args) > 1: # make sure args has length > 1, else causes index error some times
if i.args[1] == u:
tmp.append(i)
break
if tmp == []:
alst.append(u)
return alst
return alst
def GensymSubst(u, x, alst=None):
# (* GensymSubst[u,x,alst] returns u with the kernels in alst free of x replaced by gensymed names. *)
if alst is None:
alst =[]
u = replace_pow_exp(u)
x = replace_pow_exp(x)
if AtomQ(u):
return u
elif IntegerPowerQ(u):
return GensymSubst(u.base, x, alst)**u.exp
elif ProductQ(u) or SumQ(u):
return u.func(*[GensymSubst(i, x, alst) for i in u.args])
elif FreeQ(u, x):
tmp = []
for i in alst:
if PowerQ(i):
if i.exp == u:
tmp.append(i)
break
elif len(i.args) > 1: # make sure args has length > 1, else causes index error some times
if i.args[1] == u:
tmp.append(i)
break
if tmp == []:
return u
return tmp[0][0]
return u
def KernelSubst(u, x, alst):
# (* KernelSubst[u,x,alst] returns u with the gensymed names in alst replaced by kernels free of x. *)
if AtomQ(u):
tmp = []
for i in alst:
if i.args[0] == u:
tmp.append(i)
break
if tmp == []:
return u
elif len(tmp[0].args) > 1: # make sure args has length > 1, else causes index error some times
return tmp[0].args[1]
elif IntegerPowerQ(u):
tmp = KernelSubst(u.base, x, alst)
if u.exp < 0 and ZeroQ(tmp):
return 'Indeterminate'
return tmp**u.exp
elif ProductQ(u) or SumQ(u):
return u.func(*[KernelSubst(i, x, alst) for i in u.args])
return u
def ExpandExpression(u, x):
if AlgebraicFunctionQ(u, x) and Not(RationalFunctionQ(u, x)):
v = ExpandAlgebraicFunction(u, x)
else:
v = S(0)
if SumQ(v):
return ExpandCleanup(v, x)
v = SmartApart(u, x)
if SumQ(v):
return ExpandCleanup(v, x)
v = SmartApart(RationalFunctionFactors(u, x), x, x)
if SumQ(v):
w = NonrationalFunctionFactors(u, x)
return ExpandCleanup(v.func(*[i*w for i in v.args]), x)
v = Expand(u)
if SumQ(v):
return ExpandCleanup(v, x)
v = Expand(u)
if SumQ(v):
return ExpandCleanup(v, x)
return SimplifyTerm(u, x)
def Apart(u, x):
if RationalFunctionQ(u, x):
return apart(u, x)
return u
def SmartApart(*args):
if len(args) == 2:
u, x = args
alst = MakeAssocList(u, x)
tmp = KernelSubst(Apart(GensymSubst(u, x, alst), x), x, alst)
if tmp == 'Indeterminate':
return u
return tmp
u, v, x = args
alst = MakeAssocList(u, x)
tmp = KernelSubst(Apart(GensymSubst(u, x, alst), x), x, alst)
if tmp == 'Indeterminate':
return u
return tmp
def MatchQ(expr, pattern, *var):
# returns the matched arguments after matching pattern with expression
match = expr.match(pattern)
if match:
return tuple(match[i] for i in var)
else:
return None
def PolynomialQuotientRemainder(p, q, x):
return [PolynomialQuotient(p, q, x), PolynomialRemainder(p, q, x)]
def FreeFactors(u, x):
# returns the product of the factors of u free of x.
if ProductQ(u):
result = 1
for i in u.args:
if FreeQ(i, x):
result *= i
return result
elif FreeQ(u, x):
return u
else:
return S(1)
def NonfreeFactors(u, x):
"""
Returns the product of the factors of u not free of x.
Examples
========
>>> from sympy.integrals.rubi.utility_function import NonfreeFactors
>>> from sympy.abc import x, a, b
>>> NonfreeFactors(a, x)
1
>>> NonfreeFactors(x + a, x)
a + x
>>> NonfreeFactors(a*b*x, x)
x
"""
if ProductQ(u):
result = 1
for i in u.args:
if not FreeQ(i, x):
result *= i
return result
elif FreeQ(u, x):
return 1
else:
return u
def RemoveContentAux(expr, x):
return RemoveContentAux_replacer.replace(UtilityOperator(expr, x))
def RemoveContent(u, x):
v = NonfreeFactors(u, x)
w = Together(v)
if EqQ(FreeFactors(w, x), 1):
return RemoveContentAux(v, x)
else:
return RemoveContentAux(NonfreeFactors(w, x), x)
def FreeTerms(u, x):
"""
Returns the sum of the terms of u free of x.
Examples
========
>>> from sympy.integrals.rubi.utility_function import FreeTerms
>>> from sympy.abc import x, a, b
>>> FreeTerms(a, x)
a
>>> FreeTerms(x*a, x)
0
>>> FreeTerms(a*x + b, x)
b
"""
if SumQ(u):
result = 0
for i in u.args:
if FreeQ(i, x):
result += i
return result
elif FreeQ(u, x):
return u
else:
return 0
def NonfreeTerms(u, x):
# returns the sum of the terms of u free of x.
if SumQ(u):
result = S(0)
for i in u.args:
if not FreeQ(i, x):
result += i
return result
elif not FreeQ(u, x):
return u
else:
return S(0)
def ExpandAlgebraicFunction(expr, x):
if ProductQ(expr):
u_ = Wild('u', exclude=[x])
n_ = Wild('n', exclude=[x])
v_ = Wild('v')
pattern = u_*v_
match = expr.match(pattern)
if match:
keys = [u_, v_]
if len(keys) == len(match):
u, v = tuple([match[i] for i in keys])
if SumQ(v):
u, v = v, u
if not FreeQ(u, x) and SumQ(u):
result = 0
for i in u.args:
result += i*v
return result
pattern = u_**n_*v_
match = expr.match(pattern)
if match:
keys = [u_, n_, v_]
if len(keys) == len(match):
u, n, v = tuple([match[i] for i in keys])
if PositiveIntegerQ(n) and SumQ(u):
w = Expand(u**n)
result = 0
for i in w.args:
result += i*v
return result
return expr
def CollectReciprocals(expr, x):
# Basis: e/(a+b x)+f/(c+d x)==(c e+a f+(d e+b f) x)/(a c+(b c+a d) x+b d x^2)
if SumQ(expr):
u_ = Wild('u')
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x])
c_ = Wild('c', exclude=[x])
d_ = Wild('d', exclude=[x])
e_ = Wild('e', exclude=[x])
f_ = Wild('f', exclude=[x])
pattern = u_ + e_/(a_ + b_*x) + f_/(c_+d_*x)
match = expr.match(pattern)
if match:
try: # .match() does not work peoperly always
keys = [u_, a_, b_, c_, d_, e_, f_]
u, a, b, c, d, e, f = tuple([match[i] for i in keys])
if ZeroQ(b*c + a*d) & ZeroQ(d*e + b*f):
return CollectReciprocals(u + (c*e + a*f)/(a*c + b*d*x**2),x)
elif ZeroQ(b*c + a*d) & ZeroQ(c*e + a*f):
return CollectReciprocals(u + (d*e + b*f)*x/(a*c + b*d*x**2),x)
except:
pass
return expr
def ExpandCleanup(u, x):
v = CollectReciprocals(u, x)
if SumQ(v):
res = 0
for i in v.args:
res += SimplifyTerm(i, x)
v = res
if SumQ(v):
return UnifySum(v, x)
else:
return v
else:
return v
def AlgebraicFunctionQ(u, x, flag=False):
if ListQ(u):
if u == []:
return True
elif AlgebraicFunctionQ(First(u), x, flag):
return AlgebraicFunctionQ(Rest(u), x, flag)
else:
return False
elif AtomQ(u) or FreeQ(u, x):
return True
elif PowerQ(u):
if RationalQ(u.exp) | flag & FreeQ(u.exp, x):
return AlgebraicFunctionQ(u.base, x, flag)
elif ProductQ(u) | SumQ(u):
for i in u.args:
if not AlgebraicFunctionQ(i, x, flag):
return False
return True
return False
def Coeff(expr, form, n=1):
if n == 1:
return Coefficient(Together(expr), form, n)
else:
coef1 = Coefficient(expr, form, n)
coef2 = Coefficient(Together(expr), form, n)
if Simplify(coef1 - coef2) == 0:
return coef1
else:
return coef2
def LeadTerm(u):
if SumQ(u):
return First(u)
return u
def RemainingTerms(u):
if SumQ(u):
return Rest(u)
return u
def LeadFactor(u):
# returns the leading factor of u.
if ComplexNumberQ(u) and Re(u) == 0:
if Im(u) == S(1):
return u
else:
return LeadFactor(Im(u))
elif ProductQ(u):
return LeadFactor(First(u))
return u
def RemainingFactors(u):
# returns the remaining factors of u.
if ComplexNumberQ(u) and Re(u) == 0:
if Im(u) == 1:
return S(1)
else:
return I*RemainingFactors(Im(u))
elif ProductQ(u):
return RemainingFactors(First(u))*Rest(u)
return S(1)
def LeadBase(u):
"""
returns the base of the leading factor of u.
Examples
========
>>> from sympy.integrals.rubi.utility_function import LeadBase
>>> from sympy.abc import a, b, c
>>> LeadBase(a**b)
a
>>> LeadBase(a**b*c)
a
"""
v = LeadFactor(u)
if PowerQ(v):
return v.base
return v
def LeadDegree(u):
# returns the degree of the leading factor of u.
v = LeadFactor(u)
if PowerQ(v):
return v.exp
return v
def Numer(expr):
# returns the numerator of u.
if PowerQ(expr):
if expr.exp < 0:
return 1
if ProductQ(expr):
return Mul(*[Numer(i) for i in expr.args])
return Numerator(expr)
def Denom(u):
# returns the denominator of u
if PowerQ(u):
if u.exp < 0:
return u.args[0]**(-u.args[1])
elif ProductQ(u):
return Mul(*[Denom(i) for i in u.args])
return Denominator(u)
def hypergeom(n, d, z):
return hyper(n, d, z)
def Expon(expr, form, h=None):
if h:
return Exponent(Together(expr), form, h)
else:
return Exponent(Together(expr), form)
def MergeMonomials(expr, x):
u_ = Wild('u')
p_ = Wild('p', exclude=[x, 1, 0])
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x, 0])
c_ = Wild('c', exclude=[x])
d_ = Wild('d', exclude=[x, 0])
n_ = Wild('n', exclude=[x])
m_ = Wild('m', exclude=[x])
# Basis: If m/n\[Element]\[DoubleStruckCapitalZ], then z^m (c z^n)^p==(c z^n)^(m/n+p)/c^(m/n)
pattern = u_*(a_ + b_*x)**m_*(c_*(a_ + b_*x)**n_)**p_
match = expr.match(pattern)
if match:
keys = [u_, a_, b_, m_, c_, n_, p_]
if len(keys) == len(match):
u, a, b, m, c, n, p = tuple([match[i] for i in keys])
if IntegerQ(m/n):
if u*(c*(a + b*x)**n)**(m/n + p)/c**(m/n) == S.NaN:
return expr
else:
return u*(c*(a + b*x)**n)**(m/n + p)/c**(m/n)
# Basis: If m\[Element]\[DoubleStruckCapitalZ] \[And] b c-a d==0, then (a+b z)^m==b^m/d^m (c+d z)^m
pattern = u_*(a_ + b_*x)**m_*(c_ + d_*x)**n_
match = expr.match(pattern)
if match:
keys = [u_, a_, b_, m_, c_, d_, n_]
if len(keys) == len(match):
u, a, b, m, c, d, n = tuple([match[i] for i in keys])
if IntegerQ(m) and ZeroQ(b*c - a*d):
if u*b**m/d**m*(c + d*x)**(m + n) == S.NaN:
return expr
else:
return u*b**m/d**m*(c + d*x)**(m + n)
return expr
def PolynomialDivide(u, v, x):
quo = PolynomialQuotient(u, v, x)
rem = PolynomialRemainder(u, v, x)
s = 0
for i in Exponent(quo, x, List):
s += Simp(Together(Coefficient(quo, x, i)*x**i), x)
quo = s
rem = Together(rem)
free = FreeFactors(rem, x)
rem = NonfreeFactors(rem, x)
monomial = x**Exponent(rem, x, Min)
if NegQ(Coefficient(rem, x, 0)):
monomial = -monomial
s = 0
for i in Exponent(rem, x, List):
s += Simp(Together(Coefficient(rem, x, i)*x**i/monomial), x)
rem = s
if BinomialQ(v, x):
return quo + free*monomial*rem/ExpandToSum(v, x)
else:
return quo + free*monomial*rem/v
def BinomialQ(u, x, n=None):
"""
If u is equivalent to an expression of the form a + b*x**n, BinomialQ(u, x, n) returns True, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import BinomialQ
>>> from sympy.abc import x
>>> BinomialQ(x**9, x)
True
>>> BinomialQ((1 + x)**3, x)
False
"""
if ListQ(u):
for i in u:
if Not(BinomialQ(i, x, n)):
return False
return True
elif NumberQ(x):
return False
return ListQ(BinomialParts(u, x))
def TrinomialQ(u, x):
"""
If u is equivalent to an expression of the form a + b*x**n + c*x**(2*n) where n, b and c are not 0,
TrinomialQ(u, x) returns True, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import TrinomialQ
>>> from sympy.abc import x
>>> TrinomialQ((7 + 2*x**6 + 3*x**12), x)
True
>>> TrinomialQ(x**2, x)
False
"""
if ListQ(u):
for i in u.args:
if Not(TrinomialQ(i, x)):
return False
return True
check = False
u = replace_pow_exp(u)
if PowerQ(u):
if u.exp == 2 and BinomialQ(u.base, x):
check = True
return ListQ(TrinomialParts(u,x)) and Not(QuadraticQ(u, x)) and Not(check)
def GeneralizedBinomialQ(u, x):
"""
If u is equivalent to an expression of the form a*x**q+b*x**n where n, q and b are not 0,
GeneralizedBinomialQ(u, x) returns True, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import GeneralizedBinomialQ
>>> from sympy.abc import a, x, q, b, n
>>> GeneralizedBinomialQ(a*x**q, x)
False
"""
if ListQ(u):
return all(GeneralizedBinomialQ(i, x) for i in u)
return ListQ(GeneralizedBinomialParts(u, x))
def GeneralizedTrinomialQ(u, x):
"""
If u is equivalent to an expression of the form a*x**q+b*x**n+c*x**(2*n-q) where n, q, b and c are not 0,
GeneralizedTrinomialQ(u, x) returns True, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import GeneralizedTrinomialQ
>>> from sympy.abc import x
>>> GeneralizedTrinomialQ(7 + 2*x**6 + 3*x**12, x)
False
"""
if ListQ(u):
return all(GeneralizedTrinomialQ(i, x) for i in u)
return ListQ(GeneralizedTrinomialParts(u, x))
def FactorSquareFreeList(poly):
r = sqf_list(poly)
result = [[1, 1]]
for i in r[1]:
result.append(list(i))
return result
def PerfectPowerTest(u, x):
# If u (x) is equivalent to a polynomial raised to an integer power greater than 1,
# PerfectPowerTest[u,x] returns u (x) as an expanded polynomial raised to the power;
# else it returns False.
if PolynomialQ(u, x):
lst = FactorSquareFreeList(u)
gcd = 0
v = 1
if lst[0] == [1, 1]:
lst = Rest(lst)
for i in lst:
gcd = GCD(gcd, i[1])
if gcd > 1:
for i in lst:
v = v*i[0]**(i[1]/gcd)
return Expand(v)**gcd
else:
return False
return False
def SquareFreeFactorTest(u, x):
# If u (x) can be square free factored, SquareFreeFactorTest[u,x] returns u (x) in
# factored form; else it returns False.
if PolynomialQ(u, x):
v = FactorSquareFree(u)
if PowerQ(v) or ProductQ(v):
return v
return False
return False
def RationalFunctionQ(u, x):
# If u is a rational function of x, RationalFunctionQ[u,x] returns True; else it returns False.
if AtomQ(u) or FreeQ(u, x):
return True
elif IntegerPowerQ(u):
return RationalFunctionQ(u.base, x)
elif ProductQ(u) or SumQ(u):
for i in u.args:
if Not(RationalFunctionQ(i, x)):
return False
return True
return False
def RationalFunctionFactors(u, x):
# RationalFunctionFactors[u,x] returns the product of the factors of u that are rational functions of x.
if ProductQ(u):
res = 1
for i in u.args:
if RationalFunctionQ(i, x):
res *= i
return res
elif RationalFunctionQ(u, x):
return u
return S(1)
def NonrationalFunctionFactors(u, x):
if ProductQ(u):
res = 1
for i in u.args:
if not RationalFunctionQ(i, x):
res *= i
return res
elif RationalFunctionQ(u, x):
return S(1)
return u
def Reverse(u):
if isinstance(u, list):
return list(reversed(u))
else:
l = list(u.args)
return u.func(*list(reversed(l)))
def RationalFunctionExponents(u, x):
"""
u is a polynomial or rational function of x.
RationalFunctionExponents(u, x) returns a list of the exponent of the
numerator of u and the exponent of the denominator of u.
Examples
========
>>> from sympy.integrals.rubi.utility_function import RationalFunctionExponents
>>> from sympy.abc import x, a
>>> RationalFunctionExponents(x, x)
[1, 0]
>>> RationalFunctionExponents(x**(-1), x)
[0, 1]
>>> RationalFunctionExponents(x**(-1)*a, x)
[0, 1]
"""
if PolynomialQ(u, x):
return [Exponent(u, x), 0]
elif IntegerPowerQ(u):
if PositiveQ(u.exp):
return u.exp*RationalFunctionExponents(u.base, x)
return (-u.exp)*Reverse(RationalFunctionExponents(u.base, x))
elif ProductQ(u):
lst1 = RationalFunctionExponents(First(u), x)
lst2 = RationalFunctionExponents(Rest(u), x)
return [lst1[0] + lst2[0], lst1[1] + lst2[1]]
elif SumQ(u):
v = Together(u)
if SumQ(v):
lst1 = RationalFunctionExponents(First(u), x)
lst2 = RationalFunctionExponents(Rest(u), x)
return [Max(lst1[0] + lst2[1], lst2[0] + lst1[1]), lst1[1] + lst2[1]]
else:
return RationalFunctionExponents(v, x)
return [0, 0]
def RationalFunctionExpand(expr, x):
# expr is a polynomial or rational function of x.
# RationalFunctionExpand[u,x] returns the expansion of the factors of u that are rational functions times the other factors.
def cons_f1(n):
return FractionQ(n)
cons1 = CustomConstraint(cons_f1)
def cons_f2(x, v):
if not isinstance(x, Symbol):
return False
return UnsameQ(v, x)
cons2 = CustomConstraint(cons_f2)
def With1(n, u, x, v):
w = RationalFunctionExpand(u, x)
return If(SumQ(w), Add(*[i*v**n for i in w.args]), v**n*w)
pattern1 = Pattern(UtilityOperator(u_*v_**n_, x_), cons1, cons2)
rule1 = ReplacementRule(pattern1, With1)
def With2(u, x):
v = ExpandIntegrand(u, x)
def _consf_u(a, b, c, d, p, m, n, x):
return And(FreeQ(List(a, b, c, d, p), x), IntegersQ(m, n), Equal(m, Add(n, S(-1))))
cons_u = CustomConstraint(_consf_u)
pat = Pattern(UtilityOperator(x_**WC('m', S(1))*(x_*WC('d', S(1)) + c_)**p_/(x_**n_*WC('b', S(1)) + a_), x_), cons_u)
result_matchq = is_match(UtilityOperator(u, x), pat)
if UnsameQ(v, u) and not result_matchq:
return v
else:
v = ExpandIntegrand(RationalFunctionFactors(u, x), x)
w = NonrationalFunctionFactors(u, x)
if SumQ(v):
return Add(*[i*w for i in v.args])
else:
return v*w
pattern2 = Pattern(UtilityOperator(u_, x_))
rule2 = ReplacementRule(pattern2, With2)
expr = expr.replace(sym_exp, rubi_exp)
res = replace_all(UtilityOperator(expr, x), [rule1, rule2])
return replace_pow_exp(res)
def ExpandIntegrand(expr, x, extra=None):
expr = replace_pow_exp(expr)
if not extra is None:
extra, x = x, extra
w = ExpandIntegrand(extra, x)
r = NonfreeTerms(w, x)
if SumQ(r):
result = [expr*FreeTerms(w, x)]
for i in r.args:
result.append(MergeMonomials(expr*i, x))
return r.func(*result)
else:
return expr*FreeTerms(w, x) + MergeMonomials(expr*r, x)
else:
u_ = Wild('u', exclude=[0, 1])
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x, 0])
F_ = Wild('F', exclude=[0])
c_ = Wild('c', exclude=[x])
d_ = Wild('d', exclude=[x, 0])
n_ = Wild('n', exclude=[0, 1])
pattern = u_*(a_ + b_*F_)**n_
match = expr.match(pattern)
if match:
if MemberQ([asin, acos, asinh, acosh], match[F_].func):
keys = [u_, a_, b_, F_, n_]
if len(match) == len(keys):
u, a, b, F, n = tuple([match[i] for i in keys])
match = F.args[0].match(c_ + d_*x)
if match:
keys = c_, d_
if len(keys) == len(match):
c, d = tuple([match[i] for i in keys])
if PolynomialQ(u, x):
F = F.func
return ExpandLinearProduct((a + b*F(c + d*x))**n, u, c, d, x)
expr = expr.replace(sym_exp, rubi_exp)
res = replace_all(UtilityOperator(expr, x), ExpandIntegrand_rules, max_count = 1)
return replace_pow_exp(res)
def SimplerQ(u, v):
# If u is simpler than v, SimplerQ(u, v) returns True, else it returns False. SimplerQ(u, u) returns False
if IntegerQ(u):
if IntegerQ(v):
if Abs(u)==Abs(v):
return v<0
else:
return Abs(u)<Abs(v)
else:
return True
elif IntegerQ(v):
return False
elif FractionQ(u):
if FractionQ(v):
if Denominator(u) == Denominator(v):
return SimplerQ(Numerator(u), Numerator(v))
else:
return Denominator(u)<Denominator(v)
else:
return True
elif FractionQ(v):
return False
elif (Re(u)==0 or Re(u) == 0) and (Re(v)==0 or Re(v) == 0):
return SimplerQ(Im(u), Im(v))
elif ComplexNumberQ(u):
if ComplexNumberQ(v):
if Re(u) == Re(v):
return SimplerQ(Im(u), Im(v))
else:
return SimplerQ(Re(u),Re(v))
else:
return False
elif NumberQ(u):
if NumberQ(v):
return OrderedQ([u,v])
else:
return True
elif NumberQ(v):
return False
elif AtomQ(u) or (Head(u) == re) or (Head(u) == im):
if AtomQ(v) or (Head(u) == re) or (Head(u) == im):
return OrderedQ([u,v])
else:
return True
elif AtomQ(v) or (Head(u) == re) or (Head(u) == im):
return False
elif Head(u) == Head(v):
if Length(u) == Length(v):
for i in range(len(u.args)):
if not u.args[i] == v.args[i]:
return SimplerQ(u.args[i], v.args[i])
return False
return Length(u) < Length(v)
elif LeafCount(u) < LeafCount(v):
return True
elif LeafCount(v) < LeafCount(u):
return False
return Not(OrderedQ([v,u]))
def SimplerSqrtQ(u, v):
# If Rt(u, 2) is simpler than Rt(v, 2), SimplerSqrtQ(u, v) returns True, else it returns False. SimplerSqrtQ(u, u) returns False
if NegativeQ(v) and Not(NegativeQ(u)):
return True
if NegativeQ(u) and Not(NegativeQ(v)):
return False
sqrtu = Rt(u, S(2))
sqrtv = Rt(v, S(2))
if IntegerQ(sqrtu):
if IntegerQ(sqrtv):
return sqrtu<sqrtv
else:
return True
if IntegerQ(sqrtv):
return False
if RationalQ(sqrtu):
if RationalQ(sqrtv):
return sqrtu<sqrtv
else:
return True
if RationalQ(sqrtv):
return False
if PosQ(u):
if PosQ(v):
return LeafCount(sqrtu)<LeafCount(sqrtv)
else:
return True
if PosQ(v):
return False
if LeafCount(sqrtu)<LeafCount(sqrtv):
return True
if LeafCount(sqrtv)<LeafCount(sqrtu):
return False
else:
return Not(OrderedQ([v, u]))
def SumSimplerQ(u, v):
"""
If u + v is simpler than u, SumSimplerQ(u, v) returns True, else it returns False.
If for every term w of v there is a term of u equal to n*w where n<-1/2, u + v will be simpler than u.
Examples
========
>>> from sympy.integrals.rubi.utility_function import SumSimplerQ
>>> from sympy.abc import x
>>> from sympy import S
>>> SumSimplerQ(S(4 + x),S(3 + x**3))
False
"""
if RationalQ(u, v):
if v == S(0):
return False
elif v > S(0):
return u < -S(1)
else:
return u >= -v
else:
return SumSimplerAuxQ(Expand(u), Expand(v))
def BinomialDegree(u, x):
# if u is a binomial. BinomialDegree[u,x] returns the degree of x in u.
bp = BinomialParts(u, x)
if bp == False:
return bp
return bp[2]
def TrinomialDegree(u, x):
# If u is equivalent to a trinomial of the form a + b*x^n + c*x^(2*n) where n!=0, b!=0 and c!=0, TrinomialDegree[u,x] returns n
t = TrinomialParts(u, x)
if t:
return t[3]
return t
def CancelCommonFactors(u, v):
def _delete_cases(a, b):
# only for CancelCommonFactors
lst = []
deleted = False
for i in a.args:
if i == b and not deleted:
deleted = True
continue
lst.append(i)
return a.func(*lst)
# CancelCommonFactors[u,v] returns {u',v'} are the noncommon factors of u and v respectively.
if ProductQ(u):
if ProductQ(v):
if MemberQ(v, First(u)):
return CancelCommonFactors(Rest(u), _delete_cases(v, First(u)))
else:
lst = CancelCommonFactors(Rest(u), v)
return [First(u)*lst[0], lst[1]]
else:
if MemberQ(u, v):
return [_delete_cases(u, v), 1]
else:
return[u, v]
elif ProductQ(v):
if MemberQ(v, u):
return [1, _delete_cases(v, u)]
else:
return [u, v]
return[u, v]
def SimplerIntegrandQ(u, v, x):
lst = CancelCommonFactors(u, v)
u1 = lst[0]
v1 = lst[1]
if Head(u1) == Head(v1) and Length(u1) == 1 and Length(v1) == 1:
return SimplerIntegrandQ(u1.args[0], v1.args[0], x)
if 4*LeafCount(u1) < 3*LeafCount(v1):
return True
if RationalFunctionQ(u1, x):
if RationalFunctionQ(v1, x):
t1 = 0
t2 = 0
for i in RationalFunctionExponents(u1, x):
t1 += i
for i in RationalFunctionExponents(v1, x):
t2 += i
return t1 < t2
else:
return True
else:
return False
def GeneralizedBinomialDegree(u, x):
b = GeneralizedBinomialParts(u, x)
if b:
return b[2] - b[3]
def GeneralizedBinomialParts(expr, x):
expr = Expand(expr)
if GeneralizedBinomialMatchQ(expr, x):
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
n = Wild('n', exclude=[x])
q = Wild('q', exclude=[x])
Match = expr.match(a*x**q + b*x**n)
if Match and PosQ(Match[q] - Match[n]):
return [Match[b], Match[a], Match[q], Match[n]]
else:
return False
def GeneralizedTrinomialDegree(u, x):
t = GeneralizedTrinomialParts(u, x)
if t:
return t[3] - t[4]
def GeneralizedTrinomialParts(expr, x):
expr = Expand(expr)
if GeneralizedTrinomialMatchQ(expr, x):
a = Wild('a', exclude=[x, 0])
b = Wild('b', exclude=[x, 0])
c = Wild('c', exclude=[x])
n = Wild('n', exclude=[x, 0])
q = Wild('q', exclude=[x])
Match = expr.match(a*x**q + b*x**n+c*x**(2*n-q))
if Match and expr.is_Add:
return [Match[c], Match[b], Match[a], Match[n], 2*Match[n]-Match[q]]
else:
return False
def MonomialQ(u, x):
# If u is of the form a*x^n where n!=0 and a!=0, MonomialQ[u,x] returns True; else False
if isinstance(u, list):
return all(MonomialQ(i, x) for i in u)
else:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
re = u.match(a*x**b)
if re:
return True
return False
def MonomialSumQ(u, x):
# if u(x) is a sum and each term is free of x or an expression of the form a*x^n, MonomialSumQ(u, x) returns True; else it returns False
if SumQ(u):
for i in u.args:
if Not(FreeQ(i, x) or MonomialQ(i, x)):
return False
return True
@doctest_depends_on(modules=('matchpy',))
def MinimumMonomialExponent(u, x):
"""
u is sum whose terms are monomials. MinimumMonomialExponent(u, x) returns the exponent of the term having the smallest exponent
Examples
========
>>> from sympy.integrals.rubi.utility_function import MinimumMonomialExponent
>>> from sympy.abc import x
>>> MinimumMonomialExponent(x**2 + 5*x**2 + 3*x**5, x)
2
>>> MinimumMonomialExponent(x**2 + 5*x**2 + 1, x)
0
"""
n =MonomialExponent(First(u), x)
for i in u.args:
if PosQ(n - MonomialExponent(i, x)):
n = MonomialExponent(i, x)
return n
def MonomialExponent(u, x):
# u is a monomial. MonomialExponent(u, x) returns the exponent of x in u
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
re = u.match(a*x**b)
if re:
return re[b]
def LinearMatchQ(u, x):
# LinearMatchQ(u, x) returns True iff u matches patterns of the form a+b*x where a and b are free of x
if isinstance(u, list):
return all(LinearMatchQ(i, x) for i in u)
else:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
re = u.match(a + b*x)
if re:
return True
return False
def PowerOfLinearMatchQ(u, x):
if isinstance(u, list):
for i in u:
if not PowerOfLinearMatchQ(i, x):
return False
return True
else:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x, 0])
m = Wild('m', exclude=[x, 0])
Match = u.match((a + b*x)**m)
if Match:
return True
else:
return False
def QuadraticMatchQ(u, x):
if ListQ(u):
return all(QuadraticMatchQ(i, x) for i in u)
pattern1 = Pattern(UtilityOperator(x_**2*WC('c', 1) + x_*WC('b', 1) + WC('a', 0), x_), CustomConstraint(lambda a, b, c, x: FreeQ([a, b, c], x)))
pattern2 = Pattern(UtilityOperator(x_**2*WC('c', 1) + WC('a', 0), x_), CustomConstraint(lambda a, c, x: FreeQ([a, c], x)))
u1 = UtilityOperator(u, x)
return is_match(u1, pattern1) or is_match(u1, pattern2)
def CubicMatchQ(u, x):
if isinstance(u, list):
return all(CubicMatchQ(i, x) for i in u)
else:
pattern1 = Pattern(UtilityOperator(x_**3*WC('d', 1) + x_**2*WC('c', 1) + x_*WC('b', 1) + WC('a', 0), x_), CustomConstraint(lambda a, b, c, d, x: FreeQ([a, b, c, d], x)))
pattern2 = Pattern(UtilityOperator(x_**3*WC('d', 1) + x_*WC('b', 1) + WC('a', 0), x_), CustomConstraint(lambda a, b, d, x: FreeQ([a, b, d], x)))
pattern3 = Pattern(UtilityOperator(x_**3*WC('d', 1) + x_**2*WC('c', 1) + WC('a', 0), x_), CustomConstraint(lambda a, c, d, x: FreeQ([a, c, d], x)))
pattern4 = Pattern(UtilityOperator(x_**3*WC('d', 1) + WC('a', 0), x_), CustomConstraint(lambda a, d, x: FreeQ([a, d], x)))
u1 = UtilityOperator(u, x)
if is_match(u1, pattern1) or is_match(u1, pattern2) or is_match(u1, pattern3) or is_match(u1, pattern4):
return True
else:
return False
def BinomialMatchQ(u, x):
if isinstance(u, list):
return all(BinomialMatchQ(i, x) for i in u)
else:
pattern = Pattern(UtilityOperator(x_**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0)), x_) , CustomConstraint(lambda a, b, n, x: FreeQ([a,b,n],x)))
u = UtilityOperator(u, x)
return is_match(u, pattern)
def TrinomialMatchQ(u, x):
if isinstance(u, list):
return all(TrinomialMatchQ(i, x) for i in u)
else:
pattern = Pattern(UtilityOperator(x_**WC('j', S(1))*WC('c', S(1)) + x_**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0)), x_) , CustomConstraint(lambda a, b, c, n, x: FreeQ([a, b, c, n], x)), CustomConstraint(lambda j, n: ZeroQ(j-2*n) ))
u = UtilityOperator(u, x)
return is_match(u, pattern)
def GeneralizedBinomialMatchQ(u, x):
if isinstance(u, list):
return all(GeneralizedBinomialMatchQ(i, x) for i in u)
else:
a = Wild('a', exclude=[x, 0])
b = Wild('b', exclude=[x, 0])
n = Wild('n', exclude=[x, 0])
q = Wild('q', exclude=[x, 0])
Match = u.match(a*x**q + b*x**n)
if Match and len(Match) == 4 and Match[q] != 0 and Match[n] != 0:
return True
else:
return False
def GeneralizedTrinomialMatchQ(u, x):
if isinstance(u, list):
return all(GeneralizedTrinomialMatchQ(i, x) for i in u)
else:
a = Wild('a', exclude=[x, 0])
b = Wild('b', exclude=[x, 0])
n = Wild('n', exclude=[x, 0])
c = Wild('c', exclude=[x, 0])
q = Wild('q', exclude=[x, 0])
Match = u.match(a*x**q + b*x**n + c*x**(2*n - q))
if Match and len(Match) == 5 and 2*Match[n] - Match[q] != 0 and Match[n] != 0:
return True
else:
return False
def QuotientOfLinearsMatchQ(u, x):
if isinstance(u, list):
return all(QuotientOfLinearsMatchQ(i, x) for i in u)
else:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
d = Wild('d', exclude=[x])
c = Wild('c', exclude=[x])
e = Wild('e')
Match = u.match(e*(a + b*x)/(c + d*x))
if Match and len(Match) == 5:
return True
else:
return False
def PolynomialTermQ(u, x):
a = Wild('a', exclude=[x])
n = Wild('n', exclude=[x])
Match = u.match(a*x**n)
if Match and IntegerQ(Match[n]) and Greater(Match[n], S(0)):
return True
else:
return False
def PolynomialTerms(u, x):
s = 0
for i in u.args:
if PolynomialTermQ(i, x):
s = s + i
return s
def NonpolynomialTerms(u, x):
s = 0
for i in u.args:
if not PolynomialTermQ(i, x):
s = s + i
return s
def PseudoBinomialParts(u, x):
if PolynomialQ(u, x) and Greater(Expon(u, x), S(2)):
n = Expon(u, x)
d = Rt(Coefficient(u, x, n), n)
c = d**(-n + S(1))*Coefficient(u, x, n + S(-1))/n
a = Simplify(u - (c + d*x)**n)
if NonzeroQ(a) and FreeQ(a, x):
return [a, S(1), c, d, n]
else:
return False
else:
return False
def NormalizePseudoBinomial(u, x):
lst = PseudoBinomialParts(u, x)
if lst:
return (lst[0] + lst[1]*(lst[2] + lst[3]*x)**lst[4])
def PseudoBinomialPairQ(u, v, x):
lst1 = PseudoBinomialParts(u, x)
if AtomQ(lst1):
return False
else:
lst2 = PseudoBinomialParts(v, x)
if AtomQ(lst2):
return False
else:
return Drop(lst1, 2) == Drop(lst2, 2)
def PseudoBinomialQ(u, x):
lst = PseudoBinomialParts(u, x)
if lst:
return True
else:
return False
def PolynomialGCD(f, g):
return gcd(f, g)
def PolyGCD(u, v, x):
# (* u and v are polynomials in x. *)
# (* PolyGCD[u,v,x] returns the factors of the gcd of u and v dependent on x. *)
return NonfreeFactors(PolynomialGCD(u, v), x)
def AlgebraicFunctionFactors(u, x, flag=False):
# (* AlgebraicFunctionFactors[u,x] returns the product of the factors of u that are algebraic functions of x. *)
if ProductQ(u):
result = 1
for i in u.args:
if AlgebraicFunctionQ(i, x, flag):
result *= i
return result
if AlgebraicFunctionQ(u, x, flag):
return u
return 1
def NonalgebraicFunctionFactors(u, x):
"""
NonalgebraicFunctionFactors[u,x] returns the product of the factors of u that are not algebraic functions of x.
Examples
========
>>> from sympy.integrals.rubi.utility_function import NonalgebraicFunctionFactors
>>> from sympy.abc import x
>>> from sympy import sin
>>> NonalgebraicFunctionFactors(sin(x), x)
sin(x)
>>> NonalgebraicFunctionFactors(x, x)
1
"""
if ProductQ(u):
result = 1
for i in u.args:
if not AlgebraicFunctionQ(i, x):
result *= i
return result
if AlgebraicFunctionQ(u, x):
return 1
return u
def QuotientOfLinearsP(u, x):
if LinearQ(u, x):
return True
elif SumQ(u):
if FreeQ(u.args[0], x):
return QuotientOfLinearsP(Rest(u), x)
elif LinearQ(Numerator(u), x) and LinearQ(Denominator(u), x):
return True
elif ProductQ(u):
if FreeQ(First(u), x):
return QuotientOfLinearsP(Rest(u), x)
elif Numerator(u) == 1 and PowerQ(u):
return QuotientOfLinearsP(Denominator(u), x)
return u == x or FreeQ(u, x)
def QuotientOfLinearsParts(u, x):
# If u is equivalent to an expression of the form (a+b*x)/(c+d*x), QuotientOfLinearsParts[u,x]
# returns the list {a, b, c, d}.
if LinearQ(u, x):
return [Coefficient(u, x, 0), Coefficient(u, x, 1), 1, 0]
elif PowerQ(u):
if Numerator(u) == 1:
u = Denominator(u)
r = QuotientOfLinearsParts(u, x)
return [r[2], r[3], r[0], r[1]]
elif SumQ(u):
a = First(u)
if FreeQ(a, x):
u = Rest(u)
r = QuotientOfLinearsParts(u, x)
return [r[0] + a*r[2], r[1] + a*r[3], r[2], r[3]]
elif ProductQ(u):
a = First(u)
if FreeQ(a, x):
r = QuotientOfLinearsParts(Rest(u), x)
return [a*r[0], a*r[1], r[2], r[3]]
a = Numerator(u)
d = Denominator(u)
if LinearQ(a, x) and LinearQ(d, x):
return [Coefficient(a, x, 0), Coefficient(a, x, 1), Coefficient(d, x, 0), Coefficient(d, x, 1)]
elif u == x:
return [0, 1, 1, 0]
elif FreeQ(u, x):
return [u, 0, 1, 0]
return [u, 0, 1, 0]
def QuotientOfLinearsQ(u, x):
# (*QuotientOfLinearsQ[u,x] returns True iff u is equivalent to an expression of the form (a+b x)/(c+d x) where b!=0 and d!=0.*)
if ListQ(u):
for i in u:
if not QuotientOfLinearsQ(i, x):
return False
return True
q = QuotientOfLinearsParts(u, x)
return QuotientOfLinearsP(u, x) and NonzeroQ(q[1]) and NonzeroQ(q[3])
def Flatten(l):
return flatten(l)
def Sort(u, r=False):
return sorted(u, key=lambda x: x.sort_key(), reverse=r)
# (*Definition: A number is absurd if it is a rational number, a positive rational number raised to a fractional power, or a product of absurd numbers.*)
def AbsurdNumberQ(u):
# (* AbsurdNumberQ[u] returns True if u is an absurd number, else it returns False. *)
if PowerQ(u):
v = u.exp
u = u.base
return RationalQ(u) and u > 0 and FractionQ(v)
elif ProductQ(u):
return all(AbsurdNumberQ(i) for i in u.args)
return RationalQ(u)
def AbsurdNumberFactors(u):
# (* AbsurdNumberFactors[u] returns the product of the factors of u that are absurd numbers. *)
if AbsurdNumberQ(u):
return u
elif ProductQ(u):
result = S(1)
for i in u.args:
if AbsurdNumberQ(i):
result *= i
return result
return NumericFactor(u)
def NonabsurdNumberFactors(u):
# (* NonabsurdNumberFactors[u] returns the product of the factors of u that are not absurd numbers. *)
if AbsurdNumberQ(u):
return S(1)
elif ProductQ(u):
result = 1
for i in u.args:
result *= NonabsurdNumberFactors(i)
return result
return NonnumericFactors(u)
def SumSimplerAuxQ(u, v):
if SumQ(v):
return (RationalQ(First(v)) or SumSimplerAuxQ(u,First(v))) and (RationalQ(Rest(v)) or SumSimplerAuxQ(u,Rest(v)))
elif SumQ(u):
return SumSimplerAuxQ(First(u), v) or SumSimplerAuxQ(Rest(u), v)
else:
return v!=0 and NonnumericFactors(u)==NonnumericFactors(v) and (NumericFactor(u)/NumericFactor(v)<-1/2 or NumericFactor(u)/NumericFactor(v)==-1/2 and NumericFactor(u)<0)
def Prepend(l1, l2):
if not isinstance(l2, list):
return [l2] + l1
return l2 + l1
def Drop(lst, n):
if isinstance(lst, list):
if isinstance(n, list):
lst = lst[:(n[0]-1)] + lst[n[1]:]
elif n > 0:
lst = lst[n:]
elif n < 0:
lst = lst[:-n]
else:
return lst
return lst
return lst.func(*[i for i in Drop(list(lst.args), n)])
def CombineExponents(lst):
if Length(lst) < 2:
return lst
elif lst[0][0] == lst[1][0]:
return CombineExponents(Prepend(Drop(lst,2),[lst[0][0], lst[0][1] + lst[1][1]]))
return Prepend(CombineExponents(Rest(lst)), First(lst))
def FactorInteger(n, l=None):
if isinstance(n, (int, Integer)):
return sorted(factorint(n, limit=l).items())
else:
return sorted(factorrat(n, limit=l).items())
def FactorAbsurdNumber(m):
# (* m must be an absurd number. FactorAbsurdNumber[m] returns the prime factorization of m *)
# (* as list of base-degree pairs where the bases are prime numbers and the degrees are rational. *)
if RationalQ(m):
return FactorInteger(m)
elif PowerQ(m):
r = FactorInteger(m.base)
return [r[0], r[1]*m.exp]
# CombineExponents[Sort[Flatten[Map[FactorAbsurdNumber,Apply[List,m]],1], Function[i1[[1]]<i2[[1]]]]]
return list((m.as_base_exp(),))
def SubstForInverseFunction(*args):
"""
SubstForInverseFunction(u, v, w, x) returns u with subexpressions equal to v replaced by x and x replaced by w.
Examples
========
>>> from sympy.integrals.rubi.utility_function import SubstForInverseFunction
>>> from sympy.abc import x, a, b
>>> SubstForInverseFunction(a, a, b, x)
a
>>> SubstForInverseFunction(x**a, x**a, b, x)
x
>>> SubstForInverseFunction(a*x**a, a, b, x)
a*b**a
"""
if len(args) == 3:
u, v, x = args[0], args[1], args[2]
return SubstForInverseFunction(u, v, (-Coefficient(v.args[0], x, 0) + InverseFunction(Head(v))(x))/Coefficient(v.args[0], x, 1), x)
elif len(args) == 4:
u, v, w, x = args[0], args[1], args[2], args[3]
if AtomQ(u):
if u == x:
return w
return u
elif Head(u) == Head(v) and ZeroQ(u.args[0] - v.args[0]):
return x
res = [SubstForInverseFunction(i, v, w, x) for i in u.args]
return u.func(*res)
def SubstForFractionalPower(u, v, n, w, x):
# (* SubstForFractionalPower[u,v,n,w,x] returns u with subexpressions equal to v^(m/n) replaced
# by x^m and x replaced by w. *)
if AtomQ(u):
if u == x:
return w
return u
elif FractionalPowerQ(u):
if ZeroQ(u.base - v):
return x**(n*u.exp)
res = [SubstForFractionalPower(i, v, n, w, x) for i in u.args]
return u.func(*res)
def SubstForFractionalPowerOfQuotientOfLinears(u, x):
# (* If u has a subexpression of the form ((a+b*x)/(c+d*x))^(m/n) where m and n>1 are integers,
# SubstForFractionalPowerOfQuotientOfLinears[u,x] returns the list {v,n,(a+b*x)/(c+d*x),b*c-a*d} where v is u
# with subexpressions of the form ((a+b*x)/(c+d*x))^(m/n) replaced by x^m and x replaced
lst = FractionalPowerOfQuotientOfLinears(u, 1, False, x)
if AtomQ(lst) or AtomQ(lst[1]):
return False
n = lst[0]
tmp = lst[1]
lst = QuotientOfLinearsParts(tmp, x)
a, b, c, d = lst[0], lst[1], lst[2], lst[3]
if ZeroQ(d):
return False
lst = Simplify(x**(n - 1)*SubstForFractionalPower(u, tmp, n, (-a + c*x**n)/(b - d*x**n), x)/(b - d*x**n)**2)
return [NonfreeFactors(lst, x), n, tmp, FreeFactors(lst, x)*(b*c - a*d)]
def FractionalPowerOfQuotientOfLinears(u, n, v, x):
# (* If u has a subexpression of the form ((a+b*x)/(c+d*x))^(m/n),
# FractionalPowerOfQuotientOfLinears[u,1,False,x] returns {n,(a+b*x)/(c+d*x)}; else it returns False. *)
if AtomQ(u) or FreeQ(u, x):
return [n, v]
elif CalculusQ(u):
return False
elif FractionalPowerQ(u):
if QuotientOfLinearsQ(u.base, x) and Not(LinearQ(u.base, x)) and (FalseQ(v) or ZeroQ(u.base - v)):
return [LCM(Denominator(u.exp), n), u.base]
lst = [n, v]
for i in u.args:
lst = FractionalPowerOfQuotientOfLinears(i, lst[0], lst[1],x)
if AtomQ(lst):
return False
return lst
def SubstForFractionalPowerQ(u, v, x):
# (* If the substitution x=v^(1/n) will not complicate algebraic subexpressions of u,
# SubstForFractionalPowerQ[u,v,x] returns True; else it returns False. *)
if AtomQ(u) or FreeQ(u, x):
return True
elif FractionalPowerQ(u):
return SubstForFractionalPowerAuxQ(u, v, x)
return all(SubstForFractionalPowerQ(i, v, x) for i in u.args)
def SubstForFractionalPowerAuxQ(u, v, x):
if AtomQ(u):
return False
elif FractionalPowerQ(u):
if ZeroQ(u.base - v):
return True
return any(SubstForFractionalPowerAuxQ(i, v, x) for i in u.args)
def FractionalPowerOfSquareQ(u):
# (* If a subexpression of u is of the form ((v+w)^2)^n where n is a fraction, *)
# (* FractionalPowerOfSquareQ[u] returns (v+w)^2; else it returns False. *)
if AtomQ(u):
return False
elif FractionalPowerQ(u):
a_ = Wild('a', exclude=[0])
b_ = Wild('b', exclude=[0])
c_ = Wild('c', exclude=[0])
match = u.base.match(a_*(b_ + c_)**(S(2)))
if match:
keys = [a_, b_, c_]
if len(keys) == len(match):
a, b, c = tuple(match[i] for i in keys)
if NonsumQ(a):
return (b + c)**S(2)
for i in u.args:
tmp = FractionalPowerOfSquareQ(i)
if Not(FalseQ(tmp)):
return tmp
return False
def FractionalPowerSubexpressionQ(u, v, w):
# (* If a subexpression of u is of the form w^n where n is a fraction but not equal to v, *)
# (* FractionalPowerSubexpressionQ[u,v,w] returns True; else it returns False. *)
if AtomQ(u):
return False
elif FractionalPowerQ(u):
if PositiveQ(u.base/w):
return Not(u.base == v) and LeafCount(w) < 3*LeafCount(v)
for i in u.args:
if FractionalPowerSubexpressionQ(i, v, w):
return True
return False
def Apply(f, lst):
return f(*lst)
def FactorNumericGcd(u):
# (* FactorNumericGcd[u] returns u with the gcd of the numeric coefficients of terms of sums factored out. *)
if PowerQ(u):
if RationalQ(u.exp):
return FactorNumericGcd(u.base)**u.exp
elif ProductQ(u):
res = [FactorNumericGcd(i) for i in u.args]
return Mul(*res)
elif SumQ(u):
g = GCD([NumericFactor(i) for i in u.args])
r = Add(*[i/g for i in u.args])
return g*r
return u
def MergeableFactorQ(bas, deg, v):
# (* MergeableFactorQ[bas,deg,v] returns True iff bas equals the base of a factor of v or bas is a factor of every term of v. *)
if bas == v:
return RationalQ(deg + S(1)) and (deg + 1>=0 or RationalQ(deg) and deg>0)
elif PowerQ(v):
if bas == v.base:
return RationalQ(deg+v.exp) and (deg+v.exp>=0 or RationalQ(deg) and deg>0)
return SumQ(v.base) and IntegerQ(v.exp) and (Not(IntegerQ(deg) or IntegerQ(deg/v.exp))) and MergeableFactorQ(bas, deg/v.exp, v.base)
elif ProductQ(v):
return MergeableFactorQ(bas, deg, First(v)) or MergeableFactorQ(bas, deg, Rest(v))
return SumQ(v) and MergeableFactorQ(bas, deg, First(v)) and MergeableFactorQ(bas, deg, Rest(v))
def MergeFactor(bas, deg, v):
# (* If MergeableFactorQ[bas,deg,v], MergeFactor[bas,deg,v] return the product of bas^deg and v,
# but with bas^deg merged into the factor of v whose base equals bas. *)
if bas == v:
return bas**(deg + 1)
elif PowerQ(v):
if bas == v.base:
return bas**(deg + v.exp)
return MergeFactor(bas, deg/v.exp, v.base**v.exp)
elif ProductQ(v):
if MergeableFactorQ(bas, deg, First(v)):
return MergeFactor(bas, deg, First(v))*Rest(v)
return First(v)*MergeFactor(bas, deg, Rest(v))
return MergeFactor(bas, deg, First(v)) + MergeFactor(bas, deg, Rest(v))
def MergeFactors(u, v):
# (* MergeFactors[u,v] returns the product of u and v, but with the mergeable factors of u merged into v. *)
if ProductQ(u):
return MergeFactors(Rest(u), MergeFactors(First(u), v))
elif PowerQ(u):
if MergeableFactorQ(u.base, u.exp, v):
return MergeFactor(u.base, u.exp, v)
elif RationalQ(u.exp) and u.exp < -1 and MergeableFactorQ(u.base, -S(1), v):
return MergeFactors(u.base**(u.exp + 1), MergeFactor(u.base, -S(1), v))
return u*v
elif MergeableFactorQ(u, S(1), v):
return MergeFactor(u, S(1), v)
return u*v
def TrigSimplifyQ(u):
# (* TrigSimplifyQ[u] returns True if TrigSimplify[u] actually simplifies u; else False. *)
return ActivateTrig(u) != TrigSimplify(u)
def TrigSimplify(u):
# (* TrigSimplify[u] returns a bottom-up trig simplification of u. *)
return ActivateTrig(TrigSimplifyRecur(u))
def TrigSimplifyRecur(u):
if AtomQ(u):
return u
return TrigSimplifyAux(u.func(*[TrigSimplifyRecur(i) for i in u.args]))
def Order(expr1, expr2):
if expr1 == expr2:
return 0
elif expr1.sort_key() > expr2.sort_key():
return -1
return 1
def FactorOrder(u, v):
if u == 1:
if v == 1:
return 0
return -1
elif v == 1:
return 1
return Order(u, v)
def Smallest(num1, num2=None):
if num2 is None:
lst = num1
num = lst[0]
for i in Rest(lst):
num = Smallest(num, i)
return num
return Min(num1, num2)
def OrderedQ(l):
return l == Sort(l)
def MinimumDegree(deg1, deg2):
if RationalQ(deg1):
if RationalQ(deg2):
return Min(deg1, deg2)
return deg1
elif RationalQ(deg2):
return deg2
deg = Simplify(deg1- deg2)
if RationalQ(deg):
if deg > 0:
return deg2
return deg1
elif OrderedQ([deg1, deg2]):
return deg1
return deg2
def PositiveFactors(u):
# (* PositiveFactors[u] returns the positive factors of u *)
if ZeroQ(u):
return S(1)
elif RationalQ(u):
return Abs(u)
elif PositiveQ(u):
return u
elif ProductQ(u):
res = 1
for i in u.args:
res *= PositiveFactors(i)
return res
return 1
def Sign(u):
return sign(u)
def NonpositiveFactors(u):
# (* NonpositiveFactors[u] returns the nonpositive factors of u *)
if ZeroQ(u):
return u
elif RationalQ(u):
return Sign(u)
elif PositiveQ(u):
return S(1)
elif ProductQ(u):
res = S(1)
for i in u.args:
res *= NonpositiveFactors(i)
return res
return u
def PolynomialInAuxQ(u, v, x):
if u == v:
return True
elif AtomQ(u):
return u != x
elif PowerQ(u):
if PowerQ(v):
if u.base == v.base:
return PositiveIntegerQ(u.exp/v.exp)
return PositiveIntegerQ(u.exp) and PolynomialInAuxQ(u.base, v, x)
elif SumQ(u) or ProductQ(u):
for i in u.args:
if Not(PolynomialInAuxQ(i, v, x)):
return False
return True
return False
def PolynomialInQ(u, v, x):
"""
If u is a polynomial in v(x), PolynomialInQ(u, v, x) returns True, else it returns False.
Examples
========
>>> from sympy.integrals.rubi.utility_function import PolynomialInQ
>>> from sympy.abc import x
>>> from sympy import log, S
>>> PolynomialInQ(S(1), log(x), x)
True
>>> PolynomialInQ(log(x), log(x), x)
True
>>> PolynomialInQ(1 + log(x)**2, log(x), x)
True
"""
return PolynomialInAuxQ(u, NonfreeFactors(NonfreeTerms(v, x), x), x)
def ExponentInAux(u, v, x):
if u == v:
return S(1)
elif AtomQ(u):
return S(0)
elif PowerQ(u):
if PowerQ(v):
if u.base == v.base:
return u.exp/v.exp
return u.exp*ExponentInAux(u.base, v, x)
elif ProductQ(u):
return Add(*[ExponentInAux(i, v, x) for i in u.args])
return Max(*[ExponentInAux(i, v, x) for i in u.args])
def ExponentIn(u, v, x):
return ExponentInAux(u, NonfreeFactors(NonfreeTerms(v, x), x), x)
def PolynomialInSubstAux(u, v, x):
if u == v:
return x
elif AtomQ(u):
return u
elif PowerQ(u):
if PowerQ(v):
if u.base == v.base:
return x**(u.exp/v.exp)
return PolynomialInSubstAux(u.base, v, x)**u.exp
return u.func(*[PolynomialInSubstAux(i, v, x) for i in u.args])
def PolynomialInSubst(u, v, x):
# If u is a polynomial in v[x], PolynomialInSubst[u,v,x] returns the polynomial u in x.
w = NonfreeTerms(v, x)
return ReplaceAll(PolynomialInSubstAux(u, NonfreeFactors(w, x), x), {x: x - FreeTerms(v, x)/FreeFactors(w, x)})
def Distrib(u, v):
# Distrib[u,v] returns the sum of u times each term of v.
if SumQ(v):
return Add(*[u*i for i in v.args])
return u*v
def DistributeDegree(u, m):
# DistributeDegree[u,m] returns the product of the factors of u each raised to the mth degree.
if AtomQ(u):
return u**m
elif PowerQ(u):
return u.base**(u.exp*m)
elif ProductQ(u):
return Mul(*[DistributeDegree(i, m) for i in u.args])
return u**m
def FunctionOfPower(*args):
"""
FunctionOfPower[u,x] returns the gcd of the integer degrees of x in u.
Examples
========
>>> from sympy.integrals.rubi.utility_function import FunctionOfPower
>>> from sympy.abc import x
>>> FunctionOfPower(x, x)
1
>>> FunctionOfPower(x**3, x)
3
"""
if len(args) == 2:
return FunctionOfPower(args[0], None, args[1])
u, n, x = args
if FreeQ(u, x):
return n
elif u == x:
return S(1)
elif PowerQ(u):
if u.base == x and IntegerQ(u.exp):
if n is None:
return u.exp
return GCD(n, u.exp)
tmp = n
for i in u.args:
tmp = FunctionOfPower(i, tmp, x)
return tmp
def DivideDegreesOfFactors(u, n):
"""
DivideDegreesOfFactors[u,n] returns the product of the base of the factors of u raised to the degree of the factors divided by n.
Examples
========
>>> from sympy import S
>>> from sympy.integrals.rubi.utility_function import DivideDegreesOfFactors
>>> from sympy.abc import a, b
>>> DivideDegreesOfFactors(a**b, S(3))
a**(b/3)
"""
if ProductQ(u):
return Mul(*[LeadBase(i)**(LeadDegree(i)/n) for i in u.args])
return LeadBase(u)**(LeadDegree(u)/n)
def MonomialFactor(u, x):
# MonomialFactor[u,x] returns the list {n,v} where x^n*v==u and n is free of x.
if AtomQ(u):
if u == x:
return [S(1), S(1)]
return [S(0), u]
elif PowerQ(u):
if IntegerQ(u.exp):
lst = MonomialFactor(u.base, x)
return [lst[0]*u.exp, lst[1]**u.exp]
elif u.base == x and FreeQ(u.exp, x):
return [u.exp, S(1)]
return [S(0), u]
elif ProductQ(u):
lst1 = MonomialFactor(First(u), x)
lst2 = MonomialFactor(Rest(u), x)
return [lst1[0] + lst2[0], lst1[1]*lst2[1]]
elif SumQ(u):
lst = [MonomialFactor(i, x) for i in u.args]
deg = lst[0][0]
for i in Rest(lst):
deg = MinimumDegree(deg, i[0])
if ZeroQ(deg) or RationalQ(deg) and deg < 0:
return [S(0), u]
return [deg, Add(*[x**(i[0] - deg)*i[1] for i in lst])]
return [S(0), u]
def FullSimplify(expr):
return Simplify(expr)
def FunctionOfLinearSubst(u, a, b, x):
if FreeQ(u, x):
return u
elif LinearQ(u, x):
tmp = Coefficient(u, x, 1)
if tmp == b:
tmp = S(1)
else:
tmp = tmp/b
return Coefficient(u, x, S(0)) - a*tmp + tmp*x
elif PowerQ(u):
if FreeQ(u.base, x):
return E**(FullSimplify(FunctionOfLinearSubst(Log(u.base)*u.exp, a, b, x)))
lst = MonomialFactor(u, x)
if ProductQ(u) and NonzeroQ(lst[0]):
if RationalQ(LeadFactor(lst[1])) and LeadFactor(lst[1]) < 0:
return -FunctionOfLinearSubst(DivideDegreesOfFactors(-lst[1], lst[0])*x, a, b, x)**lst[0]
return FunctionOfLinearSubst(DivideDegreesOfFactors(lst[1], lst[0])*x, a, b, x)**lst[0]
return u.func(*[FunctionOfLinearSubst(i, a, b, x) for i in u.args])
def FunctionOfLinear(*args):
# (* If u (x) is equivalent to an expression of the form f (a+b*x) and not the case that a==0 and
# b==1, FunctionOfLinear[u,x] returns the list {f (x),a,b}; else it returns False. *)
if len(args) == 2:
u, x = args
lst = FunctionOfLinear(u, False, False, x, False)
if AtomQ(lst) or FalseQ(lst[0]) or (lst[0] == 0 and lst[1] == 1):
return False
return [FunctionOfLinearSubst(u, lst[0], lst[1], x), lst[0], lst[1]]
u, a, b, x, flag = args
if FreeQ(u, x):
return [a, b]
elif CalculusQ(u):
return False
elif LinearQ(u, x):
if FalseQ(a):
return [Coefficient(u, x, 0), Coefficient(u, x, 1)]
lst = CommonFactors([b, Coefficient(u, x, 1)])
if ZeroQ(Coefficient(u, x, 0)) and Not(flag):
return [0, lst[0]]
elif ZeroQ(b*Coefficient(u, x, 0) - a*Coefficient(u, x, 1)):
return [a/lst[1], lst[0]]
return [0, 1]
elif PowerQ(u):
if FreeQ(u.base, x):
return FunctionOfLinear(Log(u.base)*u.exp, a, b, x, False)
lst = MonomialFactor(u, x)
if ProductQ(u) and NonzeroQ(lst[0]):
if False and IntegerQ(lst[0]) and lst[0] != -1 and FreeQ(lst[1], x):
if RationalQ(LeadFactor(lst[1])) and LeadFactor(lst[1]) < 0:
return FunctionOfLinear(DivideDegreesOfFactors(-lst[1], lst[0])*x, a, b, x, False)
return FunctionOfLinear(DivideDegreesOfFactors(lst[1], lst[0])*x, a, b, x, False)
return False
lst = [a, b]
for i in u.args:
lst = FunctionOfLinear(i, lst[0], lst[1], x, SumQ(u))
if AtomQ(lst):
return False
return lst
def NormalizeIntegrand(u, x):
v = NormalizeLeadTermSigns(NormalizeIntegrandAux(u, x))
if v == NormalizeLeadTermSigns(u):
return u
else:
return v
def NormalizeIntegrandAux(u, x):
if SumQ(u):
l = 0
for i in u.args:
l += NormalizeIntegrandAux(i, x)
return l
if ProductQ(MergeMonomials(u, x)):
l = 1
for i in MergeMonomials(u, x).args:
l *= NormalizeIntegrandFactor(i, x)
return l
else:
return NormalizeIntegrandFactor(MergeMonomials(u, x), x)
def NormalizeIntegrandFactor(u, x):
if PowerQ(u):
if FreeQ(u.exp, x):
bas = NormalizeIntegrandFactorBase(u.base, x)
deg = u.exp
if IntegerQ(deg) and SumQ(bas):
if all(MonomialQ(i, x) for i in bas.args):
mi = MinimumMonomialExponent(bas, x)
q = 0
for i in bas.args:
q += Simplify(i/x**mi)
return x**(mi*deg)*q**deg
else:
return bas**deg
else:
return bas**deg
if PowerQ(u):
if FreeQ(u.base, x):
return u.base**NormalizeIntegrandFactorBase(u.exp, x)
bas = NormalizeIntegrandFactorBase(u, x)
if SumQ(bas):
if all(MonomialQ(i, x) for i in bas.args):
mi = MinimumMonomialExponent(bas, x)
z = 0
for j in bas.args:
z += j/x**mi
return x**mi*z
else:
return bas
else:
return bas
def NormalizeIntegrandFactorBase(expr, x):
m = Wild('m', exclude=[x])
u = Wild('u')
match = expr.match(x**m*u)
if match and SumQ(u):
l = 0
for i in u.args:
l += NormalizeIntegrandFactorBase((x**m*i), x)
return l
if BinomialQ(expr, x):
if BinomialMatchQ(expr, x):
return expr
else:
return ExpandToSum(expr, x)
elif TrinomialQ(expr, x):
if TrinomialMatchQ(expr, x):
return expr
else:
return ExpandToSum(expr, x)
elif ProductQ(expr):
l = 1
for i in expr.args:
l *= NormalizeIntegrandFactor(i, x)
return l
elif PolynomialQ(expr, x) and Exponent(expr, x)<=4:
return ExpandToSum(expr, x)
elif SumQ(expr):
w = Wild('w')
m = Wild('m', exclude=[x])
v = TogetherSimplify(expr)
if SumQ(v) or v.match(x**m*w) and SumQ(w) or LeafCount(v)>LeafCount(expr)+2:
return UnifySum(expr, x)
else:
return NormalizeIntegrandFactorBase(v, x)
else:
return expr
def NormalizeTogether(u):
return NormalizeLeadTermSigns(Together(u))
def NormalizeLeadTermSigns(u):
if ProductQ(u):
t = 1
for i in u.args:
lst = SignOfFactor(i)
if lst[0] == 1:
t *= lst[1]
else:
t *= AbsorbMinusSign(lst[1])
return t
else:
lst = SignOfFactor(u)
if lst[0] == 1:
return lst[1]
else:
return AbsorbMinusSign(lst[1])
def AbsorbMinusSign(expr, *x):
m = Wild('m', exclude=[x])
u = Wild('u')
v = Wild('v')
match = expr.match(u*v**m)
if match:
if len(match) == 3:
if SumQ(match[v]) and OddQ(match[m]):
return match[u]*(-match[v])**match[m]
return -expr
def NormalizeSumFactors(u):
if AtomQ(u):
return u
elif ProductQ(u):
k = 1
for i in u.args:
k *= NormalizeSumFactors(i)
return SignOfFactor(k)[0]*SignOfFactor(k)[1]
elif SumQ(u):
k = 0
for i in u.args:
k += NormalizeSumFactors(i)
return k
else:
return u
def SignOfFactor(u):
if RationalQ(u) and u < 0 or SumQ(u) and NumericFactor(First(u)) < 0:
return [-1, -u]
elif IntegerPowerQ(u):
if SumQ(u.base) and NumericFactor(First(u.base)) < 0:
return [(-1)**u.exp, (-u.base)**u.exp]
elif ProductQ(u):
k = 1
h = 1
for i in u.args:
k *= SignOfFactor(i)[0]
h *= SignOfFactor(i)[1]
return [k, h]
return [1, u]
def NormalizePowerOfLinear(u, x):
v = FactorSquareFree(u)
if PowerQ(v):
if LinearQ(v.base, x) and FreeQ(v.exp, x):
return ExpandToSum(v.base, x)**v.exp
return ExpandToSum(v, x)
def SimplifyIntegrand(u, x):
v = NormalizeLeadTermSigns(NormalizeIntegrandAux(Simplify(u), x))
if 5*LeafCount(v) < 4*LeafCount(u):
return v
if v != NormalizeLeadTermSigns(u):
return v
else:
return u
def SimplifyTerm(u, x):
v = Simplify(u)
w = Together(v)
if LeafCount(v) < LeafCount(w):
return NormalizeIntegrand(v, x)
else:
return NormalizeIntegrand(w, x)
def TogetherSimplify(u):
v = Together(Simplify(Together(u)))
return FixSimplify(v)
def SmartSimplify(u):
v = Simplify(u)
w = factor(v)
if LeafCount(w) < LeafCount(v):
v = w
if Not(FalseQ(w == FractionalPowerOfSquareQ(v))) and FractionalPowerSubexpressionQ(u, w, Expand(w)):
v = SubstForExpn(v, w, Expand(w))
else:
v = FactorNumericGcd(v)
return FixSimplify(v)
def SubstForExpn(u, v, w):
if u == v:
return w
if AtomQ(u):
return u
else:
k = 0
for i in u.args:
k += SubstForExpn(i, v, w)
return k
def ExpandToSum(u, *x):
if len(x) == 1:
x = x[0]
expr = 0
if PolyQ(S(u), x):
for t in Exponent(u, x, List):
expr += Coeff(u, x, t)*x**t
return expr
if BinomialQ(u, x):
i = BinomialParts(u, x)
expr += i[0] + i[1]*x**i[2]
return expr
if TrinomialQ(u, x):
i = TrinomialParts(u, x)
expr += i[0] + i[1]*x**i[3] + i[2]*x**(2*i[3])
return expr
if GeneralizedBinomialMatchQ(u, x):
i = GeneralizedBinomialParts(u, x)
expr += i[0]*x**i[3] + i[1]*x**i[2]
return expr
if GeneralizedTrinomialMatchQ(u, x):
i = GeneralizedTrinomialParts(u, x)
expr += i[0]*x**i[4] + i[1]*x**i[3] + i[2]*x**(2*i[3]-i[4])
return expr
else:
return Expand(u)
else:
v = x[0]
x = x[1]
w = ExpandToSum(v, x)
r = NonfreeTerms(w, x)
if SumQ(r):
k = u*FreeTerms(w, x)
for i in r.args:
k += MergeMonomials(u*i, x)
return k
else:
return u*FreeTerms(w, x) + MergeMonomials(u*r, x)
def UnifySum(u, x):
if SumQ(u):
t = 0
lst = []
for i in u.args:
lst += [i]
for j in UnifyTerms(lst, x):
t += j
return t
else:
return SimplifyTerm(u, x)
def UnifyTerms(lst, x):
if lst==[]:
return lst
else:
return UnifyTerm(First(lst), UnifyTerms(Rest(lst), x), x)
def UnifyTerm(term, lst, x):
if lst==[]:
return [term]
tmp = Simplify(First(lst)/term)
if FreeQ(tmp, x):
return Prepend(Rest(lst), [(1+tmp)*term])
else:
return Prepend(UnifyTerm(term, Rest(lst), x), [First(lst)])
def CalculusQ(u):
return False
def FunctionOfInverseLinear(*args):
# (* If u is a function of an inverse linear binomial of the form 1/(a+b*x),
# FunctionOfInverseLinear[u,x] returns the list {a,b}; else it returns False. *)
if len(args) == 2:
u, x = args
return FunctionOfInverseLinear(u, None, x)
u, lst, x = args
if FreeQ(u, x):
return lst
elif u == x:
return False
elif QuotientOfLinearsQ(u, x):
tmp = Drop(QuotientOfLinearsParts(u, x), 2)
if tmp[1] == 0:
return False
elif lst is None:
return tmp
elif ZeroQ(lst[0]*tmp[1] - lst[1]*tmp[0]):
return lst
return False
elif CalculusQ(u):
return False
tmp = lst
for i in u.args:
tmp = FunctionOfInverseLinear(i, tmp, x)
if AtomQ(tmp):
return False
return tmp
def PureFunctionOfSinhQ(u, v, x):
# (* If u is a pure function of Sinh[v] and/or Csch[v], PureFunctionOfSinhQ[u,v,x] returns True;
# else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and ZeroQ(u.args[0] - v):
return SinhQ(u) or CschQ(u)
for i in u.args:
if Not(PureFunctionOfSinhQ(i, v, x)):
return False
return True
def PureFunctionOfTanhQ(u, v , x):
# (* If u is a pure function of Tanh[v] and/or Coth[v], PureFunctionOfTanhQ[u,v,x] returns True;
# else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and ZeroQ(u.args[0] - v):
return TanhQ(u) or CothQ(u)
for i in u.args:
if Not(PureFunctionOfTanhQ(i, v, x)):
return False
return True
def PureFunctionOfCoshQ(u, v, x):
# (* If u is a pure function of Cosh[v] and/or Sech[v], PureFunctionOfCoshQ[u,v,x] returns True;
# else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and ZeroQ(u.args[0] - v):
return CoshQ(u) or SechQ(u)
for i in u.args:
if Not(PureFunctionOfCoshQ(i, v, x)):
return False
return True
def IntegerQuotientQ(u, v):
# (* If u/v is an integer, IntegerQuotientQ[u,v] returns True; else it returns False. *)
return IntegerQ(Simplify(u/v))
def OddQuotientQ(u, v):
# (* If u/v is odd, OddQuotientQ[u,v] returns True; else it returns False. *)
return OddQ(Simplify(u/v))
def EvenQuotientQ(u, v):
# (* If u/v is even, EvenQuotientQ[u,v] returns True; else it returns False. *)
return EvenQ(Simplify(u/v))
def FindTrigFactor(func1, func2, u, v, flag):
# (* If func[w]^m is a factor of u where m is odd and w is an integer multiple of v,
# FindTrigFactor[func1,func2,u,v,True] returns the list {w,u/func[w]^n}; else it returns False. *)
# (* If func[w]^m is a factor of u where m is odd and w is an integer multiple of v not equal to v,
# FindTrigFactor[func1,func2,u,v,False] returns the list {w,u/func[w]^n}; else it returns False. *)
if u == 1:
return False
elif (Head(LeadBase(u)) == func1 or Head(LeadBase(u)) == func2) and OddQ(LeadDegree(u)) and IntegerQuotientQ(LeadBase(u).args[0], v) and (flag or NonzeroQ(LeadBase(u).args[0] - v)):
return [LeadBase[u].args[0], RemainingFactors(u)]
lst = FindTrigFactor(func1, func2, RemainingFactors(u), v, flag)
if AtomQ(lst):
return False
return [lst[0], LeadFactor(u)*lst[1]]
def FunctionOfSinhQ(u, v, x):
# (* If u is a function of Sinh[v], FunctionOfSinhQ[u,v,x] returns True; else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
if OddQuotientQ(u.args[0], v):
# (* Basis: If m odd, Sinh[m*v]^n is a function of Sinh[v]. *)
return SinhQ(u) or CschQ(u)
# (* Basis: If m even, Cos[m*v]^n is a function of Sinh[v]. *)
return CoshQ(u) or SechQ(u)
elif IntegerPowerQ(u):
if HyperbolicQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if EvenQ(u.exp):
# (* Basis: If m integer and n even, Hyper[m*v]^n is a function of Sinh[v]. *)
return True
return FunctionOfSinhQ(u.base, v, x)
elif ProductQ(u):
if CoshQ(u.args[0]) and SinhQ(u.args[1]) and ZeroQ(u.args[0].args[0] - v/2) and ZeroQ(u.args[1].args[0] - v/2):
return FunctionOfSinhQ(Drop(u, 2), v, x)
lst = FindTrigFactor(Sinh, Csch, u, v, False)
if ListQ(lst) and EvenQuotientQ(lst[0], v):
# (* Basis: If m even and n odd, Sinh[m*v]^n == Cosh[v]*u where u is a function of Sinh[v]. *)
return FunctionOfSinhQ(Cosh(v)*lst[1], v, x)
lst = FindTrigFactor(Cosh, Sech, u, v, False)
if ListQ(lst) and OddQuotientQ(lst[0], v):
# (* Basis: If m odd and n odd, Cosh[m*v]^n == Cosh[v]*u where u is a function of Sinh[v]. *)
return FunctionOfSinhQ(Cosh(v)*lst[1], v, x)
lst = FindTrigFactor(Tanh, Coth, u, v, True)
if ListQ(lst):
# (* Basis: If m integer and n odd, Tanh[m*v]^n == Cosh[v]*u where u is a function of Sinh[v]. *)
return FunctionOfSinhQ(Cosh(v)*lst[1], v, x)
return all(FunctionOfSinhQ(i, v, x) for i in u.args)
return all(FunctionOfSinhQ(i, v, x) for i in u.args)
def FunctionOfCoshQ(u, v, x):
#(* If u is a function of Cosh[v], FunctionOfCoshQ[u,v,x] returns True; else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
# (* Basis: If m integer, Cosh[m*v]^n is a function of Cosh[v]. *)
return CoshQ(u) or SechQ(u)
elif IntegerPowerQ(u):
if HyperbolicQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if EvenQ(u.exp):
# (* Basis: If m integer and n even, Hyper[m*v]^n is a function of Cosh[v]. *)
return True
return FunctionOfCoshQ(u.base, v, x)
elif ProductQ(u):
lst = FindTrigFactor(Sinh, Csch, u, v, False)
if ListQ(lst):
# (* Basis: If m integer and n odd, Sinh[m*v]^n == Sinh[v]*u where u is a function of Cosh[v]. *)
return FunctionOfCoshQ(Sinh(v)*lst[1], v, x)
lst = FindTrigFactor(Tanh, Coth, u, v, True)
if ListQ(lst):
# (* Basis: If m integer and n odd, Tanh[m*v]^n == Sinh[v]*u where u is a function of Cosh[v]. *)
return FunctionOfCoshQ(Sinh(v)*lst[1], v, x)
return all(FunctionOfCoshQ(i, v, x) for i in u.args)
return all(FunctionOfCoshQ(i, v, x) for i in u.args)
def OddHyperbolicPowerQ(u, v, x):
if SinhQ(u) or CoshQ(u) or SechQ(u) or CschQ(u):
return OddQuotientQ(u.args[0], v)
if PowerQ(u):
return OddQ(u.exp) and OddHyperbolicPowerQ(u.base, v, x)
if ProductQ(u):
if Not(EqQ(FreeFactors(u, x), 1)):
return OddHyperbolicPowerQ(NonfreeFactors(u, x), v, x)
lst = []
for i in u.args:
if Not(FunctionOfTanhQ(i, v, x)):
lst.append(i)
if lst == []:
return True
return Length(lst)==1 and OddHyperbolicPowerQ(lst[0], v, x)
if SumQ(u):
return all(OddHyperbolicPowerQ(i, v, x) for i in u.args)
return False
def FunctionOfTanhQ(u, v, x):
#(* If u is a function of the form f[Tanh[v],Coth[v]] where f is independent of x,
# FunctionOfTanhQ[u,v,x] returns True; else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
return TanhQ(u) or CothQ(u) or EvenQuotientQ(u.args[0], v)
elif PowerQ(u):
if EvenQ(u.exp) and HyperbolicQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
return True
elif EvenQ(u.args[1]) and SumQ(u.args[0]):
return FunctionOfTanhQ(Expand(u.args[0]**2, v, x))
if ProductQ(u):
lst = []
for i in u.args:
if Not(FunctionOfTanhQ(i, v, x)):
lst.append(i)
if lst == []:
return True
return Length(lst)==2 and OddHyperbolicPowerQ(lst[0], v, x) and OddHyperbolicPowerQ(lst[1], v, x)
return all(FunctionOfTanhQ(i, v, x) for i in u.args)
def FunctionOfTanhWeight(u, v, x):
"""
u is a function of the form f(tanh(v), coth(v)) where f is independent of x.
FunctionOfTanhWeight(u, v, x) returns a nonnegative number if u is best considered a function of tanh(v), else it returns a negative number.
Examples
========
>>> from sympy import sinh, log, tanh
>>> from sympy.abc import x
>>> from sympy.integrals.rubi.utility_function import FunctionOfTanhWeight
>>> FunctionOfTanhWeight(x, log(x), x)
0
>>> FunctionOfTanhWeight(sinh(log(x)), log(x), x)
0
>>> FunctionOfTanhWeight(tanh(log(x)), log(x), x)
1
"""
if AtomQ(u):
return S(0)
elif CalculusQ(u):
return S(0)
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
if TanhQ(u) and ZeroQ(u.args[0] - v):
return S(1)
elif CothQ(u) and ZeroQ(u.args[0] - v):
return S(-1)
return S(0)
elif PowerQ(u):
if EvenQ(u.exp) and HyperbolicQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if TanhQ(u.base) or CoshQ(u.base) or SechQ(u.base):
return S(1)
return S(-1)
if ProductQ(u):
if all(FunctionOfTanhQ(i, v, x) for i in u.args):
return Add(*[FunctionOfTanhWeight(i, v, x) for i in u.args])
return S(0)
return Add(*[FunctionOfTanhWeight(i, v, x) for i in u.args])
def FunctionOfHyperbolicQ(u, v, x):
# (* If u (x) is equivalent to a function of the form f (Sinh[v],Cosh[v],Tanh[v],Coth[v],Sech[v],Csch[v])
# where f is independent of x, FunctionOfHyperbolicQ[u,v,x] returns True; else it returns False. *)
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
return True
return all(FunctionOfHyperbolicQ(i, v, x) for i in u.args)
def SmartNumerator(expr):
if PowerQ(expr):
n = expr.exp
u = expr.base
if RationalQ(n) and n < 0:
return SmartDenominator(u**(-n))
elif ProductQ(expr):
return Mul(*[SmartNumerator(i) for i in expr.args])
return Numerator(expr)
def SmartDenominator(expr):
if PowerQ(expr):
u = expr.base
n = expr.exp
if RationalQ(n) and n < 0:
return SmartNumerator(u**(-n))
elif ProductQ(expr):
return Mul(*[SmartDenominator(i) for i in expr.args])
return Denominator(expr)
def ActivateTrig(u):
return u
def ExpandTrig(*args):
if len(args) == 2:
u, x = args
return ActivateTrig(ExpandIntegrand(u, x))
u, v, x = args
w = ExpandTrig(v, x)
z = ActivateTrig(u)
if SumQ(w):
return w.func(*[z*i for i in w.args])
return z*w
def TrigExpand(u):
return expand_trig(u)
# SubstForTrig[u_,sin_,cos_,v_,x_] :=
# If[AtomQ[u],
# u,
# If[TrigQ[u] && IntegerQuotientQ[u[[1]],v],
# If[u[[1]]===v || ZeroQ[u[[1]]-v],
# If[SinQ[u],
# sin,
# If[CosQ[u],
# cos,
# If[TanQ[u],
# sin/cos,
# If[CotQ[u],
# cos/sin,
# If[SecQ[u],
# 1/cos,
# 1/sin]]]]],
# Map[Function[SubstForTrig[#,sin,cos,v,x]],
# ReplaceAll[TrigExpand[Head[u][Simplify[u[[1]]/v]*x]],x->v]]],
# If[ProductQ[u] && CosQ[u[[1]]] && SinQ[u[[2]]] && ZeroQ[u[[1,1]]-v/2] && ZeroQ[u[[2,1]]-v/2],
# sin/2*SubstForTrig[Drop[u,2],sin,cos,v,x],
# Map[Function[SubstForTrig[#,sin,cos,v,x]],u]]]]
def SubstForTrig(u, sin_ , cos_, v, x):
# (* u (v) is an expression of the form f (Sin[v],Cos[v],Tan[v],Cot[v],Sec[v],Csc[v]). *)
# (* SubstForTrig[u,sin,cos,v,x] returns the expression f (sin,cos,sin/cos,cos/sin,1/cos,1/sin). *)
if AtomQ(u):
return u
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
if u.args[0] == v or ZeroQ(u.args[0] - v):
if SinQ(u):
return sin_
elif CosQ(u):
return cos_
elif TanQ(u):
return sin_/cos_
elif CotQ(u):
return cos_/sin_
elif SecQ(u):
return 1/cos_
return 1/sin_
r = ReplaceAll(TrigExpand(Head(u)(Simplify(u.args[0]/v*x))), {x: v})
return r.func(*[SubstForTrig(i, sin_, cos_, v, x) for i in r.args])
if ProductQ(u) and CosQ(u.args[0]) and SinQ(u.args[1]) and ZeroQ(u.args[0].args[0] - v/2) and ZeroQ(u.args[1].args[0] - v/2):
return sin(x)/2*SubstForTrig(Drop(u, 2), sin_, cos_, v, x)
return u.func(*[SubstForTrig(i, sin_, cos_, v, x) for i in u.args])
def SubstForHyperbolic(u, sinh_, cosh_, v, x):
# (* u (v) is an expression of the form f (Sinh[v],Cosh[v],Tanh[v],Coth[v],Sech[v],Csch[v]). *)
# (* SubstForHyperbolic[u,sinh,cosh,v,x] returns the expression
# f (sinh,cosh,sinh/cosh,cosh/sinh,1/cosh,1/sinh). *)
if AtomQ(u):
return u
elif HyperbolicQ(u) and IntegerQuotientQ(u.args[0], v):
if u.args[0] == v or ZeroQ(u.args[0] - v):
if SinhQ(u):
return sinh_
elif CoshQ(u):
return cosh_
elif TanhQ(u):
return sinh_/cosh_
elif CothQ(u):
return cosh_/sinh_
if SechQ(u):
return 1/cosh_
return 1/sinh_
r = ReplaceAll(TrigExpand(Head(u)(Simplify(u.args[0]/v)*x)), {x: v})
return r.func(*[SubstForHyperbolic(i, sinh_, cosh_, v, x) for i in r.args])
elif ProductQ(u) and CoshQ(u.args[0]) and SinhQ(u.args[1]) and ZeroQ(u.args[0].args[0] - v/2) and ZeroQ(u.args[1].args[0] - v/2):
return sinh(x)/2*SubstForHyperbolic(Drop(u, 2), sinh_, cosh_, v, x)
return u.func(*[SubstForHyperbolic(i, sinh_, cosh_, v, x) for i in u.args])
def InertTrigFreeQ(u):
return FreeQ(u, sin) and FreeQ(u, cos) and FreeQ(u, tan) and FreeQ(u, cot) and FreeQ(u, sec) and FreeQ(u, csc)
def LCM(a, b):
return lcm(a, b)
def SubstForFractionalPowerOfLinear(u, x):
# (* If u has a subexpression of the form (a+b*x)^(m/n) where m and n>1 are integers,
# SubstForFractionalPowerOfLinear[u,x] returns the list {v,n,a+b*x,1/b} where v is u
# with subexpressions of the form (a+b*x)^(m/n) replaced by x^m and x replaced
# by -a/b+x^n/b, and all times x^(n-1); else it returns False. *)
lst = FractionalPowerOfLinear(u, S(1), False, x)
if AtomQ(lst) or FalseQ(lst[1]):
return False
n = lst[0]
a = Coefficient(lst[1], x, 0)
b = Coefficient(lst[1], x, 1)
tmp = Simplify(x**(n-1)*SubstForFractionalPower(u, lst[1], n, -a/b + x**n/b, x))
return [NonfreeFactors(tmp, x), n, lst[1], FreeFactors(tmp, x)/b]
def FractionalPowerOfLinear(u, n, v, x):
# If u has a subexpression of the form (a + b*x)**(m/n), FractionalPowerOfLinear(u, 1, False, x) returns [n, a + b*x], else it returns False.
if AtomQ(u) or FreeQ(u, x):
return [n, v]
elif CalculusQ(u):
return False
elif FractionalPowerQ(u):
if LinearQ(u.base, x) and (FalseQ(v) or ZeroQ(u.base - v)):
return [LCM(Denominator(u.exp), n), u.base]
lst = [n, v]
for i in u.args:
lst = FractionalPowerOfLinear(i, lst[0], lst[1], x)
if AtomQ(lst):
return False
return lst
def InverseFunctionOfLinear(u, x):
# (* If u has a subexpression of the form g[a+b*x] where g is an inverse function,
# InverseFunctionOfLinear[u,x] returns g[a+b*x]; else it returns False. *)
if AtomQ(u) or CalculusQ(u) or FreeQ(u, x):
return False
elif InverseFunctionQ(u) and LinearQ(u.args[0], x):
return u
for i in u.args:
tmp = InverseFunctionOfLinear(i, x)
if Not(AtomQ(tmp)):
return tmp
return False
def InertTrigQ(*args):
if len(args) == 1:
f = args[0]
l = [sin,cos,tan,cot,sec,csc]
return any(Head(f) == i for i in l)
elif len(args) == 2:
f, g = args
if f == g:
return InertTrigQ(f)
return InertReciprocalQ(f, g) or InertReciprocalQ(g, f)
else:
f, g, h = args
return InertTrigQ(g, f) and InertTrigQ(g, h)
def InertReciprocalQ(f, g):
return (f.func == sin and g.func == csc) or (f.func == cos and g.func == sec) or (f.func == tan and g.func == cot)
def DeactivateTrig(u, x):
# (* u is a function of trig functions of a linear function of x. *)
# (* DeactivateTrig[u,x] returns u with the trig functions replaced with inert trig functions. *)
return FixInertTrigFunction(DeactivateTrigAux(u, x), x)
def FixInertTrigFunction(u, x):
return u
def DeactivateTrigAux(u, x):
if AtomQ(u):
return u
elif TrigQ(u) and LinearQ(u.args[0], x):
v = ExpandToSum(u.args[0], x)
if SinQ(u):
return sin(v)
elif CosQ(u):
return cos(v)
elif TanQ(u):
return tan(u)
elif CotQ(u):
return cot(v)
elif SecQ(u):
return sec(v)
return csc(v)
elif HyperbolicQ(u) and LinearQ(u.args[0], x):
v = ExpandToSum(I*u.args[0], x)
if SinhQ(u):
return -I*sin(v)
elif CoshQ(u):
return cos(v)
elif TanhQ(u):
return -I*tan(v)
elif CothQ(u):
I*cot(v)
elif SechQ(u):
return sec(v)
return I*csc(v)
return u.func(*[DeactivateTrigAux(i, x) for i in u.args])
def PowerOfInertTrigSumQ(u, func, x):
p_ = Wild('p', exclude=[x])
q_ = Wild('q', exclude=[x])
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x])
c_ = Wild('c', exclude=[x])
d_ = Wild('d', exclude=[x])
n_ = Wild('n', exclude=[x])
w_ = Wild('w')
pattern = (a_ + b_*(c_*func(w_))**p_)**n_
match = u.match(pattern)
if match:
keys = [a_, b_, c_, n_, p_, w_]
if len(keys) == len(match):
return True
pattern = (a_ + b_*(d_*func(w_))**p_ + c_*(d_*func(w_))**q_)**n_
match = u.match(pattern)
if match:
keys = [a_, b_, c_, d_, n_, p_, q_, w_]
if len(keys) == len(match):
return True
return False
def PiecewiseLinearQ(*args):
# (* If the derivative of u wrt x is a constant wrt x, PiecewiseLinearQ[u,x] returns True;
# else it returns False. *)
if len(args) == 3:
u, v, x = args
return PiecewiseLinearQ(u, x) and PiecewiseLinearQ(v, x)
u, x = args
if LinearQ(u, x):
return True
c_ = Wild('c', exclude=[x])
F_ = Wild('F', exclude=[x])
v_ = Wild('v')
match = u.match(Log(c_*F_**v_))
if match:
if len(match) == 3:
if LinearQ(match[v_], x):
return True
try:
F = type(u)
G = type(u.args[0])
v = u.args[0].args[0]
if LinearQ(v, x):
if MemberQ([[atanh, tanh], [atanh, coth], [acoth, coth], [acoth, tanh], [atan, tan], [atan, cot], [acot, cot], [acot, tan]], [F, G]):
return True
except:
pass
return False
def KnownTrigIntegrandQ(lst, u, x):
if u == 1:
return True
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x, 0])
func_ = WildFunction('func')
m_ = Wild('m', exclude=[x])
A_ = Wild('A', exclude=[x])
B_ = Wild('B', exclude=[x, 0])
C_ = Wild('C', exclude=[x, 0])
match = u.match((a_ + b_*func_)**m_)
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
match = u.match((a_ + b_*func_)**m_*(A_ + B_*func_))
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
match = u.match(A_ + C_*func_**2)
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
match = u.match(A_ + B_*func_ + C_*func_**2)
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
match = u.match((a_ + b_*func_)**m_*(A_ + C_*func_**2))
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
match = u.match((a_ + b_*func_)**m_*(A_ + B_*func_ + C_*func_**2))
if match:
func = match[func_]
if LinearQ(func.args[0], x) and MemberQ(lst, func.func):
return True
return False
def KnownSineIntegrandQ(u, x):
return KnownTrigIntegrandQ([sin, cos], u, x)
def KnownTangentIntegrandQ(u, x):
return KnownTrigIntegrandQ([tan], u, x)
def KnownCotangentIntegrandQ(u, x):
return KnownTrigIntegrandQ([cot], u, x)
def KnownSecantIntegrandQ(u, x):
return KnownTrigIntegrandQ([sec, csc], u, x)
def TryPureTanSubst(u, x):
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x])
c_ = Wild('c', exclude=[x])
G_ = Wild('G')
F = u.func
try:
if MemberQ([atan, acot, atanh, acoth], F):
match = u.args[0].match(c_*(a_ + b_*G_))
if match:
if len(match) == 4:
G = match[G_]
if MemberQ([tan, cot, tanh, coth], G.func):
if LinearQ(G.args[0], x):
return True
except:
pass
return False
def TryTanhSubst(u, x):
if LogQ(u):
return False
elif not FalseQ(FunctionOfLinear(u, x)):
return False
a_ = Wild('a', exclude=[x])
m_ = Wild('m', exclude=[x])
p_ = Wild('p', exclude=[x])
r_, s_, t_, n_, b_, f_, g_ = map(Wild, 'rstnbfg')
match = u.match(r_*(s_ + t_)**n_)
if match:
if len(match) == 4:
r, s, t, n = [match[i] for i in [r_, s_, t_, n_]]
if IntegerQ(n) and PositiveQ(n):
return False
match = u.match(1/(a_ + b_*f_**n_))
if match:
if len(match) == 4:
a, b, f, n = [match[i] for i in [a_, b_, f_, n_]]
if SinhCoshQ(f) and IntegerQ(n) and n > 2:
return False
match = u.match(f_*g_)
if match:
if len(match) == 2:
f, g = match[f_], match[g_]
if SinhCoshQ(f) and SinhCoshQ(g):
if IntegersQ(f.args[0]/x, g.args[0]/x):
return False
match = u.match(r_*(a_*s_**m_)**p_)
if match:
if len(match) == 5:
r, a, s, m, p = [match[i] for i in [r_, a_, s_, m_, p_]]
if Not(m==2 and (s == Sech(x) or s == Csch(x))):
return False
if u != ExpandIntegrand(u, x):
return False
return True
def TryPureTanhSubst(u, x):
F = u.func
a_ = Wild('a', exclude=[x])
G_ = Wild('G')
if F == sym_log:
return False
match = u.args[0].match(a_*G_)
if match and len(match) == 2:
G = match[G_].func
if MemberQ([atanh, acoth], F) and MemberQ([tanh, coth], G):
return False
if u != ExpandIntegrand(u, x):
return False
return True
def AbsurdNumberGCD(*seq):
# (* m, n, ... must be absurd numbers. AbsurdNumberGCD[m,n,...] returns the gcd of m, n, ... *)
lst = list(seq)
if Length(lst) == 1:
return First(lst)
return AbsurdNumberGCDList(FactorAbsurdNumber(First(lst)), FactorAbsurdNumber(AbsurdNumberGCD(*Rest(lst))))
def AbsurdNumberGCDList(lst1, lst2):
# (* lst1 and lst2 must be absurd number prime factorization lists. *)
# (* AbsurdNumberGCDList[lst1,lst2] returns the gcd of the absurd numbers represented by lst1 and lst2. *)
if lst1 == []:
return Mul(*[i[0]**Min(i[1],0) for i in lst2])
elif lst2 == []:
return Mul(*[i[0]**Min(i[1],0) for i in lst1])
elif lst1[0][0] == lst2[0][0]:
if lst1[0][1] <= lst2[0][1]:
return lst1[0][0]**lst1[0][1]*AbsurdNumberGCDList(Rest(lst1), Rest(lst2))
return lst1[0][0]**lst2[0][1]*AbsurdNumberGCDList(Rest(lst1), Rest(lst2))
elif lst1[0][0] < lst2[0][0]:
if lst1[0][1] < 0:
return lst1[0][0]**lst1[0][1]*AbsurdNumberGCDList(Rest(lst1), lst2)
return AbsurdNumberGCDList(Rest(lst1), lst2)
elif lst2[0][1] < 0:
return lst2[0][0]**lst2[0][1]*AbsurdNumberGCDList(lst1, Rest(lst2))
return AbsurdNumberGCDList(lst1, Rest(lst2))
def ExpandTrigExpand(u, F, v, m, n, x):
w = Expand(TrigExpand(F.xreplace({x: n*x}))**m).xreplace({x: v})
if SumQ(w):
t = 0
for i in w.args:
t += u*i
return t
else:
return u*w
def ExpandTrigReduce(*args):
if len(args) == 3:
u = args[0]
v = args[1]
x = args[2]
w = ExpandTrigReduce(v, x)
if SumQ(w):
t = 0
for i in w.args:
t += u*i
return t
else:
return u*w
else:
u = args[0]
x = args[1]
return ExpandTrigReduceAux(u, x)
def ExpandTrigReduceAux(u, x):
v = TrigReduce(u).expand()
if SumQ(v):
t = 0
for i in v.args:
t += NormalizeTrig(i, x)
return t
return NormalizeTrig(v, x)
def NormalizeTrig(v, x):
a = Wild('a', exclude=[x])
n = Wild('n', exclude=[x, 0])
F = Wild('F')
expr = a*F**n
M = v.match(expr)
if M and len(M[F].args) == 1 and PolynomialQ(M[F].args[0], x) and Exponent(M[F].args[0], x)>0:
u = M[F].args[0]
return M[a]*M[F].xreplace({u: ExpandToSum(u, x)})**M[n]
else:
return v
#=================================
def TrigToExp(expr):
ex = expr.rewrite(sin, sym_exp).rewrite(cos, sym_exp).rewrite(tan, sym_exp).rewrite(sec, sym_exp).rewrite(csc, sym_exp).rewrite(cot, sym_exp)
return ex.replace(sym_exp, rubi_exp)
def ExpandTrigToExp(u, *args):
if len(args) == 1:
x = args[0]
return ExpandTrigToExp(1, u, x)
else:
v = args[0]
x = args[1]
w = TrigToExp(v)
k = 0
if SumQ(w):
for i in w.args:
k += SimplifyIntegrand(u*i, x)
w = k
else:
w = SimplifyIntegrand(u*w, x)
return ExpandIntegrand(FreeFactors(w, x), NonfreeFactors(w, x),x)
#======================================
def TrigReduce(i):
"""
TrigReduce(expr) rewrites products and powers of trigonometric functions in expr in terms of trigonometric functions with combined arguments.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.integrals.rubi.utility_function import TrigReduce
>>> from sympy.abc import x
>>> TrigReduce(cos(x)**2)
cos(2*x)/2 + 1/2
>>> TrigReduce(cos(x)**2*sin(x))
sin(x)/4 + sin(3*x)/4
>>> TrigReduce(cos(x)**2+sin(x))
sin(x) + cos(2*x)/2 + 1/2
"""
if SumQ(i):
t = 0
for k in i.args:
t += TrigReduce(k)
return t
if ProductQ(i):
if any(PowerQ(k) for k in i.args):
if (i.rewrite((sin, sinh), sym_exp).rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, sin)).has(I, cosh, sinh):
return i.rewrite((sin, sinh), sym_exp).rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, sin).simplify()
else:
return i.rewrite((sin, sinh), sym_exp).rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, sin)
else:
a = Wild('a')
b = Wild('b')
v = Wild('v')
Match = i.match(v*sin(a)*cos(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*sin(a)*cos(b), v*S(1)/2*(sin(a + b) + sin(a - b)))
Match = i.match(v*sin(a)*sin(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*sin(a)*sin(b), v*S(1)/2*cos(a - b) - cos(a + b))
Match = i.match(v*cos(a)*cos(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*cos(a)*cos(b), v*S(1)/2*cos(a + b) + cos(a - b))
Match = i.match(v*sinh(a)*cosh(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*sinh(a)*cosh(b), v*S(1)/2*(sinh(a + b) + sinh(a - b)))
Match = i.match(v*sinh(a)*sinh(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*sinh(a)*sinh(b), v*S(1)/2*cosh(a - b) - cosh(a + b))
Match = i.match(v*cosh(a)*cosh(b))
if Match:
a = Match[a]
b = Match[b]
v = Match[v]
return i.subs(v*cosh(a)*cosh(b), v*S(1)/2*cosh(a + b) + cosh(a - b))
if PowerQ(i):
if i.has(sin, sinh):
if (i.rewrite((sin, sinh), sym_exp).expand().rewrite(sym_exp, sin)).has(I, cosh, sinh):
return i.rewrite((sin, sinh), sym_exp).expand().rewrite(sym_exp, sin).simplify()
else:
return i.rewrite((sin, sinh), sym_exp).expand().rewrite(sym_exp, sin)
if i.has(cos, cosh):
if (i.rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, cos)).has(I, cosh, sinh):
return i.rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, cos).simplify()
else:
return i.rewrite((cos, cosh), sym_exp).expand().rewrite(sym_exp, cos)
return i
def FunctionOfTrig(u, *args):
# If u is a function of trig functions of v where v is a linear function of x,
# FunctionOfTrig[u,x] returns v; else it returns False.
if len(args) == 1:
x = args[0]
v = FunctionOfTrig(u, None, x)
if v:
return v
else:
return False
else:
v, x = args
if AtomQ(u):
if u == x:
return False
else:
return v
if TrigQ(u) and LinearQ(u.args[0], x):
if v is None:
return u.args[0]
else:
a = Coefficient(v, x, 0)
b = Coefficient(v, x, 1)
c = Coefficient(u.args[0], x, 0)
d = Coefficient(u.args[0], x, 1)
if ZeroQ(a*d - b*c) and RationalQ(b/d):
return a/Numerator(b/d) + b*x/Numerator(b/d)
else:
return False
if HyperbolicQ(u) and LinearQ(u.args[0], x):
if v is None:
return I*u.args[0]
a = Coefficient(v, x, 0)
b = Coefficient(v, x, 1)
c = I*Coefficient(u.args[0], x, 0)
d = I*Coefficient(u.args[0], x, 1)
if ZeroQ(a*d - b*c) and RationalQ(b/d):
return a/Numerator(b/d) + b*x/Numerator(b/d)
else:
return False
if CalculusQ(u):
return False
else:
w = v
for i in u.args:
w = FunctionOfTrig(i, w, x)
if FalseQ(w):
return False
return w
def AlgebraicTrigFunctionQ(u, x):
# If u is algebraic function of trig functions, AlgebraicTrigFunctionQ(u,x) returns True; else it returns False.
if AtomQ(u):
return True
elif TrigQ(u) and LinearQ(u.args[0], x):
return True
elif HyperbolicQ(u) and LinearQ(u.args[0], x):
return True
elif PowerQ(u):
if FreeQ(u.exp, x):
return AlgebraicTrigFunctionQ(u.base, x)
elif ProductQ(u) or SumQ(u):
for i in u.args:
if not AlgebraicTrigFunctionQ(i, x):
return False
return True
return False
def FunctionOfHyperbolic(u, *x):
# If u is a function of hyperbolic trig functions of v where v is linear in x,
# FunctionOfHyperbolic(u,x) returns v; else it returns False.
if len(x) == 1:
x = x[0]
v = FunctionOfHyperbolic(u, None, x)
if v==None:
return False
else:
return v
else:
v = x[0]
x = x[1]
if AtomQ(u):
if u == x:
return False
return v
if HyperbolicQ(u) and LinearQ(u.args[0], x):
if v is None:
return u.args[0]
a = Coefficient(v, x, 0)
b = Coefficient(v, x, 1)
c = Coefficient(u.args[0], x, 0)
d = Coefficient(u.args[0], x, 1)
if ZeroQ(a*d - b*c) and RationalQ(b/d):
return a/Numerator(b/d) + b*x/Numerator(b/d)
else:
return False
if CalculusQ(u):
return False
w = v
for i in u.args:
if w == FunctionOfHyperbolic(i, w, x):
return False
return w
def FunctionOfQ(v, u, x, PureFlag=False):
# v is a function of x. If u is a function of v, FunctionOfQ(v, u, x) returns True; else it returns False. *)
if FreeQ(u, x):
return False
elif AtomQ(v):
return True
elif ProductQ(v) and Not(EqQ(FreeFactors(v, x), 1)):
return FunctionOfQ(NonfreeFactors(v, x), u, x, PureFlag)
elif PureFlag:
if SinQ(v) or CscQ(v):
return PureFunctionOfSinQ(u, v.args[0], x)
elif CosQ(v) or SecQ(v):
return PureFunctionOfCosQ(u, v.args[0], x)
elif TanQ(v):
return PureFunctionOfTanQ(u, v.args[0], x)
elif CotQ(v):
return PureFunctionOfCotQ(u, v.args[0], x)
elif SinhQ(v) or CschQ(v):
return PureFunctionOfSinhQ(u, v.args[0], x)
elif CoshQ(v) or SechQ(v):
return PureFunctionOfCoshQ(u, v.args[0], x)
elif TanhQ(v):
return PureFunctionOfTanhQ(u, v.args[0], x)
elif CothQ(v):
return PureFunctionOfCothQ(u, v.args[0], x)
else:
return FunctionOfExpnQ(u, v, x) != False
elif SinQ(v) or CscQ(v):
return FunctionOfSinQ(u, v.args[0], x)
elif CosQ(v) or SecQ(v):
return FunctionOfCosQ(u, v.args[0], x)
elif TanQ(v) or CotQ(v):
FunctionOfTanQ(u, v.args[0], x)
elif SinhQ(v) or CschQ(v):
return FunctionOfSinhQ(u, v.args[0], x)
elif CoshQ(v) or SechQ(v):
return FunctionOfCoshQ(u, v.args[0], x)
elif TanhQ(v) or CothQ(v):
return FunctionOfTanhQ(u, v.args[0], x)
return FunctionOfExpnQ(u, v, x) != False
def FunctionOfExpnQ(u, v, x):
if u == v:
return 1
if AtomQ(u):
if u == x:
return False
else:
return 0
if CalculusQ(u):
return False
if PowerQ(u):
if FreeQ(u.exp, x):
if ZeroQ(u.base - v):
if IntegerQ(u.exp):
return u.exp
else:
return 1
if PowerQ(v):
if FreeQ(v.exp, x) and ZeroQ(u.base-v.base):
if RationalQ(v.exp):
if RationalQ(u.exp) and IntegerQ(u.exp/v.exp) and (v.exp>0 or u.exp<0):
return u.exp/v.exp
else:
return False
if IntegerQ(Simplify(u.exp/v.exp)):
return Simplify(u.exp/v.exp)
else:
return False
return FunctionOfExpnQ(u.base, v, x)
if ProductQ(u) and Not(EqQ(FreeFactors(u, x), 1)):
return FunctionOfExpnQ(NonfreeFactors(u, x), v, x)
if ProductQ(u) and ProductQ(v):
deg1 = FunctionOfExpnQ(First(u), First(v), x)
if deg1==False:
return False
deg2 = FunctionOfExpnQ(Rest(u), Rest(v), x);
if deg1==deg2 and FreeQ(Simplify(u/v^deg1), x):
return deg1
else:
return False
lst = []
for i in u.args:
if FunctionOfExpnQ(i, v, x) is False:
return False
lst.append(FunctionOfExpnQ(i, v, x))
return Apply(GCD, lst)
def PureFunctionOfSinQ(u, v, x):
# If u is a pure function of Sin(v) and/or Csc(v), PureFunctionOfSinQ(u, v, x) returns True; else it returns False.
if AtomQ(u):
return u!=x
if CalculusQ(u):
return False
if TrigQ(u) and ZeroQ(u.args[0]-v):
return SinQ(u) or CscQ(u)
for i in u.args:
if Not(PureFunctionOfSinQ(i, v, x)):
return False
return True
def PureFunctionOfCosQ(u, v, x):
# If u is a pure function of Cos(v) and/or Sec(v), PureFunctionOfCosQ(u, v, x) returns True; else it returns False.
if AtomQ(u):
return u!=x
if CalculusQ(u):
return False
if TrigQ(u) and ZeroQ(u.args[0]-v):
return CosQ(u) or SecQ(u)
for i in u.args:
if Not(PureFunctionOfCosQ(i, v, x)):
return False
return True
def PureFunctionOfTanQ(u, v, x):
# If u is a pure function of Tan(v) and/or Cot(v), PureFunctionOfTanQ(u, v, x) returns True; else it returns False.
if AtomQ(u):
return u!=x
if CalculusQ(u):
return False
if TrigQ(u) and ZeroQ(u.args[0]-v):
return TanQ(u) or CotQ(u)
for i in u.args:
if Not(PureFunctionOfTanQ(i, v, x)):
return False
return True
def PureFunctionOfCotQ(u, v, x):
# If u is a pure function of Cot(v), PureFunctionOfCotQ(u, v, x) returns True; else it returns False.
if AtomQ(u):
return u!=x
if CalculusQ(u):
return False
if TrigQ(u) and ZeroQ(u.args[0]-v):
return CotQ(u)
for i in u.args:
if Not(PureFunctionOfCotQ(i, v, x)):
return False
return True
def FunctionOfCosQ(u, v, x):
# If u is a function of Cos[v], FunctionOfCosQ[u,v,x] returns True; else it returns False.
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
# Basis: If m integer, Cos[m*v]^n is a function of Cos[v]. *)
return CosQ(u) or SecQ(u)
elif IntegerPowerQ(u):
if TrigQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if EvenQ(u.exp):
# Basis: If m integer and n even, Trig[m*v]^n is a function of Cos[v]. *)
return True
return FunctionOfCosQ(u.base, v, x)
elif ProductQ(u):
lst = FindTrigFactor(sin, csc, u, v, False)
if ListQ(lst):
# (* Basis: If m integer and n odd, Sin[m*v]^n == Sin[v]*u where u is a function of Cos[v]. *)
return FunctionOfCosQ(Sin(v)*lst[1], v, x)
lst = FindTrigFactor(tan, cot, u, v, True)
if ListQ(lst):
# (* Basis: If m integer and n odd, Tan[m*v]^n == Sin[v]*u where u is a function of Cos[v]. *)
return FunctionOfCosQ(Sin(v)*lst[1], v, x)
return all(FunctionOfCosQ(i, v, x) for i in u.args)
return all(FunctionOfCosQ(i, v, x) for i in u.args)
def FunctionOfSinQ(u, v, x):
# If u is a function of Sin[v], FunctionOfSinQ[u,v,x] returns True; else it returns False.
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
if OddQuotientQ(u.args[0], v):
# Basis: If m odd, Sin[m*v]^n is a function of Sin[v].
return SinQ(u) or CscQ(u)
# Basis: If m even, Cos[m*v]^n is a function of Sin[v].
return CosQ(u) or SecQ(u)
elif IntegerPowerQ(u):
if TrigQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if EvenQ(u.exp):
# Basis: If m integer and n even, Hyper[m*v]^n is a function of Sin[v].
return True
return FunctionOfSinQ(u.base, v, x)
elif ProductQ(u):
if CosQ(u.args[0]) and SinQ(u.args[1]) and ZeroQ(u.args[0].args[0] - v/2) and ZeroQ(u.args[1].args[0] - v/2):
return FunctionOfSinQ(Drop(u, 2), v, x)
lst = FindTrigFactor(sin, csch, u, v, False)
if ListQ(lst) and EvenQuotientQ(lst[0], v):
# Basis: If m even and n odd, Sin[m*v]^n == Cos[v]*u where u is a function of Sin[v].
return FunctionOfSinQ(Cos(v)*lst[1], v, x)
lst = FindTrigFactor(cos, sec, u, v, False)
if ListQ(lst) and OddQuotientQ(lst[0], v):
# Basis: If m odd and n odd, Cos[m*v]^n == Cos[v]*u where u is a function of Sin[v].
return FunctionOfSinQ(Cos(v)*lst[1], v, x)
lst = FindTrigFactor(tan, cot, u, v, True)
if ListQ(lst):
# Basis: If m integer and n odd, Tan[m*v]^n == Cos[v]*u where u is a function of Sin[v].
return FunctionOfSinQ(Cos(v)*lst[1], v, x)
return all(FunctionOfSinQ(i, v, x) for i in u.args)
return all(FunctionOfSinQ(i, v, x) for i in u.args)
def OddTrigPowerQ(u, v, x):
if SinQ(u) or CosQ(u) or SecQ(u) or CscQ(u):
return OddQuotientQ(u.args[0], v)
if PowerQ(u):
return OddQ(u.exp) and OddTrigPowerQ(u.base, v, x)
if ProductQ(u):
if not FreeFactors(u, x) == 1:
return OddTrigPowerQ(NonfreeFactors(u, x), v, x)
lst = []
for i in u.args:
if Not(FunctionOfTanQ(i, v, x)):
lst.append(i)
if lst == []:
return True
return Length(lst)==1 and OddTrigPowerQ(lst[0], v, x)
if SumQ(u):
return all(OddTrigPowerQ(i, v, x) for i in u.args)
return False
def FunctionOfTanQ(u, v, x):
# If u is a function of the form f[Tan[v],Cot[v]] where f is independent of x,
# FunctionOfTanQ[u,v,x] returns True; else it returns False.
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
return TanQ(u) or CotQ(u) or EvenQuotientQ(u.args[0], v)
elif PowerQ(u):
if EvenQ(u.exp) and TrigQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
return True
elif EvenQ(u.exp) and SumQ(u.base):
return FunctionOfTanQ(Expand(u.base**2, v, x))
if ProductQ(u):
lst = []
for i in u.args:
if Not(FunctionOfTanQ(i, v, x)):
lst.append(i)
if lst == []:
return True
return Length(lst)==2 and OddTrigPowerQ(lst[0], v, x) and OddTrigPowerQ(lst[1], v, x)
return all(FunctionOfTanQ(i, v, x) for i in u.args)
def FunctionOfTanWeight(u, v, x):
# (* u is a function of the form f[Tan[v],Cot[v]] where f is independent of x.
# FunctionOfTanWeight[u,v,x] returns a nonnegative number if u is best considered a function
# of Tan[v]; else it returns a negative number. *)
if AtomQ(u):
return S(0)
elif CalculusQ(u):
return S(0)
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
if TanQ(u) and ZeroQ(u.args[0] - v):
return S(1)
elif CotQ(u) and ZeroQ(u.args[0] - v):
return S(-1)
return S(0)
elif PowerQ(u):
if EvenQ(u.exp) and TrigQ(u.base) and IntegerQuotientQ(u.base.args[0], v):
if TanQ(u.base) or CosQ(u.base) or SecQ(u.base):
return S(1)
return S(-1)
if ProductQ(u):
if all(FunctionOfTanQ(i, v, x) for i in u.args):
return Add(*[FunctionOfTanWeight(i, v, x) for i in u.args])
return S(0)
return Add(*[FunctionOfTanWeight(i, v, x) for i in u.args])
def FunctionOfTrigQ(u, v, x):
# If u (x) is equivalent to a function of the form f (Sin[v],Cos[v],Tan[v],Cot[v],Sec[v],Csc[v]) where f is independent of x, FunctionOfTrigQ[u,v,x] returns True; else it returns False.
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif TrigQ(u) and IntegerQuotientQ(u.args[0], v):
return True
return all(FunctionOfTrigQ(i, v, x) for i in u.args)
def FunctionOfDensePolynomialsQ(u, x):
# If all occurrences of x in u (x) are in dense polynomials, FunctionOfDensePolynomialsQ[u,x] returns True; else it returns False.
if FreeQ(u, x):
return True
if PolynomialQ(u, x):
return Length(Exponent(u,x,List))>1
return all(FunctionOfDensePolynomialsQ(i, x) for i in u.args)
def FunctionOfLog(u, *args):
# If u (x) is equivalent to an expression of the form f (Log[a*x^n]), FunctionOfLog[u,x] returns
# the list {f (x),a*x^n,n}; else it returns False.
if len(args) == 1:
x = args[0]
lst = FunctionOfLog(u, False, False, x)
if AtomQ(lst) or FalseQ(lst[1]) or not isinstance(x, Symbol):
return False
else:
return lst
else:
v = args[0]
n = args[1]
x = args[2]
if AtomQ(u):
if u==x:
return False
else:
return [u, v, n]
if CalculusQ(u):
return False
lst = BinomialParts(u.args[0], x)
if LogQ(u) and ListQ(lst) and ZeroQ(lst[0]):
if FalseQ(v) or u.args[0] == v:
return [x, u.args[0], lst[2]]
else:
return False
lst = [0, v, n]
l = []
for i in u.args:
lst = FunctionOfLog(i, lst[1], lst[2], x)
if AtomQ(lst):
return False
else:
l.append(lst[0])
return [u.func(*l), lst[1], lst[2]]
def PowerVariableExpn(u, m, x):
# If m is an integer, u is an expression of the form f((c*x)**n) and g=GCD(m,n)>1,
# PowerVariableExpn(u,m,x) returns the list {x**(m/g)*f((c*x)**(n/g)),g,c}; else it returns False.
if IntegerQ(m):
lst = PowerVariableDegree(u, m, 1, x)
if not lst:
return False
else:
return [x**(m/lst[0])*PowerVariableSubst(u, lst[0], x), lst[0], lst[1]]
else:
return False
def PowerVariableDegree(u, m, c, x):
if FreeQ(u, x):
return [m, c]
if AtomQ(u) or CalculusQ(u):
return False
if PowerQ(u):
if FreeQ(u.base/x, x):
if ZeroQ(m) or m == u.exp and c == u.base/x:
return [u.exp, u.base/x]
if IntegerQ(u.exp) and IntegerQ(m) and GCD(m, u.exp)>1 and c==u.base/x:
return [GCD(m, u.exp), c]
else:
return False
lst = [m, c]
for i in u.args:
if PowerVariableDegree(i, lst[0], lst[1], x) == False:
return False
lst1 = PowerVariableDegree(i, lst[0], lst[1], x)
if not lst1:
return False
else:
return lst1
def PowerVariableSubst(u, m, x):
if FreeQ(u, x) or AtomQ(u) or CalculusQ(u):
return u
if PowerQ(u):
if FreeQ(u.base/x, x):
return x**(u.exp/m)
if ProductQ(u):
l = 1
for i in u.args:
l *= (PowerVariableSubst(i, m, x))
return l
if SumQ(u):
l = 0
for i in u.args:
l += (PowerVariableSubst(i, m, x))
return l
return u
def EulerIntegrandQ(expr, x):
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
n = Wild('n', exclude=[x, 0])
m = Wild('m', exclude=[x, 0])
p = Wild('p', exclude=[x, 0])
u = Wild('u')
v = Wild('v')
# Pattern 1
M = expr.match((a*x + b*u**n)**p)
if M:
if len(M) == 5 and FreeQ([M[a], M[b]], x) and IntegerQ(M[n] + 1/2) and QuadraticQ(M[u], x) and Not(RationalQ(M[p])) or NegativeIntegerQ(M[p]) and Not(BinomialQ(M[u], x)):
return True
# Pattern 2
M = expr.match(v**m*(a*x + b*u**n)**p)
if M:
if len(M) == 6 and FreeQ([M[a], M[b]], x) and ZeroQ(M[u] - M[v]) and IntegersQ(2*M[m], M[n] + 1/2) and QuadraticQ(M[u], x) and Not(RationalQ(M[p])) or NegativeIntegerQ(M[p]) and Not(BinomialQ(M[u], x)):
return True
# Pattern 3
M = expr.match(u**n*v**p)
if M:
if len(M) == 3 and NegativeIntegerQ(M[p]) and IntegerQ(M[n] + 1/2) and QuadraticQ(M[u], x) and QuadraticQ(M[v], x) and Not(BinomialQ(M[v], x)):
return True
else:
return False
def FunctionOfSquareRootOfQuadratic(u, *args):
if len(args) == 1:
x = args[0]
pattern = Pattern(UtilityOperator(x_**WC('m', 1)*(a_ + x**WC('n', 1)*WC('b', 1))**p_, x), CustomConstraint(lambda a, b, m, n, p, x: FreeQ([a, b, m, n, p], x)))
M = is_match(UtilityOperator(u, args[0]), pattern)
if M:
return False
tmp = FunctionOfSquareRootOfQuadratic(u, False, x)
if AtomQ(tmp) or FalseQ(tmp[0]):
return False
tmp = tmp[0]
a = Coefficient(tmp, x, 0)
b = Coefficient(tmp, x, 1)
c = Coefficient(tmp, x, 2)
if ZeroQ(a) and ZeroQ(b) or ZeroQ(b**2-4*a*c):
return False
if PosQ(c):
sqrt = Rt(c, S(2));
q = a*sqrt + b*x + sqrt*x**2
r = b + 2*sqrt*x
return [Simplify(SquareRootOfQuadraticSubst(u, q/r, (-a+x**2)/r, x)*q/r**2), Simplify(sqrt*x + Sqrt(tmp)), 2]
if PosQ(a):
sqrt = Rt(a, S(2))
q = c*sqrt - b*x + sqrt*x**2
r = c - x**2
return [Simplify(SquareRootOfQuadraticSubst(u, q/r, (-b+2*sqrt*x)/r, x)*q/r**2), Simplify((-sqrt+Sqrt(tmp))/x), 1]
sqrt = Rt(b**2 - 4*a*c, S(2))
r = c - x**2
return[Simplify(-sqrt*SquareRootOfQuadraticSubst(u, -sqrt*x/r, -(b*c+c*sqrt+(-b+sqrt)*x**2)/(2*c*r), x)*x/r**2), FullSimplify(2*c*Sqrt(tmp)/(b-sqrt+2*c*x)), 3]
else:
v = args[0]
x = args[1]
if AtomQ(u) or FreeQ(u, x):
return [v]
if PowerQ(u):
if FreeQ(u.exp, x):
if FractionQ(u.exp) and Denominator(u.exp)==2 and PolynomialQ(u.base, x) and Exponent(u.base, x)==2:
if FalseQ(v) or u.base == v:
return [u.base]
else:
return False
return FunctionOfSquareRootOfQuadratic(u.base, v, x)
if ProductQ(u) or SumQ(u):
lst = [v]
lst1 = []
for i in u.args:
if FunctionOfSquareRootOfQuadratic(i, lst[0], x) == False:
return False
lst1 = FunctionOfSquareRootOfQuadratic(i, lst[0], x)
return lst1
else:
return False
def SquareRootOfQuadraticSubst(u, vv, xx, x):
# SquareRootOfQuadraticSubst(u, vv, xx, x) returns u with fractional powers replaced by vv raised to the power and x replaced by xx.
if AtomQ(u) or FreeQ(u, x):
if u==x:
return xx
return u
if PowerQ(u):
if FreeQ(u.exp, x):
if FractionQ(u.exp) and Denominator(u.exp)==2 and PolynomialQ(u.base, x) and Exponent(u.base, x)==2:
return vv**Numerator(u.exp)
return SquareRootOfQuadraticSubst(u.base, vv, xx, x)**u.exp
elif SumQ(u):
t = 0
for i in u.args:
t += SquareRootOfQuadraticSubst(i, vv, xx, x)
return t
elif ProductQ(u):
t = 1
for i in u.args:
t *= SquareRootOfQuadraticSubst(i, vv, xx, x)
return t
def Divides(y, u, x):
# If u divided by y is free of x, Divides[y,u,x] returns the quotient; else it returns False.
v = Simplify(u/y)
if FreeQ(v, x):
return v
else:
return False
def DerivativeDivides(y, u, x):
'''
If y not equal to x, y is easy to differentiate wrt x, and u divided by the derivative of y
is free of x, DerivativeDivides[y,u,x] returns the quotient; else it returns False.
'''
from matchpy import is_match
pattern0 = Pattern(Mul(a , b_), CustomConstraint(lambda a, b : FreeQ(a, b)))
def f1(y, u, x):
if PolynomialQ(y, x):
return PolynomialQ(u, x) and Exponent(u, x)==Exponent(y, x)-1
else:
return EasyDQ(y, x)
if is_match(y, pattern0):
return False
elif f1(y, u, x):
v = D(y ,x)
if EqQ(v, 0):
return False
else:
v = Simplify(u/v)
if FreeQ(v, x):
return v
else:
return False
else:
return False
def EasyDQ(expr, x):
# If u is easy to differentiate wrt x, EasyDQ(u, x) returns True; else it returns False *)
u = Wild('u',exclude=[1])
m = Wild('m',exclude=[x, 0])
M = expr.match(u*x**m)
if M:
return EasyDQ(M[u], x)
if AtomQ(expr) or FreeQ(expr, x) or Length(expr)==0:
return True
elif CalculusQ(expr):
return False
elif Length(expr)==1:
return EasyDQ(expr.args[0], x)
elif BinomialQ(expr, x) or ProductOfLinearPowersQ(expr, x):
return True
elif RationalFunctionQ(expr, x) and RationalFunctionExponents(expr, x)==[1, 1]:
return True
elif ProductQ(expr):
if FreeQ(First(expr), x):
return EasyDQ(Rest(expr), x)
elif FreeQ(Rest(expr), x):
return EasyDQ(First(expr), x)
else:
return False
elif SumQ(expr):
return EasyDQ(First(expr), x) and EasyDQ(Rest(expr), x)
elif Length(expr)==2:
if FreeQ(expr.args[0], x):
EasyDQ(expr.args[1], x)
elif FreeQ(expr.args[1], x):
return EasyDQ(expr.args[0], x)
else:
return False
return False
def ProductOfLinearPowersQ(u, x):
# ProductOfLinearPowersQ(u, x) returns True iff u is a product of factors of the form v^n where v is linear in x
v = Wild('v')
n = Wild('n', exclude=[x])
M = u.match(v**n)
return FreeQ(u, x) or M and LinearQ(M[v], x) or ProductQ(u) and ProductOfLinearPowersQ(First(u), x) and ProductOfLinearPowersQ(Rest(u), x)
def Rt(u, n):
return RtAux(TogetherSimplify(u), n)
def NthRoot(u, n):
return nsimplify(u**(S(1)/n))
def AtomBaseQ(u):
# If u is an atom or an atom raised to an odd degree, AtomBaseQ(u) returns True; else it returns False
return AtomQ(u) or PowerQ(u) and OddQ(u.args[1]) and AtomBaseQ(u.args[0])
def SumBaseQ(u):
# If u is a sum or a sum raised to an odd degree, SumBaseQ(u) returns True; else it returns False
return SumQ(u) or PowerQ(u) and OddQ(u.args[1]) and SumBaseQ(u.args[0])
def NegSumBaseQ(u):
# If u is a sum or a sum raised to an odd degree whose lead term has a negative form, NegSumBaseQ(u) returns True; else it returns False
return SumQ(u) and NegQ(First(u)) or PowerQ(u) and OddQ(u.args[1]) and NegSumBaseQ(u.args[0])
def AllNegTermQ(u):
# If all terms of u have a negative form, AllNegTermQ(u) returns True; else it returns False
if PowerQ(u):
if OddQ(u.exp):
return AllNegTermQ(u.base)
if SumQ(u):
return NegQ(First(u)) and AllNegTermQ(Rest(u))
return NegQ(u)
def SomeNegTermQ(u):
# If some term of u has a negative form, SomeNegTermQ(u) returns True; else it returns False
if PowerQ(u):
if OddQ(u.exp):
return SomeNegTermQ(u.base)
if SumQ(u):
return NegQ(First(u)) or SomeNegTermQ(Rest(u))
return NegQ(u)
def TrigSquareQ(u):
# If u is an expression of the form Sin(z)^2 or Cos(z)^2, TrigSquareQ(u) returns True, else it returns False
return PowerQ(u) and EqQ(u.args[1], 2) and MemberQ([sin, cos], Head(u.args[0]))
def RtAux(u, n):
if PowerQ(u):
return u.base**(u.exp/n)
if ComplexNumberQ(u):
a = Re(u)
b = Im(u)
if Not(IntegerQ(a) and IntegerQ(b)) and IntegerQ(a/(a**2 + b**2)) and IntegerQ(b/(a**2 + b**2)):
# Basis: a+b*I==1/(a/(a^2+b^2)-b/(a^2+b^2)*I)
return S(1)/RtAux(a/(a**2 + b**2) - b/(a**2 + b**2)*I, n)
else:
return NthRoot(u, n)
if ProductQ(u):
lst = SplitProduct(PositiveQ, u)
if ListQ(lst):
return RtAux(lst[0], n)*RtAux(lst[1], n)
lst = SplitProduct(NegativeQ, u)
if ListQ(lst):
if EqQ(lst[0], -1):
v = lst[1]
if PowerQ(v):
if NegativeQ(v.exp):
return 1/RtAux(-v.base**(-v.exp), n)
if ProductQ(v):
if ListQ(SplitProduct(SumBaseQ, v)):
lst = SplitProduct(AllNegTermQ, v)
if ListQ(lst):
return RtAux(-lst[0], n)*RtAux(lst[1], n)
lst = SplitProduct(NegSumBaseQ, v)
if ListQ(lst):
return RtAux(-lst[0], n)*RtAux(lst[1], n)
lst = SplitProduct(SomeNegTermQ, v)
if ListQ(lst):
return RtAux(-lst[0], n)*RtAux(lst[1], n)
lst = SplitProduct(SumBaseQ, v)
return RtAux(-lst[0], n)*RtAux(lst[1], n)
lst = SplitProduct(AtomBaseQ, v)
if ListQ(lst):
return RtAux(-lst[0], n)*RtAux(lst[1], n)
else:
return RtAux(-First(v), n)*RtAux(Rest(v), n)
if OddQ(n):
return -RtAux(v, n)
else:
return NthRoot(u, n)
else:
return RtAux(-lst[0], n)*RtAux(-lst[1], n)
lst = SplitProduct(AllNegTermQ, u)
if ListQ(lst) and ListQ(SplitProduct(SumBaseQ, lst[1])):
return RtAux(-lst[0], n)*RtAux(-lst[1], n)
lst = SplitProduct(NegSumBaseQ, u)
if ListQ(lst) and ListQ(SplitProduct(NegSumBaseQ, lst[1])):
return RtAux(-lst[0], n)*RtAux(-lst[1], n)
return u.func(*[RtAux(i, n) for i in u.args])
v = TrigSquare(u)
if Not(AtomQ(v)):
return RtAux(v, n)
if OddQ(n) and NegativeQ(u):
return -RtAux(-u, n)
if OddQ(n) and NegQ(u) and PosQ(-u):
return -RtAux(-u, n)
else:
return NthRoot(u, n)
def TrigSquare(u):
# If u is an expression of the form a-a*Sin(z)^2 or a-a*Cos(z)^2, TrigSquare(u) returns Cos(z)^2 or Sin(z)^2 respectively,
# else it returns False.
if SumQ(u):
for i in u.args:
v = SplitProduct(TrigSquareQ, i)
if v == False or SplitSum(v, u) == False:
return False
lst = SplitSum(SplitProduct(TrigSquareQ, i))
if lst and ZeroQ(lst[1][2] + lst[1]):
if Head(lst[0][0].args[0]) == sin:
return lst[1]*cos(lst[1][1][1][1])**2
return lst[1]*sin(lst[1][1][1][1])**2
else:
return False
else:
return False
def IntSum(u, x):
# If u is free of x or of the form c*(a+b*x)^m, IntSum[u,x] returns the antiderivative of u wrt x;
# else it returns d*Int[v,x] where d*v=u and d is free of x.
return Add(*[Integral(i, x) for i in u.args])
return Simp(FreeTerms(u, x)*x, x) + IntTerm(NonfreeTerms(u, x), x)
def IntTerm(expr, x):
# If u is of the form c*(a+b*x)**m, IntTerm(u,x) returns the antiderivative of u wrt x;
# else it returns d*Int(v,x) where d*v=u and d is free of x.
c = Wild('c', exclude=[x])
m = Wild('m', exclude=[x, 0])
v = Wild('v')
M = expr.match(c/v)
if M and len(M) == 2 and FreeQ(M[c], x) and LinearQ(M[v], x):
return Simp(M[c]*Log(RemoveContent(M[v], x))/Coefficient(M[v], x, 1), x)
M = expr.match(c*v**m)
if M and len(M) == 3 and NonzeroQ(M[m] + 1) and LinearQ(M[v], x):
return Simp(M[c]*M[v]**(M[m] + 1)/(Coefficient(M[v], x, 1)*(M[m] + 1)), x)
if SumQ(expr):
t = 0
for i in expr.args:
t += IntTerm(i, x)
return t
else:
u = expr
return Dist(FreeFactors(u,x), Integral(NonfreeFactors(u, x), x), x)
def Map2(f, lst1, lst2):
result = []
for i in range(0, len(lst1)):
result.append(f(lst1[i], lst2[i]))
return result
def ConstantFactor(u, x):
# (* ConstantFactor[u,x] returns a 2-element list of the factors of u[x] free of x and the
# factors not free of u[x]. Common constant factors of the terms of sums are also collected. *)
if FreeQ(u, x):
return [u, S(1)]
elif AtomQ(u):
return [S(1), u]
elif PowerQ(u):
if FreeQ(u.exp, x):
lst = ConstantFactor(u.base, x)
if IntegerQ(u.exp):
return [lst[0]**u.exp, lst[1]**u.exp]
tmp = PositiveFactors(lst[0])
if tmp == 1:
return [S(1), u]
return [tmp**u.exp, (NonpositiveFactors(lst[0])*lst[1])**u.exp]
elif ProductQ(u):
lst = [ConstantFactor(i, x) for i in u.args]
return [Mul(*[First(i) for i in lst]), Mul(*[i[1] for i in lst])]
elif SumQ(u):
lst1 = [ConstantFactor(i, x) for i in u.args]
if SameQ(*[i[1] for i in lst1]):
return [Add(*[i[0] for i in lst]), lst1[0][1]]
lst2 = CommonFactors([First(i) for i in lst1])
return [First(lst2), Add(*Map2(Mul, Rest(lst2), [i[1] for i in lst1]))]
return [S(1), u]
def SameQ(*args):
for i in range(0, len(args) - 1):
if args[i] != args[i+1]:
return False
return True
def ReplacePart(lst, a, b):
lst[b] = a
return lst
def CommonFactors(lst):
# (* If lst is a list of n terms, CommonFactors[lst] returns a n+1-element list whose first
# element is the product of the factors common to all terms of lst, and whose remaining
# elements are quotients of each term divided by the common factor. *)
lst1 = [NonabsurdNumberFactors(i) for i in lst]
lst2 = [AbsurdNumberFactors(i) for i in lst]
num = AbsurdNumberGCD(*lst2)
common = num
lst2 = [i/num for i in lst2]
while (True):
lst3 = [LeadFactor(i) for i in lst1]
if SameQ(*lst3):
common = common*lst3[0]
lst1 = [RemainingFactors(i) for i in lst1]
elif (all((LogQ(i) and IntegerQ(First(i)) and First(i) > 0) for i in lst3) and
all(RationalQ(i) for i in [FullSimplify(j/First(lst3)) for j in lst3])):
lst4 = [FullSimplify(j/First(lst3)) for j in lst3]
num = GCD(*lst4)
common = common*Log((First(lst3)[0])**num)
lst2 = [lst2[i]*lst4[i]/num for i in range(0, len(lst2))]
lst1 = [RemainingFactors(i) for i in lst1]
lst4 = [LeadDegree(i) for i in lst1]
if SameQ(*[LeadBase(i) for i in lst1]) and RationalQ(*lst4):
num = Smallest(lst4)
base = LeadBase(lst1[0])
if num != 0:
common = common*base**num
lst2 = [lst2[i]*base**(lst4[i] - num) for i in range(0, len(lst2))]
lst1 = [RemainingFactors(i) for i in lst1]
elif (Length(lst1) == 2 and ZeroQ(LeadBase(lst1[0]) + LeadBase(lst1[1])) and
NonzeroQ(lst1[0] - 1) and IntegerQ(lst4[0]) and FractionQ(lst4[1])):
num = Min(lst4)
base = LeadBase(lst1[1])
if num != 0:
common = common*base**num
lst2 = [lst2[0]*(-1)**lst4[0], lst2[1]]
lst2 = [lst2[i]*base**(lst4[i] - num) for i in range(0, len(lst2))]
lst1 = [RemainingFactors(i) for i in lst1]
elif (Length(lst1) == 2 and ZeroQ(lst1[0] + LeadBase(lst1[1])) and
NonzeroQ(lst1[1] - 1) and IntegerQ(lst1[1]) and FractionQ(lst4[0])):
num = Min(lst4)
base = LeadBase(lst1[0])
if num != 0:
common = common*base**num
lst2 = [lst2[0], lst2[1]*(-1)**lst4[1]]
lst2 = [lst2[i]*base**(lst4[i] - num) for i in range(0, len(lst2))]
lst1 = [RemainingFactors(i) for i in lst1]
else:
num = MostMainFactorPosition(lst3)
lst2 = ReplacePart(lst2, lst3[num]*lst2[num], num)
lst1 = ReplacePart(lst1, RemainingFactors(lst1[num]), num)
if all(i==1 for i in lst1):
return Prepend(lst2, common)
def MostMainFactorPosition(lst):
factor = S(1)
num = 0
for i in range(0, Length(lst)):
if FactorOrder(lst[i], factor) > 0:
factor = lst[i]
num = i
return num
SbaseS, SexponS = None, None
SexponFlagS = False
def FunctionOfExponentialQ(u, x):
# (* FunctionOfExponentialQ[u,x] returns True iff u is a function of F^v where F is a constant and v is linear in x, *)
# (* and such an exponential explicitly occurs in u (i.e. not just implicitly in hyperbolic functions). *)
global SbaseS, SexponS, SexponFlagS
SbaseS, SexponS = None, None
SexponFlagS = False
res = FunctionOfExponentialTest(u, x)
return res and SexponFlagS
def FunctionOfExponential(u, x):
global SbaseS, SexponS, SexponFlagS
# (* u is a function of F^v where v is linear in x. FunctionOfExponential[u,x] returns F^v. *)
SbaseS, SexponS = None, None
SexponFlagS = False
FunctionOfExponentialTest(u, x)
return SbaseS**SexponS
def FunctionOfExponentialFunction(u, x):
global SbaseS, SexponS, SexponFlagS
# (* u is a function of F^v where v is linear in x. FunctionOfExponentialFunction[u,x] returns u with F^v replaced by x. *)
SbaseS, SexponS = None, None
SexponFlagS = False
FunctionOfExponentialTest(u, x)
return SimplifyIntegrand(FunctionOfExponentialFunctionAux(u, x), x)
def FunctionOfExponentialFunctionAux(u, x):
# (* u is a function of F^v where v is linear in x, and the fluid variables $base$=F and $expon$=v. *)
# (* FunctionOfExponentialFunctionAux[u,x] returns u with F^v replaced by x. *)
global SbaseS, SexponS, SexponFlagS
if AtomQ(u):
return u
elif PowerQ(u):
if FreeQ(u.base, x) and LinearQ(u.exp, x):
if ZeroQ(Coefficient(SexponS, x, 0)):
return u.base**Coefficient(u.exp, x, 0)*x**FullSimplify(Log(u.base)*Coefficient(u.exp, x, 1)/(Log(SbaseS)*Coefficient(SexponS, x, 1)))
return x**FullSimplify(Log(u.base)*Coefficient(u.exp, x, 1)/(Log(SbaseS)*Coefficient(SexponS, x, 1)))
elif HyperbolicQ(u) and LinearQ(u.args[0], x):
tmp = x**FullSimplify(Coefficient(u.args[0], x, 1)/(Log(SbaseS)*Coefficient(SexponS, x, 1)))
if SinhQ(u):
return tmp/2 - 1/(2*tmp)
elif CoshQ(u):
return tmp/2 + 1/(2*tmp)
elif TanhQ(u):
return (tmp - 1/tmp)/(tmp + 1/tmp)
elif CothQ(u):
return (tmp + 1/tmp)/(tmp - 1/tmp)
elif SechQ(u):
return 2/(tmp + 1/tmp)
return 2/(tmp - 1/tmp)
if PowerQ(u):
if FreeQ(u.base, x) and SumQ(u.exp):
return FunctionOfExponentialFunctionAux(u.base**First(u.exp), x)*FunctionOfExponentialFunctionAux(u.base**Rest(u.exp), x)
return u.func(*[FunctionOfExponentialFunctionAux(i, x) for i in u.args])
def FunctionOfExponentialTest(u, x):
# (* FunctionOfExponentialTest[u,x] returns True iff u is a function of F^v where F is a constant and v is linear in x. *)
# (* Before it is called, the fluid variables $base$ and $expon$ should be set to Null and $exponFlag$ to False. *)
# (* If u is a function of F^v, $base$ and $expon$ are set to F and v, respectively. *)
# (* If an explicit exponential occurs in u, $exponFlag$ is set to True. *)
global SbaseS, SexponS, SexponFlagS
if FreeQ(u, x):
return True
elif u == x or CalculusQ(u):
return False
elif PowerQ(u):
if FreeQ(u.base, x) and LinearQ(u.exp, x):
SexponFlagS = True
return FunctionOfExponentialTestAux(u.base, u.exp, x)
elif HyperbolicQ(u) and LinearQ(u.args[0], x):
return FunctionOfExponentialTestAux(E, u.args[0], x)
if PowerQ(u):
if FreeQ(u.base, x) and SumQ(u.exp):
return FunctionOfExponentialTest(u.base**First(u.exp), x) and FunctionOfExponentialTest(u.base**Rest(u.exp), x)
return all(FunctionOfExponentialTest(i, x) for i in u.args)
def FunctionOfExponentialTestAux(base, expon, x):
global SbaseS, SexponS, SexponFlagS
if SbaseS is None:
SbaseS = base
SexponS = expon
return True
tmp = FullSimplify(Log(base)*Coefficient(expon, x, 1)/(Log(SbaseS)*Coefficient(SexponS, x, 1)))
if Not(RationalQ(tmp)):
return False
elif ZeroQ(Coefficient(SexponS, x, 0)) or NonzeroQ(tmp - FullSimplify(Log(base)*Coefficient(expon, x, 0)/(Log(SbaseS)*Coefficient(SexponS, x, 0)))):
if PositiveIntegerQ(base, SbaseS) and base<SbaseS:
SbaseS = base
SexponS = expon
tmp = 1/tmp
SexponS = Coefficient(SexponS, x, 1)*x/Denominator(tmp)
if tmp < 0 and NegQ(Coefficient(SexponS, x, 1)):
SexponS = -SexponS
return True
else:
return True
if PositiveIntegerQ(base, SbaseS) and base < SbaseS:
SbaseS = base
SexponS = expon
tmp = 1/tmp
SexponS = SexponS/Denominator(tmp)
if tmp < 0 and NegQ(Coefficient(SexponS, x, 1)):
SexponS = -SexponS
return True
return True
def stdev(lst):
"""Calculates the standard deviation for a list of numbers."""
num_items = len(lst)
mean = sum(lst) / num_items
differences = [x - mean for x in lst]
sq_differences = [d ** 2 for d in differences]
ssd = sum(sq_differences)
variance = ssd / num_items
sd = sqrt(variance)
return sd
def rubi_test(expr, x, optimal_output, expand=False, _hyper_check=False, _diff=False, _numerical=False):
#Returns True if (expr - optimal_output) is equal to 0 or a constant
#expr: integrated expression
#x: integration variable
#expand=True equates `expr` with `optimal_output` in expanded form
#_hyper_check=True evaluates numerically
#_diff=True differentiates the expressions before equating
#_numerical=True equates the expressions at random `x`. Normally used for large expressions.
from sympy import nsimplify
if not expr.has(csc, sec, cot, csch, sech, coth):
optimal_output = process_trig(optimal_output)
if expr == optimal_output:
return True
if simplify(expr) == simplify(optimal_output):
return True
if nsimplify(expr) == nsimplify(optimal_output):
return True
if expr.has(sym_exp):
expr = powsimp(powdenest(expr), force=True)
if simplify(expr) == simplify(powsimp(optimal_output, force=True)):
return True
res = expr - optimal_output
if _numerical:
args = res.free_symbols
rand_val = []
try:
for i in range(0, 5): # check at 5 random points
rand_x = randint(1, 40)
substitutions = dict((s, rand_x) for s in args)
rand_val.append(float(abs(res.subs(substitutions).n())))
if stdev(rand_val) < Pow(10, -3):
return True
except:
pass
# return False
dres = res.diff(x)
if _numerical:
args = dres.free_symbols
rand_val = []
try:
for i in range(0, 5): # check at 5 random points
rand_x = randint(1, 40)
substitutions = dict((s, rand_x) for s in args)
rand_val.append(float(abs(dres.subs(substitutions).n())))
if stdev(rand_val) < Pow(10, -3):
return True
# return False
except:
pass
# return False
r = Simplify(nsimplify(res))
if r == 0 or (not r.has(x)):
return True
if _diff:
if dres == 0:
return True
elif Simplify(dres) == 0:
return True
if expand: # expands the expression and equates
e = res.expand()
if Simplify(e) == 0 or (not e.has(x)):
return True
return False
def If(cond, t, f):
# returns t if condition is true else f
if cond:
return t
return f
def IntQuadraticQ(a, b, c, d, e, m, p, x):
# (* IntQuadraticQ[a,b,c,d,e,m,p,x] returns True iff (d+e*x)^m*(a+b*x+c*x^2)^p is integrable wrt x in terms of non-Appell functions. *)
return IntegerQ(p) or PositiveIntegerQ(m) or IntegersQ(2*m, 2*p) or IntegersQ(m, 4*p) or IntegersQ(m, p + S(1)/3) and (ZeroQ(c**2*d**2 - b*c*d*e + b**2*e**2 - 3*a*c*e**2) or ZeroQ(c**2*d**2 - b*c*d*e - 2*b**2*e**2 + 9*a*c*e**2))
def IntBinomialQ(*args):
#(* IntBinomialQ(a,b,c,n,m,p,x) returns True iff (c*x)^m*(a+b*x^n)^p is integrable wrt x in terms of non-hypergeometric functions. *)
if len(args) == 8:
a, b, c, d, n, p, q, x = args
return IntegersQ(p,q) or PositiveIntegerQ(p) or PositiveIntegerQ(q) or (ZeroQ(n-2) or ZeroQ(n-4)) and (IntegersQ(p,4*q) or IntegersQ(4*p,q)) or ZeroQ(n-2) and (IntegersQ(2*p,2*q) or IntegersQ(3*p,q) and ZeroQ(b*c+3*a*d) or IntegersQ(p,3*q) and ZeroQ(3*b*c+a*d))
elif len(args) == 7:
a, b, c, n, m, p, x = args
return IntegerQ(2*p) or IntegerQ((m+1)/n + p) or (ZeroQ(n - 2) or ZeroQ(n - 4)) and IntegersQ(2*m, 4*p) or ZeroQ(n - 2) and IntegerQ(6*p) and (IntegerQ(m) or IntegerQ(m - p))
elif len(args) == 10:
a, b, c, d, e, m, n, p, q, x = args
return IntegersQ(p,q) or PositiveIntegerQ(p) or PositiveIntegerQ(q) or ZeroQ(n-2) and IntegerQ(m) and IntegersQ(2*p,2*q) or ZeroQ(n-4) and (IntegersQ(m,p,2*q) or IntegersQ(m,2*p,q))
def RectifyTangent(*args):
# (* RectifyTangent(u,a,b,r,x) returns an expression whose derivative equals the derivative of r*ArcTan(a+b*Tan(u)) wrt x. *)
if len(args) == 5:
u, a, b, r, x = args
t1 = Together(a)
t2 = Together(b)
if (PureComplexNumberQ(t1) or (ProductQ(t1) and any(PureComplexNumberQ(i) for i in t1.args))) and (PureComplexNumberQ(t2) or ProductQ(t2) and any(PureComplexNumberQ(i) for i in t2.args)):
c = a/I
d = b/I
if NegativeQ(d):
return RectifyTangent(u, -a, -b, -r, x)
e = SmartDenominator(Together(c + d*x))
c = c*e
d = d*e
if EvenQ(Denominator(NumericFactor(Together(u)))):
return I*r*Log(RemoveContent(Simplify((c+e)**2+d**2)+Simplify((c+e)**2-d**2)*Cos(2*u)+Simplify(2*(c+e)*d)*Sin(2*u),x))/4 - I*r*Log(RemoveContent(Simplify((c-e)**2+d**2)+Simplify((c-e)**2-d**2)*Cos(2*u)+Simplify(2*(c-e)*d)*Sin(2*u),x))/4
return I*r*Log(RemoveContent(Simplify((c+e)**2)+Simplify(2*(c+e)*d)*Cos(u)*Sin(u)-Simplify((c+e)**2-d**2)*Sin(u)**2,x))/4 - I*r*Log(RemoveContent(Simplify((c-e)**2)+Simplify(2*(c-e)*d)*Cos(u)*Sin(u)-Simplify((c-e)**2-d**2)*Sin(u)**2,x))/4
elif NegativeQ(b):
return RectifyTangent(u, -a, -b, -r, x)
elif EvenQ(Denominator(NumericFactor(Together(u)))):
return r*SimplifyAntiderivative(u,x) + r*ArcTan(Simplify((2*a*b*Cos(2*u)-(1+a**2-b**2)*Sin(2*u))/(a**2+(1+b)**2+(1+a**2-b**2)*Cos(2*u)+2*a*b*Sin(2*u))))
return r*SimplifyAntiderivative(u,x) - r*ArcTan(ActivateTrig(Simplify((a*b-2*a*b*cos(u)**2+(1+a**2-b**2)*cos(u)*sin(u))/(b*(1+b)+(1+a**2-b**2)*cos(u)**2+2*a*b*cos(u)*sin(u)))))
u, a, b, x = args
t = Together(a)
if PureComplexNumberQ(t) or (ProductQ(t) and any(PureComplexNumberQ(i) for i in t.args)):
c = a/I
if NegativeQ(c):
return RectifyTangent(u, -a, -b, x)
if ZeroQ(c - 1):
if EvenQ(Denominator(NumericFactor(Together(u)))):
return I*b*ArcTanh(Sin(2*u))/2
return I*b*ArcTanh(2*cos(u)*sin(u))/2
e = SmartDenominator(c)
c = c*e
return I*b*Log(RemoveContent(e*Cos(u)+c*Sin(u),x))/2 - I*b*Log(RemoveContent(e*Cos(u)-c*Sin(u),x))/2
elif NegativeQ(a):
return RectifyTangent(u, -a, -b, x)
elif ZeroQ(a - 1):
return b*SimplifyAntiderivative(u, x)
elif EvenQ(Denominator(NumericFactor(Together(u)))):
c = Simplify((1 + a)/(1 - a))
numr = SmartNumerator(c)
denr = SmartDenominator(c)
return b*SimplifyAntiderivative(u,x) - b*ArcTan(NormalizeLeadTermSigns(denr*Sin(2*u)/(numr+denr*Cos(2*u)))),
elif PositiveQ(a - 1):
c = Simplify(1/(a - 1))
numr = SmartNumerator(c)
denr = SmartDenominator(c)
return b*SimplifyAntiderivative(u,x) + b*ArcTan(NormalizeLeadTermSigns(denr*Cos(u)*Sin(u)/(numr+denr*Sin(u)**2))),
c = Simplify(a/(1 - a))
numr = SmartNumerator(c)
denr = SmartDenominator(c)
return b*SimplifyAntiderivative(u,x) - b*ArcTan(NormalizeLeadTermSigns(denr*Cos(u)*Sin(u)/(numr+denr*Cos(u)**2)))
def RectifyCotangent(*args):
#(* RectifyCotangent[u,a,b,r,x] returns an expression whose derivative equals the derivative of r*ArcTan[a+b*Cot[u]] wrt x. *)
if len(args) == 5:
u, a, b, r, x = args
t1 = Together(a)
t2 = Together(b)
if (PureComplexNumberQ(t1) or (ProductQ(t1) and any(PureComplexNumberQ(i) for i in t1.args))) and (PureComplexNumberQ(t2) or ProductQ(t2) and any(PureComplexNumberQ(i) for i in t2.args)):
c = a/I
d = b/I
if NegativeQ(d):
return RectifyTangent(u,-a,-b,-r,x)
e = SmartDenominator(Together(c + d*x))
c = c*e
d = d*e
if EvenQ(Denominator(NumericFactor(Together(u)))):
return I*r*Log(RemoveContent(Simplify((c+e)**2+d**2)-Simplify((c+e)**2-d**2)*Cos(2*u)+Simplify(2*(c+e)*d)*Sin(2*u),x))/4 - I*r*Log(RemoveContent(Simplify((c-e)**2+d**2)-Simplify((c-e)**2-d**2)*Cos(2*u)+Simplify(2*(c-e)*d)*Sin(2*u),x))/4
return I*r*Log(RemoveContent(Simplify((c+e)**2)-Simplify((c+e)**2-d**2)*Cos(u)**2+Simplify(2*(c+e)*d)*Cos(u)*Sin(u),x))/4 - I*r*Log(RemoveContent(Simplify((c-e)**2)-Simplify((c-e)**2-d**2)*Cos(u)**2+Simplify(2*(c-e)*d)*Cos(u)*Sin(u),x))/4
elif NegativeQ(b):
return RectifyCotangent(u,-a,-b,-r,x)
elif EvenQ(Denominator(NumericFactor(Together(u)))):
return -r*SimplifyAntiderivative(u,x) - r*ArcTan(Simplify((2*a*b*Cos(2*u)+(1+a**2-b**2)*Sin(2*u))/(a**2+(1+b)**2-(1+a**2-b**2)*Cos(2*u)+2*a*b*Sin(2*u))))
return -r*SimplifyAntiderivative(u,x) - r*ArcTan(ActivateTrig(Simplify((a*b-2*a*b*sin(u)**2+(1+a**2-b**2)*cos(u)*sin(u))/(b*(1+b)+(1+a**2-b**2)*sin(u)**2+2*a*b*cos(u)*sin(u)))))
u, a, b, x = args
t = Together(a)
if PureComplexNumberQ(t) or (ProductQ(t) and any(PureComplexNumberQ(i) for i in t.args)):
c = a/I
if NegativeQ(c):
return RectifyCotangent(u,-a,-b,x)
elif ZeroQ(c - 1):
if EvenQ(Denominator(NumericFactor(Together(u)))):
return -I*b*ArcTanh(Sin(2*u))/2
return -I*b*ArcTanh(2*Cos(u)*Sin(u))/2
e = SmartDenominator(c)
c = c*e
return -I*b*Log(RemoveContent(c*Cos(u)+e*Sin(u),x))/2 + I*b*Log(RemoveContent(c*Cos(u)-e*Sin(u),x))/2
elif NegativeQ(a):
return RectifyCotangent(u,-a,-b,x)
elif ZeroQ(a-1):
return b*SimplifyAntiderivative(u,x)
elif EvenQ(Denominator(NumericFactor(Together(u)))):
c = Simplify(a - 1)
numr = SmartNumerator(c)
denr = SmartDenominator(c)
return b*SimplifyAntiderivative(u,x) - b*ArcTan(NormalizeLeadTermSigns(denr*Cos(u)*Sin(u)/(numr+denr*Cos(u)**2)))
c = Simplify(a/(1-a))
numr = SmartNumerator(c)
denr = SmartDenominator(c)
return b*SimplifyAntiderivative(u,x) + b*ArcTan(NormalizeLeadTermSigns(denr*Cos(u)*Sin(u)/(numr+denr*Sin(u)**2)))
def Inequality(*args):
f = args[1::2]
e = args[0::2]
r = []
for i in range(0, len(f)):
r.append(f[i](e[i], e[i + 1]))
return all(r)
def Condition(r, c):
# returns r if c is True
if c:
return r
else:
raise NotImplementedError('In Condition()')
def Simp(u, x):
u = replace_pow_exp(u)
return NormalizeSumFactors(SimpHelp(u, x))
def SimpHelp(u, x):
if AtomQ(u):
return u
elif FreeQ(u, x):
v = SmartSimplify(u)
if LeafCount(v) <= LeafCount(u):
return v
return u
elif ProductQ(u):
#m = MatchQ[Rest[u],a_.+n_*Pi+b_.*v_ /; FreeQ[{a,b},x] && Not[FreeQ[v,x]] && EqQ[n^2,1/4]]
#if EqQ(First(u), S(1)/2) and m:
# if
#If[EqQ[First[u],1/2] && MatchQ[Rest[u],a_.+n_*Pi+b_.*v_ /; FreeQ[{a,b},x] && Not[FreeQ[v,x]] && EqQ[n^2,1/4]],
# If[MatchQ[Rest[u],n_*Pi+b_.*v_ /; FreeQ[b,x] && Not[FreeQ[v,x]] && EqQ[n^2,1/4]],
# Map[Function[1/2*#],Rest[u]],
# If[MatchQ[Rest[u],m_*a_.+n_*Pi+p_*b_.*v_ /; FreeQ[{a,b},x] && Not[FreeQ[v,x]] && IntegersQ[m/2,p/2]],
# Map[Function[1/2*#],Rest[u]],
# u]],
v = FreeFactors(u, x)
w = NonfreeFactors(u, x)
v = NumericFactor(v)*SmartSimplify(NonnumericFactors(v)*x**2)/x**2
if ProductQ(w):
w = Mul(*[SimpHelp(i,x) for i in w.args])
else:
w = SimpHelp(w, x)
w = FactorNumericGcd(w)
v = MergeFactors(v, w)
if ProductQ(v):
return Mul(*[SimpFixFactor(i, x) for i in v.args])
return v
elif SumQ(u):
Pi = pi
a_ = Wild('a', exclude=[x])
b_ = Wild('b', exclude=[x, 0])
n_ = Wild('n', exclude=[x, 0, 0])
pattern = a_ + n_*Pi + b_*x
match = u.match(pattern)
m = False
if match:
if EqQ(match[n_]**3, S(1)/16):
m = True
if m:
return u
elif PolynomialQ(u, x) and Exponent(u, x)<=0:
return SimpHelp(Coefficient(u, x, 0), x)
elif PolynomialQ(u, x) and Exponent(u, x) == 1 and Coefficient(u, x, 0) == 0:
return SimpHelp(Coefficient(u, x, 1), x)*x
v = 0
w = 0
for i in u.args:
if FreeQ(i, x):
v = i + v
else:
w = i + w
v = SmartSimplify(v)
if SumQ(w):
w = Add(*[SimpHelp(i, x) for i in w.args])
else:
w = SimpHelp(w, x)
return v + w
return u.func(*[SimpHelp(i, x) for i in u.args])
def SplitProduct(func, u):
#(* If func[v] is True for a factor v of u, SplitProduct[func,u] returns {v, u/v} where v is the first such factor; else it returns False. *)
if ProductQ(u):
if func(First(u)):
return [First(u), Rest(u)]
lst = SplitProduct(func, Rest(u))
if AtomQ(lst):
return False
return [lst[0], First(u)*lst[1]]
if func(u):
return [u, 1]
return False
def SplitSum(func, u):
# (* If func[v] is nonatomic for a term v of u, SplitSum[func,u] returns {func[v], u-v} where v is the first such term; else it returns False. *)
if SumQ(u):
if Not(AtomQ(func(First(u)))):
return [func(First(u)), Rest(u)]
lst = SplitSum(func, Rest(u))
if AtomQ(lst):
return False
return [lst[0], First(u) + lst[1]]
elif Not(AtomQ(func(u))):
return [func(u), 0]
return False
def SubstFor(*args):
if len(args) == 4:
w, v, u, x = args
# u is a function of v. SubstFor(w,v,u,x) returns w times u with v replaced by x.
return SimplifyIntegrand(w*SubstFor(v, u, x), x)
v, u, x = args
# u is a function of v. SubstFor(v, u, x) returns u with v replaced by x.
if AtomQ(v):
return Subst(u, v, x)
elif Not(EqQ(FreeFactors(v, x), 1)):
return SubstFor(NonfreeFactors(v, x), u, x/FreeFactors(v, x))
elif SinQ(v):
return SubstForTrig(u, x, Sqrt(1 - x**2), v.args[0], x)
elif CosQ(v):
return SubstForTrig(u, Sqrt(1 - x**2), x, v.args[0], x)
elif TanQ(v):
return SubstForTrig(u, x/Sqrt(1 + x**2), 1/Sqrt(1 + x**2), v.args[0], x)
elif CotQ(v):
return SubstForTrig(u, 1/Sqrt(1 + x**2), x/Sqrt(1 + x**2), v.args[0], x)
elif SecQ(v):
return SubstForTrig(u, 1/Sqrt(1 - x**2), 1/x, v.args[0], x)
elif CscQ(v):
return SubstForTrig(u, 1/x, 1/Sqrt(1 - x**2), v.args[0], x)
elif SinhQ(v):
return SubstForHyperbolic(u, x, Sqrt(1 + x**2), v.args[0], x)
elif CoshQ(v):
return SubstForHyperbolic(u, Sqrt( - 1 + x**2), x, v.args[0], x)
elif TanhQ(v):
return SubstForHyperbolic(u, x/Sqrt(1 - x**2), 1/Sqrt(1 - x**2), v.args[0], x)
elif CothQ(v):
return SubstForHyperbolic(u, 1/Sqrt( - 1 + x**2), x/Sqrt( - 1 + x**2), v.args[0], x)
elif SechQ(v):
return SubstForHyperbolic(u, 1/Sqrt( - 1 + x**2), 1/x, v.args[0], x)
elif CschQ(v):
return SubstForHyperbolic(u, 1/x, 1/Sqrt(1 + x**2), v.args[0], x)
else:
return SubstForAux(u, v, x)
def SubstForAux(u, v, x):
# u is a function of v. SubstForAux(u, v, x) returns u with v replaced by x.
if u==v:
return x
elif AtomQ(u):
if PowerQ(v):
if FreeQ(v.exp, x) and ZeroQ(u - v.base):
return x**Simplify(1/v.exp)
return u
elif PowerQ(u):
if FreeQ(u.exp, x):
if ZeroQ(u.base - v):
return x**u.exp
if PowerQ(v):
if FreeQ(v.exp, x) and ZeroQ(u.base - v.base):
return x**Simplify(u.exp/v.exp)
return SubstForAux(u.base, v, x)**u.exp
elif ProductQ(u) and Not(EqQ(FreeFactors(u, x), 1)):
return FreeFactors(u, x)*SubstForAux(NonfreeFactors(u, x), v, x)
elif ProductQ(u) and ProductQ(v):
return SubstForAux(First(u), First(v), x)
return u.func(*[SubstForAux(i, v, x) for i in u.args])
def FresnelS(x):
return fresnels(x)
def FresnelC(x):
return fresnelc(x)
def Erf(x):
return erf(x)
def Erfc(x):
return erfc(x)
def Erfi(x):
return erfi(x)
class Gamma(Function):
@classmethod
def eval(cls,*args):
a = args[0]
if len(args) == 1:
return gamma(a)
else:
b = args[1]
if (NumericQ(a) and NumericQ(b)) or a == 1:
return uppergamma(a, b)
def FunctionOfTrigOfLinearQ(u, x):
# If u is an algebraic function of trig functions of a linear function of x,
# FunctionOfTrigOfLinearQ[u,x] returns True; else it returns False.
if FunctionOfTrig(u, None, x) and AlgebraicTrigFunctionQ(u, x) and FunctionOfLinear(FunctionOfTrig(u, None, x), x):
return True
else:
return False
def ElementaryFunctionQ(u):
# ElementaryExpressionQ[u] returns True if u is a sum, product, or power and all the operands
# are elementary expressions; or if u is a call on a trig, hyperbolic, or inverse function
# and all the arguments are elementary expressions; else it returns False.
if AtomQ(u):
return True
elif SumQ(u) or ProductQ(u) or PowerQ(u) or TrigQ(u) or HyperbolicQ(u) or InverseFunctionQ(u):
for i in u.args:
if not ElementaryFunctionQ(i):
return False
return True
return False
def Complex(a, b):
return a + I*b
def UnsameQ(a, b):
return a != b
@doctest_depends_on(modules=('matchpy',))
def _SimpFixFactor():
replacer = ManyToOneReplacer()
pattern1 = Pattern(UtilityOperator(Pow(Add(Mul(Complex(S(0), c_), WC('a', S(1))), Mul(Complex(S(0), d_), WC('b', S(1)))), WC('p', S(1))), x_), CustomConstraint(lambda p: IntegerQ(p)))
rule1 = ReplacementRule(pattern1, lambda b, c, x, a, p, d : Mul(Pow(I, p), SimpFixFactor(Pow(Add(Mul(a, c), Mul(b, d)), p), x)))
replacer.add(rule1)
pattern2 = Pattern(UtilityOperator(Pow(Add(Mul(Complex(S(0), d_), WC('a', S(1))), Mul(Complex(S(0), e_), WC('b', S(1))), Mul(Complex(S(0), f_), WC('c', S(1)))), WC('p', S(1))), x_), CustomConstraint(lambda p: IntegerQ(p)))
rule2 = ReplacementRule(pattern2, lambda b, c, x, f, a, p, e, d : Mul(Pow(I, p), SimpFixFactor(Pow(Add(Mul(a, d), Mul(b, e), Mul(c, f)), p), x)))
replacer.add(rule2)
pattern3 = Pattern(UtilityOperator(Pow(Add(Mul(WC('a', S(1)), Pow(c_, r_)), Mul(WC('b', S(1)), Pow(x_, WC('n', S(1))))), WC('p', S(1))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda n, p: IntegersQ(n, p)), CustomConstraint(lambda c: AtomQ(c)), CustomConstraint(lambda r: RationalQ(r)), CustomConstraint(lambda r: Less(r, S(0))))
rule3 = ReplacementRule(pattern3, lambda b, c, r, n, x, a, p : Mul(Pow(c, Mul(r, p)), SimpFixFactor(Pow(Add(a, Mul(Mul(b, Pow(Pow(c, r), S(-1))), Pow(x, n))), p), x)))
replacer.add(rule3)
pattern4 = Pattern(UtilityOperator(Pow(Add(WC('a', S(0)), Mul(WC('b', S(1)), Pow(c_, r_), Pow(x_, WC('n', S(1))))), WC('p', S(1))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda n, p: IntegersQ(n, p)), CustomConstraint(lambda c: AtomQ(c)), CustomConstraint(lambda r: RationalQ(r)), CustomConstraint(lambda r: Less(r, S(0))))
rule4 = ReplacementRule(pattern4, lambda b, c, r, n, x, a, p : Mul(Pow(c, Mul(r, p)), SimpFixFactor(Pow(Add(Mul(a, Pow(Pow(c, r), S(-1))), Mul(b, Pow(x, n))), p), x)))
replacer.add(rule4)
pattern5 = Pattern(UtilityOperator(Pow(Add(Mul(WC('a', S(1)), Pow(c_, WC('s', S(1)))), Mul(WC('b', S(1)), Pow(c_, WC('r', S(1))), Pow(x_, WC('n', S(1))))), WC('p', S(1))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda n, p: IntegersQ(n, p)), CustomConstraint(lambda r, s: RationalQ(s, r)), CustomConstraint(lambda r, s: Inequality(S(0), Less, s, LessEqual, r)), CustomConstraint(lambda p, c, s: UnsameQ(Pow(c, Mul(s, p)), S(-1))))
rule5 = ReplacementRule(pattern5, lambda b, c, r, n, x, a, p, s : Mul(Pow(c, Mul(s, p)), SimpFixFactor(Pow(Add(a, Mul(b, Pow(c, Add(r, Mul(S(-1), s))), Pow(x, n))), p), x)))
replacer.add(rule5)
pattern6 = Pattern(UtilityOperator(Pow(Add(Mul(WC('a', S(1)), Pow(c_, WC('s', S(1)))), Mul(WC('b', S(1)), Pow(c_, WC('r', S(1))), Pow(x_, WC('n', S(1))))), WC('p', S(1))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda n, p: IntegersQ(n, p)), CustomConstraint(lambda r, s: RationalQ(s, r)), CustomConstraint(lambda s, r: Less(S(0), r, s)), CustomConstraint(lambda p, c, r: UnsameQ(Pow(c, Mul(r, p)), S(-1))))
rule6 = ReplacementRule(pattern6, lambda b, c, r, n, x, a, p, s : Mul(Pow(c, Mul(r, p)), SimpFixFactor(Pow(Add(Mul(a, Pow(c, Add(s, Mul(S(-1), r)))), Mul(b, Pow(x, n))), p), x)))
replacer.add(rule6)
return replacer
@doctest_depends_on(modules=('matchpy',))
def SimpFixFactor(expr, x):
r = SimpFixFactor_replacer.replace(UtilityOperator(expr, x))
if isinstance(r, UtilityOperator):
return expr
return r
@doctest_depends_on(modules=('matchpy',))
def _FixSimplify():
Plus = Add
def cons_f1(n):
return OddQ(n)
cons1 = CustomConstraint(cons_f1)
def cons_f2(m):
return RationalQ(m)
cons2 = CustomConstraint(cons_f2)
def cons_f3(n):
return FractionQ(n)
cons3 = CustomConstraint(cons_f3)
def cons_f4(u):
return SqrtNumberSumQ(u)
cons4 = CustomConstraint(cons_f4)
def cons_f5(v):
return SqrtNumberSumQ(v)
cons5 = CustomConstraint(cons_f5)
def cons_f6(u):
return PositiveQ(u)
cons6 = CustomConstraint(cons_f6)
def cons_f7(v):
return PositiveQ(v)
cons7 = CustomConstraint(cons_f7)
def cons_f8(v):
return SqrtNumberSumQ(S(1)/v)
cons8 = CustomConstraint(cons_f8)
def cons_f9(m):
return IntegerQ(m)
cons9 = CustomConstraint(cons_f9)
def cons_f10(u):
return NegativeQ(u)
cons10 = CustomConstraint(cons_f10)
def cons_f11(n, m, a, b):
return RationalQ(a, b, m, n)
cons11 = CustomConstraint(cons_f11)
def cons_f12(a):
return Greater(a, S(0))
cons12 = CustomConstraint(cons_f12)
def cons_f13(b):
return Greater(b, S(0))
cons13 = CustomConstraint(cons_f13)
def cons_f14(p):
return PositiveIntegerQ(p)
cons14 = CustomConstraint(cons_f14)
def cons_f15(p):
return IntegerQ(p)
cons15 = CustomConstraint(cons_f15)
def cons_f16(p, n):
return Greater(-n + p, S(0))
cons16 = CustomConstraint(cons_f16)
def cons_f17(a, b):
return SameQ(a + b, S(0))
cons17 = CustomConstraint(cons_f17)
def cons_f18(n):
return Not(IntegerQ(n))
cons18 = CustomConstraint(cons_f18)
def cons_f19(c, a, b, d):
return ZeroQ(-a*d + b*c)
cons19 = CustomConstraint(cons_f19)
def cons_f20(a):
return Not(RationalQ(a))
cons20 = CustomConstraint(cons_f20)
def cons_f21(t):
return IntegerQ(t)
cons21 = CustomConstraint(cons_f21)
def cons_f22(n, m):
return RationalQ(m, n)
cons22 = CustomConstraint(cons_f22)
def cons_f23(n, m):
return Inequality(S(0), Less, m, LessEqual, n)
cons23 = CustomConstraint(cons_f23)
def cons_f24(p, n, m):
return RationalQ(m, n, p)
cons24 = CustomConstraint(cons_f24)
def cons_f25(p, n, m):
return Inequality(S(0), Less, m, LessEqual, n, LessEqual, p)
cons25 = CustomConstraint(cons_f25)
def cons_f26(p, n, m, q):
return Inequality(S(0), Less, m, LessEqual, n, LessEqual, p, LessEqual, q)
cons26 = CustomConstraint(cons_f26)
def cons_f27(w):
return Not(RationalQ(w))
cons27 = CustomConstraint(cons_f27)
def cons_f28(n):
return Less(n, S(0))
cons28 = CustomConstraint(cons_f28)
def cons_f29(n, w, v):
return ZeroQ(v + w**(-n))
cons29 = CustomConstraint(cons_f29)
def cons_f30(n):
return IntegerQ(n)
cons30 = CustomConstraint(cons_f30)
def cons_f31(w, v):
return ZeroQ(v + w)
cons31 = CustomConstraint(cons_f31)
def cons_f32(p, n):
return IntegerQ(n/p)
cons32 = CustomConstraint(cons_f32)
def cons_f33(w, v):
return ZeroQ(v - w)
cons33 = CustomConstraint(cons_f33)
def cons_f34(p, n):
return IntegersQ(n, n/p)
cons34 = CustomConstraint(cons_f34)
def cons_f35(a):
return AtomQ(a)
cons35 = CustomConstraint(cons_f35)
def cons_f36(b):
return AtomQ(b)
cons36 = CustomConstraint(cons_f36)
pattern1 = Pattern(UtilityOperator((w_ + Complex(S(0), b_)*WC('v', S(1)))**WC('n', S(1))*Complex(S(0), a_)*WC('u', S(1))), cons1)
def replacement1(n, u, w, v, a, b):
return (S(-1))**(n/S(2) + S(1)/2)*a*u*FixSimplify((b*v - w*Complex(S(0), S(1)))**n)
rule1 = ReplacementRule(pattern1, replacement1)
def With2(m, n, u, w, v):
z = u**(m/GCD(m, n))*v**(n/GCD(m, n))
if Or(AbsurdNumberQ(z), SqrtNumberSumQ(z)):
return True
return False
pattern2 = Pattern(UtilityOperator(u_**WC('m', S(1))*v_**n_*WC('w', S(1))), cons2, cons3, cons4, cons5, cons6, cons7, CustomConstraint(With2))
def replacement2(m, n, u, w, v):
z = u**(m/GCD(m, n))*v**(n/GCD(m, n))
return FixSimplify(w*z**GCD(m, n))
rule2 = ReplacementRule(pattern2, replacement2)
def With3(m, n, u, w, v):
z = u**(m/GCD(m, -n))*v**(n/GCD(m, -n))
if Or(AbsurdNumberQ(z), SqrtNumberSumQ(z)):
return True
return False
pattern3 = Pattern(UtilityOperator(u_**WC('m', S(1))*v_**n_*WC('w', S(1))), cons2, cons3, cons4, cons8, cons6, cons7, CustomConstraint(With3))
def replacement3(m, n, u, w, v):
z = u**(m/GCD(m, -n))*v**(n/GCD(m, -n))
return FixSimplify(w*z**GCD(m, -n))
rule3 = ReplacementRule(pattern3, replacement3)
def With4(m, n, u, w, v):
z = v**(n/GCD(m, n))*(-u)**(m/GCD(m, n))
if Or(AbsurdNumberQ(z), SqrtNumberSumQ(z)):
return True
return False
pattern4 = Pattern(UtilityOperator(u_**WC('m', S(1))*v_**n_*WC('w', S(1))), cons9, cons3, cons4, cons5, cons10, cons7, CustomConstraint(With4))
def replacement4(m, n, u, w, v):
z = v**(n/GCD(m, n))*(-u)**(m/GCD(m, n))
return FixSimplify(-w*z**GCD(m, n))
rule4 = ReplacementRule(pattern4, replacement4)
def With5(m, n, u, w, v):
z = v**(n/GCD(m, -n))*(-u)**(m/GCD(m, -n))
if Or(AbsurdNumberQ(z), SqrtNumberSumQ(z)):
return True
return False
pattern5 = Pattern(UtilityOperator(u_**WC('m', S(1))*v_**n_*WC('w', S(1))), cons9, cons3, cons4, cons8, cons10, cons7, CustomConstraint(With5))
def replacement5(m, n, u, w, v):
z = v**(n/GCD(m, -n))*(-u)**(m/GCD(m, -n))
return FixSimplify(-w*z**GCD(m, -n))
rule5 = ReplacementRule(pattern5, replacement5)
def With6(p, m, n, u, w, v, a, b):
c = a**(m/p)*b**n
if RationalQ(c):
return True
return False
pattern6 = Pattern(UtilityOperator(a_**m_*(b_**n_*WC('v', S(1)) + u_)**WC('p', S(1))*WC('w', S(1))), cons11, cons12, cons13, cons14, CustomConstraint(With6))
def replacement6(p, m, n, u, w, v, a, b):
c = a**(m/p)*b**n
return FixSimplify(w*(a**(m/p)*u + c*v)**p)
rule6 = ReplacementRule(pattern6, replacement6)
pattern7 = Pattern(UtilityOperator(a_**WC('m', S(1))*(a_**n_*WC('u', S(1)) + b_**WC('p', S(1))*WC('v', S(1)))*WC('w', S(1))), cons2, cons3, cons15, cons16, cons17)
def replacement7(p, m, n, u, w, v, a, b):
return FixSimplify(a**(m + n)*w*((S(-1))**p*a**(-n + p)*v + u))
rule7 = ReplacementRule(pattern7, replacement7)
def With8(m, d, n, w, c, a, b):
q = b/d
if FreeQ(q, Plus):
return True
return False
pattern8 = Pattern(UtilityOperator((a_ + b_)**WC('m', S(1))*(c_ + d_)**n_*WC('w', S(1))), cons9, cons18, cons19, CustomConstraint(With8))
def replacement8(m, d, n, w, c, a, b):
q = b/d
return FixSimplify(q**m*w*(c + d)**(m + n))
rule8 = ReplacementRule(pattern8, replacement8)
pattern9 = Pattern(UtilityOperator((a_**WC('m', S(1))*WC('u', S(1)) + a_**WC('n', S(1))*WC('v', S(1)))**WC('t', S(1))*WC('w', S(1))), cons20, cons21, cons22, cons23)
def replacement9(m, n, u, w, v, a, t):
return FixSimplify(a**(m*t)*w*(a**(-m + n)*v + u)**t)
rule9 = ReplacementRule(pattern9, replacement9)
pattern10 = Pattern(UtilityOperator((a_**WC('m', S(1))*WC('u', S(1)) + a_**WC('n', S(1))*WC('v', S(1)) + a_**WC('p', S(1))*WC('z', S(1)))**WC('t', S(1))*WC('w', S(1))), cons20, cons21, cons24, cons25)
def replacement10(p, m, n, u, w, v, a, z, t):
return FixSimplify(a**(m*t)*w*(a**(-m + n)*v + a**(-m + p)*z + u)**t)
rule10 = ReplacementRule(pattern10, replacement10)
pattern11 = Pattern(UtilityOperator((a_**WC('m', S(1))*WC('u', S(1)) + a_**WC('n', S(1))*WC('v', S(1)) + a_**WC('p', S(1))*WC('z', S(1)) + a_**WC('q', S(1))*WC('y', S(1)))**WC('t', S(1))*WC('w', S(1))), cons20, cons21, cons24, cons26)
def replacement11(p, m, n, u, q, w, v, a, z, y, t):
return FixSimplify(a**(m*t)*w*(a**(-m + n)*v + a**(-m + p)*z + a**(-m + q)*y + u)**t)
rule11 = ReplacementRule(pattern11, replacement11)
pattern12 = Pattern(UtilityOperator((sqrt(v_)*WC('b', S(1)) + sqrt(v_)*WC('c', S(1)) + sqrt(v_)*WC('d', S(1)) + sqrt(v_)*WC('a', S(1)) + WC('u', S(0)))*WC('w', S(1))))
def replacement12(d, u, w, v, c, a, b):
return FixSimplify(w*(u + sqrt(v)*FixSimplify(a + b + c + d)))
rule12 = ReplacementRule(pattern12, replacement12)
pattern13 = Pattern(UtilityOperator((sqrt(v_)*WC('b', S(1)) + sqrt(v_)*WC('c', S(1)) + sqrt(v_)*WC('a', S(1)) + WC('u', S(0)))*WC('w', S(1))))
def replacement13(u, w, v, c, a, b):
return FixSimplify(w*(u + sqrt(v)*FixSimplify(a + b + c)))
rule13 = ReplacementRule(pattern13, replacement13)
pattern14 = Pattern(UtilityOperator((sqrt(v_)*WC('b', S(1)) + sqrt(v_)*WC('a', S(1)) + WC('u', S(0)))*WC('w', S(1))))
def replacement14(u, w, v, a, b):
return FixSimplify(w*(u + sqrt(v)*FixSimplify(a + b)))
rule14 = ReplacementRule(pattern14, replacement14)
pattern15 = Pattern(UtilityOperator(v_**m_*w_**n_*WC('u', S(1))), cons2, cons27, cons3, cons28, cons29)
def replacement15(m, n, u, w, v):
return -FixSimplify(u*v**(m + S(-1)))
rule15 = ReplacementRule(pattern15, replacement15)
pattern16 = Pattern(UtilityOperator(v_**m_*w_**WC('n', S(1))*WC('u', S(1))), cons2, cons27, cons30, cons31)
def replacement16(m, n, u, w, v):
return (S(-1))**n*FixSimplify(u*v**(m + n))
rule16 = ReplacementRule(pattern16, replacement16)
pattern17 = Pattern(UtilityOperator(w_**WC('n', S(1))*(-v_**WC('p', S(1)))**m_*WC('u', S(1))), cons2, cons27, cons32, cons33)
def replacement17(p, m, n, u, w, v):
return (S(-1))**(n/p)*FixSimplify(u*(-v**p)**(m + n/p))
rule17 = ReplacementRule(pattern17, replacement17)
pattern18 = Pattern(UtilityOperator(w_**WC('n', S(1))*(-v_**WC('p', S(1)))**m_*WC('u', S(1))), cons2, cons27, cons34, cons31)
def replacement18(p, m, n, u, w, v):
return (S(-1))**(n + n/p)*FixSimplify(u*(-v**p)**(m + n/p))
rule18 = ReplacementRule(pattern18, replacement18)
pattern19 = Pattern(UtilityOperator((a_ - b_)**WC('m', S(1))*(a_ + b_)**WC('m', S(1))*WC('u', S(1))), cons9, cons35, cons36)
def replacement19(m, u, a, b):
return u*(a**S(2) - b**S(2))**m
rule19 = ReplacementRule(pattern19, replacement19)
pattern20 = Pattern(UtilityOperator((S(729)*c - e*(-S(20)*e + S(540)))**WC('m', S(1))*WC('u', S(1))), cons2)
def replacement20(m, u):
return u*(a*e**S(2) - b*d*e + c*d**S(2))**m
rule20 = ReplacementRule(pattern20, replacement20)
pattern21 = Pattern(UtilityOperator((S(729)*c + e*(S(20)*e + S(-540)))**WC('m', S(1))*WC('u', S(1))), cons2)
def replacement21(m, u):
return u*(a*e**S(2) - b*d*e + c*d**S(2))**m
rule21 = ReplacementRule(pattern21, replacement21)
pattern22 = Pattern(UtilityOperator(u_))
def replacement22(u):
return u
rule22 = ReplacementRule(pattern22, replacement22)
return [rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9, rule10, rule11, rule12, rule13, rule14, rule15, rule16, rule17, rule18, rule19, rule20, rule21, rule22, ]
@doctest_depends_on(modules=('matchpy',))
def FixSimplify(expr):
if isinstance(expr, (list, tuple, TupleArg)):
return [replace_all(UtilityOperator(i), FixSimplify_rules) for i in expr]
return replace_all(UtilityOperator(expr), FixSimplify_rules)
@doctest_depends_on(modules=('matchpy',))
def _SimplifyAntiderivativeSum():
replacer = ManyToOneReplacer()
pattern1 = Pattern(UtilityOperator(Add(Mul(Log(Add(a_, Mul(WC('b', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('A', S(1))), Mul(Log(Cos(u_)), WC('B', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A, n: ZeroQ(Add(Mul(n, A), Mul(S(1), B)))))
rule1 = ReplacementRule(pattern1, lambda n, x, v, b, B, A, u, a : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(a, Pow(Cos(u), n)), Mul(b, Pow(Sin(u), n))), x)))))
replacer.add(rule1)
pattern2 = Pattern(UtilityOperator(Add(Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('b', S(1))), a_)), WC('A', S(1))), Mul(Log(Sin(u_)), WC('B', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A, n: ZeroQ(Add(Mul(n, A), Mul(S(1), B)))))
rule2 = ReplacementRule(pattern2, lambda n, x, v, b, B, A, a, u : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(a, Pow(Sin(u), n)), Mul(b, Pow(Cos(u), n))), x)))))
replacer.add(rule2)
pattern3 = Pattern(UtilityOperator(Add(Mul(Log(Add(a_, Mul(WC('b', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('A', S(1))), Mul(Log(Add(c_, Mul(WC('d', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('B', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda d, x: FreeQ(d, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A: ZeroQ(Add(A, B))))
rule3 = ReplacementRule(pattern3, lambda n, x, v, b, A, B, u, c, d, a : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(a, Pow(Cos(u), n)), Mul(b, Pow(Sin(u), n))), x))), Mul(B, Log(RemoveContent(Add(Mul(c, Pow(Cos(u), n)), Mul(d, Pow(Sin(u), n))), x)))))
replacer.add(rule3)
pattern4 = Pattern(UtilityOperator(Add(Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('b', S(1))), a_)), WC('A', S(1))), Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('d', S(1))), c_)), WC('B', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda d, x: FreeQ(d, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A: ZeroQ(Add(A, B))))
rule4 = ReplacementRule(pattern4, lambda n, x, v, b, A, B, c, a, d, u : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(b, Pow(Cos(u), n)), Mul(a, Pow(Sin(u), n))), x))), Mul(B, Log(RemoveContent(Add(Mul(d, Pow(Cos(u), n)), Mul(c, Pow(Sin(u), n))), x)))))
replacer.add(rule4)
pattern5 = Pattern(UtilityOperator(Add(Mul(Log(Add(a_, Mul(WC('b', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('A', S(1))), Mul(Log(Add(c_, Mul(WC('d', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('B', S(1))), Mul(Log(Add(e_, Mul(WC('f', S(1)), Pow(Tan(u_), WC('n', S(1)))))), WC('C', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda d, x: FreeQ(d, x)), CustomConstraint(lambda e, x: FreeQ(e, x)), CustomConstraint(lambda f, x: FreeQ(f, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda C, x: FreeQ(C, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A, C: ZeroQ(Add(A, B, C))))
rule5 = ReplacementRule(pattern5, lambda n, e, x, v, b, A, B, u, c, f, d, a, C : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(a, Pow(Cos(u), n)), Mul(b, Pow(Sin(u), n))), x))), Mul(B, Log(RemoveContent(Add(Mul(c, Pow(Cos(u), n)), Mul(d, Pow(Sin(u), n))), x))), Mul(C, Log(RemoveContent(Add(Mul(e, Pow(Cos(u), n)), Mul(f, Pow(Sin(u), n))), x)))))
replacer.add(rule5)
pattern6 = Pattern(UtilityOperator(Add(Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('b', S(1))), a_)), WC('A', S(1))), Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('d', S(1))), c_)), WC('B', S(1))), Mul(Log(Add(Mul(Pow(Cot(u_), WC('n', S(1))), WC('f', S(1))), e_)), WC('C', S(1))), WC('v', S(0))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda d, x: FreeQ(d, x)), CustomConstraint(lambda e, x: FreeQ(e, x)), CustomConstraint(lambda f, x: FreeQ(f, x)), CustomConstraint(lambda A, x: FreeQ(A, x)), CustomConstraint(lambda B, x: FreeQ(B, x)), CustomConstraint(lambda C, x: FreeQ(C, x)), CustomConstraint(lambda n: IntegerQ(n)), CustomConstraint(lambda B, A, C: ZeroQ(Add(A, B, C))))
rule6 = ReplacementRule(pattern6, lambda n, e, x, v, b, A, B, c, a, f, d, u, C : Add(SimplifyAntiderivativeSum(v, x), Mul(A, Log(RemoveContent(Add(Mul(b, Pow(Cos(u), n)), Mul(a, Pow(Sin(u), n))), x))), Mul(B, Log(RemoveContent(Add(Mul(d, Pow(Cos(u), n)), Mul(c, Pow(Sin(u), n))), x))), Mul(C, Log(RemoveContent(Add(Mul(f, Pow(Cos(u), n)), Mul(e, Pow(Sin(u), n))), x)))))
replacer.add(rule6)
return replacer
@doctest_depends_on(modules=('matchpy',))
def SimplifyAntiderivativeSum(expr, x):
r = SimplifyAntiderivativeSum_replacer.replace(UtilityOperator(expr, x))
if isinstance(r, UtilityOperator):
return expr
return r
@doctest_depends_on(modules=('matchpy',))
def _SimplifyAntiderivative():
replacer = ManyToOneReplacer()
pattern2 = Pattern(UtilityOperator(Log(Mul(c_, u_)), x_), CustomConstraint(lambda c, x: FreeQ(c, x)))
rule2 = ReplacementRule(pattern2, lambda x, c, u : SimplifyAntiderivative(Log(u), x))
replacer.add(rule2)
pattern3 = Pattern(UtilityOperator(Log(Pow(u_, n_)), x_), CustomConstraint(lambda n, x: FreeQ(n, x)))
rule3 = ReplacementRule(pattern3, lambda x, n, u : Mul(n, SimplifyAntiderivative(Log(u), x)))
replacer.add(rule3)
pattern7 = Pattern(UtilityOperator(Log(Pow(f_, u_)), x_), CustomConstraint(lambda f, x: FreeQ(f, x)))
rule7 = ReplacementRule(pattern7, lambda x, f, u : Mul(Log(f), SimplifyAntiderivative(u, x)))
replacer.add(rule7)
pattern8 = Pattern(UtilityOperator(Log(Add(a_, Mul(WC('b', S(1)), Tan(u_)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda b, a: ZeroQ(Add(Pow(a, S(2)), Pow(b, S(2))))))
rule8 = ReplacementRule(pattern8, lambda x, b, u, a : Add(Mul(Mul(b, Pow(a, S(1))), SimplifyAntiderivative(u, x)), Mul(S(1), SimplifyAntiderivative(Log(Cos(u)), x))))
replacer.add(rule8)
pattern9 = Pattern(UtilityOperator(Log(Add(Mul(Cot(u_), WC('b', S(1))), a_)), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda b, a: ZeroQ(Add(Pow(a, S(2)), Pow(b, S(2))))))
rule9 = ReplacementRule(pattern9, lambda x, b, u, a : Add(Mul(Mul(Mul(S(1), b), Pow(a, S(1))), SimplifyAntiderivative(u, x)), Mul(S(1), SimplifyAntiderivative(Log(Sin(u)), x))))
replacer.add(rule9)
pattern10 = Pattern(UtilityOperator(ArcTan(Mul(WC('a', S(1)), Tan(u_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule10 = ReplacementRule(pattern10, lambda x, u, a : RectifyTangent(u, a, S(1), x))
replacer.add(rule10)
pattern11 = Pattern(UtilityOperator(ArcCot(Mul(WC('a', S(1)), Tan(u_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule11 = ReplacementRule(pattern11, lambda x, u, a : RectifyTangent(u, a, S(1), x))
replacer.add(rule11)
pattern12 = Pattern(UtilityOperator(ArcCot(Mul(WC('a', S(1)), Tanh(u_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule12 = ReplacementRule(pattern12, lambda x, u, a : Mul(S(1), SimplifyAntiderivative(ArcTan(Mul(a, Tanh(u))), x)))
replacer.add(rule12)
pattern13 = Pattern(UtilityOperator(ArcTanh(Mul(WC('a', S(1)), Tan(u_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule13 = ReplacementRule(pattern13, lambda x, u, a : RectifyTangent(u, Mul(I, a), Mul(S(1), I), x))
replacer.add(rule13)
pattern14 = Pattern(UtilityOperator(ArcCoth(Mul(WC('a', S(1)), Tan(u_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule14 = ReplacementRule(pattern14, lambda x, u, a : RectifyTangent(u, Mul(I, a), Mul(S(1), I), x))
replacer.add(rule14)
pattern15 = Pattern(UtilityOperator(ArcTanh(Tanh(u_)), x_))
rule15 = ReplacementRule(pattern15, lambda x, u : SimplifyAntiderivative(u, x))
replacer.add(rule15)
pattern16 = Pattern(UtilityOperator(ArcCoth(Tanh(u_)), x_))
rule16 = ReplacementRule(pattern16, lambda x, u : SimplifyAntiderivative(u, x))
replacer.add(rule16)
pattern17 = Pattern(UtilityOperator(ArcCot(Mul(Cot(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule17 = ReplacementRule(pattern17, lambda x, u, a : RectifyCotangent(u, a, S(1), x))
replacer.add(rule17)
pattern18 = Pattern(UtilityOperator(ArcTan(Mul(Cot(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule18 = ReplacementRule(pattern18, lambda x, u, a : RectifyCotangent(u, a, S(1), x))
replacer.add(rule18)
pattern19 = Pattern(UtilityOperator(ArcTan(Mul(Coth(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule19 = ReplacementRule(pattern19, lambda x, u, a : Mul(S(1), SimplifyAntiderivative(ArcTan(Mul(Tanh(u), Pow(a, S(1)))), x)))
replacer.add(rule19)
pattern20 = Pattern(UtilityOperator(ArcCoth(Mul(Cot(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule20 = ReplacementRule(pattern20, lambda x, u, a : RectifyCotangent(u, Mul(I, a), I, x))
replacer.add(rule20)
pattern21 = Pattern(UtilityOperator(ArcTanh(Mul(Cot(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda a: PositiveQ(Pow(a, S(2)))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule21 = ReplacementRule(pattern21, lambda x, u, a : RectifyCotangent(u, Mul(I, a), I, x))
replacer.add(rule21)
pattern22 = Pattern(UtilityOperator(ArcCoth(Coth(u_)), x_))
rule22 = ReplacementRule(pattern22, lambda x, u : SimplifyAntiderivative(u, x))
replacer.add(rule22)
pattern23 = Pattern(UtilityOperator(ArcTanh(Mul(Coth(u_), WC('a', S(1)))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule23 = ReplacementRule(pattern23, lambda x, u, a : SimplifyAntiderivative(ArcTanh(Mul(Tanh(u), Pow(a, S(1)))), x))
replacer.add(rule23)
pattern24 = Pattern(UtilityOperator(ArcTanh(Coth(u_)), x_))
rule24 = ReplacementRule(pattern24, lambda x, u : SimplifyAntiderivative(u, x))
replacer.add(rule24)
pattern25 = Pattern(UtilityOperator(ArcTan(Mul(WC('c', S(1)), Add(a_, Mul(WC('b', S(1)), Tan(u_))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda c, a: PositiveQ(Mul(Pow(a, S(2)), Pow(c, S(2))))), CustomConstraint(lambda c, b: PositiveQ(Mul(Pow(b, S(2)), Pow(c, S(2))))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule25 = ReplacementRule(pattern25, lambda x, a, b, u, c : RectifyTangent(u, Mul(a, c), Mul(b, c), S(1), x))
replacer.add(rule25)
pattern26 = Pattern(UtilityOperator(ArcTanh(Mul(WC('c', S(1)), Add(a_, Mul(WC('b', S(1)), Tan(u_))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda c, a: PositiveQ(Mul(Pow(a, S(2)), Pow(c, S(2))))), CustomConstraint(lambda c, b: PositiveQ(Mul(Pow(b, S(2)), Pow(c, S(2))))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule26 = ReplacementRule(pattern26, lambda x, a, b, u, c : RectifyTangent(u, Mul(I, a, c), Mul(I, b, c), Mul(S(1), I), x))
replacer.add(rule26)
pattern27 = Pattern(UtilityOperator(ArcTan(Mul(WC('c', S(1)), Add(Mul(Cot(u_), WC('b', S(1))), a_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda c, a: PositiveQ(Mul(Pow(a, S(2)), Pow(c, S(2))))), CustomConstraint(lambda c, b: PositiveQ(Mul(Pow(b, S(2)), Pow(c, S(2))))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule27 = ReplacementRule(pattern27, lambda x, a, b, u, c : RectifyCotangent(u, Mul(a, c), Mul(b, c), S(1), x))
replacer.add(rule27)
pattern28 = Pattern(UtilityOperator(ArcTanh(Mul(WC('c', S(1)), Add(Mul(Cot(u_), WC('b', S(1))), a_))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda c, a: PositiveQ(Mul(Pow(a, S(2)), Pow(c, S(2))))), CustomConstraint(lambda c, b: PositiveQ(Mul(Pow(b, S(2)), Pow(c, S(2))))), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule28 = ReplacementRule(pattern28, lambda x, a, b, u, c : RectifyCotangent(u, Mul(I, a, c), Mul(I, b, c), Mul(S(1), I), x))
replacer.add(rule28)
pattern29 = Pattern(UtilityOperator(ArcTan(Add(WC('a', S(0)), Mul(WC('b', S(1)), Tan(u_)), Mul(WC('c', S(1)), Pow(Tan(u_), S(2))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule29 = ReplacementRule(pattern29, lambda x, a, b, u, c : If(EvenQ(Denominator(NumericFactor(Together(u)))), ArcTan(NormalizeTogether(Mul(Add(a, c, S(1), Mul(Add(a, Mul(S(1), c), S(1)), Cos(Mul(S(2), u))), Mul(b, Sin(Mul(S(2), u)))), Pow(Add(a, c, S(1), Mul(Add(a, Mul(S(1), c), S(1)), Cos(Mul(S(2), u))), Mul(b, Sin(Mul(S(2), u)))), S(1))))), ArcTan(NormalizeTogether(Mul(Add(c, Mul(Add(a, Mul(S(1), c), S(1)), Pow(Cos(u), S(2))), Mul(b, Cos(u), Sin(u))), Pow(Add(c, Mul(Add(a, Mul(S(1), c), S(1)), Pow(Cos(u), S(2))), Mul(b, Cos(u), Sin(u))), S(1)))))))
replacer.add(rule29)
pattern30 = Pattern(UtilityOperator(ArcTan(Add(WC('a', S(0)), Mul(WC('b', S(1)), Add(WC('d', S(0)), Mul(WC('e', S(1)), Tan(u_)))), Mul(WC('c', S(1)), Pow(Add(WC('f', S(0)), Mul(WC('g', S(1)), Tan(u_))), S(2))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda b, x: FreeQ(b, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule30 = ReplacementRule(pattern30, lambda x, d, a, e, f, b, u, c, g : SimplifyAntiderivative(ArcTan(Add(a, Mul(b, d), Mul(c, Pow(f, S(2))), Mul(Add(Mul(b, e), Mul(S(2), c, f, g)), Tan(u)), Mul(c, Pow(g, S(2)), Pow(Tan(u), S(2))))), x))
replacer.add(rule30)
pattern31 = Pattern(UtilityOperator(ArcTan(Add(WC('a', S(0)), Mul(WC('c', S(1)), Pow(Tan(u_), S(2))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule31 = ReplacementRule(pattern31, lambda x, c, u, a : If(EvenQ(Denominator(NumericFactor(Together(u)))), ArcTan(NormalizeTogether(Mul(Add(a, c, S(1), Mul(Add(a, Mul(S(1), c), S(1)), Cos(Mul(S(2), u)))), Pow(Add(a, c, S(1), Mul(Add(a, Mul(S(1), c), S(1)), Cos(Mul(S(2), u)))), S(1))))), ArcTan(NormalizeTogether(Mul(Add(c, Mul(Add(a, Mul(S(1), c), S(1)), Pow(Cos(u), S(2)))), Pow(Add(c, Mul(Add(a, Mul(S(1), c), S(1)), Pow(Cos(u), S(2)))), S(1)))))))
replacer.add(rule31)
pattern32 = Pattern(UtilityOperator(ArcTan(Add(WC('a', S(0)), Mul(WC('c', S(1)), Pow(Add(WC('f', S(0)), Mul(WC('g', S(1)), Tan(u_))), S(2))))), x_), CustomConstraint(lambda a, x: FreeQ(a, x)), CustomConstraint(lambda c, x: FreeQ(c, x)), CustomConstraint(lambda u: ComplexFreeQ(u)))
rule32 = ReplacementRule(pattern32, lambda x, a, f, u, c, g : SimplifyAntiderivative(ArcTan(Add(a, Mul(c, Pow(f, S(2))), Mul(Mul(S(2), c, f, g), Tan(u)), Mul(c, Pow(g, S(2)), Pow(Tan(u), S(2))))), x))
replacer.add(rule32)
return replacer
@doctest_depends_on(modules=('matchpy',))
def SimplifyAntiderivative(expr, x):
r = SimplifyAntiderivative_replacer.replace(UtilityOperator(expr, x))
if isinstance(r, UtilityOperator):
if ProductQ(expr):
u, c = S(1), S(1)
for i in expr.args:
if FreeQ(i, x):
c *= i
else:
u *= i
if FreeQ(c, x) and c != S(1):
v = SimplifyAntiderivative(u, x)
if SumQ(v) and NonsumQ(u):
return Add(*[c*i for i in v.args])
return c*v
elif LogQ(expr):
F = expr.args[0]
if MemberQ([cot, sec, csc, coth, sech, csch], Head(F)):
return -SimplifyAntiderivative(Log(1/F), x)
if MemberQ([Log, atan, acot], Head(expr)):
F = Head(expr)
G = expr.args[0]
if MemberQ([cot, sec, csc, coth, sech, csch], Head(G)):
return -SimplifyAntiderivative(F(1/G), x)
if MemberQ([atanh, acoth], Head(expr)):
F = Head(expr)
G = expr.args[0]
if MemberQ([cot, sec, csc, coth, sech, csch], Head(G)):
return SimplifyAntiderivative(F(1/G), x)
u = expr
if FreeQ(u, x):
return S(0)
elif LogQ(u):
return Log(RemoveContent(u.args[0], x))
elif SumQ(u):
return SimplifyAntiderivativeSum(Add(*[SimplifyAntiderivative(i, x) for i in u.args]), x)
return u
else:
return r
@doctest_depends_on(modules=('matchpy',))
def _TrigSimplifyAux():
replacer = ManyToOneReplacer()
pattern1 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(WC('a', S(1)), Pow(v_, WC('m', S(1)))), Mul(WC('b', S(1)), Pow(v_, WC('n', S(1))))), p_))), CustomConstraint(lambda v: InertTrigQ(v)), CustomConstraint(lambda p: IntegerQ(p)), CustomConstraint(lambda n, m: RationalQ(m, n)), CustomConstraint(lambda n, m: Less(m, n)))
rule1 = ReplacementRule(pattern1, lambda n, a, p, m, u, v, b : Mul(u, Pow(v, Mul(m, p)), Pow(TrigSimplifyAux(Add(a, Mul(b, Pow(v, Add(n, Mul(S(-1), m)))))), p)))
replacer.add(rule1)
pattern2 = Pattern(UtilityOperator(Add(Mul(Pow(cos(u_), S('2')), WC('a', S(1))), WC('v', S(0)), Mul(WC('b', S(1)), Pow(sin(u_), S('2'))))), CustomConstraint(lambda b, a: SameQ(a, b)))
rule2 = ReplacementRule(pattern2, lambda u, v, b, a : Add(a, v))
replacer.add(rule2)
pattern3 = Pattern(UtilityOperator(Add(WC('v', S(0)), Mul(WC('a', S(1)), Pow(sec(u_), S('2'))), Mul(WC('b', S(1)), Pow(tan(u_), S('2'))))), CustomConstraint(lambda b, a: SameQ(a, Mul(S(-1), b))))
rule3 = ReplacementRule(pattern3, lambda u, v, b, a : Add(a, v))
replacer.add(rule3)
pattern4 = Pattern(UtilityOperator(Add(Mul(Pow(csc(u_), S('2')), WC('a', S(1))), Mul(Pow(cot(u_), S('2')), WC('b', S(1))), WC('v', S(0)))), CustomConstraint(lambda b, a: SameQ(a, Mul(S(-1), b))))
rule4 = ReplacementRule(pattern4, lambda u, v, b, a : Add(a, v))
replacer.add(rule4)
pattern5 = Pattern(UtilityOperator(Pow(Add(Mul(Pow(cos(u_), S('2')), WC('a', S(1))), WC('v', S(0)), Mul(WC('b', S(1)), Pow(sin(u_), S('2')))), n_)))
rule5 = ReplacementRule(pattern5, lambda n, a, u, v, b : Pow(Add(Mul(Add(b, Mul(S(-1), a)), Pow(Sin(u), S('2'))), a, v), n))
replacer.add(rule5)
pattern6 = Pattern(UtilityOperator(Add(WC('w', S(0)), u_, Mul(WC('v', S(1)), Pow(sin(z_), S('2'))))), CustomConstraint(lambda u, v: SameQ(u, Mul(S(-1), v))))
rule6 = ReplacementRule(pattern6, lambda u, w, z, v : Add(Mul(u, Pow(Cos(z), S('2'))), w))
replacer.add(rule6)
pattern7 = Pattern(UtilityOperator(Add(Mul(Pow(cos(z_), S('2')), WC('v', S(1))), WC('w', S(0)), u_)), CustomConstraint(lambda u, v: SameQ(u, Mul(S(-1), v))))
rule7 = ReplacementRule(pattern7, lambda z, w, v, u : Add(Mul(u, Pow(Sin(z), S('2'))), w))
replacer.add(rule7)
pattern8 = Pattern(UtilityOperator(Add(WC('w', S(0)), u_, Mul(WC('v', S(1)), Pow(tan(z_), S('2'))))), CustomConstraint(lambda u, v: SameQ(u, v)))
rule8 = ReplacementRule(pattern8, lambda u, w, z, v : Add(Mul(u, Pow(Sec(z), S('2'))), w))
replacer.add(rule8)
pattern9 = Pattern(UtilityOperator(Add(Mul(Pow(cot(z_), S('2')), WC('v', S(1))), WC('w', S(0)), u_)), CustomConstraint(lambda u, v: SameQ(u, v)))
rule9 = ReplacementRule(pattern9, lambda z, w, v, u : Add(Mul(u, Pow(Csc(z), S('2'))), w))
replacer.add(rule9)
pattern10 = Pattern(UtilityOperator(Add(WC('w', S(0)), u_, Mul(WC('v', S(1)), Pow(sec(z_), S('2'))))), CustomConstraint(lambda u, v: SameQ(u, Mul(S(-1), v))))
rule10 = ReplacementRule(pattern10, lambda u, w, z, v : Add(Mul(v, Pow(Tan(z), S('2'))), w))
replacer.add(rule10)
pattern11 = Pattern(UtilityOperator(Add(Mul(Pow(csc(z_), S('2')), WC('v', S(1))), WC('w', S(0)), u_)), CustomConstraint(lambda u, v: SameQ(u, Mul(S(-1), v))))
rule11 = ReplacementRule(pattern11, lambda z, w, v, u : Add(Mul(v, Pow(Cot(z), S('2'))), w))
replacer.add(rule11)
pattern12 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(cos(v_), WC('b', S(1))), a_), S(-1)), Pow(sin(v_), S('2')))), CustomConstraint(lambda b, a: ZeroQ(Add(Pow(a, S('2')), Mul(S(-1), Pow(b, S('2')))))))
rule12 = ReplacementRule(pattern12, lambda u, v, b, a : Mul(u, Add(Mul(S(1), Pow(a, S(-1))), Mul(S(-1), Mul(Cos(v), Pow(b, S(-1)))))))
replacer.add(rule12)
pattern13 = Pattern(UtilityOperator(Mul(Pow(cos(v_), S('2')), WC('u', S(1)), Pow(Add(a_, Mul(WC('b', S(1)), sin(v_))), S(-1)))), CustomConstraint(lambda b, a: ZeroQ(Add(Pow(a, S('2')), Mul(S(-1), Pow(b, S('2')))))))
rule13 = ReplacementRule(pattern13, lambda u, v, b, a : Mul(u, Add(Mul(S(1), Pow(a, S(-1))), Mul(S(-1), Mul(Sin(v), Pow(b, S(-1)))))))
replacer.add(rule13)
pattern14 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(tan(v_), WC('n', S(1))), Pow(Add(a_, Mul(WC('b', S(1)), Pow(tan(v_), WC('n', S(1))))), S(-1)))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule14 = ReplacementRule(pattern14, lambda n, a, u, v, b : Mul(u, Pow(Add(b, Mul(a, Pow(Cot(v), n))), S(-1))))
replacer.add(rule14)
pattern15 = Pattern(UtilityOperator(Mul(Pow(cot(v_), WC('n', S(1))), WC('u', S(1)), Pow(Add(Mul(Pow(cot(v_), WC('n', S(1))), WC('b', S(1))), a_), S(-1)))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule15 = ReplacementRule(pattern15, lambda n, a, u, v, b : Mul(u, Pow(Add(b, Mul(a, Pow(Tan(v), n))), S(-1))))
replacer.add(rule15)
pattern16 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(sec(v_), WC('n', S(1))), Pow(Add(a_, Mul(WC('b', S(1)), Pow(sec(v_), WC('n', S(1))))), S(-1)))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule16 = ReplacementRule(pattern16, lambda n, a, u, v, b : Mul(u, Pow(Add(b, Mul(a, Pow(Cos(v), n))), S(-1))))
replacer.add(rule16)
pattern17 = Pattern(UtilityOperator(Mul(Pow(csc(v_), WC('n', S(1))), WC('u', S(1)), Pow(Add(Mul(Pow(csc(v_), WC('n', S(1))), WC('b', S(1))), a_), S(-1)))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule17 = ReplacementRule(pattern17, lambda n, a, u, v, b : Mul(u, Pow(Add(b, Mul(a, Pow(Sin(v), n))), S(-1))))
replacer.add(rule17)
pattern18 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(a_, Mul(WC('b', S(1)), Pow(sec(v_), WC('n', S(1))))), S(-1)), Pow(tan(v_), WC('n', S(1))))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule18 = ReplacementRule(pattern18, lambda n, a, u, v, b : Mul(u, Mul(Pow(Sin(v), n), Pow(Add(b, Mul(a, Pow(Cos(v), n))), S(-1)))))
replacer.add(rule18)
pattern19 = Pattern(UtilityOperator(Mul(Pow(cot(v_), WC('n', S(1))), WC('u', S(1)), Pow(Add(Mul(Pow(csc(v_), WC('n', S(1))), WC('b', S(1))), a_), S(-1)))), CustomConstraint(lambda n: PositiveIntegerQ(n)), CustomConstraint(lambda a: NonsumQ(a)))
rule19 = ReplacementRule(pattern19, lambda n, a, u, v, b : Mul(u, Mul(Pow(Cos(v), n), Pow(Add(b, Mul(a, Pow(Sin(v), n))), S(-1)))))
replacer.add(rule19)
pattern20 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(WC('a', S(1)), Pow(sec(v_), WC('n', S(1)))), Mul(WC('b', S(1)), Pow(tan(v_), WC('n', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, p: IntegersQ(n, p)))
rule20 = ReplacementRule(pattern20, lambda n, a, p, u, v, b : Mul(u, Pow(Sec(v), Mul(n, p)), Pow(Add(a, Mul(b, Pow(Sin(v), n))), p)))
replacer.add(rule20)
pattern21 = Pattern(UtilityOperator(Mul(Pow(Add(Mul(Pow(csc(v_), WC('n', S(1))), WC('a', S(1))), Mul(Pow(cot(v_), WC('n', S(1))), WC('b', S(1)))), WC('p', S(1))), WC('u', S(1)))), CustomConstraint(lambda n, p: IntegersQ(n, p)))
rule21 = ReplacementRule(pattern21, lambda n, a, p, u, v, b : Mul(u, Pow(Csc(v), Mul(n, p)), Pow(Add(a, Mul(b, Pow(Cos(v), n))), p)))
replacer.add(rule21)
pattern22 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(WC('b', S(1)), Pow(sin(v_), WC('n', S(1)))), Mul(WC('a', S(1)), Pow(tan(v_), WC('n', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, p: IntegersQ(n, p)))
rule22 = ReplacementRule(pattern22, lambda n, a, p, u, v, b : Mul(u, Pow(Tan(v), Mul(n, p)), Pow(Add(a, Mul(b, Pow(Cos(v), n))), p)))
replacer.add(rule22)
pattern23 = Pattern(UtilityOperator(Mul(Pow(Add(Mul(Pow(cot(v_), WC('n', S(1))), WC('a', S(1))), Mul(Pow(cos(v_), WC('n', S(1))), WC('b', S(1)))), WC('p', S(1))), WC('u', S(1)))), CustomConstraint(lambda n, p: IntegersQ(n, p)))
rule23 = ReplacementRule(pattern23, lambda n, a, p, u, v, b : Mul(u, Pow(Cot(v), Mul(n, p)), Pow(Add(a, Mul(b, Pow(Sin(v), n))), p)))
replacer.add(rule23)
pattern24 = Pattern(UtilityOperator(Mul(Pow(cos(v_), WC('m', S(1))), WC('u', S(1)), Pow(Add(WC('a', S(0)), Mul(WC('c', S(1)), Pow(sec(v_), WC('n', S(1)))), Mul(WC('b', S(1)), Pow(tan(v_), WC('n', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, p, m: IntegersQ(m, n, p)))
rule24 = ReplacementRule(pattern24, lambda n, a, c, p, m, u, v, b : Mul(u, Pow(Cos(v), Add(m, Mul(S(-1), Mul(n, p)))), Pow(Add(c, Mul(b, Pow(Sin(v), n)), Mul(a, Pow(Cos(v), n))), p)))
replacer.add(rule24)
pattern25 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(sec(v_), WC('m', S(1))), Pow(Add(WC('a', S(0)), Mul(WC('c', S(1)), Pow(sec(v_), WC('n', S(1)))), Mul(WC('b', S(1)), Pow(tan(v_), WC('n', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, p, m: IntegersQ(m, n, p)))
rule25 = ReplacementRule(pattern25, lambda n, a, c, p, m, u, v, b : Mul(u, Pow(Sec(v), Add(m, Mul(n, p))), Pow(Add(c, Mul(b, Pow(Sin(v), n)), Mul(a, Pow(Cos(v), n))), p)))
replacer.add(rule25)
pattern26 = Pattern(UtilityOperator(Mul(Pow(Add(WC('a', S(0)), Mul(Pow(cot(v_), WC('n', S(1))), WC('b', S(1))), Mul(Pow(csc(v_), WC('n', S(1))), WC('c', S(1)))), WC('p', S(1))), WC('u', S(1)), Pow(sin(v_), WC('m', S(1))))), CustomConstraint(lambda n, p, m: IntegersQ(m, n, p)))
rule26 = ReplacementRule(pattern26, lambda n, a, c, p, m, u, v, b : Mul(u, Pow(Sin(v), Add(m, Mul(S(-1), Mul(n, p)))), Pow(Add(c, Mul(b, Pow(Cos(v), n)), Mul(a, Pow(Sin(v), n))), p)))
replacer.add(rule26)
pattern27 = Pattern(UtilityOperator(Mul(Pow(csc(v_), WC('m', S(1))), Pow(Add(WC('a', S(0)), Mul(Pow(cot(v_), WC('n', S(1))), WC('b', S(1))), Mul(Pow(csc(v_), WC('n', S(1))), WC('c', S(1)))), WC('p', S(1))), WC('u', S(1)))), CustomConstraint(lambda n, p, m: IntegersQ(m, n, p)))
rule27 = ReplacementRule(pattern27, lambda n, a, c, p, m, u, v, b : Mul(u, Pow(Csc(v), Add(m, Mul(n, p))), Pow(Add(c, Mul(b, Pow(Cos(v), n)), Mul(a, Pow(Sin(v), n))), p)))
replacer.add(rule27)
pattern28 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(Pow(csc(v_), WC('m', S(1))), WC('a', S(1))), Mul(WC('b', S(1)), Pow(sin(v_), WC('n', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, m: IntegersQ(m, n)))
rule28 = ReplacementRule(pattern28, lambda n, a, p, m, u, v, b : If(And(ZeroQ(Add(m, n, S(-2))), ZeroQ(Add(a, b))), Mul(u, Pow(Mul(a, Mul(Pow(Cos(v), S('2')), Pow(Pow(Sin(v), m), S(-1)))), p)), Mul(u, Pow(Mul(Add(a, Mul(b, Pow(Sin(v), Add(m, n)))), Pow(Pow(Sin(v), m), S(-1))), p))))
replacer.add(rule28)
pattern29 = Pattern(UtilityOperator(Mul(WC('u', S(1)), Pow(Add(Mul(Pow(cos(v_), WC('n', S(1))), WC('b', S(1))), Mul(WC('a', S(1)), Pow(sec(v_), WC('m', S(1))))), WC('p', S(1))))), CustomConstraint(lambda n, m: IntegersQ(m, n)))
rule29 = ReplacementRule(pattern29, lambda n, a, p, m, u, v, b : If(And(ZeroQ(Add(m, n, S(-2))), ZeroQ(Add(a, b))), Mul(u, Pow(Mul(a, Mul(Pow(Sin(v), S('2')), Pow(Pow(Cos(v), m), S(-1)))), p)), Mul(u, Pow(Mul(Add(a, Mul(b, Pow(Cos(v), Add(m, n)))), Pow(Pow(Cos(v), m), S(-1))), p))))
replacer.add(rule29)
pattern30 = Pattern(UtilityOperator(u_))
rule30 = ReplacementRule(pattern30, lambda u : u)
replacer.add(rule30)
return replacer
@doctest_depends_on(modules=('matchpy',))
def TrigSimplifyAux(expr):
return TrigSimplifyAux_replacer.replace(UtilityOperator(expr))
def Cancel(expr):
return cancel(expr)
class Util_Part(Function):
def doit(self):
i = Simplify(self.args[0])
if len(self.args) > 2 :
lst = list(self.args[1:])
else:
lst = self.args[1]
if isinstance(i, (int, Integer)):
if isinstance(lst, list):
return lst[i - 1]
elif AtomQ(lst):
return lst
return lst.args[i - 1]
else:
return self
def Part(lst, i): #see i = -1
if isinstance(lst, list):
return Util_Part(i, *lst).doit()
return Util_Part(i, lst).doit()
def PolyLog(n, p, z=None):
return polylog(n, p)
def D(f, x):
try:
return f.diff(x)
except ValueError:
return Function('D')(f, x)
def IntegralFreeQ(u):
return FreeQ(u, Integral)
def Dist(u, v, x):
#Dist(u,v) returns the sum of u times each term of v, provided v is free of Int
u = replace_pow_exp(u) # to replace back to sympy's exp
v = replace_pow_exp(v)
w = Simp(u*x**2, x)/x**2
if u == 1:
return v
elif u == 0:
return 0
elif NumericFactor(u) < 0 and NumericFactor(-u) > 0:
return -Dist(-u, v, x)
elif SumQ(v):
return Add(*[Dist(u, i, x) for i in v.args])
elif IntegralFreeQ(v):
return Simp(u*v, x)
elif w != u and FreeQ(w, x) and w == Simp(w, x) and w == Simp(w*x**2, x)/x**2:
return Dist(w, v, x)
else:
return Simp(u*v, x)
def PureFunctionOfCothQ(u, v, x):
# If u is a pure function of Coth[v], PureFunctionOfCothQ[u,v,x] returns True;
if AtomQ(u):
return u != x
elif CalculusQ(u):
return False
elif HyperbolicQ(u) and ZeroQ(u.args[0] - v):
return CothQ(u)
return all(PureFunctionOfCothQ(i, v, x) for i in u.args)
def LogIntegral(z):
return li(z)
def ExpIntegralEi(z):
return Ei(z)
def ExpIntegralE(a, b):
return expint(a, b).evalf()
def SinIntegral(z):
return Si(z)
def CosIntegral(z):
return Ci(z)
def SinhIntegral(z):
return Shi(z)
def CoshIntegral(z):
return Chi(z)
class PolyGamma(Function):
@classmethod
def eval(cls, *args):
if len(args) == 2:
return polygamma(args[0], args[1])
return digamma(args[0])
def LogGamma(z):
return loggamma(z)
class ProductLog(Function):
@classmethod
def eval(cls, *args):
if len(args) == 2:
return LambertW(args[1], args[0]).evalf()
return LambertW(args[0]).evalf()
def Factorial(a):
return factorial(a)
def Zeta(*args):
return zeta(*args)
def HypergeometricPFQ(a, b, c):
return hyper(a, b, c)
def Sum_doit(exp, args):
'''
This function perform summation using sympy's `Sum`.
Examples
========
>>> from sympy.integrals.rubi.utility_function import Sum_doit
>>> from sympy.abc import x
>>> Sum_doit(2*x + 2, [x, 0, 1.7])
6
'''
exp = replace_pow_exp(exp)
if not isinstance(args[2], (int, Integer)):
new_args = [args[0], args[1], Floor(args[2])]
return Sum(exp, new_args).doit()
return Sum(exp, args).doit()
def PolynomialQuotient(p, q, x):
try:
p = poly(p, x)
q = poly(q, x)
except:
p = poly(p)
q = poly(q)
try:
return quo(p, q).as_expr()
except (PolynomialDivisionFailed, UnificationFailed):
return p/q
def PolynomialRemainder(p, q, x):
try:
p = poly(p, x)
q = poly(q, x)
except:
p = poly(p)
q = poly(q)
try:
return rem(p, q).as_expr()
except (PolynomialDivisionFailed, UnificationFailed):
return S(0)
def Floor(x, a = None):
if a is None:
return floor(x)
return a*floor(x/a)
def Factor(var):
return factor(var)
def Rule(a, b):
return {a: b}
def Distribute(expr, *args):
if len(args) == 1:
if isinstance(expr, args[0]):
return expr
else:
return expr.expand()
if len(args) == 2:
if isinstance(expr, args[1]):
return expr.expand()
else:
return expr
return expr.expand()
def CoprimeQ(*args):
args = S(args)
g = gcd(*args)
if g == 1:
return True
return False
def Discriminant(a, b):
try:
return discriminant(a, b)
except PolynomialError:
return Function('Discriminant')(a, b)
def Negative(x):
return x < S(0)
def Quotient(m, n):
return Floor(m/n)
def process_trig(expr):
'''
This function processes trigonometric expressions such that all `cot` is
rewritten in terms of `tan`, `sec` in terms of `cos`, `csc` in terms of `sin` and
similarly for `coth`, `sech` and `csch`.
Examples
========
>>> from sympy.integrals.rubi.utility_function import process_trig
>>> from sympy.abc import x
>>> from sympy import coth, cot, csc
>>> process_trig(x*cot(x))
x/tan(x)
>>> process_trig(coth(x)*csc(x))
1/(sin(x)*tanh(x))
'''
expr = expr.replace(lambda x: isinstance(x, cot), lambda x: 1/tan(x.args[0]))
expr = expr.replace(lambda x: isinstance(x, sec), lambda x: 1/cos(x.args[0]))
expr = expr.replace(lambda x: isinstance(x, csc), lambda x: 1/sin(x.args[0]))
expr = expr.replace(lambda x: isinstance(x, coth), lambda x: 1/tanh(x.args[0]))
expr = expr.replace(lambda x: isinstance(x, sech), lambda x: 1/cosh(x.args[0]))
expr = expr.replace(lambda x: isinstance(x, csch), lambda x: 1/sinh(x.args[0]))
return expr
def _ExpandIntegrand():
Plus = Add
Times = Mul
def cons_f1(m):
return PositiveIntegerQ(m)
cons1 = CustomConstraint(cons_f1)
def cons_f2(d, c, b, a):
return ZeroQ(-a*d + b*c)
cons2 = CustomConstraint(cons_f2)
def cons_f3(a, x):
return FreeQ(a, x)
cons3 = CustomConstraint(cons_f3)
def cons_f4(b, x):
return FreeQ(b, x)
cons4 = CustomConstraint(cons_f4)
def cons_f5(c, x):
return FreeQ(c, x)
cons5 = CustomConstraint(cons_f5)
def cons_f6(d, x):
return FreeQ(d, x)
cons6 = CustomConstraint(cons_f6)
def cons_f7(e, x):
return FreeQ(e, x)
cons7 = CustomConstraint(cons_f7)
def cons_f8(f, x):
return FreeQ(f, x)
cons8 = CustomConstraint(cons_f8)
def cons_f9(g, x):
return FreeQ(g, x)
cons9 = CustomConstraint(cons_f9)
def cons_f10(h, x):
return FreeQ(h, x)
cons10 = CustomConstraint(cons_f10)
def cons_f11(e, b, c, f, n, p, F, x, d, m):
if not isinstance(x, Symbol):
return False
return FreeQ(List(F, b, c, d, e, f, m, n, p), x)
cons11 = CustomConstraint(cons_f11)
def cons_f12(F, x):
return FreeQ(F, x)
cons12 = CustomConstraint(cons_f12)
def cons_f13(m, x):
return FreeQ(m, x)
cons13 = CustomConstraint(cons_f13)
def cons_f14(n, x):
return FreeQ(n, x)
cons14 = CustomConstraint(cons_f14)
def cons_f15(p, x):
return FreeQ(p, x)
cons15 = CustomConstraint(cons_f15)
def cons_f16(e, b, c, f, n, a, p, F, x, d, m):
if not isinstance(x, Symbol):
return False
return FreeQ(List(F, a, b, c, d, e, f, m, n, p), x)
cons16 = CustomConstraint(cons_f16)
def cons_f17(n, m):
return IntegersQ(m, n)
cons17 = CustomConstraint(cons_f17)
def cons_f18(n):
return Less(n, S(0))
cons18 = CustomConstraint(cons_f18)
def cons_f19(x, u):
if not isinstance(x, Symbol):
return False
return PolynomialQ(u, x)
cons19 = CustomConstraint(cons_f19)
def cons_f20(G, F, u):
return SameQ(F(u)*G(u), S(1))
cons20 = CustomConstraint(cons_f20)
def cons_f21(q, x):
return FreeQ(q, x)
cons21 = CustomConstraint(cons_f21)
def cons_f22(F):
return MemberQ(List(ArcSin, ArcCos, ArcSinh, ArcCosh), F)
cons22 = CustomConstraint(cons_f22)
def cons_f23(j, n):
return ZeroQ(j - S(2)*n)
cons23 = CustomConstraint(cons_f23)
def cons_f24(A, x):
return FreeQ(A, x)
cons24 = CustomConstraint(cons_f24)
def cons_f25(B, x):
return FreeQ(B, x)
cons25 = CustomConstraint(cons_f25)
def cons_f26(m, u, x):
if not isinstance(x, Symbol):
return False
def _cons_f_u(d, w, c, p, x):
return And(FreeQ(List(c, d), x), IntegerQ(p), Greater(p, m))
cons_u = CustomConstraint(_cons_f_u)
pat = Pattern(UtilityOperator((c_ + x_*WC('d', S(1)))**p_*WC('w', S(1)), x_), cons_u)
result_matchq = is_match(UtilityOperator(u, x), pat)
return Not(And(PositiveIntegerQ(m), result_matchq))
cons26 = CustomConstraint(cons_f26)
def cons_f27(b, v, n, a, x, u, m):
if not isinstance(x, Symbol):
return False
return And(FreeQ(List(a, b, m), x), NegativeIntegerQ(n), Not(IntegerQ(m)), PolynomialQ(u, x), PolynomialQ(v, x),\
RationalQ(m), Less(m, -1), GreaterEqual(Exponent(u, x), (-n - IntegerPart(m))*Exponent(v, x)))
cons27 = CustomConstraint(cons_f27)
def cons_f28(v, n, x, u, m):
if not isinstance(x, Symbol):
return False
return And(FreeQ(List(a, b, m), x), NegativeIntegerQ(n), Not(IntegerQ(m)), PolynomialQ(u, x),\
PolynomialQ(v, x), GreaterEqual(Exponent(u, x), -n*Exponent(v, x)))
cons28 = CustomConstraint(cons_f28)
def cons_f29(n):
return PositiveIntegerQ(n/S(4))
cons29 = CustomConstraint(cons_f29)
def cons_f30(n):
return IntegerQ(n)
cons30 = CustomConstraint(cons_f30)
def cons_f31(n):
return Greater(n, S(1))
cons31 = CustomConstraint(cons_f31)
def cons_f32(n, m):
return Less(S(0), m, n)
cons32 = CustomConstraint(cons_f32)
def cons_f33(n, m):
return OddQ(n/GCD(m, n))
cons33 = CustomConstraint(cons_f33)
def cons_f34(a, b):
return PosQ(a/b)
cons34 = CustomConstraint(cons_f34)
def cons_f35(n, m, p):
return IntegersQ(m, n, p)
cons35 = CustomConstraint(cons_f35)
def cons_f36(n, m, p):
return Less(S(0), m, p, n)
cons36 = CustomConstraint(cons_f36)
def cons_f37(q, n, m, p):
return IntegersQ(m, n, p, q)
cons37 = CustomConstraint(cons_f37)
def cons_f38(n, q, m, p):
return Less(S(0), m, p, q, n)
cons38 = CustomConstraint(cons_f38)
def cons_f39(n):
return IntegerQ(n/S(2))
cons39 = CustomConstraint(cons_f39)
def cons_f40(p):
return NegativeIntegerQ(p)
cons40 = CustomConstraint(cons_f40)
def cons_f41(n, m):
return IntegersQ(m, n/S(2))
cons41 = CustomConstraint(cons_f41)
def cons_f42(n, m):
return Unequal(m, n/S(2))
cons42 = CustomConstraint(cons_f42)
def cons_f43(c, b, a):
return NonzeroQ(-S(4)*a*c + b**S(2))
cons43 = CustomConstraint(cons_f43)
def cons_f44(j, n, m):
return IntegersQ(m, n, j)
cons44 = CustomConstraint(cons_f44)
def cons_f45(n, m):
return Less(S(0), m, S(2)*n)
cons45 = CustomConstraint(cons_f45)
def cons_f46(n, m, p):
return Not(And(Equal(m, n), Equal(p, S(-1))))
cons46 = CustomConstraint(cons_f46)
def cons_f47(v, x):
if not isinstance(x, Symbol):
return False
return PolynomialQ(v, x)
cons47 = CustomConstraint(cons_f47)
def cons_f48(v, x):
if not isinstance(x, Symbol):
return False
return BinomialQ(v, x)
cons48 = CustomConstraint(cons_f48)
def cons_f49(v, x, u):
if not isinstance(x, Symbol):
return False
return Inequality(Exponent(u, x), Equal, Exponent(v, x) + S(-1), GreaterEqual, S(2))
cons49 = CustomConstraint(cons_f49)
def cons_f50(v, x, u):
if not isinstance(x, Symbol):
return False
return GreaterEqual(Exponent(u, x), Exponent(v, x))
cons50 = CustomConstraint(cons_f50)
def cons_f51(p):
return Not(IntegerQ(p))
cons51 = CustomConstraint(cons_f51)
def With2(e, b, c, f, n, a, g, h, x, d, m):
tmp = a*h - b*g
k = Symbol('k')
return f**(e*(c + d*x)**n)*SimplifyTerm(h**(-m)*tmp**m, x)/(g + h*x) + Sum_doit(f**(e*(c + d*x)**n)*(a + b*x)**(-k + m)*SimplifyTerm(b*h**(-k)*tmp**(k - 1), x), List(k, 1, m))
pattern2 = Pattern(UtilityOperator(f_**((x_*WC('d', S(1)) + WC('c', S(0)))**WC('n', S(1))*WC('e', S(1)))*(x_*WC('b', S(1)) + WC('a', S(0)))**WC('m', S(1))/(x_*WC('h', S(1)) + WC('g', S(0))), x_), cons3, cons4, cons5, cons6, cons7, cons8, cons9, cons10, cons1, cons2)
rule2 = ReplacementRule(pattern2, With2)
pattern3 = Pattern(UtilityOperator(F_**((x_*WC('d', S(1)) + WC('c', S(0)))**WC('n', S(1))*WC('b', S(1)))*x_**WC('m', S(1))*(e_ + x_*WC('f', S(1)))**WC('p', S(1)), x_), cons12, cons4, cons5, cons6, cons7, cons8, cons13, cons14, cons15, cons11)
def replacement3(e, b, c, f, n, p, F, x, d, m):
return If(And(PositiveIntegerQ(m, p), LessEqual(m, p), Or(EqQ(n, S(1)), ZeroQ(-c*f + d*e))), ExpandLinearProduct(F**(b*(c + d*x)**n)*(e + f*x)**p, x**m, e, f, x), If(PositiveIntegerQ(p), Distribute(F**(b*(c + d*x)**n)*x**m*(e + f*x)**p, Plus, Times), ExpandIntegrand(F**(b*(c + d*x)**n), x**m*(e + f*x)**p, x)))
rule3 = ReplacementRule(pattern3, replacement3)
pattern4 = Pattern(UtilityOperator(F_**((x_*WC('d', S(1)) + WC('c', S(0)))**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0)))*x_**WC('m', S(1))*(e_ + x_*WC('f', S(1)))**WC('p', S(1)), x_), cons12, cons3, cons4, cons5, cons6, cons7, cons8, cons13, cons14, cons15, cons16)
def replacement4(e, b, c, f, n, a, p, F, x, d, m):
return If(And(PositiveIntegerQ(m, p), LessEqual(m, p), Or(EqQ(n, S(1)), ZeroQ(-c*f + d*e))), ExpandLinearProduct(F**(a + b*(c + d*x)**n)*(e + f*x)**p, x**m, e, f, x), If(PositiveIntegerQ(p), Distribute(F**(a + b*(c + d*x)**n)*x**m*(e + f*x)**p, Plus, Times), ExpandIntegrand(F**(a + b*(c + d*x)**n), x**m*(e + f*x)**p, x)))
rule4 = ReplacementRule(pattern4, replacement4)
def With5(b, v, c, n, a, F, u, x, d, m):
if not isinstance(x, Symbol) or not (FreeQ([F, a, b, c, d], x) and IntegersQ(m, n) and n < 0):
return False
w = ExpandIntegrand((a + b*x)**m*(c + d*x)**n, x)
w = ReplaceAll(w, Rule(x, F**v))
if SumQ(w):
return True
return False
pattern5 = Pattern(UtilityOperator((F_**v_*WC('b', S(1)) + a_)**WC('m', S(1))*(F_**v_*WC('d', S(1)) + c_)**n_*WC('u', S(1)), x_), cons12, cons3, cons4, cons5, cons6, cons17, cons18, CustomConstraint(With5))
def replacement5(b, v, c, n, a, F, u, x, d, m):
w = ReplaceAll(ExpandIntegrand((a + b*x)**m*(c + d*x)**n, x), Rule(x, F**v))
return w.func(*[u*i for i in w.args])
rule5 = ReplacementRule(pattern5, replacement5)
def With6(e, b, c, f, n, a, x, u, d, m):
if not isinstance(x, Symbol) or not (FreeQ([a, b, c, d, e, f, m, n], x) and PolynomialQ(u,x)):
return False
v = ExpandIntegrand(u*(a + b*x)**m, x)
if SumQ(v):
return True
return False
pattern6 = Pattern(UtilityOperator(f_**((x_*WC('d', S(1)) + WC('c', S(0)))**WC('n', S(1))*WC('e', S(1)))*u_*(x_*WC('b', S(1)) + WC('a', S(0)))**WC('m', S(1)), x_), cons3, cons4, cons5, cons6, cons7, cons8, cons13, cons14, cons19, CustomConstraint(With6))
def replacement6(e, b, c, f, n, a, x, u, d, m):
v = ExpandIntegrand(u*(a + b*x)**m, x)
return Distribute(f**(e*(c + d*x)**n)*v, Plus, Times)
rule6 = ReplacementRule(pattern6, replacement6)
pattern7 = Pattern(UtilityOperator(u_*(x_*WC('b', S(1)) + WC('a', S(0)))**WC('m', S(1))*Log((x_**WC('n', S(1))*WC('e', S(1)) + WC('d', S(0)))**WC('p', S(1))*WC('c', S(1))), x_), cons3, cons4, cons5, cons6, cons7, cons13, cons14, cons15, cons19)
def replacement7(e, b, c, n, a, p, x, u, d, m):
return ExpandIntegrand(Log(c*(d + e*x**n)**p), u*(a + b*x)**m, x)
rule7 = ReplacementRule(pattern7, replacement7)
pattern8 = Pattern(UtilityOperator(f_**((x_*WC('d', S(1)) + WC('c', S(0)))**WC('n', S(1))*WC('e', S(1)))*u_, x_), cons5, cons6, cons7, cons8, cons14, cons19)
def replacement8(e, c, f, n, x, u, d):
return If(EqQ(n, S(1)), ExpandIntegrand(f**(e*(c + d*x)**n), u, x), ExpandLinearProduct(f**(e*(c + d*x)**n), u, c, d, x))
rule8 = ReplacementRule(pattern8, replacement8)
# pattern9 = Pattern(UtilityOperator(F_**u_*(G_*u_*WC('b', S(1)) + a_)**WC('n', S(1)), x_), cons3, cons4, cons17, cons20)
# def replacement9(b, G, n, a, F, u, x, m):
# return ReplaceAll(ExpandIntegrand(x**(-m)*(a + b*x)**n, x), Rule(x, G(u)))
# rule9 = ReplacementRule(pattern9, replacement9)
pattern10 = Pattern(UtilityOperator(u_*(WC('a', S(0)) + WC('b', S(1))*Log(((x_*WC('f', S(1)) + WC('e', S(0)))**WC('p', S(1))*WC('d', S(1)))**WC('q', S(1))*WC('c', S(1))))**n_, x_), cons3, cons4, cons5, cons6, cons7, cons8, cons14, cons15, cons21, cons19)
def replacement10(e, b, c, f, n, a, p, x, u, d, q):
return ExpandLinearProduct((a + b*Log(c*(d*(e + f*x)**p)**q))**n, u, e, f, x)
rule10 = ReplacementRule(pattern10, replacement10)
# pattern11 = Pattern(UtilityOperator(u_*(F_*(x_*WC('d', S(1)) + WC('c', S(0)))*WC('b', S(1)) + WC('a', S(0)))**n_, x_), cons3, cons4, cons5, cons6, cons14, cons19, cons22)
# def replacement11(b, c, n, a, F, u, x, d):
# return ExpandLinearProduct((a + b*F(c + d*x))**n, u, c, d, x)
# rule11 = ReplacementRule(pattern11, replacement11)
pattern12 = Pattern(UtilityOperator(WC('u', S(1))/(x_**n_*WC('a', S(1)) + sqrt(c_ + x_**j_*WC('d', S(1)))*WC('b', S(1))), x_), cons3, cons4, cons5, cons6, cons14, cons23)
def replacement12(b, c, n, a, x, u, d, j):
return ExpandIntegrand(u*(a*x**n - b*sqrt(c + d*x**(S(2)*n)))/(-b**S(2)*c + x**(S(2)*n)*(a**S(2) - b**S(2)*d)), x)
rule12 = ReplacementRule(pattern12, replacement12)
pattern13 = Pattern(UtilityOperator((a_ + x_*WC('b', S(1)))**m_/(c_ + x_*WC('d', S(1))), x_), cons3, cons4, cons5, cons6, cons1)
def replacement13(b, c, a, x, d, m):
if RationalQ(a, b, c, d):
return ExpandExpression((a + b*x)**m/(c + d*x), x)
else:
tmp = a*d - b*c
k = Symbol("k")
return Sum_doit((a + b*x)**(-k + m)*SimplifyTerm(b*d**(-k)*tmp**(k + S(-1)), x), List(k, S(1), m)) + SimplifyTerm(d**(-m)*tmp**m, x)/(c + d*x)
rule13 = ReplacementRule(pattern13, replacement13)
pattern14 = Pattern(UtilityOperator((A_ + x_*WC('B', S(1)))*(a_ + x_*WC('b', S(1)))**WC('m', S(1))/(c_ + x_*WC('d', S(1))), x_), cons3, cons4, cons5, cons6, cons24, cons25, cons1)
def replacement14(b, B, A, c, a, x, d, m):
if RationalQ(a, b, c, d, A, B):
return ExpandExpression((A + B*x)*(a + b*x)**m/(c + d*x), x)
else:
tmp1 = (A*d - B*c)/d
tmp2 = ExpandIntegrand((a + b*x)**m/(c + d*x), x)
tmp2 = If(SumQ(tmp2), tmp2.func(*[SimplifyTerm(tmp1*i, x) for i in tmp2.args]), SimplifyTerm(tmp1*tmp2, x))
return SimplifyTerm(B/d, x)*(a + b*x)**m + tmp2
rule14 = ReplacementRule(pattern14, replacement14)
def With15(b, a, x, u, m):
tmp1 = Symbol('tmp1')
tmp2 = Symbol('tmp2')
tmp1 = ExpandLinearProduct((a + b*x)**m, u, a, b, x)
if not IntegerQ(m):
return tmp1
else:
tmp2 = ExpandExpression(u*(a + b*x)**m, x)
if SumQ(tmp2) and LessEqual(LeafCount(tmp2), LeafCount(tmp1) + S(2)):
return tmp2
else:
return tmp1
pattern15 = Pattern(UtilityOperator(u_*(a_ + x_*WC('b', S(1)))**m_, x_), cons3, cons4, cons13, cons19, cons26)
rule15 = ReplacementRule(pattern15, With15)
pattern16 = Pattern(UtilityOperator(u_*v_**n_*(a_ + x_*WC('b', S(1)))**m_, x_), cons27)
def replacement16(b, v, n, a, x, u, m):
s = PolynomialQuotientRemainder(u, v**(-n)*(a+b*x)**(-IntegerPart(m)), x)
return ExpandIntegrand((a + b*x)**FractionalPart(m)*s[0], x) + ExpandIntegrand(v**n*(a + b*x)**m*s[1], x)
rule16 = ReplacementRule(pattern16, replacement16)
pattern17 = Pattern(UtilityOperator(u_*v_**n_*(a_ + x_*WC('b', S(1)))**m_, x_), cons28)
def replacement17(b, v, n, a, x, u, m):
s = PolynomialQuotientRemainder(u, v**(-n),x)
return ExpandIntegrand((a + b*x)**(m)*s[0], x) + ExpandIntegrand(v**n*(a + b*x)**m*s[1], x)
rule17 = ReplacementRule(pattern17, replacement17)
def With18(b, n, a, x, u):
r = Numerator(Rt(-a/b, S(2)))
s = Denominator(Rt(-a/b, S(2)))
return r/(S(2)*a*(r + s*u**(n/S(2)))) + r/(S(2)*a*(r - s*u**(n/S(2))))
pattern18 = Pattern(UtilityOperator(S(1)/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons29)
rule18 = ReplacementRule(pattern18, With18)
def With19(b, n, a, x, u):
k = Symbol("k")
r = Numerator(Rt(-a/b, n))
s = Denominator(Rt(-a/b, n))
return Sum_doit(r/(a*n*(-(-1)**(2*k/n)*s*u + r)), List(k, 1, n))
pattern19 = Pattern(UtilityOperator(S(1)/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons30, cons31)
rule19 = ReplacementRule(pattern19, With19)
def With20(b, n, a, x, u, m):
k = Symbol("k")
g = GCD(m, n)
r = Numerator(Rt(a/b, n/GCD(m, n)))
s = Denominator(Rt(a/b, n/GCD(m, n)))
return If(CoprimeQ(g + m, n), Sum_doit((-1)**(-2*k*m/n)*r*(-r/s)**(m/g)/(a*n*((-1)**(2*g*k/n)*s*u**g + r)), List(k, 1, n/g)), Sum_doit((-1)**(2*k*(g + m)/n)*r*(-r/s)**(m/g)/(a*n*((-1)**(2*g*k/n)*r + s*u**g)), List(k, 1, n/g)))
pattern20 = Pattern(UtilityOperator(u_**WC('m', S(1))/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons17, cons32, cons33, cons34)
rule20 = ReplacementRule(pattern20, With20)
def With21(b, n, a, x, u, m):
k = Symbol("k")
g = GCD(m, n)
r = Numerator(Rt(-a/b, n/GCD(m, n)))
s = Denominator(Rt(-a/b, n/GCD(m, n)))
return If(Equal(n/g, S(2)), s/(S(2)*b*(r + s*u**g)) - s/(S(2)*b*(r - s*u**g)), If(CoprimeQ(g + m, n), Sum_doit((S(-1))**(-S(2)*k*m/n)*r*(r/s)**(m/g)/(a*n*(-(S(-1))**(S(2)*g*k/n)*s*u**g + r)), List(k, S(1), n/g)), Sum_doit((S(-1))**(S(2)*k*(g + m)/n)*r*(r/s)**(m/g)/(a*n*((S(-1))**(S(2)*g*k/n)*r - s*u**g)), List(k, S(1), n/g))))
pattern21 = Pattern(UtilityOperator(u_**WC('m', S(1))/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons17, cons32)
rule21 = ReplacementRule(pattern21, With21)
def With22(b, c, n, a, x, u, d, m):
k = Symbol("k")
r = Numerator(Rt(-a/b, n))
s = Denominator(Rt(-a/b, n))
return Sum_doit((c*r + (-1)**(-2*k*m/n)*d*r*(r/s)**m)/(a*n*(-(-1)**(2*k/n)*s*u + r)), List(k, 1, n))
pattern22 = Pattern(UtilityOperator((c_ + u_**WC('m', S(1))*WC('d', S(1)))/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons5, cons6, cons17, cons32)
rule22 = ReplacementRule(pattern22, With22)
def With23(e, b, c, n, a, p, x, u, d, m):
k = Symbol("k")
r = Numerator(Rt(-a/b, n))
s = Denominator(Rt(-a/b, n))
return Sum_doit((c*r + (-1)**(-2*k*p/n)*e*r*(r/s)**p + (-1)**(-2*k*m/n)*d*r*(r/s)**m)/(a*n*(-(-1)**(2*k/n)*s*u + r)), List(k, 1, n))
pattern23 = Pattern(UtilityOperator((u_**p_*WC('e', S(1)) + u_**WC('m', S(1))*WC('d', S(1)) + WC('c', S(0)))/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons5, cons6, cons7, cons35, cons36)
rule23 = ReplacementRule(pattern23, With23)
def With24(e, b, c, f, n, a, p, x, u, d, q, m):
k = Symbol("k")
r = Numerator(Rt(-a/b, n))
s = Denominator(Rt(-a/b, n))
return Sum_doit((c*r + (-1)**(-2*k*q/n)*f*r*(r/s)**q + (-1)**(-2*k*p/n)*e*r*(r/s)**p + (-1)**(-2*k*m/n)*d*r*(r/s)**m)/(a*n*(-(-1)**(2*k/n)*s*u + r)), List(k, 1, n))
pattern24 = Pattern(UtilityOperator((u_**p_*WC('e', S(1)) + u_**q_*WC('f', S(1)) + u_**WC('m', S(1))*WC('d', S(1)) + WC('c', S(0)))/(a_ + u_**n_*WC('b', S(1))), x_), cons3, cons4, cons5, cons6, cons7, cons8, cons37, cons38)
rule24 = ReplacementRule(pattern24, With24)
def With25(c, n, a, p, x, u):
q = Symbol('q')
return ReplaceAll(ExpandIntegrand(c**(-p), (c*x - q)**p*(c*x + q)**p, x), List(Rule(q, Rt(-a*c, S(2))), Rule(x, u**(n/S(2)))))
pattern25 = Pattern(UtilityOperator((a_ + u_**WC('n', S(1))*WC('c', S(1)))**p_, x_), cons3, cons5, cons39, cons40)
rule25 = ReplacementRule(pattern25, With25)
def With26(c, n, a, p, x, u, m):
q = Symbol('q')
return ReplaceAll(ExpandIntegrand(c**(-p), x**m*(c*x**(n/S(2)) - q)**p*(c*x**(n/S(2)) + q)**p, x), List(Rule(q, Rt(-a*c, S(2))), Rule(x, u)))
pattern26 = Pattern(UtilityOperator(u_**WC('m', S(1))*(u_**WC('n', S(1))*WC('c', S(1)) + WC('a', S(0)))**p_, x_), cons3, cons5, cons41, cons40, cons32, cons42)
rule26 = ReplacementRule(pattern26, With26)
def With27(b, c, n, a, p, x, u, j):
q = Symbol('q')
return ReplaceAll(ExpandIntegrand(S(4)**(-p)*c**(-p), (b + S(2)*c*x - q)**p*(b + S(2)*c*x + q)**p, x), List(Rule(q, Rt(-S(4)*a*c + b**S(2), S(2))), Rule(x, u**n)))
pattern27 = Pattern(UtilityOperator((u_**WC('j', S(1))*WC('c', S(1)) + u_**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0)))**p_, x_), cons3, cons4, cons5, cons30, cons23, cons40, cons43)
rule27 = ReplacementRule(pattern27, With27)
def With28(b, c, n, a, p, x, u, j, m):
q = Symbol('q')
return ReplaceAll(ExpandIntegrand(S(4)**(-p)*c**(-p), x**m*(b + S(2)*c*x**n - q)**p*(b + S(2)*c*x**n + q)**p, x), List(Rule(q, Rt(-S(4)*a*c + b**S(2), S(2))), Rule(x, u)))
pattern28 = Pattern(UtilityOperator(u_**WC('m', S(1))*(u_**WC('j', S(1))*WC('c', S(1)) + u_**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0)))**p_, x_), cons3, cons4, cons5, cons44, cons23, cons40, cons45, cons46, cons43)
rule28 = ReplacementRule(pattern28, With28)
def With29(b, c, n, a, x, u, d, j):
q = Rt(-a/b, S(2))
return -(c - d*q)/(S(2)*b*q*(q + u**n)) - (c + d*q)/(S(2)*b*q*(q - u**n))
pattern29 = Pattern(UtilityOperator((u_**WC('n', S(1))*WC('d', S(1)) + WC('c', S(0)))/(a_ + u_**WC('j', S(1))*WC('b', S(1))), x_), cons3, cons4, cons5, cons6, cons14, cons23)
rule29 = ReplacementRule(pattern29, With29)
def With30(e, b, c, f, n, a, g, x, u, d, j):
q = Rt(-S(4)*a*c + b**S(2), S(2))
r = TogetherSimplify((-b*e*g + S(2)*c*(d + e*f))/q)
return (e*g - r)/(b + 2*c*u**n + q) + (e*g + r)/(b + 2*c*u**n - q)
pattern30 = Pattern(UtilityOperator(((u_**WC('n', S(1))*WC('g', S(1)) + WC('f', S(0)))*WC('e', S(1)) + WC('d', S(0)))/(u_**WC('j', S(1))*WC('c', S(1)) + u_**WC('n', S(1))*WC('b', S(1)) + WC('a', S(0))), x_), cons3, cons4, cons5, cons6, cons7, cons8, cons9, cons14, cons23, cons43)
rule30 = ReplacementRule(pattern30, With30)
def With31(v, x, u):
lst = CoefficientList(u, x)
i = Symbol('i')
return x**Exponent(u, x)*lst[-1]/v + Sum_doit(x**(i - 1)*Part(lst, i), List(i, 1, Exponent(u, x)))/v
pattern31 = Pattern(UtilityOperator(u_/v_, x_), cons19, cons47, cons48, cons49)
rule31 = ReplacementRule(pattern31, With31)
pattern32 = Pattern(UtilityOperator(u_/v_, x_), cons19, cons47, cons50)
def replacement32(v, x, u):
return PolynomialDivide(u, v, x)
rule32 = ReplacementRule(pattern32, replacement32)
pattern33 = Pattern(UtilityOperator(u_*(x_*WC('a', S(1)))**p_, x_), cons51, cons19)
def replacement33(x, a, u, p):
return ExpandToSum((a*x)**p, u, x)
rule33 = ReplacementRule(pattern33, replacement33)
pattern34 = Pattern(UtilityOperator(v_**p_*WC('u', S(1)), x_), cons51)
def replacement34(v, x, u, p):
return ExpandIntegrand(NormalizeIntegrand(v**p, x), u, x)
rule34 = ReplacementRule(pattern34, replacement34)
pattern35 = Pattern(UtilityOperator(u_, x_))
def replacement35(x, u):
return ExpandExpression(u, x)
rule35 = ReplacementRule(pattern35, replacement35)
return [ rule2,rule3, rule4, rule5, rule6, rule7, rule8, rule10, rule12, rule13, rule14, rule15, rule16, rule17, rule18, rule19, rule20, rule21, rule22, rule23, rule24, rule25, rule26, rule27, rule28, rule29, rule30, rule31, rule32, rule33, rule34, rule35]
def _RemoveContentAux():
def cons_f1(b, a):
return IntegersQ(a, b)
cons1 = CustomConstraint(cons_f1)
def cons_f2(b, a):
return Equal(a + b, S(0))
cons2 = CustomConstraint(cons_f2)
def cons_f3(m):
return RationalQ(m)
cons3 = CustomConstraint(cons_f3)
def cons_f4(m, n):
return RationalQ(m, n)
cons4 = CustomConstraint(cons_f4)
def cons_f5(m, n):
return GreaterEqual(-m + n, S(0))
cons5 = CustomConstraint(cons_f5)
def cons_f6(a, x):
return FreeQ(a, x)
cons6 = CustomConstraint(cons_f6)
def cons_f7(m, n, p):
return RationalQ(m, n, p)
cons7 = CustomConstraint(cons_f7)
def cons_f8(m, p):
return GreaterEqual(-m + p, S(0))
cons8 = CustomConstraint(cons_f8)
pattern1 = Pattern(UtilityOperator(a_**m_*WC('u', S(1)) + b_*WC('v', S(1)), x_), cons1, cons2, cons3)
def replacement1(v, x, a, u, m, b):
return If(Greater(m, S(1)), RemoveContentAux(a**(m + S(-1))*u - v, x), RemoveContentAux(-a**(-m + S(1))*v + u, x))
rule1 = ReplacementRule(pattern1, replacement1)
pattern2 = Pattern(UtilityOperator(a_**WC('m', S(1))*WC('u', S(1)) + a_**WC('n', S(1))*WC('v', S(1)), x_), cons6, cons4, cons5)
def replacement2(n, v, x, u, m, a):
return RemoveContentAux(a**(-m + n)*v + u, x)
rule2 = ReplacementRule(pattern2, replacement2)
pattern3 = Pattern(UtilityOperator(a_**WC('m', S(1))*WC('u', S(1)) + a_**WC('n', S(1))*WC('v', S(1)) + a_**WC('p', S(1))*WC('w', S(1)), x_), cons6, cons7, cons5, cons8)
def replacement3(n, v, x, p, u, w, m, a):
return RemoveContentAux(a**(-m + n)*v + a**(-m + p)*w + u, x)
rule3 = ReplacementRule(pattern3, replacement3)
pattern4 = Pattern(UtilityOperator(u_, x_))
def replacement4(u, x):
return If(And(SumQ(u), NegQ(First(u))), -u, u)
rule4 = ReplacementRule(pattern4, replacement4)
return [rule1, rule2, rule3, rule4, ]
IntHide = Int
Log = rubi_log
Null = None
if matchpy:
RemoveContentAux_replacer = ManyToOneReplacer(* _RemoveContentAux())
ExpandIntegrand_rules = _ExpandIntegrand()
TrigSimplifyAux_replacer = _TrigSimplifyAux()
SimplifyAntiderivative_replacer = _SimplifyAntiderivative()
SimplifyAntiderivativeSum_replacer = _SimplifyAntiderivativeSum()
FixSimplify_rules = _FixSimplify()
SimpFixFactor_replacer = _SimpFixFactor()
|
7dbb4e7c181c92940051012786ca3a81e902f207403e3b1ed07a953b340967ed | from sympy import Rational, sqrt, symbols, sin, exp, log, sinh, cosh, cos, pi, \
I, erf, tan, asin, asinh, acos, atan, Function, Derivative, diff, simplify, \
LambertW, Ne, Piecewise, Symbol, Add, ratsimp, Integral, Sum, \
besselj, besselk, bessely, jn, tanh
from sympy.integrals.heurisch import components, heurisch, heurisch_wrapper
from sympy.utilities.pytest import XFAIL, skip, slow, ON_TRAVIS
from sympy.integrals.integrals import integrate
x, y, z, nu = symbols('x,y,z,nu')
f = Function('f')
def test_components():
assert components(x*y, x) == {x}
assert components(1/(x + y), x) == {x}
assert components(sin(x), x) == {sin(x), x}
assert components(sin(x)*sqrt(log(x)), x) == \
{log(x), sin(x), sqrt(log(x)), x}
assert components(x*sin(exp(x)*y), x) == \
{sin(y*exp(x)), x, exp(x)}
assert components(x**Rational(17, 54)/sqrt(sin(x)), x) == \
{sin(x), x**Rational(1, 54), sqrt(sin(x)), x}
assert components(f(x), x) == \
{x, f(x)}
assert components(Derivative(f(x), x), x) == \
{x, f(x), Derivative(f(x), x)}
assert components(f(x)*diff(f(x), x), x) == \
{x, f(x), Derivative(f(x), x), Derivative(f(x), x)}
def test_issue_10680():
assert isinstance(integrate(x**log(x**log(x**log(x))),x), Integral)
def test_heurisch_polynomials():
assert heurisch(1, x) == x
assert heurisch(x, x) == x**2/2
assert heurisch(x**17, x) == x**18/18
def test_heurisch_fractions():
assert heurisch(1/x, x) == log(x)
assert heurisch(1/(2 + x), x) == log(x + 2)
assert heurisch(1/(x + sin(y)), x) == log(x + sin(y))
# Up to a constant, where C = 5*pi*I/12, Mathematica gives identical
# result in the first case. The difference is because sympy changes
# signs of expressions without any care.
# XXX ^ ^ ^ is this still correct?
assert heurisch(5*x**5/(
2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12]
assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12
assert heurisch(1/x**2, x) == -1/x
assert heurisch(-1/x**5, x) == 1/(4*x**4)
def test_heurisch_log():
assert heurisch(log(x), x) == x*log(x) - x
assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x)
assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x]
def test_heurisch_exp():
assert heurisch(exp(x), x) == exp(x)
assert heurisch(exp(-x), x) == -exp(-x)
assert heurisch(exp(17*x), x) == exp(17*x) / 17
assert heurisch(x*exp(x), x) == x*exp(x) - exp(x)
assert heurisch(x*exp(x**2), x) == exp(x**2) / 2
assert heurisch(exp(-x**2), x) is None
assert heurisch(2**x, x) == 2**x/log(2)
assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2)
assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1)
assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x)
def test_heurisch_trigonometric():
assert heurisch(sin(x), x) == -cos(x)
assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)
assert heurisch(cos(x), x) == sin(x)
assert heurisch(tan(x), x) in [
log(1 + tan(x)**2)/2,
log(tan(x) + I) + I*x,
log(tan(x) - I) - I*x,
]
assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)
# gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
assert heurisch(cos(x)/sin(x), x) == log(sin(x))
assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
2*sin(x) + 2*x*cos(x))
assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
+ (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723
assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3
assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x)
- 1) - atan(sqrt(2)*sin(x) + 1)
assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2))
def test_heurisch_hyperbolic():
assert heurisch(sinh(x), x) == cosh(x)
assert heurisch(cosh(x), x) == sinh(x)
assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x)
assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x)
assert heurisch(
x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4
def test_heurisch_mixed():
assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2
def test_heurisch_radicals():
assert heurisch(1/sqrt(x), x) == 2*sqrt(x)
assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x)
assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3
y = Symbol('y')
assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise(
(-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, Ne(y, 0)),
(0, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
def test_heurisch_special():
assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi)
assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4
def test_heurisch_symbolic_coeffs():
assert heurisch(1/(x + y), x) == log(x + y)
assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2))
assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)
def test_heurisch_symbolic_coeffs_1130():
y = Symbol('y')
assert heurisch_wrapper(1/(x**2 + y), x) == Piecewise(
(-I*log(x - I*sqrt(y))/(2*sqrt(y))
+ I*log(x + I*sqrt(y))/(2*sqrt(y)), Ne(y, 0)),
(-1/x, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(1/(x**2 + y), x) == (atan(x/sqrt(y))/sqrt(y))
def test_heurisch_hacking():
assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14
assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
sqrt(7)*asinh(sqrt(7)*x)/7
assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
sqrt(7)*asin(sqrt(7)*x)/7
assert heurisch(exp(-7*x**2), x, hints=[]) == \
sqrt(7*pi)*erf(sqrt(7)*x)/14
assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
asin(2*x/3)/2
assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
asinh(2*x/3)/2
def test_heurisch_function():
assert heurisch(f(x), x) is None
@XFAIL
def test_heurisch_function_derivative():
# TODO: it looks like this used to work just by coincindence and
# thanks to sloppy implementation. Investigate why this used to
# work at all and if support for this can be restored.
df = diff(f(x), x)
assert heurisch(f(x)*df, x) == f(x)**2/2
assert heurisch(f(x)**2*df, x) == f(x)**3/3
assert heurisch(df/f(x), x) == log(f(x))
def test_heurisch_wrapper():
f = 1/(y + x)
assert heurisch_wrapper(f, x) == log(x + y)
f = 1/(y - x)
assert heurisch_wrapper(f, x) == -log(x - y)
f = 1/((y - x)*(y + x))
assert heurisch_wrapper(f, x) == Piecewise(
(-log(x - y)/(2*y) + log(x + y)/(2*y), Ne(y, 0)), (1/x, True))
# issue 6926
f = sqrt(x**2/((y - x)*(y + x)))
assert heurisch_wrapper(f, x) == x*sqrt(x**2)*sqrt(1/(-x**2 + y**2)) \
- y**2*sqrt(x**2)*sqrt(1/(-x**2 + y**2))/x
def test_issue_3609():
assert heurisch(1/(x * (1 + log(x)**2)), x) == atan(log(x))
### These are examples from the Poor Man's Integrator
### http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples/
def test_pmint_rat():
# TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
# would give the optimal result?
def drop_const(expr, x):
if expr.is_Add:
return Add(*[ arg for arg in expr.args if arg.has(x) ])
else:
return expr
f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)
assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_pmint_trig():
f = (x - tan(x)) / tan(x)**2 + tan(x)
g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2
assert heurisch(f, x) == g
@slow # 8 seconds on 3.4 GHz
def test_pmint_logexp():
if ON_TRAVIS:
# See https://github.com/sympy/sympy/pull/12795
skip("Too slow for travis.")
f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))
assert ratsimp(heurisch(f, x)) == g
@XFAIL # there's a hash dependent failure lurking here
def test_pmint_erf():
f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1)
g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4)
assert ratsimp(heurisch(f, x)) == g
def test_pmint_LambertW():
f = LambertW(x)
g = x*LambertW(x) - x + x/LambertW(x)
assert heurisch(f, x) == g
def test_pmint_besselj():
f = besselj(nu + 1, x)/besselj(nu, x)
g = nu*log(x) - log(besselj(nu, x))
assert heurisch(f, x) == g
f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x
g = besselj(nu, x)
assert heurisch(f, x) == g
f = jn(nu + 1, x)/jn(nu, x)
g = nu*log(x) - log(jn(nu, x))
assert heurisch(f, x) == g
@slow
def test_pmint_bessel_products():
# Note: Derivatives of Bessel functions have many forms.
# Recurrence relations are needed for comparisons.
if ON_TRAVIS:
skip("Too slow for travis.")
f = x*besselj(nu, x)*bessely(nu, 2*x)
g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3
assert heurisch(f, x) == g
f = x*besselj(nu, x)*besselk(nu, 2*x)
g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5
assert heurisch(f, x) == g
@slow # 110 seconds on 3.4 GHz
def test_pmint_WrightOmega():
if ON_TRAVIS:
skip("Too slow for travis.")
def omega(x):
return LambertW(exp(x))
f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x))
g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x)))
assert heurisch(f, x) == g
def test_RR():
# Make sure the algorithm does the right thing if the ring is RR. See
# issue 8685.
assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \
0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x)
# TODO: convert the rest of PMINT tests:
# Airy functions
# f = (x - AiryAi(x)*AiryAi(1, x)) / (x**2 - AiryAi(x)**2)
# g = Rational(1,2)*ln(x + AiryAi(x)) + Rational(1,2)*ln(x - AiryAi(x))
# f = x**2 * AiryAi(x)
# g = -AiryAi(x) + AiryAi(1, x)*x
# Whittaker functions
# f = WhittakerW(mu + 1, nu, x) / (WhittakerW(mu, nu, x) * x)
# g = x/2 - mu*ln(x) - ln(WhittakerW(mu, nu, x))
|
a3a94d68face31f718ec751b1546e65c7860d2d359291d76c8e0ff2243ca43f3 | from sympy import (
Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh,
tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi,
EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase,
integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan,
Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign,
simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol,
symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar
)
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.functions.elementary.complexes import periodic_argument
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import Integral
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.utilities.pytest import raises, slow, skip, ON_TRAVIS
from sympy.utilities.randtest import verify_numerically
x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b')
n = Symbol('n', integer=True)
f = Function('f')
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() == oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) == S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S(0), S(1), x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == S(3)/2
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
-S(1)/8*log(3 + x) + S(1)/8*log(1 + x) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
qx = integrate(p, x)
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_defined():
p = Poly(x + x**2*y + y**3, x, y)
Qx = integrate(p, (x, 0, 1))
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == Rational(1, 2) + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in sympy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2.0*cos(pi*n)/(pi*n)
assert integrate(-Rational(1)/2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == -S.Half
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
i = Integral(x, (x, a, b))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2))
raises(ValueError, lambda: i.transform(x, 1))
raises(ValueError, lambda: i.transform(x, s*t))
raises(ValueError, lambda: i.transform(x, -s))
raises(ValueError, lambda: i.transform(x, (s, t)))
raises(ValueError, lambda: i.transform(2*x, 2*s))
i = Integral(x**2, (x, 1, 2))
raises(ValueError, lambda: i.transform(x**2, s))
am = Symbol('a', negative=True)
bp = Symbol('b', positive=True)
i = Integral(x, (x, bp, am))
i.transform(x, 2*s)
assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2))
i = Integral(x, (x, a))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2))
def test_issue_4052():
f = S(1)/2*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
def test_double_previously_failing_integrals():
# Double integrals not implemented <- Sure it is!
res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1))
# Old numerical test
assert NS(res, 15) == '2.43790283299492'
# Symbolic test
assert res == -S(4)/3 + 8*sqrt(2)/3
# double integral + zero detection
assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) == S(0)
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert unchanged(Integral, in_3, (x,))
assert Integral(in_3, x) == Integral(in_3, (x,))
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == S(49)/12
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', extended_real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == S(5)/2
assert integrate(Abs(x), (x, 0, 1)) == S(1)/2
assert integrate(Abs(x + 1), (x, 0, 1)) == S(3)/2
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == S(11)/3
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == S(1)/4 + y + y**2
assert e.as_sum(2, method="midpoint").expand() == S(5)/16 + y + y**2
assert e.as_sum(3, method="midpoint").expand() == S(35)/108 + y + y**2
assert e.as_sum(4, method="midpoint").expand() == S(21)/64 + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + S(1)/3 - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == S(1)/8 + y/2 + y**2
assert e.as_sum(3, method="left").expand() == S(5)/27 + 2*y/3 + y**2
assert e.as_sum(4, method="left").expand() == S(7)/32 + 3*y/4 + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + S(1)/3 - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == S(5)/8 + 3*y/2 + y**2
assert e.as_sum(3, method="right").expand() == S(14)/27 + 4*y/3 + y**2
assert e.as_sum(4, method="right").expand() == S(15)/32 + 5*y/4 + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + S(1)/3 + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S(1)/2
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + S(3)/8
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + S(19)/54
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + S(11)/32
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + S(1)/3 + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S(1)/2
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == S(1)/4
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
{x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
-z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(S(1)/4)*erf(log(x)-S(1)/2)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(-S(1)/4)*erfi(log(x)+S(1)/2)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4551():
assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral)
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \
Piecewise((0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))),
(pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))),
(0, True))
# Should be possible to further simplify to:
# Piecewise(
# (0, Eq(k, 0) | Eq(m, 0)),
# (-pi/2, Eq(k, -m)),
# (pi/2, Eq(k, m)),
# (0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
@slow
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True, finite=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy import meijerg
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \
(log(z) + EulerGamma + log(pi))/z - Ci(pi**2*z)/z + log(pi)/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
from sympy import Si
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
from sympy import simplify
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
assert integrate(sin(x)/x, x) == Si(x)
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy import simplify, expand_func, polygamma, gamma
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy import lowergamma, simplify
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) == oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R))
assert not e.has(nan)
# See that it evaluates
assert not e.has(Integral)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**(S(3)/4), x, heurisch=False) == (
-128*x**(S(1)/4)*sin(log(x))/289 + 240*x**(S(1)/4)*cos(log(x))/289 +
(16*x**(S(1)/4)*sin(log(x))/17 + 4*x**(S(1)/4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
(8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368():
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S(1)/2,), (0, 0)),
((0, S(1)/2), (0,)),
polar_lift(s)**2),
True)
),
And(
Abs(periodic_argument(polar_lift(s)**2, oo)) < pi,
cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0,
Ne(s**2, 1))
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Ne(1/s, 1),
Abs(periodic_argument(s, oo)) < pi/2,
Abs(periodic_argument(s, oo)) <= pi/2,
cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_TRAVIS:
skip("Too slow for travis.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
@slow
def test_issue_11876():
assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) == oo
assert integrate(1/x**2, (x, -1, 1)) == oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) == oo
assert integrate(1/x**2, (x, 1, -1)) == -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) == -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6)
def test_issue_14078():
assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S(1)/2)/(1 + exp(x))), x) == \
x - exp(S(1)/2)*log(exp(x) + exp(S(1)/2)/(1 + exp(S(1)/2)))/(exp(S(1)/2) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) == S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) == S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) == S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == \
log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1))
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
@slow
def test_issue_14782_slow():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, 0, 1]) == S(1) / 3 - pi / 16
def test_issue_12081():
f = x**(-S(3)/2)*exp(-x)
assert integrate(f, [x, 0, oo]) == oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
def test_issue_4311():
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - S(81)/2, x <= 3),
(x**4/4 - 9*x**2/2, True))
def test_issue_14241():
x = Symbol('x')
n = Symbol('n', positive=True, integer=True)
assert integrate(n * x ** (n - 1) / (x + 1), x) == \
n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1)
def test_issue_13112():
assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4
def test_issue_14709b():
h = Symbol('h', positive=True)
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert i == 5*h**2*pi/16
|
aff3cb4141aacf03a60e7674112c4c39bf8b07ba263806b4214941a8ab86cfa7 | """Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, Ne, Piecewise, factor, expand_log, cancel,
diff, pi, atan)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
hermite_reduce, polynomial_reduce, residue_reduce, residue_reduce_to_basic,
integrate_primitive, integrate_hyperexponential_polynomial,
integrate_hyperexponential, integrate_hypertangent_polynomial,
integrate_nonlinear_no_specials, integer_powers, DifferentialExtension,
risch_integrate, DecrementLevel, NonElementaryIntegral, recognize_log_derivative,
recognize_derivative, laurent_series)
from sympy.utilities.pytest import raises
from sympy.abc import x, t, nu, z, a, y
t0, t1, t2 = symbols('t:3')
i = Symbol('i')
def test_gcdex_diophantine():
assert gcdex_diophantine(Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15),
Poly(x**3 + x**2 - 4*x - 4), Poly(x**2 - 1)) == \
(Poly((-x**2 + 4*x - 3)/5), Poly((x**3 - 7*x**2 + 16*x - 10)/5))
def test_frac_in():
assert frac_in(Poly((x + 1)/x*t, t), x) == \
(Poly(t*x + t, x), Poly(x, x))
assert frac_in((x + 1)/x*t, x) == \
(Poly(t*x + t, x), Poly(x, x))
assert frac_in((Poly((x + 1)/x*t, t), Poly(t + 1, t)), x) == \
(Poly(t*x + t, x), Poly((1 + t)*x, x))
raises(ValueError, lambda: frac_in((x + 1)/log(x)*t, x))
assert frac_in(Poly((2 + 2*x + x*(1 + x))/(1 + x)**2, t), x, cancel=True) == \
(Poly(x + 2, x), Poly(x + 1, x))
def test_as_poly_1t():
assert as_poly_1t(2/t + t, t, z) in [
Poly(t + 2*z, t, z), Poly(t + 2*z, z, t)]
assert as_poly_1t(2/t + 3/t**2, t, z) in [
Poly(2*z + 3*z**2, t, z), Poly(2*z + 3*z**2, z, t)]
assert as_poly_1t(2/((exp(2) + 1)*t), t, z) in [
Poly(2/(exp(2) + 1)*z, t, z), Poly(2/(exp(2) + 1)*z, z, t)]
assert as_poly_1t(2/((exp(2) + 1)*t) + t, t, z) in [
Poly(t + 2/(exp(2) + 1)*z, t, z), Poly(t + 2/(exp(2) + 1)*z, z, t)]
assert as_poly_1t(S(0), t, z) == Poly(0, t, z)
def test_derivation():
p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
(2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
(21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 +
(-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
(1 - 4*x**2)/(2*x), t)
assert derivation(Poly(1, t), DE) == Poly(0, t)
assert derivation(Poly(t, t), DE) == DE.d
assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})
assert derivation(Poly(x*t*t1, t), DE) == Poly(t*t1 + x*t*t1 + t, t)
assert derivation(Poly(x*t*t1, t), DE, coefficientD=True) == \
Poly((1 + t1)*t, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert derivation(Poly(x, x), DE) == Poly(1, x)
# Test basic option
assert derivation((x + 1)/(x - 1), DE, basic=True) == -2/(1 - 2*x + x**2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert derivation((t + 1)/(t - 1), DE, basic=True) == -2*t/(1 - 2*t + t**2)
assert derivation(t + 1, DE, basic=True) == t
def test_splitfactor():
p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
(2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t, field=True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
assert splitfactor(p, DE) == (Poly(4*x**4*t**3 + (-8*x**3 - 4*x**4)*t**2 +
(4*x**2 + 8*x**3)*t - 4*x**2, t), Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t, domain='ZZ(x)'))
assert splitfactor(Poly(x, t), DE) == (Poly(x, t), Poly(1, t))
r = Poly(-4*x**4*z**2 + 4*x**6*z**2 - z*x**3 - 4*x**5*z**3 + 4*x**3*z**3 + x**4 + z*x**5 - x**6, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert splitfactor(r, DE, coefficientD=True) == \
(Poly(x*z - x**2 - z*x**3 + x**4, t), Poly(-x**2 + 4*x**2*z**2, t))
assert splitfactor_sqf(r, DE, coefficientD=True) == \
(((Poly(x*z - x**2 - z*x**3 + x**4, t), 1),), ((Poly(-x**2 + 4*x**2*z**2, t), 1),))
assert splitfactor(Poly(0, t), DE) == (Poly(0, t), Poly(1, t))
assert splitfactor_sqf(Poly(0, t), DE) == (((Poly(0, t), 1),), ())
def test_canonical_representation():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert canonical_representation(Poly(x - t, t), Poly(t**2, t), DE) == \
(Poly(0, t), (Poly(0, t),
Poly(1, t)), (Poly(-t + x, t),
Poly(t**2, t)))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert canonical_representation(Poly(t**5 + t**3 + x**2*t + 1, t),
Poly((t**2 + 1)**3, t), DE) == \
(Poly(0, t), (Poly(t**5 + t**3 + x**2*t + 1, t),
Poly(t**6 + 3*t**4 + 3*t**2 + 1, t)), (Poly(0, t), Poly(1, t)))
def test_hermite_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert hermite_reduce(Poly(x - t, t), Poly(t**2, t), DE) == \
((Poly(-x, t), Poly(t, t)), (Poly(0, t), Poly(1, t)), (Poly(-x, t), Poly(1, t)))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})
assert hermite_reduce(
Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 - nu**2)*t - x**5/4, t),
Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t), DE) == \
((Poly(-x**2 - 4, t), Poly(4*t**2 + 2*x**2 + 4, t)),
(Poly((-2*nu**2 - x**4)*t - (2*x**3 + 2*x), t), Poly(2*x**2*t**2 + x**4 + 2*x**2, t)),
(Poly(x*t + 1, t), Poly(x, t)))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
a = Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t)
d = Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t)
assert hermite_reduce(a, d, DE) == \
((Poly(3*t**2 + t + 3*x, t), Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t)),
(Poly(0, t), Poly(1, t)),
(Poly(0, t), Poly(1, t)))
assert hermite_reduce(
Poly(-t**2 + 2*t + 2, t),
Poly(-x*t**2 + 2*x*t - x, t), DE) == \
((Poly(3, t), Poly(t - 1, t)),
(Poly(0, t), Poly(1, t)),
(Poly(1, t), Poly(x, t)))
assert hermite_reduce(
Poly(-x**2*t**6 + (-1 - 2*x**3 + x**4)*t**3 + (-3 - 3*x**4)*t**2 - 2*x*t - x - 3*x**2, t),
Poly(x**4*t**6 - 2*x**2*t**3 + 1, t), DE) == \
((Poly(x**3*t + x**4 + 1, t), Poly(x**3*t**3 - x, t)),
(Poly(0, t), Poly(1, t)),
(Poly(-1, t), Poly(x**2, t)))
assert hermite_reduce(
Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t),
Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t), DE) == \
((Poly(3*t**2 + t + 3*x, t), Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t)),
(Poly(0, t), Poly(1, t)),
(Poly(0, t), Poly(1, t)))
def test_polynomial_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert polynomial_reduce(Poly(1 + x*t + t**2, t), DE) == \
(Poly(t, t), Poly(x*t, t))
assert polynomial_reduce(Poly(0, t), DE) == \
(Poly(0, t), Poly(0, t))
def test_laurent_series():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
a = Poly(36, t)
d = Poly((t - 2)*(t**2 - 1)**2, t)
F = Poly(t**2 - 1, t)
n = 2
assert laurent_series(a, d, F, n, DE) == \
(Poly(-3*t**3 + 3*t**2 - 6*t - 8, t), Poly(t**5 + t**4 - 2*t**3 - 2*t**2 + t + 1, t),
[Poly(-3*t**3 - 6*t**2, t), Poly(2*t**6 + 6*t**5 - 8*t**3, t)])
def test_recognize_derivative():
DE = DifferentialExtension(extension={'D': [Poly(1, t)]})
a = Poly(36, t)
d = Poly((t - 2)*(t**2 - 1)**2, t)
assert recognize_derivative(a, d, DE) == False
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
a = Poly(2, t)
d = Poly(t**2 - 1, t)
assert recognize_derivative(a, d, DE) == False
assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert recognize_derivative(Poly(t, t), Poly(1, t), DE) == True
def test_recognize_log_derivative():
a = Poly(2*x**2 + 4*x*t - 2*t - x**2*t, t)
d = Poly((2*x + t)*(t + x**2), t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert recognize_log_derivative(a, d, DE, z) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert recognize_log_derivative(Poly(t + 1, t), Poly(t + x, t), DE) == True
assert recognize_log_derivative(Poly(2, t), Poly(t**2 - 1, t), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert recognize_log_derivative(Poly(1, x), Poly(x**2 - 2, x), DE) == False
assert recognize_log_derivative(Poly(1, x), Poly(x**2 + x, x), DE) == True
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert recognize_log_derivative(Poly(1, t), Poly(t**2 - 2, t), DE) == False
assert recognize_log_derivative(Poly(1, t), Poly(t**2 + t, t), DE) == False
def test_residue_reduce():
a = Poly(2*t**2 - t - x**2, t)
d = Poly(t**3 - x**2*t, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]})
assert residue_reduce(a, d, DE, z, invert=False) == \
([(Poly(z**2 - S(1)/4, z), Poly((1 + 3*x*z - 6*z**2 -
2*x**2 + 4*x**2*z**2)*t - x*z + x**2 + 2*x**2*z**2 - 2*z*x**3, t))], False)
assert residue_reduce(a, d, DE, z, invert=True) == \
([(Poly(z**2 - S(1)/4, z), Poly(t + 2*x*z, t))], False)
assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
([(Poly(z**2 - 1, z), Poly(-2*z*t/x - 2/x, t))], True)
ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True)
assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})
# TODO: Skip or make faster
assert residue_reduce(Poly((-2*nu**2 - x**4)/(2*x**2)*t - (1 + x**2)/x, t),
Poly(t**2 + 1 + x**2/2, t), DE, z) == \
([(Poly(z + S(1)/2, z, domain='QQ'), Poly(t**2 + 1 + x**2/2, t, domain='EX'))], True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert residue_reduce(Poly(-2*x*t + 1 - x**2, t),
Poly(t**2 + 2*x*t + 1 + x**2, t), DE, z) == \
([(Poly(z**2 + S(1)/4, z), Poly(t + x + 2*z, t))], True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert residue_reduce(Poly(t, t), Poly(t + sqrt(2), t), DE, z) == \
([(Poly(z - 1, z), Poly(t + sqrt(2), t))], True)
def test_integrate_hyperexponential():
# TODO: Add tests for integrate_hyperexponential() from the book
a = Poly((1 + 2*t1 + t1**2 + 2*t1**3)*t**2 + (1 + t1**2)*t + 1 + t1**2, t)
d = Poly(1, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1),
Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]})
assert integrate_hyperexponential(a, d, DE) == \
(exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True)
a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t)
assert integrate_hyperexponential(a, d, DE) == \
((x + tan(x))*exp(tan(x)), 0, True)
a = Poly(t, t)
d = Poly(1, t)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*x*t, t)],
'Tfuncs': [Lambda(i, exp(x**2))]})
assert integrate_hyperexponential(a, d, DE) == \
(0, NonElementaryIntegral(exp(x**2), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True)
a = Poly(25*t**6 - 10*t**5 + 7*t**4 - 8*t**3 + 13*t**2 + 2*t - 1, t)
d = Poly(25*t**6 + 35*t**4 + 11*t**2 + 1, t)
assert integrate_hyperexponential(a, d, DE) == \
(-(11 - 10*exp(x))/(5 + 25*exp(2*x)) + log(1 + exp(2*x)), -1, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(t0*t, t)],
'Tfuncs': [exp, Lambda(i, exp(exp(i)))]})
assert integrate_hyperexponential(Poly(2*t0*t**2, t), Poly(1, t), DE) == (exp(2*exp(x)), 0, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(-t0*t, t)],
'Tfuncs': [exp, Lambda(i, exp(-exp(i)))]})
assert integrate_hyperexponential(Poly(-27*exp(9) - 162*t0*exp(9) +
27*x*t0*exp(9), t), Poly((36*exp(18) + x**2*exp(18) - 12*x*exp(18))*t, t), DE) == \
(27*exp(exp(x))/(-6*exp(9) + x*exp(9)), 0, True)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(Poly(x**2/2*t, t), Poly(1, t), DE) == \
((2 - 2*x + x**2)*exp(x)/2, 0, True)
assert integrate_hyperexponential(Poly(1 + t, t), Poly(t, t), DE) == \
(-exp(-x), 1, True) # x - exp(-x)
assert integrate_hyperexponential(Poly(x, t), Poly(t + 1, t), DE) == \
(0, NonElementaryIntegral(x/(1 + exp(x)), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)],
'Tfuncs': [log, Lambda(i, exp(i**2))]})
elem, nonelem, b = integrate_hyperexponential(Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 +
(8*t0*x**7 - 8*t0*x**6 - 4*t0*x**5 + 2*t0*x**3 + 2*t0*x**2 - t0*x +
24*x**8 - 36*x**6 - 4*x**5 + 22*x**4 + 4*x**3 - 7*x**2 - x + 1)*t1**3
+ (8*t0*x**8 - 4*t0*x**6 - 16*t0*x**5 - 2*t0*x**4 + 12*t0*x**3 +
t0*x**2 - 2*t0*x + 24*x**9 - 36*x**7 - 8*x**6 + 22*x**5 + 12*x**4 -
7*x**3 - 6*x**2 + x + 1)*t1**2 + (8*t0*x**8 - 8*t0*x**6 - 16*t0*x**5 +
6*t0*x**4 + 10*t0*x**3 - 2*t0*x**2 - t0*x + 8*x**10 - 12*x**8 - 4*x**7
+ 2*x**6 + 12*x**5 + 3*x**4 - 9*x**3 - x**2 + 2*x)*t1 + 8*t0*x**7 -
12*t0*x**6 - 4*t0*x**5 + 8*t0*x**4 - t0*x**2 - 4*x**7 + 4*x**6 +
4*x**5 - 4*x**4 - x**3 + x**2, t1), Poly((8*x**7 - 12*x**5 + 6*x**3 -
x)*t1**4 + (24*x**8 + 8*x**7 - 36*x**6 - 12*x**5 + 18*x**4 + 6*x**3 -
3*x**2 - x)*t1**3 + (24*x**9 + 24*x**8 - 36*x**7 - 36*x**6 + 18*x**5 +
18*x**4 - 3*x**3 - 3*x**2)*t1**2 + (8*x**10 + 24*x**9 - 12*x**8 -
36*x**7 + 6*x**6 + 18*x**5 - x**4 - 3*x**3)*t1 + 8*x**10 - 12*x**8 +
6*x**6 - x**4, t1), DE)
assert factor(elem) == -((x - 1)*log(x)/((x + exp(x**2))*(2*x**2 - 1)))
assert (nonelem, b) == (NonElementaryIntegral(exp(x**2)/(exp(x**2) + 1), x), False)
def test_integrate_hyperexponential_polynomial():
# Without proper cancellation within integrate_hyperexponential_polynomial(),
# this will take a long time to complete, and will return a complicated
# expression
p = Poly((-28*x**11*t0 - 6*x**8*t0 + 6*x**9*t0 - 15*x**8*t0**2 +
15*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 20*x**6*t0**3 +
20*x**7*t0**3 - 15*x**6*t0**4 + 15*x**5*t0**4 + 140*x**8*t0**4 -
84*x**7*t0**5 - 6*x**4*t0**5 + 6*x**5*t0**5 + x**3*t0**6 - x**4*t0**6 +
28*x**6*t0**6 - 4*x**5*t0**7 + x**9 - x**10 + 4*x**12)/(-8*x**11*t0 +
28*x**10*t0**2 - 56*x**9*t0**3 + 70*x**8*t0**4 - 56*x**7*t0**5 +
28*x**6*t0**6 - 8*x**5*t0**7 + x**4*t0**8 + x**12)*t1**2 +
(-28*x**11*t0 - 12*x**8*t0 + 12*x**9*t0 - 30*x**8*t0**2 +
30*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 40*x**6*t0**3 +
40*x**7*t0**3 - 30*x**6*t0**4 + 30*x**5*t0**4 + 140*x**8*t0**4 -
84*x**7*t0**5 - 12*x**4*t0**5 + 12*x**5*t0**5 - 2*x**4*t0**6 +
2*x**3*t0**6 + 28*x**6*t0**6 - 4*x**5*t0**7 + 2*x**9 - 2*x**10 +
4*x**12)/(-8*x**11*t0 + 28*x**10*t0**2 - 56*x**9*t0**3 +
70*x**8*t0**4 - 56*x**7*t0**5 + 28*x**6*t0**6 - 8*x**5*t0**7 +
x**4*t0**8 + x**12)*t1 + (-2*x**2*t0 + 2*x**3*t0 + x*t0**2 -
x**2*t0**2 + x**3 - x**4)/(-4*x**5*t0 + 6*x**4*t0**2 - 4*x**3*t0**3 +
x**2*t0**4 + x**6), t1, z, expand=False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)]})
assert integrate_hyperexponential_polynomial(p, DE, z) == (
Poly((x - t0)*t1**2 + (-2*t0 + 2*x)*t1, t1), Poly(-2*x*t0 + x**2 +
t0**2, t1), True)
DE = DifferentialExtension(extension={'D':[Poly(1, x), Poly(t0, t0)]})
assert integrate_hyperexponential_polynomial(Poly(0, t0), DE, z) == (
Poly(0, t0), Poly(1, t0), True)
def test_integrate_hyperexponential_returns_piecewise():
a, b = symbols('a b')
DE = DifferentialExtension(a**x, x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(x*log(a))/log(a), Ne(log(a), 0)), (x, True)), 0, True)
DE = DifferentialExtension(a**(b*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(b*x*log(a))/(b*log(a)), Ne(b*log(a), 0)), (x, True)), 0, True)
DE = DifferentialExtension(exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(a*x)/a, Ne(a, 0)), (x, True)), 0, True)
DE = DifferentialExtension(x*exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((a*x - 1)*exp(a*x)/a**2, Ne(a**2, 0)), (x**2/2, True)), 0, True)
DE = DifferentialExtension(x**2*exp(a*x), x)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((x**2*a**2 - 2*a*x + 2)*exp(a*x)/a**3, Ne(a**3, 0)),
(x**3/3, True)), 0, True)
DE = DifferentialExtension(x**y + z, y)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
(exp(log(x)*y)/log(x), Ne(log(x), 0)), (y, True)), z, True)
DE = DifferentialExtension(x**y + z + x**(2*y), y)
assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise(
((exp(2*log(x)*y)*log(x) +
2*exp(log(x)*y)*log(x))/(2*log(x)**2), Ne(2*log(x)**2, 0)),
(2*y, True),
), z, True)
# TODO: Add a test where two different parts of the extension use a
# Piecewise, like y**x + z**x.
def test_issue_13947():
a, t, s = symbols('a t s')
assert risch_integrate(2**(-pi)/(2**t + 1), t) == \
2**(-pi)*t - 2**(-pi)*log(2**t + 1)/log(2)
assert risch_integrate(a**(t - s)/(a**t + 1), t) == \
exp(-s*log(a))*log(a**t + 1)/log(a)
def test_integrate_primitive():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)],
'Tfuncs': [log]})
assert integrate_primitive(Poly(t, t), Poly(1, t), DE) == (x*log(x), -1, True)
assert integrate_primitive(Poly(x, t), Poly(t, t), DE) == (0, NonElementaryIntegral(x/log(x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)],
'Tfuncs': [log, Lambda(i, log(i + 1))]})
assert integrate_primitive(Poly(t1, t2), Poly(t2, t2), DE) == \
(0, NonElementaryIntegral(log(x)/log(1 + x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x*t1), t2)],
'Tfuncs': [log, Lambda(i, log(log(i)))]})
assert integrate_primitive(Poly(t2, t2), Poly(t1, t2), DE) == \
(0, NonElementaryIntegral(log(log(x))/log(x), x), False)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0)],
'Tfuncs': [log]})
assert integrate_primitive(Poly(x**2*t0**3 + (3*x**2 + x)*t0**2 + (3*x**2
+ 2*x)*t0 + x**2 + x, t0), Poly(x**2*t0**4 + 4*x**2*t0**3 + 6*x**2*t0**2 +
4*x**2*t0 + x**2, t0), DE) == \
(-1/(log(x) + 1), NonElementaryIntegral(1/(log(x) + 1), x), False)
def test_integrate_hypertangent_polynomial():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert integrate_hypertangent_polynomial(Poly(t**2 + x*t + 1, t), DE) == \
(Poly(t, t), Poly(x/2, t))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(a*(t**2 + 1), t)]})
assert integrate_hypertangent_polynomial(Poly(t**5, t), DE) == \
(Poly(1/(4*a)*t**4 - 1/(2*a)*t**2, t), Poly(1/(2*a), t))
def test_integrate_nonlinear_no_specials():
a, d, = Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 -
nu**2)*t - x**5/4, t), Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t)
# f(x) == phi_nu(x), the logarithmic derivative of J_v, the Bessel function,
# which has no specials (see Chapter 5, note 4 of Bronstein's book).
f = Function('phi_nu')
DE = DifferentialExtension(extension={'D': [Poly(1, x),
Poly(-t**2 - t/x - (1 - nu**2/x**2), t)], 'Tfuncs': [f]})
assert integrate_nonlinear_no_specials(a, d, DE) == \
(-log(1 + f(x)**2 + x**2/2)/2 - (4 + x**2)/(4 + 2*x**2 + 4*f(x)**2), True)
assert integrate_nonlinear_no_specials(Poly(t, t), Poly(1, t), DE) == \
(0, False)
def test_integer_powers():
assert integer_powers([x, x/2, x**2 + 1, 2*x/3]) == [
(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]),
(1 + x**2, [(1 + x**2, 1)])]
def test_DifferentialExtension_exp():
assert DifferentialExtension(exp(x) + exp(x**2), x)._important_attrs == \
(Poly(t1 + t0, t1), Poly(1, t1), [Poly(1, x,), Poly(t0, t0),
Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(2*x), x)._important_attrs == \
(Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0, t0)], [x, t0],
[Lambda(i, exp(i))], [], [None, 'exp'], [None, x])
assert DifferentialExtension(exp(x) + exp(x/2), x)._important_attrs == \
(Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)],
[x, t0], [Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2), x)._important_attrs == \
(Poly((1 + t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0),
Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2 + 1), x)._important_attrs == \
(Poly((1 + S.Exp1*t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x),
Poly(t0, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)),
Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2), x)._important_attrs == \
(Poly((t0 + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x),
Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1],
[Lambda(i, exp(i/2)), Lambda(i, exp(i**2))],
[(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'], [None, x/2, x**2])
assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2 + 3), x)._important_attrs == \
(Poly((t0*exp(3) + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x),
Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i/2)),
Lambda(i, exp(i**2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'],
[None, x/2, x**2])
assert DifferentialExtension(sqrt(exp(x)), x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0],
[Lambda(i, exp(i/2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp'], [None, x/2])
assert DifferentialExtension(exp(x/2), x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0],
[Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2])
def test_DifferentialExtension_log():
assert DifferentialExtension(log(x)*log(x + 1)*log(2*x**2 + 2*x), x)._important_attrs == \
(Poly(t0*t1**2 + (t0*log(2) + t0**2)*t1, t1), Poly(1, t1),
[Poly(1, x), Poly(1/x, t0),
Poly(1/(x + 1), t1, expand=False)], [x, t0, t1],
[Lambda(i, log(i)), Lambda(i, log(i + 1))], [], [None, 'log', 'log'],
[None, x, x + 1])
assert DifferentialExtension(x**x*log(x), x)._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0),
Poly((1 + t0)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)),
Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)], [None, 'log', 'exp'],
[None, x, t0*x])
def test_DifferentialExtension_symlog():
# See comment on test_risch_integrate below
assert DifferentialExtension(log(x**x), x)._important_attrs == \
(Poly(t0*x, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly((t0 +
1)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i*t0))],
[(exp(x*log(x)), x**x)], [None, 'log', 'exp'], [None, x, t0*x])
assert DifferentialExtension(log(x**y), x)._important_attrs == \
(Poly(y*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [(y*log(x), log(x**y))], [None, 'log'],
[None, x])
assert DifferentialExtension(log(sqrt(x)), x)._important_attrs == \
(Poly(t0, t0), Poly(2, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [(log(x)/2, log(sqrt(x)))], [None, 'log'],
[None, x])
def test_DifferentialExtension_handle_first():
assert DifferentialExtension(exp(x)*log(x), x, handle_first='log')._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0),
Poly(t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i))],
[], [None, 'log', 'exp'], [None, x, x])
assert DifferentialExtension(exp(x)*log(x), x, handle_first='exp')._important_attrs == \
(Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0),
Poly(1/x, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, log(i))],
[], [None, 'exp', 'log'], [None, x, x])
# This one must have the log first, regardless of what we set it to
# (because the log is inside of the exponential: x**x == exp(x*log(x)))
assert DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x,
handle_first='exp')._important_attrs == \
DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x,
handle_first='log')._important_attrs == \
(Poly((-1 + x - x*t0**2)*t1, t1), Poly(x, t1),
[Poly(1, x), Poly(1/x, t0), Poly((1 + t0)*t1, t1)], [x, t0, t1],
[Lambda(i, log(i)), Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)],
[None, 'log', 'exp'], [None, x, t0*x])
def test_DifferentialExtension_all_attrs():
# Test 'unimportant' attributes
DE = DifferentialExtension(exp(x)*log(x), x, handle_first='exp')
assert DE.f == exp(x)*log(x)
assert DE.newf == t0*t1
assert DE.x == x
assert DE.cases == ['base', 'exp', 'primitive']
assert DE.case == 'primitive'
assert DE.level == -1
assert DE.t == t1 == DE.T[DE.level]
assert DE.d == Poly(1/x, t1) == DE.D[DE.level]
raises(ValueError, lambda: DE.increment_level())
DE.decrement_level()
assert DE.level == -2
assert DE.t == t0 == DE.T[DE.level]
assert DE.d == Poly(t0, t0) == DE.D[DE.level]
assert DE.case == 'exp'
DE.decrement_level()
assert DE.level == -3
assert DE.t == x == DE.T[DE.level] == DE.x
assert DE.d == Poly(1, x) == DE.D[DE.level]
assert DE.case == 'base'
raises(ValueError, lambda: DE.decrement_level())
DE.increment_level()
DE.increment_level()
assert DE.level == -1
assert DE.t == t1 == DE.T[DE.level]
assert DE.d == Poly(1/x, t1) == DE.D[DE.level]
assert DE.case == 'primitive'
# Test methods
assert DE.indices('log') == [2]
assert DE.indices('exp') == [1]
def test_DifferentialExtension_extension_flag():
raises(ValueError, lambda: DifferentialExtension(extension={'T': [x, t]}))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t],
None, None, None, None)
assert DE.d == Poly(t, t)
assert DE.t == t
assert DE.level == -1
assert DE.cases == ['base', 'exp']
assert DE.x == x
assert DE.case == 'exp'
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)],
'exts': [None, 'exp'], 'extargs': [None, x]})
assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t],
None, None, [None, 'exp'], [None, x])
raises(ValueError, lambda: DifferentialExtension())
def test_DifferentialExtension_misc():
# Odd ends
assert DifferentialExtension(sin(y)*exp(x), x)._important_attrs == \
(Poly(sin(y)*t0, t0, domain='ZZ[sin(y)]'), Poly(1, t0, domain='ZZ'),
[Poly(1, x, domain='ZZ'), Poly(t0, t0, domain='ZZ')], [x, t0],
[Lambda(i, exp(i))], [], [None, 'exp'], [None, x])
raises(NotImplementedError, lambda: DifferentialExtension(sin(x), x))
assert DifferentialExtension(10**x, x)._important_attrs == \
(Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(log(10)*t0, t0)], [x, t0],
[Lambda(i, exp(i*log(10)))], [(exp(x*log(10)), 10**x)], [None, 'exp'],
[None, x*log(10)])
assert DifferentialExtension(log(x) + log(x**2), x)._important_attrs in [
(Poly(3*t0, t0), Poly(2, t0), [Poly(1, x), Poly(2/x, t0)], [x, t0],
[Lambda(i, log(i**2))], [], [None, ], [], [1], [x**2]),
(Poly(3*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0],
[Lambda(i, log(i))], [], [None, 'log'], [None, x])]
assert DifferentialExtension(S.Zero, x)._important_attrs == \
(Poly(0, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None])
assert DifferentialExtension(tan(atan(x).rewrite(log)), x)._important_attrs == \
(Poly(x, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None])
def test_DifferentialExtension_Rothstein():
# Rothstein's integral
f = (2581284541*exp(x) + 1757211400)/(39916800*exp(3*x) +
119750400*exp(x)**2 + 119750400*exp(x) + 39916800)*exp(1/(exp(x) + 1) - 10*x)
assert DifferentialExtension(f, x)._important_attrs == \
(Poly((1757211400 + 2581284541*t0)*t1, t1), Poly(39916800 +
119750400*t0 + 119750400*t0**2 + 39916800*t0**3, t1),
[Poly(1, x), Poly(t0, t0), Poly(-(10 + 21*t0 + 10*t0**2)/(1 + 2*t0 +
t0**2)*t1, t1, domain='ZZ(t0)')], [x, t0, t1],
[Lambda(i, exp(i)), Lambda(i, exp(1/(t0 + 1) - 10*i))], [],
[None, 'exp', 'exp'], [None, x, 1/(t0 + 1) - 10*x])
class _TestingException(Exception):
"""Dummy Exception class for testing."""
pass
def test_DecrementLevel():
DE = DifferentialExtension(x*log(exp(x) + 1), x)
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
with DecrementLevel(DE):
assert DE.level == -2
assert DE.t == t0
assert DE.d == Poly(t0, t0)
assert DE.case == 'exp'
with DecrementLevel(DE):
assert DE.level == -3
assert DE.t == x
assert DE.d == Poly(1, x)
assert DE.case == 'base'
assert DE.level == -2
assert DE.t == t0
assert DE.d == Poly(t0, t0)
assert DE.case == 'exp'
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
# Test that __exit__ is called after an exception correctly
try:
with DecrementLevel(DE):
raise _TestingException
except _TestingException:
pass
else:
raise AssertionError("Did not raise.")
assert DE.level == -1
assert DE.t == t1
assert DE.d == Poly(t0/(t0 + 1), t1)
assert DE.case == 'primitive'
def test_risch_integrate():
assert risch_integrate(t0*exp(x), x) == t0*exp(x)
assert risch_integrate(sin(x), x, rewrite_complex=True) == -exp(I*x)/2 - exp(-I*x)/2
# From my GSoC writeup
assert risch_integrate((1 + 2*x**2 + x**4 + 2*x**3*exp(2*x**2))/
(x**4*exp(x**2) + 2*x**2*exp(x**2) + exp(x**2)), x) == \
NonElementaryIntegral(exp(-x**2), x) + exp(x**2)/(1 + x**2)
assert risch_integrate(0, x) == 0
# also tests prde_cancel()
e1 = log(x/exp(x) + 1)
ans1 = risch_integrate(e1, x)
assert ans1 == (x*log(x*exp(-x) + 1) + NonElementaryIntegral((x**2 - x)/(x + exp(x)), x))
assert cancel(diff(ans1, x) - e1) == 0
# also tests issue #10798
e2 = (log(-1/y)/2 - log(1/y)/2)/y - (log(1 - 1/y)/2 - log(1 + 1/y)/2)/y
ans2 = risch_integrate(e2, y)
assert ans2 == log(1/y)*log(1 - 1/y)/2 - log(1/y)*log(1 + 1/y)/2 + \
NonElementaryIntegral((I*pi*y**2 - 2*y*log(1/y) - I*pi)/(2*y**3 - 2*y), y)
assert expand_log(cancel(diff(ans2, y) - e2), force=True) == 0
# These are tested here in addition to in test_DifferentialExtension above
# (symlogs) to test that backsubs works correctly. The integrals should be
# written in terms of the original logarithms in the integrands.
# XXX: Unfortunately, making backsubs work on this one is a little
# trickier, because x**x is converted to exp(x*log(x)), and so log(x**x)
# is converted to x*log(x). (x**2*log(x)).subs(x*log(x), log(x**x)) is
# smart enough, the issue is that these splits happen at different places
# in the algorithm. Maybe a heuristic is in order
assert risch_integrate(log(x**x), x) == x**2*log(x)/2 - x**2/4
assert risch_integrate(log(x**y), x) == x*log(x**y) - x*y
assert risch_integrate(log(sqrt(x)), x) == x*log(sqrt(x)) - x/2
def test_risch_integrate_float():
assert risch_integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) == -2.4*exp(8*x) - 12.0*exp(5*x)
def test_NonElementaryIntegral():
assert isinstance(risch_integrate(exp(x**2), x), NonElementaryIntegral)
assert isinstance(risch_integrate(x**x*log(x), x), NonElementaryIntegral)
# Make sure methods of Integral still give back a NonElementaryIntegral
assert isinstance(NonElementaryIntegral(x**x*t0, x).subs(t0, log(x)), NonElementaryIntegral)
def test_xtothex():
a = risch_integrate(x**x, x)
assert a == NonElementaryIntegral(x**x, x)
assert isinstance(a, NonElementaryIntegral)
def test_DifferentialExtension_equality():
DE1 = DE2 = DifferentialExtension(log(x), x)
assert DE1 == DE2
def test_DifferentialExtension_printing():
DE = DifferentialExtension(exp(2*x**2) + log(exp(x**2) + 1), x)
assert repr(DE) == ("DifferentialExtension(dict([('f', exp(2*x**2) + log(exp(x**2) + 1)), "
"('x', x), ('T', [x, t0, t1]), ('D', [Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), "
"Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]), ('fa', Poly(t1 + t0**2, t1, domain='ZZ[t0]')), "
"('fd', Poly(1, t1, domain='ZZ')), ('Tfuncs', [Lambda(i, exp(i**2)), Lambda(i, log(t0 + 1))]), "
"('backsubs', []), ('exts', [None, 'exp', 'log']), ('extargs', [None, x**2, t0 + 1]), "
"('cases', ['base', 'exp', 'primitive']), ('case', 'primitive'), ('t', t1), "
"('d', Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')), ('newf', t0**2 + t1), ('level', -1), "
"('dummy', False)]))")
assert str(DE) == ("DifferentialExtension({fa=Poly(t1 + t0**2, t1, domain='ZZ[t0]'), "
"fd=Poly(1, t1, domain='ZZ'), D=[Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), "
"Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]})")
|
a070c17e8d65ac268d60de2b1d91682184a6d8a17705cea4fefcf76c236d148e | from sympy import (sin, cos, tan, sec, csc, cot, log, exp, atan, asin, acos,
Symbol, Integral, integrate, pi, Dummy, Derivative,
diff, I, sqrt, erf, Piecewise, Ne, symbols, Rational,
And, Heaviside, S, asinh, acosh, atanh, acoth, expand,
Function, jacobi, gegenbauer, chebyshevt, chebyshevu,
legendre, hermite, laguerre, assoc_laguerre, uppergamma, li,
Ei, Ci, Si, Chi, Shi, fresnels, fresnelc, polylog, erfi,
sinh, cosh, elliptic_f, elliptic_e)
from sympy.integrals.manualintegrate import (manualintegrate, find_substitutions,
_parts_rule, integral_steps, contains_dont_know, manual_subs)
from sympy.utilities.pytest import raises, slow
x, y, z, u, n, a, b, c = symbols('x y z u n a b c')
f = Function('f')
def test_find_substitutions():
assert find_substitutions((cot(x)**2 + 1)**2*csc(x)**2*cot(x)**2, x, u) == \
[(cot(x), 1, -u**6 - 2*u**4 - u**2)]
assert find_substitutions((sec(x)**2 + tan(x) * sec(x)) / (sec(x) + tan(x)),
x, u) == [(sec(x) + tan(x), 1, 1/u)]
assert find_substitutions(x * exp(-x**2), x, u) == [(-x**2, -S.Half, exp(u))]
def test_manualintegrate_polynomials():
assert manualintegrate(y, x) == x*y
assert manualintegrate(exp(2), x) == x * exp(2)
assert manualintegrate(x**2, x) == x**3 / 3
assert manualintegrate(3 * x**2 + 4 * x**3, x) == x**3 + x**4
assert manualintegrate((x + 2)**3, x) == (x + 2)**4 / 4
assert manualintegrate((3*x + 4)**2, x) == (3*x + 4)**3 / 9
assert manualintegrate((u + 2)**3, u) == (u + 2)**4 / 4
assert manualintegrate((3*u + 4)**2, u) == (3*u + 4)**3 / 9
def test_manualintegrate_exponentials():
assert manualintegrate(exp(2*x), x) == exp(2*x) / 2
assert manualintegrate(2**x, x) == (2 ** x) / log(2)
assert manualintegrate(1 / x, x) == log(x)
assert manualintegrate(1 / (2*x + 3), x) == log(2*x + 3) / 2
assert manualintegrate(log(x)**2 / x, x) == log(x)**3 / 3
def test_manualintegrate_parts():
assert manualintegrate(exp(x) * sin(x), x) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x)
assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4
assert manualintegrate(log(x), x) == x * log(x) - x
assert manualintegrate((3*x**2 + 5) * exp(x), x) == \
3*x**2*exp(x) - 6*x*exp(x) + 11*exp(x)
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
# Make sure _parts_rule does not go into an infinite loop here
assert manualintegrate(log(1/x)/(x + 1), x).has(Integral)
# Make sure _parts_rule doesn't pick u = constant but can pick dv =
# constant if necessary, e.g. for integrate(atan(x))
assert _parts_rule(cos(x), x) == None
assert _parts_rule(exp(x), x) == None
assert _parts_rule(x**2, x) == None
result = _parts_rule(atan(x), x)
assert result[0] == atan(x) and result[1] == 1
def test_manualintegrate_trigonometry():
assert manualintegrate(sin(x), x) == -cos(x)
assert manualintegrate(tan(x), x) == -log(cos(x))
assert manualintegrate(sec(x), x) == log(sec(x) + tan(x))
assert manualintegrate(csc(x), x) == -log(csc(x) + cot(x))
assert manualintegrate(sin(x) * cos(x), x) in [sin(x) ** 2 / 2, -cos(x)**2 / 2]
assert manualintegrate(-sec(x) * tan(x), x) == -sec(x)
assert manualintegrate(csc(x) * cot(x), x) == -csc(x)
assert manualintegrate(sec(x)**2, x) == tan(x)
assert manualintegrate(csc(x)**2, x) == -cot(x)
assert manualintegrate(x * sec(x**2), x) == log(tan(x**2) + sec(x**2))/2
assert manualintegrate(cos(x)*csc(sin(x)), x) == -log(cot(sin(x)) + csc(sin(x)))
assert manualintegrate(cos(3*x)*sec(x), x) == -x + sin(2*x)
assert manualintegrate(sin(3*x)*sec(x), x) == \
-3*log(cos(x)) + 2*log(cos(x)**2) - 2*cos(x)**2
def test_manualintegrate_trigpowers():
assert manualintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3
assert manualintegrate(sin(x)**2 * cos(x) **2, x) == \
x / 8 - sin(4*x) / 32
assert manualintegrate(sin(x) * cos(x)**3, x) == -cos(x)**4 / 4
assert manualintegrate(sin(x)**3 * cos(x)**2, x) == \
cos(x)**5 / 5 - cos(x)**3 / 3
assert manualintegrate(tan(x)**3 * sec(x), x) == sec(x)**3/3 - sec(x)
assert manualintegrate(tan(x) * sec(x) **2, x) == sec(x)**2/2
assert manualintegrate(cot(x)**5 * csc(x), x) == \
-csc(x)**5/5 + 2*csc(x)**3/3 - csc(x)
assert manualintegrate(cot(x)**2 * csc(x)**6, x) == \
-cot(x)**7/7 - 2*cot(x)**5/5 - cot(x)**3/3
def test_manualintegrate_inversetrig():
# atan
assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x))
assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6
assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2
assert manualintegrate(1/(a + b*x**2), x) == \
Piecewise((atan(x/sqrt(a/b))/(b*sqrt(a/b)), a/b > 0), \
(-acoth(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 > -a/b)), \
(-atanh(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 < -a/b)))
assert manualintegrate(1/(4 + b*x**2), x) == \
Piecewise((atan(x/(2*sqrt(1/b)))/(2*b*sqrt(1/b)), 4/b > 0), \
(-acoth(x/(2*sqrt(-1/b)))/(2*b*sqrt(-1/b)), And(4/b < 0, x**2 > -4/b)), \
(-atanh(x/(2*sqrt(-1/b)))/(2*b*sqrt(-1/b)), And(4/b < 0, x**2 < -4/b)))
assert manualintegrate(1/(a + 4*x**2), x) == \
Piecewise((atan(2*x/sqrt(a))/(2*sqrt(a)), a/4 > 0), \
(-acoth(2*x/sqrt(-a))/(2*sqrt(-a)), And(a/4 < 0, x**2 > -a/4)), \
(-atanh(2*x/sqrt(-a))/(2*sqrt(-a)), And(a/4 < 0, x**2 < -a/4)))
assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4
# asin
assert manualintegrate(1/sqrt(1-x**2), x) == asin(x)
assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2
assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x)
assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(3*x/2)/3
# asinh
assert manualintegrate(1/sqrt(x**2 + 1), x) == \
asinh(x)
assert manualintegrate(1/sqrt(x**2 + 4), x) == \
asinh(x/2)
assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
asinh(x)/2
assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
asinh(2*x)/2
assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \
Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0))
assert manualintegrate(1/sqrt(a + x**2), x) == \
Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0))
# acosh
assert manualintegrate(1/sqrt(x**2 - 1), x) == \
acosh(x)
assert manualintegrate(1/sqrt(x**2 - 4), x) == \
acosh(x/2)
assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
acosh(x)/2
assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
acosh(3*x)/3
assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \
Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0))
assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \
Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0))
# piecewise
assert manualintegrate(1/sqrt(a-b*x**2), x) == \
Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)),
(sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)),
(sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0)))
assert manualintegrate(1/sqrt(a + b*x**2), x) == \
Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)),
(sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)),
(sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0)))
def test_manualintegrate_trig_substitution():
assert manualintegrate(sqrt(16*x**2 - 9)/x, x) == \
Piecewise((sqrt(16*x**2 - 9) - 3*acos(3/(4*x)),
And(x < 3*S.One/4, x > -3*S.One/4)))
assert manualintegrate(1/(x**4 * sqrt(25-x**2)), x) == \
Piecewise((-sqrt(-x**2/25 + 1)/(125*x) -
(-x**2/25 + 1)**(3*S.Half)/(15*x**3), And(x < 5, x > -5)))
assert manualintegrate(x**7/(49*x**2 + 1)**(3 * S.Half), x) == \
((49*x**2 + 1)**(5*S.Half)/28824005 -
(49*x**2 + 1)**(3*S.Half)/5764801 +
3*sqrt(49*x**2 + 1)/5764801 + 1/(5764801*sqrt(49*x**2 + 1)))
def test_manualintegrate_trivial_substitution():
assert manualintegrate((exp(x) - exp(-x))/x, x) == -Ei(-x) + Ei(x)
f = Function('f')
assert manualintegrate((f(x) - f(-x))/x, x) == \
-Integral(f(-x)/x, x) + Integral(f(x)/x, x)
def test_manualintegrate_rational():
assert manualintegrate(1/(4 - x**2), x) == Piecewise((acoth(x/2)/2, x**2 > 4), (atanh(x/2)/2, x**2 < 4))
assert manualintegrate(1/(-1 + x**2), x) == Piecewise((-acoth(x), x**2 > 1), (-atanh(x), x**2 < 1))
def test_manualintegrate_special():
f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = x**(S(1)/3)*exp(-x/8), -16*uppergamma(S(4)/3, x/8)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(2*x)/x, Ei(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f = sin(x**2 + 4*x + 1)
F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cosh(x/2)/x, Chi(x/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(x**2)/x, Ci(x**2)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 1/log(2*x + 1), li(2*x + 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, S(2)/3)/3
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, -S(9)/4)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
def test_manualintegrate_derivative():
assert manualintegrate(pi * Derivative(x**2 + 2*x + 3), x) == \
pi * ((x**2 + 2*x + 3))
assert manualintegrate(Derivative(x**2 + 2*x + 3, y), x) == \
Integral(Derivative(x**2 + 2*x + 3, y))
assert manualintegrate(Derivative(sin(x), x, x, x, y), x) == \
Derivative(sin(x), x, x, y)
def test_manualintegrate_Heaviside():
assert manualintegrate(Heaviside(x), x) == x*Heaviside(x)
assert manualintegrate(x*Heaviside(2), x) == x**2/2
assert manualintegrate(x*Heaviside(-2), x) == 0
assert manualintegrate(x*Heaviside( x), x) == x**2*Heaviside( x)/2
assert manualintegrate(x*Heaviside(-x), x) == x**2*Heaviside(-x)/2
assert manualintegrate(Heaviside(2*x + 4), x) == (x+2)*Heaviside(2*x + 4)
assert manualintegrate(x*Heaviside(x), x) == x**2*Heaviside(x)/2
assert manualintegrate(Heaviside(x + 1)*Heaviside(1 - x)*x**2, x) == \
((x**3/3 + S(1)/3)*Heaviside(x + 1) - S(2)/3)*Heaviside(-x + 1)
y = Symbol('y')
assert manualintegrate(sin(7 + x)*Heaviside(3*x - 7), x) == \
(- cos(x + 7) + cos(S(28)/3))*Heaviside(3*x - S(7))
assert manualintegrate(sin(y + x)*Heaviside(3*x - y), x) == \
(cos(4*y/3) - cos(x + y))*Heaviside(3*x - y)
def test_manualintegrate_orthogonal_poly():
n = symbols('n')
a, b = 7, S(5)/3
polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
assoc_laguerre(n, a, x)]
for p in polys:
integral = manualintegrate(p, x)
for deg in [-2, -1, 0, 1, 3, 5, 8]:
# some accept negative "degree", some do not
try:
p_subbed = p.subs(n, deg)
except ValueError:
continue
assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0
# can also integrate simple expressions with these polynomials
q = x*p.subs(x, 2*x + 1)
integral = manualintegrate(q, x)
for deg in [2, 4, 7]:
assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0
# cannot integrate with respect to any other parameter
t = symbols('t')
for i in range(len(p.args) - 1):
new_args = list(p.args)
new_args[i] = t
assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
def test_issue_6799():
r, x, phi = map(Symbol, 'r x phi'.split())
n = Symbol('n', integer=True, positive=True)
integrand = (cos(n*(x-phi))*cos(n*x))
limits = (x, -pi, pi)
assert manualintegrate(integrand, x) == \
((n*x/2 + sin(2*n*x)/4)*cos(n*phi) - sin(n*phi)*cos(n*x)**2/2)/n
assert r * integrate(integrand, limits).trigsimp() / pi == r * cos(n * phi)
assert not integrate(integrand, limits).has(Dummy)
def test_issue_12251():
assert manualintegrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
def test_issue_3796():
assert manualintegrate(diff(exp(x + x**2)), x) == exp(x + x**2)
assert integrate(x * exp(x**4), x, risch=False) == -I*sqrt(pi)*erf(I*x**2)/4
def test_manual_true():
assert integrate(exp(x) * sin(x), x, manual=True) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert integrate(sin(x) * cos(x), x, manual=True) in \
[sin(x) ** 2 / 2, -cos(x)**2 / 2]
def test_issue_6746():
y = Symbol('y')
n = Symbol('n')
assert manualintegrate(y**x, x) == Piecewise(
(y**x/log(y), Ne(log(y), 0)), (x, True))
assert manualintegrate(y**(n*x), x) == Piecewise(
(Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)),
(n*x, True)
)/n, Ne(n, 0)),
(x, True))
assert manualintegrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1)
y = Symbol('y', zero=True)
assert manualintegrate((y + 1)**x, x) == x
y = Symbol('y')
n = Symbol('n', nonzero=True)
assert manualintegrate(y**(n*x), x) == Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True))/n
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**(n*x), x) == \
(y + 1)**(n*x)/(n*log(y + 1))
a = Symbol('a', negative=True)
b = Symbol('b')
assert manualintegrate(1/(a + b*x**2), x) == \
Piecewise((atan(x/sqrt(a/b))/(b*sqrt(a/b)), a/b > 0), \
(-acoth(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 > -a/b)), \
(-atanh(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 < -a/b)))
b = Symbol('b', negative=True)
assert manualintegrate(1/(a + b*x**2), x) == \
atan(x/(sqrt(-a)*sqrt(-1/b)))/(b*sqrt(-a)*sqrt(-1/b))
assert manualintegrate(1/((x**a + y**b + 4)*sqrt(a*x**2 + 1)), x) == \
y**(-b)*Integral(x**(-a)/(y**(-b)*sqrt(a*x**2 + 1) +
x**(-a)*sqrt(a*x**2 + 1) + 4*x**(-a)*y**(-b)*sqrt(a*x**2 + 1)), x)
assert manualintegrate(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) == \
Integral(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x)
assert manualintegrate(1/(x - a**x + x*b**2), x) == \
Integral(1/(-a**x + b**2*x + x), x)
@slow
def test_issue_2850():
assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \
+ (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \
(x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \
log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2
def test_issue_9462():
assert manualintegrate(sin(2*x)*exp(x), x) == exp(x)*sin(2*x)/5 - 2*exp(x)*cos(2*x)/5
assert not contains_dont_know(integral_steps(sin(2*x)*exp(x), x))
assert manualintegrate((x - 3) / (x**2 - 2*x + 2)**2, x) == \
Integral(x/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) \
- 3*Integral(1/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x)
def test_cyclic_parts():
f = cos(x)*exp(x/4)
F = 16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17
assert manualintegrate(f, x) == F and F.diff(x) == f
f = x*cos(x)*exp(x/4)
F = (x*(16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17) -
128*exp(x/4)*sin(x)/289 + 240*exp(x/4)*cos(x)/289)
assert manualintegrate(f, x) == F and F.diff(x) == f
@slow
def test_issue_10847():
assert manualintegrate(x**2 / (x**2 - c), x) == c*Piecewise((atan(x/sqrt(-c))/sqrt(-c), -c > 0), \
(-acoth(x/sqrt(c))/sqrt(c), And(-c < 0, x**2 > c)), \
(-atanh(x/sqrt(c))/sqrt(c), And(-c < 0, x**2 < c))) + x
assert manualintegrate(sqrt(x - y) * log(z / x), x) == 4*y**2*Piecewise((atan(sqrt(x - y)/sqrt(y))/sqrt(y), y > 0), \
(-acoth(sqrt(x - y)/sqrt(-y))/sqrt(-y), \
And(x - y > -y, y < 0)), \
(-atanh(sqrt(x - y)/sqrt(-y))/sqrt(-y), \
And(x - y < -y, y < 0)))/3 \
- 4*y*sqrt(x - y)/3 + 2*(x - y)**(S(3)/2)*log(z/x)/3 \
+ 4*(x - y)**(S(3)/2)/9
assert manualintegrate(sqrt(x) * log(x), x) == 2*x**(S(3)/2)*log(x)/3 - 4*x**(S(3)/2)/9
assert manualintegrate(sqrt(a*x + b) / x, x) == -2*b*Piecewise((-atan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b), -b > 0), \
(acoth(sqrt(a*x + b)/sqrt(b))/sqrt(b), And(-b < 0, a*x + b > b)), \
(atanh(sqrt(a*x + b)/sqrt(b))/sqrt(b), And(-b < 0, a*x + b < b))) \
+ 2*sqrt(a*x + b)
assert expand(manualintegrate(sqrt(a*x + b) / (x + c), x)) == -2*a*c*Piecewise((atan(sqrt(a*x + b)/sqrt(a*c - b))/sqrt(a*c - b), \
a*c - b > 0), (-acoth(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b > -a*c + b)), \
(-atanh(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b < -a*c + b))) \
+ 2*b*Piecewise((atan(sqrt(a*x + b)/sqrt(a*c - b))/sqrt(a*c - b), a*c - b > 0), \
(-acoth(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b > -a*c + b)), \
(-atanh(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b < -a*c + b))) + 2*sqrt(a*x + b)
assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8) \
/ (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \
2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1)
assert manualintegrate(sqrt(2*x + 3) / (x + 1), x) == 2*sqrt(2*x + 3) - log(sqrt(2*x + 3) + 1) + log(sqrt(2*x + 3) - 1)
assert manualintegrate(sqrt(2*x + 3) / 2 * x, x) == (2*x + 3)**(S(5)/2)/20 - (2*x + 3)**(S(3)/2)/4
assert manualintegrate(x**Rational(3,2) * log(x), x) == 2*x**Rational(5,2)*log(x)/5 - 4*x**Rational(5,2)/25
assert manualintegrate(x**(-3) * log(x), x) == -log(x)/(2*x**2) - 1/(4*x**2)
assert manualintegrate(log(y)/(y**2*(1 - 1/y)), y) == \
log(y)*log(-1 + 1/y) - Integral(log(-1 + 1/y)/y, y)
def test_issue_12899():
assert manualintegrate(f(x,y).diff(x),y) == Integral(Derivative(f(x,y),x),y)
assert manualintegrate(f(x,y).diff(y).diff(x),y) == Derivative(f(x,y),x)
def test_constant_independent_of_symbol():
assert manualintegrate(Integral(y, (x, 1, 2)), x) == \
x*Integral(y, (x, 1, 2))
def test_issue_12641():
assert manualintegrate(sin(2*x), x) == -cos(2*x)/2
assert manualintegrate(cos(x)*sin(2*x), x) == -2*cos(x)**3/3
assert manualintegrate((sin(2*x)*cos(x))/(1 + cos(x)), x) == \
-2*log(cos(x) + 1) - cos(x)**2 + 2*cos(x)
def test_issue_13297():
assert manualintegrate(sin(x) * cos(x)**5, x) == -cos(x)**6 / 6
def test_issue_14470():
assert manualintegrate(1/(x*sqrt(x + 1)), x) == \
log(-1 + 1/sqrt(x + 1)) - log(1 + 1/sqrt(x + 1))
@slow
def test_issue_9858():
assert manualintegrate(exp(x)*cos(exp(x)), x) == sin(exp(x))
assert manualintegrate(exp(2*x)*cos(exp(x)), x) == \
exp(x)*sin(exp(x)) + cos(exp(x))
res = manualintegrate(exp(10*x)*sin(exp(x)), x)
assert not res.has(Integral)
assert res.diff(x) == exp(10*x)*sin(exp(x))
# an example with many similar integrations by parts
assert manualintegrate(sum([x*exp(k*x) for k in range(1, 8)]), x) == (
x*exp(7*x)/7 + x*exp(6*x)/6 + x*exp(5*x)/5 + x*exp(4*x)/4 +
x*exp(3*x)/3 + x*exp(2*x)/2 + x*exp(x) - exp(7*x)/49 -exp(6*x)/36 -
exp(5*x)/25 - exp(4*x)/16 - exp(3*x)/9 - exp(2*x)/4 - exp(x))
def test_issue_8520():
assert manualintegrate(x/(x**4 + 1), x) == atan(x**2)/2
assert manualintegrate(x**2/(x**6 + 25), x) == atan(x**3/5)/15
f = x/(9*x**4 + 4)**2
assert manualintegrate(f, x).diff(x).factor() == f
def test_manual_subs():
x, y = symbols('x y')
expr = log(x) + exp(x)
# if log(x) is y, then exp(y) is x
assert manual_subs(expr, log(x), y) == y + exp(exp(y))
# if exp(x) is y, then log(y) need not be x
assert manual_subs(expr, exp(x), y) == log(x) + y
raises(ValueError, lambda: manual_subs(expr, x))
raises(ValueError, lambda: manual_subs(expr, exp(x), x, y))
def test_issue_15471():
f = log(x)*cos(log(x))/x**(S(3)/4)
F = -128*x**(S(1)/4)*sin(log(x))/289 + 240*x**(S(1)/4)*cos(log(x))/289 + (16*x**(S(1)/4)*sin(log(x))/17 + 4*x**(S(1)/4)*cos(log(x))/17)*log(x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
|
81965eb386a04f60d260e49f0244e11f83b3d9a5a3a20ffdb47b9c504ca7287b | # A collection of failing integrals from the issues.
from sympy import (
integrate, Integral, exp, oo, pi, sign, sqrt, sin, cos, Piecewise,
tan, S, log, gamma, sinh, sec, acos, atan, sech, csch, DiracDelta
)
from sympy.utilities.pytest import XFAIL, SKIP, slow, skip, ON_TRAVIS
from sympy.abc import x, k, c, y, b, h, a, m, z, n, t
@SKIP("Too slow for @slow")
@XFAIL
def test_issue_3880():
# integrate_hyperexponential(Poly(t*2*(1 - t0**2)*t0*(x**3 + x**2), t), Poly((1 + t0**2)**2*2*(x**2 + x + 1), t), [Poly(1, x), Poly(1 + t0**2, t0), Poly(t, t)], [x, t0, t], [exp, tan])
assert not integrate(exp(x)*cos(2*x)*sin(2*x) * (x**3 + x**2)/(2*(x**2 + x + 1)), x).has(Integral)
@XFAIL
def test_issue_4212():
assert not integrate(sign(x), x).has(Integral)
@XFAIL
def test_issue_4491():
# Can be solved via variable transformation x = y - 1
assert not integrate(x*sqrt(x**2 + 2*x + 4), x).has(Integral)
@XFAIL
def test_issue_4511():
# This works, but gives a complicated answer. The correct answer is x - cos(x).
# If current answer is simplified, 1 - cos(x) + x is obtained.
# The last one is what Maple gives. It is also quite slow.
assert integrate(cos(x)**2 / (1 - sin(x))) in [x - cos(x), 1 - cos(x) + x,
-2/(tan((S(1)/2)*x)**2 + 1) + x]
@XFAIL
def test_integrate_DiracDelta_fails():
# issue 6427
assert integrate(integrate(integrate(
DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S(1)/2
@XFAIL
@slow
def test_issue_4525():
# Warning: takes a long time
assert not integrate((x**m * (1 - x)**n * (a + b*x + c*x**2))/(1 + x**2), (x, 0, 1)).has(Integral)
@XFAIL
@slow
def test_issue_4540():
if ON_TRAVIS:
skip("Too slow for travis.")
# Note, this integral is probably nonelementary
assert not integrate(
(sin(1/x) - x*exp(x)) /
((-sin(1/x) + x*exp(x))*x + x*sin(1/x)), x).has(Integral)
@XFAIL
@slow
def test_issue_4891():
# Requires the hypergeometric function.
assert not integrate(cos(x)**y, x).has(Integral)
@XFAIL
@slow
def test_issue_1796a():
assert not integrate(exp(2*b*x)*exp(-a*x**2), x).has(Integral)
@XFAIL
def test_issue_4895b():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, 0)).has(Integral)
@XFAIL
def test_issue_4895c():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, oo)).has(Integral)
@XFAIL
def test_issue_4895d():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, 0, oo)).has(Integral)
@XFAIL
@slow
def test_issue_4941():
if ON_TRAVIS:
skip("Too slow for travis.")
assert not integrate(sqrt(1 + sinh(x/20)**2), (x, -25, 25)).has(Integral)
@XFAIL
def test_issue_4992():
# Nonelementary integral. Requires hypergeometric/Meijer-G handling.
assert not integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)).has(Integral)
@XFAIL
def test_issue_16084():
i = integrate(log(sin(x)), (x, 0, pi/2))
assert not i.has(Integral)
# assert i == -pi*log(2)/2
@XFAIL
def test_issue_16161():
i = integrate(x*sec(x)**2, x)
assert not i.has(Integral)
# assert i == x*tan(x) + log(cos(x))
@XFAIL
def test_issue_15925a():
assert not integrate(sqrt((1+sin(x))**2+(cos(x))**2), (x, -pi/2, pi/2)).has(Integral)
@XFAIL
@slow
def test_issue_15925b():
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6)).has(Integral)
@XFAIL
def test_issue_15925b_manual():
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6), manual=True).has(Integral)
@XFAIL
@slow
def test_issue_15227():
if ON_TRAVIS:
skip("Too slow for travis.")
i = integrate(log(1-x)*log((1+x)**2)/x, (x, 0, 1))
assert not i.has(Integral)
# assert i == -5*zeta(3)/4
@XFAIL
@slow
def test_issue_14716():
i = integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1))
assert not i.has(Integral)
# Mathematica can not solve it either, but
# integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1)).transform(x, y - 5).doit()
# works
# assert i == -log(S(11)/2)/pi - Si(11*pi/2)/pi + Si(6*pi)/pi
@XFAIL
def test_issue_14709a():
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert not i.has(Integral)
# assert i == 5*h**2*pi/16
@slow
@XFAIL
def test_issue_14398():
assert not integrate(exp(x**2)*cos(x), x).has(Integral)
@XFAIL
def test_issue_14074():
i = integrate(log(sin(x)), (x, 0, pi/2))
assert not i.has(Integral)
# assert i == -pi*log(2)/2
@XFAIL
@slow
def test_issue_14078b():
i = integrate((atan(4*x)-atan(2*x))/x, (x, 0, oo))
assert not i.has(Integral)
# assert i == pi*log(2)/2
@XFAIL
def test_issue_11845a():
assert not integrate(exp(y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11845b():
assert not integrate(exp(-y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11813():
assert not integrate((a - x)**(-S(1)/2)*x, (x, 0, a)).has(Integral)
@XFAIL
def test_issue_11742():
i = integrate(sqrt(-x**2 + 8*x + 48), (x, 4, 12))
assert not i.has(Integral)
# assert i == 16*pi
@XFAIL
def test_issue_11254a():
assert not integrate(sech(x), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11254b():
assert not integrate(csch(x), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_10584():
assert not integrate(sqrt(x**2 + 1/x**2), x).has(Integral)
@XFAIL
def test_issue_9723():
assert not integrate(sqrt(x + sqrt(x))).has(Integral)
@XFAIL
def test_issue_9101():
assert not integrate(log(x + sqrt(x**2 + y**2 + z**2)), z).has(Integral)
@XFAIL
def test_issue_7264():
assert not integrate(exp(x)*sqrt(1 + exp(2*x))).has(Integral)
@XFAIL
def test_issue_7147():
assert not integrate(x/sqrt(a*x**2 + b*x + c)**3, x).has(Integral)
@XFAIL
def test_issue_7109():
assert not integrate(sqrt(a**2/(a**2 - x**2)), x).has(Integral)
@XFAIL
def test_integrate_Piecewise_rational_over_reals():
f = Piecewise(
(0, t - 478.515625*pi < 0),
(13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0))
assert abs((integrate(f, (t, 0, oo)) - 15235.9375*pi).evalf()) <= 1e-7
@XFAIL
@slow
def test_issue_4311_slow():
assert not integrate(x*abs(9-x**2), x).has(Integral)
|
d579903a398e78bb4c051c5170b3d3d6275811e6032fc4a4dda1c1ce95f5209c | from sympy import (meijerg, I, S, integrate, Integral, oo, gamma, cosh, sinc,
hyperexpand, exp, simplify, sqrt, pi, erf, erfc, sin, cos,
exp_polar, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
meijerint_indefinite, _inflate_g, _create_lookup_table,
meijerint_definite, meijerint_inversion)
from sympy.utilities import default_sort_key
from sympy.utilities.pytest import slow
from sympy.utilities.randtest import (verify_numerically,
random_complex_number as randcplx)
from sympy.core.compatibility import range
from sympy.abc import x, y, a, b, c, d, s, t, z
def test_rewrite_single():
def t(expr, c, m):
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
assert e is not None
assert isinstance(e[0][0][2], meijerg)
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))
def tn(expr):
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
t(x, 1, x)
t(x**2, 1, x**2)
t(x**2 + y*x**2, y + 1, x**2)
tn(x**2 + x)
tn(x**y)
def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0]*res[2] for res in r[0]]).replace(
exp_polar, exp) # XXX Hack?
assert verify_numerically(e, expr, x)
u(exp(-x)*sin(x), x)
# The following has stopped working because hyperexpand changed slightly.
# It is probably not worth fixing
#u(exp(-x)*sin(x)*cos(x), x)
# This one cannot be done numerically, since it comes out as a g-function
# of argument 4*pi
# NOTE This also tests a bug in inverse mellin transform (which used to
# turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
# exp_polar).
#u(exp(x)*sin(x), x)
assert _rewrite_single(exp(x)*sin(x), x) == \
([(-sqrt(2)/(2*sqrt(pi)), 0,
meijerg(((-S(1)/2, 0, S(1)/4, S(1)/2, S(3)/4), (1,)),
((), (-S(1)/2, 0)), 64*exp_polar(-4*I*pi)/x**4))], True)
def test_rewrite1():
assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \
(5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True)
def test_meijerint_indefinite_numerically():
def t(fac, arg):
g = meijerg([a], [b], [c], [d], arg)*fac
subs = {a: randcplx()/10, b: randcplx()/10 + I,
c: randcplx(), d: randcplx()}
integral = meijerint_indefinite(g, x)
assert integral is not None
assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
t(1, x)
t(2, x)
t(1, 2*x)
t(1, x**2)
t(5, x**S('3/2'))
t(x**3, x)
t(3*x**S('3/2'), 4*x**S('7/3'))
def test_meijerint_definite():
v, b = meijerint_definite(x, x, 0, 0)
assert v.is_zero and b is True
v, b = meijerint_definite(x, x, oo, oo)
assert v.is_zero and b is True
def test_inflate():
subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(),
d: randcplx(), y: randcplx()/10}
def t(a, b, arg, n):
from sympy import Mul
m1 = meijerg(a, b, arg)
m2 = Mul(*_inflate_g(m1, n))
# NOTE: (the random number)**9 must still be on the principal sheet.
# Thus make b&d small to create random numbers of small imaginary part.
return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1)
assert t([[a], [b]], [[c], [d]], x, 3)
assert t([[a, y], [b]], [[c], [d]], x, 3)
assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3)
def test_recursive():
from sympy import symbols
a, b, c = symbols('a b c', positive=True)
r = exp(-(x - a)**2)*exp(-(x - b)**2)
e = integrate(r, (x, 0, oo), meijerg=True)
assert simplify(e.expand()) == (
sqrt(2)*sqrt(pi)*(
(erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4)
e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True)
assert simplify(e) == (
sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2
+ (2*a + 2*b + c)**2/8)/4)
assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \
sqrt(pi)/2*(1 + erf(a + b + c))
assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \
sqrt(pi)/2*(1 - erf(a + b + c))
@slow
def test_meijerint():
from sympy import symbols, expand, arg
s, t, mu = symbols('s t mu', real=True)
assert integrate(meijerg([], [], [0], [], s*t)
*meijerg([], [], [mu/2], [-mu/2], t**2/4),
(t, 0, oo)).is_Piecewise
s = symbols('s', positive=True)
assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
gamma(s + 1)
assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo),
meijerg=True) == gamma(s + 1)
assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x),
(x, 0, oo), meijerg=False),
Integral)
assert meijerint_indefinite(exp(x), x) == exp(x)
# TODO what simplifications should be done automatically?
# This tests "extra case" for antecedents_1.
a, b = symbols('a b', positive=True)
assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
b**(a + 1)/(a + 1)
# This tests various conditions and expansions:
meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)
# Again, how about simplifications?
sigma, mu = symbols('sigma mu', positive=True)
i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
assert simplify(i) == sqrt(pi)*sigma*(2 - erfc(mu/(2*sigma)))
assert c == True
i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)
# TODO it would be nice to test the condition
assert simplify(i) == 1/(mu - sigma)
# Test substitutions to change limits
assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
# Note: causes a NaN in _check_antecedents
assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
1 - exp(-exp(I*arg(x))*abs(x))
# Test -oo to oo
assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
(sqrt(pi)/2, True)
assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True)
assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2),
x, -oo, oo) == (1, True)
assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)
# Test one of the extra conditions for 2 g-functinos
assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (S(1)/2, True)
# Test a bug
def res(n):
return (1/(1 + x**2)).diff(x, n).subs(x, 1)*(-1)**n
for n in range(6):
assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
res(n)
# This used to test trigexpand... now it is done by linear substitution
assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True)
) == sqrt(2)*sin(a + pi/4)/2
# Test the condition 14 from prudnikov.
# (This is besselj*besselj in disguise, to stop the product from being
# recognised in the tables.)
a, b, s = symbols('a b s')
from sympy import And, re
assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
*meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \
(4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
/(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
*gamma(a/2 + b/2 - s + 1)),
And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1))
# test a bug
assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
Integral(sin(x**a)*sin(x**b), (x, 0, oo))
# test better hyperexpand
assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
(sqrt(pi)*polygamma(0, S(1)/2)/4).expand()
# Test hyperexpand bug.
from sympy import lowergamma
n = symbols('n', integer=True)
assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
lowergamma(n + 1, x)
# Test a bug with argument 1/x
alpha = symbols('alpha', positive=True)
assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
(sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S(1)/2,
alpha/2 + 1)), ((0, 0, S(1)/2), (-S(1)/2,)), alpha**S(2)/16)/4, True)
# test a bug related to 3016
a, s = symbols('a s', positive=True)
assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
a**(-s/2 - S(1)/2)*((-1)**s + 1)*gamma(s/2 + S(1)/2)/2
def test_bessel():
from sympy import besselj, besseli
assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo),
meijerg=True, conds='none')) == \
2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b))
assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo),
meijerg=True, conds='none')) == 1/(2*a)
# TODO more orthogonality integrals
assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + S(1)/2)),
(x, 1, oo), meijerg=True, conds='none')
*2/((z/2)**y*sqrt(pi)*gamma(S(1)/2 - y))) == \
besselj(y, z)
# Werner Rosenheinrich
# SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS
assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x)
assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x)
# TODO can do higher powers, but come out as high order ... should they be
# reduced to order 0, 1?
assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x)
assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \
-(besselj(0, x)**2 + besselj(1, x)**2)/2
# TODO more besseli when tables are extended or recursive mellin works
assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \
-2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \
+ 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x
assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \
-besselj(0, x)**2/2
assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \
x**2*besselj(1, x)**2/2
assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \
(x*besselj(0, x)**2 + x*besselj(1, x)**2 -
besselj(0, x)*besselj(1, x))
# TODO how does besselj(0, a*x)*besselj(0, b*x) work?
# TODO how does besselj(0, x)**2*besselj(1, x)**2 work?
# TODO sin(x)*besselj(0, x) etc come out a mess
# TODO can x*log(x)*besselj(0, x) be done?
# TODO how does besselj(1, x)*besselj(0, x+a) work?
# TODO more indefinite integrals when struve functions etc are implemented
# test a substitution
assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \
-besselj(0, x**2)/2
def test_inversion():
from sympy import piecewise_fold, besselj, sqrt, sin, cos, Heaviside
def inv(f):
return piecewise_fold(meijerint_inversion(f, s, t))
assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
assert inv(exp(-s)/s) == Heaviside(t - 1)
assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)
# Test some antcedents checking.
assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
assert inv(exp(s**2)) is None
assert meijerint_inversion(exp(-s**2), s, t) is None
def test_inversion_conditional_output():
from sympy import Symbol, InverseLaplaceTransform
a = Symbol('a', positive=True)
F = sqrt(pi/a)*exp(-2*sqrt(a)*sqrt(s))
f = meijerint_inversion(F, s, t)
assert not f.is_Piecewise
b = Symbol('b', real=True)
F = F.subs(a, b)
f2 = meijerint_inversion(F, s, t)
assert f2.is_Piecewise
# first piece is same as f
assert f2.args[0][0] == f.subs(a, b)
# last piece is an unevaluated transform
assert f2.args[-1][1]
ILT = InverseLaplaceTransform(F, s, t, None)
assert f2.args[-1][0] == ILT or f2.args[-1][0] == ILT.as_integral
def test_inversion_exp_real_nonreal_shift():
from sympy import Symbol, DiracDelta
r = Symbol('r', real=True)
c = Symbol('c', extended_real=False)
a = 1 + 2*I
z = Symbol('z')
assert not meijerint_inversion(exp(r*s), s, t).is_Piecewise
assert meijerint_inversion(exp(a*s), s, t) is None
assert meijerint_inversion(exp(c*s), s, t) is None
f = meijerint_inversion(exp(z*s), s, t)
assert f.is_Piecewise
assert isinstance(f.args[0][0], DiracDelta)
@slow
def test_lookup_table():
from random import uniform, randrange
from sympy import Add
from sympy.integrals.meijerint import z as z_dummy
table = {}
_create_lookup_table(table)
for _, l in sorted(table.items()):
for formula, terms, cond, hint in sorted(l, key=default_sort_key):
subs = {}
for a in list(formula.free_symbols) + [z_dummy]:
if hasattr(a, 'properties') and a.properties:
# these Wilds match positive integers
subs[a] = randrange(1, 10)
else:
subs[a] = uniform(1.5, 2.0)
if not isinstance(terms, list):
terms = terms(subs)
# First test that hyperexpand can do this.
expanded = [hyperexpand(g) for (_, g) in terms]
assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded)
# Now test that the meijer g-function is indeed as advertised.
expanded = Add(*[f*x for (f, x) in terms])
a, b = formula.n(subs=subs), expanded.n(subs=subs)
r = min(abs(a), abs(b))
if r < 1:
assert abs(a - b).n() <= 1e-10
else:
assert (abs(a - b)/r).n() <= 1e-10
def test_branch_bug():
from sympy import powdenest, lowergamma
# TODO gammasimp cannot prove that the factor is unity
assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x),
polar=True) == 2*erf(x**3)*gamma(S(2)/3)/3/gamma(S(5)/3)
assert integrate(erf(x**3), x, meijerg=True) == \
2*x*erf(x**3)*gamma(S(2)/3)/(3*gamma(S(5)/3)) \
- 2*gamma(S(2)/3)*lowergamma(S(2)/3, x**6)/(3*sqrt(pi)*gamma(S(5)/3))
def test_linear_subs():
from sympy import besselj
assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)
@slow
def test_probability():
# various integrals from probability theory
from sympy.abc import x, y
from sympy import symbols, Symbol, Abs, expand_mul, gammasimp, powsimp, sin
mu1, mu2 = symbols('mu1 mu2', nonzero=True)
sigma1, sigma2 = symbols('sigma1 sigma2', positive=True)
rate = Symbol('lambda', positive=True)
def normal(x, mu, sigma):
return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)
def exponential(x, rate):
return rate*exp(-rate*x)
assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
mu1
assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
== mu1**2 + sigma1**2
assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
== mu1**3 + 3*mu1*sigma1**2
assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2
assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2
assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == \
-1 + mu1 + mu2
i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True)
assert not i.has(Abs)
assert simplify(i) == mu1**2 + sigma1**2
assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
(x, -oo, oo), (y, -oo, oo), meijerg=True) == \
sigma2**2 + mu2**2
assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
1/rate
assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
2/rate**2
def E(expr):
res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
(x, 0, oo), (y, -oo, oo), meijerg=True)
res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
(y, -oo, oo), (x, 0, oo), meijerg=True)
assert expand_mul(res1) == expand_mul(res2)
return res1
assert E(1) == 1
assert E(x*y) == mu1/rate
assert E(x*y**2) == mu1**2/rate + sigma1**2/rate
ans = sigma1**2 + 1/rate**2
assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
assert simplify(E((x + y)**2) - E(x + y)**2) == ans
# Beta' distribution
alpha, beta = symbols('alpha beta', positive=True)
betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
/gamma(alpha)/gamma(beta)
assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate')
assert (gammasimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta)
j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate')
assert j[1] == (1 < beta - 1)
assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
/(beta - 2)/(beta - 1)**2
# Beta distribution
# NOTE: this is evaluated using antiderivatives. It also tests that
# meijerint_indefinite returns the simplest possible answer.
a, b = symbols('a b', positive=True)
betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b))
assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
a/(a + b)
assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
a*(a + 1)/(a + b)/(a + b + 1)
assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)
# Chi distribution
k = Symbol('k', integer=True, positive=True)
chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k
# Chi^2 distribution
chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k
assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
k*(k + 2)
assert gammasimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo),
meijerg=True)) == 2*sqrt(2)/sqrt(k)
# Dagum distribution
a, b, p = symbols('a b p', positive=True)
# XXX (x/b)**a does not work
dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1)
assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
# XXX conditions are a mess
arg = x*dagum
assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none')
) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/(
(a*p + 1)*gamma(p))
assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none')
) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/(
(a*p + 2)*gamma(p))
# F-distribution
d1, d2 = symbols('d1 d2', positive=True)
f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
/gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
# TODO conditions are a mess
assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none')
) == d2/(d2 - 2)
assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none')
) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2)
# TODO gamma, rayleigh
# inverse gaussian
lamda, mu = symbols('lamda mu', positive=True)
dist = sqrt(lamda/2/pi)*x**(-S(3)/2)*exp(-lamda*(x - mu)**2/x/2/mu**2)
mysimp = lambda expr: simplify(expr.rewrite(exp))
assert mysimp(integrate(dist, (x, 0, oo))) == 1
assert mysimp(integrate(x*dist, (x, 0, oo))) == mu
assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda
assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2
# Levi
c = Symbol('c', positive=True)
assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**S('3/2'),
(x, mu, oo)) == 1
# higher moments oo
# log-logistic
alpha, beta = symbols('alpha beta', positive=True)
distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \
(1 + x**beta/alpha**beta)**2
# FIXME: If alpha, beta are not declared as finite the line below hangs
# after the changes in:
# https://github.com/sympy/sympy/pull/16603
assert simplify(integrate(distn, (x, 0, oo))) == 1
# NOTE the conditions are a mess, but correctly state beta > 1
assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
pi*alpha/beta/sin(pi/beta)
# (similar comment for conditions applies)
assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
pi*alpha**y*y/beta/sin(pi*y/beta)
# weibull
k = Symbol('k', positive=True)
n = Symbol('n', positive=True)
distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k)
assert simplify(integrate(distn, (x, 0, oo))) == 1
assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
lamda**n*gamma(1 + n/k)
# rice distribution
from sympy import besseli
nu, sigma = symbols('nu sigma', positive=True)
rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2)
assert integrate(rice, (x, 0, oo), meijerg=True) == 1
# can someone verify higher moments?
# Laplace distribution
mu = Symbol('mu', real=True)
b = Symbol('b', positive=True)
laplace = exp(-abs(x - mu)/b)/2/b
assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu
assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
2*b**2 + mu**2
# TODO are there other distributions supported on (-oo, oo) that we can do?
# misc tests
k = Symbol('k', positive=True)
assert gammasimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k),
(x, 0, oo)))) == polygamma(0, k)
@slow
def test_expint():
""" Test various exponential integrals. """
from sympy import (expint, unpolarify, Symbol, Ci, Si, Shi, Chi,
sin, cos, sinh, cosh, Ei)
assert simplify(unpolarify(integrate(exp(-z*x)/x**y, (x, 1, oo),
meijerg=True, conds='none'
).rewrite(expint).expand(func=True))) == expint(y, z)
assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True,
conds='none').rewrite(expint).expand() == \
expint(1, z)
assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True,
conds='none').rewrite(expint).expand() == \
expint(2, z).rewrite(Ei).rewrite(expint)
assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,
conds='none').rewrite(expint).expand() == \
expint(3, z).rewrite(Ei).rewrite(expint).expand()
t = Symbol('t', positive=True)
assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t)
assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \
Si(t) - pi/2
assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z)
assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z)
assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \
I*pi - expint(1, x)
assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \
== expint(1, x) - exp(-x)/x - I*pi
u = Symbol('u', polar=True)
assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
== Ci(u)
assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
== Chi(u)
assert integrate(expint(1, x), x, meijerg=True
).rewrite(expint).expand() == x*expint(1, x) - exp(-x)
assert integrate(expint(2, x), x, meijerg=True
).rewrite(expint).expand() == \
-x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2
assert simplify(unpolarify(integrate(expint(y, x), x,
meijerg=True).rewrite(expint).expand(func=True))) == \
-expint(y + 1, x)
assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x)
assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u)
assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x)
assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u)
assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4
assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2
def test_messy():
from sympy import (laplace_transform, Si, Shi, Chi, atan, Piecewise,
acoth, E1, besselj, acosh, asin, And, re,
fourier_transform, sqrt)
assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True)
assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True)
# where should the logs be simplified?
assert laplace_transform(Chi(x), x, s) == \
((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)
# TODO maybe simplify the inequalities?
assert laplace_transform(besselj(a, x), x, s)[1:] == \
(0, And(re(a/2) + S(1)/2 > S(0), re(a/2) + 1 > S(0)))
# NOTE s < 0 can be done, but argument reduction is not good enough yet
assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
(Piecewise((0, 4*abs(pi**2*s**2) > 1),
(2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
# TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
# - folding could be better
assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
log(1 + sqrt(2))
assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
log(S(1)/2 + sqrt(2)/2)
assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True))
def test_issue_6122():
assert integrate(exp(-I*x**2), (x, -oo, oo), meijerg=True) == \
-I*sqrt(pi)*exp(I*pi/4)
def test_issue_6252():
expr = 1/x/(a + b*x)**(S(1)/3)
anti = integrate(expr, x, meijerg=True)
assert not anti.has(hyper)
# XXX the expression is a mess, but actually upon differentiation and
# putting in numerical values seems to work...
def test_issue_6348():
assert integrate(exp(I*x)/(1 + x**2), (x, -oo, oo)).simplify().rewrite(exp) \
== pi*exp(-1)
def test_fresnel():
from sympy import fresnels, fresnelc
assert expand_func(integrate(sin(pi*x**2/2), x)) == fresnels(x)
assert expand_func(integrate(cos(pi*x**2/2), x)) == fresnelc(x)
def test_issue_6860():
assert meijerint_indefinite(x**x**x, x) is None
def test_issue_7337():
f = meijerint_indefinite(x*sqrt(2*x + 3), x).together()
assert f == sqrt(2*x + 3)*(2*x**2 + x - 3)/5
assert f._eval_interval(x, S(-1), S(1)) == S(2)/5
def test_issue_8368():
assert meijerint_indefinite(cosh(x)*exp(-x*t), x) == (
(-t - 1)*exp(x) + (-t + 1)*exp(-x))*exp(-t*x)/2/(t**2 - 1)
def test_issue_10211():
from sympy.abc import h, w
assert integrate((1/sqrt(((y-x)**2 + h**2))**3), (x,0,w), (y,0,w)) == \
2*sqrt(1 + w**2/h**2)/h - 2/h
def test_issue_11806():
from sympy import symbols
y, L = symbols('y L', positive=True)
assert integrate(1/sqrt(x**2 + y**2)**3, (x, -L, L)) == \
2*L/(y**2*sqrt(L**2 + y**2))
def test_issue_10681():
from sympy import RR
from sympy.abc import R, r
f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True)
g = (1.0/3)*R**1.0*r**3*hyper((-0.5, S(3)/2), (S(5)/2,),
r**2*exp_polar(2*I*pi)/R**2)
assert RR.almosteq((f/g).n(), 1.0, 1e-12)
def test_issue_13536():
from sympy import Symbol
a = Symbol('a', real=True, positive=True)
assert integrate(1/x**2, (x, oo, a)) == -1/a
|
d5636a2ad12e07a8cbb1c194332eac23838afbee25db7c358eea0e271357b455 | """Most of these tests come from the examples in Bronstein's book."""
from sympy.integrals.risch import (DifferentialExtension, NonElementaryIntegral,
derivation, risch_integrate)
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
prde_no_cancel_b_small, limited_integrate_reduce, limited_integrate,
is_deriv_k, is_log_deriv_k_t_radical, parametric_log_deriv_heu,
is_log_deriv_k_t_radical_in_field, param_poly_rischDE, param_rischDE,
prde_cancel_liouvillian)
from sympy.polys.polymatrix import PolyMatrix as Matrix
from sympy import Poly, S, symbols
from sympy.abc import x, t, n
t0, t1, t2, t3, k = symbols('t:4 k')
def test_prde_normal_denom():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
fa = Poly(1, t)
fd = Poly(x, t)
G = [(Poly(t, t), Poly(1 + t**2, t)), (Poly(1, t), Poly(x + x*t**2, t))]
assert prde_normal_denom(fa, fd, G, DE) == \
(Poly(x, t), (Poly(1, t), Poly(1, t)), [(Poly(x*t, t),
Poly(t**2 + 1, t)), (Poly(1, t), Poly(t**2 + 1, t))], Poly(1, t))
G = [(Poly(t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t, t),
Poly(t**2 + 2*t + 1, t)), (Poly(x*t**2, t), Poly(t**2 + 2*t + 1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_normal_denom(Poly(x, t), Poly(1, t), G, DE) == \
(Poly(t + 1, t), (Poly((-1 + x)*t + x, t), Poly(1, t)), [(Poly(t, t),
Poly(1, t)), (Poly(x*t, t), Poly(1, t)), (Poly(x*t**2, t),
Poly(1, t))], Poly(t + 1, t))
def test_prde_special_denom():
a = Poly(t + 1, t)
ba = Poly(t**2, t)
bd = Poly(1, t)
G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_special_denom(a, ba, bd, G, DE) == \
(Poly(t + 1, t), Poly(t**2, t), [(Poly(t, t), Poly(1, t)),
(Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))], Poly(1, t))
G = [(Poly(t, t), Poly(1, t)), (Poly(1, t), Poly(t, t))]
assert prde_special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), G, DE) == \
(Poly(1, t), Poly(t**2 - 1, t), [(Poly(t**2, t), Poly(1, t)),
(Poly(1, t), Poly(1, t))], Poly(t, t))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0)]})
DE.decrement_level()
G = [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))]
assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3 + 2, t), G, DE) == \
(Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t, t), Poly(t**2, t)),
(Poly(2*t, t), Poly(t, t))], Poly(1, x))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly((t**2 + 1)*2*x, t)]})
G = [(Poly(t + x, t), Poly(t*x, t)), (Poly(2*t, t), Poly(x**2, x))]
assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3, t), G, DE) == \
(Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)),
(Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t))
assert prde_special_denom(Poly(t + 1, t), Poly(t**2, t), Poly(t**3, t), G, DE) == \
(Poly(t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x),
Poly(x**2, t, x))], Poly(1, t))
def test_prde_linear_constraints():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
G = [(Poly(2*x**3 + 3*x + 1, x), Poly(x**2 - 1, x)), (Poly(1, x), Poly(x - 1, x)),
(Poly(1, x), Poly(x + 1, x))]
assert prde_linear_constraints(Poly(1, x), Poly(0, x), G, DE) == \
((Poly(2*x, x), Poly(0, x), Poly(0, x)), Matrix([[1, 1, -1], [5, 1, 1]]))
G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_linear_constraints(Poly(t + 1, t), Poly(t**2, t), G, DE) == \
((Poly(t, t), Poly(t**2, t), Poly(t**3, t)), Matrix(0, 3, []))
G = [(Poly(2*x, t), Poly(t, t)), (Poly(-x, t), Poly(t, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert prde_linear_constraints(Poly(1, t), Poly(0, t), G, DE) == \
((Poly(0, t), Poly(0, t)), Matrix([[2*x, -x]]))
def test_constant_system():
A = Matrix([[-(x + 3)/(x - 1), (x + 1)/(x - 1), 1],
[-x - 3, x + 1, x - 1],
[2*(x + 3)/(x - 1), 0, 0]])
u = Matrix([(x + 1)/(x - 1), x + 1, 0])
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert constant_system(A, u, DE) == \
(Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1]]), Matrix([0, 1, 0, 0]))
def test_prde_spde():
D = [Poly(x, t), Poly(-x*t, t)]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
# TODO: when bound_degree() can handle this, test degree bound from that too
assert prde_spde(Poly(t, t), Poly(-1/x, t), D, n, DE) == \
(Poly(t, t), Poly(0, t), [Poly(2*x, t), Poly(-x, t)],
[Poly(-x**2, t), Poly(0, t)], n - 1)
def test_prde_no_cancel():
# b large
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
[0, 1, 0, -1]]))
assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
[0, 1, 0, -1]]))
assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \
([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1, 0, 0],
[1, 0, -1, 0],
[0, 1, 0, -1]]))
# b small
# XXX: Is there a better example of a monomial with D.degree() > 2?
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})
# My original q was t**4 + t + 1, but this solution implies q == t**4
# (c1 = 4), with some of the ci for the original q equal to 0.
G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t),
Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t),
Poly(0, t), Poly(0, t)], Matrix([[1, 0, -1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, -S(1)/4, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, -1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, -1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, -1, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, -1]]))
# TODO: Add test for deg(b) <= 0 with b small
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
b = Poly(-1/x**2, t, field=True) # deg(b) == 0
q = [Poly(x**i*t**j, t, field=True) for i in range(2) for j in range(3)]
h, A = prde_no_cancel_b_small(b, q, 3, DE)
V = A.nullspace()
assert len(V) == 1
assert V[0] == Matrix([-S(1)/2, 0, 0, 1, 0, 0]*3)
assert (Matrix([h])*V[0][6:, :])[0] == Poly(x**2/2, t, domain='ZZ(x)')
assert (Matrix([q])*V[0][:6, :])[0] == Poly(x - S(1)/2, t, domain='QQ(x)')
def test_prde_cancel_liouvillian():
### 1. case == 'primitive'
# used when integrating f = log(x) - log(x - 1)
# Not taken from 'the' book
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
p0 = Poly(0, t, field=True)
h, A = prde_cancel_liouvillian(Poly(-1/(x - 1), t), [Poly(-x + 1, t), Poly(1, t)], 1, DE)
V = A.nullspace()
h == [p0, p0, Poly((x - 1)*t, t), p0, p0, p0, p0, p0, p0, p0, Poly(x - 1, t), Poly(-x**2 + x, t), p0, p0, p0, p0]
assert A.rank() == 16
assert (Matrix([h])*V[0][:16, :]) == Matrix([[Poly(0, t, domain='QQ(x)')]])
### 2. case == 'exp'
# used when integrating log(x/exp(x) + 1)
# Not taken from book
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t, t)]})
assert prde_cancel_liouvillian(Poly(0, t, domain='QQ[x]'), [Poly(1, t, domain='QQ(x)')], 0, DE) == \
([Poly(1, t, domain='QQ'), Poly(x, t)], Matrix([[-1, 0, 1]]))
def test_param_poly_rischDE():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
a = Poly(x**2 - x, x, field=True)
b = Poly(1, x, field=True)
q = [Poly(x, x, field=True), Poly(x**2, x, field=True)]
h, A = param_poly_rischDE(a, b, q, 3, DE)
assert A.nullspace() == [Matrix([0, 1, 1, 1])] # c1, c2, d1, d2
# Solution of a*Dp + b*p = c1*q1 + c2*q2 = q2 = x**2
# is d1*h1 + d2*h2 = h1 + h2 = x.
assert h[0] + h[1] == Poly(x, x)
# a*Dp + b*p = q1 = x has no solution.
a = Poly(x**2 - x, x, field=True)
b = Poly(x**2 - 5*x + 3, x, field=True)
q = [Poly(1, x, field=True), Poly(x, x, field=True),
Poly(x**2, x, field=True)]
h, A = param_poly_rischDE(a, b, q, 3, DE)
assert A.nullspace() == [Matrix([3, -5, 1, -5, 1, 1])]
p = -5*h[0] + h[1] + h[2] # Poly(1, x)
assert a*derivation(p, DE) + b*p == Poly(x**2 - 5*x + 3, x)
def test_param_rischDE():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
p1, px = Poly(1, x, field=True), Poly(x, x, field=True)
G = [(p1, px), (p1, p1), (px, p1)] # [1/x, 1, x]
h, A = param_rischDE(-p1, Poly(x**2, x, field=True), G, DE)
assert len(h) == 3
p = [hi[0].as_expr()/hi[1].as_expr() for hi in h]
V = A.nullspace()
assert len(V) == 2
assert V[0] == Matrix([-1, 1, 0, -1, 1, 0])
y = -p[0] + p[1] + 0*p[2] # x
assert y.diff(x) - y/x**2 == 1 - 1/x # Dy + f*y == -G0 + G1 + 0*G2
# the below test computation takes place while computing the integral
# of 'f = log(log(x + exp(x)))'
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
G = [(Poly(t + x, t, domain='ZZ(x)'), Poly(1, t, domain='QQ')), (Poly(0, t, domain='QQ'), Poly(1, t, domain='QQ'))]
h, A = param_rischDE(Poly(-t - 1, t, field=True), Poly(t + x, t, field=True), G, DE)
assert len(h) == 5
p = [hi[0].as_expr()/hi[1].as_expr() for hi in h]
V = A.nullspace()
assert len(V) == 3
assert V[0] == Matrix([0, 0, 0, 0, 1, 0, 0])
y = 0*p[0] + 0*p[1] + 1*p[2] + 0*p[3] + 0*p[4]
assert y.diff(t) - y/(t + x) == 0 # Dy + f*y = 0*G0 + 0*G1
def test_limited_integrate_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert limited_integrate_reduce(Poly(x, t), Poly(t**2, t), [(Poly(x, t),
Poly(t, t))], DE) == \
(Poly(t, t), Poly(-1/x, t), Poly(t, t), 1, (Poly(x, t), Poly(1, t)),
[(Poly(-x*t, t), Poly(1, t))])
def test_limited_integrate():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
G = [(Poly(x, x), Poly(x + 1, x))]
assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x),
Poly(1 - x - x**2 + x**3, x), G, DE) == \
((Poly(x**2 - x + 2, x), Poly(x - 1, x)), [2])
G = [(Poly(1, x), Poly(x, x))]
assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \
((Poly(5*x**3/9, x), Poly(1, x)), [0])
def test_is_log_deriv_k_t_radical():
DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'exts': [None],
'extargs': [None]})
assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)],
'exts': [None, 'exp', 'log'], 'extargs': [None, 2*x, x]})
assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \
([(t1, 1), (x, 1)], t1*x, 2, 0)
# TODO: Add more tests
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)],
'exts': [None, 'exp', 'log'], 'extargs': [None, x, x]})
assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \
([(t0, 2), (x, 1)], x*t0**2, 2, 3)
def test_is_deriv_k():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)],
'exts': [None, 'log', 'log'], 'extargs': [None, x, x + 1]})
assert is_deriv_k(Poly(2*x**2 + 2*x, t2), Poly(1, t2), DE) == \
([(t1, 1), (t2, 1)], t1 + t2, 2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t2, t2)],
'exts': [None, 'log', 'exp'], 'extargs': [None, x, x]})
assert is_deriv_k(Poly(x**2*t2**3, t2), Poly(1, t2), DE) == \
([(x, 3), (t1, 2)], 2*t1 + 3*x, 1)
# TODO: Add more tests, including ones with exponentials
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/x, t1)],
'exts': [None, 'log'], 'extargs': [None, x**2]})
assert is_deriv_k(Poly(x, t1), Poly(1, t1), DE) == \
([(t1, S(1)/2)], t1/2, 1)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/(1 + x), t0)],
'exts': [None, 'log'], 'extargs': [None, x**2 + 2*x + 1]})
assert is_deriv_k(Poly(1 + x, t0), Poly(1, t0), DE) == \
([(t0, S(1)/2)], t0/2, 1)
# Issue 10798
# DE = DifferentialExtension(log(1/x), x)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-1/x, t)],
'exts': [None, 'log'], 'extargs': [None, 1/x]})
assert is_deriv_k(Poly(1, t), Poly(x, t), DE) == ([(t, 1)], t, 1)
def test_is_log_deriv_k_t_radical_in_field():
# NOTE: any potential constant factor in the second element of the result
# doesn't matter, because it cancels in Da/a.
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \
(2, t*x**5)
assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \
(5, x**3*t**2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]})
assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t),
Poly(2*x**2 + 2*x**2*t, t), DE) == \
(2, t + t**2)
assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \
(1, t)
assert is_log_deriv_k_t_radical_in_field(Poly(1, t), Poly(2*x**2, t), DE) == \
(2, 1/t)
def test_parametric_log_deriv():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert parametric_log_deriv_heu(Poly(5*t**2 + t - 6, t), Poly(2*x*t**2, t),
Poly(-1, t), Poly(x*t**2, t), DE) == \
(2, 6, t*x**5)
|
405e3e9cf99821d3a3eb0e28ae44404fad3a2a897b19e21e9e9dc134016e9e13 | from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I,
sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify,
WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo,
Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp,
simplify, together, collect, factorial, apart, combsimp, factor, refine,
cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E,
exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr,
integrate, gammasimp, Gt)
from sympy.core.expr import ExprBuilder, unchanged
from sympy.core.function import AppliedUndef
from sympy.core.compatibility import range, round, PY3
from sympy.physics.secondquant import FockState
from sympy.physics.units import meter
from sympy.utilities.pytest import raises, XFAIL
from sympy.abc import a, b, c, n, t, u, x, y, z
# replace 3 instances with int when PY2 is dropped and
# delete this line
_rint = int if PY3 else float
class DummyNumber(object):
"""
Minimal implementation of a number that works with SymPy.
If one has a Number class (e.g. Sage Integer, or some other custom class)
that one wants to work well with SymPy, one has to implement at least the
methods of this class DummyNumber, resp. its subclasses I5 and F1_1.
Basically, one just needs to implement either __int__() or __float__() and
then one needs to make sure that the class works with Python integers and
with itself.
"""
def __radd__(self, a):
if isinstance(a, (int, float)):
return a + self.number
return NotImplemented
def __truediv__(a, b):
return a.__div__(b)
def __rtruediv__(a, b):
return a.__rdiv__(b)
def __add__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number + a
return NotImplemented
def __rsub__(self, a):
if isinstance(a, (int, float)):
return a - self.number
return NotImplemented
def __sub__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number - a
return NotImplemented
def __rmul__(self, a):
if isinstance(a, (int, float)):
return a * self.number
return NotImplemented
def __mul__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number * a
return NotImplemented
def __rdiv__(self, a):
if isinstance(a, (int, float)):
return a / self.number
return NotImplemented
def __div__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number / a
return NotImplemented
def __rpow__(self, a):
if isinstance(a, (int, float)):
return a ** self.number
return NotImplemented
def __pow__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number ** a
return NotImplemented
def __pos__(self):
return self.number
def __neg__(self):
return - self.number
class I5(DummyNumber):
number = 5
def __int__(self):
return self.number
class F1_1(DummyNumber):
number = 1.1
def __float__(self):
return self.number
i5 = I5()
f1_1 = F1_1()
# basic sympy objects
basic_objs = [
Rational(2),
Float("1.3"),
x,
y,
pow(x, y)*y,
]
# all supported objects
all_objs = basic_objs + [
5,
5.5,
i5,
f1_1
]
def dotest(s):
for x in all_objs:
for y in all_objs:
s(x, y)
return True
def test_basic():
def j(a, b):
x = a
x = +a
x = -a
x = a + b
x = a - b
x = a*b
x = a/b
x = a**b
assert dotest(j)
def test_ibasic():
def s(a, b):
x = a
x += b
x = a
x -= b
x = a
x *= b
x = a
x /= b
assert dotest(s)
def test_relational():
from sympy import Lt
assert (pi < 3) is S.false
assert (pi <= 3) is S.false
assert (pi > 3) is S.true
assert (pi >= 3) is S.true
assert (-pi < 3) is S.true
assert (-pi <= 3) is S.true
assert (-pi > 3) is S.false
assert (-pi >= 3) is S.false
r = Symbol('r', real=True)
assert (r - 2 < r - 3) is S.false
assert Lt(x + I, x + I + 2).func == Lt # issue 8288
def test_relational_assumptions():
from sympy import Lt, Gt, Le, Ge
m1 = Symbol("m1", nonnegative=False)
m2 = Symbol("m2", positive=False)
m3 = Symbol("m3", nonpositive=False)
m4 = Symbol("m4", negative=False)
assert (m1 < 0) == Lt(m1, 0)
assert (m2 <= 0) == Le(m2, 0)
assert (m3 > 0) == Gt(m3, 0)
assert (m4 >= 0) == Ge(m4, 0)
m1 = Symbol("m1", nonnegative=False, real=True)
m2 = Symbol("m2", positive=False, real=True)
m3 = Symbol("m3", nonpositive=False, real=True)
m4 = Symbol("m4", negative=False, real=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=True)
m2 = Symbol("m2", nonpositive=True)
m3 = Symbol("m3", positive=True)
m4 = Symbol("m4", nonnegative=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=False, real=True)
m2 = Symbol("m2", nonpositive=False, real=True)
m3 = Symbol("m3", positive=False, real=True)
m4 = Symbol("m4", nonnegative=False, real=True)
assert (m1 < 0) is S.false
assert (m2 <= 0) is S.false
assert (m3 > 0) is S.false
assert (m4 >= 0) is S.false
def test_relational_noncommutative():
from sympy import Lt, Gt, Le, Ge
A, B = symbols('A,B', commutative=False)
assert (A < B) == Lt(A, B)
assert (A <= B) == Le(A, B)
assert (A > B) == Gt(A, B)
assert (A >= B) == Ge(A, B)
def test_basic_nostr():
for obj in basic_objs:
raises(TypeError, lambda: obj + '1')
raises(TypeError, lambda: obj - '1')
if obj == 2:
assert obj * '1' == '11'
else:
raises(TypeError, lambda: obj * '1')
raises(TypeError, lambda: obj / '1')
raises(TypeError, lambda: obj ** '1')
def test_series_expansion_for_uniform_order():
assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x)
assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x)
assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x)
def test_leadterm():
assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0)
assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2
assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1
assert (x**2 + 1/x).leadterm(x)[1] == -1
assert (1 + x**2).leadterm(x)[1] == 0
assert (x + 1).leadterm(x)[1] == 0
assert (x + x**2).leadterm(x)[1] == 1
assert (x**2).leadterm(x)[1] == 2
def test_as_leading_term():
assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3
assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2
assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x
assert (x**2 + 1/x).as_leading_term(x) == 1/x
assert (1 + x**2).as_leading_term(x) == 1
assert (x + 1).as_leading_term(x) == 1
assert (x + x**2).as_leading_term(x) == x
assert (x**2).as_leading_term(x) == x**2
assert (x + oo).as_leading_term(x) == oo
raises(ValueError, lambda: (x + 1).as_leading_term(1))
def test_leadterm2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \
(sin(1 + sin(1)), 0)
def test_leadterm3():
assert (y + z + x).leadterm(x) == (y + z, 0)
def test_as_leading_term2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \
sin(1 + sin(1))
def test_as_leading_term3():
assert (2 + pi + x).as_leading_term(x) == 2 + pi
assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x
def test_as_leading_term4():
# see issue 6843
n = Symbol('n', integer=True, positive=True)
r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \
n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \
1 + 1/(n*x + x) + 1/(n + 1) - 1/x
assert r.as_leading_term(x).cancel() == n/2
def test_as_leading_term_stub():
class foo(Function):
pass
assert foo(1/x).as_leading_term(x) == foo(1/x)
assert foo(1).as_leading_term(x) == foo(1)
raises(NotImplementedError, lambda: foo(x).as_leading_term(x))
def test_as_leading_term_deriv_integral():
# related to issue 11313
assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2
assert Derivative(x ** 3, y).as_leading_term(x) == 0
assert Integral(x ** 3, x).as_leading_term(x) == x**4/4
assert Integral(x ** 3, y).as_leading_term(x) == y*x**3
assert Derivative(exp(x), x).as_leading_term(x) == 1
assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x)
def test_atoms():
assert x.atoms() == {x}
assert (1 + x).atoms() == {x, S(1)}
assert (1 + 2*cos(x)).atoms(Symbol) == {x}
assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S(1), S(2), x}
assert (2*(x**(y**x))).atoms() == {S(2), x, y}
assert Rational(1, 2).atoms() == {S.Half}
assert Rational(1, 2).atoms(Symbol) == set([])
assert sin(oo).atoms(oo) == set()
assert Poly(0, x).atoms() == {S.Zero}
assert Poly(1, x).atoms() == {S.One}
assert Poly(x, x).atoms() == {x}
assert Poly(x, x, y).atoms() == {x}
assert Poly(x + y, x, y).atoms() == {x, y}
assert Poly(x + y, x, y, z).atoms() == {x, y}
assert Poly(x + y*t, x, y, z).atoms() == {t, x, y}
assert (I*pi).atoms(NumberSymbol) == {pi}
assert (I*pi).atoms(NumberSymbol, I) == \
(I*pi).atoms(I, NumberSymbol) == {pi, I}
assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)}
assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \
{1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z}
# issue 6132
f = Function('f')
e = (f(x) + sin(x) + 2)
assert e.atoms(AppliedUndef) == \
{f(x)}
assert e.atoms(AppliedUndef, Function) == \
{f(x), sin(x)}
assert e.atoms(Function) == \
{f(x), sin(x)}
assert e.atoms(AppliedUndef, Number) == \
{f(x), S(2)}
assert e.atoms(Function, Number) == \
{S(2), sin(x), f(x)}
def test_is_polynomial():
k = Symbol('k', nonnegative=True, integer=True)
assert Rational(2).is_polynomial(x, y, z) is True
assert (S.Pi).is_polynomial(x, y, z) is True
assert x.is_polynomial(x) is True
assert x.is_polynomial(y) is True
assert (x**2).is_polynomial(x) is True
assert (x**2).is_polynomial(y) is True
assert (x**(-2)).is_polynomial(x) is False
assert (x**(-2)).is_polynomial(y) is True
assert (2**x).is_polynomial(x) is False
assert (2**x).is_polynomial(y) is True
assert (x**k).is_polynomial(x) is False
assert (x**k).is_polynomial(k) is False
assert (x**x).is_polynomial(x) is False
assert (k**k).is_polynomial(k) is False
assert (k**x).is_polynomial(k) is False
assert (x**(-k)).is_polynomial(x) is False
assert ((2*x)**k).is_polynomial(x) is False
assert (x**2 + 3*x - 8).is_polynomial(x) is True
assert (x**2 + 3*x - 8).is_polynomial(y) is True
assert (x**2 + 3*x - 8).is_polynomial() is True
assert sqrt(x).is_polynomial(x) is False
assert (sqrt(x)**3).is_polynomial(x) is False
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False
def test_is_rational_function():
assert Integer(1).is_rational_function() is True
assert Integer(1).is_rational_function(x) is True
assert Rational(17, 54).is_rational_function() is True
assert Rational(17, 54).is_rational_function(x) is True
assert (12/x).is_rational_function() is True
assert (12/x).is_rational_function(x) is True
assert (x/y).is_rational_function() is True
assert (x/y).is_rational_function(x) is True
assert (x/y).is_rational_function(x, y) is True
assert (x**2 + 1/x/y).is_rational_function() is True
assert (x**2 + 1/x/y).is_rational_function(x) is True
assert (x**2 + 1/x/y).is_rational_function(x, y) is True
assert (sin(y)/x).is_rational_function() is False
assert (sin(y)/x).is_rational_function(y) is False
assert (sin(y)/x).is_rational_function(x) is True
assert (sin(y)/x).is_rational_function(x, y) is False
assert (S.NaN).is_rational_function() is False
assert (S.Infinity).is_rational_function() is False
assert (-S.Infinity).is_rational_function() is False
assert (S.ComplexInfinity).is_rational_function() is False
def test_is_algebraic_expr():
assert sqrt(3).is_algebraic_expr(x) is True
assert sqrt(3).is_algebraic_expr() is True
eq = ((1 + x**2)/(1 - y**2))**(S(1)/3)
assert eq.is_algebraic_expr(x) is True
assert eq.is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True
assert (cos(y)/sqrt(x)).is_algebraic_expr() is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True
assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False
def test_SAGE1():
#see https://github.com/sympy/sympy/issues/3346
class MyInt:
def _sympy_(self):
return Integer(5)
m = MyInt()
e = Rational(2)*m
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE2():
class MyInt(object):
def __int__(self):
return 5
assert sympify(MyInt()) == 5
e = Rational(2)*MyInt()
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE3():
class MySymbol:
def __rmul__(self, other):
return ('mys', other, self)
o = MySymbol()
e = x*o
assert e == ('mys', x, o)
def test_len():
e = x*y
assert len(e.args) == 2
e = x + y + z
assert len(e.args) == 3
def test_doit():
a = Integral(x**2, x)
assert isinstance(a.doit(), Integral) is False
assert isinstance(a.doit(integrals=True), Integral) is False
assert isinstance(a.doit(integrals=False), Integral) is True
assert (2*Integral(x, x)).doit() == x**2
def test_attribute_error():
raises(AttributeError, lambda: x.cos())
raises(AttributeError, lambda: x.sin())
raises(AttributeError, lambda: x.exp())
def test_args():
assert (x*y).args in ((x, y), (y, x))
assert (x + y).args in ((x, y), (y, x))
assert (x*y + 1).args in ((x*y, 1), (1, x*y))
assert sin(x*y).args == (x*y,)
assert sin(x*y).args[0] == x*y
assert (x**y).args == (x, y)
assert (x**y).args[0] == x
assert (x**y).args[1] == y
def test_noncommutative_expand_issue_3757():
A, B, C = symbols('A,B,C', commutative=False)
assert A*B - B*A != 0
assert (A*(A + B)*B).expand() == A**2*B + A*B**2
assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B
def test_as_numer_denom():
a, b, c = symbols('a, b, c')
assert nan.as_numer_denom() == (nan, 1)
assert oo.as_numer_denom() == (oo, 1)
assert (-oo).as_numer_denom() == (-oo, 1)
assert zoo.as_numer_denom() == (zoo, 1)
assert (-zoo).as_numer_denom() == (zoo, 1)
assert x.as_numer_denom() == (x, 1)
assert (1/x).as_numer_denom() == (1, x)
assert (x/y).as_numer_denom() == (x, y)
assert (x/2).as_numer_denom() == (x, 2)
assert (x*y/z).as_numer_denom() == (x*y, z)
assert (x/(y*z)).as_numer_denom() == (x, y*z)
assert Rational(1, 2).as_numer_denom() == (1, 2)
assert (1/y**2).as_numer_denom() == (1, y**2)
assert (x/y**2).as_numer_denom() == (x, y**2)
assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y)
assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7)
assert (x**-2).as_numer_denom() == (1, x**2)
assert (a/x + b/2/x + c/3/x).as_numer_denom() == \
(6*a + 3*b + 2*c, 6*x)
assert (a/x + b/2/x + c/3/y).as_numer_denom() == \
(2*c*x + y*(6*a + 3*b), 6*x*y)
assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \
(2*a + b + 4.0*c, 2*x)
# this should take no more than a few seconds
assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)]
).as_numer_denom()[1]/x).n(4)) == 705
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).as_numer_denom() == \
(x + i, 3)
assert (S.Infinity + x/3 + y/4).as_numer_denom() == \
(4*x + 3*y + S.Infinity, 12)
assert (oo*x + zoo*y).as_numer_denom() == \
(zoo*y + oo*x, 1)
A, B, C = symbols('A,B,C', commutative=False)
assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1)
assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x)
assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1)
assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x)
assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1)
assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x)
def test_trunc():
import math
x, y = symbols('x y')
assert math.trunc(2) == 2
assert math.trunc(4.57) == 4
assert math.trunc(-5.79) == -5
assert math.trunc(pi) == 3
assert math.trunc(log(7)) == 1
assert math.trunc(exp(5)) == 148
assert math.trunc(cos(pi)) == -1
assert math.trunc(sin(5)) == 0
raises(TypeError, lambda: math.trunc(x))
raises(TypeError, lambda: math.trunc(x + y**2))
raises(TypeError, lambda: math.trunc(oo))
def test_as_independent():
assert S.Zero.as_independent(x, as_Add=True) == (0, 0)
assert S.Zero.as_independent(x, as_Add=False) == (0, 0)
assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x))
assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y)
assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y))
assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y))
assert (sin(x)).as_independent(x) == (1, sin(x))
assert (sin(x)).as_independent(y) == (sin(x), 1)
assert (2*sin(x)).as_independent(x) == (2, sin(x))
assert (2*sin(x)).as_independent(y) == (2*sin(x), 1)
# issue 4903 = 1766b
n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2)
assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1)
assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1)
assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1)
assert (3*x).as_independent(x, as_Add=True) == (0, 3*x)
assert (3*x).as_independent(x, as_Add=False) == (3, x)
assert (3 + x).as_independent(x, as_Add=True) == (3, x)
assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x)
# issue 5479
assert (3*x).as_independent(Symbol) == (3, x)
# issue 5648
assert (n1*x*y).as_independent(x) == (n1*y, x)
assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y))
assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y)
assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \
== (1, DiracDelta(x - n1)*DiracDelta(x - y))
assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3)
assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3)
assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3)
assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \
(DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1))
# issue 5784
assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \
(Integral(x, (x, 1, 2)), x)
eq = Add(x, -x, 2, -3, evaluate=False)
assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False))
eq = Mul(x, 1/x, 2, -3, evaluate=False)
eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False))
assert (x*y).as_independent(z, as_Add=True) == (x*y, 0)
@XFAIL
def test_call_2():
# TODO UndefinedFunction does not subclass Expr
f = Function('f')
assert (2*f)(x) == 2*f(x)
def test_replace():
f = log(sin(x)) + tan(sin(x**2))
assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
a = Wild('a')
b = Wild('b')
assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
# test exact
assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, b - a) == 2*x
assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x
g = 2*sin(x**3)
assert g.replace(
lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9)
assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)})
assert sin(x).replace(cos, sin) == sin(x)
cond, func = lambda x: x.is_Mul, lambda x: 2*x
assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y})
assert (x*(1 + x*y)).replace(cond, func, map=True) == \
(2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y})
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \
(sin(x), {sin(x): sin(x)/y})
# if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y,
simultaneous=False) == sin(x)/y
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x)
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e,
simultaneous=False) == x**2/2 + O(x**3)
assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \
x*(x*y + 5) + 2
e = (x*y + 1)*(2*x*y + 1) + 1
assert e.replace(cond, func, map=True) == (
2*((2*x*y + 1)*(4*x*y + 1)) + 1,
{2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1):
2*((2*x*y + 1)*(4*x*y + 1))})
assert x.replace(x, y) == y
assert (x + 1).replace(1, 2) == x + 2
# https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0
n1, n2, n3 = symbols('n1:4', commutative=False)
f = Function('f')
assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2
assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2
# issue 16725
assert S(0).replace(Wild('x'), 1) == 1
# let the user override the default decision of False
assert S(0).replace(Wild('x'), 1, exact=True) == 0
def test_find():
expr = (x + y + 2 + sin(3*x))
assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)}
assert expr.find(lambda u: u.is_Symbol) == {x, y}
assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1}
assert expr.find(Integer) == {S(2), S(3)}
assert expr.find(Symbol) == {x, y}
assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(Symbol, group=True) == {x: 2, y: 1}
a = Wild('a')
expr = sin(sin(x)) + sin(x) + cos(x) + x
assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))}
assert expr.find(
lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin(a)) == {sin(x), sin(sin(x))}
assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin) == {sin(x), sin(sin(x))}
assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
def test_count():
expr = (x + y + 2 + sin(3*x))
assert expr.count(lambda u: u.is_Integer) == 2
assert expr.count(lambda u: u.is_Symbol) == 3
assert expr.count(Integer) == 2
assert expr.count(Symbol) == 3
assert expr.count(2) == 1
a = Wild('a')
assert expr.count(sin) == 1
assert expr.count(sin(a)) == 1
assert expr.count(lambda u: type(u) is sin) == 1
f = Function('f')
assert f(x).count(f(x)) == 1
assert f(x).diff(x).count(f(x)) == 1
assert f(x).diff(x).count(x) == 2
def test_has_basics():
f = Function('f')
g = Function('g')
p = Wild('p')
assert sin(x).has(x)
assert sin(x).has(sin)
assert not sin(x).has(y)
assert not sin(x).has(cos)
assert f(x).has(x)
assert f(x).has(f)
assert not f(x).has(y)
assert not f(x).has(g)
assert f(x).diff(x).has(x)
assert f(x).diff(x).has(f)
assert f(x).diff(x).has(Derivative)
assert not f(x).diff(x).has(y)
assert not f(x).diff(x).has(g)
assert not f(x).diff(x).has(sin)
assert (x**2).has(Symbol)
assert not (x**2).has(Wild)
assert (2*p).has(Wild)
assert not x.has()
def test_has_multiple():
f = x**2*y + sin(2**t + log(z))
assert f.has(x)
assert f.has(y)
assert f.has(z)
assert f.has(t)
assert not f.has(u)
assert f.has(x, y, z, t)
assert f.has(x, y, z, t, u)
i = Integer(4400)
assert not i.has(x)
assert (i*x**i).has(x)
assert not (i*y**i).has(x)
assert (i*y**i).has(x, y)
assert not (i*y**i).has(x, z)
def test_has_piecewise():
f = (x*y + 3/y)**(3 + 2)
g = Function('g')
h = Function('h')
p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True))
assert p.has(x)
assert p.has(y)
assert not p.has(z)
assert p.has(1)
assert p.has(3)
assert not p.has(4)
assert p.has(f)
assert p.has(g)
assert not p.has(h)
def test_has_iterative():
A, B, C = symbols('A,B,C', commutative=False)
f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B)
assert f.has(x)
assert f.has(x*y)
assert f.has(x*sin(x))
assert not f.has(x*sin(y))
assert f.has(x*A)
assert f.has(x*A*B)
assert not f.has(x*A*C)
assert f.has(x*A*B*C)
assert not f.has(x*A*C*B)
assert f.has(x*sin(x)*A*B*C)
assert not f.has(x*sin(x)*A*C*B)
assert not f.has(x*sin(y)*A*B*C)
assert f.has(x*gamma(x))
assert not f.has(x + sin(x))
assert (x & y & z).has(x & z)
def test_has_integrals():
f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z))
assert f.has(x + y)
assert f.has(x + z)
assert f.has(y + z)
assert f.has(x*y)
assert f.has(x*z)
assert f.has(y*z)
assert not f.has(2*x + y)
assert not f.has(2*x*y)
def test_has_tuple():
f = Function('f')
g = Function('g')
h = Function('h')
assert Tuple(x, y).has(x)
assert not Tuple(x, y).has(z)
assert Tuple(f(x), g(x)).has(x)
assert not Tuple(f(x), g(x)).has(y)
assert Tuple(f(x), g(x)).has(f)
assert Tuple(f(x), g(x)).has(f(x))
assert not Tuple(f, g).has(x)
assert Tuple(f, g).has(f)
assert not Tuple(f, g).has(h)
assert Tuple(True).has(True) is True # .has(1) will also be True
def test_has_units():
from sympy.physics.units import m, s
assert (x*m/s).has(x)
assert (x*m/s).has(y, z) is False
def test_has_polys():
poly = Poly(x**2 + x*y*sin(z), x, y, t)
assert poly.has(x)
assert poly.has(x, y, z)
assert poly.has(x, y, z, t)
def test_has_physics():
assert FockState((x, y)).has(x)
def test_as_poly_as_expr():
f = x**2 + 2*x*y
assert f.as_poly().as_expr() == f
assert f.as_poly(x, y).as_expr() == f
assert (f + sin(x)).as_poly(x, y) is None
p = Poly(f, x, y)
assert p.as_poly() == p
def test_nonzero():
assert bool(S.Zero) is False
assert bool(S.One) is True
assert bool(x) is True
assert bool(x + y) is True
assert bool(x - x) is False
assert bool(x*y) is True
assert bool(x*1) is True
assert bool(x*0) is False
def test_is_number():
assert Float(3.14).is_number is True
assert Integer(737).is_number is True
assert Rational(3, 2).is_number is True
assert Rational(8).is_number is True
assert x.is_number is False
assert (2*x).is_number is False
assert (x + y).is_number is False
assert log(2).is_number is True
assert log(x).is_number is False
assert (2 + log(2)).is_number is True
assert (8 + log(2)).is_number is True
assert (2 + log(x)).is_number is False
assert (8 + log(2) + x).is_number is False
assert (1 + x**2/x - x).is_number is True
assert Tuple(Integer(1)).is_number is False
assert Add(2, x).is_number is False
assert Mul(3, 4).is_number is True
assert Pow(log(2), 2).is_number is True
assert oo.is_number is True
g = WildFunction('g')
assert g.is_number is False
assert (2*g).is_number is False
assert (x**2).subs(x, 3).is_number is True
# test extensibility of .is_number
# on subinstances of Basic
class A(Basic):
pass
a = A()
assert a.is_number is False
def test_as_coeff_add():
assert S(2).as_coeff_add() == (2, ())
assert S(3.0).as_coeff_add() == (0, (S(3.0),))
assert S(-3.0).as_coeff_add() == (0, (S(-3.0),))
assert x.as_coeff_add() == (0, (x,))
assert (x - 1).as_coeff_add() == (-1, (x,))
assert (x + 1).as_coeff_add() == (1, (x,))
assert (x + 2).as_coeff_add() == (2, (x,))
assert (x + y).as_coeff_add(y) == (x, (y,))
assert (3*x).as_coeff_add(y) == (3*x, ())
# don't do expansion
e = (x + y)**2
assert e.as_coeff_add(y) == (0, (e,))
def test_as_coeff_mul():
assert S(2).as_coeff_mul() == (2, ())
assert S(3.0).as_coeff_mul() == (1, (S(3.0),))
assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),))
assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ())
assert x.as_coeff_mul() == (1, (x,))
assert (-x).as_coeff_mul() == (-1, (x,))
assert (2*x).as_coeff_mul() == (2, (x,))
assert (x*y).as_coeff_mul(y) == (x, (y,))
assert (3 + x).as_coeff_mul() == (1, (3 + x,))
assert (3 + x).as_coeff_mul(y) == (3 + x, ())
# don't do expansion
e = exp(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
e = 2**(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,))
assert (1.1*x).as_coeff_mul() == (1, (1.1, x))
assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x))
def test_as_coeff_exponent():
assert (3*x**4).as_coeff_exponent(x) == (3, 4)
assert (2*x**3).as_coeff_exponent(x) == (2, 3)
assert (4*x**2).as_coeff_exponent(x) == (4, 2)
assert (6*x**1).as_coeff_exponent(x) == (6, 1)
assert (3*x**0).as_coeff_exponent(x) == (3, 0)
assert (2*x**0).as_coeff_exponent(x) == (2, 0)
assert (1*x**0).as_coeff_exponent(x) == (1, 0)
assert (0*x**0).as_coeff_exponent(x) == (0, 0)
assert (-1*x**0).as_coeff_exponent(x) == (-1, 0)
assert (-2*x**0).as_coeff_exponent(x) == (-2, 0)
assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3)
assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \
(log(2)/(2 + pi), 0)
# issue 4784
D = Derivative
f = Function('f')
fx = D(f(x), x)
assert fx.as_coeff_exponent(f(x)) == (fx, 0)
def test_extractions():
assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2
assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None
assert (2*x).extract_multiplicatively(2) == x
assert (2*x).extract_multiplicatively(3) is None
assert (2*x).extract_multiplicatively(-1) is None
assert (Rational(1, 2)*x).extract_multiplicatively(3) == x/6
assert (sqrt(x)).extract_multiplicatively(x) is None
assert (sqrt(x)).extract_multiplicatively(1/x) is None
assert x.extract_multiplicatively(-x) is None
assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I
assert (-2 - 4*I).extract_multiplicatively(3) is None
assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4
assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x
assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x
assert (-4*y**2*x).extract_multiplicatively(-3*y) is None
assert (2*x).extract_multiplicatively(1) == 2*x
assert (-oo).extract_multiplicatively(5) == -oo
assert (oo).extract_multiplicatively(5) == oo
assert ((x*y)**3).extract_additively(1) is None
assert (x + 1).extract_additively(x) == 1
assert (x + 1).extract_additively(2*x) is None
assert (x + 1).extract_additively(-x) is None
assert (-x + 1).extract_additively(2*x) is None
assert (2*x + 3).extract_additively(x) == x + 3
assert (2*x + 3).extract_additively(2) == 2*x + 1
assert (2*x + 3).extract_additively(3) == 2*x
assert (2*x + 3).extract_additively(-2) is None
assert (2*x + 3).extract_additively(3*x) is None
assert (2*x + 3).extract_additively(2*x) == 3
assert x.extract_additively(0) == x
assert S(2).extract_additively(x) is None
assert S(2.).extract_additively(2) == S.Zero
assert S(2*x + 3).extract_additively(x + 1) == x + 2
assert S(2*x + 3).extract_additively(y + 1) is None
assert S(2*x - 3).extract_additively(x + 1) is None
assert S(2*x - 3).extract_additively(y + z) is None
assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \
4*a*x + 3*x + y
assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \
4*a*x + 3*x + y
assert (y*(x + 1)).extract_additively(x + 1) is None
assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \
y*(x + 1) + 3
assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \
x*(x + y) + 3
assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \
x + y + (x + 1)*(x + y) + 3
assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \
(x + 2*y)*(y + 1) + 3
n = Symbol("n", integer=True)
assert (Integer(-3)).could_extract_minus_sign() is True
assert (-n*x + x).could_extract_minus_sign() != \
(n*x - x).could_extract_minus_sign()
assert (x - y).could_extract_minus_sign() != \
(-x + y).could_extract_minus_sign()
assert (1 - x - y).could_extract_minus_sign() is True
assert (1 - x + y).could_extract_minus_sign() is False
assert ((-x - x*y)/y).could_extract_minus_sign() is True
assert (-(x + x*y)/y).could_extract_minus_sign() is True
assert ((x + x*y)/(-y)).could_extract_minus_sign() is True
assert ((x + x*y)/y).could_extract_minus_sign() is False
assert (x*(-x - x**3)).could_extract_minus_sign() is True
assert ((-x - y)/(x + y)).could_extract_minus_sign() is True
class sign_invariant(Function, Expr):
nargs = 1
def __neg__(self):
return self
foo = sign_invariant(x)
assert foo == -foo
assert foo.could_extract_minus_sign() is False
# The results of each of these will vary on different machines, e.g.
# the first one might be False and the other (then) is true or vice versa,
# so both are included.
assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \
((-x - y)/(y - x)).could_extract_minus_sign() is False
assert (x - y).could_extract_minus_sign() is False
assert (-x + y).could_extract_minus_sign() is True
# check that result is canonical
eq = (3*x + 15*y).extract_multiplicatively(3)
assert eq.args == eq.func(*eq.args).args
def test_nan_extractions():
for r in (1, 0, I, nan):
assert nan.extract_additively(r) is None
assert nan.extract_multiplicatively(r) is None
def test_coeff():
assert (x + 1).coeff(x + 1) == 1
assert (3*x).coeff(0) == 0
assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2
assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2
assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (3 + 2*x + 4*x**2).coeff(-1) == 0
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (-x/8 + x*y).coeff(x) == -S(1)/8 + y
assert (-x/8 + x*y).coeff(-x) == S(1)/8
assert (4*x).coeff(2*x) == 0
assert (2*x).coeff(2*x) == 1
assert (-oo*x).coeff(x*oo) == -1
assert (10*x).coeff(x, 0) == 0
assert (10*x).coeff(10*x, 0) == 0
n1, n2 = symbols('n1 n2', commutative=False)
assert (n1*n2).coeff(n1) == 1
assert (n1*n2).coeff(n2) == n1
assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x)
assert (n2*n1 + x*n1).coeff(n1) == n2 + x
assert (n2*n1 + x*n1**2).coeff(n1) == n2
assert (n1**x).coeff(n1) == 0
assert (n1*n2 + n2*n1).coeff(n1) == 0
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2
f = Function('f')
assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr.coeff(x + y) == 0
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
assert (x + y + 3*z).coeff(1) == x + y
assert (-x + 2*y).coeff(-1) == x
assert (x - 2*y).coeff(-1) == 2*y
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (-x - 2*y).coeff(2) == -y
assert (x + sqrt(2)*x).coeff(sqrt(2)) == x
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (z*(x + y)**2).coeff((x + y)**2) == z
assert (z*(x + y)**2).coeff(x + y) == 0
assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y
assert (x + 2*y + 3).coeff(1) == x
assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3
assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x
assert x.coeff(0, 0) == 0
assert x.coeff(x, 0) == 0
n, m, o, l = symbols('n m o l', commutative=False)
assert n.coeff(n) == 1
assert y.coeff(n) == 0
assert (3*n).coeff(n) == 3
assert (2 + n).coeff(x*m) == 0
assert (2*x*n*m).coeff(x) == 2*n*m
assert (2 + n).coeff(x*m*n + y) == 0
assert (2*x*n*m).coeff(3*n) == 0
assert (n*m + m*n*m).coeff(n) == 1 + m
assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m
assert (n*m + m*n).coeff(n) == 0
assert (n*m + o*m*n).coeff(m*n) == o
assert (n*m + o*m*n).coeff(m*n, right=1) == 1
assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1)
assert (x*y).coeff(z, 0) == x*y
def test_coeff2():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff((psi(r).diff(r))) == 2/r
def test_coeff2_0():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff(psi(r).diff(r, 2)) == 1
def test_coeff_expand():
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
def test_integrate():
assert x.integrate(x) == x**2/2
assert x.integrate((x, 0, 1)) == S(1)/2
def test_as_base_exp():
assert x.as_base_exp() == (x, S.One)
assert (x*y*z).as_base_exp() == (x*y*z, S.One)
assert (x + y + z).as_base_exp() == (x + y + z, S.One)
assert ((x + y)**z).as_base_exp() == (x + y, z)
def test_issue_4963():
assert hasattr(Mul(x, y), "is_commutative")
assert hasattr(Mul(x, y, evaluate=False), "is_commutative")
assert hasattr(Pow(x, y), "is_commutative")
assert hasattr(Pow(x, y, evaluate=False), "is_commutative")
expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1
assert hasattr(expr, "is_commutative")
def test_action_verbs():
assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \
(1/(exp(3*pi*x/5) + 1)).nsimplify()
assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True)
assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp()
assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \
(1/(a + b*sqrt(c))).radsimp(symbolic=False)
assert powsimp(x**y*x**z*y**z, combine='all') == \
(x**y*x**z*y**z).powsimp(combine='all')
assert (x**t*y**t).powsimp(force=True) == (x*y)**t
assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
assert together(1/x + 1/y) == (1/x + 1/y).together()
assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \
(a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y)
assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp()
assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp()
assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor()
assert refine(sqrt(x**2)) == sqrt(x**2).refine()
assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel()
def test_as_powers_dict():
assert x.as_powers_dict() == {x: 1}
assert (x**y*z).as_powers_dict() == {x: y, z: 1}
assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)}
assert (x*y).as_powers_dict()[z] == 0
assert (x + y).as_powers_dict()[z] == 0
def test_as_coefficients_dict():
check = [S(1), x, y, x*y, 1]
assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \
[3, 5, 1, 0, 3]
assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i]
for i in check] == [3, 5, 1, 0, 3]
assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3, 0]
assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3.0, 0]
assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0
def test_args_cnc():
A = symbols('A', commutative=False)
assert (x + A).args_cnc() == \
[[], [x + A]]
assert (x + a).args_cnc() == \
[[a + x], []]
assert (x*a).args_cnc() == \
[[a, x], []]
assert (x*y*A*(A + 1)).args_cnc(cset=True) == \
[{x, y}, [A, 1 + A]]
assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x}, []]
assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x, x**2}, []]
raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True))
assert Mul(x, y, x, evaluate=False).args_cnc() == \
[[x, y, x], []]
# always split -1 from leading number
assert (-1.*x).args_cnc() == [[-1, 1.0, x], []]
def test_new_rawargs():
n = Symbol('n', commutative=False)
a = x + n
assert a.is_commutative is False
assert a._new_rawargs(x).is_commutative
assert a._new_rawargs(x, y).is_commutative
assert a._new_rawargs(x, n).is_commutative is False
assert a._new_rawargs(x, y, n).is_commutative is False
m = x*n
assert m.is_commutative is False
assert m._new_rawargs(x).is_commutative
assert m._new_rawargs(n).is_commutative is False
assert m._new_rawargs(x, y).is_commutative
assert m._new_rawargs(x, n).is_commutative is False
assert m._new_rawargs(x, y, n).is_commutative is False
assert m._new_rawargs(x, n, reeval=False).is_commutative is False
assert m._new_rawargs(S.One) is S.One
def test_issue_5226():
assert Add(evaluate=False) == 0
assert Mul(evaluate=False) == 1
assert Mul(x + y, evaluate=False).is_Add
def test_free_symbols():
# free_symbols should return the free symbols of an object
assert S(1).free_symbols == set()
assert (x).free_symbols == {x}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert (-Integral(x, (x, 1, y))).free_symbols == {y}
assert meter.free_symbols == set()
assert (meter**x).free_symbols == {x}
def test_issue_5300():
x = Symbol('x', commutative=False)
assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3
def test_floordiv():
from sympy.functions.elementary.integers import floor
assert x // y == floor(x / y)
def test_as_coeff_Mul():
assert S(0).as_coeff_Mul() == (S.One, S.Zero)
assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1))
assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1))
assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1))
assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x)
assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x)
assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x)
assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y)
assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y)
assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y)
assert (x).as_coeff_Mul() == (S.One, x)
assert (x*y).as_coeff_Mul() == (S.One, x*y)
assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x)
def test_as_coeff_Add():
assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0))
assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0))
assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0))
assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x)
assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x)
assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x)
assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x)
assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y)
assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y)
assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y)
assert (x).as_coeff_Add() == (S.Zero, x)
assert (x*y).as_coeff_Add() == (S.Zero, x*y)
def test_expr_sorting():
f, g = symbols('f,g', cls=Function)
exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n,
sin(x**2), cos(x), cos(x**2), tan(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[3], [1, 2]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [1, 2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{x: -y}, {x: y}]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{1}, {1, 2}]
assert sorted(exprs, key=default_sort_key) == exprs
a, b = exprs = [Dummy('x'), Dummy('x')]
assert sorted([b, a], key=default_sort_key) == exprs
def test_as_ordered_factors():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_factors() == [x]
assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \
== [Integer(2), x, x**n, sin(x), cos(x)]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Mul(*args)
assert expr.as_ordered_factors() == args
A, B = symbols('A,B', commutative=False)
assert (A*B).as_ordered_factors() == [A, B]
assert (B*A).as_ordered_factors() == [B, A]
def test_as_ordered_terms():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_terms() == [x]
assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \
== [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Add(*args)
assert expr.as_ordered_terms() == args
assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1]
assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I]
assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I]
assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I]
assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I]
assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I]
assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I]
assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I]
assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I]
f = x**2*y**2 + x*y**4 + y + 2
assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2]
assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2]
assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2]
assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4]
k = symbols('k')
assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k])
def test_sort_key_atomic_expr():
from sympy.physics.units import m, s
assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s]
def test_eval_interval():
assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0)
# issue 4199
# first subs and limit gives NaN
a = x/y
assert a._eval_interval(x, S(0), oo)._eval_interval(y, oo, S(0)) is S.NaN
# second subs and limit gives NaN
assert a._eval_interval(x, S(0), oo)._eval_interval(y, S(0), oo) is S.NaN
# difference gives S.NaN
a = x - y
assert a._eval_interval(x, S(1), oo)._eval_interval(y, oo, S(1)) is S.NaN
raises(ValueError, lambda: x._eval_interval(x, None, None))
a = -y*Heaviside(x - y)
assert a._eval_interval(x, -oo, oo) == -y
assert a._eval_interval(x, oo, -oo) == y
def test_eval_interval_zoo():
# Test that limit is used when zoo is returned
assert Si(1/x)._eval_interval(x, S(0), S(1)) == -pi/2 + Si(1)
def test_primitive():
assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2)
assert (6*x + 2).primitive() == (2, 3*x + 1)
assert (x/2 + 3).primitive() == (S(1)/2, x + 6)
eq = (6*x + 2)*(x/2 + 3)
assert eq.primitive()[0] == 1
eq = (2 + 2*x)**2
assert eq.primitive()[0] == 1
assert (4.0*x).primitive() == (1, 4.0*x)
assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y)
assert (-2*x).primitive() == (2, -x)
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \
(S(1)/14, 7.0*x + 21*y + 10*z)
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).primitive() == \
(S(1)/3, i + x)
assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \
(S(1)/21, 14*x + 12*y + oo)
assert S.Zero.primitive() == (S.One, S.Zero)
def test_issue_5843():
a = 1 + x
assert (2*a).extract_multiplicatively(a) == 2
assert (4*a).extract_multiplicatively(2*a) == 2
assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a
def test_is_constant():
from sympy.solvers.solvers import checksol
Sum(x, (x, 1, 10)).is_constant() is True
Sum(x, (x, 1, n)).is_constant() is False
Sum(x, (x, 1, n)).is_constant(y) is True
Sum(x, (x, 1, n)).is_constant(n) is False
Sum(x, (x, 1, n)).is_constant(x) is True
eq = a*cos(x)**2 + a*sin(x)**2 - a
eq.is_constant() is True
assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
assert x.is_constant() is False
assert x.is_constant(y) is True
assert checksol(x, x, Sum(x, (x, 1, n))) is False
assert checksol(x, x, Sum(x, (x, 1, n))) is False
f = Function('f')
assert f(1).is_constant
assert checksol(x, x, f(x)) is False
assert Pow(x, S(0), evaluate=False).is_constant() is True # == 1
assert Pow(S(0), x, evaluate=False).is_constant() is False # == 0 or 1
assert (2**x).is_constant() is False
assert Pow(S(2), S(3), evaluate=False).is_constant() is True
z1, z2 = symbols('z1 z2', zero=True)
assert (z1 + 2*z2).is_constant() is True
assert meter.is_constant() is True
assert (3*meter).is_constant() is True
assert (x*meter).is_constant() is False
assert Poly(3,x).is_constant() is True
def test_equals():
assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0)
assert (x**2 - 1).equals((x + 1)*(x - 1))
assert (cos(x)**2 + sin(x)**2).equals(1)
assert (a*cos(x)**2 + a*sin(x)**2).equals(a)
r = sqrt(2)
assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0)
assert factorial(x + 1).equals((x + 1)*factorial(x))
assert sqrt(3).equals(2*sqrt(3)) is False
assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False
assert (sqrt(5) + sqrt(3)).equals(0) is False
assert (sqrt(5) + pi).equals(0) is False
assert meter.equals(0) is False
assert (3*meter**2).equals(0) is False
eq = -(-1)**(S(3)/4)*6**(S(1)/4) + (-6)**(S(1)/4)*I
if eq != 0: # if canonicalization makes this zero, skip the test
assert eq.equals(0)
assert sqrt(x).equals(0) is False
# from integrate(x*sqrt(1 + 2*x), x);
# diff is zero only when assumptions allow
i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \
2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x)
ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15
diff = i - ans
assert diff.equals(0) is False
assert diff.subs(x, -S.Half/2) == 7*sqrt(2)/120
# there are regions for x for which the expression is True, for
# example, when x < -1/2 or x > 0 the expression is zero
p = Symbol('p', positive=True)
assert diff.subs(x, p).equals(0) is True
assert diff.subs(x, -1).equals(0) is True
# prove via minimal_polynomial or self-consistency
eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert eq.equals(0)
q = 3**Rational(1, 3) + 3
p = expand(q**3)**Rational(1, 3)
assert (p - q).equals(0)
# issue 6829
# eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S(1)/3
# z = eq.subs(x, solve(eq, x)[0])
q = symbols('q')
z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4) + q/4 + (-sqrt(-2*(-(q
- S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q
- S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**2 - S(1)/3)
assert z.equals(0)
def test_random():
from sympy import posify, lucas
assert posify(x)[0]._random() is not None
assert lucas(n)._random(2, -2, 0, -1, 1) is None
# issue 8662
assert Piecewise((Max(x, y), z))._random() is None
def test_round():
from sympy.abc import x
assert str(Float('0.1249999').round(2)) == '0.12'
d20 = 12345678901234567890
ans = S(d20).round(2)
assert ans.is_Integer and ans == d20
ans = S(d20).round(-2)
assert ans.is_Integer and ans == 12345678901234567900
assert str(S('1/7').round(4)) == '0.1429'
assert str(S('.[12345]').round(4)) == '0.1235'
assert str(S('.1349').round(2)) == '0.13'
n = S(12345)
ans = n.round()
assert ans.is_Integer
assert ans == n
ans = n.round(1)
assert ans.is_Integer
assert ans == n
ans = n.round(4)
assert ans.is_Integer
assert ans == n
assert n.round(-1) == 12340
r = Float(str(n)).round(-4)
assert r == 10000
assert n.round(-5) == 0
assert str((pi + sqrt(2)).round(2)) == '4.56'
assert (10*(pi + sqrt(2))).round(-1) == 50
raises(TypeError, lambda: round(x + 2, 2))
assert str(S(2.3).round(1)) == '2.3'
# rounding in SymPy (as in Decimal) should be
# exact for the given precision; we check here
# that when a 5 follows the last digit that
# the rounded digit will be even.
for i in range(-99, 100):
# construct a decimal that ends in 5, e.g. 123 -> 0.1235
s = str(abs(i))
p = len(s) # we are going to round to the last digit of i
n = '0.%s5' % s # put a 5 after i's digits
j = p + 2 # 2 for '0.'
if i < 0: # 1 for '-'
j += 1
n = '-' + n
v = str(Float(n).round(p))[:j] # pertinent digits
if v.endswith('.'):
continue # it ends with 0 which is even
L = int(v[-1]) # last digit
assert L % 2 == 0, (n, '->', v)
assert (Float(.3, 3) + 2*pi).round() == 7
assert (Float(.3, 3) + 2*pi*100).round() == 629
assert (pi + 2*E*I).round() == 3 + 5*I
# don't let request for extra precision give more than
# what is known (in this case, only 3 digits)
assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928'
assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928'
assert S.Zero.round() == 0
a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0))
assert a.round(10) == Float('3.0000000000', '')
assert a.round(25) == Float('3.0000000000000000000000000', '')
assert a.round(26) == Float('3.00000000000000000000000000', '')
assert a.round(27) == Float('2.999999999999999999999999999', '')
assert a.round(30) == Float('2.999999999999999999999999999', '')
raises(TypeError, lambda: x.round())
f = Function('f')
raises(TypeError, lambda: f(1).round())
# exact magnitude of 10
assert str(S(1).round()) == '1'
assert str(S(100).round()) == '100'
# applied to real and imaginary portions
assert (2*pi + E*I).round() == 6 + 3*I
assert (2*pi + I/10).round() == 6
assert (pi/10 + 2*I).round() == 2*I
# the lhs re and im parts are Float with dps of 2
# and those on the right have dps of 15 so they won't compare
# equal unless we use string or compare components (which will
# then coerce the floats to the same precision) or re-create
# the floats
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)'
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
# issue 6914
assert (I**(I + 3)).round(3) == Float('-0.208', '')*I
# issue 8720
assert S(-123.6).round() == -124
assert S(-1.5).round() == -2
assert S(-100.5).round() == -100
assert S(-1.5 - 10.5*I).round() == -2 - 10*I
# issue 7961
assert str(S(0.006).round(2)) == '0.01'
assert str(S(0.00106).round(4)) == '0.0011'
# issue 8147
assert S.NaN.round() == S.NaN
assert S.Infinity.round() == S.Infinity
assert S.NegativeInfinity.round() == S.NegativeInfinity
assert S.ComplexInfinity.round() == S.ComplexInfinity
# check that types match
for i in range(2):
f = float(i)
# 2 args
assert all(type(round(i, p)) is _rint for p in (-1, 0, 1))
assert all(S(i).round(p).is_Integer for p in (-1, 0, 1))
assert all(type(round(f, p)) is float for p in (-1, 0, 1))
assert all(S(f).round(p).is_Float for p in (-1, 0, 1))
# 1 arg (p is None)
assert type(round(i)) is _rint
assert S(i).round().is_Integer
assert type(round(f)) is _rint
assert S(f).round().is_Integer
def test_held_expression_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
e1 = x*he
assert isinstance(e1, Mul)
assert e1.args == (x, he)
assert e1.doit() == 1
assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False
) == Derivative(x, x)
assert UnevaluatedExpr(Derivative(x, x)).doit() == 1
xx = Mul(x, x, evaluate=False)
assert xx != x**2
ue2 = UnevaluatedExpr(xx)
assert isinstance(ue2, UnevaluatedExpr)
assert ue2.args == (xx,)
assert ue2.doit() == x**2
assert ue2.doit(deep=False) == xx
x2 = UnevaluatedExpr(2)*2
assert type(x2) is Mul
assert x2.args == (2, UnevaluatedExpr(2))
def test_round_exception_nostr():
# Don't use the string form of the expression in the round exception, as
# it's too slow
s = Symbol('bad')
try:
s.round()
except TypeError as e:
assert 'bad' not in str(e)
else:
# Did not raise
raise AssertionError("Did not raise")
def test_extract_branch_factor():
assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1)
def test_identity_removal():
assert Add.make_args(x + 0) == (x,)
assert Mul.make_args(x*1) == (x,)
def test_float_0():
assert Float(0.0) + 1 == Float(1.0)
@XFAIL
def test_float_0_fail():
assert Float(0.0)*x == Float(0.0)
assert (x + Float(0.0)).is_Add
def test_issue_6325():
ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/(
(a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2)
e = sqrt((a + b*t)**2 + (c + z*t)**2)
assert diff(e, t, 2) == ans
e.diff(t, 2) == ans
assert diff(e, t, 2, simplify=False) != ans
def test_issue_7426():
f1 = a % c
f2 = x % z
assert f1.equals(f2) is None
def test_issue_11122():
x = Symbol('x', extended_positive=False)
assert unchanged(Gt, x, 0) # (x > 0)
# (x > 0) should remain unevaluated after PR #16956
x = Symbol('x', positive=False, real=True)
assert (x > 0) is S.false
def test_issue_10161():
x = symbols('x', real=True)
assert x*abs(x)*abs(x) == x**3
def test_issue_10755():
x = symbols('x')
raises(TypeError, lambda: int(log(x)))
raises(TypeError, lambda: log(x).round(2))
def test_issue_11877():
x = symbols('x')
assert integrate(log(S(1)/2 - x), (x, 0, S(1)/2)) == -S(1)/2 -log(2)/2
def test_normal():
x = symbols('x')
e = Mul(S.Half, 1 + x, evaluate=False)
assert e.normal() == e
def test_expr():
x = symbols('x')
raises(TypeError, lambda: tan(x).series(x, 2, oo, "+"))
def test_ExprBuilder():
eb = ExprBuilder(Mul)
eb.args.extend([x, x])
assert eb.build() == x**2
|
ac2108b34cc6c70686d359370c579d0dab34a274f64568b5bf32522dcd2329cf | """Test whether all elements of cls.args are instances of Basic. """
# NOTE: keep tests sorted by (module, class name) key. If a class can't
# be instantiated, add it here anyway with @SKIP("abstract class) (see
# e.g. Function).
import os
import re
import io
from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi,
Eq, log, Function)
from sympy.core.compatibility import range
from sympy.utilities.pytest import XFAIL, SKIP
x, y, z = symbols('x,y,z')
def test_all_classes_are_tested():
this = os.path.split(__file__)[0]
path = os.path.join(this, os.pardir, os.pardir)
sympy_path = os.path.abspath(path)
prefix = os.path.split(sympy_path)[0] + os.sep
re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE)
modules = {}
for root, dirs, files in os.walk(sympy_path):
module = root.replace(prefix, "").replace(os.sep, ".")
for file in files:
if file.startswith(("_", "test_", "bench_")):
continue
if not file.endswith(".py"):
continue
with io.open(os.path.join(root, file), "r", encoding='utf-8') as f:
text = f.read()
submodule = module + '.' + file[:-3]
names = re_cls.findall(text)
if not names:
continue
try:
mod = __import__(submodule, fromlist=names)
except ImportError:
continue
def is_Basic(name):
cls = getattr(mod, name)
if hasattr(cls, '_sympy_deprecated_func'):
cls = cls._sympy_deprecated_func
return issubclass(cls, Basic)
names = list(filter(is_Basic, names))
if names:
modules[submodule] = names
ns = globals()
failed = []
for module, names in modules.items():
mod = module.replace('.', '__')
for name in names:
test = 'test_' + mod + '__' + name
if test not in ns:
failed.append(module + '.' + name)
assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed)
def _test_args(obj):
return all(isinstance(arg, Basic) for arg in obj.args)
def test_sympy__assumptions__assume__AppliedPredicate():
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy import Q
assert _test_args(AppliedPredicate(Predicate("test"), 2))
assert _test_args(Q.is_true(True))
def test_sympy__assumptions__assume__Predicate():
from sympy.assumptions.assume import Predicate
assert _test_args(Predicate("test"))
def test_sympy__assumptions__sathandlers__UnevaluatedOnFree():
from sympy.assumptions.sathandlers import UnevaluatedOnFree
from sympy import Q
assert _test_args(UnevaluatedOnFree(Q.positive))
assert _test_args(UnevaluatedOnFree(Q.positive(x)))
assert _test_args(UnevaluatedOnFree(Q.positive(x * y)))
def test_sympy__assumptions__sathandlers__AllArgs():
from sympy.assumptions.sathandlers import AllArgs
from sympy import Q
assert _test_args(AllArgs(Q.positive))
assert _test_args(AllArgs(Q.positive(x)))
assert _test_args(AllArgs(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__AnyArgs():
from sympy.assumptions.sathandlers import AnyArgs
from sympy import Q
assert _test_args(AnyArgs(Q.positive))
assert _test_args(AnyArgs(Q.positive(x)))
assert _test_args(AnyArgs(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__ExactlyOneArg():
from sympy.assumptions.sathandlers import ExactlyOneArg
from sympy import Q
assert _test_args(ExactlyOneArg(Q.positive))
assert _test_args(ExactlyOneArg(Q.positive(x)))
assert _test_args(ExactlyOneArg(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__CheckOldAssump():
from sympy.assumptions.sathandlers import CheckOldAssump
from sympy import Q
assert _test_args(CheckOldAssump(Q.positive))
assert _test_args(CheckOldAssump(Q.positive(x)))
assert _test_args(CheckOldAssump(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__CheckIsPrime():
from sympy.assumptions.sathandlers import CheckIsPrime
from sympy import Q
# Input must be a number
assert _test_args(CheckIsPrime(Q.positive))
assert _test_args(CheckIsPrime(Q.positive(5)))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AssignmentBase():
from sympy.codegen.ast import AssignmentBase
assert _test_args(AssignmentBase(x, 1))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AugmentedAssignment():
from sympy.codegen.ast import AugmentedAssignment
assert _test_args(AugmentedAssignment(x, 1))
def test_sympy__codegen__ast__AddAugmentedAssignment():
from sympy.codegen.ast import AddAugmentedAssignment
assert _test_args(AddAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__SubAugmentedAssignment():
from sympy.codegen.ast import SubAugmentedAssignment
assert _test_args(SubAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__MulAugmentedAssignment():
from sympy.codegen.ast import MulAugmentedAssignment
assert _test_args(MulAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__DivAugmentedAssignment():
from sympy.codegen.ast import DivAugmentedAssignment
assert _test_args(DivAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__ModAugmentedAssignment():
from sympy.codegen.ast import ModAugmentedAssignment
assert _test_args(ModAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__CodeBlock():
from sympy.codegen.ast import CodeBlock, Assignment
assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2)))
def test_sympy__codegen__ast__For():
from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment
from sympy import Range
assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1))))
def test_sympy__codegen__ast__Token():
from sympy.codegen.ast import Token
assert _test_args(Token())
def test_sympy__codegen__ast__ContinueToken():
from sympy.codegen.ast import ContinueToken
assert _test_args(ContinueToken())
def test_sympy__codegen__ast__BreakToken():
from sympy.codegen.ast import BreakToken
assert _test_args(BreakToken())
def test_sympy__codegen__ast__NoneToken():
from sympy.codegen.ast import NoneToken
assert _test_args(NoneToken())
def test_sympy__codegen__ast__String():
from sympy.codegen.ast import String
assert _test_args(String('foobar'))
def test_sympy__codegen__ast__QuotedString():
from sympy.codegen.ast import QuotedString
assert _test_args(QuotedString('foobar'))
def test_sympy__codegen__ast__Comment():
from sympy.codegen.ast import Comment
assert _test_args(Comment('this is a comment'))
def test_sympy__codegen__ast__Node():
from sympy.codegen.ast import Node
assert _test_args(Node())
assert _test_args(Node(attrs={1, 2, 3}))
def test_sympy__codegen__ast__Type():
from sympy.codegen.ast import Type
assert _test_args(Type('float128'))
def test_sympy__codegen__ast__IntBaseType():
from sympy.codegen.ast import IntBaseType
assert _test_args(IntBaseType('bigint'))
def test_sympy__codegen__ast___SizedIntType():
from sympy.codegen.ast import _SizedIntType
assert _test_args(_SizedIntType('int128', 128))
def test_sympy__codegen__ast__SignedIntType():
from sympy.codegen.ast import SignedIntType
assert _test_args(SignedIntType('int128_with_sign', 128))
def test_sympy__codegen__ast__UnsignedIntType():
from sympy.codegen.ast import UnsignedIntType
assert _test_args(UnsignedIntType('unt128', 128))
def test_sympy__codegen__ast__FloatBaseType():
from sympy.codegen.ast import FloatBaseType
assert _test_args(FloatBaseType('positive_real'))
def test_sympy__codegen__ast__FloatType():
from sympy.codegen.ast import FloatType
assert _test_args(FloatType('float242', 242, nmant=142, nexp=99))
def test_sympy__codegen__ast__ComplexBaseType():
from sympy.codegen.ast import ComplexBaseType
assert _test_args(ComplexBaseType('positive_cmplx'))
def test_sympy__codegen__ast__ComplexType():
from sympy.codegen.ast import ComplexType
assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5))
def test_sympy__codegen__ast__Attribute():
from sympy.codegen.ast import Attribute
assert _test_args(Attribute('noexcept'))
def test_sympy__codegen__ast__Variable():
from sympy.codegen.ast import Variable, Type, value_const
assert _test_args(Variable(x))
assert _test_args(Variable(y, Type('float32'), {value_const}))
assert _test_args(Variable(z, type=Type('float64')))
def test_sympy__codegen__ast__Pointer():
from sympy.codegen.ast import Pointer, Type, pointer_const
assert _test_args(Pointer(x))
assert _test_args(Pointer(y, type=Type('float32')))
assert _test_args(Pointer(z, Type('float64'), {pointer_const}))
def test_sympy__codegen__ast__Declaration():
from sympy.codegen.ast import Declaration, Variable, Type
vx = Variable(x, type=Type('float'))
assert _test_args(Declaration(vx))
def test_sympy__codegen__ast__While():
from sympy.codegen.ast import While, AddAugmentedAssignment
assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Scope():
from sympy.codegen.ast import Scope, AddAugmentedAssignment
assert _test_args(Scope([AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Stream():
from sympy.codegen.ast import Stream
assert _test_args(Stream('stdin'))
def test_sympy__codegen__ast__Print():
from sympy.codegen.ast import Print
assert _test_args(Print([x, y]))
assert _test_args(Print([x, y], "%d %d"))
def test_sympy__codegen__ast__FunctionPrototype():
from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionPrototype(real, 'pwer', [inp_x]))
def test_sympy__codegen__ast__FunctionDefinition():
from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)]))
def test_sympy__codegen__ast__Return():
from sympy.codegen.ast import Return
assert _test_args(Return(x))
def test_sympy__codegen__ast__FunctionCall():
from sympy.codegen.ast import FunctionCall
assert _test_args(FunctionCall('pwer', [x]))
def test_sympy__codegen__ast__Element():
from sympy.codegen.ast import Element
assert _test_args(Element('x', range(3)))
def test_sympy__codegen__cnodes__CommaOperator():
from sympy.codegen.cnodes import CommaOperator
assert _test_args(CommaOperator(1, 2))
def test_sympy__codegen__cnodes__goto():
from sympy.codegen.cnodes import goto
assert _test_args(goto('early_exit'))
def test_sympy__codegen__cnodes__Label():
from sympy.codegen.cnodes import Label
assert _test_args(Label('early_exit'))
def test_sympy__codegen__cnodes__PreDecrement():
from sympy.codegen.cnodes import PreDecrement
assert _test_args(PreDecrement(x))
def test_sympy__codegen__cnodes__PostDecrement():
from sympy.codegen.cnodes import PostDecrement
assert _test_args(PostDecrement(x))
def test_sympy__codegen__cnodes__PreIncrement():
from sympy.codegen.cnodes import PreIncrement
assert _test_args(PreIncrement(x))
def test_sympy__codegen__cnodes__PostIncrement():
from sympy.codegen.cnodes import PostIncrement
assert _test_args(PostIncrement(x))
def test_sympy__codegen__cnodes__struct():
from sympy.codegen.ast import real, Variable
from sympy.codegen.cnodes import struct
assert _test_args(struct(declarations=[
Variable(x, type=real),
Variable(y, type=real)
]))
def test_sympy__codegen__cnodes__union():
from sympy.codegen.ast import float32, int32, Variable
from sympy.codegen.cnodes import union
assert _test_args(union(declarations=[
Variable(x, type=float32),
Variable(y, type=int32)
]))
def test_sympy__codegen__cxxnodes__using():
from sympy.codegen.cxxnodes import using
assert _test_args(using('std::vector'))
assert _test_args(using('std::vector', 'vec'))
def test_sympy__codegen__fnodes__Program():
from sympy.codegen.fnodes import Program
assert _test_args(Program('foobar', []))
def test_sympy__codegen__fnodes__Module():
from sympy.codegen.fnodes import Module
assert _test_args(Module('foobar', [], []))
def test_sympy__codegen__fnodes__Subroutine():
from sympy.codegen.fnodes import Subroutine
x = symbols('x', real=True)
assert _test_args(Subroutine('foo', [x], []))
def test_sympy__codegen__fnodes__GoTo():
from sympy.codegen.fnodes import GoTo
assert _test_args(GoTo([10]))
assert _test_args(GoTo([10, 20], x > 1))
def test_sympy__codegen__fnodes__FortranReturn():
from sympy.codegen.fnodes import FortranReturn
assert _test_args(FortranReturn(10))
def test_sympy__codegen__fnodes__Extent():
from sympy.codegen.fnodes import Extent
assert _test_args(Extent())
assert _test_args(Extent(None))
assert _test_args(Extent(':'))
assert _test_args(Extent(-3, 4))
assert _test_args(Extent(x, y))
def test_sympy__codegen__fnodes__use_rename():
from sympy.codegen.fnodes import use_rename
assert _test_args(use_rename('loc', 'glob'))
def test_sympy__codegen__fnodes__use():
from sympy.codegen.fnodes import use
assert _test_args(use('modfoo', only='bar'))
def test_sympy__codegen__fnodes__SubroutineCall():
from sympy.codegen.fnodes import SubroutineCall
assert _test_args(SubroutineCall('foo', ['bar', 'baz']))
def test_sympy__codegen__fnodes__Do():
from sympy.codegen.fnodes import Do
assert _test_args(Do([], 'i', 1, 42))
def test_sympy__codegen__fnodes__ImpliedDoLoop():
from sympy.codegen.fnodes import ImpliedDoLoop
assert _test_args(ImpliedDoLoop('i', 'i', 1, 42))
def test_sympy__codegen__fnodes__ArrayConstructor():
from sympy.codegen.fnodes import ArrayConstructor
assert _test_args(ArrayConstructor([1, 2, 3]))
from sympy.codegen.fnodes import ImpliedDoLoop
idl = ImpliedDoLoop('i', 'i', 1, 42)
assert _test_args(ArrayConstructor([1, idl, 3]))
def test_sympy__codegen__fnodes__sum_():
from sympy.codegen.fnodes import sum_
assert _test_args(sum_('arr'))
def test_sympy__codegen__fnodes__product_():
from sympy.codegen.fnodes import product_
assert _test_args(product_('arr'))
@XFAIL
def test_sympy__combinatorics__graycode__GrayCode():
from sympy.combinatorics.graycode import GrayCode
# an integer is given and returned from GrayCode as the arg
assert _test_args(GrayCode(3, start='100'))
assert _test_args(GrayCode(3, rank=1))
def test_sympy__combinatorics__subsets__Subset():
from sympy.combinatorics.subsets import Subset
assert _test_args(Subset([0, 1], [0, 1, 2, 3]))
assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd']))
@XFAIL
def test_sympy__combinatorics__permutations__Permutation():
from sympy.combinatorics.permutations import Permutation
assert _test_args(Permutation([0, 1, 2, 3]))
def test_sympy__combinatorics__perm_groups__PermutationGroup():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
assert _test_args(PermutationGroup([Permutation([0, 1])]))
def test_sympy__combinatorics__polyhedron__Polyhedron():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import Polyhedron
from sympy.abc import w, x, y, z
pgroup = [Permutation([[0, 1, 2], [3]]),
Permutation([[0, 1, 3], [2]]),
Permutation([[0, 2, 3], [1]]),
Permutation([[1, 2, 3], [0]]),
Permutation([[0, 1], [2, 3]]),
Permutation([[0, 2], [1, 3]]),
Permutation([[0, 3], [1, 2]]),
Permutation([[0, 1, 2, 3]])]
corners = [w, x, y, z]
faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)]
assert _test_args(Polyhedron(corners, faces, pgroup))
@XFAIL
def test_sympy__combinatorics__prufer__Prufer():
from sympy.combinatorics.prufer import Prufer
assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4))
def test_sympy__combinatorics__partitions__Partition():
from sympy.combinatorics.partitions import Partition
assert _test_args(Partition([1]))
@XFAIL
def test_sympy__combinatorics__partitions__IntegerPartition():
from sympy.combinatorics.partitions import IntegerPartition
assert _test_args(IntegerPartition([1]))
def test_sympy__concrete__products__Product():
from sympy.concrete.products import Product
assert _test_args(Product(x, (x, 0, 10)))
assert _test_args(Product(x, (x, 0, y), (y, 0, 10)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__ExprWithLimits():
from sympy.concrete.expr_with_limits import ExprWithLimits
assert _test_args(ExprWithLimits(x, (x, 0, 10)))
assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__AddWithLimits():
from sympy.concrete.expr_with_limits import AddWithLimits
assert _test_args(AddWithLimits(x, (x, 0, 10)))
assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits():
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
assert _test_args(ExprWithIntLimits(x, (x, 0, 10)))
assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3)))
def test_sympy__concrete__summations__Sum():
from sympy.concrete.summations import Sum
assert _test_args(Sum(x, (x, 0, 10)))
assert _test_args(Sum(x, (x, 0, y), (y, 0, 10)))
def test_sympy__core__add__Add():
from sympy.core.add import Add
assert _test_args(Add(x, y, z, 2))
def test_sympy__core__basic__Atom():
from sympy.core.basic import Atom
assert _test_args(Atom())
def test_sympy__core__basic__Basic():
from sympy.core.basic import Basic
assert _test_args(Basic())
def test_sympy__core__containers__Dict():
from sympy.core.containers import Dict
assert _test_args(Dict({x: y, y: z}))
def test_sympy__core__containers__Tuple():
from sympy.core.containers import Tuple
assert _test_args(Tuple(x, y, z, 2))
def test_sympy__core__expr__AtomicExpr():
from sympy.core.expr import AtomicExpr
assert _test_args(AtomicExpr())
def test_sympy__core__expr__Expr():
from sympy.core.expr import Expr
assert _test_args(Expr())
def test_sympy__core__expr__UnevaluatedExpr():
from sympy.core.expr import UnevaluatedExpr
from sympy.abc import x
assert _test_args(UnevaluatedExpr(x))
def test_sympy__core__function__Application():
from sympy.core.function import Application
assert _test_args(Application(1, 2, 3))
def test_sympy__core__function__AppliedUndef():
from sympy.core.function import AppliedUndef
assert _test_args(AppliedUndef(1, 2, 3))
def test_sympy__core__function__Derivative():
from sympy.core.function import Derivative
assert _test_args(Derivative(2, x, y, 3))
@SKIP("abstract class")
def test_sympy__core__function__Function():
pass
def test_sympy__core__function__Lambda():
assert _test_args(Lambda((x, y), x + y + z))
def test_sympy__core__function__Subs():
from sympy.core.function import Subs
assert _test_args(Subs(x + y, x, 2))
def test_sympy__core__function__WildFunction():
from sympy.core.function import WildFunction
assert _test_args(WildFunction('f'))
def test_sympy__core__mod__Mod():
from sympy.core.mod import Mod
assert _test_args(Mod(x, 2))
def test_sympy__core__mul__Mul():
from sympy.core.mul import Mul
assert _test_args(Mul(2, x, y, z))
def test_sympy__core__numbers__Catalan():
from sympy.core.numbers import Catalan
assert _test_args(Catalan())
def test_sympy__core__numbers__ComplexInfinity():
from sympy.core.numbers import ComplexInfinity
assert _test_args(ComplexInfinity())
def test_sympy__core__numbers__EulerGamma():
from sympy.core.numbers import EulerGamma
assert _test_args(EulerGamma())
def test_sympy__core__numbers__Exp1():
from sympy.core.numbers import Exp1
assert _test_args(Exp1())
def test_sympy__core__numbers__Float():
from sympy.core.numbers import Float
assert _test_args(Float(1.23))
def test_sympy__core__numbers__GoldenRatio():
from sympy.core.numbers import GoldenRatio
assert _test_args(GoldenRatio())
def test_sympy__core__numbers__TribonacciConstant():
from sympy.core.numbers import TribonacciConstant
assert _test_args(TribonacciConstant())
def test_sympy__core__numbers__Half():
from sympy.core.numbers import Half
assert _test_args(Half())
def test_sympy__core__numbers__ImaginaryUnit():
from sympy.core.numbers import ImaginaryUnit
assert _test_args(ImaginaryUnit())
def test_sympy__core__numbers__Infinity():
from sympy.core.numbers import Infinity
assert _test_args(Infinity())
def test_sympy__core__numbers__Integer():
from sympy.core.numbers import Integer
assert _test_args(Integer(7))
@SKIP("abstract class")
def test_sympy__core__numbers__IntegerConstant():
pass
def test_sympy__core__numbers__NaN():
from sympy.core.numbers import NaN
assert _test_args(NaN())
def test_sympy__core__numbers__NegativeInfinity():
from sympy.core.numbers import NegativeInfinity
assert _test_args(NegativeInfinity())
def test_sympy__core__numbers__NegativeOne():
from sympy.core.numbers import NegativeOne
assert _test_args(NegativeOne())
def test_sympy__core__numbers__Number():
from sympy.core.numbers import Number
assert _test_args(Number(1, 7))
def test_sympy__core__numbers__NumberSymbol():
from sympy.core.numbers import NumberSymbol
assert _test_args(NumberSymbol())
def test_sympy__core__numbers__One():
from sympy.core.numbers import One
assert _test_args(One())
def test_sympy__core__numbers__Pi():
from sympy.core.numbers import Pi
assert _test_args(Pi())
def test_sympy__core__numbers__Rational():
from sympy.core.numbers import Rational
assert _test_args(Rational(1, 7))
@SKIP("abstract class")
def test_sympy__core__numbers__RationalConstant():
pass
def test_sympy__core__numbers__Zero():
from sympy.core.numbers import Zero
assert _test_args(Zero())
@SKIP("abstract class")
def test_sympy__core__operations__AssocOp():
pass
@SKIP("abstract class")
def test_sympy__core__operations__LatticeOp():
pass
def test_sympy__core__power__Pow():
from sympy.core.power import Pow
assert _test_args(Pow(x, 2))
def test_sympy__algebras__quaternion__Quaternion():
from sympy.algebras.quaternion import Quaternion
assert _test_args(Quaternion(x, 1, 2, 3))
def test_sympy__core__relational__Equality():
from sympy.core.relational import Equality
assert _test_args(Equality(x, 2))
def test_sympy__core__relational__GreaterThan():
from sympy.core.relational import GreaterThan
assert _test_args(GreaterThan(x, 2))
def test_sympy__core__relational__LessThan():
from sympy.core.relational import LessThan
assert _test_args(LessThan(x, 2))
@SKIP("abstract class")
def test_sympy__core__relational__Relational():
pass
def test_sympy__core__relational__StrictGreaterThan():
from sympy.core.relational import StrictGreaterThan
assert _test_args(StrictGreaterThan(x, 2))
def test_sympy__core__relational__StrictLessThan():
from sympy.core.relational import StrictLessThan
assert _test_args(StrictLessThan(x, 2))
def test_sympy__core__relational__Unequality():
from sympy.core.relational import Unequality
assert _test_args(Unequality(x, 2))
def test_sympy__sandbox__indexed_integrals__IndexedIntegral():
from sympy.tensor import IndexedBase, Idx
from sympy.sandbox.indexed_integrals import IndexedIntegral
A = IndexedBase('A')
i, j = symbols('i j', integer=True)
a1, a2 = symbols('a1:3', cls=Idx)
assert _test_args(IndexedIntegral(A[a1], A[a2]))
assert _test_args(IndexedIntegral(A[i], A[j]))
def test_sympy__calculus__util__AccumulationBounds():
from sympy.calculus.util import AccumulationBounds
assert _test_args(AccumulationBounds(0, 1))
def test_sympy__sets__ordinals__OmegaPower():
from sympy.sets.ordinals import OmegaPower
assert _test_args(OmegaPower(1, 1))
def test_sympy__sets__ordinals__Ordinal():
from sympy.sets.ordinals import Ordinal, OmegaPower
assert _test_args(Ordinal(OmegaPower(2, 1)))
def test_sympy__sets__ordinals__OrdinalOmega():
from sympy.sets.ordinals import OrdinalOmega
assert _test_args(OrdinalOmega())
def test_sympy__sets__ordinals__OrdinalZero():
from sympy.sets.ordinals import OrdinalZero
assert _test_args(OrdinalZero())
def test_sympy__sets__sets__EmptySet():
from sympy.sets.sets import EmptySet
assert _test_args(EmptySet())
def test_sympy__sets__sets__UniversalSet():
from sympy.sets.sets import UniversalSet
assert _test_args(UniversalSet())
def test_sympy__sets__sets__FiniteSet():
from sympy.sets.sets import FiniteSet
assert _test_args(FiniteSet(x, y, z))
def test_sympy__sets__sets__Interval():
from sympy.sets.sets import Interval
assert _test_args(Interval(0, 1))
def test_sympy__sets__sets__ProductSet():
from sympy.sets.sets import ProductSet, Interval
assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1)))
@SKIP("does it make sense to test this?")
def test_sympy__sets__sets__Set():
from sympy.sets.sets import Set
assert _test_args(Set())
def test_sympy__sets__sets__Intersection():
from sympy.sets.sets import Intersection, Interval
assert _test_args(Intersection(Interval(0, 3), Interval(2, 4),
evaluate=False))
def test_sympy__sets__sets__Union():
from sympy.sets.sets import Union, Interval
assert _test_args(Union(Interval(0, 1), Interval(2, 3)))
def test_sympy__sets__sets__Complement():
from sympy.sets.sets import Complement
assert _test_args(Complement(Interval(0, 2), Interval(0, 1)))
def test_sympy__sets__sets__SymmetricDifference():
from sympy.sets.sets import FiniteSet, SymmetricDifference
assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__core__trace__Tr():
from sympy.core.trace import Tr
a, b = symbols('a b')
assert _test_args(Tr(a + b))
def test_sympy__sets__setexpr__SetExpr():
from sympy.sets.setexpr import SetExpr
assert _test_args(SetExpr(Interval(0, 1)))
def test_sympy__sets__fancysets__Rationals():
from sympy.sets.fancysets import Rationals
assert _test_args(Rationals())
def test_sympy__sets__fancysets__Naturals():
from sympy.sets.fancysets import Naturals
assert _test_args(Naturals())
def test_sympy__sets__fancysets__Naturals0():
from sympy.sets.fancysets import Naturals0
assert _test_args(Naturals0())
def test_sympy__sets__fancysets__Integers():
from sympy.sets.fancysets import Integers
assert _test_args(Integers())
def test_sympy__sets__fancysets__Reals():
from sympy.sets.fancysets import Reals
assert _test_args(Reals())
def test_sympy__sets__fancysets__Complexes():
from sympy.sets.fancysets import Complexes
assert _test_args(Complexes())
def test_sympy__sets__fancysets__ComplexRegion():
from sympy.sets.fancysets import ComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
theta = Interval(0, 2*S.Pi)
assert _test_args(ComplexRegion(a*b))
assert _test_args(ComplexRegion(a*theta, polar=True))
def test_sympy__sets__fancysets__ImageSet():
from sympy.sets.fancysets import ImageSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals))
def test_sympy__sets__fancysets__Range():
from sympy.sets.fancysets import Range
assert _test_args(Range(1, 5, 1))
def test_sympy__sets__conditionset__ConditionSet():
from sympy.sets.conditionset import ConditionSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals))
def test_sympy__sets__contains__Contains():
from sympy.sets.fancysets import Range
from sympy.sets.contains import Contains
assert _test_args(Contains(x, Range(0, 10, 2)))
# STATS
from sympy.stats.crv_types import NormalDistribution
nd = NormalDistribution(0, 1)
from sympy.stats.frv_types import DieDistribution
die = DieDistribution(6)
def test_sympy__stats__crv__ContinuousDomain():
from sympy.stats.crv import ContinuousDomain
assert _test_args(ContinuousDomain({x}, Interval(-oo, oo)))
def test_sympy__stats__crv__SingleContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain
assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo)))
def test_sympy__stats__crv__ProductContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
E = SingleContinuousDomain(y, Interval(0, oo))
assert _test_args(ProductContinuousDomain(D, E))
def test_sympy__stats__crv__ConditionalContinuousDomain():
from sympy.stats.crv import (SingleContinuousDomain,
ConditionalContinuousDomain)
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ConditionalContinuousDomain(D, x > 0))
def test_sympy__stats__crv__ContinuousPSpace():
from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ContinuousPSpace(D, nd))
def test_sympy__stats__crv__SingleContinuousPSpace():
from sympy.stats.crv import SingleContinuousPSpace
assert _test_args(SingleContinuousPSpace(x, nd))
@SKIP("abstract class")
def test_sympy__stats__crv__SingleContinuousDistribution():
pass
def test_sympy__stats__drv__SingleDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain
assert _test_args(SingleDiscreteDomain(x, S.Naturals))
def test_sympy__stats__drv__ProductDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals)
Y = SingleDiscreteDomain(y, S.Integers)
assert _test_args(ProductDiscreteDomain(X, Y))
def test_sympy__stats__drv__SingleDiscretePSpace():
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1)))
def test_sympy__stats__drv__DiscretePSpace():
from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain
density = Lambda(x, 2**(-x))
domain = SingleDiscreteDomain(x, S.Naturals)
assert _test_args(DiscretePSpace(domain, density))
def test_sympy__stats__drv__ConditionalDiscreteDomain():
from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals0)
assert _test_args(ConditionalDiscreteDomain(X, x > 2))
def test_sympy__stats__joint_rv__JointPSpace():
from sympy.stats.joint_rv import JointPSpace, JointDistribution
assert _test_args(JointPSpace('X', JointDistribution(1)))
def test_sympy__stats__joint_rv__JointRandomSymbol():
from sympy.stats.joint_rv import JointRandomSymbol
assert _test_args(JointRandomSymbol(x))
def test_sympy__stats__joint_rv__JointDistributionHandmade():
from sympy import Indexed
from sympy.stats.joint_rv import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2))
def test_sympy__stats__joint_rv__MarginalDistribution():
from sympy.stats.rv import RandomSymbol
from sympy.stats.joint_rv import MarginalDistribution
r = RandomSymbol(S('r'))
assert _test_args(MarginalDistribution(r, (r,)))
def test_sympy__stats__joint_rv__CompoundDistribution():
from sympy.stats.joint_rv import CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution
r = PoissonDistribution(x)
assert _test_args(CompoundDistribution(PoissonDistribution(r)))
@SKIP("abstract class")
def test_sympy__stats__drv__SingleDiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDomain():
pass
def test_sympy__stats__rv__RandomDomain():
from sympy.stats.rv import RandomDomain
from sympy.sets.sets import FiniteSet
assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__SingleDomain():
from sympy.stats.rv import SingleDomain
from sympy.sets.sets import FiniteSet
assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__ConditionalDomain():
from sympy.stats.rv import ConditionalDomain, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2))
assert _test_args(ConditionalDomain(D, x > 1))
def test_sympy__stats__rv__PSpace():
from sympy.stats.rv import PSpace, RandomDomain
from sympy import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6))
assert _test_args(PSpace(D, die))
@SKIP("abstract Class")
def test_sympy__stats__rv__SinglePSpace():
pass
def test_sympy__stats__rv__RandomSymbol():
from sympy.stats.rv import RandomSymbol
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
assert _test_args(RandomSymbol(x, A))
@SKIP("abstract Class")
def test_sympy__stats__rv__ProductPSpace():
pass
def test_sympy__stats__rv__IndependentProductPSpace():
from sympy.stats.rv import IndependentProductPSpace
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
B = SingleContinuousPSpace(y, nd)
assert _test_args(IndependentProductPSpace(A, B))
def test_sympy__stats__rv__ProductDomain():
from sympy.stats.rv import ProductDomain, SingleDomain
D = SingleDomain(x, Interval(-oo, oo))
E = SingleDomain(y, Interval(0, oo))
assert _test_args(ProductDomain(D, E))
def test_sympy__stats__symbolic_probability__Probability():
from sympy.stats.symbolic_probability import Probability
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Probability(X > 0))
def test_sympy__stats__symbolic_probability__Expectation():
from sympy.stats.symbolic_probability import Expectation
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Expectation(X > 0))
def test_sympy__stats__symbolic_probability__Covariance():
from sympy.stats.symbolic_probability import Covariance
from sympy.stats import Normal
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 3)
assert _test_args(Covariance(X, Y))
def test_sympy__stats__symbolic_probability__Variance():
from sympy.stats.symbolic_probability import Variance
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Variance(X))
def test_sympy__stats__frv_types__DiscreteUniformDistribution():
from sympy.stats.frv_types import DiscreteUniformDistribution
from sympy.core.containers import Tuple
assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6)))))
def test_sympy__stats__frv_types__DieDistribution():
assert _test_args(die)
def test_sympy__stats__frv_types__BernoulliDistribution():
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(BernoulliDistribution(S.Half, 0, 1))
def test_sympy__stats__frv_types__BinomialDistribution():
from sympy.stats.frv_types import BinomialDistribution
assert _test_args(BinomialDistribution(5, S.Half, 1, 0))
def test_sympy__stats__frv_types__BetaBinomialDistribution():
from sympy.stats.frv_types import BetaBinomialDistribution
assert _test_args(BetaBinomialDistribution(5, 1, 1))
def test_sympy__stats__frv_types__HypergeometricDistribution():
from sympy.stats.frv_types import HypergeometricDistribution
assert _test_args(HypergeometricDistribution(10, 5, 3))
def test_sympy__stats__frv_types__RademacherDistribution():
from sympy.stats.frv_types import RademacherDistribution
assert _test_args(RademacherDistribution())
def test_sympy__stats__frv__FiniteDomain():
from sympy.stats.frv import FiniteDomain
assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2
def test_sympy__stats__frv__SingleFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain
assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2
def test_sympy__stats__frv__ProductFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
yd = SingleFiniteDomain(y, {1, 2})
assert _test_args(ProductFiniteDomain(xd, yd))
def test_sympy__stats__frv__ConditionalFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(ConditionalFiniteDomain(xd, x > 1))
def test_sympy__stats__frv__FinitePSpace():
from sympy.stats.frv import FinitePSpace, SingleFiniteDomain
xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6})
p = 1.0/6
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
def test_sympy__stats__frv__SingleFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace
from sympy import Symbol
assert _test_args(SingleFinitePSpace(Symbol('x'), die))
def test_sympy__stats__frv__ProductFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace
from sympy import Symbol
xp = SingleFinitePSpace(Symbol('x'), die)
yp = SingleFinitePSpace(Symbol('y'), die)
assert _test_args(ProductFinitePSpace(xp, yp))
@SKIP("abstract class")
def test_sympy__stats__frv__SingleFiniteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__ContinuousDistribution():
pass
def test_sympy__stats__frv_types__FiniteDistributionHandmade():
from sympy.stats.frv_types import FiniteDistributionHandmade
from sympy import Dict
assert _test_args(FiniteDistributionHandmade(Dict({1: 1})))
def test_sympy__stats__crv__ContinuousDistributionHandmade():
from sympy.stats.crv import ContinuousDistributionHandmade
from sympy import Symbol, Interval
assert _test_args(ContinuousDistributionHandmade(Symbol('x'),
Interval(0, 2)))
def test_sympy__stats__drv__DiscreteDistributionHandmade():
from sympy.stats.drv import DiscreteDistributionHandmade
assert _test_args(DiscreteDistributionHandmade(x, S.Naturals))
def test_sympy__stats__rv__Density():
from sympy.stats.rv import Density
from sympy.stats.crv_types import Normal
assert _test_args(Density(Normal('x', 0, 1)))
def test_sympy__stats__crv_types__ArcsinDistribution():
from sympy.stats.crv_types import ArcsinDistribution
assert _test_args(ArcsinDistribution(0, 1))
def test_sympy__stats__crv_types__BeniniDistribution():
from sympy.stats.crv_types import BeniniDistribution
assert _test_args(BeniniDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaDistribution():
from sympy.stats.crv_types import BetaDistribution
assert _test_args(BetaDistribution(1, 1))
def test_sympy__stats__crv_types__BetaNoncentralDistribution():
from sympy.stats.crv_types import BetaNoncentralDistribution
assert _test_args(BetaNoncentralDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaPrimeDistribution():
from sympy.stats.crv_types import BetaPrimeDistribution
assert _test_args(BetaPrimeDistribution(1, 1))
def test_sympy__stats__crv_types__CauchyDistribution():
from sympy.stats.crv_types import CauchyDistribution
assert _test_args(CauchyDistribution(0, 1))
def test_sympy__stats__crv_types__ChiDistribution():
from sympy.stats.crv_types import ChiDistribution
assert _test_args(ChiDistribution(1))
def test_sympy__stats__crv_types__ChiNoncentralDistribution():
from sympy.stats.crv_types import ChiNoncentralDistribution
assert _test_args(ChiNoncentralDistribution(1,1))
def test_sympy__stats__crv_types__ChiSquaredDistribution():
from sympy.stats.crv_types import ChiSquaredDistribution
assert _test_args(ChiSquaredDistribution(1))
def test_sympy__stats__crv_types__DagumDistribution():
from sympy.stats.crv_types import DagumDistribution
assert _test_args(DagumDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExGaussianDistribution():
from sympy.stats.crv_types import ExGaussianDistribution
assert _test_args(ExGaussianDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExponentialDistribution():
from sympy.stats.crv_types import ExponentialDistribution
assert _test_args(ExponentialDistribution(1))
def test_sympy__stats__crv_types__ExponentialPowerDistribution():
from sympy.stats.crv_types import ExponentialPowerDistribution
assert _test_args(ExponentialPowerDistribution(0, 1, 1))
def test_sympy__stats__crv_types__FDistributionDistribution():
from sympy.stats.crv_types import FDistributionDistribution
assert _test_args(FDistributionDistribution(1, 1))
def test_sympy__stats__crv_types__FisherZDistribution():
from sympy.stats.crv_types import FisherZDistribution
assert _test_args(FisherZDistribution(1, 1))
def test_sympy__stats__crv_types__FrechetDistribution():
from sympy.stats.crv_types import FrechetDistribution
assert _test_args(FrechetDistribution(1, 1, 1))
def test_sympy__stats__crv_types__GammaInverseDistribution():
from sympy.stats.crv_types import GammaInverseDistribution
assert _test_args(GammaInverseDistribution(1, 1))
def test_sympy__stats__crv_types__GammaDistribution():
from sympy.stats.crv_types import GammaDistribution
assert _test_args(GammaDistribution(1, 1))
def test_sympy__stats__crv_types__GumbelDistribution():
from sympy.stats.crv_types import GumbelDistribution
assert _test_args(GumbelDistribution(1, 1, False))
def test_sympy__stats__crv_types__GompertzDistribution():
from sympy.stats.crv_types import GompertzDistribution
assert _test_args(GompertzDistribution(1, 1))
def test_sympy__stats__crv_types__KumaraswamyDistribution():
from sympy.stats.crv_types import KumaraswamyDistribution
assert _test_args(KumaraswamyDistribution(1, 1))
def test_sympy__stats__crv_types__LaplaceDistribution():
from sympy.stats.crv_types import LaplaceDistribution
assert _test_args(LaplaceDistribution(0, 1))
def test_sympy__stats__crv_types__LogisticDistribution():
from sympy.stats.crv_types import LogisticDistribution
assert _test_args(LogisticDistribution(0, 1))
def test_sympy__stats__crv_types__LogLogisticDistribution():
from sympy.stats.crv_types import LogLogisticDistribution
assert _test_args(LogLogisticDistribution(1, 1))
def test_sympy__stats__crv_types__LogNormalDistribution():
from sympy.stats.crv_types import LogNormalDistribution
assert _test_args(LogNormalDistribution(0, 1))
def test_sympy__stats__crv_types__MaxwellDistribution():
from sympy.stats.crv_types import MaxwellDistribution
assert _test_args(MaxwellDistribution(1))
def test_sympy__stats__crv_types__NakagamiDistribution():
from sympy.stats.crv_types import NakagamiDistribution
assert _test_args(NakagamiDistribution(1, 1))
def test_sympy__stats__crv_types__NormalDistribution():
from sympy.stats.crv_types import NormalDistribution
assert _test_args(NormalDistribution(0, 1))
def test_sympy__stats__crv_types__GaussianInverseDistribution():
from sympy.stats.crv_types import GaussianInverseDistribution
assert _test_args(GaussianInverseDistribution(1, 1))
def test_sympy__stats__crv_types__ParetoDistribution():
from sympy.stats.crv_types import ParetoDistribution
assert _test_args(ParetoDistribution(1, 1))
def test_sympy__stats__crv_types__QuadraticUDistribution():
from sympy.stats.crv_types import QuadraticUDistribution
assert _test_args(QuadraticUDistribution(1, 2))
def test_sympy__stats__crv_types__RaisedCosineDistribution():
from sympy.stats.crv_types import RaisedCosineDistribution
assert _test_args(RaisedCosineDistribution(1, 1))
def test_sympy__stats__crv_types__RayleighDistribution():
from sympy.stats.crv_types import RayleighDistribution
assert _test_args(RayleighDistribution(1))
def test_sympy__stats__crv_types__ShiftedGompertzDistribution():
from sympy.stats.crv_types import ShiftedGompertzDistribution
assert _test_args(ShiftedGompertzDistribution(1, 1))
def test_sympy__stats__crv_types__StudentTDistribution():
from sympy.stats.crv_types import StudentTDistribution
assert _test_args(StudentTDistribution(1))
def test_sympy__stats__crv_types__TrapezoidalDistribution():
from sympy.stats.crv_types import TrapezoidalDistribution
assert _test_args(TrapezoidalDistribution(1, 2, 3, 4))
def test_sympy__stats__crv_types__TriangularDistribution():
from sympy.stats.crv_types import TriangularDistribution
assert _test_args(TriangularDistribution(-1, 0, 1))
def test_sympy__stats__crv_types__UniformDistribution():
from sympy.stats.crv_types import UniformDistribution
assert _test_args(UniformDistribution(0, 1))
def test_sympy__stats__crv_types__UniformSumDistribution():
from sympy.stats.crv_types import UniformSumDistribution
assert _test_args(UniformSumDistribution(1))
def test_sympy__stats__crv_types__VonMisesDistribution():
from sympy.stats.crv_types import VonMisesDistribution
assert _test_args(VonMisesDistribution(1, 1))
def test_sympy__stats__crv_types__WeibullDistribution():
from sympy.stats.crv_types import WeibullDistribution
assert _test_args(WeibullDistribution(1, 1))
def test_sympy__stats__crv_types__WignerSemicircleDistribution():
from sympy.stats.crv_types import WignerSemicircleDistribution
assert _test_args(WignerSemicircleDistribution(1))
def test_sympy__stats__drv_types__GeometricDistribution():
from sympy.stats.drv_types import GeometricDistribution
assert _test_args(GeometricDistribution(.5))
def test_sympy__stats__drv_types__LogarithmicDistribution():
from sympy.stats.drv_types import LogarithmicDistribution
assert _test_args(LogarithmicDistribution(.5))
def test_sympy__stats__drv_types__NegativeBinomialDistribution():
from sympy.stats.drv_types import NegativeBinomialDistribution
assert _test_args(NegativeBinomialDistribution(.5, .5))
def test_sympy__stats__drv_types__PoissonDistribution():
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(PoissonDistribution(1))
def test_sympy__stats__drv_types__SkellamDistribution():
from sympy.stats.drv_types import SkellamDistribution
assert _test_args(SkellamDistribution(1, 1))
def test_sympy__stats__drv_types__YuleSimonDistribution():
from sympy.stats.drv_types import YuleSimonDistribution
assert _test_args(YuleSimonDistribution(.5))
def test_sympy__stats__drv_types__ZetaDistribution():
from sympy.stats.drv_types import ZetaDistribution
assert _test_args(ZetaDistribution(1.5))
def test_sympy__stats__joint_rv__JointDistribution():
from sympy.stats.joint_rv import JointDistribution
assert _test_args(JointDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution():
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
assert _test_args(
MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution():
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateTDistribution():
from sympy.stats.joint_rv_types import MultivariateTDistribution
assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1))
def test_sympy__stats__joint_rv_types__NormalGammaDistribution():
from sympy.stats.joint_rv_types import NormalGammaDistribution
assert _test_args(NormalGammaDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution():
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu))
def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution():
from sympy.stats.joint_rv_types import MultivariateBetaDistribution
assert _test_args(MultivariateBetaDistribution([1, 2, 3]))
def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution():
from sympy.stats.joint_rv_types import MultivariateEwensDistribution
assert _test_args(MultivariateEwensDistribution(5, 1))
def test_sympy__stats__joint_rv_types__MultinomialDistribution():
from sympy.stats.joint_rv_types import MultinomialDistribution
assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution():
from sympy.stats.joint_rv_types import NegativeMultinomialDistribution
assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__rv__RandomIndexedSymbol():
from sympy.stats.rv import RandomIndexedSymbol, pspace
from sympy.tensor import Indexed
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
X = DiscreteMarkovChain("X")
assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0])))
def test_sympy__stats__rv__RandomMatrixSymbol():
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.random_matrix import RandomMatrixPSpace
pspace = RandomMatrixPSpace('P')
assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace))
def test_sympy__stats__stochastic_process__StochasticPSpace():
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.stochastic_process_types import StochasticProcess
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S(1)/2, 1, 0)))
def test_sympy__stats__stochastic_process_types__StochasticProcess():
from sympy.stats.stochastic_process_types import StochasticProcess
assert _test_args(StochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__MarkovProcess():
from sympy.stats.stochastic_process_types import MarkovProcess
assert _test_args(MarkovProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess():
from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess
assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess():
from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess
assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__TransitionMatrixOf():
from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain
from sympy import MatrixSymbol
DMC = DiscreteMarkovChain("Y")
assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf():
from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain
from sympy import MatrixSymbol
DMC = ContinuousMarkovChain("Y")
assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf():
from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain
from sympy import MatrixSymbol
DMC = DiscreteMarkovChain("Y")
assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2]))
def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain():
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
from sympy import MatrixSymbol
assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain():
from sympy.stats.stochastic_process_types import ContinuousMarkovChain
from sympy import MatrixSymbol
assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__random_matrix__RandomMatrixPSpace():
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.random_matrix_models import RandomMatrixEnsemble
assert _test_args(RandomMatrixPSpace('P', RandomMatrixEnsemble()))
def test_sympy__stats__random_matrix_models__RandomMatrixEnsemble():
from sympy.stats.random_matrix_models import RandomMatrixEnsemble
assert _test_args(RandomMatrixEnsemble())
def test_sympy__stats__random_matrix_models__GaussianEnsemble():
from sympy.stats.random_matrix_models import GaussianEnsemble
assert _test_args(GaussianEnsemble('G', 3))
def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsemble():
from sympy.stats import GaussianUnitaryEnsemble
assert _test_args(GaussianUnitaryEnsemble('U', 3))
def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsemble():
from sympy.stats import GaussianOrthogonalEnsemble
assert _test_args(GaussianOrthogonalEnsemble('U', 3))
def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsemble():
from sympy.stats import GaussianSymplecticEnsemble
assert _test_args(GaussianSymplecticEnsemble('U', 3))
def test_sympy__core__symbol__Dummy():
from sympy.core.symbol import Dummy
assert _test_args(Dummy('t'))
def test_sympy__core__symbol__Symbol():
from sympy.core.symbol import Symbol
assert _test_args(Symbol('t'))
def test_sympy__core__symbol__Wild():
from sympy.core.symbol import Wild
assert _test_args(Wild('x', exclude=[x]))
@SKIP("abstract class")
def test_sympy__functions__combinatorial__factorials__CombinatorialFunction():
pass
def test_sympy__functions__combinatorial__factorials__FallingFactorial():
from sympy.functions.combinatorial.factorials import FallingFactorial
assert _test_args(FallingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__MultiFactorial():
from sympy.functions.combinatorial.factorials import MultiFactorial
assert _test_args(MultiFactorial(x))
def test_sympy__functions__combinatorial__factorials__RisingFactorial():
from sympy.functions.combinatorial.factorials import RisingFactorial
assert _test_args(RisingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__binomial():
from sympy.functions.combinatorial.factorials import binomial
assert _test_args(binomial(2, x))
def test_sympy__functions__combinatorial__factorials__subfactorial():
from sympy.functions.combinatorial.factorials import subfactorial
assert _test_args(subfactorial(1))
def test_sympy__functions__combinatorial__factorials__factorial():
from sympy.functions.combinatorial.factorials import factorial
assert _test_args(factorial(x))
def test_sympy__functions__combinatorial__factorials__factorial2():
from sympy.functions.combinatorial.factorials import factorial2
assert _test_args(factorial2(x))
def test_sympy__functions__combinatorial__numbers__bell():
from sympy.functions.combinatorial.numbers import bell
assert _test_args(bell(x, y))
def test_sympy__functions__combinatorial__numbers__bernoulli():
from sympy.functions.combinatorial.numbers import bernoulli
assert _test_args(bernoulli(x))
def test_sympy__functions__combinatorial__numbers__catalan():
from sympy.functions.combinatorial.numbers import catalan
assert _test_args(catalan(x))
def test_sympy__functions__combinatorial__numbers__genocchi():
from sympy.functions.combinatorial.numbers import genocchi
assert _test_args(genocchi(x))
def test_sympy__functions__combinatorial__numbers__euler():
from sympy.functions.combinatorial.numbers import euler
assert _test_args(euler(x))
def test_sympy__functions__combinatorial__numbers__carmichael():
from sympy.functions.combinatorial.numbers import carmichael
assert _test_args(carmichael(x))
def test_sympy__functions__combinatorial__numbers__fibonacci():
from sympy.functions.combinatorial.numbers import fibonacci
assert _test_args(fibonacci(x))
def test_sympy__functions__combinatorial__numbers__tribonacci():
from sympy.functions.combinatorial.numbers import tribonacci
assert _test_args(tribonacci(x))
def test_sympy__functions__combinatorial__numbers__harmonic():
from sympy.functions.combinatorial.numbers import harmonic
assert _test_args(harmonic(x, 2))
def test_sympy__functions__combinatorial__numbers__lucas():
from sympy.functions.combinatorial.numbers import lucas
assert _test_args(lucas(x))
def test_sympy__functions__combinatorial__numbers__partition():
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.numbers import partition
assert _test_args(partition(Symbol('a', integer=True)))
def test_sympy__functions__elementary__complexes__Abs():
from sympy.functions.elementary.complexes import Abs
assert _test_args(Abs(x))
def test_sympy__functions__elementary__complexes__adjoint():
from sympy.functions.elementary.complexes import adjoint
assert _test_args(adjoint(x))
def test_sympy__functions__elementary__complexes__arg():
from sympy.functions.elementary.complexes import arg
assert _test_args(arg(x))
def test_sympy__functions__elementary__complexes__conjugate():
from sympy.functions.elementary.complexes import conjugate
assert _test_args(conjugate(x))
def test_sympy__functions__elementary__complexes__im():
from sympy.functions.elementary.complexes import im
assert _test_args(im(x))
def test_sympy__functions__elementary__complexes__re():
from sympy.functions.elementary.complexes import re
assert _test_args(re(x))
def test_sympy__functions__elementary__complexes__sign():
from sympy.functions.elementary.complexes import sign
assert _test_args(sign(x))
def test_sympy__functions__elementary__complexes__polar_lift():
from sympy.functions.elementary.complexes import polar_lift
assert _test_args(polar_lift(x))
def test_sympy__functions__elementary__complexes__periodic_argument():
from sympy.functions.elementary.complexes import periodic_argument
assert _test_args(periodic_argument(x, y))
def test_sympy__functions__elementary__complexes__principal_branch():
from sympy.functions.elementary.complexes import principal_branch
assert _test_args(principal_branch(x, y))
def test_sympy__functions__elementary__complexes__transpose():
from sympy.functions.elementary.complexes import transpose
assert _test_args(transpose(x))
def test_sympy__functions__elementary__exponential__LambertW():
from sympy.functions.elementary.exponential import LambertW
assert _test_args(LambertW(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__exponential__ExpBase():
pass
def test_sympy__functions__elementary__exponential__exp():
from sympy.functions.elementary.exponential import exp
assert _test_args(exp(2))
def test_sympy__functions__elementary__exponential__exp_polar():
from sympy.functions.elementary.exponential import exp_polar
assert _test_args(exp_polar(2))
def test_sympy__functions__elementary__exponential__log():
from sympy.functions.elementary.exponential import log
assert _test_args(log(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction():
pass
def test_sympy__functions__elementary__hyperbolic__acosh():
from sympy.functions.elementary.hyperbolic import acosh
assert _test_args(acosh(2))
def test_sympy__functions__elementary__hyperbolic__acoth():
from sympy.functions.elementary.hyperbolic import acoth
assert _test_args(acoth(2))
def test_sympy__functions__elementary__hyperbolic__asinh():
from sympy.functions.elementary.hyperbolic import asinh
assert _test_args(asinh(2))
def test_sympy__functions__elementary__hyperbolic__atanh():
from sympy.functions.elementary.hyperbolic import atanh
assert _test_args(atanh(2))
def test_sympy__functions__elementary__hyperbolic__asech():
from sympy.functions.elementary.hyperbolic import asech
assert _test_args(asech(2))
def test_sympy__functions__elementary__hyperbolic__acsch():
from sympy.functions.elementary.hyperbolic import acsch
assert _test_args(acsch(2))
def test_sympy__functions__elementary__hyperbolic__cosh():
from sympy.functions.elementary.hyperbolic import cosh
assert _test_args(cosh(2))
def test_sympy__functions__elementary__hyperbolic__coth():
from sympy.functions.elementary.hyperbolic import coth
assert _test_args(coth(2))
def test_sympy__functions__elementary__hyperbolic__csch():
from sympy.functions.elementary.hyperbolic import csch
assert _test_args(csch(2))
def test_sympy__functions__elementary__hyperbolic__sech():
from sympy.functions.elementary.hyperbolic import sech
assert _test_args(sech(2))
def test_sympy__functions__elementary__hyperbolic__sinh():
from sympy.functions.elementary.hyperbolic import sinh
assert _test_args(sinh(2))
def test_sympy__functions__elementary__hyperbolic__tanh():
from sympy.functions.elementary.hyperbolic import tanh
assert _test_args(tanh(2))
@SKIP("does this work at all?")
def test_sympy__functions__elementary__integers__RoundFunction():
from sympy.functions.elementary.integers import RoundFunction
assert _test_args(RoundFunction())
def test_sympy__functions__elementary__integers__ceiling():
from sympy.functions.elementary.integers import ceiling
assert _test_args(ceiling(x))
def test_sympy__functions__elementary__integers__floor():
from sympy.functions.elementary.integers import floor
assert _test_args(floor(x))
def test_sympy__functions__elementary__integers__frac():
from sympy.functions.elementary.integers import frac
assert _test_args(frac(x))
def test_sympy__functions__elementary__miscellaneous__IdentityFunction():
from sympy.functions.elementary.miscellaneous import IdentityFunction
assert _test_args(IdentityFunction())
def test_sympy__functions__elementary__miscellaneous__Max():
from sympy.functions.elementary.miscellaneous import Max
assert _test_args(Max(x, 2))
def test_sympy__functions__elementary__miscellaneous__Min():
from sympy.functions.elementary.miscellaneous import Min
assert _test_args(Min(x, 2))
@SKIP("abstract class")
def test_sympy__functions__elementary__miscellaneous__MinMaxBase():
pass
def test_sympy__functions__elementary__piecewise__ExprCondPair():
from sympy.functions.elementary.piecewise import ExprCondPair
assert _test_args(ExprCondPair(1, True))
def test_sympy__functions__elementary__piecewise__Piecewise():
from sympy.functions.elementary.piecewise import Piecewise
assert _test_args(Piecewise((1, x >= 0), (0, True)))
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__TrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction():
pass
def test_sympy__functions__elementary__trigonometric__acos():
from sympy.functions.elementary.trigonometric import acos
assert _test_args(acos(2))
def test_sympy__functions__elementary__trigonometric__acot():
from sympy.functions.elementary.trigonometric import acot
assert _test_args(acot(2))
def test_sympy__functions__elementary__trigonometric__asin():
from sympy.functions.elementary.trigonometric import asin
assert _test_args(asin(2))
def test_sympy__functions__elementary__trigonometric__asec():
from sympy.functions.elementary.trigonometric import asec
assert _test_args(asec(2))
def test_sympy__functions__elementary__trigonometric__acsc():
from sympy.functions.elementary.trigonometric import acsc
assert _test_args(acsc(2))
def test_sympy__functions__elementary__trigonometric__atan():
from sympy.functions.elementary.trigonometric import atan
assert _test_args(atan(2))
def test_sympy__functions__elementary__trigonometric__atan2():
from sympy.functions.elementary.trigonometric import atan2
assert _test_args(atan2(2, 3))
def test_sympy__functions__elementary__trigonometric__cos():
from sympy.functions.elementary.trigonometric import cos
assert _test_args(cos(2))
def test_sympy__functions__elementary__trigonometric__csc():
from sympy.functions.elementary.trigonometric import csc
assert _test_args(csc(2))
def test_sympy__functions__elementary__trigonometric__cot():
from sympy.functions.elementary.trigonometric import cot
assert _test_args(cot(2))
def test_sympy__functions__elementary__trigonometric__sin():
assert _test_args(sin(2))
def test_sympy__functions__elementary__trigonometric__sinc():
from sympy.functions.elementary.trigonometric import sinc
assert _test_args(sinc(2))
def test_sympy__functions__elementary__trigonometric__sec():
from sympy.functions.elementary.trigonometric import sec
assert _test_args(sec(2))
def test_sympy__functions__elementary__trigonometric__tan():
from sympy.functions.elementary.trigonometric import tan
assert _test_args(tan(2))
@SKIP("abstract class")
def test_sympy__functions__special__bessel__BesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalBesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalHankelBase():
pass
def test_sympy__functions__special__bessel__besseli():
from sympy.functions.special.bessel import besseli
assert _test_args(besseli(x, 1))
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))
def test_sympy__functions__special__bessel__besselk():
from sympy.functions.special.bessel import besselk
assert _test_args(besselk(x, 1))
def test_sympy__functions__special__bessel__bessely():
from sympy.functions.special.bessel import bessely
assert _test_args(bessely(x, 1))
def test_sympy__functions__special__bessel__hankel1():
from sympy.functions.special.bessel import hankel1
assert _test_args(hankel1(x, 1))
def test_sympy__functions__special__bessel__hankel2():
from sympy.functions.special.bessel import hankel2
assert _test_args(hankel2(x, 1))
def test_sympy__functions__special__bessel__jn():
from sympy.functions.special.bessel import jn
assert _test_args(jn(0, x))
def test_sympy__functions__special__bessel__yn():
from sympy.functions.special.bessel import yn
assert _test_args(yn(0, x))
def test_sympy__functions__special__bessel__hn1():
from sympy.functions.special.bessel import hn1
assert _test_args(hn1(0, x))
def test_sympy__functions__special__bessel__hn2():
from sympy.functions.special.bessel import hn2
assert _test_args(hn2(0, x))
def test_sympy__functions__special__bessel__AiryBase():
pass
def test_sympy__functions__special__bessel__airyai():
from sympy.functions.special.bessel import airyai
assert _test_args(airyai(2))
def test_sympy__functions__special__bessel__airybi():
from sympy.functions.special.bessel import airybi
assert _test_args(airybi(2))
def test_sympy__functions__special__bessel__airyaiprime():
from sympy.functions.special.bessel import airyaiprime
assert _test_args(airyaiprime(2))
def test_sympy__functions__special__bessel__airybiprime():
from sympy.functions.special.bessel import airybiprime
assert _test_args(airybiprime(2))
def test_sympy__functions__special__elliptic_integrals__elliptic_k():
from sympy.functions.special.elliptic_integrals import elliptic_k as K
assert _test_args(K(x))
def test_sympy__functions__special__elliptic_integrals__elliptic_f():
from sympy.functions.special.elliptic_integrals import elliptic_f as F
assert _test_args(F(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_e():
from sympy.functions.special.elliptic_integrals import elliptic_e as E
assert _test_args(E(x))
assert _test_args(E(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_pi():
from sympy.functions.special.elliptic_integrals import elliptic_pi as P
assert _test_args(P(x, y))
assert _test_args(P(x, y, z))
def test_sympy__functions__special__delta_functions__DiracDelta():
from sympy.functions.special.delta_functions import DiracDelta
assert _test_args(DiracDelta(x, 1))
def test_sympy__functions__special__singularity_functions__SingularityFunction():
from sympy.functions.special.singularity_functions import SingularityFunction
assert _test_args(SingularityFunction(x, y, z))
def test_sympy__functions__special__delta_functions__Heaviside():
from sympy.functions.special.delta_functions import Heaviside
assert _test_args(Heaviside(x))
def test_sympy__functions__special__error_functions__erf():
from sympy.functions.special.error_functions import erf
assert _test_args(erf(2))
def test_sympy__functions__special__error_functions__erfc():
from sympy.functions.special.error_functions import erfc
assert _test_args(erfc(2))
def test_sympy__functions__special__error_functions__erfi():
from sympy.functions.special.error_functions import erfi
assert _test_args(erfi(2))
def test_sympy__functions__special__error_functions__erf2():
from sympy.functions.special.error_functions import erf2
assert _test_args(erf2(2, 3))
def test_sympy__functions__special__error_functions__erfinv():
from sympy.functions.special.error_functions import erfinv
assert _test_args(erfinv(2))
def test_sympy__functions__special__error_functions__erfcinv():
from sympy.functions.special.error_functions import erfcinv
assert _test_args(erfcinv(2))
def test_sympy__functions__special__error_functions__erf2inv():
from sympy.functions.special.error_functions import erf2inv
assert _test_args(erf2inv(2, 3))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__FresnelIntegral():
pass
def test_sympy__functions__special__error_functions__fresnels():
from sympy.functions.special.error_functions import fresnels
assert _test_args(fresnels(2))
def test_sympy__functions__special__error_functions__fresnelc():
from sympy.functions.special.error_functions import fresnelc
assert _test_args(fresnelc(2))
def test_sympy__functions__special__error_functions__erfs():
from sympy.functions.special.error_functions import _erfs
assert _test_args(_erfs(2))
def test_sympy__functions__special__error_functions__Ei():
from sympy.functions.special.error_functions import Ei
assert _test_args(Ei(2))
def test_sympy__functions__special__error_functions__li():
from sympy.functions.special.error_functions import li
assert _test_args(li(2))
def test_sympy__functions__special__error_functions__Li():
from sympy.functions.special.error_functions import Li
assert _test_args(Li(2))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__TrigonometricIntegral():
pass
def test_sympy__functions__special__error_functions__Si():
from sympy.functions.special.error_functions import Si
assert _test_args(Si(2))
def test_sympy__functions__special__error_functions__Ci():
from sympy.functions.special.error_functions import Ci
assert _test_args(Ci(2))
def test_sympy__functions__special__error_functions__Shi():
from sympy.functions.special.error_functions import Shi
assert _test_args(Shi(2))
def test_sympy__functions__special__error_functions__Chi():
from sympy.functions.special.error_functions import Chi
assert _test_args(Chi(2))
def test_sympy__functions__special__error_functions__expint():
from sympy.functions.special.error_functions import expint
assert _test_args(expint(y, x))
def test_sympy__functions__special__gamma_functions__gamma():
from sympy.functions.special.gamma_functions import gamma
assert _test_args(gamma(x))
def test_sympy__functions__special__gamma_functions__loggamma():
from sympy.functions.special.gamma_functions import loggamma
assert _test_args(loggamma(2))
def test_sympy__functions__special__gamma_functions__lowergamma():
from sympy.functions.special.gamma_functions import lowergamma
assert _test_args(lowergamma(x, 2))
def test_sympy__functions__special__gamma_functions__polygamma():
from sympy.functions.special.gamma_functions import polygamma
assert _test_args(polygamma(x, 2))
def test_sympy__functions__special__gamma_functions__uppergamma():
from sympy.functions.special.gamma_functions import uppergamma
assert _test_args(uppergamma(x, 2))
def test_sympy__functions__special__gamma_functions__multigamma():
from sympy.functions.special.gamma_functions import multigamma
assert _test_args(multigamma(x, 1))
def test_sympy__functions__special__beta_functions__beta():
from sympy.functions.special.beta_functions import beta
assert _test_args(beta(x, x))
def test_sympy__functions__special__mathieu_functions__MathieuBase():
pass
def test_sympy__functions__special__mathieu_functions__mathieus():
from sympy.functions.special.mathieu_functions import mathieus
assert _test_args(mathieus(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieuc():
from sympy.functions.special.mathieu_functions import mathieuc
assert _test_args(mathieuc(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieusprime():
from sympy.functions.special.mathieu_functions import mathieusprime
assert _test_args(mathieusprime(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieucprime():
from sympy.functions.special.mathieu_functions import mathieucprime
assert _test_args(mathieucprime(1, 1, 1))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleParametersBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleArg():
pass
def test_sympy__functions__special__hyper__hyper():
from sympy.functions.special.hyper import hyper
assert _test_args(hyper([1, 2, 3], [4, 5], x))
def test_sympy__functions__special__hyper__meijerg():
from sympy.functions.special.hyper import meijerg
assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__HyperRep():
pass
def test_sympy__functions__special__hyper__HyperRep_power1():
from sympy.functions.special.hyper import HyperRep_power1
assert _test_args(HyperRep_power1(x, y))
def test_sympy__functions__special__hyper__HyperRep_power2():
from sympy.functions.special.hyper import HyperRep_power2
assert _test_args(HyperRep_power2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log1():
from sympy.functions.special.hyper import HyperRep_log1
assert _test_args(HyperRep_log1(x))
def test_sympy__functions__special__hyper__HyperRep_atanh():
from sympy.functions.special.hyper import HyperRep_atanh
assert _test_args(HyperRep_atanh(x))
def test_sympy__functions__special__hyper__HyperRep_asin1():
from sympy.functions.special.hyper import HyperRep_asin1
assert _test_args(HyperRep_asin1(x))
def test_sympy__functions__special__hyper__HyperRep_asin2():
from sympy.functions.special.hyper import HyperRep_asin2
assert _test_args(HyperRep_asin2(x))
def test_sympy__functions__special__hyper__HyperRep_sqrts1():
from sympy.functions.special.hyper import HyperRep_sqrts1
assert _test_args(HyperRep_sqrts1(x, y))
def test_sympy__functions__special__hyper__HyperRep_sqrts2():
from sympy.functions.special.hyper import HyperRep_sqrts2
assert _test_args(HyperRep_sqrts2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log2():
from sympy.functions.special.hyper import HyperRep_log2
assert _test_args(HyperRep_log2(x))
def test_sympy__functions__special__hyper__HyperRep_cosasin():
from sympy.functions.special.hyper import HyperRep_cosasin
assert _test_args(HyperRep_cosasin(x, y))
def test_sympy__functions__special__hyper__HyperRep_sinasin():
from sympy.functions.special.hyper import HyperRep_sinasin
assert _test_args(HyperRep_sinasin(x, y))
def test_sympy__functions__special__hyper__appellf1():
from sympy.functions.special.hyper import appellf1
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert _test_args(appellf1(a, b1, b2, c, x, y))
@SKIP("abstract class")
def test_sympy__functions__special__polynomials__OrthogonalPolynomial():
pass
def test_sympy__functions__special__polynomials__jacobi():
from sympy.functions.special.polynomials import jacobi
assert _test_args(jacobi(x, 2, 2, 2))
def test_sympy__functions__special__polynomials__gegenbauer():
from sympy.functions.special.polynomials import gegenbauer
assert _test_args(gegenbauer(x, 2, 2))
def test_sympy__functions__special__polynomials__chebyshevt():
from sympy.functions.special.polynomials import chebyshevt
assert _test_args(chebyshevt(x, 2))
def test_sympy__functions__special__polynomials__chebyshevt_root():
from sympy.functions.special.polynomials import chebyshevt_root
assert _test_args(chebyshevt_root(3, 2))
def test_sympy__functions__special__polynomials__chebyshevu():
from sympy.functions.special.polynomials import chebyshevu
assert _test_args(chebyshevu(x, 2))
def test_sympy__functions__special__polynomials__chebyshevu_root():
from sympy.functions.special.polynomials import chebyshevu_root
assert _test_args(chebyshevu_root(3, 2))
def test_sympy__functions__special__polynomials__hermite():
from sympy.functions.special.polynomials import hermite
assert _test_args(hermite(x, 2))
def test_sympy__functions__special__polynomials__legendre():
from sympy.functions.special.polynomials import legendre
assert _test_args(legendre(x, 2))
def test_sympy__functions__special__polynomials__assoc_legendre():
from sympy.functions.special.polynomials import assoc_legendre
assert _test_args(assoc_legendre(x, 0, y))
def test_sympy__functions__special__polynomials__laguerre():
from sympy.functions.special.polynomials import laguerre
assert _test_args(laguerre(x, 2))
def test_sympy__functions__special__polynomials__assoc_laguerre():
from sympy.functions.special.polynomials import assoc_laguerre
assert _test_args(assoc_laguerre(x, 0, y))
def test_sympy__functions__special__spherical_harmonics__Ynm():
from sympy.functions.special.spherical_harmonics import Ynm
assert _test_args(Ynm(1, 1, x, y))
def test_sympy__functions__special__spherical_harmonics__Znm():
from sympy.functions.special.spherical_harmonics import Znm
assert _test_args(Znm(1, 1, x, y))
def test_sympy__functions__special__tensor_functions__LeviCivita():
from sympy.functions.special.tensor_functions import LeviCivita
assert _test_args(LeviCivita(x, y, 2))
def test_sympy__functions__special__tensor_functions__KroneckerDelta():
from sympy.functions.special.tensor_functions import KroneckerDelta
assert _test_args(KroneckerDelta(x, y))
def test_sympy__functions__special__zeta_functions__dirichlet_eta():
from sympy.functions.special.zeta_functions import dirichlet_eta
assert _test_args(dirichlet_eta(x))
def test_sympy__functions__special__zeta_functions__zeta():
from sympy.functions.special.zeta_functions import zeta
assert _test_args(zeta(101))
def test_sympy__functions__special__zeta_functions__lerchphi():
from sympy.functions.special.zeta_functions import lerchphi
assert _test_args(lerchphi(x, y, z))
def test_sympy__functions__special__zeta_functions__polylog():
from sympy.functions.special.zeta_functions import polylog
assert _test_args(polylog(x, y))
def test_sympy__functions__special__zeta_functions__stieltjes():
from sympy.functions.special.zeta_functions import stieltjes
assert _test_args(stieltjes(x, y))
def test_sympy__integrals__integrals__Integral():
from sympy.integrals.integrals import Integral
assert _test_args(Integral(2, (x, 0, 1)))
def test_sympy__integrals__risch__NonElementaryIntegral():
from sympy.integrals.risch import NonElementaryIntegral
assert _test_args(NonElementaryIntegral(exp(-x**2), x))
@SKIP("abstract class")
def test_sympy__integrals__transforms__IntegralTransform():
pass
def test_sympy__integrals__transforms__MellinTransform():
from sympy.integrals.transforms import MellinTransform
assert _test_args(MellinTransform(2, x, y))
def test_sympy__integrals__transforms__InverseMellinTransform():
from sympy.integrals.transforms import InverseMellinTransform
assert _test_args(InverseMellinTransform(2, x, y, 0, 1))
def test_sympy__integrals__transforms__LaplaceTransform():
from sympy.integrals.transforms import LaplaceTransform
assert _test_args(LaplaceTransform(2, x, y))
def test_sympy__integrals__transforms__InverseLaplaceTransform():
from sympy.integrals.transforms import InverseLaplaceTransform
assert _test_args(InverseLaplaceTransform(2, x, y, 0))
@SKIP("abstract class")
def test_sympy__integrals__transforms__FourierTypeTransform():
pass
def test_sympy__integrals__transforms__InverseFourierTransform():
from sympy.integrals.transforms import InverseFourierTransform
assert _test_args(InverseFourierTransform(2, x, y))
def test_sympy__integrals__transforms__FourierTransform():
from sympy.integrals.transforms import FourierTransform
assert _test_args(FourierTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__SineCosineTypeTransform():
pass
def test_sympy__integrals__transforms__InverseSineTransform():
from sympy.integrals.transforms import InverseSineTransform
assert _test_args(InverseSineTransform(2, x, y))
def test_sympy__integrals__transforms__SineTransform():
from sympy.integrals.transforms import SineTransform
assert _test_args(SineTransform(2, x, y))
def test_sympy__integrals__transforms__InverseCosineTransform():
from sympy.integrals.transforms import InverseCosineTransform
assert _test_args(InverseCosineTransform(2, x, y))
def test_sympy__integrals__transforms__CosineTransform():
from sympy.integrals.transforms import CosineTransform
assert _test_args(CosineTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__HankelTypeTransform():
pass
def test_sympy__integrals__transforms__InverseHankelTransform():
from sympy.integrals.transforms import InverseHankelTransform
assert _test_args(InverseHankelTransform(2, x, y, 0))
def test_sympy__integrals__transforms__HankelTransform():
from sympy.integrals.transforms import HankelTransform
assert _test_args(HankelTransform(2, x, y, 0))
@XFAIL
def test_sympy__liealgebras__cartan_type__CartanType_generator():
from sympy.liealgebras.cartan_type import CartanType_generator
assert _test_args(CartanType_generator("A2"))
@XFAIL
def test_sympy__liealgebras__cartan_type__Standard_Cartan():
from sympy.liealgebras.cartan_type import Standard_Cartan
assert _test_args(Standard_Cartan("A", 2))
@XFAIL
def test_sympy__liealgebras__weyl_group__WeylGroup():
from sympy.liealgebras.weyl_group import WeylGroup
assert _test_args(WeylGroup("B4"))
@XFAIL
def test_sympy__liealgebras__root_system__RootSystem():
from sympy.liealgebras.root_system import RootSystem
assert _test_args(RootSystem("A2"))
@XFAIL
def test_sympy__liealgebras__type_a__TypeA():
from sympy.liealgebras.type_a import TypeA
assert _test_args(TypeA(2))
@XFAIL
def test_sympy__liealgebras__type_b__TypeB():
from sympy.liealgebras.type_b import TypeB
assert _test_args(TypeB(4))
@XFAIL
def test_sympy__liealgebras__type_c__TypeC():
from sympy.liealgebras.type_c import TypeC
assert _test_args(TypeC(4))
@XFAIL
def test_sympy__liealgebras__type_d__TypeD():
from sympy.liealgebras.type_d import TypeD
assert _test_args(TypeD(4))
@XFAIL
def test_sympy__liealgebras__type_e__TypeE():
from sympy.liealgebras.type_e import TypeE
assert _test_args(TypeE(6))
@XFAIL
def test_sympy__liealgebras__type_f__TypeF():
from sympy.liealgebras.type_f import TypeF
assert _test_args(TypeF(4))
@XFAIL
def test_sympy__liealgebras__type_g__TypeG():
from sympy.liealgebras.type_g import TypeG
assert _test_args(TypeG(2))
def test_sympy__logic__boolalg__And():
from sympy.logic.boolalg import And
assert _test_args(And(x, y, 1))
@SKIP("abstract class")
def test_sympy__logic__boolalg__Boolean():
pass
def test_sympy__logic__boolalg__BooleanFunction():
from sympy.logic.boolalg import BooleanFunction
assert _test_args(BooleanFunction(1, 2, 3))
@SKIP("abstract class")
def test_sympy__logic__boolalg__BooleanAtom():
pass
def test_sympy__logic__boolalg__BooleanTrue():
from sympy.logic.boolalg import true
assert _test_args(true)
def test_sympy__logic__boolalg__BooleanFalse():
from sympy.logic.boolalg import false
assert _test_args(false)
def test_sympy__logic__boolalg__Equivalent():
from sympy.logic.boolalg import Equivalent
assert _test_args(Equivalent(x, 2))
def test_sympy__logic__boolalg__ITE():
from sympy.logic.boolalg import ITE
assert _test_args(ITE(x, y, 1))
def test_sympy__logic__boolalg__Implies():
from sympy.logic.boolalg import Implies
assert _test_args(Implies(x, y))
def test_sympy__logic__boolalg__Nand():
from sympy.logic.boolalg import Nand
assert _test_args(Nand(x, y, 1))
def test_sympy__logic__boolalg__Nor():
from sympy.logic.boolalg import Nor
assert _test_args(Nor(x, y))
def test_sympy__logic__boolalg__Not():
from sympy.logic.boolalg import Not
assert _test_args(Not(x))
def test_sympy__logic__boolalg__Or():
from sympy.logic.boolalg import Or
assert _test_args(Or(x, y))
def test_sympy__logic__boolalg__Xor():
from sympy.logic.boolalg import Xor
assert _test_args(Xor(x, y, 2))
def test_sympy__logic__boolalg__Xnor():
from sympy.logic.boolalg import Xnor
assert _test_args(Xnor(x, y, 2))
def test_sympy__matrices__matrices__DeferredVector():
from sympy.matrices.matrices import DeferredVector
assert _test_args(DeferredVector("X"))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixBase():
pass
def test_sympy__matrices__immutable__ImmutableDenseMatrix():
from sympy.matrices.immutable import ImmutableDenseMatrix
m = ImmutableDenseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__immutable__ImmutableSparseMatrix():
from sympy.matrices.immutable import ImmutableSparseMatrix
m = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, {(0, 0): 1})
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__expressions__slice__MatrixSlice():
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 4, 4)
assert _test_args(MatrixSlice(X, (0, 2), (0, 2)))
def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction():
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol("X", x, x)
func = Lambda(x, x**2)
assert _test_args(ElementwiseApplyFunction(func, X))
def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix():
from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
assert _test_args(BlockDiagMatrix(X, Y))
def test_sympy__matrices__expressions__blockmatrix__BlockMatrix():
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
Z = MatrixSymbol('Z', x, y)
O = ZeroMatrix(y, x)
assert _test_args(BlockMatrix([[X, Z], [O, Y]]))
def test_sympy__matrices__expressions__inverse__Inverse():
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Inverse(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__matadd__MatAdd():
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(MatAdd(X, Y))
def test_sympy__matrices__expressions__matexpr__Identity():
from sympy.matrices.expressions.matexpr import Identity
assert _test_args(Identity(3))
def test_sympy__matrices__expressions__matexpr__GenericIdentity():
from sympy.matrices.expressions.matexpr import GenericIdentity
assert _test_args(GenericIdentity())
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixExpr():
pass
def test_sympy__matrices__expressions__matexpr__MatrixElement():
from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement
from sympy import S
assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3)))
def test_sympy__matrices__expressions__matexpr__MatrixSymbol():
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(MatrixSymbol('A', 3, 5))
def test_sympy__matrices__expressions__matexpr__ZeroMatrix():
from sympy.matrices.expressions.matexpr import ZeroMatrix
assert _test_args(ZeroMatrix(3, 5))
def test_sympy__matrices__expressions__matexpr__OneMatrix():
from sympy.matrices.expressions.matexpr import OneMatrix
assert _test_args(OneMatrix(3, 5))
def test_sympy__matrices__expressions__matexpr__GenericZeroMatrix():
from sympy.matrices.expressions.matexpr import GenericZeroMatrix
assert _test_args(GenericZeroMatrix())
def test_sympy__matrices__expressions__matmul__MatMul():
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', y, x)
assert _test_args(MatMul(X, Y))
def test_sympy__matrices__expressions__dotproduct__DotProduct():
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, 1)
Y = MatrixSymbol('Y', x, 1)
assert _test_args(DotProduct(X, Y))
def test_sympy__matrices__expressions__diagonal__DiagonalMatrix():
from sympy.matrices.expressions.diagonal import DiagonalMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalMatrix(x))
def test_sympy__matrices__expressions__diagonal__DiagonalOf():
from sympy.matrices.expressions.diagonal import DiagonalOf
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('x', 10, 10)
assert _test_args(DiagonalOf(X))
def test_sympy__matrices__expressions__diagonal__DiagonalizeVector():
from sympy.matrices.expressions.diagonal import DiagonalizeVector
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalizeVector(x))
def test_sympy__matrices__expressions__hadamard__HadamardProduct():
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(HadamardProduct(X, Y))
def test_sympy__matrices__expressions__hadamard__HadamardPower():
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions import MatrixSymbol
from sympy import Symbol
X = MatrixSymbol('X', x, y)
n = Symbol("n")
assert _test_args(HadamardPower(X, n))
def test_sympy__matrices__expressions__kronecker__KroneckerProduct():
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(KroneckerProduct(X, Y))
def test_sympy__matrices__expressions__matpow__MatPow():
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
assert _test_args(MatPow(X, 2))
def test_sympy__matrices__expressions__transpose__Transpose():
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Transpose(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__adjoint__Adjoint():
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Adjoint(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__trace__Trace():
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Trace(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Determinant():
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Determinant(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix():
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy import symbols
i, j = symbols('i,j')
assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) ))
def test_sympy__matrices__expressions__fourier__DFT():
from sympy.matrices.expressions.fourier import DFT
from sympy import S
assert _test_args(DFT(S(2)))
def test_sympy__matrices__expressions__fourier__IDFT():
from sympy.matrices.expressions.fourier import IDFT
from sympy import S
assert _test_args(IDFT(S(2)))
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 10, 10)
def test_sympy__matrices__expressions__factorizations__LofLU():
from sympy.matrices.expressions.factorizations import LofLU
assert _test_args(LofLU(X))
def test_sympy__matrices__expressions__factorizations__UofLU():
from sympy.matrices.expressions.factorizations import UofLU
assert _test_args(UofLU(X))
def test_sympy__matrices__expressions__factorizations__QofQR():
from sympy.matrices.expressions.factorizations import QofQR
assert _test_args(QofQR(X))
def test_sympy__matrices__expressions__factorizations__RofQR():
from sympy.matrices.expressions.factorizations import RofQR
assert _test_args(RofQR(X))
def test_sympy__matrices__expressions__factorizations__LofCholesky():
from sympy.matrices.expressions.factorizations import LofCholesky
assert _test_args(LofCholesky(X))
def test_sympy__matrices__expressions__factorizations__UofCholesky():
from sympy.matrices.expressions.factorizations import UofCholesky
assert _test_args(UofCholesky(X))
def test_sympy__matrices__expressions__factorizations__EigenVectors():
from sympy.matrices.expressions.factorizations import EigenVectors
assert _test_args(EigenVectors(X))
def test_sympy__matrices__expressions__factorizations__EigenValues():
from sympy.matrices.expressions.factorizations import EigenValues
assert _test_args(EigenValues(X))
def test_sympy__matrices__expressions__factorizations__UofSVD():
from sympy.matrices.expressions.factorizations import UofSVD
assert _test_args(UofSVD(X))
def test_sympy__matrices__expressions__factorizations__VofSVD():
from sympy.matrices.expressions.factorizations import VofSVD
assert _test_args(VofSVD(X))
def test_sympy__matrices__expressions__factorizations__SofSVD():
from sympy.matrices.expressions.factorizations import SofSVD
assert _test_args(SofSVD(X))
@SKIP("abstract class")
def test_sympy__matrices__expressions__factorizations__Factorization():
pass
def test_sympy__physics__vector__frame__CoordinateSym():
from sympy.physics.vector import CoordinateSym
from sympy.physics.vector import ReferenceFrame
assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0))
def test_sympy__physics__paulialgebra__Pauli():
from sympy.physics.paulialgebra import Pauli
assert _test_args(Pauli(1))
def test_sympy__physics__quantum__anticommutator__AntiCommutator():
from sympy.physics.quantum.anticommutator import AntiCommutator
assert _test_args(AntiCommutator(x, y))
def test_sympy__physics__quantum__cartesian__PositionBra3D():
from sympy.physics.quantum.cartesian import PositionBra3D
assert _test_args(PositionBra3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionKet3D():
from sympy.physics.quantum.cartesian import PositionKet3D
assert _test_args(PositionKet3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionState3D():
from sympy.physics.quantum.cartesian import PositionState3D
assert _test_args(PositionState3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PxBra():
from sympy.physics.quantum.cartesian import PxBra
assert _test_args(PxBra(x, y, z))
def test_sympy__physics__quantum__cartesian__PxKet():
from sympy.physics.quantum.cartesian import PxKet
assert _test_args(PxKet(x, y, z))
def test_sympy__physics__quantum__cartesian__PxOp():
from sympy.physics.quantum.cartesian import PxOp
assert _test_args(PxOp(x, y, z))
def test_sympy__physics__quantum__cartesian__XBra():
from sympy.physics.quantum.cartesian import XBra
assert _test_args(XBra(x))
def test_sympy__physics__quantum__cartesian__XKet():
from sympy.physics.quantum.cartesian import XKet
assert _test_args(XKet(x))
def test_sympy__physics__quantum__cartesian__XOp():
from sympy.physics.quantum.cartesian import XOp
assert _test_args(XOp(x))
def test_sympy__physics__quantum__cartesian__YOp():
from sympy.physics.quantum.cartesian import YOp
assert _test_args(YOp(x))
def test_sympy__physics__quantum__cartesian__ZOp():
from sympy.physics.quantum.cartesian import ZOp
assert _test_args(ZOp(x))
def test_sympy__physics__quantum__cg__CG():
from sympy.physics.quantum.cg import CG
from sympy import S
assert _test_args(CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1))
def test_sympy__physics__quantum__cg__Wigner3j():
from sympy.physics.quantum.cg import Wigner3j
assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
def test_sympy__physics__quantum__cg__Wigner6j():
from sympy.physics.quantum.cg import Wigner6j
assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2))
def test_sympy__physics__quantum__cg__Wigner9j():
from sympy.physics.quantum.cg import Wigner9j
assert _test_args(Wigner9j(2, 1, 1, S(3)/2, S(1)/2, 1, S(1)/2, S(1)/2, 0))
def test_sympy__physics__quantum__circuitplot__Mz():
from sympy.physics.quantum.circuitplot import Mz
assert _test_args(Mz(0))
def test_sympy__physics__quantum__circuitplot__Mx():
from sympy.physics.quantum.circuitplot import Mx
assert _test_args(Mx(0))
def test_sympy__physics__quantum__commutator__Commutator():
from sympy.physics.quantum.commutator import Commutator
A, B = symbols('A,B', commutative=False)
assert _test_args(Commutator(A, B))
def test_sympy__physics__quantum__constants__HBar():
from sympy.physics.quantum.constants import HBar
assert _test_args(HBar())
def test_sympy__physics__quantum__dagger__Dagger():
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.state import Ket
assert _test_args(Dagger(Dagger(Ket('psi'))))
def test_sympy__physics__quantum__gate__CGate():
from sympy.physics.quantum.gate import CGate, Gate
assert _test_args(CGate((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CGateS():
from sympy.physics.quantum.gate import CGateS, Gate
assert _test_args(CGateS((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CNotGate():
from sympy.physics.quantum.gate import CNotGate
assert _test_args(CNotGate(0, 1))
def test_sympy__physics__quantum__gate__Gate():
from sympy.physics.quantum.gate import Gate
assert _test_args(Gate(0))
def test_sympy__physics__quantum__gate__HadamardGate():
from sympy.physics.quantum.gate import HadamardGate
assert _test_args(HadamardGate(0))
def test_sympy__physics__quantum__gate__IdentityGate():
from sympy.physics.quantum.gate import IdentityGate
assert _test_args(IdentityGate(0))
def test_sympy__physics__quantum__gate__OneQubitGate():
from sympy.physics.quantum.gate import OneQubitGate
assert _test_args(OneQubitGate(0))
def test_sympy__physics__quantum__gate__PhaseGate():
from sympy.physics.quantum.gate import PhaseGate
assert _test_args(PhaseGate(0))
def test_sympy__physics__quantum__gate__SwapGate():
from sympy.physics.quantum.gate import SwapGate
assert _test_args(SwapGate(0, 1))
def test_sympy__physics__quantum__gate__TGate():
from sympy.physics.quantum.gate import TGate
assert _test_args(TGate(0))
def test_sympy__physics__quantum__gate__TwoQubitGate():
from sympy.physics.quantum.gate import TwoQubitGate
assert _test_args(TwoQubitGate(0))
def test_sympy__physics__quantum__gate__UGate():
from sympy.physics.quantum.gate import UGate
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy import Integer, Tuple
assert _test_args(
UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]])))
def test_sympy__physics__quantum__gate__XGate():
from sympy.physics.quantum.gate import XGate
assert _test_args(XGate(0))
def test_sympy__physics__quantum__gate__YGate():
from sympy.physics.quantum.gate import YGate
assert _test_args(YGate(0))
def test_sympy__physics__quantum__gate__ZGate():
from sympy.physics.quantum.gate import ZGate
assert _test_args(ZGate(0))
@SKIP("TODO: sympy.physics")
def test_sympy__physics__quantum__grover__OracleGate():
from sympy.physics.quantum.grover import OracleGate
assert _test_args(OracleGate())
def test_sympy__physics__quantum__grover__WGate():
from sympy.physics.quantum.grover import WGate
assert _test_args(WGate(1))
def test_sympy__physics__quantum__hilbert__ComplexSpace():
from sympy.physics.quantum.hilbert import ComplexSpace
assert _test_args(ComplexSpace(x))
def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace():
from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(DirectSumHilbertSpace(c, f))
def test_sympy__physics__quantum__hilbert__FockSpace():
from sympy.physics.quantum.hilbert import FockSpace
assert _test_args(FockSpace())
def test_sympy__physics__quantum__hilbert__HilbertSpace():
from sympy.physics.quantum.hilbert import HilbertSpace
assert _test_args(HilbertSpace())
def test_sympy__physics__quantum__hilbert__L2():
from sympy.physics.quantum.hilbert import L2
from sympy import oo, Interval
assert _test_args(L2(Interval(0, oo)))
def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace():
from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace
f = FockSpace()
assert _test_args(TensorPowerHilbertSpace(f, 2))
def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace():
from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(TensorProductHilbertSpace(f, c))
def test_sympy__physics__quantum__innerproduct__InnerProduct():
from sympy.physics.quantum import Bra, Ket, InnerProduct
b = Bra('b')
k = Ket('k')
assert _test_args(InnerProduct(b, k))
def test_sympy__physics__quantum__operator__DifferentialOperator():
from sympy.physics.quantum.operator import DifferentialOperator
from sympy import Derivative, Function
f = Function('f')
assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x)))
def test_sympy__physics__quantum__operator__HermitianOperator():
from sympy.physics.quantum.operator import HermitianOperator
assert _test_args(HermitianOperator('H'))
def test_sympy__physics__quantum__operator__IdentityOperator():
from sympy.physics.quantum.operator import IdentityOperator
assert _test_args(IdentityOperator(5))
def test_sympy__physics__quantum__operator__Operator():
from sympy.physics.quantum.operator import Operator
assert _test_args(Operator('A'))
def test_sympy__physics__quantum__operator__OuterProduct():
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum import Ket, Bra
b = Bra('b')
k = Ket('k')
assert _test_args(OuterProduct(k, b))
def test_sympy__physics__quantum__operator__UnitaryOperator():
from sympy.physics.quantum.operator import UnitaryOperator
assert _test_args(UnitaryOperator('U'))
def test_sympy__physics__quantum__piab__PIABBra():
from sympy.physics.quantum.piab import PIABBra
assert _test_args(PIABBra('B'))
def test_sympy__physics__quantum__boson__BosonOp():
from sympy.physics.quantum.boson import BosonOp
assert _test_args(BosonOp('a'))
assert _test_args(BosonOp('a', False))
def test_sympy__physics__quantum__boson__BosonFockKet():
from sympy.physics.quantum.boson import BosonFockKet
assert _test_args(BosonFockKet(1))
def test_sympy__physics__quantum__boson__BosonFockBra():
from sympy.physics.quantum.boson import BosonFockBra
assert _test_args(BosonFockBra(1))
def test_sympy__physics__quantum__boson__BosonCoherentKet():
from sympy.physics.quantum.boson import BosonCoherentKet
assert _test_args(BosonCoherentKet(1))
def test_sympy__physics__quantum__boson__BosonCoherentBra():
from sympy.physics.quantum.boson import BosonCoherentBra
assert _test_args(BosonCoherentBra(1))
def test_sympy__physics__quantum__fermion__FermionOp():
from sympy.physics.quantum.fermion import FermionOp
assert _test_args(FermionOp('c'))
assert _test_args(FermionOp('c', False))
def test_sympy__physics__quantum__fermion__FermionFockKet():
from sympy.physics.quantum.fermion import FermionFockKet
assert _test_args(FermionFockKet(1))
def test_sympy__physics__quantum__fermion__FermionFockBra():
from sympy.physics.quantum.fermion import FermionFockBra
assert _test_args(FermionFockBra(1))
def test_sympy__physics__quantum__pauli__SigmaOpBase():
from sympy.physics.quantum.pauli import SigmaOpBase
assert _test_args(SigmaOpBase())
def test_sympy__physics__quantum__pauli__SigmaX():
from sympy.physics.quantum.pauli import SigmaX
assert _test_args(SigmaX())
def test_sympy__physics__quantum__pauli__SigmaY():
from sympy.physics.quantum.pauli import SigmaY
assert _test_args(SigmaY())
def test_sympy__physics__quantum__pauli__SigmaZ():
from sympy.physics.quantum.pauli import SigmaZ
assert _test_args(SigmaZ())
def test_sympy__physics__quantum__pauli__SigmaMinus():
from sympy.physics.quantum.pauli import SigmaMinus
assert _test_args(SigmaMinus())
def test_sympy__physics__quantum__pauli__SigmaPlus():
from sympy.physics.quantum.pauli import SigmaPlus
assert _test_args(SigmaPlus())
def test_sympy__physics__quantum__pauli__SigmaZKet():
from sympy.physics.quantum.pauli import SigmaZKet
assert _test_args(SigmaZKet(0))
def test_sympy__physics__quantum__pauli__SigmaZBra():
from sympy.physics.quantum.pauli import SigmaZBra
assert _test_args(SigmaZBra(0))
def test_sympy__physics__quantum__piab__PIABHamiltonian():
from sympy.physics.quantum.piab import PIABHamiltonian
assert _test_args(PIABHamiltonian('P'))
def test_sympy__physics__quantum__piab__PIABKet():
from sympy.physics.quantum.piab import PIABKet
assert _test_args(PIABKet('K'))
def test_sympy__physics__quantum__qexpr__QExpr():
from sympy.physics.quantum.qexpr import QExpr
assert _test_args(QExpr(0))
def test_sympy__physics__quantum__qft__Fourier():
from sympy.physics.quantum.qft import Fourier
assert _test_args(Fourier(0, 1))
def test_sympy__physics__quantum__qft__IQFT():
from sympy.physics.quantum.qft import IQFT
assert _test_args(IQFT(0, 1))
def test_sympy__physics__quantum__qft__QFT():
from sympy.physics.quantum.qft import QFT
assert _test_args(QFT(0, 1))
def test_sympy__physics__quantum__qft__RkGate():
from sympy.physics.quantum.qft import RkGate
assert _test_args(RkGate(0, 1))
def test_sympy__physics__quantum__qubit__IntQubit():
from sympy.physics.quantum.qubit import IntQubit
assert _test_args(IntQubit(0))
def test_sympy__physics__quantum__qubit__IntQubitBra():
from sympy.physics.quantum.qubit import IntQubitBra
assert _test_args(IntQubitBra(0))
def test_sympy__physics__quantum__qubit__IntQubitState():
from sympy.physics.quantum.qubit import IntQubitState, QubitState
assert _test_args(IntQubitState(QubitState(0, 1)))
def test_sympy__physics__quantum__qubit__Qubit():
from sympy.physics.quantum.qubit import Qubit
assert _test_args(Qubit(0, 0, 0))
def test_sympy__physics__quantum__qubit__QubitBra():
from sympy.physics.quantum.qubit import QubitBra
assert _test_args(QubitBra('1', 0))
def test_sympy__physics__quantum__qubit__QubitState():
from sympy.physics.quantum.qubit import QubitState
assert _test_args(QubitState(0, 1))
def test_sympy__physics__quantum__density__Density():
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.state import Ket
assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5]))
@SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented")
def test_sympy__physics__quantum__shor__CMod():
from sympy.physics.quantum.shor import CMod
assert _test_args(CMod())
def test_sympy__physics__quantum__spin__CoupledSpinState():
from sympy.physics.quantum.spin import CoupledSpinState
assert _test_args(CoupledSpinState(1, 0, (1, 1)))
assert _test_args(CoupledSpinState(1, 0, (1, S(1)/2, S(1)/2)))
assert _test_args(CoupledSpinState(
1, 0, (1, S(1)/2, S(1)/2), ((2, 3, S(1)/2), (1, 2, 1)) ))
j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x')
assert CoupledSpinState(
j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3))
assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \
CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) )
def test_sympy__physics__quantum__spin__J2Op():
from sympy.physics.quantum.spin import J2Op
assert _test_args(J2Op('J'))
def test_sympy__physics__quantum__spin__JminusOp():
from sympy.physics.quantum.spin import JminusOp
assert _test_args(JminusOp('J'))
def test_sympy__physics__quantum__spin__JplusOp():
from sympy.physics.quantum.spin import JplusOp
assert _test_args(JplusOp('J'))
def test_sympy__physics__quantum__spin__JxBra():
from sympy.physics.quantum.spin import JxBra
assert _test_args(JxBra(1, 0))
def test_sympy__physics__quantum__spin__JxBraCoupled():
from sympy.physics.quantum.spin import JxBraCoupled
assert _test_args(JxBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxKet():
from sympy.physics.quantum.spin import JxKet
assert _test_args(JxKet(1, 0))
def test_sympy__physics__quantum__spin__JxKetCoupled():
from sympy.physics.quantum.spin import JxKetCoupled
assert _test_args(JxKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxOp():
from sympy.physics.quantum.spin import JxOp
assert _test_args(JxOp('J'))
def test_sympy__physics__quantum__spin__JyBra():
from sympy.physics.quantum.spin import JyBra
assert _test_args(JyBra(1, 0))
def test_sympy__physics__quantum__spin__JyBraCoupled():
from sympy.physics.quantum.spin import JyBraCoupled
assert _test_args(JyBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyKet():
from sympy.physics.quantum.spin import JyKet
assert _test_args(JyKet(1, 0))
def test_sympy__physics__quantum__spin__JyKetCoupled():
from sympy.physics.quantum.spin import JyKetCoupled
assert _test_args(JyKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyOp():
from sympy.physics.quantum.spin import JyOp
assert _test_args(JyOp('J'))
def test_sympy__physics__quantum__spin__JzBra():
from sympy.physics.quantum.spin import JzBra
assert _test_args(JzBra(1, 0))
def test_sympy__physics__quantum__spin__JzBraCoupled():
from sympy.physics.quantum.spin import JzBraCoupled
assert _test_args(JzBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzKet():
from sympy.physics.quantum.spin import JzKet
assert _test_args(JzKet(1, 0))
def test_sympy__physics__quantum__spin__JzKetCoupled():
from sympy.physics.quantum.spin import JzKetCoupled
assert _test_args(JzKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzOp():
from sympy.physics.quantum.spin import JzOp
assert _test_args(JzOp('J'))
def test_sympy__physics__quantum__spin__Rotation():
from sympy.physics.quantum.spin import Rotation
assert _test_args(Rotation(pi, 0, pi/2))
def test_sympy__physics__quantum__spin__SpinState():
from sympy.physics.quantum.spin import SpinState
assert _test_args(SpinState(1, 0))
def test_sympy__physics__quantum__spin__WignerD():
from sympy.physics.quantum.spin import WignerD
assert _test_args(WignerD(0, 1, 2, 3, 4, 5))
def test_sympy__physics__quantum__state__Bra():
from sympy.physics.quantum.state import Bra
assert _test_args(Bra(0))
def test_sympy__physics__quantum__state__BraBase():
from sympy.physics.quantum.state import BraBase
assert _test_args(BraBase(0))
def test_sympy__physics__quantum__state__Ket():
from sympy.physics.quantum.state import Ket
assert _test_args(Ket(0))
def test_sympy__physics__quantum__state__KetBase():
from sympy.physics.quantum.state import KetBase
assert _test_args(KetBase(0))
def test_sympy__physics__quantum__state__State():
from sympy.physics.quantum.state import State
assert _test_args(State(0))
def test_sympy__physics__quantum__state__StateBase():
from sympy.physics.quantum.state import StateBase
assert _test_args(StateBase(0))
def test_sympy__physics__quantum__state__TimeDepBra():
from sympy.physics.quantum.state import TimeDepBra
assert _test_args(TimeDepBra('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepKet():
from sympy.physics.quantum.state import TimeDepKet
assert _test_args(TimeDepKet('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepState():
from sympy.physics.quantum.state import TimeDepState
assert _test_args(TimeDepState('psi', 't'))
def test_sympy__physics__quantum__state__Wavefunction():
from sympy.physics.quantum.state import Wavefunction
from sympy.functions import sin
from sympy import Piecewise
n = 1
L = 1
g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
assert _test_args(Wavefunction(g, x))
def test_sympy__physics__quantum__tensorproduct__TensorProduct():
from sympy.physics.quantum.tensorproduct import TensorProduct
assert _test_args(TensorProduct(x, y))
def test_sympy__physics__quantum__identitysearch__GateIdentity():
from sympy.physics.quantum.gate import X
from sympy.physics.quantum.identitysearch import GateIdentity
assert _test_args(GateIdentity(X(0), X(0)))
def test_sympy__physics__quantum__sho1d__SHOOp():
from sympy.physics.quantum.sho1d import SHOOp
assert _test_args(SHOOp('a'))
def test_sympy__physics__quantum__sho1d__RaisingOp():
from sympy.physics.quantum.sho1d import RaisingOp
assert _test_args(RaisingOp('a'))
def test_sympy__physics__quantum__sho1d__LoweringOp():
from sympy.physics.quantum.sho1d import LoweringOp
assert _test_args(LoweringOp('a'))
def test_sympy__physics__quantum__sho1d__NumberOp():
from sympy.physics.quantum.sho1d import NumberOp
assert _test_args(NumberOp('N'))
def test_sympy__physics__quantum__sho1d__Hamiltonian():
from sympy.physics.quantum.sho1d import Hamiltonian
assert _test_args(Hamiltonian('H'))
def test_sympy__physics__quantum__sho1d__SHOState():
from sympy.physics.quantum.sho1d import SHOState
assert _test_args(SHOState(0))
def test_sympy__physics__quantum__sho1d__SHOKet():
from sympy.physics.quantum.sho1d import SHOKet
assert _test_args(SHOKet(0))
def test_sympy__physics__quantum__sho1d__SHOBra():
from sympy.physics.quantum.sho1d import SHOBra
assert _test_args(SHOBra(0))
def test_sympy__physics__secondquant__AnnihilateBoson():
from sympy.physics.secondquant import AnnihilateBoson
assert _test_args(AnnihilateBoson(0))
def test_sympy__physics__secondquant__AnnihilateFermion():
from sympy.physics.secondquant import AnnihilateFermion
assert _test_args(AnnihilateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Annihilator():
pass
def test_sympy__physics__secondquant__AntiSymmetricTensor():
from sympy.physics.secondquant import AntiSymmetricTensor
i, j = symbols('i j', below_fermi=True)
a, b = symbols('a b', above_fermi=True)
assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j)))
def test_sympy__physics__secondquant__BosonState():
from sympy.physics.secondquant import BosonState
assert _test_args(BosonState((0, 1)))
@SKIP("abstract class")
def test_sympy__physics__secondquant__BosonicOperator():
pass
def test_sympy__physics__secondquant__Commutator():
from sympy.physics.secondquant import Commutator
assert _test_args(Commutator(x, y))
def test_sympy__physics__secondquant__CreateBoson():
from sympy.physics.secondquant import CreateBoson
assert _test_args(CreateBoson(0))
def test_sympy__physics__secondquant__CreateFermion():
from sympy.physics.secondquant import CreateFermion
assert _test_args(CreateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Creator():
pass
def test_sympy__physics__secondquant__Dagger():
from sympy.physics.secondquant import Dagger
from sympy import I
assert _test_args(Dagger(2*I))
def test_sympy__physics__secondquant__FermionState():
from sympy.physics.secondquant import FermionState
assert _test_args(FermionState((0, 1)))
def test_sympy__physics__secondquant__FermionicOperator():
from sympy.physics.secondquant import FermionicOperator
assert _test_args(FermionicOperator(0))
def test_sympy__physics__secondquant__FockState():
from sympy.physics.secondquant import FockState
assert _test_args(FockState((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonBra():
from sympy.physics.secondquant import FockStateBosonBra
assert _test_args(FockStateBosonBra((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonKet():
from sympy.physics.secondquant import FockStateBosonKet
assert _test_args(FockStateBosonKet((0, 1)))
def test_sympy__physics__secondquant__FockStateBra():
from sympy.physics.secondquant import FockStateBra
assert _test_args(FockStateBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionBra():
from sympy.physics.secondquant import FockStateFermionBra
assert _test_args(FockStateFermionBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionKet():
from sympy.physics.secondquant import FockStateFermionKet
assert _test_args(FockStateFermionKet((0, 1)))
def test_sympy__physics__secondquant__FockStateKet():
from sympy.physics.secondquant import FockStateKet
assert _test_args(FockStateKet((0, 1)))
def test_sympy__physics__secondquant__InnerProduct():
from sympy.physics.secondquant import InnerProduct
from sympy.physics.secondquant import FockStateKet, FockStateBra
assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1))))
def test_sympy__physics__secondquant__NO():
from sympy.physics.secondquant import NO, F, Fd
assert _test_args(NO(Fd(x)*F(y)))
def test_sympy__physics__secondquant__PermutationOperator():
from sympy.physics.secondquant import PermutationOperator
assert _test_args(PermutationOperator(0, 1))
def test_sympy__physics__secondquant__SqOperator():
from sympy.physics.secondquant import SqOperator
assert _test_args(SqOperator(0))
def test_sympy__physics__secondquant__TensorSymbol():
from sympy.physics.secondquant import TensorSymbol
assert _test_args(TensorSymbol(x))
def test_sympy__physics__units__dimensions__Dimension():
from sympy.physics.units.dimensions import Dimension
assert _test_args(Dimension("length", "L"))
def test_sympy__physics__units__dimensions__DimensionSystem():
from sympy.physics.units.dimensions import DimensionSystem
from sympy.physics.units.dimensions import length, time, velocity
assert _test_args(DimensionSystem((length, time), (velocity,)))
def test_sympy__physics__units__quantities__Quantity():
from sympy.physics.units.quantities import Quantity
from sympy.physics.units import length
assert _test_args(Quantity("dam"))
def test_sympy__physics__units__prefixes__Prefix():
from sympy.physics.units.prefixes import Prefix
assert _test_args(Prefix('kilo', 'k', 3))
def test_sympy__core__numbers__AlgebraicNumber():
from sympy.core.numbers import AlgebraicNumber
assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3]))
def test_sympy__polys__polytools__GroebnerBasis():
from sympy.polys.polytools import GroebnerBasis
assert _test_args(GroebnerBasis([x, y, z], x, y, z))
def test_sympy__polys__polytools__Poly():
from sympy.polys.polytools import Poly
assert _test_args(Poly(2, x, y))
def test_sympy__polys__polytools__PurePoly():
from sympy.polys.polytools import PurePoly
assert _test_args(PurePoly(2, x, y))
@SKIP('abstract class')
def test_sympy__polys__rootoftools__RootOf():
pass
def test_sympy__polys__rootoftools__ComplexRootOf():
from sympy.polys.rootoftools import ComplexRootOf
assert _test_args(ComplexRootOf(x**3 + x + 1, 0))
def test_sympy__polys__rootoftools__RootSum():
from sympy.polys.rootoftools import RootSum
assert _test_args(RootSum(x**3 + x + 1, sin))
def test_sympy__series__limits__Limit():
from sympy.series.limits import Limit
assert _test_args(Limit(x, x, 0, dir='-'))
def test_sympy__series__order__Order():
from sympy.series.order import Order
assert _test_args(Order(1, x, y))
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqBase():
pass
def test_sympy__series__sequences__EmptySequence():
from sympy.series.sequences import EmptySequence
assert _test_args(EmptySequence())
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqExpr():
pass
def test_sympy__series__sequences__SeqPer():
from sympy.series.sequences import SeqPer
assert _test_args(SeqPer((1, 2, 3), (0, 10)))
def test_sympy__series__sequences__SeqFormula():
from sympy.series.sequences import SeqFormula
assert _test_args(SeqFormula(x**2, (0, 10)))
def test_sympy__series__sequences__RecursiveSeq():
from sympy.series.sequences import RecursiveSeq
y = Function("y")
n = symbols("n")
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n, (0, 1)))
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n))
def test_sympy__series__sequences__SeqExprOp():
from sympy.series.sequences import SeqExprOp, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqExprOp(s1, s2))
def test_sympy__series__sequences__SeqAdd():
from sympy.series.sequences import SeqAdd, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqAdd(s1, s2))
def test_sympy__series__sequences__SeqMul():
from sympy.series.sequences import SeqMul, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqMul(s1, s2))
@SKIP('Abstract Class')
def test_sympy__series__series_class__SeriesBase():
pass
def test_sympy__series__fourier__FourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(x, (x, -pi, pi)))
def test_sympy__series__fourier__FiniteFourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(sin(pi*x), (x, -1, 1)))
def test_sympy__series__formal__FormalPowerSeries():
from sympy.series.formal import fps
assert _test_args(fps(log(1 + x), x))
def test_sympy__series__formal__Coeff():
from sympy.series.formal import fps
assert _test_args(fps(x**2 + x + 1, x))
def test_sympy__simplify__hyperexpand__Hyper_Function():
from sympy.simplify.hyperexpand import Hyper_Function
assert _test_args(Hyper_Function([2], [1]))
def test_sympy__simplify__hyperexpand__G_Function():
from sympy.simplify.hyperexpand import G_Function
assert _test_args(G_Function([2], [1], [], []))
@SKIP("abstract class")
def test_sympy__tensor__array__ndim_array__ImmutableNDimArray():
pass
def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray():
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(densarr)
def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray():
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(sparr)
def test_sympy__tensor__array__array_comprehension__ArrayComprehension():
from sympy.tensor.array.array_comprehension import ArrayComprehension
arrcom = ArrayComprehension(x, (x, 1, 5))
assert _test_args(arrcom)
def test_sympy__tensor__functions__TensorProduct():
from sympy.tensor.functions import TensorProduct
tp = TensorProduct(3, 4, evaluate=False)
assert _test_args(tp)
def test_sympy__tensor__indexed__Idx():
from sympy.tensor.indexed import Idx
assert _test_args(Idx('test'))
assert _test_args(Idx(1, (0, 10)))
def test_sympy__tensor__indexed__Indexed():
from sympy.tensor.indexed import Indexed, Idx
assert _test_args(Indexed('A', Idx('i'), Idx('j')))
def test_sympy__tensor__indexed__IndexedBase():
from sympy.tensor.indexed import IndexedBase
assert _test_args(IndexedBase('A', shape=(x, y)))
assert _test_args(IndexedBase('A', 1))
assert _test_args(IndexedBase('A')[0, 1])
def test_sympy__tensor__tensor__TensorIndexType():
from sympy.tensor.tensor import TensorIndexType
assert _test_args(TensorIndexType('Lorentz', metric=False))
def test_sympy__tensor__tensor__TensorSymmetry():
from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2)))
def test_sympy__tensor__tensor__TensorType():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorType
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
assert _test_args(TensorType([Lorentz], sym))
def test_sympy__tensor__tensor__TensorHead():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
assert _test_args(TensorHead('p', S1, 0))
def test_sympy__tensor__tensor__TensorIndex():
from sympy.tensor.tensor import TensorIndexType, TensorIndex
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
assert _test_args(TensorIndex('i', Lorentz))
@SKIP("abstract class")
def test_sympy__tensor__tensor__TensExpr():
pass
def test_sympy__tensor__tensor__TensAdd():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensAdd
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p, q = S1('p,q')
t1 = p(a)
t2 = q(a)
assert _test_args(TensAdd(t1, t2))
def test_sympy__tensor__tensor__Tensor():
from sympy.core import S
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p = S1('p')
assert _test_args(p(a))
def test_sympy__tensor__tensor__TensMul():
from sympy.core import S
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p = S1('p')
q = S1('q')
assert _test_args(3*p(a)*q(b))
def test_sympy__tensor__tensor__TensorElement():
from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorElement
L = TensorIndexType("L")
A = tensorhead("A", [L, L], [[1], [1]])
telem = TensorElement(A(x, y), {x: 1})
assert _test_args(telem)
def test_sympy__tensor__toperators__PartialDerivative():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
from sympy.tensor.toperators import PartialDerivative
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
A = tensorhead("A", [Lorentz], [[1]])
assert _test_args(PartialDerivative(A(a), A(b)))
def test_as_coeff_add():
assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add()
def test_sympy__geometry__curve__Curve():
from sympy.geometry.curve import Curve
assert _test_args(Curve((x, 1), (x, 0, 1)))
def test_sympy__geometry__point__Point():
from sympy.geometry.point import Point
assert _test_args(Point(0, 1))
def test_sympy__geometry__point__Point2D():
from sympy.geometry.point import Point2D
assert _test_args(Point2D(0, 1))
def test_sympy__geometry__point__Point3D():
from sympy.geometry.point import Point3D
assert _test_args(Point3D(0, 1, 2))
def test_sympy__geometry__ellipse__Ellipse():
from sympy.geometry.ellipse import Ellipse
assert _test_args(Ellipse((0, 1), 2, 3))
def test_sympy__geometry__ellipse__Circle():
from sympy.geometry.ellipse import Circle
assert _test_args(Circle((0, 1), 2))
def test_sympy__geometry__parabola__Parabola():
from sympy.geometry.parabola import Parabola
from sympy.geometry.line import Line
assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3))))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity():
pass
def test_sympy__geometry__line__Line():
from sympy.geometry.line import Line
assert _test_args(Line((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray():
from sympy.geometry.line import Ray
assert _test_args(Ray((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment():
from sympy.geometry.line import Segment
assert _test_args(Segment((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity2D():
pass
def test_sympy__geometry__line__Line2D():
from sympy.geometry.line import Line2D
assert _test_args(Line2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray2D():
from sympy.geometry.line import Ray2D
assert _test_args(Ray2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment2D():
from sympy.geometry.line import Segment2D
assert _test_args(Segment2D((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity3D():
pass
def test_sympy__geometry__line__Line3D():
from sympy.geometry.line import Line3D
assert _test_args(Line3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Segment3D():
from sympy.geometry.line import Segment3D
assert _test_args(Segment3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Ray3D():
from sympy.geometry.line import Ray3D
assert _test_args(Ray3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__plane__Plane():
from sympy.geometry.plane import Plane
assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3)))
def test_sympy__geometry__polygon__Polygon():
from sympy.geometry.polygon import Polygon
assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7)))
def test_sympy__geometry__polygon__RegularPolygon():
from sympy.geometry.polygon import RegularPolygon
assert _test_args(RegularPolygon((0, 1), 2, 3, 4))
def test_sympy__geometry__polygon__Triangle():
from sympy.geometry.polygon import Triangle
assert _test_args(Triangle((0, 1), (2, 3), (4, 5)))
def test_sympy__geometry__entity__GeometryEntity():
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2]))
@SKIP("abstract class")
def test_sympy__geometry__entity__GeometrySet():
pass
def test_sympy__diffgeom__diffgeom__Manifold():
from sympy.diffgeom import Manifold
assert _test_args(Manifold('name', 3))
def test_sympy__diffgeom__diffgeom__Patch():
from sympy.diffgeom import Manifold, Patch
assert _test_args(Patch('name', Manifold('name', 3)))
def test_sympy__diffgeom__diffgeom__CoordSystem():
from sympy.diffgeom import Manifold, Patch, CoordSystem
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3))))
@XFAIL
def test_sympy__diffgeom__diffgeom__Point():
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
assert _test_args(Point(
CoordSystem('name', Patch('name', Manifold('name', 3))), [x, y]))
def test_sympy__diffgeom__diffgeom__BaseScalarField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseScalarField(cs, 0))
def test_sympy__diffgeom__diffgeom__BaseVectorField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseVectorField(cs, 0))
def test_sympy__diffgeom__diffgeom__Differential():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(Differential(BaseScalarField(cs, 0)))
def test_sympy__diffgeom__diffgeom__Commutator():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)))
v = BaseVectorField(cs, 0)
v1 = BaseVectorField(cs1, 0)
assert _test_args(Commutator(v, v1))
def test_sympy__diffgeom__diffgeom__TensorProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
assert _test_args(TensorProduct(d, d))
def test_sympy__diffgeom__diffgeom__WedgeProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
d1 = Differential(BaseScalarField(cs, 1))
assert _test_args(WedgeProduct(d, d1))
def test_sympy__diffgeom__diffgeom__LieDerivative():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
v = BaseVectorField(cs, 0)
assert _test_args(LieDerivative(v, d))
@XFAIL
def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3))
def test_sympy__diffgeom__diffgeom__CovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
v = BaseVectorField(cs, 0)
_test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3))
def test_sympy__categories__baseclasses__Class():
from sympy.categories.baseclasses import Class
assert _test_args(Class())
def test_sympy__categories__baseclasses__Object():
from sympy.categories import Object
assert _test_args(Object("A"))
@XFAIL
def test_sympy__categories__baseclasses__Morphism():
from sympy.categories import Object, Morphism
assert _test_args(Morphism(Object("A"), Object("B")))
def test_sympy__categories__baseclasses__IdentityMorphism():
from sympy.categories import Object, IdentityMorphism
assert _test_args(IdentityMorphism(Object("A")))
def test_sympy__categories__baseclasses__NamedMorphism():
from sympy.categories import Object, NamedMorphism
assert _test_args(NamedMorphism(Object("A"), Object("B"), "f"))
def test_sympy__categories__baseclasses__CompositeMorphism():
from sympy.categories import Object, NamedMorphism, CompositeMorphism
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
assert _test_args(CompositeMorphism(f, g))
def test_sympy__categories__baseclasses__Diagram():
from sympy.categories import Object, NamedMorphism, Diagram
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
d = Diagram([f])
assert _test_args(d)
def test_sympy__categories__baseclasses__Category():
from sympy.categories import Object, NamedMorphism, Diagram, Category
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d1 = Diagram([f, g])
d2 = Diagram([f])
K = Category("K", commutative_diagrams=[d1, d2])
assert _test_args(K)
def test_sympy__ntheory__factor___totient():
from sympy.ntheory.factor_ import totient
k = symbols('k', integer=True)
t = totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___reduced_totient():
from sympy.ntheory.factor_ import reduced_totient
k = symbols('k', integer=True)
t = reduced_totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___divisor_sigma():
from sympy.ntheory.factor_ import divisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = divisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___udivisor_sigma():
from sympy.ntheory.factor_ import udivisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = udivisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___primenu():
from sympy.ntheory.factor_ import primenu
n = symbols('n', integer=True)
t = primenu(n)
assert _test_args(t)
def test_sympy__ntheory__factor___primeomega():
from sympy.ntheory.factor_ import primeomega
n = symbols('n', integer=True)
t = primeomega(n)
assert _test_args(t)
def test_sympy__ntheory__residue_ntheory__mobius():
from sympy.ntheory import mobius
assert _test_args(mobius(2))
def test_sympy__ntheory__generate__primepi():
from sympy.ntheory import primepi
n = symbols('n')
t = primepi(n)
assert _test_args(t)
def test_sympy__physics__optics__waves__TWave():
from sympy.physics.optics import TWave
A, f, phi = symbols('A, f, phi')
assert _test_args(TWave(A, f, phi))
def test_sympy__physics__optics__gaussopt__BeamParameter():
from sympy.physics.optics import BeamParameter
assert _test_args(BeamParameter(530e-9, 1, w=1e-3))
def test_sympy__physics__optics__medium__Medium():
from sympy.physics.optics import Medium
assert _test_args(Medium('m'))
def test_sympy__codegen__array_utils__CodegenArrayContraction():
from sympy.codegen.array_utils import CodegenArrayContraction
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayContraction(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayDiagonal():
from sympy.codegen.array_utils import CodegenArrayDiagonal
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayDiagonal(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayTensorProduct():
from sympy.codegen.array_utils import CodegenArrayTensorProduct
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayTensorProduct(A, B))
def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd():
from sympy.codegen.array_utils import CodegenArrayElementwiseAdd
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayElementwiseAdd(A, B))
def test_sympy__codegen__array_utils__CodegenArrayPermuteDims():
from sympy.codegen.array_utils import CodegenArrayPermuteDims
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayPermuteDims(A, (1, 0)))
def test_sympy__codegen__ast__Assignment():
from sympy.codegen.ast import Assignment
assert _test_args(Assignment(x, y))
def test_sympy__codegen__cfunctions__expm1():
from sympy.codegen.cfunctions import expm1
assert _test_args(expm1(x))
def test_sympy__codegen__cfunctions__log1p():
from sympy.codegen.cfunctions import log1p
assert _test_args(log1p(x))
def test_sympy__codegen__cfunctions__exp2():
from sympy.codegen.cfunctions import exp2
assert _test_args(exp2(x))
def test_sympy__codegen__cfunctions__log2():
from sympy.codegen.cfunctions import log2
assert _test_args(log2(x))
def test_sympy__codegen__cfunctions__fma():
from sympy.codegen.cfunctions import fma
assert _test_args(fma(x, y, z))
def test_sympy__codegen__cfunctions__log10():
from sympy.codegen.cfunctions import log10
assert _test_args(log10(x))
def test_sympy__codegen__cfunctions__Sqrt():
from sympy.codegen.cfunctions import Sqrt
assert _test_args(Sqrt(x))
def test_sympy__codegen__cfunctions__Cbrt():
from sympy.codegen.cfunctions import Cbrt
assert _test_args(Cbrt(x))
def test_sympy__codegen__cfunctions__hypot():
from sympy.codegen.cfunctions import hypot
assert _test_args(hypot(x, y))
def test_sympy__codegen__fnodes__FFunction():
from sympy.codegen.fnodes import FFunction
assert _test_args(FFunction('f'))
def test_sympy__codegen__fnodes__F95Function():
from sympy.codegen.fnodes import F95Function
assert _test_args(F95Function('f'))
def test_sympy__codegen__fnodes__isign():
from sympy.codegen.fnodes import isign
assert _test_args(isign(1, x))
def test_sympy__codegen__fnodes__dsign():
from sympy.codegen.fnodes import dsign
assert _test_args(dsign(1, x))
def test_sympy__codegen__fnodes__cmplx():
from sympy.codegen.fnodes import cmplx
assert _test_args(cmplx(x, y))
def test_sympy__codegen__fnodes__kind():
from sympy.codegen.fnodes import kind
assert _test_args(kind(x))
def test_sympy__codegen__fnodes__merge():
from sympy.codegen.fnodes import merge
assert _test_args(merge(1, 2, Eq(x, 0)))
def test_sympy__codegen__fnodes___literal():
from sympy.codegen.fnodes import _literal
assert _test_args(_literal(1))
def test_sympy__codegen__fnodes__literal_sp():
from sympy.codegen.fnodes import literal_sp
assert _test_args(literal_sp(1))
def test_sympy__codegen__fnodes__literal_dp():
from sympy.codegen.fnodes import literal_dp
assert _test_args(literal_dp(1))
def test_sympy__codegen__matrix_nodes__MatrixSolve():
from sympy.matrices import MatrixSymbol
from sympy.codegen.matrix_nodes import MatrixSolve
A = MatrixSymbol('A', 3, 3)
v = MatrixSymbol('x', 3, 1)
assert _test_args(MatrixSolve(A, v))
def test_sympy__vector__coordsysrect__CoordSys3D():
from sympy.vector.coordsysrect import CoordSys3D
assert _test_args(CoordSys3D('C'))
def test_sympy__vector__point__Point():
from sympy.vector.point import Point
assert _test_args(Point('P'))
def test_sympy__vector__basisdependent__BasisDependent():
from sympy.vector.basisdependent import BasisDependent
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentMul():
from sympy.vector.basisdependent import BasisDependentMul
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentAdd():
from sympy.vector.basisdependent import BasisDependentAdd
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentZero():
from sympy.vector.basisdependent import BasisDependentZero
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__vector__BaseVector():
from sympy.vector.vector import BaseVector
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseVector(0, C, ' ', ' '))
def test_sympy__vector__vector__VectorAdd():
from sympy.vector.vector import VectorAdd, VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a, b, c, x, y, z
v1 = a*C.i + b*C.j + c*C.k
v2 = x*C.i + y*C.j + z*C.k
assert _test_args(VectorAdd(v1, v2))
assert _test_args(VectorMul(x, v1))
def test_sympy__vector__vector__VectorMul():
from sympy.vector.vector import VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a
assert _test_args(VectorMul(a, C.i))
def test_sympy__vector__vector__VectorZero():
from sympy.vector.vector import VectorZero
assert _test_args(VectorZero())
def test_sympy__vector__vector__Vector():
from sympy.vector.vector import Vector
#Vector is never to be initialized using args
pass
def test_sympy__vector__vector__Cross():
from sympy.vector.vector import Cross
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Cross(C.i, C.j))
def test_sympy__vector__vector__Dot():
from sympy.vector.vector import Dot
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Dot(C.i, C.j))
def test_sympy__vector__dyadic__Dyadic():
from sympy.vector.dyadic import Dyadic
#Dyadic is never to be initialized using args
pass
def test_sympy__vector__dyadic__BaseDyadic():
from sympy.vector.dyadic import BaseDyadic
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseDyadic(C.i, C.j))
def test_sympy__vector__dyadic__DyadicMul():
from sympy.vector.dyadic import BaseDyadic, DyadicMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicAdd():
from sympy.vector.dyadic import BaseDyadic, DyadicAdd
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i),
BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicZero():
from sympy.vector.dyadic import DyadicZero
assert _test_args(DyadicZero())
def test_sympy__vector__deloperator__Del():
from sympy.vector.deloperator import Del
assert _test_args(Del())
def test_sympy__vector__operators__Curl():
from sympy.vector.operators import Curl
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Curl(C.i))
def test_sympy__vector__operators__Laplacian():
from sympy.vector.operators import Laplacian
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Laplacian(C.i))
def test_sympy__vector__operators__Divergence():
from sympy.vector.operators import Divergence
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Divergence(C.i))
def test_sympy__vector__operators__Gradient():
from sympy.vector.operators import Gradient
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Gradient(C.x))
def test_sympy__vector__orienters__Orienter():
from sympy.vector.orienters import Orienter
#Not to be initialized
def test_sympy__vector__orienters__ThreeAngleOrienter():
from sympy.vector.orienters import ThreeAngleOrienter
#Not to be initialized
def test_sympy__vector__orienters__AxisOrienter():
from sympy.vector.orienters import AxisOrienter
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(AxisOrienter(x, C.i))
def test_sympy__vector__orienters__BodyOrienter():
from sympy.vector.orienters import BodyOrienter
assert _test_args(BodyOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__SpaceOrienter():
from sympy.vector.orienters import SpaceOrienter
assert _test_args(SpaceOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__QuaternionOrienter():
from sympy.vector.orienters import QuaternionOrienter
a, b, c, d = symbols('a b c d')
assert _test_args(QuaternionOrienter(a, b, c, d))
def test_sympy__vector__scalar__BaseScalar():
from sympy.vector.scalar import BaseScalar
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseScalar(0, C, ' ', ' '))
def test_sympy__physics__wigner__Wigner3j():
from sympy.physics.wigner import Wigner3j
assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0))
def test_sympy__integrals__rubi__symbol__matchpyWC():
from sympy.integrals.rubi.symbol import matchpyWC
assert _test_args(matchpyWC(1, True, 'a'))
def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr():
from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr
a = symbols('a')
assert _test_args(rubi_unevaluated_expr(a))
def test_sympy__integrals__rubi__utility_function__rubi_exp():
from sympy.integrals.rubi.utility_function import rubi_exp
assert _test_args(rubi_exp(5))
def test_sympy__integrals__rubi__utility_function__rubi_log():
from sympy.integrals.rubi.utility_function import rubi_log
assert _test_args(rubi_log(5))
def test_sympy__integrals__rubi__utility_function__Int():
from sympy.integrals.rubi.utility_function import Int
assert _test_args(Int(5, x))
def test_sympy__integrals__rubi__utility_function__Util_Coefficient():
from sympy.integrals.rubi.utility_function import Util_Coefficient
a, x = symbols('a x')
assert _test_args(Util_Coefficient(a, x))
def test_sympy__integrals__rubi__utility_function__Gamma():
from sympy.integrals.rubi.utility_function import Gamma
assert _test_args(Gamma(5))
def test_sympy__integrals__rubi__utility_function__Util_Part():
from sympy.integrals.rubi.utility_function import Util_Part
a, b = symbols('a b')
assert _test_args(Util_Part(a + b, 0))
def test_sympy__integrals__rubi__utility_function__PolyGamma():
from sympy.integrals.rubi.utility_function import PolyGamma
assert _test_args(PolyGamma(1, 1))
def test_sympy__integrals__rubi__utility_function__ProductLog():
from sympy.integrals.rubi.utility_function import ProductLog
assert _test_args(ProductLog(1))
|
b3ec3b92235c5bbd635ce4a97c944f5cd22a4354a42f9da705c5ec60c2b3663e | from sympy import (Lambda, Symbol, Function, Derivative, Subs, sqrt,
log, exp, Rational, Float, sin, cos, acos, diff, I, re, im,
E, expand, pi, O, Sum, S, polygamma, loggamma, expint,
Tuple, Dummy, Eq, Expr, symbols, nfloat, Piecewise, Indexed,
Matrix, Basic, Dict, oo, zoo, nan)
from sympy.utilities.pytest import XFAIL, raises
from sympy.core.basic import _aresame
from sympy.core.cache import clear_cache
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.core.function import PoleError, _mexpand, arity
from sympy.core.sympify import sympify
from sympy.sets.sets import FiniteSet
from sympy.solvers.solveset import solveset
from sympy.tensor.array import NDimArray
from sympy.utilities.iterables import subsets, variations
from sympy.abc import t, w, x, y, z
f, g, h = symbols('f g h', cls=Function)
_xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)]
def test_f_expand_complex():
x = Symbol('x', real=True)
assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x))
assert exp(x).expand(complex=True) == exp(x)
assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \
I*sin(im(z))*exp(re(z))
def test_bug1():
e = sqrt(-log(w))
assert e.subs(log(w), -x) == sqrt(x)
e = sqrt(-5*log(w))
assert e.subs(log(w), -x) == sqrt(5*x)
def test_general_function():
nu = Function('nu')
e = nu(x)
edx = e.diff(x)
edy = e.diff(y)
edxdx = e.diff(x).diff(x)
edxdy = e.diff(x).diff(y)
assert e == nu(x)
assert edx != nu(x)
assert edx == diff(nu(x), x)
assert edy == 0
assert edxdx == diff(diff(nu(x), x), x)
assert edxdy == 0
def test_general_function_nullary():
nu = Function('nu')
e = nu()
edx = e.diff(x)
edxdx = e.diff(x).diff(x)
assert e == nu()
assert edx != nu()
assert edx == 0
assert edxdx == 0
def test_derivative_subs_bug():
e = diff(g(x), x)
assert e.subs(g(x), f(x)) != e
assert e.subs(g(x), f(x)) == Derivative(f(x), x)
assert e.subs(g(x), -f(x)) == Derivative(-f(x), x)
assert e.subs(x, y) == Derivative(g(y), y)
def test_derivative_subs_self_bug():
d = diff(f(x), x)
assert d.subs(d, y) == y
def test_derivative_linearity():
assert diff(-f(x), x) == -diff(f(x), x)
assert diff(8*f(x), x) == 8*diff(f(x), x)
assert diff(8*f(x), x) != 7*diff(f(x), x)
assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x)
assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x)
def test_derivative_evaluate():
assert Derivative(sin(x), x) != diff(sin(x), x)
assert Derivative(sin(x), x).doit() == diff(sin(x), x)
assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x)
assert Derivative(sin(x), x, 0) == sin(x)
assert Derivative(sin(x), (x, y), (x, -y)) == sin(x)
def test_diff_symbols():
assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z)
assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3))
assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3)
# issue 5028
assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2]
assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z)
assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \
Derivative(f(x, y, z), x, y, z, z)
assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \
Derivative(f(x, y, z), x, y, z, z)
assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \
Derivative(f(x, y, z), x, y, z)
raises(TypeError, lambda: cos(x).diff((x, y)).variables)
assert cos(x).diff((x, y))._wrt_variables == [x]
def test_Function():
class myfunc(Function):
@classmethod
def eval(cls): # zero args
return
assert myfunc.nargs == FiniteSet(0)
assert myfunc().nargs == FiniteSet(0)
raises(TypeError, lambda: myfunc(x).nargs)
class myfunc(Function):
@classmethod
def eval(cls, x): # one arg
return
assert myfunc.nargs == FiniteSet(1)
assert myfunc(x).nargs == FiniteSet(1)
raises(TypeError, lambda: myfunc(x, y).nargs)
class myfunc(Function):
@classmethod
def eval(cls, *x): # star args
return
assert myfunc.nargs == S.Naturals0
assert myfunc(x).nargs == S.Naturals0
def test_nargs():
f = Function('f')
assert f.nargs == S.Naturals0
assert f(1).nargs == S.Naturals0
assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2)
assert sin.nargs == FiniteSet(1)
assert sin(2).nargs == FiniteSet(1)
assert log.nargs == FiniteSet(1, 2)
assert log(2).nargs == FiniteSet(1, 2)
assert Function('f', nargs=2).nargs == FiniteSet(2)
assert Function('f', nargs=0).nargs == FiniteSet(0)
assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1)
assert Function('f', nargs=None).nargs == S.Naturals0
raises(ValueError, lambda: Function('f', nargs=()))
def test_arity():
f = lambda x, y: 1
assert arity(f) == 2
def f(x, y, z=None):
pass
assert arity(f) == (2, 3)
assert arity(lambda *x: x) is None
assert arity(log) == (1, 2)
def test_Lambda():
e = Lambda(x, x**2)
assert e(4) == 16
assert e(x) == x**2
assert e(y) == y**2
assert Lambda((), 42)() == 42
assert unchanged(Lambda, (), 42)
assert Lambda((), 42) != Lambda((), 43)
assert Lambda((), f(x))() == f(x)
assert Lambda((), 42).nargs == FiniteSet(0)
assert unchanged(Lambda, (x,), x**2)
assert Lambda(x, x**2) == Lambda((x,), x**2)
assert Lambda(x, x**2) == Lambda(y, y**2)
assert Lambda(x, x**2) != Lambda(y, y**2 + 1)
assert Lambda((x, y), x**y) == Lambda((y, x), y**x)
assert Lambda((x, y), x**y) != Lambda((x, y), y**x)
assert Lambda((x, y), x**y)(x, y) == x**y
assert Lambda((x, y), x**y)(3, 3) == 3**3
assert Lambda((x, y), x**y)(x, 3) == x**3
assert Lambda((x, y), x**y)(3, y) == 3**y
assert Lambda(x, f(x))(x) == f(x)
assert Lambda(x, x**2)(e(x)) == x**4
assert e(e(x)) == x**4
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert Lambda((x1, x2), x1 + x2)(x, y) == x + y
assert Lambda((x, y), x + y).nargs == FiniteSet(2)
p = x, y, z, t
assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z)
assert Lambda(x, 2*x) + Lambda(y, 2*y) == 2*Lambda(x, 2*x)
assert Lambda(x, 2*x) not in [ Lambda(x, x) ]
raises(TypeError, lambda: Lambda(1, x))
assert Lambda(x, 1)(1) is S.One
raises(SyntaxError, lambda: Lambda((x, x), x + 2))
def test_IdentityFunction():
assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction
assert Lambda(x, 2*x) is not S.IdentityFunction
assert Lambda((x, y), x) is not S.IdentityFunction
def test_Lambda_symbols():
assert Lambda(x, 2*x).free_symbols == set()
assert Lambda(x, x*y).free_symbols == {y}
assert Lambda((), 42).free_symbols == set()
assert Lambda((), x*y).free_symbols == {x,y}
def test_functionclas_symbols():
assert f.free_symbols == set()
def test_Lambda_arguments():
raises(TypeError, lambda: Lambda(x, 2*x)(x, y))
raises(TypeError, lambda: Lambda((x, y), x + y)(x))
raises(TypeError, lambda: Lambda((), 42)(x))
def test_Lambda_equality():
assert Lambda(x, 2*x) == Lambda(y, 2*y)
# although variables are casts as Dummies, the expressions
# should still compare equal
assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x)
assert Lambda(x, 2*x) != Lambda((x, y), 2*x)
assert Lambda(x, 2*x) != 2*x
def test_Subs():
assert Subs(1, (), ()) is S.One
# check null subs influence on hashing
assert Subs(x, y, z) != Subs(x, y, 1)
# neutral subs works
assert Subs(x, x, 1).subs(x, y).has(y)
# self mapping var/point
assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x)
assert Subs(x, x, 0).has(x) # it's a structural answer
assert not Subs(x, x, 0).free_symbols
assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1))
assert Subs(x, (x,), (0,)) == Subs(x, x, 0)
assert Subs(x, x, 0) == Subs(y, y, 0)
assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
assert Subs(f(x), x, 0).doit() == f(0)
assert Subs(f(x**2), x**2, 0).doit() == f(0)
assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
Subs(f(x, y, z), (x, y, z), (0, 0, 1))
assert Subs(x, y, 2).subs(x, y).doit() == 2
assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))
assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)
assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))
assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y
assert Subs(f(x), x, 0).free_symbols == set([])
assert Subs(f(x, y), x, z).free_symbols == {y, z}
assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
2*Subs(Derivative(f(x, 2), x), x, 0)
assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)
e = Subs(y**2*f(x), x, y)
assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)
assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
e1 = Subs(z*f(x), x, 1)
e2 = Subs(z*f(y), y, 1)
assert e1 + e2 == 2*e1
assert e1.__hash__() == e2.__hash__()
assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ]
assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
x, x + y)
assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
z + Rational('1/2').n(2)*f(0)
assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
).doit() == 2*exp(x)
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
).doit(deep=False) == 2*Derivative(exp(x), x)
assert Derivative(f(x, g(x)), x).doit() == Derivative(
f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative(
f(y, g(x)), y), y, x)
def test_doitdoit():
done = Derivative(f(x, g(x)), x, g(x)).doit()
assert done == done.doit()
@XFAIL
def test_Subs2():
# this reflects a limitation of subs(), probably won't fix
assert Subs(f(x), x**2, x).doit() == f(sqrt(x))
def test_expand_function():
assert expand(x + y) == x + y
assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y)
assert expand((x + y)**11, modulus=11) == x**11 + y**11
def test_function_comparable():
assert sin(x).is_comparable is False
assert cos(x).is_comparable is False
assert sin(Float('0.1')).is_comparable is True
assert cos(Float('0.1')).is_comparable is True
assert sin(E).is_comparable is True
assert cos(E).is_comparable is True
assert sin(Rational(1, 3)).is_comparable is True
assert cos(Rational(1, 3)).is_comparable is True
def test_function_comparable_infinities():
assert sin(oo).is_comparable is False
assert sin(-oo).is_comparable is False
assert sin(zoo).is_comparable is False
assert sin(nan).is_comparable is False
def test_deriv1():
# These all require derivatives evaluated at a point (issue 4719) to work.
# See issue 4624
assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x)
assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x)
assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs(
Derivative(f(x), x), x, 2*x)
assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2)
assert f(2 + 3*x).diff(x) == 3*Subs(
Derivative(f(x), x), x, 3*x + 2)
assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs(
Derivative(f(x), x), x, 3*sin(x))
# See issue 8510
assert f(x, x + z).diff(x) == (
Subs(Derivative(f(y, x + z), y), y, x) +
Subs(Derivative(f(x, y), y), y, x + z))
assert f(x, x**2).diff(x) == (
2*x*Subs(Derivative(f(x, y), y), y, x**2) +
Subs(Derivative(f(y, x**2), y), y, x))
# but Subs is not always necessary
assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y))
def test_deriv2():
assert (x**3).diff(x) == 3*x**2
assert (x**3).diff(x, evaluate=False) != 3*x**2
assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x)
assert diff(x**3, x) == 3*x**2
assert diff(x**3, x, evaluate=False) != 3*x**2
assert diff(x**3, x, evaluate=False) == Derivative(x**3, x)
def test_func_deriv():
assert f(x).diff(x) == Derivative(f(x), x)
# issue 4534
assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0
assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1))
assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1))
assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0
def test_suppressed_evaluation():
a = sin(0, evaluate=False)
assert a != 0
assert a.func is sin
assert a.args == (0,)
def test_function_evalf():
def eq(a, b, eps):
return abs(a - b) < eps
assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13)
assert eq(
sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23)
assert eq(sin(1 + I).evalf(
15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13)
assert eq(exp(1 + I).evalf(15), Float(
"1.46869393991588") + Float("2.28735528717884239")*I, 1e-13)
assert eq(exp(-0.5 + 1.5*I).evalf(15), Float(
"0.0429042815937374") + Float("0.605011292285002")*I, 1e-13)
assert eq(log(pi + sqrt(2)*I).evalf(
15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13)
assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13)
def test_extensibility_eval():
class MyFunc(Function):
@classmethod
def eval(cls, *args):
return (0, 0, 0)
assert MyFunc(0) == (0, 0, 0)
def test_function_non_commutative():
x = Symbol('x', commutative=False)
assert f(x).is_commutative is False
assert sin(x).is_commutative is False
assert exp(x).is_commutative is False
assert log(x).is_commutative is False
assert f(x).is_complex is False
assert sin(x).is_complex is False
assert exp(x).is_complex is False
assert log(x).is_complex is False
def test_function_complex():
x = Symbol('x', complex=True)
assert f(x).is_commutative is True
assert sin(x).is_commutative is True
assert exp(x).is_commutative is True
assert log(x).is_commutative is True
assert f(x).is_complex is True
assert sin(x).is_complex is True
assert exp(x).is_complex is True
assert log(x).is_complex is True
def test_function__eval_nseries():
n = Symbol('n')
assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2)
assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2)
assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2)
assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + O(x)
assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + O(x) # XXX: wrong, branch cuts
assert loggamma(1/x)._eval_nseries(x, 0, None) == \
log(x)/2 - log(x)/x - 1/x + O(1, x)
assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)
# issue 6725:
assert expint(S(3)/2, -x)._eval_nseries(x, 5, None) == \
2 - 2*sqrt(pi)*sqrt(-x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5)
assert sin(sqrt(x))._eval_nseries(x, 3, None) == \
sqrt(x) - x**(S(3)/2)/6 + x**(S(5)/2)/120 + O(x**3)
def test_doit():
n = Symbol('n', integer=True)
f = Sum(2 * n * x, (n, 1, 3))
d = Derivative(f, x)
assert d.doit() == 12
assert d.doit(deep=False) == Sum(2*n, (n, 1, 3))
def test_evalf_default():
from sympy.functions.special.gamma_functions import polygamma
assert type(sin(4.0)) == Float
assert type(re(sin(I + 1.0))) == Float
assert type(im(sin(I + 1.0))) == Float
assert type(sin(4)) == sin
assert type(polygamma(2.0, 4.0)) == Float
assert type(sin(Rational(1, 4))) == sin
def test_issue_5399():
args = [x, y, S(2), S.Half]
def ok(a):
"""Return True if the input args for diff are ok"""
if not a:
return False
if a[0].is_Symbol is False:
return False
s_at = [i for i in range(len(a)) if a[i].is_Symbol]
n_at = [i for i in range(len(a)) if not a[i].is_Symbol]
# every symbol is followed by symbol or int
# every number is followed by a symbol
return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer
for i in s_at if i + 1 < len(a)) and
all(a[i + 1].is_Symbol
for i in n_at if i + 1 < len(a)))
eq = x**10*y**8
for a in subsets(args):
for v in variations(a, len(a)):
if ok(v):
noraise = eq.diff(*v)
else:
raises(ValueError, lambda: eq.diff(*v))
def test_derivative_numerically():
from random import random
z0 = random() + I*random()
assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15
def test_fdiff_argument_index_error():
from sympy.core.function import ArgumentIndexError
class myfunc(Function):
nargs = 1 # define since there is no eval routine
def fdiff(self, idx):
raise ArgumentIndexError
mf = myfunc(x)
assert mf.diff(x) == Derivative(mf, x)
raises(TypeError, lambda: myfunc(x, x))
def test_deriv_wrt_function():
x = f(t)
xd = diff(x, t)
xdd = diff(xd, t)
y = g(t)
yd = diff(y, t)
assert diff(x, t) == xd
assert diff(2 * x + 4, t) == 2 * xd
assert diff(2 * x + 4 + y, t) == 2 * xd + yd
assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y
assert diff(2 * x + 4 + y * x, x) == 2 + y
assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y +
8 * x * xd)
assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y +
8 * x * xd)
assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3
assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0
assert diff(sin(x), t) == xd * cos(x)
assert diff(exp(x), t) == xd * exp(x)
assert diff(sqrt(x), t) == xd / (2 * sqrt(x))
def test_diff_wrt_value():
assert Expr()._diff_wrt is False
assert x._diff_wrt is True
assert f(x)._diff_wrt is True
assert Derivative(f(x), x)._diff_wrt is True
assert Derivative(x**2, x)._diff_wrt is False
def test_diff_wrt():
fx = f(x)
dfx = diff(f(x), x)
ddfx = diff(f(x), x, x)
assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx
assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx
assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx
assert diff(fx**2, dfx) == 0
assert diff(fx**2, ddfx) == 0
assert diff(dfx**2, fx) == 0
assert diff(dfx**2, ddfx) == 0
assert diff(ddfx**2, dfx) == 0
assert diff(fx*dfx*ddfx, fx) == dfx*ddfx
assert diff(fx*dfx*ddfx, dfx) == fx*ddfx
assert diff(fx*dfx*ddfx, ddfx) == fx*dfx
assert diff(f(x), x).diff(f(x)) == 0
assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x))
assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx)
# Chain rule cases
assert f(g(x)).diff(x) == \
Derivative(g(x), x)*Derivative(f(g(x)), g(x))
assert diff(f(g(x), h(y)), x) == \
Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x))
assert diff(f(g(x), h(x)), x) == (
Subs(Derivative(f(y, h(x)), y), y, g(x))*Derivative(g(x), x) +
Subs(Derivative(f(g(x), y), y), y, h(x))*Derivative(h(x), x))
assert f(
sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x))
assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x))
def test_diff_wrt_func_subs():
assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x)
def test_subs_in_derivative():
expr = sin(x*exp(y))
u = Function('u')
v = Function('v')
assert Derivative(expr, y).subs(expr, y) == Derivative(y, y)
assert Derivative(expr, y).subs(y, x).doit() == \
Derivative(expr, y).doit().subs(y, x)
assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x)
assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y)
assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit()
assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y))
assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y))
assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \
Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit()
assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z)
assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y))
assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \
Derivative(f(g(x), u(y)), u(y))
assert Derivative(f(x, f(x, x)), f(x, x)).subs(
f, Lambda((x, y), x + y)) == Subs(
Derivative(z + x, z), z, 2*x)
assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x))
assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x))
# Issue 13791. No comparison (it's a long formula) but this used to raise an exception.
assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr)
# This is also related to issues 13791 and 13795; issue 15190
F = Lambda((x, y), exp(2*x + 3*y))
abstract = f(x, f(x, x)).diff(x, 2)
concrete = F(x, F(x, x)).diff(x, 2)
assert (abstract.subs(f, F).doit() - concrete).simplify() == 0
# don't introduce a new symbol if not necessary
assert x in f(x).diff(x).subs(x, 0).atoms()
# case (4)
assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y)
) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y))
assert Derivative(f(x, x), x).subs(x, 0
) == Subs(Derivative(f(x, x), x), x, 0)
# issue 15194
assert Derivative(f(y, g(x)), (x, z)).subs(z, x
) == Derivative(f(y, g(x)), (x, x))
df = f(x).diff(x)
assert df.subs(df, 1) is S.One
assert df.diff(df) is S.One
dxy = Derivative(f(x, y), x, y)
dyx = Derivative(f(x, y), y, x)
assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One
assert dxy.diff(dyx) is S.One
assert Derivative(f(x, y), x, 2, y, 3).subs(
dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2)
assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs(
Derivative(f(x, x - y), y), x, x + y)
def test_diff_wrt_not_allowed():
# issue 7027 included
for wrt in (
cos(x), re(x), x**2, x*y, 1 + x,
Derivative(cos(x), x), Derivative(f(f(x)), x)):
raises(ValueError, lambda: diff(f(x), wrt))
# if we don't differentiate wrt then don't raise error
assert diff(exp(x*y), x*y, 0) == exp(x*y)
def test_klein_gordon_lagrangian():
m = Symbol('m')
phi = f(x, t)
L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2
eqna = Eq(
diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0)
eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0)
assert eqna == eqnb
def test_sho_lagrangian():
m = Symbol('m')
k = Symbol('k')
x = f(t)
L = m*diff(x, t)**2/2 - k*x**2/2
eqna = Eq(diff(L, x), diff(L, diff(x, t), t))
eqnb = Eq(-k*x, m*diff(x, t, t))
assert eqna == eqnb
assert diff(L, x, t) == diff(L, t, x)
assert diff(L, diff(x, t), t) == m*diff(x, t, 2)
assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2)
def test_straight_line():
F = f(x)
Fd = F.diff(x)
L = sqrt(1 + Fd**2)
assert diff(L, F) == 0
assert diff(L, Fd) == Fd/sqrt(1 + Fd**2)
def test_sort_variable():
vsort = Derivative._sort_variable_count
def vsort0(*v, **kw):
reverse = kw.get('reverse', False)
return [i[0] for i in vsort([(i, 0) for i in (
reversed(v) if reverse else v)])]
for R in range(2):
assert vsort0(y, x, reverse=R) == [x, y]
assert vsort0(f(x), x, reverse=R) == [x, f(x)]
assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)]
assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)]
assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)]
fx = f(x).diff(x)
assert vsort0(fx, y, reverse=R) == [y, fx]
fy = f(y).diff(y)
assert vsort0(fy, fx, reverse=R) == [fx, fy]
fxx = fx.diff(x)
assert vsort0(fxx, fx, reverse=R) == [fx, fxx]
assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)]
assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)]
assert vsort0(Basic(y, z), Basic(x), reverse=R) == [
Basic(x), Basic(y, z)]
assert vsort0(fx, x, reverse=R) == [
x, fx] if R else [fx, x]
assert vsort0(Basic(x), x, reverse=R) == [
x, Basic(x)] if R else [Basic(x), x]
assert vsort0(Basic(f(x)), f(x), reverse=R) == [
f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)]
assert vsort0(Basic(x, z), Basic(x), reverse=R) == [
Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)]
assert vsort([]) == []
assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)])
assert vsort([(x, y), (x, z)]) == [(x, y + z)]
assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)]
# coverage complete; legacy tests below
assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [
(f(x), 1), (g(x), 1), (h(x), 1)]
assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1),
(f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1),
(h(x), 1)]
assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1),
(y, 1), (f(x), 1), (f(y), 1)]
assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1),
(h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1),
(f(x), 1), (g(x), 1), (h(x), 1)]
assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1),
(g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)]
assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2),
(g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3),
(z, 4), (f(x), 3), (g(x), 1)]
assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)]
assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple)
assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)]
assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [
(f(x), 1), (g(x), 1), (h(y), 1)]
assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)]
assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [
(f(x), 2), (f(y), 1)]
dfx = f(x).diff(x)
self = [(dfx, 1), (x, 1)]
assert vsort(self) == self
assert vsort([
(dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [
(y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)]
dfy = f(y).diff(y)
assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)]
d2fx = dfx.diff(x)
assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)]
def test_multiple_derivative():
# Issue #15007
assert f(x, y).diff(y, y, x, y, x
) == Derivative(f(x, y), (x, 2), (y, 3))
def test_unhandled():
class MyExpr(Expr):
def _eval_derivative(self, s):
if not s.name.startswith('xi'):
return self
else:
return None
eq = MyExpr(f(x), y, z)
assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x))
assert diff(eq, f(x), x) == Derivative(eq, f(x))
assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z))
assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x)
def test_nfloat():
from sympy.core.basic import _aresame
from sympy.polys.rootoftools import rootof
x = Symbol("x")
eq = x**(S(4)/3) + 4*x**(S(1)/3)/3
assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(S(1)/3))
assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3))
eq = x**(S(4)/3) + 4*x**(x/3)/3
assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(x/3))
big = 12345678901234567890
# specify precision to match value used in nfloat
Float_big = Float(big, 15)
assert _aresame(nfloat(big), Float_big)
assert _aresame(nfloat(big*x), Float_big*x)
assert _aresame(nfloat(x**big, exponent=True), x**Float_big)
assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2)))
# issue 6342
f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4')
assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139)))
# issue 6632
assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \
9.99999999800000e-11
# issue 7122
eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0)
assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)'
# issue 10933
for t in (dict, Dict):
d = t({S.Half: S.Half})
n = nfloat(d)
assert isinstance(n, t)
assert _aresame(list(n.items()).pop(), (S.Half, Float(.5)))
for t in (dict, Dict):
d = t({S.Half: S.Half})
n = nfloat(d, dkeys=True)
assert isinstance(n, t)
assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5)))
d = [S.Half]
n = nfloat(d)
assert type(n) is list
assert _aresame(n[0], Float(.5))
assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5))
assert _aresame(nfloat(S(True)), S(True))
assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5))
assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false
# pass along kwargs
assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}]
def test_issue_7068():
from sympy.abc import a, b
f = Function('f')
y1 = Dummy('y')
y2 = Dummy('y')
func1 = f(a + y1 * b)
func2 = f(a + y2 * b)
func1_y = func1.diff(y1)
func2_y = func2.diff(y2)
assert func1_y != func2_y
z1 = Subs(f(a), a, y1)
z2 = Subs(f(a), a, y2)
assert z1 != z2
def test_issue_7231():
from sympy.abc import a
ans1 = f(x).series(x, a)
res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) +
(-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 +
(-a + x)**3*Subs(Derivative(f(y), y, y, y),
y, a)/6 +
(-a + x)**4*Subs(Derivative(f(y), y, y, y, y),
y, a)/24 +
(-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y),
y, a)/120 + O((-a + x)**6, (x, a)))
assert res == ans1
ans2 = f(x).series(x, a)
assert res == ans2
def test_issue_7687():
from sympy.core.function import Function
from sympy.abc import x
f = Function('f')(x)
ff = Function('f')(x)
match_with_cache = ff.matches(f)
assert isinstance(f, type(ff))
clear_cache()
ff = Function('f')(x)
assert isinstance(f, type(ff))
assert match_with_cache == ff.matches(f)
def test_issue_7688():
from sympy.core.function import Function, UndefinedFunction
f = Function('f') # actually an UndefinedFunction
clear_cache()
class A(UndefinedFunction):
pass
a = A('f')
assert isinstance(a, type(f))
def test_mexpand():
from sympy.abc import x
assert _mexpand(None) is None
assert _mexpand(1) is S.One
assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand()
def test_issue_8469():
# This should not take forever to run
N = 40
def g(w, theta):
return 1/(1+exp(w-theta))
ws = symbols(['w%i'%i for i in range(N)])
import functools
expr = functools.reduce(g,ws)
def test_issue_12996():
# foo=True imitates the sort of arguments that Derivative can get
# from Integral when it passes doit to the expression
assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x)
def test_should_evalf():
# This should not take forever to run (see #8506)
assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin)
def test_Derivative_as_finite_difference():
# Central 1st derivative at gridpoint
x, h = symbols('x h', real=True)
dfdx = f(x).diff(x)
assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) -
(S(1)/12*(f(x-2)-f(x+2)) + S(2)/3*(f(x+1)-f(x-1)))).simplify() == 0
# Central 1st derivative "half-way"
assert (dfdx.as_finite_difference() -
(f(x + S(1)/2)-f(x - S(1)/2))).simplify() == 0
assert (dfdx.as_finite_difference(h) -
(f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0
assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(S(9)/(8*2*h)*(f(x+h) - f(x-h)) +
S(1)/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0
# One sided 1st derivative at gridpoint
assert (dfdx.as_finite_difference([0, 1, 2], 0) -
(-S(3)/2*f(0) + 2*f(1) - f(2)/2)).simplify() == 0
assert (dfdx.as_finite_difference([x, x+h], x) -
(f(x+h) - f(x))/h).simplify() == 0
assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) -
(-S(3)/(2*h)*f(x-h) + 2/h*f(x) -
S(1)/(2*h)*f(x+h))).simplify() == 0
# One sided 1st derivative "half-way"
assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h])
- 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h)
+ S(3)/8*f(x + 3*h) - S(5)/24*f(x + 5*h)
+ S(1)/24*f(x + 7*h))).simplify() == 0
d2fdx2 = f(x).diff(x, 2)
# Central 2nd derivative at gridpoint
assert (d2fdx2.as_finite_difference([x-h, x, x+h]) -
h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0
assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) -
h**-2 * (-S(1)/12*(f(x - 2*h) + f(x + 2*h)) +
S(4)/3*(f(x+h) + f(x-h)) - S(5)/2*f(x))).simplify() == 0
# Central 2nd derivative "half-way"
assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(2*h)**-2 * (S(1)/2*(f(x - 3*h) + f(x + 3*h)) -
S(1)/2*(f(x+h) + f(x-h)))).simplify() == 0
# One sided 2nd derivative at gridpoint
assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
h**-2 * (2*f(x) - 5*f(x+h) +
4*f(x+2*h) - f(x+3*h))).simplify() == 0
# One sided 2nd derivative at "half-way"
assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
(2*h)**-2 * (S(3)/2*f(x-h) - S(7)/2*f(x+h) + S(5)/2*f(x + 3*h) -
S(1)/2*f(x + 5*h))).simplify() == 0
d3fdx3 = f(x).diff(x, 3)
# Central 3rd derivative at gridpoint
assert (d3fdx3.as_finite_difference() -
(-f(x - 3/S(2)) + 3*f(x - 1/S(2)) -
3*f(x + 1/S(2)) + f(x + 3/S(2)))).simplify() == 0
assert (d3fdx3.as_finite_difference(
[x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) -
h**-3 * (S(1)/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) +
f(x + 2*h) + S(13)/8*(f(x-h) - f(x+h)))).simplify() == 0
# Central 3rd derivative at "half-way"
assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(2*h)**-3 * (f(x + 3*h)-f(x - 3*h) +
3*(f(x-h)-f(x+h)))).simplify() == 0
# One sided 3rd derivative at gridpoint
assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0
# One sided 3rd derivative at "half-way"
assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
(2*h)**-3 * (f(x + 5*h)-f(x-h) +
3*(f(x+h)-f(x + 3*h)))).simplify() == 0
# issue 11007
y = Symbol('y', real=True)
d2fdxdy = f(x, y).diff(x, y)
ref0 = Derivative(f(x + S(1)/2, y), y) - Derivative(f(x - S(1)/2, y), y)
assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0
half = S(1)/2
xm, xp, ym, yp = x-half, x+half, y-half, y+half
ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp)
assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0
def test_issue_11159():
# Tests Application._eval_subs
expr1 = E
expr0 = expr1 * expr1
expr1 = expr0.subs(expr1,expr0)
assert expr0 == expr1
def test_issue_12005():
e1 = Subs(Derivative(f(x), x), x, x)
assert e1.diff(x) == Derivative(f(x), x, x)
e2 = Subs(Derivative(f(x), x), x, x**2 + 1)
assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1)
e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2)
assert e3.diff(y) == 4*y
e4 = Subs(Derivative(f(x + y), y), y, (x**2))
assert e4.diff(y) == S.Zero
e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
assert e5.diff(x) == Derivative(f(x), x, x)
assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
def test_issue_13843():
x = symbols('x')
f = Function('f')
m, n = symbols('m n', integer=True)
assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n))
assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8))
assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n))
def test_order_could_be_zero():
x, y = symbols('x, y')
n = symbols('n', integer=True, nonnegative=True)
m = symbols('m', integer=True, positive=True)
assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True))
assert diff(y, (x, n + 1)) == S.Zero
assert diff(y, (x, m)) == S.Zero
def test_undefined_function_eq():
f = Function('f')
f2 = Function('f')
g = Function('g')
f_real = Function('f', is_real=True)
# This test may only be meaningful if the cache is turned off
assert f == f2
assert hash(f) == hash(f2)
assert f == f
assert f != g
assert f != f_real
def test_function_assumptions():
x = Symbol('x')
f = Function('f')
f_real = Function('f', real=True)
f_real1 = Function('f', real=1)
f_real_inherit = Function(Symbol('f', real=True))
assert f_real == f_real1 # assumptions are sanitized
assert f != f_real
assert f(x) != f_real(x)
assert f(x).is_real is None
assert f_real(x).is_real is True
assert f_real_inherit(x).is_real is True and f_real_inherit.name == 'f'
# Can also do it this way, but it won't be equal to f_real because of the
# way UndefinedFunction.__new__ works. Any non-recognized assumptions
# are just added literally as something which is used in the hash
f_real2 = Function('f', is_real=True)
assert f_real2(x).is_real is True
def test_undef_fcn_float_issue_6938():
f = Function('ceil')
assert not f(0.3).is_number
f = Function('sin')
assert not f(0.3).is_number
assert not f(pi).evalf().is_number
x = Symbol('x')
assert not f(x).evalf(subs={x:1.2}).is_number
def test_undefined_function_eval():
# Issue 15170. Make sure UndefinedFunction with eval defined works
# properly. The issue there was that the hash was determined before _nargs
# was set, which is included in the hash, hence changing the hash. The
# class is added to sympy.core.core.all_classes before the hash is
# changed, meaning "temp in all_classes" would fail, causing sympify(temp(t))
# to give a new class. We will eventually remove all_classes, but make
# sure this continues to work.
fdiff = lambda self, argindex=1: cos(self.args[argindex - 1])
eval = classmethod(lambda cls, t: None)
_imp_ = classmethod(lambda cls, t: sin(t))
temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_)
expr = temp(t)
assert sympify(expr) == expr
assert type(sympify(expr)).fdiff.__name__ == "<lambda>"
assert expr.diff(t) == cos(t)
def test_issue_15241():
F = f(x)
Fx = F.diff(x)
assert (F + x*Fx).diff(x, Fx) == 2
assert (F + x*Fx).diff(Fx, x) == 1
assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1
assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1
y = f(x)
G = f(y)
Gy = G.diff(y)
assert (G + y*Gy).diff(y, Gy) == 2
assert (G + y*Gy).diff(Gy, y) == 1
assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1
assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1
def test_issue_15226():
assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0
def test_issue_7027():
for wrt in (cos(x), re(x), Derivative(cos(x), x)):
raises(ValueError, lambda: diff(f(x), wrt))
def test_derivative_quick_exit():
assert f(x).diff(y) == 0
assert f(x).diff(y, f(x)) == 0
assert f(x).diff(x, f(y)) == 0
assert f(f(x)).diff(x, f(x), f(y)) == 0
assert f(f(x)).diff(x, f(x), y) == 0
assert f(x).diff(g(x)) == 0
assert f(x).diff(x, f(x).diff(x)) == 1
df = f(x).diff(x)
assert f(x).diff(df) == 0
dg = g(x).diff(x)
assert dg.diff(df).doit() == 0
def test_issue_15084_13166():
eq = f(x, g(x))
assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y))
# issue 13166
assert eq.diff(x, 2).doit() == (
(Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) +
Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x),
x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) +
Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)),
_xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x))
# issue 6681
assert diff(f(x, t, g(x, t)), x).doit() == (
Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) +
Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x))
# make sure the order doesn't matter when using diff
assert eq.diff(x, g(x)) == eq.diff(g(x), x)
def test_negative_counts():
# issue 13873
raises(ValueError, lambda: sin(x).diff(x, -1))
def test_Derivative__new__():
raises(TypeError, lambda: f(x).diff((x, 2), 0))
assert f(x, y).diff([(x, y), 0]) == f(x, y)
assert f(x, y).diff([(x, y), 1]) == NDimArray([
Derivative(f(x, y), x), Derivative(f(x, y), y)])
assert f(x,y).diff(y, (x, z), y, x) == Derivative(
f(x, y), (x, z + 1), (y, 2))
assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit
def test_issue_14719_10150():
class V(Expr):
_diff_wrt = True
is_scalar = False
assert V().diff(V()) == Derivative(V(), V())
assert (2*V()).diff(V()) == 2*Derivative(V(), V())
class X(Expr):
_diff_wrt = True
assert X().diff(X()) == 1
assert (2*X()).diff(X()) == 2
def test_noncommutative_issue_15131():
x = Symbol('x', commutative=False)
t = Symbol('t', commutative=False)
fx = Function('Fx', commutative=False)(x)
ft = Function('Ft', commutative=False)(t)
A = Symbol('A', commutative=False)
eq = fx * A * ft
eqdt = eq.diff(t)
assert eqdt.args[-1] == ft.diff(t)
def test_Subs_Derivative():
a = Derivative(f(g(x), h(x)), g(x), h(x),x)
b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x)
c = f(g(x), h(x)).diff(g(x), h(x), x)
d = f(g(x), h(x)).diff(g(x), h(x)).diff(x)
e = Derivative(f(g(x), h(x)), x)
eqs = (a, b, c, d, e)
subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y))
).subs(g(x), 1/x).subs(h(x), x**3)
ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2
assert all(subs(i).doit().expand() == ans for i in eqs)
assert all(subs(i.doit()).doit().expand() == ans for i in eqs)
def test_issue_15360():
f = Function('f')
assert f.name == 'f'
|
401020dd70e70f961fdfed6b85bdf95926fbc064b02e1aa6db6d267b3cef3494 | from sympy import (Symbol, exp, Integer, Float, sin, cos, log, Poly, Lambda,
Function, I, S, N, sqrt, srepr, Rational, Tuple, Matrix, Interval, Add, Mul,
Pow, Or, true, false, Abs, pi, Range, Xor)
from sympy.abc import x, y
from sympy.core.sympify import (sympify, _sympify, SympifyError, kernS,
CantSympify)
from sympy.core.decorators import _sympifyit
from sympy.external import import_module
from sympy.utilities.pytest import raises, XFAIL, skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.geometry import Point, Line
from sympy.functions.combinatorial.factorials import factorial, factorial2
from sympy.abc import _clash, _clash1, _clash2
from sympy.core.compatibility import exec_, HAS_GMPY, PY3
from sympy.sets import FiniteSet, EmptySet
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
import mpmath
from collections import defaultdict, OrderedDict
from mpmath.rational import mpq
numpy = import_module('numpy')
def test_issue_3538():
v = sympify("exp(x)")
assert v == exp(x)
assert type(v) == type(exp(x))
assert str(type(v)) == str(type(exp(x)))
def test_sympify1():
assert sympify("x") == Symbol("x")
assert sympify(" x") == Symbol("x")
assert sympify(" x ") == Symbol("x")
# issue 4877
n1 = Rational(1, 2)
assert sympify('--.5') == n1
assert sympify('-1/2') == -n1
assert sympify('-+--.5') == -n1
assert sympify('-.[3]') == Rational(-1, 3)
assert sympify('.[3]') == Rational(1, 3)
assert sympify('+.[3]') == Rational(1, 3)
assert sympify('+0.[3]*10**-2') == Rational(1, 300)
assert sympify('.[052631578947368421]') == Rational(1, 19)
assert sympify('.0[526315789473684210]') == Rational(1, 19)
assert sympify('.034[56]') == Rational(1711, 49500)
# options to make reals into rationals
assert sympify('1.22[345]', rational=True) == \
1 + Rational(22, 100) + Rational(345, 99900)
assert sympify('2/2.6', rational=True) == Rational(10, 13)
assert sympify('2.6/2', rational=True) == Rational(13, 10)
assert sympify('2.6e2/17', rational=True) == Rational(260, 17)
assert sympify('2.6e+2/17', rational=True) == Rational(260, 17)
assert sympify('2.6e-2/17', rational=True) == Rational(26, 17000)
assert sympify('2.1+3/4', rational=True) == \
Rational(21, 10) + Rational(3, 4)
assert sympify('2.234456', rational=True) == Rational(279307, 125000)
assert sympify('2.234456e23', rational=True) == 223445600000000000000000
assert sympify('2.234456e-23', rational=True) == \
Rational(279307, 12500000000000000000000000000)
assert sympify('-2.234456e-23', rational=True) == \
Rational(-279307, 12500000000000000000000000000)
assert sympify('12345678901/17', rational=True) == \
Rational(12345678901, 17)
assert sympify('1/.3 + x', rational=True) == Rational(10, 3) + x
# make sure longs in fractions work
assert sympify('222222222222/11111111111') == \
Rational(222222222222, 11111111111)
# ... even if they come from repetend notation
assert sympify('1/.2[123456789012]') == Rational(333333333333, 70781892967)
# ... or from high precision reals
assert sympify('.1234567890123456', rational=True) == \
Rational(19290123283179, 156250000000000)
def test_sympify_Fraction():
try:
import fractions
except ImportError:
pass
else:
value = sympify(fractions.Fraction(101, 127))
assert value == Rational(101, 127) and type(value) is Rational
def test_sympify_gmpy():
if HAS_GMPY:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
value = sympify(gmpy.mpz(1000001))
assert value == Integer(1000001) and type(value) is Integer
value = sympify(gmpy.mpq(101, 127))
assert value == Rational(101, 127) and type(value) is Rational
@conserve_mpmath_dps
def test_sympify_mpmath():
value = sympify(mpmath.mpf(1.0))
assert value == Float(1.0) and type(value) is Float
mpmath.mp.dps = 12
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-12")) == True
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-13")) == False
mpmath.mp.dps = 6
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-5")) == True
assert sympify(
mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-6")) == False
assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0)*I
assert sympify(mpq(1, 2)) == S.Half
def test_sympify2():
class A:
def _sympy_(self):
return Symbol("x")**3
a = A()
assert _sympify(a) == x**3
assert sympify(a) == x**3
assert a == x**3
def test_sympify3():
assert sympify("x**3") == x**3
assert sympify("x^3") == x**3
assert sympify("1/2") == Integer(1)/2
raises(SympifyError, lambda: _sympify('x**3'))
raises(SympifyError, lambda: _sympify('1/2'))
def test_sympify_keywords():
raises(SympifyError, lambda: sympify('if'))
raises(SympifyError, lambda: sympify('for'))
raises(SympifyError, lambda: sympify('while'))
raises(SympifyError, lambda: sympify('lambda'))
def test_sympify_float():
assert sympify("1e-64") != 0
assert sympify("1e-20000") != 0
def test_sympify_bool():
assert sympify(True) is true
assert sympify(False) is false
def test_sympyify_iterables():
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify(['.3', '.2'], rational=True) == ans
assert sympify(dict(x=0, y=1)) == {x: 0, y: 1}
assert sympify(['1', '2', ['3', '4']]) == [S(1), S(2), [S(3), S(4)]]
@XFAIL
def test_issue_16772():
# because there is a converter for tuple, the
# args are only sympified without the flags being passed
# along; list, on the other hand, is not converted
# with a converter so its args are traversed later
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify(tuple(['.3', '.2']), rational=True) == Tuple(*ans)
def test_issue_16859():
class no(float, CantSympify):
pass
raises(SympifyError, lambda: sympify(no(1.2)))
def test_sympify4():
class A:
def _sympy_(self):
return Symbol("x")
a = A()
assert _sympify(a)**3 == x**3
assert sympify(a)**3 == x**3
assert a == x
def test_sympify_text():
assert sympify('some') == Symbol('some')
assert sympify('core') == Symbol('core')
assert sympify('True') is True
assert sympify('False') is False
assert sympify('Poly') == Poly
assert sympify('sin') == sin
def test_sympify_function():
assert sympify('factor(x**2-1, x)') == -(1 - x)*(x + 1)
assert sympify('sin(pi/2)*cos(pi)') == -Integer(1)
def test_sympify_poly():
p = Poly(x**2 + x + 1, x)
assert _sympify(p) is p
assert sympify(p) is p
def test_sympify_factorial():
assert sympify('x!') == factorial(x)
assert sympify('(x+1)!') == factorial(x + 1)
assert sympify('(1 + y*(x + 1))!') == factorial(1 + y*(x + 1))
assert sympify('(1 + y*(x + 1)!)^2') == (1 + y*factorial(x + 1))**2
assert sympify('y*x!') == y*factorial(x)
assert sympify('x!!') == factorial2(x)
assert sympify('(x+1)!!') == factorial2(x + 1)
assert sympify('(1 + y*(x + 1))!!') == factorial2(1 + y*(x + 1))
assert sympify('(1 + y*(x + 1)!!)^2') == (1 + y*factorial2(x + 1))**2
assert sympify('y*x!!') == y*factorial2(x)
assert sympify('factorial2(x)!') == factorial(factorial2(x))
raises(SympifyError, lambda: sympify("+!!"))
raises(SympifyError, lambda: sympify(")!!"))
raises(SympifyError, lambda: sympify("!"))
raises(SympifyError, lambda: sympify("(!)"))
raises(SympifyError, lambda: sympify("x!!!"))
def test_sage():
# how to effectivelly test for the _sage_() method without having SAGE
# installed?
assert hasattr(x, "_sage_")
assert hasattr(Integer(3), "_sage_")
assert hasattr(sin(x), "_sage_")
assert hasattr(cos(x), "_sage_")
assert hasattr(x**2, "_sage_")
assert hasattr(x + y, "_sage_")
assert hasattr(exp(x), "_sage_")
assert hasattr(log(x), "_sage_")
def test_issue_3595():
assert sympify("a_") == Symbol("a_")
assert sympify("_a") == Symbol("_a")
def test_lambda():
x = Symbol('x')
assert sympify('lambda: 1') == Lambda((), 1)
assert sympify('lambda x: x') == Lambda(x, x)
assert sympify('lambda x: 2*x') == Lambda(x, 2*x)
assert sympify('lambda x, y: 2*x+y') == Lambda([x, y], 2*x + y)
def test_lambda_raises():
raises(SympifyError, lambda: sympify("lambda *args: args")) # args argument error
raises(SympifyError, lambda: sympify("lambda **kwargs: kwargs[0]")) # kwargs argument error
raises(SympifyError, lambda: sympify("lambda x = 1: x")) # Keyword argument error
with raises(SympifyError):
_sympify('lambda: 1')
def test_sympify_raises():
raises(SympifyError, lambda: sympify("fx)"))
def test__sympify():
x = Symbol('x')
f = Function('f')
# positive _sympify
assert _sympify(x) is x
assert _sympify(f) is f
assert _sympify(1) == Integer(1)
assert _sympify(0.5) == Float("0.5")
assert _sympify(1 + 1j) == 1.0 + I*1.0
class A:
def _sympy_(self):
return Integer(5)
a = A()
assert _sympify(a) == Integer(5)
# negative _sympify
raises(SympifyError, lambda: _sympify('1'))
raises(SympifyError, lambda: _sympify([1, 2, 3]))
def test_sympifyit():
x = Symbol('x')
y = Symbol('y')
@_sympifyit('b', NotImplemented)
def add(a, b):
return a + b
assert add(x, 1) == x + 1
assert add(x, 0.5) == x + Float('0.5')
assert add(x, y) == x + y
assert add(x, '1') == NotImplemented
@_sympifyit('b')
def add_raises(a, b):
return a + b
assert add_raises(x, 1) == x + 1
assert add_raises(x, 0.5) == x + Float('0.5')
assert add_raises(x, y) == x + y
raises(SympifyError, lambda: add_raises(x, '1'))
def test_int_float():
class F1_1(object):
def __float__(self):
return 1.1
class F1_1b(object):
"""
This class is still a float, even though it also implements __int__().
"""
def __float__(self):
return 1.1
def __int__(self):
return 1
class F1_1c(object):
"""
This class is still a float, because it implements _sympy_()
"""
def __float__(self):
return 1.1
def __int__(self):
return 1
def _sympy_(self):
return Float(1.1)
class I5(object):
def __int__(self):
return 5
class I5b(object):
"""
This class implements both __int__() and __float__(), so it will be
treated as Float in SymPy. One could change this behavior, by using
float(a) == int(a), but deciding that integer-valued floats represent
exact numbers is arbitrary and often not correct, so we do not do it.
If, in the future, we decide to do it anyway, the tests for I5b need to
be changed.
"""
def __float__(self):
return 5.0
def __int__(self):
return 5
class I5c(object):
"""
This class implements both __int__() and __float__(), but also
a _sympy_() method, so it will be Integer.
"""
def __float__(self):
return 5.0
def __int__(self):
return 5
def _sympy_(self):
return Integer(5)
i5 = I5()
i5b = I5b()
i5c = I5c()
f1_1 = F1_1()
f1_1b = F1_1b()
f1_1c = F1_1c()
assert sympify(i5) == 5
assert isinstance(sympify(i5), Integer)
assert sympify(i5b) == 5
assert isinstance(sympify(i5b), Float)
assert sympify(i5c) == 5
assert isinstance(sympify(i5c), Integer)
assert abs(sympify(f1_1) - 1.1) < 1e-5
assert abs(sympify(f1_1b) - 1.1) < 1e-5
assert abs(sympify(f1_1c) - 1.1) < 1e-5
assert _sympify(i5) == 5
assert isinstance(_sympify(i5), Integer)
assert _sympify(i5b) == 5
assert isinstance(_sympify(i5b), Float)
assert _sympify(i5c) == 5
assert isinstance(_sympify(i5c), Integer)
assert abs(_sympify(f1_1) - 1.1) < 1e-5
assert abs(_sympify(f1_1b) - 1.1) < 1e-5
assert abs(_sympify(f1_1c) - 1.1) < 1e-5
def test_evaluate_false():
cases = {
'2 + 3': Add(2, 3, evaluate=False),
'2**2 / 3': Mul(Pow(2, 2, evaluate=False), Pow(3, -1, evaluate=False), evaluate=False),
'2 + 3 * 5': Add(2, Mul(3, 5, evaluate=False), evaluate=False),
'2 - 3 * 5': Add(2, Mul(-1, Mul(3, 5,evaluate=False), evaluate=False), evaluate=False),
'1 / 3': Mul(1, Pow(3, -1, evaluate=False), evaluate=False),
'True | False': Or(True, False, evaluate=False),
'1 + 2 + 3 + 5*3 + integrate(x)': Add(1, 2, 3, Mul(5, 3, evaluate=False), x**2/2, evaluate=False),
'2 * 4 * 6 + 8': Add(Mul(2, 4, 6, evaluate=False), 8, evaluate=False),
'2 - 8 / 4': Add(2, Mul(-1, Mul(8, Pow(4, -1, evaluate=False), evaluate=False), evaluate=False), evaluate=False),
'2 - 2**2': Add(2, Mul(-1, Pow(2, 2, evaluate=False), evaluate=False), evaluate=False),
}
for case, result in cases.items():
assert sympify(case, evaluate=False) == result
def test_issue_4133():
a = sympify('Integer(4)')
assert a == Integer(4)
assert a.is_Integer
def test_issue_3982():
a = [3, 2.0]
assert sympify(a) == [Integer(3), Float(2.0)]
assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0))
assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0))
def test_S_sympify():
assert S(1)/2 == sympify(1)/2
assert (-2)**(S(1)/2) == sqrt(2)*I
def test_issue_4788():
assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0))
def test_issue_4798_None():
assert S(None) is None
def test_issue_3218():
assert sympify("x+\ny") == x + y
def test_issue_4988_builtins():
C = Symbol('C')
vars = {'C': C}
exp1 = sympify('C')
assert exp1 == C # Make sure it did not get mixed up with sympy.C
exp2 = sympify('C', vars)
assert exp2 == C # Make sure it did not get mixed up with sympy.C
def test_geometry():
p = sympify(Point(0, 1))
assert p == Point(0, 1) and isinstance(p, Point)
L = sympify(Line(p, (1, 0)))
assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
def test_kernS():
s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'
# when 1497 is fixed, this no longer should pass: the expression
# should be unchanged
assert -1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) == -1
# sympification should not allow the constant to enter a Mul
# or else the structure can change dramatically
ss = kernS(s)
assert ss != -1 and ss.simplify() == -1
s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'.replace(
'x', '_kern')
ss = kernS(s)
assert ss != -1 and ss.simplify() == -1
# issue 6687
assert kernS('Interval(-1,-2 - 4*(-3))') == Interval(-1, 10)
assert kernS('_kern') == Symbol('_kern')
assert kernS('E**-(x)') == exp(-x)
e = 2*(x + y)*y
assert kernS(['2*(x + y)*y', ('2*(x + y)*y',)]) == [e, (e,)]
assert kernS('-(2*sin(x)**2 + 2*sin(x)*cos(x))*y/2') == \
-y*(2*sin(x)**2 + 2*sin(x)*cos(x))/2
# issue 15132
assert kernS('(1 - x)/(1 - x*(1-y))') == kernS('(1-x)/(1-(1-y)*x)')
assert kernS('(1-2**-(4+1)*(1-y)*x)') == (1 - x*(1 - y)/32)
assert kernS('(1-2**(4+1)*(1-y)*x)') == (1 - 32*x*(1 - y))
assert kernS('(1-2.*(1-y)*x)') == 1 - 2.*x*(1 - y)
one = kernS('x - (x - 1)')
assert one != 1 and one.expand() == 1
def test_issue_6540_6552():
assert S('[[1/3,2], (2/5,)]') == [[Rational(1, 3), 2], (Rational(2, 5),)]
assert S('[[2/6,2], (2/4,)]') == [[Rational(1, 3), 2], (Rational(1, 2),)]
assert S('[[[2*(1)]]]') == [[[2]]]
assert S('Matrix([2*(1)])') == Matrix([2])
def test_issue_6046():
assert str(S("Q & C", locals=_clash1)) == 'C & Q'
assert str(S('pi(x)', locals=_clash2)) == 'pi(x)'
assert str(S('pi(C, Q)', locals=_clash)) == 'pi(C, Q)'
locals = {}
exec_("from sympy.abc import Q, C", locals)
assert str(S('C&Q', locals)) == 'C & Q'
def test_issue_8821_highprec_from_str():
s = str(pi.evalf(128))
p = sympify(s)
assert Abs(sin(p)) < 1e-127
def test_issue_10295():
if not numpy:
skip("numpy not installed.")
A = numpy.array([[1, 3, -1],
[0, 1, 7]])
sA = S(A)
assert sA.shape == (2, 3)
for (ri, ci), val in numpy.ndenumerate(A):
assert sA[ri, ci] == val
B = numpy.array([-7, x, 3*y**2])
sB = S(B)
assert sB.shape == (3,)
assert B[0] == sB[0] == -7
assert B[1] == sB[1] == x
assert B[2] == sB[2] == 3*y**2
C = numpy.arange(0, 24)
C.resize(2,3,4)
sC = S(C)
assert sC[0, 0, 0].is_integer
assert sC[0, 0, 0] == 0
a1 = numpy.array([1, 2, 3])
a2 = numpy.array([i for i in range(24)])
a2.resize(2, 4, 3)
assert sympify(a1) == ImmutableDenseNDimArray([1, 2, 3])
assert sympify(a2) == ImmutableDenseNDimArray([i for i in range(24)], (2, 4, 3))
def test_Range():
# Only works in Python 3 where range returns a range type
if PY3:
builtin_range = range
else:
builtin_range = xrange
assert sympify(builtin_range(10)) == Range(10)
assert _sympify(builtin_range(10)) == Range(10)
def test_sympify_set():
n = Symbol('n')
assert sympify({n}) == FiniteSet(n)
assert sympify(set()) == EmptySet()
def test_sympify_numpy():
if not numpy:
skip('numpy not installed. Abort numpy tests.')
np = numpy
def equal(x, y):
return x == y and type(x) == type(y)
assert sympify(np.bool_(1)) is S(True)
try:
assert equal(
sympify(np.int_(1234567891234567891)), S(1234567891234567891))
assert equal(
sympify(np.intp(1234567891234567891)), S(1234567891234567891))
except OverflowError:
# May fail on 32-bit systems: Python int too large to convert to C long
pass
assert equal(sympify(np.intc(1234567891)), S(1234567891))
assert equal(sympify(np.int8(-123)), S(-123))
assert equal(sympify(np.int16(-12345)), S(-12345))
assert equal(sympify(np.int32(-1234567891)), S(-1234567891))
assert equal(
sympify(np.int64(-1234567891234567891)), S(-1234567891234567891))
assert equal(sympify(np.uint8(123)), S(123))
assert equal(sympify(np.uint16(12345)), S(12345))
assert equal(sympify(np.uint32(1234567891)), S(1234567891))
assert equal(
sympify(np.uint64(1234567891234567891)), S(1234567891234567891))
assert equal(sympify(np.float32(1.123456)), Float(1.123456, precision=24))
assert equal(sympify(np.float64(1.1234567891234)),
Float(1.1234567891234, precision=53))
assert equal(sympify(np.longdouble(1.123456789)),
Float(1.123456789, precision=80))
assert equal(sympify(np.complex64(1 + 2j)), S(1.0 + 2.0*I))
assert equal(sympify(np.complex128(1 + 2j)), S(1.0 + 2.0*I))
assert equal(sympify(np.longcomplex(1 + 2j)), S(1.0 + 2.0*I))
#float96 does not exist on all platforms
if hasattr(np, 'float96'):
assert equal(sympify(np.float96(1.123456789)),
Float(1.123456789, precision=80))
#float128 does not exist on all platforms
if hasattr(np, 'float128'):
assert equal(sympify(np.float128(1.123456789123)),
Float(1.123456789123, precision=80))
@XFAIL
def test_sympify_rational_numbers_set():
ans = [Rational(3, 10), Rational(1, 5)]
assert sympify({'.3', '.2'}, rational=True) == FiniteSet(*ans)
def test_issue_13924():
if not numpy:
skip("numpy not installed.")
a = sympify(numpy.array([1]))
assert isinstance(a, ImmutableDenseNDimArray)
assert a[0] == 1
def test_numpy_sympify_args():
# Issue 15098. Make sure sympify args work with numpy types (like numpy.str_)
if not numpy:
skip("numpy not installed.")
a = sympify(numpy.str_('a'))
assert type(a) is Symbol
assert a == Symbol('a')
class CustomSymbol(Symbol):
pass
a = sympify(numpy.str_('a'), {"Symbol": CustomSymbol})
assert isinstance(a, CustomSymbol)
a = sympify(numpy.str_('x^y'))
assert a == x**y
a = sympify(numpy.str_('x^y'), convert_xor=False)
assert a == Xor(x, y)
raises(SympifyError, lambda: sympify(numpy.str_('x'), strict=True))
a = sympify(numpy.str_('1.1'))
assert isinstance(a, Float)
assert a == 1.1
a = sympify(numpy.str_('1.1'), rational=True)
assert isinstance(a, Rational)
assert a == Rational(11, 10)
a = sympify(numpy.str_('x + x'))
assert isinstance(a, Mul)
assert a == 2*x
a = sympify(numpy.str_('x + x'), evaluate=False)
assert isinstance(a, Add)
assert a == Add(x, x, evaluate=False)
def test_issue_5939():
a = Symbol('a')
b = Symbol('b')
assert sympify('''a+\nb''') == a + b
def test_issue_16759():
d = sympify({.5: 1})
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
d = sympify(OrderedDict({.5: 1}))
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
d = sympify(defaultdict(int, {.5: 1}))
assert S.Half not in d
assert Float(.5) in d
assert d[.5] is S.One
|
fba6aef0925839e042564b922ce4c2d5abf1c10e82d8642d6e119d03fc751128 | from sympy import (Basic, Symbol, sin, cos, atan, exp, sqrt, Rational,
Float, re, pi, sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols,
oo, zoo, Integer, sign, im, nan, Dummy, factorial, comp, refine,
floor
)
from sympy.core.compatibility import long, range
from sympy.core.evaluate import distribute
from sympy.core.expr import unchanged
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import XFAIL, raises
from sympy.utilities.randtest import verify_numerically
a, c, x, y, z = symbols('a,c,x,y,z')
b = Symbol("b", positive=True)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_bug1():
assert re(x) != x
x.series(x, 0, 1)
assert re(x) != x
def test_Symbol():
e = a*b
assert e == a*b
assert a*b*b == a*b**2
assert a*b*b + c == c + a*b**2
assert a*b*b - c == -c + a*b**2
x = Symbol('x', complex=True, real=False)
assert x.is_imaginary is None # could be I or 1 + I
x = Symbol('x', complex=True, imaginary=False)
assert x.is_real is None # could be 1 or 1 + I
x = Symbol('x', real=True)
assert x.is_complex
x = Symbol('x', imaginary=True)
assert x.is_complex
x = Symbol('x', real=False, imaginary=False)
assert x.is_complex is None # might be a non-number
def test_arit0():
p = Rational(5)
e = a*b
assert e == a*b
e = a*b + b*a
assert e == 2*a*b
e = a*b + b*a + a*b + p*b*a
assert e == 8*a*b
e = a*b + b*a + a*b + p*b*a + a
assert e == a + 8*a*b
e = a + a
assert e == 2*a
e = a + b + a
assert e == b + 2*a
e = a + b*b + a + b*b
assert e == 2*a + 2*b**2
e = a + Rational(2) + b*b + a + b*b + p
assert e == 7 + 2*a + 2*b**2
e = (a + b*b + a + b*b)*p
assert e == 5*(2*a + 2*b**2)
e = (a*b*c + c*b*a + b*a*c)*p
assert e == 15*a*b*c
e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c
assert e == Rational(0)
e = Rational(50)*(a - a)
assert e == Rational(0)
e = b*a - b - a*b + b
assert e == Rational(0)
e = a*b + c**p
assert e == a*b + c**5
e = a/b
assert e == a*b**(-1)
e = a*2*2
assert e == 4*a
e = 2 + a*2/2
assert e == 2 + a
e = 2 - a - 2
assert e == -a
e = 2*a*2
assert e == 4*a
e = 2/a/2
assert e == a**(-1)
e = 2**a**2
assert e == 2**(a**2)
e = -(1 + a)
assert e == -1 - a
e = Rational(1, 2)*(1 + a)
assert e == Rational(1, 2) + a/2
def test_div():
e = a/b
assert e == a*b**(-1)
e = a/b + c/2
assert e == a*b**(-1) + Rational(1)/2*c
e = (1 - b)/(b - 1)
assert e == (1 + -b)*((-1) + b)**(-1)
def test_pow():
n1 = Rational(1)
n2 = Rational(2)
n5 = Rational(5)
e = a*a
assert e == a**2
e = a*a*a
assert e == a**3
e = a*a*a*a**Rational(6)
assert e == a**9
e = a*a*a*a**Rational(6) - a**Rational(9)
assert e == Rational(0)
e = a**(b - b)
assert e == Rational(1)
e = (a + Rational(1) - a)**b
assert e == Rational(1)
e = (a + b + c)**n2
assert e == (a + b + c)**2
assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2
e = (a + b)**n2
assert e == (a + b)**2
assert e.expand() == 2*a*b + a**2 + b**2
e = (a + b)**(n1/n2)
assert e == sqrt(a + b)
assert e.expand() == sqrt(a + b)
n = n5**(n1/n2)
assert n == sqrt(5)
e = n*a*b - n*b*a
assert e == Rational(0)
e = n*a*b + n*b*a
assert e == 2*a*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
e = a/b**2
assert e == a*b**(-2)
assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**Rational(1, 2)))**Rational(1, 2)
x = Symbol('x')
y = Symbol('y')
assert ((x*y)**3).expand() == y**3 * x**3
assert ((x*y)**-3).expand() == y**-3 * x**-3
assert (x**5*(3*x)**(3)).expand() == 27 * x**8
assert (x**5*(-3*x)**(3)).expand() == -27 * x**8
assert (x**5*(3*x)**(-3)).expand() == Rational(1, 27) * x**2
assert (x**5*(-3*x)**(-3)).expand() == -Rational(1, 27) * x**2
# expand_power_exp
assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \
x**z*x**(y**(x + exp(x + y)))
assert (x**(y**(x + exp(x + y)) + z)).expand() == \
x**z*x**(y**x*y**(exp(x)*exp(y)))
n = Symbol('n', even=False)
k = Symbol('k', even=True)
o = Symbol('o', odd=True)
assert unchanged(Pow, -1, x)
assert unchanged(Pow, -1, n)
assert (-2)**k == 2**k
assert (-1)**k == 1
assert (-1)**o == -1
def test_pow2():
# x**(2*y) is always (x**y)**2 but is only (x**2)**y if
# x.is_positive or y.is_integer
# let x = 1 to see why the following are not true.
assert (-x)**Rational(2, 3) != x**Rational(2, 3)
assert (-x)**Rational(5, 7) != -x**Rational(5, 7)
assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2
assert sqrt(x**2) != x
def test_pow3():
assert sqrt(2)**3 == 2 * sqrt(2)
assert sqrt(2)**3 == sqrt(8)
def test_mod_pow():
for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365),
(3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]:
assert pow(S(s), t, u) == v
assert pow(S(s), S(t), u) == v
assert pow(S(s), t, S(u)) == v
assert pow(S(s), S(t), S(u)) == v
assert pow(S(2), S(10000000000), S(3)) == 1
assert pow(x, y, z) == x**y%z
raises(TypeError, lambda: pow(S(4), "13", 497))
raises(TypeError, lambda: pow(S(4), 13, "497"))
def test_pow_E():
assert 2**(y/log(2)) == S.Exp1**y
assert 2**(y/log(2)/3) == S.Exp1**(y/3)
assert 3**(1/log(-3)) != S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
# every time tests are run they will affirm with a different random
# value that this identity holds
while 1:
b = x._random()
r, i = b.as_real_imag()
if i:
break
assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
def test_pow_issue_3516():
assert 4**Rational(1, 4) == sqrt(2)
def test_pow_im():
for m in (-2, -1, 2):
for d in (3, 4, 5):
b = m*I
for i in range(1, 4*d + 1):
e = Rational(i, d)
assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
e = Rational(7, 3)
assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
im = symbols('im', imaginary=True)
assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
args = [I, I, I, I, 2]
e = Rational(1, 3)
ans = 2**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, I, 2]
e = Rational(1, 3)
ans = 2**e*(-I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, 2]
e = Rational(1, 3)
ans = (-2)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I
def test_real_mul():
assert Float(0) * pi * x == 0
assert set((Float(1) * pi * x).args) == {Float(1), pi, x}
def test_ncmul():
A = Symbol("A", commutative=False)
B = Symbol("B", commutative=False)
C = Symbol("C", commutative=False)
assert A*B != B*A
assert A*B*C != C*B*A
assert A*b*B*3*C == 3*b*A*B*C
assert A*b*B*3*C != 3*b*B*A*C
assert A*b*B*3*C == 3*A*B*C*b
assert A + B == B + A
assert (A + B)*C != C*(A + B)
assert C*(A + B)*C != C*C*(A + B)
assert A*A == A**2
assert (A + B)*(A + B) == (A + B)**2
assert A**-1 * A == 1
assert A/A == 1
assert A/(A**2) == 1/A
assert A/(1 + A) == A/(1 + A)
assert set((A + B + 2*(A + B)).args) == \
{A, B, 2*(A + B)}
def test_ncpow():
x = Symbol('x', commutative=False)
y = Symbol('y', commutative=False)
z = Symbol('z', commutative=False)
a = Symbol('a')
b = Symbol('b')
c = Symbol('c')
assert (x**2)*(y**2) != (y**2)*(x**2)
assert (x**-2)*y != y*(x**2)
assert 2**x*2**y != 2**(x + y)
assert 2**x*2**y*2**z != 2**(x + y + z)
assert 2**x*2**(2*x) == 2**(3*x)
assert 2**x*2**(2*x)*2**x == 2**(4*x)
assert exp(x)*exp(y) != exp(y)*exp(x)
assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z)
assert exp(x)*exp(y)*exp(z) != exp(x + y + z)
assert x**a*x**b != x**(a + b)
assert x**a*x**b*x**c != x**(a + b + c)
assert x**3*x**4 == x**7
assert x**3*x**4*x**2 == x**9
assert x**a*x**(4*a) == x**(5*a)
assert x**a*x**(4*a)*x**a == x**(6*a)
def test_powerbug():
x = Symbol("x")
assert x**1 != (-x)**1
assert x**2 == (-x)**2
assert x**3 != (-x)**3
assert x**4 == (-x)**4
assert x**5 != (-x)**5
assert x**6 == (-x)**6
assert x**128 == (-x)**128
assert x**129 != (-x)**129
assert (2*x)**2 == (-2*x)**2
def test_Mul_doesnt_expand_exp():
x = Symbol('x')
y = Symbol('y')
assert unchanged(Mul, exp(x), exp(y))
assert unchanged(Mul, 2**x, 2**y)
assert x**2*x**3 == x**5
assert 2**x*3**x == 6**x
assert x**(y)*x**(2*y) == x**(3*y)
assert sqrt(2)*sqrt(2) == 2
assert 2**x*2**(2*x) == 2**(3*x)
assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4)
assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1)
def test_Add_Mul_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True)
assert (2*k).is_integer is True
assert (-k).is_integer is True
assert (k/3).is_integer is None
assert (x*k*n).is_integer is None
assert (k + n).is_integer is True
assert (k + x).is_integer is None
assert (k + n*x).is_integer is None
assert (k + n/3).is_integer is None
assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
def test_Add_Mul_is_finite():
x = Symbol('x', extended_real=True, finite=False)
assert sin(x).is_finite is True
assert (x*sin(x)).is_finite is None
assert (x*atan(x)).is_finite is False
assert (1024*sin(x)).is_finite is True
assert (sin(x)*exp(x)).is_finite is None
assert (sin(x)*cos(x)).is_finite is True
assert (x*sin(x)*exp(x)).is_finite is None
assert (sin(x) - 67).is_finite is True
assert (sin(x) + exp(x)).is_finite is not True
assert (1 + x).is_finite is False
assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None
assert (sqrt(2)*(1 + x)).is_finite is False
assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False
def test_Mul_is_even_odd():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (2*x).is_even is True
assert (2*x).is_odd is False
assert (3*x).is_even is None
assert (3*x).is_odd is None
assert (k/3).is_integer is None
assert (k/3).is_even is None
assert (k/3).is_odd is None
assert (2*n).is_even is True
assert (2*n).is_odd is False
assert (2*m).is_even is True
assert (2*m).is_odd is False
assert (-n).is_even is False
assert (-n).is_odd is True
assert (k*n).is_even is False
assert (k*n).is_odd is True
assert (k*m).is_even is True
assert (k*m).is_odd is False
assert (k*n*m).is_even is True
assert (k*n*m).is_odd is False
assert (k*m*x).is_even is True
assert (k*m*x).is_odd is False
# issue 6791:
assert (x/2).is_integer is None
assert (k/2).is_integer is False
assert (m/2).is_integer is True
assert (x*y).is_even is None
assert (x*x).is_even is None
assert (x*(x + k)).is_even is True
assert (x*(x + m)).is_even is None
assert (x*y).is_odd is None
assert (x*x).is_odd is None
assert (x*(x + k)).is_odd is False
assert (x*(x + m)).is_odd is None
@XFAIL
def test_evenness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_even is True
assert (y*x*(x + k)).is_even is True
def test_evenness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_even is None
@XFAIL
def test_oddness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_odd is False
assert (y*x*(x + k)).is_odd is False
def test_oddness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_odd is None
def test_Mul_is_rational():
x = Symbol('x')
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, nonzero=True)
assert (n/m).is_rational is True
assert (x/pi).is_rational is None
assert (x/n).is_rational is None
assert (m/pi).is_rational is False
r = Symbol('r', rational=True)
assert (pi*r).is_rational is None
# issue 8008
z = Symbol('z', zero=True)
i = Symbol('i', imaginary=True)
assert (z*i).is_rational is True
bi = Symbol('i', imaginary=True, finite=True)
assert (z*bi).is_zero is True
def test_Add_is_rational():
x = Symbol('x')
n = Symbol('n', rational=True)
m = Symbol('m', rational=True)
assert (n + m).is_rational is True
assert (x + pi).is_rational is None
assert (x + n).is_rational is None
assert (n + pi).is_rational is False
def test_Add_is_even_odd():
x = Symbol('x', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (k + 7).is_even is True
assert (k + 7).is_odd is False
assert (-k + 7).is_even is True
assert (-k + 7).is_odd is False
assert (k - 12).is_even is False
assert (k - 12).is_odd is True
assert (-k - 12).is_even is False
assert (-k - 12).is_odd is True
assert (k + n).is_even is True
assert (k + n).is_odd is False
assert (k + m).is_even is False
assert (k + m).is_odd is True
assert (k + n + m).is_even is True
assert (k + n + m).is_odd is False
assert (k + n + x + m).is_even is None
assert (k + n + x + m).is_odd is None
def test_Mul_is_negative_positive():
x = Symbol('x', real=True)
y = Symbol('y', extended_real=False, complex=True)
z = Symbol('z', zero=True)
e = 2*z
assert e.is_Mul and e.is_positive is False and e.is_negative is False
neg = Symbol('neg', negative=True)
pos = Symbol('pos', positive=True)
nneg = Symbol('nneg', nonnegative=True)
npos = Symbol('npos', nonpositive=True)
assert neg.is_negative is True
assert (-neg).is_negative is False
assert (2*neg).is_negative is True
assert (2*pos)._eval_is_extended_negative() is False
assert (2*pos).is_negative is False
assert pos.is_negative is False
assert (-pos).is_negative is True
assert (2*pos).is_negative is False
assert (pos*neg).is_negative is True
assert (2*pos*neg).is_negative is True
assert (-pos*neg).is_negative is False
assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg
assert nneg.is_negative is False
assert (-nneg).is_negative is None
assert (2*nneg).is_negative is False
assert npos.is_negative is None
assert (-npos).is_negative is False
assert (2*npos).is_negative is None
assert (nneg*npos).is_negative is None
assert (neg*nneg).is_negative is None
assert (neg*npos).is_negative is False
assert (pos*nneg).is_negative is False
assert (pos*npos).is_negative is None
assert (npos*neg*nneg).is_negative is False
assert (npos*pos*nneg).is_negative is None
assert (-npos*neg*nneg).is_negative is None
assert (-npos*pos*nneg).is_negative is False
assert (17*npos*neg*nneg).is_negative is False
assert (17*npos*pos*nneg).is_negative is None
assert (neg*npos*pos*nneg).is_negative is False
assert (x*neg).is_negative is None
assert (nneg*npos*pos*x*neg).is_negative is None
assert neg.is_positive is False
assert (-neg).is_positive is True
assert (2*neg).is_positive is False
assert pos.is_positive is True
assert (-pos).is_positive is False
assert (2*pos).is_positive is True
assert (pos*neg).is_positive is False
assert (2*pos*neg).is_positive is False
assert (-pos*neg).is_positive is True
assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg
assert nneg.is_positive is None
assert (-nneg).is_positive is False
assert (2*nneg).is_positive is None
assert npos.is_positive is False
assert (-npos).is_positive is None
assert (2*npos).is_positive is False
assert (nneg*npos).is_positive is False
assert (neg*nneg).is_positive is False
assert (neg*npos).is_positive is None
assert (pos*nneg).is_positive is None
assert (pos*npos).is_positive is False
assert (npos*neg*nneg).is_positive is None
assert (npos*pos*nneg).is_positive is False
assert (-npos*neg*nneg).is_positive is False
assert (-npos*pos*nneg).is_positive is None
assert (17*npos*neg*nneg).is_positive is None
assert (17*npos*pos*nneg).is_positive is False
assert (neg*npos*pos*nneg).is_positive is None
assert (x*neg).is_positive is None
assert (nneg*npos*pos*x*neg).is_positive is None
def test_Mul_is_negative_positive_2():
a = Symbol('a', nonnegative=True)
b = Symbol('b', nonnegative=True)
c = Symbol('c', nonpositive=True)
d = Symbol('d', nonpositive=True)
assert (a*b).is_nonnegative is True
assert (a*b).is_negative is False
assert (a*b).is_zero is None
assert (a*b).is_positive is None
assert (c*d).is_nonnegative is True
assert (c*d).is_negative is False
assert (c*d).is_zero is None
assert (c*d).is_positive is None
assert (a*c).is_nonpositive is True
assert (a*c).is_positive is False
assert (a*c).is_zero is None
assert (a*c).is_negative is None
def test_Mul_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert k.is_nonpositive is True
assert (-k).is_nonpositive is False
assert (2*k).is_nonpositive is True
assert n.is_nonpositive is False
assert (-n).is_nonpositive is True
assert (2*n).is_nonpositive is False
assert (n*k).is_nonpositive is True
assert (2*n*k).is_nonpositive is True
assert (-n*k).is_nonpositive is False
assert u.is_nonpositive is None
assert (-u).is_nonpositive is True
assert (2*u).is_nonpositive is None
assert v.is_nonpositive is True
assert (-v).is_nonpositive is None
assert (2*v).is_nonpositive is True
assert (u*v).is_nonpositive is True
assert (k*u).is_nonpositive is True
assert (k*v).is_nonpositive is None
assert (n*u).is_nonpositive is None
assert (n*v).is_nonpositive is True
assert (v*k*u).is_nonpositive is None
assert (v*n*u).is_nonpositive is True
assert (-v*k*u).is_nonpositive is True
assert (-v*n*u).is_nonpositive is None
assert (17*v*k*u).is_nonpositive is None
assert (17*v*n*u).is_nonpositive is True
assert (k*v*n*u).is_nonpositive is None
assert (x*k).is_nonpositive is None
assert (u*v*n*x*k).is_nonpositive is None
assert k.is_nonnegative is False
assert (-k).is_nonnegative is True
assert (2*k).is_nonnegative is False
assert n.is_nonnegative is True
assert (-n).is_nonnegative is False
assert (2*n).is_nonnegative is True
assert (n*k).is_nonnegative is False
assert (2*n*k).is_nonnegative is False
assert (-n*k).is_nonnegative is True
assert u.is_nonnegative is True
assert (-u).is_nonnegative is None
assert (2*u).is_nonnegative is True
assert v.is_nonnegative is None
assert (-v).is_nonnegative is True
assert (2*v).is_nonnegative is None
assert (u*v).is_nonnegative is None
assert (k*u).is_nonnegative is None
assert (k*v).is_nonnegative is True
assert (n*u).is_nonnegative is True
assert (n*v).is_nonnegative is None
assert (v*k*u).is_nonnegative is True
assert (v*n*u).is_nonnegative is None
assert (-v*k*u).is_nonnegative is None
assert (-v*n*u).is_nonnegative is True
assert (17*v*k*u).is_nonnegative is True
assert (17*v*n*u).is_nonnegative is None
assert (k*v*n*u).is_nonnegative is True
assert (x*k).is_nonnegative is None
assert (u*v*n*x*k).is_nonnegative is None
def test_Add_is_negative_positive():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (k - 2).is_negative is True
assert (k + 17).is_negative is None
assert (-k - 5).is_negative is None
assert (-k + 123).is_negative is False
assert (k - n).is_negative is True
assert (k + n).is_negative is None
assert (-k - n).is_negative is None
assert (-k + n).is_negative is False
assert (k - n - 2).is_negative is True
assert (k + n + 17).is_negative is None
assert (-k - n - 5).is_negative is None
assert (-k + n + 123).is_negative is False
assert (-2*k + 123*n + 17).is_negative is False
assert (k + u).is_negative is None
assert (k + v).is_negative is True
assert (n + u).is_negative is False
assert (n + v).is_negative is None
assert (u - v).is_negative is False
assert (u + v).is_negative is None
assert (-u - v).is_negative is None
assert (-u + v).is_negative is None
assert (u - v + n + 2).is_negative is False
assert (u + v + n + 2).is_negative is None
assert (-u - v + n + 2).is_negative is None
assert (-u + v + n + 2).is_negative is None
assert (k + x).is_negative is None
assert (k + x - n).is_negative is None
assert (k - 2).is_positive is False
assert (k + 17).is_positive is None
assert (-k - 5).is_positive is None
assert (-k + 123).is_positive is True
assert (k - n).is_positive is False
assert (k + n).is_positive is None
assert (-k - n).is_positive is None
assert (-k + n).is_positive is True
assert (k - n - 2).is_positive is False
assert (k + n + 17).is_positive is None
assert (-k - n - 5).is_positive is None
assert (-k + n + 123).is_positive is True
assert (-2*k + 123*n + 17).is_positive is True
assert (k + u).is_positive is None
assert (k + v).is_positive is False
assert (n + u).is_positive is True
assert (n + v).is_positive is None
assert (u - v).is_positive is None
assert (u + v).is_positive is None
assert (-u - v).is_positive is None
assert (-u + v).is_positive is False
assert (u - v - n - 2).is_positive is None
assert (u + v - n - 2).is_positive is None
assert (-u - v - n - 2).is_positive is None
assert (-u + v - n - 2).is_positive is False
assert (n + x).is_positive is None
assert (n + x - k).is_positive is None
z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2)
assert z.is_zero
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_zero
def test_Add_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (u - 2).is_nonpositive is None
assert (u + 17).is_nonpositive is False
assert (-u - 5).is_nonpositive is True
assert (-u + 123).is_nonpositive is None
assert (u - v).is_nonpositive is None
assert (u + v).is_nonpositive is None
assert (-u - v).is_nonpositive is None
assert (-u + v).is_nonpositive is True
assert (u - v - 2).is_nonpositive is None
assert (u + v + 17).is_nonpositive is None
assert (-u - v - 5).is_nonpositive is None
assert (-u + v - 123).is_nonpositive is True
assert (-2*u + 123*v - 17).is_nonpositive is True
assert (k + u).is_nonpositive is None
assert (k + v).is_nonpositive is True
assert (n + u).is_nonpositive is False
assert (n + v).is_nonpositive is None
assert (k - n).is_nonpositive is True
assert (k + n).is_nonpositive is None
assert (-k - n).is_nonpositive is None
assert (-k + n).is_nonpositive is False
assert (k - n + u + 2).is_nonpositive is None
assert (k + n + u + 2).is_nonpositive is None
assert (-k - n + u + 2).is_nonpositive is None
assert (-k + n + u + 2).is_nonpositive is False
assert (u + x).is_nonpositive is None
assert (v - x - n).is_nonpositive is None
assert (u - 2).is_nonnegative is None
assert (u + 17).is_nonnegative is True
assert (-u - 5).is_nonnegative is False
assert (-u + 123).is_nonnegative is None
assert (u - v).is_nonnegative is True
assert (u + v).is_nonnegative is None
assert (-u - v).is_nonnegative is None
assert (-u + v).is_nonnegative is None
assert (u - v + 2).is_nonnegative is True
assert (u + v + 17).is_nonnegative is None
assert (-u - v - 5).is_nonnegative is None
assert (-u + v - 123).is_nonnegative is False
assert (2*u - 123*v + 17).is_nonnegative is True
assert (k + u).is_nonnegative is None
assert (k + v).is_nonnegative is False
assert (n + u).is_nonnegative is True
assert (n + v).is_nonnegative is None
assert (k - n).is_nonnegative is False
assert (k + n).is_nonnegative is None
assert (-k - n).is_nonnegative is None
assert (-k + n).is_nonnegative is True
assert (k - n - u - 2).is_nonnegative is False
assert (k + n - u - 2).is_nonnegative is None
assert (-k - n - u - 2).is_nonnegative is None
assert (-k + n - u - 2).is_nonnegative is None
assert (u - x).is_nonnegative is None
assert (v + x + n).is_nonnegative is None
def test_Pow_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True, nonnegative=True)
m = Symbol('m', integer=True, positive=True)
assert (k**2).is_integer is True
assert (k**(-2)).is_integer is None
assert ((m + 1)**(-2)).is_integer is False
assert (m**(-1)).is_integer is None # issue 8580
assert (2**k).is_integer is None
assert (2**(-k)).is_integer is None
assert (2**n).is_integer is True
assert (2**(-n)).is_integer is None
assert (2**m).is_integer is True
assert (2**(-m)).is_integer is False
assert (x**2).is_integer is None
assert (2**x).is_integer is None
assert (k**n).is_integer is True
assert (k**(-n)).is_integer is None
assert (k**x).is_integer is None
assert (x**k).is_integer is None
assert (k**(n*m)).is_integer is True
assert (k**(-n*m)).is_integer is None
assert sqrt(3).is_integer is False
assert sqrt(.3).is_integer is False
assert Pow(3, 2, evaluate=False).is_integer is True
assert Pow(3, 0, evaluate=False).is_integer is True
assert Pow(3, -2, evaluate=False).is_integer is False
assert Pow(S.Half, 3, evaluate=False).is_integer is False
# decided by re-evaluating
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(4, S.Half, evaluate=False).is_integer is True
assert Pow(S.Half, -2, evaluate=False).is_integer is True
assert ((-1)**k).is_integer
x = Symbol('x', real=True, integer=False)
assert (x**2).is_integer is None # issue 8641
def test_Pow_is_real():
x = Symbol('x', real=True)
y = Symbol('y', real=True, positive=True)
assert (x**2).is_real is True
assert (x**3).is_real is True
assert (x**x).is_real is None
assert (y**x).is_real is True
assert (x**Rational(1, 3)).is_real is None
assert (y**Rational(1, 3)).is_real is True
assert sqrt(-1 - sqrt(2)).is_real is False
i = Symbol('i', imaginary=True)
assert (i**i).is_real is None
assert (I**i).is_extended_real is True
assert ((-I)**i).is_extended_real is True
assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not
assert (2**I).is_real is False
assert (2**-I).is_real is False
assert (i**2).is_extended_real is True
assert (i**3).is_extended_real is False
assert (i**x).is_real is None # could be (-I)**(2/3)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
k = Symbol('k', integer=True)
assert (i**e).is_extended_real is True
assert (i**o).is_extended_real is False
assert (i**k).is_real is None
assert (i**(4*k)).is_extended_real is True
x = Symbol("x", nonnegative=True)
y = Symbol("y", nonnegative=True)
assert im(x**y).expand(complex=True) is S.Zero
assert (x**y).is_real is True
i = Symbol('i', imaginary=True)
assert (exp(i)**I).is_extended_real is True
assert log(exp(i)).is_imaginary is None # i could be 2*pi*I
c = Symbol('c', complex=True)
assert log(c).is_real is None # c could be 0 or 2, too
assert log(exp(c)).is_real is None # log(0), log(E), ...
n = Symbol('n', negative=False)
assert log(n).is_real is None
n = Symbol('n', nonnegative=True)
assert log(n).is_real is None
assert sqrt(-I).is_real is False # issue 7843
def test_real_Pow():
k = Symbol('k', integer=True, nonzero=True)
assert (k**(I*pi/log(k))).is_real
def test_Pow_is_finite():
xe = Symbol('xe', extended_real=True)
xr = Symbol('xr', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
assert (xe**2).is_finite is None # xe could be oo
assert (xr**2).is_finite is True
assert (xe**xe).is_finite is None
assert (xr**xe).is_finite is None
assert (xe**xr).is_finite is None
# FIXME: The line below should be True rather than None
# assert (xr**xr).is_finite is True
assert (xr**xr).is_finite is None
assert (p**xe).is_finite is None
assert (p**xr).is_finite is True
assert (n**xe).is_finite is None
assert (n**xr).is_finite is True
assert (sin(xe)**2).is_finite is True
assert (sin(xr)**2).is_finite is True
assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi
assert (sin(xr)**xr).is_finite is None
# FIXME: Should the line below be True rather than None?
assert (sin(xe)**exp(xe)).is_finite is None
assert (sin(xr)**exp(xr)).is_finite is True
assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes
assert (1/sin(xr)).is_finite is None
assert (1/exp(xe)).is_finite is None # xe could be -oo
assert (1/exp(xr)).is_finite is True
assert (1/S.Pi).is_finite is True
def test_Pow_is_even_odd():
x = Symbol('x')
k = Symbol('k', even=True)
n = Symbol('n', odd=True)
m = Symbol('m', integer=True, nonnegative=True)
p = Symbol('p', integer=True, positive=True)
assert ((-1)**n).is_odd
assert ((-1)**k).is_odd
assert ((-1)**(m - p)).is_odd
assert (k**2).is_even is True
assert (n**2).is_even is False
assert (2**k).is_even is None
assert (x**2).is_even is None
assert (k**m).is_even is None
assert (n**m).is_even is False
assert (k**p).is_even is True
assert (n**p).is_even is False
assert (m**k).is_even is None
assert (p**k).is_even is None
assert (m**n).is_even is None
assert (p**n).is_even is None
assert (k**x).is_even is None
assert (n**x).is_even is None
assert (k**2).is_odd is False
assert (n**2).is_odd is True
assert (3**k).is_odd is None
assert (k**m).is_odd is None
assert (n**m).is_odd is True
assert (k**p).is_odd is False
assert (n**p).is_odd is True
assert (m**k).is_odd is None
assert (p**k).is_odd is None
assert (m**n).is_odd is None
assert (p**n).is_odd is None
assert (k**x).is_odd is None
assert (n**x).is_odd is None
def test_Pow_is_negative_positive():
r = Symbol('r', real=True)
k = Symbol('k', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
x = Symbol('x')
assert (2**r).is_positive is True
assert ((-2)**r).is_positive is None
assert ((-2)**n).is_positive is True
assert ((-2)**m).is_positive is False
assert (k**2).is_positive is True
assert (k**(-2)).is_positive is True
assert (k**r).is_positive is True
assert ((-k)**r).is_positive is None
assert ((-k)**n).is_positive is True
assert ((-k)**m).is_positive is False
assert (2**r).is_negative is False
assert ((-2)**r).is_negative is None
assert ((-2)**n).is_negative is False
assert ((-2)**m).is_negative is True
assert (k**2).is_negative is False
assert (k**(-2)).is_negative is False
assert (k**r).is_negative is False
assert ((-k)**r).is_negative is None
assert ((-k)**n).is_negative is False
assert ((-k)**m).is_negative is True
assert (2**x).is_positive is None
assert (2**x).is_negative is None
def test_Pow_is_zero():
z = Symbol('z', zero=True)
e = z**2
assert e.is_zero
assert e.is_positive is False
assert e.is_negative is False
assert Pow(0, 0, evaluate=False).is_zero is False
assert Pow(0, 3, evaluate=False).is_zero
assert Pow(0, oo, evaluate=False).is_zero
assert Pow(0, -3, evaluate=False).is_zero is False
assert Pow(0, -oo, evaluate=False).is_zero is False
assert Pow(2, 2, evaluate=False).is_zero is False
a = Symbol('a', zero=False)
assert Pow(a, 3).is_zero is False # issue 7965
assert Pow(2, oo, evaluate=False).is_zero is False
assert Pow(2, -oo, evaluate=False).is_zero
assert Pow(S.Half, oo, evaluate=False).is_zero
assert Pow(S.Half, -oo, evaluate=False).is_zero is False
def test_Pow_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', integer=True, nonnegative=True)
l = Symbol('l', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
assert (x**(4*k)).is_nonnegative is True
assert (2**x).is_nonnegative is True
assert ((-2)**x).is_nonnegative is None
assert ((-2)**n).is_nonnegative is True
assert ((-2)**m).is_nonnegative is False
assert (k**2).is_nonnegative is True
assert (k**(-2)).is_nonnegative is None
assert (k**k).is_nonnegative is True
assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U
assert (l**x).is_nonnegative is True
assert (l**x).is_positive is True
assert ((-k)**x).is_nonnegative is None
assert ((-k)**m).is_nonnegative is None
assert (2**x).is_nonpositive is False
assert ((-2)**x).is_nonpositive is None
assert ((-2)**n).is_nonpositive is False
assert ((-2)**m).is_nonpositive is True
assert (k**2).is_nonpositive is None
assert (k**(-2)).is_nonpositive is None
assert (k**x).is_nonpositive is None
assert ((-k)**x).is_nonpositive is None
assert ((-k)**n).is_nonpositive is None
assert (x**2).is_nonnegative is True
i = symbols('i', imaginary=True)
assert (i**2).is_nonpositive is True
assert (i**4).is_nonpositive is False
assert (i**3).is_nonpositive is False
assert (I**i).is_nonnegative is True
assert (exp(I)**i).is_nonnegative is True
assert ((-k)**n).is_nonnegative is True
assert ((-k)**m).is_nonpositive is True
def test_Mul_is_imaginary_real():
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i1 = Symbol('i1', imaginary=True)
i2 = Symbol('i2', imaginary=True)
x = Symbol('x')
assert I.is_imaginary is True
assert I.is_real is False
assert (-I).is_imaginary is True
assert (-I).is_real is False
assert (3*I).is_imaginary is True
assert (3*I).is_real is False
assert (I*I).is_imaginary is False
assert (I*I).is_real is True
e = (p + p*I)
j = Symbol('j', integer=True, zero=False)
assert (e**j).is_real is None
assert (e**(2*j)).is_real is None
assert (e**j).is_imaginary is None
assert (e**(2*j)).is_imaginary is None
assert (e**-1).is_imaginary is False
assert (e**2).is_imaginary
assert (e**3).is_imaginary is False
assert (e**4).is_imaginary is False
assert (e**5).is_imaginary is False
assert (e**-1).is_real is False
assert (e**2).is_real is False
assert (e**3).is_real is False
assert (e**4).is_real is True
assert (e**5).is_real is False
assert (e**3).is_complex
assert (r*i1).is_imaginary is None
assert (r*i1).is_real is None
assert (x*i1).is_imaginary is None
assert (x*i1).is_real is None
assert (i1*i2).is_imaginary is False
assert (i1*i2).is_real is True
assert (r*i1*i2).is_imaginary is False
assert (r*i1*i2).is_real is True
# Github's issue 5874:
nr = Symbol('nr', real=False, complex=True, finite=True) # e.g. I or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i1*nr).is_real is None
assert (a*nr).is_real is False
assert (b*nr).is_real is None
ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i1*ni).is_real is False
assert (a*ni).is_real is None
assert (b*ni).is_real is None
def test_Mul_hermitian_antihermitian():
a = Symbol('a', hermitian=True, zero=False)
b = Symbol('b', hermitian=True)
c = Symbol('c', hermitian=False)
d = Symbol('d', antihermitian=True)
e1 = Mul(a, b, c, evaluate=False)
e2 = Mul(b, a, c, evaluate=False)
e3 = Mul(a, b, c, d, evaluate=False)
e4 = Mul(b, a, c, d, evaluate=False)
e5 = Mul(a, c, evaluate=False)
e6 = Mul(a, c, d, evaluate=False)
assert e1.is_hermitian is None
assert e2.is_hermitian is None
assert e1.is_antihermitian is None
assert e2.is_antihermitian is None
assert e3.is_antihermitian is None
assert e4.is_antihermitian is None
assert e5.is_antihermitian is None
assert e6.is_antihermitian is None
def test_Add_is_comparable():
assert (x + y).is_comparable is False
assert (x + 1).is_comparable is False
assert (Rational(1, 3) - sqrt(8)).is_comparable is True
def test_Mul_is_comparable():
assert (x*y).is_comparable is False
assert (x*2).is_comparable is False
assert (sqrt(2)*Rational(1, 3)).is_comparable is True
def test_Pow_is_comparable():
assert (x**y).is_comparable is False
assert (x**2).is_comparable is False
assert (sqrt(Rational(1, 3))).is_comparable is True
def test_Add_is_positive_2():
e = Rational(1, 3) - sqrt(8)
assert e.is_positive is False
assert e.is_negative is True
e = pi - 1
assert e.is_positive is True
assert e.is_negative is False
def test_Add_is_irrational():
i = Symbol('i', irrational=True)
assert i.is_irrational is True
assert i.is_rational is False
assert (i + 1).is_irrational is True
assert (i + 1).is_rational is False
@XFAIL
def test_issue_3531():
class MightyNumeric(tuple):
def __rdiv__(self, other):
return "something"
def __rtruediv__(self, other):
return "something"
assert sympify(1)/MightyNumeric((1, 2)) == "something"
def test_issue_3531b():
class Foo:
def __init__(self):
self.field = 1.0
def __mul__(self, other):
self.field = self.field * other
def __rmul__(self, other):
self.field = other * self.field
f = Foo()
x = Symbol("x")
assert f*x == x*f
def test_bug3():
a = Symbol("a")
b = Symbol("b", positive=True)
e = 2*a + b
f = b + 2*a
assert e == f
def test_suppressed_evaluation():
a = Add(0, 3, 2, evaluate=False)
b = Mul(1, 3, 2, evaluate=False)
c = Pow(3, 2, evaluate=False)
assert a != 6
assert a.func is Add
assert a.args == (3, 2)
assert b != 6
assert b.func is Mul
assert b.args == (3, 2)
assert c != 9
assert c.func is Pow
assert c.args == (3, 2)
def test_Add_as_coeff_mul():
# issue 5524. These should all be (1, self)
assert (x + 1).as_coeff_mul() == (1, (x + 1,))
assert (x + 2).as_coeff_mul() == (1, (x + 2,))
assert (x + 3).as_coeff_mul() == (1, (x + 3,))
assert (x - 1).as_coeff_mul() == (1, (x - 1,))
assert (x - 2).as_coeff_mul() == (1, (x - 2,))
assert (x - 3).as_coeff_mul() == (1, (x - 3,))
n = Symbol('n', integer=True)
assert (n + 1).as_coeff_mul() == (1, (n + 1,))
assert (n + 2).as_coeff_mul() == (1, (n + 2,))
assert (n + 3).as_coeff_mul() == (1, (n + 3,))
assert (n - 1).as_coeff_mul() == (1, (n - 1,))
assert (n - 2).as_coeff_mul() == (1, (n - 2,))
assert (n - 3).as_coeff_mul() == (1, (n - 3,))
def test_Pow_as_coeff_mul_doesnt_expand():
assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),))
assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y))
def test_issue_3514():
assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2
assert S(1)/2*sqrt(6)*sqrt(2) == sqrt(3)
assert sqrt(6)/2*sqrt(2) == sqrt(3)
assert sqrt(6)*sqrt(2)/2 == sqrt(3)
def test_make_args():
assert Add.make_args(x) == (x,)
assert Mul.make_args(x) == (x,)
assert Add.make_args(x*y*z) == (x*y*z,)
assert Mul.make_args(x*y*z) == (x*y*z).args
assert Add.make_args(x + y + z) == (x + y + z).args
assert Mul.make_args(x + y + z) == (x + y + z,)
assert Add.make_args((x + y)**z) == ((x + y)**z,)
assert Mul.make_args((x + y)**z) == ((x + y)**z,)
def test_issue_5126():
assert (-2)**x*(-3)**x != 6**x
i = Symbol('i', integer=1)
assert (-2)**i*(-3)**i == 6**i
def test_Rational_as_content_primitive():
c, p = S(1), S(0)
assert (c*p).as_content_primitive() == (c, p)
c, p = S(1)/2, S(1)
assert (c*p).as_content_primitive() == (c, p)
def test_Add_as_content_primitive():
assert (x + 2).as_content_primitive() == (1, x + 2)
assert (3*x + 2).as_content_primitive() == (1, 3*x + 2)
assert (3*x + 3).as_content_primitive() == (3, x + 1)
assert (3*x + 6).as_content_primitive() == (3, x + 2)
assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y)
assert (3*x + 3*y).as_content_primitive() == (3, x + y)
assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y)
assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2)
assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2)
assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2)
assert (2*x/3 + 4*y/9).as_content_primitive() == \
(Rational(2, 9), 3*x + 2*y)
assert (2*x/3 + 2.5*y).as_content_primitive() == \
(Rational(1, 3), 2*x + 7.5*y)
# the coefficient may sort to a position other than 0
p = 3 + x + y
assert (2*p).expand().as_content_primitive() == (2, p)
assert (2.0*p).expand().as_content_primitive() == (1, 2.*p)
p *= -1
assert (2*p).expand().as_content_primitive() == (2, p)
def test_Mul_as_content_primitive():
assert (2*x).as_content_primitive() == (2, x)
assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x))
assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \
(18, x*(1 + y)*(x + 1)**2)
assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \
(S.Half, 24*(x + 1)**2*(2*x + 1) + 1)
def test_Pow_as_content_primitive():
assert (x**y).as_content_primitive() == (1, x**y)
assert ((2*x + 2)**y).as_content_primitive() == \
(1, (Mul(2, (x + 1), evaluate=False))**y)
assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3)
def test_issue_5460():
u = Mul(2, (1 + x), evaluate=False)
assert (2 + u).args == (2, u)
def test_product_irrational():
from sympy import I, pi
assert (I*pi).is_irrational is False
# The following used to be deduced from the above bug:
assert (I*pi).is_positive is False
def test_issue_5919():
assert (x/(y*(1 + y))).expand() == x/(y**2 + y)
def test_Mod():
assert Mod(x, 1).func is Mod
assert pi % pi == S.Zero
assert Mod(5, 3) == 2
assert Mod(-5, 3) == 1
assert Mod(5, -3) == -1
assert Mod(-5, -3) == -2
assert type(Mod(3.2, 2, evaluate=False)) == Mod
assert 5 % x == Mod(5, x)
assert x % 5 == Mod(x, 5)
assert x % y == Mod(x, y)
assert (x % y).subs({x: 5, y: 3}) == 2
assert Mod(nan, 1) == nan
assert Mod(1, nan) == nan
assert Mod(nan, nan) == nan
Mod(0, x) == 0
with raises(ZeroDivisionError):
Mod(x, 0)
k = Symbol('k', integer=True)
m = Symbol('m', integer=True, positive=True)
assert (x**m % x).func is Mod
assert (k**(-m) % k).func is Mod
assert k**m % k == 0
assert (-2*k)**m % k == 0
# Float handling
point3 = Float(3.3) % 1
assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
assert Mod(-3.3, 1) == 1 - point3
assert Mod(0.7, 1) == Float(0.7)
e = Mod(1.3, 1)
assert comp(e, .3) and e.is_Float
e = Mod(1.3, .7)
assert comp(e, .6) and e.is_Float
e = Mod(1.3, Rational(7, 10))
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), 0.7)
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), Rational(7, 10))
assert comp(e, .6) and e.is_Rational
# check that sign is right
r2 = sqrt(2)
r3 = sqrt(3)
for i in [-r3, -r2, r2, r3]:
for j in [-r3, -r2, r2, r3]:
assert verify_numerically(i % j, i.n() % j.n())
for _x in range(4):
for _y in range(9):
reps = [(x, _x), (y, _y)]
assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9
# denesting
t = Symbol('t', real=True)
assert Mod(Mod(x, t), t) == Mod(x, t)
assert Mod(-Mod(x, t), t) == Mod(-x, t)
assert Mod(Mod(x, 2*t), t) == Mod(x, t)
assert Mod(-Mod(x, 2*t), t) == Mod(-x, t)
assert Mod(Mod(x, t), 2*t) == Mod(x, t)
assert Mod(-Mod(x, t), -2*t) == -Mod(x, t)
for i in [-4, -2, 2, 4]:
for j in [-4, -2, 2, 4]:
for k in range(4):
assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j
assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j
# known difference
assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
p = symbols('p', positive=True)
assert Mod(2, p + 3) == 2
assert Mod(-2, p + 3) == p + 1
assert Mod(2, -p - 3) == -p - 1
assert Mod(-2, -p - 3) == -2
assert Mod(p + 5, p + 3) == 2
assert Mod(-p - 5, p + 3) == p + 1
assert Mod(p + 5, -p - 3) == -p - 1
assert Mod(-p - 5, -p - 3) == -2
assert Mod(p + 1, p - 1).func is Mod
# handling sums
assert (x + 3) % 1 == Mod(x, 1)
assert (x + 3.0) % 1 == Mod(1.*x, 1)
assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
a = Mod(.6*x + y, .3*y)
b = Mod(0.1*y + 0.6*x, 0.3*y)
# Test that a, b are equal, with 1e-14 accuracy in coefficients
eps = 1e-14
assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps
assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps
assert (x + 1) % x == 1 % x
assert (x + y) % x == y % x
assert (x + y + 2) % x == (y + 2) % x
assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)
# gcd extraction
assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x)
assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
assert (12*x) % (2*y) == 2*Mod(6*x, y)
assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
assert (-2*pi) % (3*pi) == pi
assert (2*x + 2) % (x + 1) == 0
assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
i = Symbol('i', integer=True)
assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
assert Mod(4*i, 4) == 0
# issue 8677
n = Symbol('n', integer=True, positive=True)
assert factorial(n) % n == 0
assert factorial(n + 2) % n == 0
assert (factorial(n + 4) % (n + 5)).func is Mod
# modular exponentiation
assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497)
assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1
assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == pow(32131231232,9**10**6,10**12)
assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == pow(33284959323,123**999,11**13)
assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == pow(78789849597,333**555,12**9)
# Wilson's theorem
factorial(18042, evaluate=False) % 18043 == 18042
p = Symbol('n', prime=True)
factorial(p - 1) % p == p - 1
factorial(p - 1) % -p == -1
(factorial(3, evaluate=False) % 4).doit() == 2
n = Symbol('n', composite=True, odd=True)
factorial(n - 1) % n == 0
# symbolic with known parity
n = Symbol('n', even=True)
assert Mod(n, 2) == 0
n = Symbol('n', odd=True)
assert Mod(n, 2) == 1
# issue 10963
assert (x**6000%400).args[1] == 400
#issue 13543
assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2)
assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4)
assert Mod(Mod(x + 2, 4)*4, 4) == 0
# issue 15493
i, j = symbols('i j', integer=True, positive=True)
assert Mod(3*i, 2) == Mod(i, 2)
assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1)
assert Mod(8*i, 4) == 0
# rewrite
assert Mod(x, y).rewrite(floor) == x - y*floor(x/y)
assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y)
def test_Mod_is_integer():
p = Symbol('p', integer=True)
q1 = Symbol('q1', integer=True)
q2 = Symbol('q2', integer=True, nonzero=True)
assert Mod(x, y).is_integer is None
assert Mod(p, q1).is_integer is None
assert Mod(x, q2).is_integer is None
assert Mod(p, q2).is_integer
def test_Mod_is_nonposneg():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, positive=True)
assert (n%3).is_nonnegative
assert Mod(n, -3).is_nonpositive
assert Mod(n, k).is_nonnegative
assert Mod(n, -k).is_nonpositive
assert Mod(k, n).is_nonnegative is None
def test_issue_6001():
A = Symbol("A", commutative=False)
eq = A + A**2
# it doesn't matter whether it's True or False; they should
# just all be the same
assert (
eq.is_commutative ==
(eq + 1).is_commutative ==
(A + 1).is_commutative)
B = Symbol("B", commutative=False)
# Although commutative terms could cancel we return True
# meaning "there are non-commutative symbols; aftersubstitution
# that definition can change, e.g. (A*B).subs(B,A**-1) -> 1
assert (sqrt(2)*A).is_commutative is False
assert (sqrt(2)*A*B).is_commutative is False
def test_polar():
from sympy import polar_lift
p = Symbol('p', polar=True)
x = Symbol('x')
assert p.is_polar
assert x.is_polar is None
assert S(1).is_polar is None
assert (p**x).is_polar is True
assert (x**p).is_polar is None
assert ((2*p)**x).is_polar is True
assert (2*p).is_polar is True
assert (-2*p).is_polar is not True
assert (polar_lift(-2)*p).is_polar is True
q = Symbol('q', polar=True)
assert (p*q)**2 == p**2 * q**2
assert (2*q)**2 == 4 * q**2
assert ((p*q)**x).expand() == p**x * q**x
def test_issue_6040():
a, b = Pow(1, 2, evaluate=False), S.One
assert a != b
assert b != a
assert not (a == b)
assert not (b == a)
def test_issue_6082():
# Comparison is symmetric
assert Basic.compare(Max(x, 1), Max(x, 2)) == \
- Basic.compare(Max(x, 2), Max(x, 1))
# Equal expressions compare equal
assert Basic.compare(Max(x, 1), Max(x, 1)) == 0
# Basic subtypes (such as Max) compare different than standard types
assert Basic.compare(Max(1, x), frozenset((1, x))) != 0
def test_issue_6077():
assert x**2.0/x == x**1.0
assert x/x**2.0 == x**-1.0
assert x*x**2.0 == x**3.0
assert x**1.5*x**2.5 == x**4.0
assert 2**(2.0*x)/2**x == 2**(1.0*x)
assert 2**x/2**(2.0*x) == 2**(-1.0*x)
assert 2**x*2**(2.0*x) == 2**(3.0*x)
assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x)
def test_mul_flatten_oo():
p = symbols('p', positive=True)
n, m = symbols('n,m', negative=True)
x_im = symbols('x_im', imaginary=True)
assert n*oo == -oo
assert n*m*oo == oo
assert p*oo == oo
assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo
def test_add_flatten():
# see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524
a = oo + I*oo
b = oo - I*oo
assert a + b == nan
assert a - b == nan
# FIXME: This evaluates as:
# >>> 1/a
# 0*(oo + oo*I)
# which should not simplify to 0. Should be fixed in Pow.eval
#assert (1/a).simplify() == (1/b).simplify() == 0
a = Pow(2, 3, evaluate=False)
assert a + a == 16
def test_issue_5160_6087_6089_6090():
# issue 6087
assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2)
# issue 6089
A, B, C = symbols('A,B,C', commutative=False)
assert (2.*B*C)**3 == 8.0*(B*C)**3
assert (-2.*B*C)**3 == -8.0*(B*C)**3
assert (-2*B*C)**2 == 4*(B*C)**2
# issue 5160
assert sqrt(-1.0*x) == 1.0*sqrt(-x)
assert sqrt(1.0*x) == 1.0*sqrt(x)
# issue 6090
assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2
def test_float_int_round():
assert int(float(sqrt(10))) == int(sqrt(10))
assert int(pi**1000) % 10 == 2
assert int(Float('1.123456789012345678901234567890e20', '')) == \
long(112345678901234567890)
assert int(Float('1.123456789012345678901234567890e25', '')) == \
long(11234567890123456789012345)
# decimal forces float so it's not an exact integer ending in 000000
assert int(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert int(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
112345678901234567890
assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
11234567890123456789012345
# decimal forces float so it's not an exact integer ending in 000000
assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert Integer(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', ''))
assert same_and_same_prec(Float('123000e2',''), Float('12300000', ''))
assert int(1 + Rational('.9999999999999999999999999')) == 1
assert int(pi/1e20) == 0
assert int(1 + pi/1e20) == 1
assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
raises(TypeError, lambda: float(x))
raises(TypeError, lambda: float(sqrt(-1)))
assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
12345678901234567891
def test_issue_6611a():
assert Mul.flatten([3**Rational(1, 3),
Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \
([Rational(1, 3), (-1)**Rational(2, 3)], [], None)
def test_denest_add_mul():
# when working with evaluated expressions make sure they denest
eq = x + 1
eq = Add(eq, 2, evaluate=False)
eq = Add(eq, 2, evaluate=False)
assert Add(*eq.args) == x + 5
eq = x*2
eq = Mul(eq, 2, evaluate=False)
eq = Mul(eq, 2, evaluate=False)
assert Mul(*eq.args) == 8*x
# but don't let them denest unecessarily
eq = Mul(-2, x - 2, evaluate=False)
assert 2*eq == Mul(-4, x - 2, evaluate=False)
assert -eq == Mul(2, x - 2, evaluate=False)
def test_mul_coeff():
# It is important that all Numbers be removed from the seq;
# This can be tricky when powers combine to produce those numbers
p = exp(I*pi/3)
assert p**2*x*p*y*p*x*p**2 == x**2*y
def test_mul_zero_detection():
nz = Dummy(real=True, zero=False, finite=True)
r = Dummy(real=True)
c = Dummy(real=False, complex=True, finite=True)
c2 = Dummy(real=False, complex=True, finite=True)
i = Dummy(imaginary=True, finite=True)
e = nz*r*c
assert e.is_imaginary is None
assert e.is_real is None
e = nz*c
assert e.is_imaginary is None
assert e.is_real is False
e = nz*i*c
assert e.is_imaginary is False
assert e.is_real is None
# check for more than one complex; it is important to use
# uniquely named Symbols to ensure that two factors appear
# e.g. if the symbols have the same name they just become
# a single factor, a power.
e = nz*i*c*c2
assert e.is_imaginary is None
assert e.is_real is None
# _eval_is_real and _eval_is_zero both employ trapping of the
# zero value so args should be tested in both directions and
# TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED
# real is unknown
def test(z, b, e):
if z.is_zero and b.is_finite:
assert e.is_real and e.is_zero
else:
assert e.is_real is None
if b.is_finite:
if z.is_zero:
assert e.is_zero
else:
assert e.is_zero is None
elif b.is_finite is False:
if z.is_zero is None:
assert e.is_zero is None
else:
assert e.is_zero is False
for iz, ib in cartes(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('nz', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(b, z, evaluate=False)
test(z, b, e)
# real is True
def test(z, b, e):
if z.is_zero and not b.is_finite:
assert e.is_extended_real is None
else:
assert e.is_extended_real is True
for iz, ib in cartes(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz, extended_real=True)
b = Dummy('b', finite=ib, extended_real=True)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('z', nonzero=iz, extended_real=True)
b = Dummy('b', finite=ib, extended_real=True)
e = Mul(b, z, evaluate=False)
test(z, b, e)
def test_Mul_with_zero_infinite():
zer = Dummy(zero=True)
inf = Dummy(finite=False)
e = Mul(zer, inf, evaluate=False)
assert e.is_positive is None
assert e.is_hermitian is None
e = Mul(inf, zer, evaluate=False)
assert e.is_positive is None
assert e.is_hermitian is None
def test_Mul_does_not_cancel_infinities():
a, b = symbols('a b')
assert ((zoo + 3*a)/(3*a + zoo)) is nan
assert ((b - oo)/(b - oo)) is nan
# issue 13904
expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b))
assert expr.subs(b, a) is nan
def test_Mul_does_not_distribute_infinity():
a, b = symbols('a b')
assert ((1 + I)*oo).is_Mul
assert ((a + b)*(-oo)).is_Mul
assert ((a + 1)*zoo).is_Mul
assert ((1 + I)*oo).is_finite is False
z = (1 + I)*oo
assert ((1 - I)*z).expand() is oo
def test_issue_8247_8354():
from sympy import tan
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_positive is False # it's 0
z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
assert z.is_positive is False # it's 0
z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
assert z.is_positive is not True # it's zero and it shouldn't hang
z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
2) - 2*2**(1/3))**2''')
assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough)
def test_Add_is_zero():
x, y = symbols('x y', zero=True)
assert (x + y).is_zero
# Issue 15873
e = -2*I + (1 + I)**2
assert e.is_zero is None
def test_issue_14392():
assert (sin(zoo)**2).as_real_imag() == (nan, nan)
def test_divmod():
assert divmod(x, y) == (x//y, x % y)
assert divmod(x, 3) == (x//3, x % 3)
assert divmod(3, x) == (3//x, 3 % x)
def test__neg__():
assert -(x*y) == -x*y
assert -(-x*y) == x*y
assert -(1.*x) == -1.*x
assert -(-1.*x) == 1.*x
assert -(2.*x) == -2.*x
assert -(-2.*x) == 2.*x
with distribute(False):
eq = -(x + y)
assert eq.is_Mul and eq.args == (-1, x + y)
|
9d23dc7a87325c5fb64ffcf2bf6747142597e813515b8f0dbcc1177f24011cbf | """Implementation of :class:`CharacteristicZero` class. """
from __future__ import print_function, division
from sympy.polys.domains.domain import Domain
from sympy.utilities import public
@public
class CharacteristicZero(Domain):
"""Domain that has infinite number of elements. """
has_CharacteristicZero = True
def characteristic(self):
"""Return the characteristic of this domain. """
return 0
|
92e0881162a9a5d6ee39addb13a8daf7b2e5d636a3a59654f7f4dd69905acce9 | """Implementation of :class:`PythonIntegerRing` class. """
from __future__ import print_function, division
from sympy.polys.domains.groundtypes import (
PythonInteger, SymPyInteger, python_sqrt,
python_factorial, python_gcdex, python_gcd, python_lcm,
)
from sympy.polys.domains.integerring import IntegerRing
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
@public
class PythonIntegerRing(IntegerRing):
"""Integer ring based on Python's ``int`` type. """
dtype = PythonInteger
zero = dtype(0)
one = dtype(1)
alias = 'ZZ_python'
def __init__(self):
"""Allow instantiation of this domain. """
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return SymPyInteger(a)
def from_sympy(self, a):
"""Convert SymPy's Integer to ``dtype``. """
if a.is_Integer:
return PythonInteger(a.p)
elif a.is_Float and int(a) == a:
return PythonInteger(int(a))
else:
raise CoercionFailed("expected an integer, got %s" % a)
def from_FF_python(K1, a, K0):
"""Convert ``ModularInteger(int)`` to Python's ``int``. """
return a.to_int()
def from_ZZ_python(K1, a, K0):
"""Convert Python's ``int`` to Python's ``int``. """
return a
def from_QQ_python(K1, a, K0):
"""Convert Python's ``Fraction`` to Python's ``int``. """
if a.denominator == 1:
return a.numerator
def from_FF_gmpy(K1, a, K0):
"""Convert ``ModularInteger(mpz)`` to Python's ``int``. """
return PythonInteger(a.to_int())
def from_ZZ_gmpy(K1, a, K0):
"""Convert GMPY's ``mpz`` to Python's ``int``. """
return PythonInteger(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert GMPY's ``mpq`` to Python's ``int``. """
if a.denom() == 1:
return PythonInteger(a.numer())
def from_RealField(K1, a, K0):
"""Convert mpmath's ``mpf`` to Python's ``int``. """
p, q = K0.to_rational(a)
if q == 1:
return PythonInteger(p)
def gcdex(self, a, b):
"""Compute extended GCD of ``a`` and ``b``. """
return python_gcdex(a, b)
def gcd(self, a, b):
"""Compute GCD of ``a`` and ``b``. """
return python_gcd(a, b)
def lcm(self, a, b):
"""Compute LCM of ``a`` and ``b``. """
return python_lcm(a, b)
def sqrt(self, a):
"""Compute square root of ``a``. """
return python_sqrt(a)
def factorial(self, a):
"""Compute factorial of ``a``. """
return python_factorial(a)
|
9b63f7110faac5489dcf9c570dbf46aec7361559dba3c1558b5bb2659377d272 | """Implementation of :class:`GMPYRationalField` class. """
from __future__ import print_function, division
from sympy.polys.domains.groundtypes import (
GMPYRational, SymPyRational,
gmpy_numer, gmpy_denom, gmpy_factorial,
)
from sympy.polys.domains.rationalfield import RationalField
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
@public
class GMPYRationalField(RationalField):
"""Rational field based on GMPY mpq class. """
dtype = GMPYRational
zero = dtype(0)
one = dtype(1)
tp = type(one)
alias = 'QQ_gmpy'
def __init__(self):
pass
def get_ring(self):
"""Returns ring associated with ``self``. """
from sympy.polys.domains import GMPYIntegerRing
return GMPYIntegerRing()
def to_sympy(self, a):
"""Convert `a` to a SymPy object. """
return SymPyRational(int(gmpy_numer(a)),
int(gmpy_denom(a)))
def from_sympy(self, a):
"""Convert SymPy's Integer to `dtype`. """
if a.is_Rational:
return GMPYRational(a.p, a.q)
elif a.is_Float:
from sympy.polys.domains import RR
return GMPYRational(*map(int, RR.to_rational(a)))
else:
raise CoercionFailed("expected `Rational` object, got %s" % a)
def from_ZZ_python(K1, a, K0):
"""Convert a Python `int` object to `dtype`. """
return GMPYRational(a)
def from_QQ_python(K1, a, K0):
"""Convert a Python `Fraction` object to `dtype`. """
return GMPYRational(a.numerator, a.denominator)
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY `mpz` object to `dtype`. """
return GMPYRational(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY `mpq` object to `dtype`. """
return a
def from_RealField(K1, a, K0):
"""Convert a mpmath `mpf` object to `dtype`. """
return GMPYRational(*map(int, K0.to_rational(a)))
def exquo(self, a, b):
"""Exact quotient of `a` and `b`, implies `__div__`. """
return GMPYRational(a) / GMPYRational(b)
def quo(self, a, b):
"""Quotient of `a` and `b`, implies `__div__`. """
return GMPYRational(a) / GMPYRational(b)
def rem(self, a, b):
"""Remainder of `a` and `b`, implies nothing. """
return self.zero
def div(self, a, b):
"""Division of `a` and `b`, implies `__div__`. """
return GMPYRational(a) / GMPYRational(b), self.zero
def numer(self, a):
"""Returns numerator of `a`. """
return a.numerator
def denom(self, a):
"""Returns denominator of `a`. """
return a.denominator
def factorial(self, a):
"""Returns factorial of `a`. """
return GMPYRational(gmpy_factorial(int(a)))
|
627f59baf367a7ea75efde9fb5ff5334a66480eb570082d201bc66059d12d527 | """Implementation of :class:`GMPYIntegerRing` class. """
from __future__ import print_function, division
from sympy.polys.domains.groundtypes import (
GMPYInteger, SymPyInteger,
gmpy_factorial,
gmpy_gcdex, gmpy_gcd, gmpy_lcm, gmpy_sqrt,
)
from sympy.polys.domains.integerring import IntegerRing
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
@public
class GMPYIntegerRing(IntegerRing):
"""Integer ring based on GMPY's ``mpz`` type. """
dtype = GMPYInteger
zero = dtype(0)
one = dtype(1)
tp = type(one)
alias = 'ZZ_gmpy'
def __init__(self):
"""Allow instantiation of this domain. """
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return SymPyInteger(int(a))
def from_sympy(self, a):
"""Convert SymPy's Integer to ``dtype``. """
if a.is_Integer:
return GMPYInteger(a.p)
elif a.is_Float and int(a) == a:
return GMPYInteger(int(a))
else:
raise CoercionFailed("expected an integer, got %s" % a)
def from_FF_python(K1, a, K0):
"""Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
return GMPYInteger(a.to_int())
def from_ZZ_python(K1, a, K0):
"""Convert Python's ``int`` to GMPY's ``mpz``. """
return GMPYInteger(a)
def from_QQ_python(K1, a, K0):
"""Convert Python's ``Fraction`` to GMPY's ``mpz``. """
if a.denominator == 1:
return GMPYInteger(a.numerator)
def from_FF_gmpy(K1, a, K0):
"""Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """
return a.to_int()
def from_ZZ_gmpy(K1, a, K0):
"""Convert GMPY's ``mpz`` to GMPY's ``mpz``. """
return a
def from_QQ_gmpy(K1, a, K0):
"""Convert GMPY ``mpq`` to GMPY's ``mpz``. """
if a.denominator == 1:
return a.numerator
def from_RealField(K1, a, K0):
"""Convert mpmath's ``mpf`` to GMPY's ``mpz``. """
p, q = K0.to_rational(a)
if q == 1:
return GMPYInteger(p)
def gcdex(self, a, b):
"""Compute extended GCD of ``a`` and ``b``. """
h, s, t = gmpy_gcdex(a, b)
return s, t, h
def gcd(self, a, b):
"""Compute GCD of ``a`` and ``b``. """
return gmpy_gcd(a, b)
def lcm(self, a, b):
"""Compute LCM of ``a`` and ``b``. """
return gmpy_lcm(a, b)
def sqrt(self, a):
"""Compute square root of ``a``. """
return gmpy_sqrt(a)
def factorial(self, a):
"""Compute factorial of ``a``. """
return gmpy_factorial(a)
|
3b625f17e525c2d6dda40a7b539fcb5bf63c0142125f6f59190b83d73e3923d4 | """Tools for polynomial factorization routines in characteristic zero. """
from sympy.polys.rings import ring, xring
from sympy.polys.domains import FF, ZZ, QQ, RR, EX
from sympy.polys import polyconfig as config
from sympy.polys.polyerrors import DomainError
from sympy.polys.polyclasses import ANP
from sympy.polys.specialpolys import f_polys, w_polys
from sympy import nextprime, sin, sqrt, I
from sympy.utilities.pytest import raises, XFAIL
from sympy.core.compatibility import range
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys()
w_1, w_2 = w_polys()
def test_dup_trial_division():
R, x = ring("x", ZZ)
assert R.dup_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
def test_dmp_trial_division():
R, x, y = ring("x,y", ZZ)
assert R.dmp_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
def test_dup_zz_mignotte_bound():
R, x = ring("x", ZZ)
assert R.dup_zz_mignotte_bound(2*x**2 + 3*x + 4) == 32
def test_dmp_zz_mignotte_bound():
R, x, y = ring("x,y", ZZ)
assert R.dmp_zz_mignotte_bound(2*x**2 + 3*x + 4) == 32
def test_dup_zz_hensel_step():
R, x = ring("x", ZZ)
f = x**4 - 1
g = x**3 + 2*x**2 - x - 2
h = x - 2
s = -2
t = 2*x**2 - 2*x - 1
G, H, S, T = R.dup_zz_hensel_step(5, f, g, h, s, t)
assert G == x**3 + 7*x**2 - x - 7
assert H == x - 7
assert S == 8
assert T == -8*x**2 - 12*x - 1
def test_dup_zz_hensel_lift():
R, x = ring("x", ZZ)
f = x**4 - 1
F = [x - 1, x - 2, x + 2, x + 1]
assert R.dup_zz_hensel_lift(ZZ(5), f, F, 4) == \
[x - 1, x - 182, x + 182, x + 1]
def test_dup_zz_irreducible_p():
R, x = ring("x", ZZ)
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 7) is None
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 4) is None
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 10) is True
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 14) is True
def test_dup_cyclotomic_p():
R, x = ring("x", ZZ)
assert R.dup_cyclotomic_p(x - 1) is True
assert R.dup_cyclotomic_p(x + 1) is True
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
assert R.dup_cyclotomic_p(x**2 + 1) is True
assert R.dup_cyclotomic_p(x**4 + x**3 + x**2 + x + 1) is True
assert R.dup_cyclotomic_p(x**2 - x + 1) is True
assert R.dup_cyclotomic_p(x**6 + x**5 + x**4 + x**3 + x**2 + x + 1) is True
assert R.dup_cyclotomic_p(x**4 + 1) is True
assert R.dup_cyclotomic_p(x**6 + x**3 + 1) is True
assert R.dup_cyclotomic_p(0) is False
assert R.dup_cyclotomic_p(1) is False
assert R.dup_cyclotomic_p(x) is False
assert R.dup_cyclotomic_p(x + 2) is False
assert R.dup_cyclotomic_p(3*x + 1) is False
assert R.dup_cyclotomic_p(x**2 - 1) is False
f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
assert R.dup_cyclotomic_p(f) is False
g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
assert R.dup_cyclotomic_p(g) is True
R, x = ring("x", QQ)
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
assert R.dup_cyclotomic_p(QQ(1,2)*x**2 + x + 1) is False
R, x = ring("x", ZZ["y"])
assert R.dup_cyclotomic_p(x**2 + x + 1) is False
def test_dup_zz_cyclotomic_poly():
R, x = ring("x", ZZ)
assert R.dup_zz_cyclotomic_poly(1) == x - 1
assert R.dup_zz_cyclotomic_poly(2) == x + 1
assert R.dup_zz_cyclotomic_poly(3) == x**2 + x + 1
assert R.dup_zz_cyclotomic_poly(4) == x**2 + 1
assert R.dup_zz_cyclotomic_poly(5) == x**4 + x**3 + x**2 + x + 1
assert R.dup_zz_cyclotomic_poly(6) == x**2 - x + 1
assert R.dup_zz_cyclotomic_poly(7) == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1
assert R.dup_zz_cyclotomic_poly(8) == x**4 + 1
assert R.dup_zz_cyclotomic_poly(9) == x**6 + x**3 + 1
def test_dup_zz_cyclotomic_factor():
R, x = ring("x", ZZ)
assert R.dup_zz_cyclotomic_factor(0) is None
assert R.dup_zz_cyclotomic_factor(1) is None
assert R.dup_zz_cyclotomic_factor(2*x**10 - 1) is None
assert R.dup_zz_cyclotomic_factor(x**10 - 3) is None
assert R.dup_zz_cyclotomic_factor(x**10 + x**5 - 1) is None
assert R.dup_zz_cyclotomic_factor(x + 1) == [x + 1]
assert R.dup_zz_cyclotomic_factor(x - 1) == [x - 1]
assert R.dup_zz_cyclotomic_factor(x**2 + 1) == [x**2 + 1]
assert R.dup_zz_cyclotomic_factor(x**2 - 1) == [x - 1, x + 1]
assert R.dup_zz_cyclotomic_factor(x**27 + 1) == \
[x + 1, x**2 - x + 1, x**6 - x**3 + 1, x**18 - x**9 + 1]
assert R.dup_zz_cyclotomic_factor(x**27 - 1) == \
[x - 1, x**2 + x + 1, x**6 + x**3 + 1, x**18 + x**9 + 1]
def test_dup_zz_factor():
R, x = ring("x", ZZ)
assert R.dup_zz_factor(0) == (0, [])
assert R.dup_zz_factor(7) == (7, [])
assert R.dup_zz_factor(-7) == (-7, [])
assert R.dup_zz_factor_sqf(0) == (0, [])
assert R.dup_zz_factor_sqf(7) == (7, [])
assert R.dup_zz_factor_sqf(-7) == (-7, [])
assert R.dup_zz_factor(2*x + 4) == (2, [(x + 2, 1)])
assert R.dup_zz_factor_sqf(2*x + 4) == (2, [x + 2])
f = x**4 + x + 1
for i in range(0, 20):
assert R.dup_zz_factor(f) == (1, [(f, 1)])
assert R.dup_zz_factor(x**2 + 2*x + 2) == \
(1, [(x**2 + 2*x + 2, 1)])
assert R.dup_zz_factor(18*x**2 + 12*x + 2) == \
(2, [(3*x + 1, 2)])
assert R.dup_zz_factor(-9*x**2 + 1) == \
(-1, [(3*x - 1, 1),
(3*x + 1, 1)])
assert R.dup_zz_factor_sqf(-9*x**2 + 1) == \
(-1, [3*x - 1,
3*x + 1])
assert R.dup_zz_factor(x**3 - 6*x**2 + 11*x - 6) == \
(1, [(x - 3, 1),
(x - 2, 1),
(x - 1, 1)])
assert R.dup_zz_factor_sqf(x**3 - 6*x**2 + 11*x - 6) == \
(1, [x - 3,
x - 2,
x - 1])
assert R.dup_zz_factor(3*x**3 + 10*x**2 + 13*x + 10) == \
(1, [(x + 2, 1),
(3*x**2 + 4*x + 5, 1)])
assert R.dup_zz_factor_sqf(3*x**3 + 10*x**2 + 13*x + 10) == \
(1, [x + 2,
3*x**2 + 4*x + 5])
assert R.dup_zz_factor(-x**6 + x**2) == \
(-1, [(x - 1, 1),
(x + 1, 1),
(x, 2),
(x**2 + 1, 1)])
f = 1080*x**8 + 5184*x**7 + 2099*x**6 + 744*x**5 + 2736*x**4 - 648*x**3 + 129*x**2 - 324
assert R.dup_zz_factor(f) == \
(1, [(5*x**4 + 24*x**3 + 9*x**2 + 12, 1),
(216*x**4 + 31*x**2 - 27, 1)])
f = -29802322387695312500000000000000000000*x**25 \
+ 2980232238769531250000000000000000*x**20 \
+ 1743435859680175781250000000000*x**15 \
+ 114142894744873046875000000*x**10 \
- 210106372833251953125*x**5 \
+ 95367431640625
assert R.dup_zz_factor(f) == \
(-95367431640625, [(5*x - 1, 1),
(100*x**2 + 10*x - 1, 2),
(625*x**4 + 125*x**3 + 25*x**2 + 5*x + 1, 1),
(10000*x**4 - 3000*x**3 + 400*x**2 - 20*x + 1, 2),
(10000*x**4 + 2000*x**3 + 400*x**2 + 30*x + 1, 2)])
f = x**10 - 1
config.setup('USE_CYCLOTOMIC_FACTOR', True)
F_0 = R.dup_zz_factor(f)
config.setup('USE_CYCLOTOMIC_FACTOR', False)
F_1 = R.dup_zz_factor(f)
assert F_0 == F_1 == \
(1, [(x - 1, 1),
(x + 1, 1),
(x**4 - x**3 + x**2 - x + 1, 1),
(x**4 + x**3 + x**2 + x + 1, 1)])
config.setup('USE_CYCLOTOMIC_FACTOR')
f = x**10 + 1
config.setup('USE_CYCLOTOMIC_FACTOR', True)
F_0 = R.dup_zz_factor(f)
config.setup('USE_CYCLOTOMIC_FACTOR', False)
F_1 = R.dup_zz_factor(f)
assert F_0 == F_1 == \
(1, [(x**2 + 1, 1),
(x**8 - x**6 + x**4 - x**2 + 1, 1)])
config.setup('USE_CYCLOTOMIC_FACTOR')
def test_dmp_zz_wang():
R, x,y,z = ring("x,y,z", ZZ)
UV, _x = ring("x", ZZ)
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
assert p == 6291469
t_1, k_1, e_1 = y, 1, ZZ(-14)
t_2, k_2, e_2 = z, 2, ZZ(3)
t_3, k_3, e_3 = y + z, 2, ZZ(-11)
t_4, k_4, e_4 = y - z, 1, ZZ(-17)
T = [t_1, t_2, t_3, t_4]
K = [k_1, k_2, k_3, k_4]
E = [e_1, e_2, e_3, e_4]
T = zip([ t.drop(x) for t in T ], K)
A = [ZZ(-14), ZZ(3)]
S = R.dmp_eval_tail(w_1, A)
cs, s = UV.dup_primitive(S)
assert cs == 1 and s == S == \
1036728*_x**6 + 915552*_x**5 + 55748*_x**4 + 105621*_x**3 - 17304*_x**2 - 26841*_x - 644
assert R.dmp_zz_wang_non_divisors(E, cs, ZZ(4)) == [7, 3, 11, 17]
assert UV.dup_sqf_p(s) and UV.dup_degree(s) == R.dmp_degree(w_1)
_, H = UV.dup_zz_factor_sqf(s)
h_1 = 44*_x**2 + 42*_x + 1
h_2 = 126*_x**2 - 9*_x + 28
h_3 = 187*_x**2 - 23
assert H == [h_1, h_2, h_3]
LC = [ lc.drop(x) for lc in [-4*y - 4*z, -y*z**2, y**2 - z**2] ]
assert R.dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A) == (w_1, H, LC)
factors = R.dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p)
assert R.dmp_expand(factors) == w_1
@XFAIL
def test_dmp_zz_wang_fail():
R, x,y,z = ring("x,y,z", ZZ)
UV, _x = ring("x", ZZ)
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
assert p == 6291469
H_1 = [44*x**2 + 42*x + 1, 126*x**2 - 9*x + 28, 187*x**2 - 23]
H_2 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
H_3 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
c_1 = -70686*x**5 - 5863*x**4 - 17826*x**3 + 2009*x**2 + 5031*x + 74
c_2 = 9*x**5*y**4 + 12*x**5*y**3 - 45*x**5*y**2 - 108*x**5*y - 324*x**5 + 18*x**4*y**3 - 216*x**4*y**2 - 810*x**4*y + 2*x**3*y**4 + 9*x**3*y**3 - 252*x**3*y**2 - 288*x**3*y - 945*x**3 - 30*x**2*y**2 - 414*x**2*y + 2*x*y**3 - 54*x*y**2 - 3*x*y + 81*x + 12*y
c_3 = -36*x**4*y**2 - 108*x**4*y - 27*x**3*y**2 - 36*x**3*y - 108*x**3 - 8*x**2*y**2 - 42*x**2*y - 6*x*y**2 + 9*x + 2*y
assert R.dmp_zz_diophantine(H_1, c_1, [], 5, p) == [-3*x, -2, 1]
assert R.dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p) == [-x*y, -3*x, -6]
assert R.dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p) == [0, 0, -1]
def test_issue_6355():
# This tests a bug in the Wang algorithm that occurred only with a very
# specific set of random numbers.
random_sequence = [-1, -1, 0, 0, 0, 0, -1, -1, 0, -1, 3, -1, 3, 3, 3, 3, -1, 3]
R, x, y, z = ring("x,y,z", ZZ)
f = 2*x**2 + y*z - y - z**2 + z
assert R.dmp_zz_wang(f, seed=random_sequence) == [f]
def test_dmp_zz_factor():
R, x = ring("x", ZZ)
assert R.dmp_zz_factor(0) == (0, [])
assert R.dmp_zz_factor(7) == (7, [])
assert R.dmp_zz_factor(-7) == (-7, [])
assert R.dmp_zz_factor(x**2 - 9) == (1, [(x - 3, 1), (x + 3, 1)])
R, x, y = ring("x,y", ZZ)
assert R.dmp_zz_factor(0) == (0, [])
assert R.dmp_zz_factor(7) == (7, [])
assert R.dmp_zz_factor(-7) == (-7, [])
assert R.dmp_zz_factor(x) == (1, [(x, 1)])
assert R.dmp_zz_factor(4*x) == (4, [(x, 1)])
assert R.dmp_zz_factor(4*x + 2) == (2, [(2*x + 1, 1)])
assert R.dmp_zz_factor(x*y + 1) == (1, [(x*y + 1, 1)])
assert R.dmp_zz_factor(y**2 + 1) == (1, [(y**2 + 1, 1)])
assert R.dmp_zz_factor(y**2 - 1) == (1, [(y - 1, 1), (y + 1, 1)])
assert R.dmp_zz_factor(x**2*y**2 + 6*x**2*y + 9*x**2 - 1) == (1, [(x*y + 3*x - 1, 1), (x*y + 3*x + 1, 1)])
assert R.dmp_zz_factor(x**2*y**2 - 9) == (1, [(x*y - 3, 1), (x*y + 3, 1)])
R, x, y, z = ring("x,y,z", ZZ)
assert R.dmp_zz_factor(x**2*y**2*z**2 - 9) == \
(1, [(x*y*z - 3, 1),
(x*y*z + 3, 1)])
R, x, y, z, u = ring("x,y,z,u", ZZ)
assert R.dmp_zz_factor(x**2*y**2*z**2*u**2 - 9) == \
(1, [(x*y*z*u - 3, 1),
(x*y*z*u + 3, 1)])
R, x, y, z = ring("x,y,z", ZZ)
assert R.dmp_zz_factor(f_1) == \
(1, [(x + y*z + 20, 1),
(x*y + z + 10, 1),
(x*z + y + 30, 1)])
assert R.dmp_zz_factor(f_2) == \
(1, [(x**2*y**2 + x**2*z**2 + y + 90, 1),
(x**3*y + x**3*z + z - 11, 1)])
assert R.dmp_zz_factor(f_3) == \
(1, [(x**2*y**2 + x*z**4 + x + z, 1),
(x**3 + x*y*z + y**2 + y*z**3, 1)])
assert R.dmp_zz_factor(f_4) == \
(-1, [(x*y**3 + z**2, 1),
(x**2*z + y**4*z**2 + 5, 1),
(x**3*y - z**2 - 3, 1),
(x**3*y**4 + z**2, 1)])
assert R.dmp_zz_factor(f_5) == \
(-1, [(x + y - z, 3)])
R, x, y, z, t = ring("x,y,z,t", ZZ)
assert R.dmp_zz_factor(f_6) == \
(1, [(47*x*y + z**3*t**2 - t**2, 1),
(45*x**3 - 9*y**3 - y**2 + 3*z**3 + 2*z*t, 1)])
R, x, y, z = ring("x,y,z", ZZ)
assert R.dmp_zz_factor(w_1) == \
(1, [(x**2*y**2 - x**2*z**2 + y - z**2, 1),
(x**2*y*z**2 + 3*x*z + 2*y, 1),
(4*x**2*y + 4*x**2*z + x*y*z - 1, 1)])
R, x, y = ring("x,y", ZZ)
f = -12*x**16*y + 240*x**12*y**3 - 768*x**10*y**4 + 1080*x**8*y**5 - 768*x**6*y**6 + 240*x**4*y**7 - 12*y**9
assert R.dmp_zz_factor(f) == \
(-12, [(y, 1),
(x**2 - y, 6),
(x**4 + 6*x**2*y + y**2, 1)])
def test_dup_ext_factor():
R, x = ring("x", QQ.algebraic_field(I))
def anp(element):
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
assert R.dup_ext_factor(0) == (anp([]), [])
f = anp([QQ(1)])*x + anp([QQ(1)])
assert R.dup_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
g = anp([QQ(2)])*x + anp([QQ(2)])
assert R.dup_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
f = anp([QQ(7)])*x**4 + anp([QQ(1, 1)])
g = anp([QQ(1)])*x**4 + anp([QQ(1, 7)])
assert R.dup_ext_factor(f) == (anp([QQ(7)]), [(g, 1)])
f = anp([QQ(1)])*x**4 + anp([QQ(1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(1, 1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)]), 1),
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)]), 1)])
f = anp([QQ(4, 1)])*x**2 + anp([QQ(9, 1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1)])
f = anp([QQ(4, 1)])*x**4 + anp([QQ(8, 1)])*x**3 + anp([QQ(77, 1)])*x**2 + anp([QQ(18, 1)])*x + anp([QQ(153, 1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(4, 1), QQ(1, 1)]), 1),
(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1),
(anp([QQ(1, 1)])*x + anp([ QQ(4, 1), QQ(1, 1)]), 1)])
R, x = ring("x", QQ.algebraic_field(sqrt(2)))
def anp(element):
return ANP(element, [QQ(1), QQ(0), QQ(-2)], QQ)
f = anp([QQ(1)])*x**4 + anp([QQ(1, 1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)])*x + anp([QQ(1)]), 1),
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)])*x + anp([QQ(1)]), 1)])
f = anp([QQ(1, 1)])*x**2 + anp([QQ(2), QQ(0)])*x + anp([QQ(2, 1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
assert R.dup_ext_factor(f**3) == \
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
f *= anp([QQ(2, 1)])
assert R.dup_ext_factor(f) == \
(anp([QQ(2, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
assert R.dup_ext_factor(f**3) == \
(anp([QQ(8, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
def test_dmp_ext_factor():
R, x,y = ring("x,y", QQ.algebraic_field(sqrt(2)))
def anp(x):
return ANP(x, [QQ(1), QQ(0), QQ(-2)], QQ)
assert R.dmp_ext_factor(0) == (anp([]), [])
f = anp([QQ(1)])*x + anp([QQ(1)])
assert R.dmp_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
g = anp([QQ(2)])*x + anp([QQ(2)])
assert R.dmp_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
f = anp([QQ(1)])*x**2 + anp([QQ(-2)])*y**2
assert R.dmp_ext_factor(f) == \
(anp([QQ(1)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
f = anp([QQ(2)])*x**2 + anp([QQ(-4)])*y**2
assert R.dmp_ext_factor(f) == \
(anp([QQ(2)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
def test_dup_factor_list():
R, x = ring("x", ZZ)
assert R.dup_factor_list(0) == (0, [])
assert R.dup_factor_list(7) == (7, [])
R, x = ring("x", QQ)
assert R.dup_factor_list(0) == (0, [])
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
R, x = ring("x", ZZ['t'])
assert R.dup_factor_list(0) == (0, [])
assert R.dup_factor_list(7) == (7, [])
R, x = ring("x", QQ['t'])
assert R.dup_factor_list(0) == (0, [])
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
R, x = ring("x", ZZ)
assert R.dup_factor_list_include(0) == [(0, 1)]
assert R.dup_factor_list_include(7) == [(7, 1)]
assert R.dup_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
assert R.dup_factor_list_include(x**2 + 2*x + 1) == [(x + 1, 2)]
# issue 8037
assert R.dup_factor_list(6*x**2 - 5*x - 6) == (1, [(2*x - 3, 1), (3*x + 2, 1)])
R, x = ring("x", QQ)
assert R.dup_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1, 2), [(x + 1, 2)])
R, x = ring("x", FF(2))
assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])
R, x = ring("x", RR)
assert R.dup_factor_list(1.0*x**2 + 2.0*x + 1.0) == (1.0, [(1.0*x + 1.0, 2)])
assert R.dup_factor_list(2.0*x**2 + 4.0*x + 2.0) == (2.0, [(1.0*x + 1.0, 2)])
f = 6.7225336055071*x**2 - 10.6463972754741*x - 0.33469524022264
coeff, factors = R.dup_factor_list(f)
assert coeff == RR(10.6463972754741)
assert len(factors) == 1
assert factors[0][0].max_norm() == RR(1.0)
assert factors[0][1] == 1
Rt, t = ring("t", ZZ)
R, x = ring("x", Rt)
f = 4*t*x**2 + 4*t**2*x
assert R.dup_factor_list(f) == \
(4*t, [(x, 1),
(x + t, 1)])
Rt, t = ring("t", QQ)
R, x = ring("x", Rt)
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
assert R.dup_factor_list(f) == \
(QQ(1, 2)*t, [(x, 1),
(x + t, 1)])
R, x = ring("x", QQ.algebraic_field(I))
def anp(element):
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
f = anp([QQ(1, 1)])*x**4 + anp([QQ(2, 1)])*x**2
assert R.dup_factor_list(f) == \
(anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
(anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])
R, x = ring("x", EX)
raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
def test_dmp_factor_list():
R, x, y = ring("x,y", ZZ)
assert R.dmp_factor_list(0) == (ZZ(0), [])
assert R.dmp_factor_list(7) == (7, [])
R, x, y = ring("x,y", QQ)
assert R.dmp_factor_list(0) == (QQ(0), [])
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
Rt, t = ring("t", ZZ)
R, x, y = ring("x,y", Rt)
assert R.dmp_factor_list(0) == (0, [])
assert R.dmp_factor_list(7) == (ZZ(7), [])
Rt, t = ring("t", QQ)
R, x, y = ring("x,y", Rt)
assert R.dmp_factor_list(0) == (0, [])
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
R, x, y = ring("x,y", ZZ)
assert R.dmp_factor_list_include(0) == [(0, 1)]
assert R.dmp_factor_list_include(7) == [(7, 1)]
R, X = xring("x:200", ZZ)
f, g = X[0]**2 + 2*X[0] + 1, X[0] + 1
assert R.dmp_factor_list(f) == (1, [(g, 2)])
f, g = X[-1]**2 + 2*X[-1] + 1, X[-1] + 1
assert R.dmp_factor_list(f) == (1, [(g, 2)])
R, x = ring("x", ZZ)
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
R, x = ring("x", QQ)
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
R, x, y = ring("x,y", ZZ)
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
R, x, y = ring("x,y", QQ)
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
R, x, y = ring("x,y", ZZ)
f = 4*x**2*y + 4*x*y**2
assert R.dmp_factor_list(f) == \
(4, [(y, 1),
(x, 1),
(x + y, 1)])
assert R.dmp_factor_list_include(f) == \
[(4*y, 1),
(x, 1),
(x + y, 1)]
R, x, y = ring("x,y", QQ)
f = QQ(1,2)*x**2*y + QQ(1,2)*x*y**2
assert R.dmp_factor_list(f) == \
(QQ(1,2), [(y, 1),
(x, 1),
(x + y, 1)])
R, x, y = ring("x,y", RR)
f = 2.0*x**2 - 8.0*y**2
assert R.dmp_factor_list(f) == \
(RR(8.0), [(0.5*x - y, 1),
(0.5*x + y, 1)])
f = 6.7225336055071*x**2*y**2 - 10.6463972754741*x*y - 0.33469524022264
coeff, factors = R.dmp_factor_list(f)
assert coeff == RR(10.6463972754741)
assert len(factors) == 1
assert factors[0][0].max_norm() == RR(1.0)
assert factors[0][1] == 1
Rt, t = ring("t", ZZ)
R, x, y = ring("x,y", Rt)
f = 4*t*x**2 + 4*t**2*x
assert R.dmp_factor_list(f) == \
(4*t, [(x, 1),
(x + t, 1)])
Rt, t = ring("t", QQ)
R, x, y = ring("x,y", Rt)
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
assert R.dmp_factor_list(f) == \
(QQ(1, 2)*t, [(x, 1),
(x + t, 1)])
R, x, y = ring("x,y", FF(2))
raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))
R, x, y = ring("x,y", EX)
raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
def test_dup_irreducible_p():
R, x = ring("x", ZZ)
assert R.dup_irreducible_p(x**2 + x + 1) is True
assert R.dup_irreducible_p(x**2 + 2*x + 1) is False
def test_dmp_irreducible_p():
R, x, y = ring("x,y", ZZ)
assert R.dmp_irreducible_p(x**2 + x + 1) is True
assert R.dmp_irreducible_p(x**2 + 2*x + 1) is False
|
4c8dd63ea070d3747b56c403364eddd3b3174ab73c8471b84b272c26e52dedb6 | from sympy.polys.domains import QQ, EX, RR
from sympy.polys.rings import ring
from sympy.polys.ring_series import (_invert_monoms, rs_integrate,
rs_trunc, rs_mul, rs_square, rs_pow, _has_constant_term, rs_hadamard_exp,
rs_series_from_list, rs_exp, rs_log, rs_newton, rs_series_inversion,
rs_compose_add, rs_asin, rs_atan, rs_atanh, rs_tan, rs_cot, rs_sin, rs_cos,
rs_cos_sin, rs_sinh, rs_cosh, rs_tanh, _tan1, rs_fun, rs_nth_root,
rs_LambertW, rs_series_reversion, rs_is_puiseux, rs_series)
from sympy.utilities.pytest import raises
from sympy.core.compatibility import range
from sympy.core.symbol import symbols
from sympy.functions import (sin, cos, exp, tan, cot, atan, atanh,
tanh, log, sqrt)
from sympy.core.numbers import Rational
from sympy.core import expand, S
def is_close(a, b):
tol = 10**(-10)
assert abs(a - b) < tol
def test_ring_series1():
R, x = ring('x', QQ)
p = x**4 + 2*x**3 + 3*x + 4
assert _invert_monoms(p) == 4*x**4 + 3*x**3 + 2*x + 1
assert rs_hadamard_exp(p) == x**4/24 + x**3/3 + 3*x + 4
R, x = ring('x', QQ)
p = x**4 + 2*x**3 + 3*x + 4
assert rs_integrate(p, x) == x**5/5 + x**4/2 + 3*x**2/2 + 4*x
R, x, y = ring('x, y', QQ)
p = x**2*y**2 + x + 1
assert rs_integrate(p, x) == x**3*y**2/3 + x**2/2 + x
assert rs_integrate(p, y) == x**2*y**3/3 + x*y + y
def test_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = (y + t*x)**4
p1 = rs_trunc(p, x, 3)
assert p1 == y**4 + 4*y**3*t*x + 6*y**2*t**2*x**2
def test_mul_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = 1 + t*x + t*y
for i in range(2):
p = rs_mul(p, p, t, 3)
assert p == 6*x**2*t**2 + 12*x*y*t**2 + 6*y**2*t**2 + 4*x*t + 4*y*t + 1
p = 1 + t*x + t*y + t**2*x*y
p1 = rs_mul(p, p, t, 2)
assert p1 == 1 + 2*t*x + 2*t*y
R1, z = ring('z', QQ)
def test1(p):
p2 = rs_mul(p, z, x, 2)
raises(ValueError, lambda: test1(p))
p1 = 2 + 2*x + 3*x**2
p2 = 3 + x**2
assert rs_mul(p1, p2, x, 4) == 2*x**3 + 11*x**2 + 6*x + 6
def test_square_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = (1 + t*x + t*y)*2
p1 = rs_mul(p, p, x, 3)
p2 = rs_square(p, x, 3)
assert p1 == p2
p = 1 + x + x**2 + x**3
assert rs_square(p, x, 4) == 4*x**3 + 3*x**2 + 2*x + 1
def test_pow_trunc():
R, x, y, z = ring('x, y, z', QQ)
p0 = y + x*z
p = p0**16
for xx in (x, y, z):
p1 = rs_trunc(p, xx, 8)
p2 = rs_pow(p0, 16, xx, 8)
assert p1 == p2
p = 1 + x
p1 = rs_pow(p, 3, x, 2)
assert p1 == 1 + 3*x
assert rs_pow(p, 0, x, 2) == 1
assert rs_pow(p, -2, x, 2) == 1 - 2*x
p = x + y
assert rs_pow(p, 3, y, 3) == x**3 + 3*x**2*y + 3*x*y**2
assert rs_pow(1 + x, Rational(2, 3), x, 4) == 4*x**3/81 - x**2/9 + 2*x/3 + 1
def test_has_constant_term():
R, x, y, z = ring('x, y, z', QQ)
p = y + x*z
assert _has_constant_term(p, x)
p = x + x**4
assert not _has_constant_term(p, x)
p = 1 + x + x**4
assert _has_constant_term(p, x)
p = x + y + x*z
def test_inversion():
R, x = ring('x', QQ)
p = 2 + x + 2*x**2
n = 5
p1 = rs_series_inversion(p, x, n)
assert rs_trunc(p*p1, x, n) == 1
R, x, y = ring('x, y', QQ)
p = 2 + x + 2*x**2 + y*x + x**2*y
p1 = rs_series_inversion(p, x, n)
assert rs_trunc(p*p1, x, n) == 1
R, x, y = ring('x, y', QQ)
p = 1 + x + y
def test2(p):
p1 = rs_series_inversion(p, x, 4)
raises(NotImplementedError, lambda: test2(p))
p = R.zero
def test3(p):
p1 = rs_series_inversion(p, x, 3)
raises(ZeroDivisionError, lambda: test3(p))
def test_series_reversion():
R, x, y = ring('x, y', QQ)
p = rs_tan(x, x, 10)
assert rs_series_reversion(p, x, 8, y) == rs_atan(y, y, 8)
p = rs_sin(x, x, 10)
assert rs_series_reversion(p, x, 8, y) == 5*y**7/112 + 3*y**5/40 + \
y**3/6 + y
def test_series_from_list():
R, x = ring('x', QQ)
p = 1 + 2*x + x**2 + 3*x**3
c = [1, 2, 0, 4, 4]
r = rs_series_from_list(p, c, x, 5)
pc = R.from_list(list(reversed(c)))
r1 = rs_trunc(pc.compose(x, p), x, 5)
assert r == r1
R, x, y = ring('x, y', QQ)
c = [1, 3, 5, 7]
p1 = rs_series_from_list(x + y, c, x, 3, concur=0)
p2 = rs_trunc((1 + 3*(x+y) + 5*(x+y)**2 + 7*(x+y)**3), x, 3)
assert p1 == p2
R, x = ring('x', QQ)
h = 25
p = rs_exp(x, x, h) - 1
p1 = rs_series_from_list(p, c, x, h)
p2 = 0
for i, cx in enumerate(c):
p2 += cx*rs_pow(p, i, x, h)
assert p1 == p2
def test_log():
R, x = ring('x', QQ)
p = 1 + x
p1 = rs_log(p, x, 4)/x**2
assert p1 == S(1)/3*x - S(1)/2 + x**(-1)
p = 1 + x +2*x**2/3
p1 = rs_log(p, x, 9)
assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \
7*x**4/36 - x**3/3 + x**2/6 + x
p2 = rs_series_inversion(p, x, 9)
p3 = rs_log(p2, x, 9)
assert p3 == -p1
R, x, y = ring('x, y', QQ)
p = 1 + x + 2*y*x**2
p1 = rs_log(p, x, 6)
assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y -
x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x)
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \
- EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a))
assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \
EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \
EX(1/a)*x + EX(log(a))
p = x + x**2 + 3
assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + S(19281291595)/9920232)
def test_exp():
R, x = ring('x', QQ)
p = x + x**4
for h in [10, 30]:
q = rs_series_inversion(1 + p, x, h) - 1
p1 = rs_exp(q, x, h)
q1 = rs_log(p1, x, h)
assert q1 == q
p1 = rs_exp(p, x, 30)
assert p1.coeff(x**29) == QQ(74274246775059676726972369, 353670479749588078181744640000)
prec = 21
p = rs_log(1 + x, x, prec)
p1 = rs_exp(p, x, prec)
assert p1 == x + 1
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[exp(a), a])
assert rs_exp(x + a, x, 5) == exp(a)*x**4/24 + exp(a)*x**3/6 + \
exp(a)*x**2/2 + exp(a)*x + exp(a)
assert rs_exp(x + x**2*y + a, x, 5) == exp(a)*x**4*y**2/2 + \
exp(a)*x**4*y/2 + exp(a)*x**4/24 + exp(a)*x**3*y + \
exp(a)*x**3/6 + exp(a)*x**2*y + exp(a)*x**2/2 + exp(a)*x + exp(a)
R, x, y = ring('x, y', EX)
assert rs_exp(x + a, x, 5) == EX(exp(a)/24)*x**4 + EX(exp(a)/6)*x**3 + \
EX(exp(a)/2)*x**2 + EX(exp(a))*x + EX(exp(a))
assert rs_exp(x + x**2*y + a, x, 5) == EX(exp(a)/2)*x**4*y**2 + \
EX(exp(a)/2)*x**4*y + EX(exp(a)/24)*x**4 + EX(exp(a))*x**3*y + \
EX(exp(a)/6)*x**3 + EX(exp(a))*x**2*y + EX(exp(a)/2)*x**2 + \
EX(exp(a))*x + EX(exp(a))
def test_newton():
R, x = ring('x', QQ)
p = x**2 - 2
r = rs_newton(p, x, 4)
assert r == 8*x**4 + 4*x**2 + 2
def test_compose_add():
R, x = ring('x', QQ)
p1 = x**3 - 1
p2 = x**2 - 2
assert rs_compose_add(p1, p2) == x**6 - 6*x**4 - 2*x**3 + 12*x**2 - 12*x - 7
def test_fun():
R, x, y = ring('x, y', QQ)
p = x*y + x**2*y**3 + x**5*y
assert rs_fun(p, rs_tan, x, 10) == rs_tan(p, x, 10)
assert rs_fun(p, _tan1, x, 10) == _tan1(p, x, 10)
def test_nth_root():
R, x, y = ring('x, y', QQ)
assert rs_nth_root(1 + x**2*y, 4, x, 10) == -77*x**8*y**4/2048 + \
7*x**6*y**3/128 - 3*x**4*y**2/32 + x**2*y/4 + 1
assert rs_nth_root(1 + x*y + x**2*y**3, 3, x, 5) == -x**4*y**6/9 + \
5*x**4*y**5/27 - 10*x**4*y**4/243 - 2*x**3*y**4/9 + 5*x**3*y**3/81 + \
x**2*y**3/3 - x**2*y**2/9 + x*y/3 + 1
assert rs_nth_root(8*x, 3, x, 3) == 2*x**QQ(1, 3)
assert rs_nth_root(8*x + x**2 + x**3, 3, x, 3) == x**QQ(4,3)/12 + 2*x**QQ(1,3)
r = rs_nth_root(8*x + x**2*y + x**3, 3, x, 4)
assert r == -x**QQ(7,3)*y**2/288 + x**QQ(7,3)/12 + x**QQ(4,3)*y/12 + 2*x**QQ(1,3)
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_nth_root(x + a, 3, x, 4) == EX(5/(81*a**QQ(8, 3)))*x**3 - \
EX(1/(9*a**QQ(5, 3)))*x**2 + EX(1/(3*a**QQ(2, 3)))*x + EX(a**QQ(1, 3))
assert rs_nth_root(x**QQ(2, 3) + x**2*y + 5, 2, x, 3) == -EX(sqrt(5)/100)*\
x**QQ(8, 3)*y - EX(sqrt(5)/16000)*x**QQ(8, 3) + EX(sqrt(5)/10)*x**2*y + \
EX(sqrt(5)/2000)*x**2 - EX(sqrt(5)/200)*x**QQ(4, 3) + \
EX(sqrt(5)/10)*x**QQ(2, 3) + EX(sqrt(5))
def test_atan():
R, x, y = ring('x, y', QQ)
assert rs_atan(x, x, 9) == -x**7/7 + x**5/5 - x**3/3 + x
assert rs_atan(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 - x**8*y**9 + \
2*x**7*y**9 - x**7*y**7/7 - x**6*y**9/3 + x**6*y**7 - x**5*y**7 + \
x**5*y**5/5 - x**4*y**5 - x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_atan(x + a, x, 5) == -EX((a**3 - a)/(a**8 + 4*a**6 + 6*a**4 + \
4*a**2 + 1))*x**4 + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + \
9*a**2 + 3))*x**3 - EX(a/(a**4 + 2*a**2 + 1))*x**2 + \
EX(1/(a**2 + 1))*x + EX(atan(a))
assert rs_atan(x + x**2*y + a, x, 4) == -EX(2*a/(a**4 + 2*a**2 + 1)) \
*x**3*y + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + 9*a**2 + 3))*x**3 + \
EX(1/(a**2 + 1))*x**2*y - EX(a/(a**4 + 2*a**2 + 1))*x**2 + EX(1/(a**2 \
+ 1))*x + EX(atan(a))
def test_asin():
R, x, y = ring('x, y', QQ)
assert rs_asin(x + x*y, x, 5) == x**3*y**3/6 + x**3*y**2/2 + x**3*y/2 + \
x**3/6 + x*y + x
assert rs_asin(x*y + x**2*y**3, x, 6) == x**5*y**7/2 + 3*x**5*y**5/40 + \
x**4*y**5/2 + x**3*y**3/6 + x**2*y**3 + x*y
def test_tan():
R, x, y = ring('x, y', QQ)
assert rs_tan(x, x, 9)/x**5 == \
S(17)/315*x**2 + S(2)/15 + S(1)/3*x**(-2) + x**(-4)
assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \
4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \
x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[tan(a), a])
assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**S(3)/3 +
2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + S(1)/3)*x**3 + \
(tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)
assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \
(tan(a)**4 + S(4)/3*tan(a)**2 + S(1)/3)*x**3 + (tan(a)**2 + 1)*x**2*y + \
(tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)
R, x, y = ring('x, y', EX)
assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 +
2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a))
assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 +
2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \
EX(tan(a)**2 + 1)*x + EX(tan(a))
p = x + x**2 + 5
assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \
668083460499)
def test_cot():
R, x, y = ring('x, y', QQ)
assert rs_cot(x**6 + x**7, x, 8) == x**(-6) - x**(-5) + x**(-4) - \
x**(-3) + x**(-2) - x**(-1) + 1 - x + x**2 - x**3 + x**4 - x**5 + \
2*x**6/3 - 4*x**7/3
assert rs_cot(x + x**2*y, x, 5) == -x**4*y**5 - x**4*y/15 + x**3*y**4 - \
x**3/45 - x**2*y**3 - x**2*y/3 + x*y**2 - x/3 - y + x**(-1)
def test_sin():
R, x, y = ring('x, y', QQ)
assert rs_sin(x, x, 9)/x**5 == \
-S(1)/5040*x**2 + S(1)/120 - S(1)/6*x**(-2) + x**(-4)
assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \
x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \
x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \
x**3*y**3/6 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \
sin(a)*x**2/2 + cos(a)*x + sin(a)
assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \
cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \
cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a)
R, x, y = ring('x, y', EX)
assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \
EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a))
assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \
EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \
EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \
EX(cos(a))*x + EX(sin(a))
def test_cos():
R, x, y = ring('x, y', QQ)
assert rs_cos(x, x, 9)/x**5 == \
S(1)/40320*x**3 - S(1)/720*x + S(1)/24*x**(-1) - S(1)/2*x**(-3) + x**(-5)
assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \
x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \
x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \
x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \
cos(a)*x**2/2 - sin(a)*x + cos(a)
assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \
sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \
sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a)
R, x, y = ring('x, y', EX)
assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \
EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a))
assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \
EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \
EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \
EX(sin(a))*x + EX(cos(a))
def test_cos_sin():
R, x, y = ring('x, y', QQ)
cos, sin = rs_cos_sin(x, x, 9)
assert cos == rs_cos(x, x, 9)
assert sin == rs_sin(x, x, 9)
cos, sin = rs_cos_sin(x + x*y, x, 5)
assert cos == rs_cos(x + x*y, x, 5)
assert sin == rs_sin(x + x*y, x, 5)
def test_atanh():
R, x, y = ring('x, y', QQ)
assert rs_atanh(x, x, 9)/x**5 == S(1)/7*x**2 + S(1)/5 + S(1)/3*x**(-2) + x**(-4)
assert rs_atanh(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 + x**8*y**9 + \
2*x**7*y**9 + x**7*y**7/7 + x**6*y**9/3 + x**6*y**7 + x**5*y**7 + \
x**5*y**5/5 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_atanh(x + a, x, 5) == EX((a**3 + a)/(a**8 - 4*a**6 + 6*a**4 - \
4*a**2 + 1))*x**4 - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + \
9*a**2 - 3))*x**3 + EX(a/(a**4 - 2*a**2 + 1))*x**2 - EX(1/(a**2 - \
1))*x + EX(atanh(a))
assert rs_atanh(x + x**2*y + a, x, 4) == EX(2*a/(a**4 - 2*a**2 + \
1))*x**3*y - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + 9*a**2 - 3))*x**3 - \
EX(1/(a**2 - 1))*x**2*y + EX(a/(a**4 - 2*a**2 + 1))*x**2 - \
EX(1/(a**2 - 1))*x + EX(atanh(a))
p = x + x**2 + 5
assert rs_atanh(p, x, 10).compose(x, 10) == EX(-S(733442653682135)/5079158784 \
+ atanh(5))
def test_sinh():
R, x, y = ring('x, y', QQ)
assert rs_sinh(x, x, 9)/x**5 == S(1)/5040*x**2 + S(1)/120 + S(1)/6*x**(-2) + x**(-4)
assert rs_sinh(x*y + x**2*y**3, x, 9) == x**8*y**11/12 + \
x**8*y**9/720 + x**7*y**9/12 + x**7*y**7/5040 + x**6*y**9/6 + \
x**6*y**7/24 + x**5*y**7/2 + x**5*y**5/120 + x**4*y**5/2 + \
x**3*y**3/6 + x**2*y**3 + x*y
def test_cosh():
R, x, y = ring('x, y', QQ)
assert rs_cosh(x, x, 9)/x**5 == S(1)/40320*x**3 + S(1)/720*x + S(1)/24*x**(-1) + \
S(1)/2*x**(-3) + x**(-5)
assert rs_cosh(x*y + x**2*y**3, x, 9) == x**8*y**12/24 + \
x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 + \
x**7*y**8/120 + x**6*y**8/4 + x**6*y**6/720 + x**5*y**6/6 + \
x**4*y**6/2 + x**4*y**4/24 + x**3*y**4 + x**2*y**2/2 + 1
def test_tanh():
R, x, y = ring('x, y', QQ)
assert rs_tanh(x, x, 9)/x**5 == -S(17)/315*x**2 + S(2)/15 - S(1)/3*x**(-2) + x**(-4)
assert rs_tanh(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 - \
17*x**8*y**9/45 + 4*x**7*y**9/3 - 17*x**7*y**7/315 - x**6*y**9/3 + \
2*x**6*y**7/3 - x**5*y**7 + 2*x**5*y**5/15 - x**4*y**5 - \
x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_tanh(x + a, x, 5) == EX(tanh(a)**5 - 5*tanh(a)**3/3 +
2*tanh(a)/3)*x**4 + EX(-tanh(a)**4 + 4*tanh(a)**2/3 - QQ(1, 3))*x**3 + \
EX(tanh(a)**3 - tanh(a))*x**2 + EX(-tanh(a)**2 + 1)*x + EX(tanh(a))
p = rs_tanh(x + x**2*y + a, x, 4)
assert (p.compose(x, 10)).compose(y, 5) == EX(-1000*tanh(a)**4 + \
10100*tanh(a)**3 + 2470*tanh(a)**2/3 - 10099*tanh(a) + QQ(530, 3))
def test_RR():
rs_funcs = [rs_sin, rs_cos, rs_tan, rs_cot, rs_atan, rs_tanh]
sympy_funcs = [sin, cos, tan, cot, atan, tanh]
R, x, y = ring('x, y', RR)
a = symbols('a')
for rs_func, sympy_func in zip(rs_funcs, sympy_funcs):
p = rs_func(2 + x, x, 5).compose(x, 5)
q = sympy_func(2 + a).series(a, 0, 5).removeO()
is_close(p.as_expr(), q.subs(a, 5).n())
p = rs_nth_root(2 + x, 5, x, 5).compose(x, 5)
q = ((2 + a)**QQ(1, 5)).series(a, 0, 5).removeO()
is_close(p.as_expr(), q.subs(a, 5).n())
def test_is_regular():
R, x, y = ring('x, y', QQ)
p = 1 + 2*x + x**2 + 3*x**3
assert not rs_is_puiseux(p, x)
p = x + x**QQ(1,5)*y
assert rs_is_puiseux(p, x)
assert not rs_is_puiseux(p, y)
p = x + x**2*y**QQ(1,5)*y
assert not rs_is_puiseux(p, x)
def test_puiseux():
R, x, y = ring('x, y', QQ)
p = x**QQ(2,5) + x**QQ(2,3) + x
r = rs_series_inversion(p, x, 1)
r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \
2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \
+ x**QQ(-2,5)
assert r == r1
r = rs_nth_root(1 + p, 3, x, 1)
assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1
r = rs_log(1 + p, x, 1)
assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5)
r = rs_LambertW(p, x, 1)
assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5)
p1 = x + x**QQ(1,5)*y
r = rs_exp(p1, x, 1)
assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \
x**QQ(1,5)*y + 1
r = rs_atan(p, x, 2)
assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
x + x**QQ(2,3) + x**QQ(2,5)
r = rs_atan(p1, x, 2)
assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \
x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y
r = rs_asin(p, x, 2)
assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_cot(p, x, 1)
assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \
2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \
x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5)
r = rs_cos_sin(p, x, 2)
assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \
x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1
assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_atanh(p, x, 2)
assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \
x**QQ(2,3) + x**QQ(2,5)
r = rs_sinh(p, x, 2)
assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_cosh(p, x, 2)
assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \
x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1
r = rs_tanh(p, x, 2)
assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
x + x**QQ(2,3) + x**QQ(2,5)
def test1():
R, x = ring('x', QQ)
r = rs_sin(x, x, 15)*x**(-5)
assert r == x**8/6227020800 - x**6/39916800 + x**4/362880 - x**2/5040 + \
QQ(1,120) - x**-2/6 + x**-4
p = rs_sin(x, x, 10)
r = rs_nth_root(p, 2, x, 10)
assert r == -67*x**QQ(17,2)/29030400 - x**QQ(13,2)/24192 + \
x**QQ(9,2)/1440 - x**QQ(5,2)/12 + x**QQ(1,2)
p = rs_sin(x, x, 10)
r = rs_nth_root(p, 7, x, 10)
r = rs_pow(r, 5, x, 10)
assert r == -97*x**QQ(61,7)/124467840 - x**QQ(47,7)/16464 + \
11*x**QQ(33,7)/3528 - 5*x**QQ(19,7)/42 + x**QQ(5,7)
r = rs_exp(x**QQ(1,2), x, 10)
assert r == x**QQ(19,2)/121645100408832000 + x**9/6402373705728000 + \
x**QQ(17,2)/355687428096000 + x**8/20922789888000 + \
x**QQ(15,2)/1307674368000 + x**7/87178291200 + \
x**QQ(13,2)/6227020800 + x**6/479001600 + x**QQ(11,2)/39916800 + \
x**5/3628800 + x**QQ(9,2)/362880 + x**4/40320 + x**QQ(7,2)/5040 + \
x**3/720 + x**QQ(5,2)/120 + x**2/24 + x**QQ(3,2)/6 + x/2 + \
x**QQ(1,2) + 1
def test_puiseux2():
R, y = ring('y', QQ)
S, x = ring('x', R)
p = x + x**QQ(1,5)*y
r = rs_atan(p, x, 3)
assert r == (y**13/13 + y**8 + 2*y**3)*x**QQ(13,5) - (y**11/11 + y**6 +
y)*x**QQ(11,5) + (y**9/9 + y**4)*x**QQ(9,5) - (y**7/7 +
y**2)*x**QQ(7,5) + (y**5/5 + 1)*x - y**3*x**QQ(3,5)/3 + y*x**QQ(1,5)
def test_rs_series():
x, a, b, c = symbols('x, a, b, c')
assert rs_series(a, a, 5).as_expr() == a
assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
5)).removeO()
assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) +
cos(a)).series(a, 0, 5)).removeO()
assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)*
cos(a)).series(a, 0, 5)).removeO()
p = (sin(a) - a)*(cos(a**2) + a**4/2)
assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
10).removeO())
p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2)
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2)
assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
10).removeO())
p = sin(a + b + c)
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = tan(sin(a**2 + 4) + b + c)
assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0,
6).removeO())
p = a**QQ(2,5) + a**QQ(2,3) + a
r = rs_series(tan(p), a, 2)
assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \
a + a**QQ(2,3) + a**QQ(2,5)
r = rs_series(exp(p), a, 1)
assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1
r = rs_series(sin(p), a, 2)
assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \
a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5)
r = rs_series(cos(p), a, 2)
assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \
a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1
assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0,
5).removeO()
assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \
x**2/2 + x
assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \
8*x**2 + 4*x
assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \
x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \
x**2/2 + x
assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \
x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \
x**2*a**4/2 + x*a**2
|
285f551b2d3bedaf3016be3faf0a8c619fbfa653c5a6ba20ca66f2dbb17fb3a5 | """Tests for high-level polynomials manipulation functions. """
from sympy.polys.polyfuncs import (
symmetrize, horner, interpolate, rational_interpolate, viete,
)
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
)
from sympy import symbols, S
from sympy.utilities.pytest import raises
from sympy.abc import a, b, c, d, e, x, y, z
def test_symmetrize():
assert symmetrize(0, x, y, z) == (0, 0)
assert symmetrize(1, x, y, z) == (1, 0)
s1 = x + y + z
s2 = x*y + x*z + y*z
assert symmetrize(1) == (1, 0)
assert symmetrize(1, formal=True) == (1, 0, [])
assert symmetrize(x) == (x, 0)
assert symmetrize(x + 1) == (x + 1, 0)
assert symmetrize(x, x, y) == (x + y, -y)
assert symmetrize(x + 1, x, y) == (x + y + 1, -y)
assert symmetrize(x, x, y, z) == (s1, -y - z)
assert symmetrize(x + 1, x, y, z) == (s1 + 1, -y - z)
assert symmetrize(x**2, x, y, z) == (s1**2 - 2*s2, -y**2 - z**2)
assert symmetrize(x**2 + y**2) == (-2*x*y + (x + y)**2, 0)
assert symmetrize(x**2 - y**2) == (-2*x*y + (x + y)**2, -2*y**2)
assert symmetrize(x**3 + y**2 + a*x**2 + b*y**3, x, y) == \
(-3*x*y*(x + y) - 2*a*x*y + a*(x + y)**2 + (x + y)**3,
y**2*(1 - a) + y**3*(b - 1))
U = [u0, u1, u2] = symbols('u:3')
assert symmetrize(x + 1, x, y, z, formal=True, symbols=U) == \
(u0 + 1, -y - z, [(u0, x + y + z), (u1, x*y + x*z + y*z), (u2, x*y*z)])
assert symmetrize([1, 2, 3]) == [(1, 0), (2, 0), (3, 0)]
assert symmetrize([1, 2, 3], formal=True) == ([(1, 0), (2, 0), (3, 0)], [])
assert symmetrize([x + y, x - y]) == [(x + y, 0), (x + y, -2*y)]
def test_horner():
assert horner(0) == 0
assert horner(1) == 1
assert horner(x) == x
assert horner(x + 1) == x + 1
assert horner(x**2 + 1) == x**2 + 1
assert horner(x**2 + x) == (x + 1)*x
assert horner(x**2 + x + 1) == (x + 1)*x + 1
assert horner(
9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) == (((9*x + 8)*x + 7)*x + 6)*x + 5
assert horner(
a*x**4 + b*x**3 + c*x**2 + d*x + e) == (((a*x + b)*x + c)*x + d)*x + e
assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=x) == ((
4*y + 2)*x*y + (2*y + 1)*y)*x
assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=y) == ((
4*x + 2)*y*x + (2*x + 1)*x)*y
def test_interpolate():
assert interpolate([1, 4, 9, 16], x) == x**2
assert interpolate([1, 4, 9, 25], x) == S(3)*x**3/2 - S(8)*x**2 + S(33)*x/2 - 9
assert interpolate([(1, 1), (2, 4), (3, 9)], x) == x**2
assert interpolate([(1, 2), (2, 5), (3, 10)], x) == 1 + x**2
assert interpolate({1: 2, 2: 5, 3: 10}, x) == 1 + x**2
assert interpolate({5: 2, 7: 5, 8: 10, 9: 13}, x) == \
-S(13)*x**3/24 + S(12)*x**2 - S(2003)*x/24 + 187
assert interpolate([(1, 3), (0, 6), (2, 5), (5, 7), (-2, 4)], x) == \
S(-61)*x**4/280 + S(247)*x**3/210 + S(139)*x**2/280 - S(1871)*x/420 + 6
def test_rational_interpolate():
x, y = symbols('x,y')
xdata = [1, 2, 3, 4, 5, 6]
ydata1 = [120, 150, 200, 255, 312, 370]
ydata2 = [-210, -35, 105, 231, 350, 465]
assert rational_interpolate(list(zip(xdata, ydata1)), 2) == (
(60*x**2 + 60)/x )
assert rational_interpolate(list(zip(xdata, ydata1)), 3) == (
(60*x**2 + 60)/x )
assert rational_interpolate(list(zip(xdata, ydata2)), 2, X=y) == (
(105*y**2 - 525)/(y + 1) )
xdata = list(range(1,11))
ydata = [-1923885361858460, -5212158811973685, -9838050145867125,
-15662936261217245, -22469424125057910, -30073793365223685,
-38332297297028735, -47132954289530109, -56387719094026320,
-66026548943876885]
assert rational_interpolate(list(zip(xdata, ydata)), 5) == (
(-12986226192544605*x**4 +
8657484128363070*x**3 - 30301194449270745*x**2 + 4328742064181535*x
- 4328742064181535)/(x**3 + 9*x**2 - 3*x + 11))
def test_viete():
r1, r2 = symbols('r1, r2')
assert viete(
a*x**2 + b*x + c, [r1, r2], x) == [(r1 + r2, -b/a), (r1*r2, c/a)]
raises(ValueError, lambda: viete(1, [], x))
raises(ValueError, lambda: viete(x**2 + 1, [r1]))
raises(MultivariatePolynomialError, lambda: viete(x + y, [r1]))
|
a255c04bf70ba63e2d2cc05f8cad6cf2099b3d6d912d0c3268f37df25286fbfd | """Tests for user-friendly public interface to polynomial functions. """
from sympy.polys.polytools import (
Poly, PurePoly, poly,
parallel_poly_from_expr,
degree, degree_list,
total_degree,
LC, LM, LT,
pdiv, prem, pquo, pexquo,
div, rem, quo, exquo,
half_gcdex, gcdex, invert,
subresultants,
resultant, discriminant,
terms_gcd, cofactors,
gcd, gcd_list,
lcm, lcm_list,
trunc,
monic, content, primitive,
compose, decompose,
sturm,
gff_list, gff,
sqf_norm, sqf_part, sqf_list, sqf,
factor_list, factor,
intervals, refine_root, count_roots,
real_roots, nroots, ground_roots,
nth_power_roots_poly,
cancel, reduced, groebner,
GroebnerBasis, is_zero_dimensional,
_torational_factor_list,
to_rational_coeffs)
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
ExactQuotientFailed,
PolificationFailed,
ComputationFailed,
UnificationFailed,
RefinementFailed,
GeneratorsNeeded,
GeneratorsError,
PolynomialError,
CoercionFailed,
DomainError,
OptionError,
FlagError)
from sympy.polys.polyclasses import DMP
from sympy.polys.fields import field
from sympy.polys.domains import FF, ZZ, QQ, RR, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.orderings import lex, grlex, grevlex
from sympy import (
S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative,
exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff)
from sympy.core.basic import _aresame
from sympy.core.compatibility import iterable, PY3
from sympy.core.mul import _keep_coeff
from sympy.utilities.pytest import raises, XFAIL
from sympy.abc import a, b, c, d, p, q, t, w, x, y, z
from sympy import MatrixSymbol
def _epsilon_eq(a, b):
for x, y in zip(a, b):
if abs(x - y) > 1e-10:
return False
return True
def _strict_eq(a, b):
if type(a) == type(b):
if iterable(a):
if len(a) == len(b):
return all(_strict_eq(c, d) for c, d in zip(a, b))
else:
return False
else:
return isinstance(a, Poly) and a.eq(b, strict=True)
else:
return False
def test_Poly_from_dict():
K = FF(3)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=(
x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K)
assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \
Poly(sin(y)*x, x, domain='EX')
assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \
Poly(y*x, x, domain='EX')
assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \
Poly(x*y, x, y, domain='ZZ')
assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \
Poly(y*x, x, z, domain='EX')
def test_Poly_from_list():
K = FF(3)
assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR)
assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR)
raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y)))
def test_Poly_from_poly():
f = Poly(x + 7, x, domain=ZZ)
g = Poly(x + 2, x, modulus=3)
h = Poly(x + y, x, y, domain=ZZ)
K = FF(3)
assert Poly.from_poly(f) == f
assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K)
assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ)
assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ)
assert Poly.from_poly(f, gens=x) == f
assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K)
assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ)
assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ)
assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]')
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K))
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ))
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ))
assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ')
assert Poly.from_poly(
f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ')
assert Poly.from_poly(
f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ')
assert Poly.from_poly(
f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)')
K = FF(2)
assert Poly.from_poly(g) == g
assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ)
raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ))
assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K)
assert Poly.from_poly(g, gens=x) == g
assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ)
raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ))
assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K)
K = FF(3)
assert Poly.from_poly(h) == h
assert Poly.from_poly(
h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ))
assert Poly.from_poly(
h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ))
assert Poly.from_poly(
h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3))
assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ))
assert Poly.from_poly(
h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ))
assert Poly.from_poly(
h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3))
assert Poly.from_poly(h, gens=(x, y)) == h
assert Poly.from_poly(
h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(
h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(
h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
def test_Poly_from_expr():
raises(GeneratorsNeeded, lambda: Poly.from_expr(S(0)))
raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7)))
F3 = FF(3)
assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)
assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)
assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ)
assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ)
def test_Poly__new__():
raises(GeneratorsError, lambda: Poly(x + 1, x, x))
raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x]))
raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y]))
raises(OptionError, lambda: Poly(x, x, symmetric=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)]))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)]))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False))
raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False))
raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex'))
raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex'))
raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1}))
raises(GeneratorsNeeded, lambda: Poly([2, 1]))
raises(GeneratorsNeeded, lambda: Poly((2, 1)))
raises(GeneratorsNeeded, lambda: Poly(1))
f = a*x**2 + b*x + c
assert Poly({2: a, 1: b, 0: c}, x) == f
assert Poly(iter([a, b, c]), x) == f
assert Poly([a, b, c], x) == f
assert Poly((a, b, c), x) == f
f = Poly({}, x, y, z)
assert f.gens == (x, y, z) and f.as_expr() == 0
assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x)
assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]
raises(CoercionFailed, lambda: Poly(3*x**2/5 + 2*x/5 + 1, domain='ZZ'))
assert Poly(
3*x**2/5 + 2*x/5 + 1, domain='QQ').all_coeffs() == [S(3)/5, S(2)/5, 1]
assert _epsilon_eq(
Poly(3*x**2/5 + 2*x/5 + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0])
assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
assert Poly(
3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]
raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ'))
assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [S(31)/10, S(21)/10, 1]
assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0]
assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \
Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y)
assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I)
f = 3*x**5 - x**4 + x**3 - x** 2 + 65538
assert Poly(f, x, modulus=65537, symmetric=True) == \
Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537,
symmetric=True)
assert Poly(f, x, modulus=65537, symmetric=False) == \
Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x,
modulus=65537, symmetric=False)
assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField)
def test_Poly__args():
assert Poly(x**2 + 1).args == (x**2 + 1,)
def test_Poly__gens():
assert Poly((x - p)*(x - q), x).gens == (x,)
assert Poly((x - p)*(x - q), p).gens == (p,)
assert Poly((x - p)*(x - q), q).gens == (q,)
assert Poly((x - p)*(x - q), x, p).gens == (x, p)
assert Poly((x - p)*(x - q), x, q).gens == (x, q)
assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q)
assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q)
assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x)
assert Poly((x - p)*(x - q)).gens == (x, p, q)
assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q)
assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q)
assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x)
assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q)
assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p)
assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q)
assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p)
assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x)
assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x)
def test_Poly_zero():
assert Poly(x).zero == Poly(0, x, domain=ZZ)
assert Poly(x/2).zero == Poly(0, x, domain=QQ)
def test_Poly_one():
assert Poly(x).one == Poly(1, x, domain=ZZ)
assert Poly(x/2).one == Poly(1, x, domain=QQ)
def test_Poly__unify():
raises(UnificationFailed, lambda: Poly(x)._unify(y))
F3 = FF(3)
F5 = FF(5)
assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == (
DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))
assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == (
DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5))
assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3))
assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))
assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
F, A, B = field("a,b", ZZ)
assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
(DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))
assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
(DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))
raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)'))
f = Poly(t**2 + t/3 + x, t, domain='QQ(x)')
g = Poly(t**2 + t/3 + x, t, domain='QQ[x]')
assert f._unify(g)[2:] == (f.rep, f.rep)
def test_Poly_free_symbols():
assert Poly(x**2 + 1).free_symbols == {x}
assert Poly(x**2 + y*z).free_symbols == {x, y, z}
assert Poly(x**2 + y*z, x).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z}
assert Poly(1 + x + x**2, x, y, z).free_symbols == {x}
assert Poly(x + sin(y), z).free_symbols == {x, y}
def test_PurePoly_free_symbols():
assert PurePoly(x**2 + 1).free_symbols == set([])
assert PurePoly(x**2 + y*z).free_symbols == set([])
assert PurePoly(x**2 + y*z, x).free_symbols == {y, z}
assert PurePoly(x**2 + sin(y*z)).free_symbols == set([])
assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z}
assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z}
def test_Poly__eq__():
assert (Poly(x, x) == Poly(x, x)) is True
assert (Poly(x, x, domain=QQ) == Poly(x, x)) is True
assert (Poly(x, x) == Poly(x, x, domain=QQ)) is True
assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is True
assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is True
assert (Poly(x*y, x, y) == Poly(x, x)) is False
assert (Poly(x, x, y) == Poly(x, x)) is False
assert (Poly(x, x) == Poly(x, x, y)) is False
assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False
assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False
f = Poly(x, x, domain=ZZ)
g = Poly(x, x, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
t0 = Symbol('t0')
f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]')
g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)')
assert (f == g) is True
def test_PurePoly__eq__():
assert (PurePoly(x, x) == PurePoly(x, x)) is True
assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True
assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True
assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True
assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True
assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False
assert (PurePoly(x, x, y) == PurePoly(x, x)) is False
assert (PurePoly(x, x) == PurePoly(x, x, y)) is False
assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True
assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True
f = PurePoly(x, x, domain=ZZ)
g = PurePoly(x, x, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
f = PurePoly(x, x, domain=ZZ)
g = PurePoly(y, y, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
def test_PurePoly_Poly():
assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True
assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True
def test_Poly_get_domain():
assert Poly(2*x).get_domain() == ZZ
assert Poly(2*x, domain='ZZ').get_domain() == ZZ
assert Poly(2*x, domain='QQ').get_domain() == QQ
assert Poly(x/2).get_domain() == QQ
raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ'))
assert Poly(x/2, domain='QQ').get_domain() == QQ
assert isinstance(Poly(0.2*x).get_domain(), RealField)
def test_Poly_set_domain():
assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1)
assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1)
assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ')
assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ')
assert Poly(S(2)/10*x + S(1)/10).set_domain('RR') == Poly(0.2*x + 0.1)
assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(S(2)/10*x + S(1)/10)
raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ))
raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ))
raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y]))
def test_Poly_get_modulus():
assert Poly(x**2 + 1, modulus=2).get_modulus() == 2
raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus())
def test_Poly_set_modulus():
assert Poly(
x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7)
assert Poly(
x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2)
assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2)
raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2))
def test_Poly_add_ground():
assert Poly(x + 1).add_ground(2) == Poly(x + 3)
def test_Poly_sub_ground():
assert Poly(x + 1).sub_ground(2) == Poly(x - 1)
def test_Poly_mul_ground():
assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2)
def test_Poly_quo_ground():
assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2)
assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1)
def test_Poly_exquo_ground():
assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2)
raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2))
def test_Poly_abs():
assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x)
def test_Poly_neg():
assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x)
def test_Poly_add():
assert Poly(0, x).add(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) + Poly(0, x) == Poly(0, x)
assert Poly(1, x).add(Poly(0, x)) == Poly(1, x)
assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y)
assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y)
assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y)
assert Poly(1, x) + x == Poly(x + 1, x)
assert Poly(1, x) + sin(x) == 1 + sin(x)
assert Poly(x, x) + 1 == Poly(x + 1, x)
assert 1 + Poly(x, x) == Poly(x + 1, x)
def test_Poly_sub():
assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) - Poly(0, x) == Poly(0, x)
assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x)
assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y)
assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y)
assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y)
assert Poly(1, x) - x == Poly(1 - x, x)
assert Poly(1, x) - sin(x) == 1 - sin(x)
assert Poly(x, x) - 1 == Poly(x - 1, x)
assert 1 - Poly(x, x) == Poly(1 - x, x)
def test_Poly_mul():
assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) * Poly(0, x) == Poly(0, x)
assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x)
assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y)
assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y)
assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y)
assert Poly(1, x) * x == Poly(x, x)
assert Poly(1, x) * sin(x) == sin(x)
assert Poly(x, x) * 2 == Poly(2*x, x)
assert 2 * Poly(x, x) == Poly(2*x, x)
def test_issue_13079():
assert Poly(x)*x == Poly(x**2, x, domain='ZZ')
assert x*Poly(x) == Poly(x**2, x, domain='ZZ')
assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ')
assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ')
assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ')
def test_Poly_sqr():
assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y)
def test_Poly_pow():
assert Poly(x, x).pow(10) == Poly(x**10, x)
assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x)
assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y)
assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y)
assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y)
assert Poly(x*y + 1, x, y)**(-1) == (x*y + 1)**(-1)
assert Poly(x*y + 1, x, y)**x == (x*y + 1)**x
def test_Poly_divmod():
f, g = Poly(x**2), Poly(x)
q, r = g, Poly(0, x)
assert divmod(f, g) == (q, r)
assert f // g == q
assert f % g == r
assert divmod(f, x) == (q, r)
assert f // x == q
assert f % x == r
q, r = Poly(0, x), Poly(2, x)
assert divmod(2, g) == (q, r)
assert 2 // g == q
assert 2 % g == r
assert Poly(x)/Poly(x) == 1
assert Poly(x**2)/Poly(x) == x
assert Poly(x)/Poly(x**2) == 1/x
def test_Poly_eq_ne():
assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True
assert (Poly(x + y, x) == Poly(x + y, x, y)) is False
assert (Poly(x + y, x, y) == Poly(x + y, x)) is False
assert (Poly(x + y, x) == Poly(x + y, x)) is True
assert (Poly(x + y, y) == Poly(x + y, y)) is True
assert (Poly(x + y, x, y) == x + y) is True
assert (Poly(x + y, x) == x + y) is True
assert (Poly(x + y, x, y) == x + y) is True
assert (Poly(x + y, x) == x + y) is True
assert (Poly(x + y, y) == x + y) is True
assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False
assert (Poly(x + y, x) != Poly(x + y, x, y)) is True
assert (Poly(x + y, x, y) != Poly(x + y, x)) is True
assert (Poly(x + y, x) != Poly(x + y, x)) is False
assert (Poly(x + y, y) != Poly(x + y, y)) is False
assert (Poly(x + y, x, y) != x + y) is False
assert (Poly(x + y, x) != x + y) is False
assert (Poly(x + y, x, y) != x + y) is False
assert (Poly(x + y, x) != x + y) is False
assert (Poly(x + y, y) != x + y) is False
assert (Poly(x, x) == sin(x)) is False
assert (Poly(x, x) != sin(x)) is True
def test_Poly_nonzero():
assert not bool(Poly(0, x)) is True
assert not bool(Poly(1, x)) is False
def test_Poly_properties():
assert Poly(0, x).is_zero is True
assert Poly(1, x).is_zero is False
assert Poly(1, x).is_one is True
assert Poly(2, x).is_one is False
assert Poly(x - 1, x).is_sqf is True
assert Poly((x - 1)**2, x).is_sqf is False
assert Poly(x - 1, x).is_monic is True
assert Poly(2*x - 1, x).is_monic is False
assert Poly(3*x + 2, x).is_primitive is True
assert Poly(4*x + 2, x).is_primitive is False
assert Poly(1, x).is_ground is True
assert Poly(x, x).is_ground is False
assert Poly(x + y + z + 1).is_linear is True
assert Poly(x*y*z + 1).is_linear is False
assert Poly(x*y + z + 1).is_quadratic is True
assert Poly(x*y*z + 1).is_quadratic is False
assert Poly(x*y).is_monomial is True
assert Poly(x*y + 1).is_monomial is False
assert Poly(x**2 + x*y).is_homogeneous is True
assert Poly(x**3 + x*y).is_homogeneous is False
assert Poly(x).is_univariate is True
assert Poly(x*y).is_univariate is False
assert Poly(x*y).is_multivariate is True
assert Poly(x).is_multivariate is False
assert Poly(
x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False
assert Poly(
x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True
def test_Poly_is_irreducible():
assert Poly(x**2 + x + 1).is_irreducible is True
assert Poly(x**2 + 2*x + 1).is_irreducible is False
assert Poly(7*x + 3, modulus=11).is_irreducible is True
assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False
def test_Poly_subs():
assert Poly(x + 1).subs(x, 0) == 1
assert Poly(x + 1).subs(x, x) == Poly(x + 1)
assert Poly(x + 1).subs(x, y) == Poly(y + 1)
assert Poly(x*y, x).subs(y, x) == x**2
assert Poly(x*y, x).subs(x, y) == y**2
def test_Poly_replace():
assert Poly(x + 1).replace(x) == Poly(x + 1)
assert Poly(x + 1).replace(y) == Poly(y + 1)
raises(PolynomialError, lambda: Poly(x + y).replace(z))
assert Poly(x + 1).replace(x, x) == Poly(x + 1)
assert Poly(x + 1).replace(x, y) == Poly(y + 1)
assert Poly(x + y).replace(x, x) == Poly(x + y)
assert Poly(x + y).replace(x, z) == Poly(z + y, z, y)
assert Poly(x + y).replace(y, y) == Poly(x + y)
assert Poly(x + y).replace(y, z) == Poly(x + z, x, z)
assert Poly(x + y).replace(z, t) == Poly(x + y)
raises(PolynomialError, lambda: Poly(x + y).replace(x, y))
assert Poly(x + y, x).replace(x, z) == Poly(z + y, z)
assert Poly(x + y, y).replace(y, z) == Poly(x + z, z)
raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y))
raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x))
def test_Poly_reorder():
raises(PolynomialError, lambda: Poly(x + y).reorder(x, z))
assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y)
assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x)
assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y)
assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x)
assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y)
assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x)
def test_Poly_ltrim():
f = Poly(y**2 + y*z**2, x, y, z).ltrim(y)
assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z)
assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y)
raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y))
raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1))
def test_Poly_has_only_gens():
assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True
assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False
raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t))
def test_Poly_to_ring():
assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ')
assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ')
raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring())
raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring())
def test_Poly_to_field():
assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ')
assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ')
assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ')
assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3)
assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0)
def test_Poly_to_exact():
assert Poly(2*x).to_exact() == Poly(2*x)
assert Poly(x/2).to_exact() == Poly(x/2)
assert Poly(0.1*x).to_exact() == Poly(x/10)
def test_Poly_retract():
f = Poly(x**2 + 1, x, domain=QQ[y])
assert f.retract() == Poly(x**2 + 1, x, domain='ZZ')
assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ')
assert Poly(0, x, y).retract() == Poly(0, x, y)
def test_Poly_slice():
f = Poly(x**3 + 2*x**2 + 3*x + 4)
assert f.slice(0, 0) == Poly(0, x)
assert f.slice(0, 1) == Poly(4, x)
assert f.slice(0, 2) == Poly(3*x + 4, x)
assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x)
assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)
assert f.slice(x, 0, 0) == Poly(0, x)
assert f.slice(x, 0, 1) == Poly(4, x)
assert f.slice(x, 0, 2) == Poly(3*x + 4, x)
assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x)
assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)
def test_Poly_coeffs():
assert Poly(0, x).coeffs() == [0]
assert Poly(1, x).coeffs() == [1]
assert Poly(2*x + 1, x).coeffs() == [2, 1]
assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1]
assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1]
assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1]
assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2]
def test_Poly_monoms():
assert Poly(0, x).monoms() == [(0,)]
assert Poly(1, x).monoms() == [(0,)]
assert Poly(2*x + 1, x).monoms() == [(1,), (0,)]
assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)]
assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)]
assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)]
assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)]
def test_Poly_terms():
assert Poly(0, x).terms() == [((0,), 0)]
assert Poly(1, x).terms() == [((0,), 1)]
assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)]
assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)]
assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)]
assert Poly(
x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)]
assert Poly(
x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
def test_Poly_all_coeffs():
assert Poly(0, x).all_coeffs() == [0]
assert Poly(1, x).all_coeffs() == [1]
assert Poly(2*x + 1, x).all_coeffs() == [2, 1]
assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1]
assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1]
def test_Poly_all_monoms():
assert Poly(0, x).all_monoms() == [(0,)]
assert Poly(1, x).all_monoms() == [(0,)]
assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)]
assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)]
assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)]
def test_Poly_all_terms():
assert Poly(0, x).all_terms() == [((0,), 0)]
assert Poly(1, x).all_terms() == [((0,), 1)]
assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)]
assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \
[((2,), 7), ((1,), 2), ((0,), 1)]
assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \
[((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)]
def test_Poly_termwise():
f = Poly(x**2 + 20*x + 400)
g = Poly(x**2 + 2*x + 4)
def func(monom, coeff):
(k,) = monom
return coeff//10**(2 - k)
assert f.termwise(func) == g
def func(monom, coeff):
(k,) = monom
return (k,), coeff//10**(2 - k)
assert f.termwise(func) == g
def test_Poly_length():
assert Poly(0, x).length() == 0
assert Poly(1, x).length() == 1
assert Poly(x, x).length() == 1
assert Poly(x + 1, x).length() == 2
assert Poly(x**2 + 1, x).length() == 2
assert Poly(x**2 + x + 1, x).length() == 3
def test_Poly_as_dict():
assert Poly(0, x).as_dict() == {}
assert Poly(0, x, y, z).as_dict() == {}
assert Poly(1, x).as_dict() == {(0,): 1}
assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1}
assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3}
assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3}
assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3,
(1, 1, 0): 4, (1, 0, 1): 5}
def test_Poly_as_expr():
assert Poly(0, x).as_expr() == 0
assert Poly(0, x, y, z).as_expr() == 0
assert Poly(1, x).as_expr() == 1
assert Poly(1, x, y, z).as_expr() == 1
assert Poly(x**2 + 3, x).as_expr() == x**2 + 3
assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3
assert Poly(
3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z
f = Poly(x**2 + 2*x*y**2 - y, x, y)
assert f.as_expr() == -y + x**2 + 2*x*y**2
assert f.as_expr({x: 5}) == 25 - y + 10*y**2
assert f.as_expr({y: 6}) == -6 + 72*x + x**2
assert f.as_expr({x: 5, y: 6}) == 379
assert f.as_expr(5, 6) == 379
raises(GeneratorsError, lambda: f.as_expr({z: 7}))
def test_Poly_lift():
assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \
Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521,
x, domain='QQ')
def test_Poly_deflate():
assert Poly(0, x).deflate() == ((1,), Poly(0, x))
assert Poly(1, x).deflate() == ((1,), Poly(1, x))
assert Poly(x, x).deflate() == ((1,), Poly(x, x))
assert Poly(x**2, x).deflate() == ((2,), Poly(x, x))
assert Poly(x**17, x).deflate() == ((17,), Poly(x, x))
assert Poly(
x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z))
def test_Poly_inject():
f = Poly(x**2*y + x*y**3 + x*y + 1, x)
assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y)
assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x)
def test_Poly_eject():
f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
ex = x + y + z + t + w
g = Poly(ex, x, y, z, t, w)
assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]')
assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]')
assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]')
assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]')
assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[w, t]')
assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[w, t, z]')
raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y))
raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y))
def test_Poly_exclude():
assert Poly(x, x, y).exclude() == Poly(x, x)
assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y)
assert Poly(1, x, y).exclude() == Poly(1, x, y)
def test_Poly__gen_to_level():
assert Poly(1, x, y)._gen_to_level(-2) == 0
assert Poly(1, x, y)._gen_to_level(-1) == 1
assert Poly(1, x, y)._gen_to_level( 0) == 0
assert Poly(1, x, y)._gen_to_level( 1) == 1
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3))
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2))
assert Poly(1, x, y)._gen_to_level(x) == 0
assert Poly(1, x, y)._gen_to_level(y) == 1
assert Poly(1, x, y)._gen_to_level('x') == 0
assert Poly(1, x, y)._gen_to_level('y') == 1
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z))
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z'))
def test_Poly_degree():
assert Poly(0, x).degree() == -oo
assert Poly(1, x).degree() == 0
assert Poly(x, x).degree() == 1
assert Poly(0, x).degree(gen=0) == -oo
assert Poly(1, x).degree(gen=0) == 0
assert Poly(x, x).degree(gen=0) == 1
assert Poly(0, x).degree(gen=x) == -oo
assert Poly(1, x).degree(gen=x) == 0
assert Poly(x, x).degree(gen=x) == 1
assert Poly(0, x).degree(gen='x') == -oo
assert Poly(1, x).degree(gen='x') == 0
assert Poly(x, x).degree(gen='x') == 1
raises(PolynomialError, lambda: Poly(1, x).degree(gen=1))
raises(PolynomialError, lambda: Poly(1, x).degree(gen=y))
raises(PolynomialError, lambda: Poly(1, x).degree(gen='y'))
assert Poly(1, x, y).degree() == 0
assert Poly(2*y, x, y).degree() == 0
assert Poly(x*y, x, y).degree() == 1
assert Poly(1, x, y).degree(gen=x) == 0
assert Poly(2*y, x, y).degree(gen=x) == 0
assert Poly(x*y, x, y).degree(gen=x) == 1
assert Poly(1, x, y).degree(gen=y) == 0
assert Poly(2*y, x, y).degree(gen=y) == 1
assert Poly(x*y, x, y).degree(gen=y) == 1
assert degree(0, x) == -oo
assert degree(1, x) == 0
assert degree(x, x) == 1
assert degree(x*y**2, x) == 1
assert degree(x*y**2, y) == 2
assert degree(x*y**2, z) == 0
assert degree(pi) == 1
raises(TypeError, lambda: degree(y**2 + x**3))
raises(TypeError, lambda: degree(y**2 + x**3, 1))
raises(PolynomialError, lambda: degree(x, 1.1))
raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x))
assert degree(Poly(0,x),z) == -oo
assert degree(Poly(1,x),z) == 0
assert degree(Poly(x**2+y**3,y)) == 3
assert degree(Poly(y**2 + x**3, y, x), 1) == 3
assert degree(Poly(y**2 + x**3, x), z) == 0
assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4
def test_Poly_degree_list():
assert Poly(0, x).degree_list() == (-oo,)
assert Poly(0, x, y).degree_list() == (-oo, -oo)
assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo)
assert Poly(1, x).degree_list() == (0,)
assert Poly(1, x, y).degree_list() == (0, 0)
assert Poly(1, x, y, z).degree_list() == (0, 0, 0)
assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2)
assert degree_list(1, x) == (0,)
assert degree_list(x, x) == (1,)
assert degree_list(x*y**2) == (1, 2)
raises(ComputationFailed, lambda: degree_list(1))
def test_Poly_total_degree():
assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5
assert Poly(x**2 + z**3).total_degree() == 3
assert Poly(x*y*z + z**4).total_degree() == 4
assert Poly(x**3 + x + 1).total_degree() == 3
assert total_degree(x*y + z**3) == 3
assert total_degree(x*y + z**3, x, y) == 2
assert total_degree(1) == 0
assert total_degree(Poly(y**2 + x**3 + z**4)) == 4
assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3
assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4
assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7
def test_Poly_homogenize():
assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z)
assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z)
assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2)
def test_Poly_homogeneous_order():
assert Poly(0, x, y).homogeneous_order() == -oo
assert Poly(1, x, y).homogeneous_order() == 0
assert Poly(x, x, y).homogeneous_order() == 1
assert Poly(x*y, x, y).homogeneous_order() == 2
assert Poly(x + 1, x, y).homogeneous_order() is None
assert Poly(x*y + x, x, y).homogeneous_order() is None
assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5
assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None
def test_Poly_LC():
assert Poly(0, x).LC() == 0
assert Poly(1, x).LC() == 1
assert Poly(2*x**2 + x, x).LC() == 2
assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2
assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1
assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2
assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1
def test_Poly_TC():
assert Poly(0, x).TC() == 0
assert Poly(1, x).TC() == 1
assert Poly(2*x**2 + x, x).TC() == 0
def test_Poly_EC():
assert Poly(0, x).EC() == 0
assert Poly(1, x).EC() == 1
assert Poly(2*x**2 + x, x).EC() == 1
assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1
assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2
def test_Poly_coeff():
assert Poly(0, x).coeff_monomial(1) == 0
assert Poly(0, x).coeff_monomial(x) == 0
assert Poly(1, x).coeff_monomial(1) == 1
assert Poly(1, x).coeff_monomial(x) == 0
assert Poly(x**8, x).coeff_monomial(1) == 0
assert Poly(x**8, x).coeff_monomial(x**7) == 0
assert Poly(x**8, x).coeff_monomial(x**8) == 1
assert Poly(x**8, x).coeff_monomial(x**9) == 0
assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1
assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3
p = Poly(24*x*y*exp(8) + 23*x, x, y)
assert p.coeff_monomial(x) == 23
assert p.coeff_monomial(y) == 0
assert p.coeff_monomial(x*y) == 24*exp(8)
assert p.as_expr().coeff(x) == 24*y*exp(8) + 23
raises(NotImplementedError, lambda: p.coeff(x))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y))
def test_Poly_nth():
assert Poly(0, x).nth(0) == 0
assert Poly(0, x).nth(1) == 0
assert Poly(1, x).nth(0) == 1
assert Poly(1, x).nth(1) == 0
assert Poly(x**8, x).nth(0) == 0
assert Poly(x**8, x).nth(7) == 0
assert Poly(x**8, x).nth(8) == 1
assert Poly(x**8, x).nth(9) == 0
assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1
assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3
raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1))
def test_Poly_LM():
assert Poly(0, x).LM() == (0,)
assert Poly(1, x).LM() == (0,)
assert Poly(2*x**2 + x, x).LM() == (2,)
assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3)
assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7)
assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3
assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7
def test_Poly_LM_custom_order():
f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1)
rev_lex = lambda monom: tuple(reversed(monom))
assert f.LM(order='lex') == (2, 3, 1)
assert f.LM(order=rev_lex) == (2, 1, 3)
def test_Poly_EM():
assert Poly(0, x).EM() == (0,)
assert Poly(1, x).EM() == (0,)
assert Poly(2*x**2 + x, x).EM() == (1,)
assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7)
assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3)
def test_Poly_LT():
assert Poly(0, x).LT() == ((0,), 0)
assert Poly(1, x).LT() == ((0,), 1)
assert Poly(2*x**2 + x, x).LT() == ((2,), 2)
assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2)
assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1)
assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3
assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7
def test_Poly_ET():
assert Poly(0, x).ET() == ((0,), 0)
assert Poly(1, x).ET() == ((0,), 1)
assert Poly(2*x**2 + x, x).ET() == ((1,), 1)
assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1)
assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2)
def test_Poly_max_norm():
assert Poly(-1, x).max_norm() == 1
assert Poly( 0, x).max_norm() == 0
assert Poly( 1, x).max_norm() == 1
def test_Poly_l1_norm():
assert Poly(-1, x).l1_norm() == 1
assert Poly( 0, x).l1_norm() == 0
assert Poly( 1, x).l1_norm() == 1
def test_Poly_clear_denoms():
coeff, poly = Poly(x + 2, x).clear_denoms()
assert coeff == 1 and poly == Poly(
x + 2, x, domain='ZZ') and poly.get_domain() == ZZ
coeff, poly = Poly(x/2 + 1, x).clear_denoms()
assert coeff == 2 and poly == Poly(
x + 2, x, domain='QQ') and poly.get_domain() == QQ
coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True)
assert coeff == 2 and poly == Poly(
x + 2, x, domain='ZZ') and poly.get_domain() == ZZ
coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True)
assert coeff == y and poly == Poly(
x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y]
coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms()
assert coeff == 3 and poly == Poly(
x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX
coeff, poly = Poly(
x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True)
assert coeff == 3 and poly == Poly(
x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX
def test_Poly_rat_clear_denoms():
f = Poly(x**2/y + 1, x)
g = Poly(x**3 + y, x)
assert f.rat_clear_denoms(g) == \
(Poly(x**2 + y, x), Poly(y*x**3 + y**2, x))
f = f.set_domain(EX)
g = g.set_domain(EX)
assert f.rat_clear_denoms(g) == (f, g)
def test_Poly_integrate():
assert Poly(x + 1).integrate() == Poly(x**2/2 + x)
assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x)
assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x)
assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x)
assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y)
assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2)
assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2)
assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2)
assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2)
assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y)
assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y)
def test_Poly_diff():
assert Poly(x**2 + x).diff() == Poly(2*x + 1)
assert Poly(x**2 + x).diff(x) == Poly(2*x + 1)
assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1)
assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y)
assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x)
assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y)
assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y)
assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y)
assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y)
assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1)
assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1)
def test_issue_9585():
assert diff(Poly(x**2 + x)) == Poly(2*x + 1)
assert diff(Poly(x**2 + x), x, evaluate=False) == \
Derivative(Poly(x**2 + x), x)
assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1)
def test_Poly_eval():
assert Poly(0, x).eval(7) == 0
assert Poly(1, x).eval(7) == 1
assert Poly(x, x).eval(7) == 7
assert Poly(0, x).eval(0, 7) == 0
assert Poly(1, x).eval(0, 7) == 1
assert Poly(x, x).eval(0, 7) == 7
assert Poly(0, x).eval(x, 7) == 0
assert Poly(1, x).eval(x, 7) == 1
assert Poly(x, x).eval(x, 7) == 7
assert Poly(0, x).eval('x', 7) == 0
assert Poly(1, x).eval('x', 7) == 1
assert Poly(x, x).eval('x', 7) == 7
raises(PolynomialError, lambda: Poly(1, x).eval(1, 7))
raises(PolynomialError, lambda: Poly(1, x).eval(y, 7))
raises(PolynomialError, lambda: Poly(1, x).eval('y', 7))
assert Poly(123, x, y).eval(7) == Poly(123, y)
assert Poly(2*y, x, y).eval(7) == Poly(2*y, y)
assert Poly(x*y, x, y).eval(7) == Poly(7*y, y)
assert Poly(123, x, y).eval(x, 7) == Poly(123, y)
assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y)
assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y)
assert Poly(123, x, y).eval(y, 7) == Poly(123, x)
assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x)
assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x)
assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y)
assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x)
assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49
assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48
assert Poly(x*y + y, x, y).eval((6, 7)) == 49
assert Poly(x*y + y, x, y).eval([6, 7]) == 49
assert Poly(x + 1, domain='ZZ').eval(S(1)/2) == S(3)/2
assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1
raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8)))
raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S(1)/2, auto=False))
# issue 6344
alpha = Symbol('alpha')
result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1)
f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]')
assert f.eval((z + 1)/(z - 1)) == result
g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]')
assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)')
def test_Poly___call__():
f = Poly(2*x*y + 3*x + y + 2*z)
assert f(2) == Poly(5*y + 2*z + 6)
assert f(2, 5) == Poly(2*z + 31)
assert f(2, 5, 7) == 45
def test_parallel_poly_from_expr():
assert parallel_poly_from_expr(
[x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr([Poly(
x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([Poly(
x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([x - 1, Poly(
x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([Poly(x - 1, x), Poly(
x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr(
[x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \
[Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')]
raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1]))
def test_pdiv():
f, g = x**2 - y**2, x - y
q, r = x + y, 0
F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]
assert F.pdiv(G) == (Q, R)
assert F.prem(G) == R
assert F.pquo(G) == Q
assert F.pexquo(G) == Q
assert pdiv(f, g) == (q, r)
assert prem(f, g) == r
assert pquo(f, g) == q
assert pexquo(f, g) == q
assert pdiv(f, g, x, y) == (q, r)
assert prem(f, g, x, y) == r
assert pquo(f, g, x, y) == q
assert pexquo(f, g, x, y) == q
assert pdiv(f, g, (x, y)) == (q, r)
assert prem(f, g, (x, y)) == r
assert pquo(f, g, (x, y)) == q
assert pexquo(f, g, (x, y)) == q
assert pdiv(F, G) == (Q, R)
assert prem(F, G) == R
assert pquo(F, G) == Q
assert pexquo(F, G) == Q
assert pdiv(f, g, polys=True) == (Q, R)
assert prem(f, g, polys=True) == R
assert pquo(f, g, polys=True) == Q
assert pexquo(f, g, polys=True) == Q
assert pdiv(F, G, polys=False) == (q, r)
assert prem(F, G, polys=False) == r
assert pquo(F, G, polys=False) == q
assert pexquo(F, G, polys=False) == q
raises(ComputationFailed, lambda: pdiv(4, 2))
raises(ComputationFailed, lambda: prem(4, 2))
raises(ComputationFailed, lambda: pquo(4, 2))
raises(ComputationFailed, lambda: pexquo(4, 2))
def test_div():
f, g = x**2 - y**2, x - y
q, r = x + y, 0
F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]
assert F.div(G) == (Q, R)
assert F.rem(G) == R
assert F.quo(G) == Q
assert F.exquo(G) == Q
assert div(f, g) == (q, r)
assert rem(f, g) == r
assert quo(f, g) == q
assert exquo(f, g) == q
assert div(f, g, x, y) == (q, r)
assert rem(f, g, x, y) == r
assert quo(f, g, x, y) == q
assert exquo(f, g, x, y) == q
assert div(f, g, (x, y)) == (q, r)
assert rem(f, g, (x, y)) == r
assert quo(f, g, (x, y)) == q
assert exquo(f, g, (x, y)) == q
assert div(F, G) == (Q, R)
assert rem(F, G) == R
assert quo(F, G) == Q
assert exquo(F, G) == Q
assert div(f, g, polys=True) == (Q, R)
assert rem(f, g, polys=True) == R
assert quo(f, g, polys=True) == Q
assert exquo(f, g, polys=True) == Q
assert div(F, G, polys=False) == (q, r)
assert rem(F, G, polys=False) == r
assert quo(F, G, polys=False) == q
assert exquo(F, G, polys=False) == q
raises(ComputationFailed, lambda: div(4, 2))
raises(ComputationFailed, lambda: rem(4, 2))
raises(ComputationFailed, lambda: quo(4, 2))
raises(ComputationFailed, lambda: exquo(4, 2))
f, g = x**2 + 1, 2*x - 4
qz, rz = 0, x**2 + 1
qq, rq = x/2 + 1, 5
assert div(f, g) == (qq, rq)
assert div(f, g, auto=True) == (qq, rq)
assert div(f, g, auto=False) == (qz, rz)
assert div(f, g, domain=ZZ) == (qz, rz)
assert div(f, g, domain=QQ) == (qq, rq)
assert div(f, g, domain=ZZ, auto=True) == (qq, rq)
assert div(f, g, domain=ZZ, auto=False) == (qz, rz)
assert div(f, g, domain=QQ, auto=True) == (qq, rq)
assert div(f, g, domain=QQ, auto=False) == (qq, rq)
assert rem(f, g) == rq
assert rem(f, g, auto=True) == rq
assert rem(f, g, auto=False) == rz
assert rem(f, g, domain=ZZ) == rz
assert rem(f, g, domain=QQ) == rq
assert rem(f, g, domain=ZZ, auto=True) == rq
assert rem(f, g, domain=ZZ, auto=False) == rz
assert rem(f, g, domain=QQ, auto=True) == rq
assert rem(f, g, domain=QQ, auto=False) == rq
assert quo(f, g) == qq
assert quo(f, g, auto=True) == qq
assert quo(f, g, auto=False) == qz
assert quo(f, g, domain=ZZ) == qz
assert quo(f, g, domain=QQ) == qq
assert quo(f, g, domain=ZZ, auto=True) == qq
assert quo(f, g, domain=ZZ, auto=False) == qz
assert quo(f, g, domain=QQ, auto=True) == qq
assert quo(f, g, domain=QQ, auto=False) == qq
f, g, q = x**2, 2*x, x/2
assert exquo(f, g) == q
assert exquo(f, g, auto=True) == q
raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False))
raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ))
assert exquo(f, g, domain=QQ) == q
assert exquo(f, g, domain=ZZ, auto=True) == q
raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False))
assert exquo(f, g, domain=QQ, auto=True) == q
assert exquo(f, g, domain=QQ, auto=False) == q
f, g = Poly(x**2), Poly(x)
q, r = f.div(g)
assert q.get_domain().is_ZZ and r.get_domain().is_ZZ
r = f.rem(g)
assert r.get_domain().is_ZZ
q = f.quo(g)
assert q.get_domain().is_ZZ
q = f.exquo(g)
assert q.get_domain().is_ZZ
f, g = Poly(x+y, x), Poly(2*x+y, x)
q, r = f.div(g)
assert q.get_domain().is_Frac and r.get_domain().is_Frac
def test_issue_7864():
q, r = div(a, .408248290463863*a)
assert abs(q - 2.44948974278318) < 1e-14
assert r == 0
def test_gcdex():
f, g = 2*x, x**2 - 16
s, t, h = x/32, -Rational(1, 16), 1
F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ]
assert F.half_gcdex(G) == (S, H)
assert F.gcdex(G) == (S, T, H)
assert F.invert(G) == S
assert half_gcdex(f, g) == (s, h)
assert gcdex(f, g) == (s, t, h)
assert invert(f, g) == s
assert half_gcdex(f, g, x) == (s, h)
assert gcdex(f, g, x) == (s, t, h)
assert invert(f, g, x) == s
assert half_gcdex(f, g, (x,)) == (s, h)
assert gcdex(f, g, (x,)) == (s, t, h)
assert invert(f, g, (x,)) == s
assert half_gcdex(F, G) == (S, H)
assert gcdex(F, G) == (S, T, H)
assert invert(F, G) == S
assert half_gcdex(f, g, polys=True) == (S, H)
assert gcdex(f, g, polys=True) == (S, T, H)
assert invert(f, g, polys=True) == S
assert half_gcdex(F, G, polys=False) == (s, h)
assert gcdex(F, G, polys=False) == (s, t, h)
assert invert(F, G, polys=False) == s
assert half_gcdex(100, 2004) == (-20, 4)
assert gcdex(100, 2004) == (-20, 1, 4)
assert invert(3, 7) == 5
raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False))
raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False))
raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False))
def test_revert():
f = Poly(1 - x**2/2 + x**4/24 - x**6/720)
g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1)
assert f.revert(8) == g
def test_subresultants():
f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2
F, G, H = Poly(f), Poly(g), Poly(h)
assert F.subresultants(G) == [F, G, H]
assert subresultants(f, g) == [f, g, h]
assert subresultants(f, g, x) == [f, g, h]
assert subresultants(f, g, (x,)) == [f, g, h]
assert subresultants(F, G) == [F, G, H]
assert subresultants(f, g, polys=True) == [F, G, H]
assert subresultants(F, G, polys=False) == [f, g, h]
raises(ComputationFailed, lambda: subresultants(4, 2))
def test_resultant():
f, g, h = x**2 - 2*x + 1, x**2 - 1, 0
F, G = Poly(f), Poly(g)
assert F.resultant(G) == h
assert resultant(f, g) == h
assert resultant(f, g, x) == h
assert resultant(f, g, (x,)) == h
assert resultant(F, G) == h
assert resultant(f, g, polys=True) == h
assert resultant(F, G, polys=False) == h
assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2])
f, g, h = x - a, x - b, a - b
F, G, H = Poly(f), Poly(g), Poly(h)
assert F.resultant(G) == H
assert resultant(f, g) == h
assert resultant(f, g, x) == h
assert resultant(f, g, (x,)) == h
assert resultant(F, G) == H
assert resultant(f, g, polys=True) == H
assert resultant(F, G, polys=False) == h
raises(ComputationFailed, lambda: resultant(4, 2))
def test_discriminant():
f, g = x**3 + 3*x**2 + 9*x - 13, -11664
F = Poly(f)
assert F.discriminant() == g
assert discriminant(f) == g
assert discriminant(f, x) == g
assert discriminant(f, (x,)) == g
assert discriminant(F) == g
assert discriminant(f, polys=True) == g
assert discriminant(F, polys=False) == g
f, g = a*x**2 + b*x + c, b**2 - 4*a*c
F, G = Poly(f), Poly(g)
assert F.discriminant() == G
assert discriminant(f) == g
assert discriminant(f, x, a, b, c) == g
assert discriminant(f, (x, a, b, c)) == g
assert discriminant(F) == G
assert discriminant(f, polys=True) == G
assert discriminant(F, polys=False) == g
raises(ComputationFailed, lambda: discriminant(4))
def test_dispersion():
# We test only the API here. For more mathematical
# tests see the dedicated test file.
fp = poly((x + 1)*(x + 2), x)
assert sorted(fp.dispersionset()) == [0, 1]
assert fp.dispersion() == 1
fp = poly(x**4 - 3*x**2 + 1, x)
gp = fp.shift(-3)
assert sorted(fp.dispersionset(gp)) == [2, 3, 4]
assert fp.dispersion(gp) == 4
def test_gcd_list():
F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]
assert gcd_list(F) == x - 1
assert gcd_list(F, polys=True) == Poly(x - 1)
assert gcd_list([]) == 0
assert gcd_list([1, 2]) == 1
assert gcd_list([4, 6, 8]) == 2
assert gcd_list([x*(y + 42) - x*y - x*42]) == 0
gcd = gcd_list([], x)
assert gcd.is_Number and gcd is S.Zero
gcd = gcd_list([], x, polys=True)
assert gcd.is_Poly and gcd.is_zero
raises(ComputationFailed, lambda: gcd_list([], polys=True))
def test_lcm_list():
F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]
assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2
assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2)
assert lcm_list([]) == 1
assert lcm_list([1, 2]) == 2
assert lcm_list([4, 6, 8]) == 24
assert lcm_list([x*(y + 42) - x*y - x*42]) == 0
lcm = lcm_list([], x)
assert lcm.is_Number and lcm is S.One
lcm = lcm_list([], x, polys=True)
assert lcm.is_Poly and lcm.is_one
raises(ComputationFailed, lambda: lcm_list([], polys=True))
def test_gcd():
f, g = x**3 - 1, x**2 - 1
s, t = x**2 + x + 1, x + 1
h, r = x - 1, x**4 + x**3 - x - 1
F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ]
assert F.cofactors(G) == (H, S, T)
assert F.gcd(G) == H
assert F.lcm(G) == R
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == r
assert cofactors(f, g, x) == (h, s, t)
assert gcd(f, g, x) == h
assert lcm(f, g, x) == r
assert cofactors(f, g, (x,)) == (h, s, t)
assert gcd(f, g, (x,)) == h
assert lcm(f, g, (x,)) == r
assert cofactors(F, G) == (H, S, T)
assert gcd(F, G) == H
assert lcm(F, G) == R
assert cofactors(f, g, polys=True) == (H, S, T)
assert gcd(f, g, polys=True) == H
assert lcm(f, g, polys=True) == R
assert cofactors(F, G, polys=False) == (h, s, t)
assert gcd(F, G, polys=False) == h
assert lcm(F, G, polys=False) == r
f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
h, s, t = g, 1.0*x + 1.0, 1.0
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == f
f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
h, s, t = g, 1.0*x + 1.0, 1.0
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == f
assert cofactors(8, 6) == (2, 4, 3)
assert gcd(8, 6) == 2
assert lcm(8, 6) == 24
f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4
l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4
h, s, t = x - 4, x + 1, x**2 + 1
assert cofactors(f, g, modulus=11) == (h, s, t)
assert gcd(f, g, modulus=11) == h
assert lcm(f, g, modulus=11) == l
f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7
l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7
h, s, t = x + 7, x + 1, x**2 + 1
assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t)
assert gcd(f, g, modulus=11, symmetric=False) == h
assert lcm(f, g, modulus=11, symmetric=False) == l
raises(TypeError, lambda: gcd(x))
raises(TypeError, lambda: lcm(x))
def test_gcd_numbers_vs_polys():
assert isinstance(gcd(3, 9), Integer)
assert isinstance(gcd(3*x, 9), Integer)
assert gcd(3, 9) == 3
assert gcd(3*x, 9) == 3
assert isinstance(gcd(S(3)/2, S(9)/4), Rational)
assert isinstance(gcd(S(3)/2*x, S(9)/4), Rational)
assert gcd(S(3)/2, S(9)/4) == S(3)/4
assert gcd(S(3)/2*x, S(9)/4) == 1
assert isinstance(gcd(3.0, 9.0), Float)
assert isinstance(gcd(3.0*x, 9.0), Float)
assert gcd(3.0, 9.0) == 1.0
assert gcd(3.0*x, 9.0) == 1.0
def test_terms_gcd():
assert terms_gcd(1) == 1
assert terms_gcd(1, x) == 1
assert terms_gcd(x - 1) == x - 1
assert terms_gcd(-x - 1) == -x - 1
assert terms_gcd(2*x + 3) == 2*x + 3
assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False)
assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2)
assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2)
assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2)
assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2)
assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2)
assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == 2*x*y/15*(5*x**2 + 6*y**2)
assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2)
assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3)
assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \
(3*x + 3)*(x*y + x)
assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \
3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1)
assert terms_gcd(sin(x + x*y), deep=True) == \
sin(x*(y + 1))
eq = Eq(2*x, 2*y + 2*z*y)
assert terms_gcd(eq) == eq
assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1))
def test_trunc():
f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x
F, G = Poly(f), Poly(g)
assert F.trunc(3) == G
assert trunc(f, 3) == g
assert trunc(f, 3, x) == g
assert trunc(f, 3, (x,)) == g
assert trunc(F, 3) == G
assert trunc(f, 3, polys=True) == G
assert trunc(F, 3, polys=False) == g
f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1
F, G = Poly(f), Poly(g)
assert F.trunc(3) == G
assert trunc(f, 3) == g
assert trunc(f, 3, x) == g
assert trunc(f, 3, (x,)) == g
assert trunc(F, 3) == G
assert trunc(f, 3, polys=True) == G
assert trunc(F, 3, polys=False) == g
f = Poly(x**2 + 2*x + 3, modulus=5)
assert f.trunc(2) == Poly(x**2 + 1, modulus=5)
def test_monic():
f, g = 2*x - 1, x - S(1)/2
F, G = Poly(f, domain='QQ'), Poly(g)
assert F.monic() == G
assert monic(f) == g
assert monic(f, x) == g
assert monic(f, (x,)) == g
assert monic(F) == G
assert monic(f, polys=True) == G
assert monic(F, polys=False) == g
raises(ComputationFailed, lambda: monic(4))
assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2
raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False))
assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0
assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2
def test_content():
f, F = 4*x + 2, Poly(4*x + 2)
assert F.content() == 2
assert content(f) == 2
raises(ComputationFailed, lambda: content(4))
f = Poly(2*x, modulus=3)
assert f.content() == 1
def test_primitive():
f, g = 4*x + 2, 2*x + 1
F, G = Poly(f), Poly(g)
assert F.primitive() == (2, G)
assert primitive(f) == (2, g)
assert primitive(f, x) == (2, g)
assert primitive(f, (x,)) == (2, g)
assert primitive(F) == (2, G)
assert primitive(f, polys=True) == (2, G)
assert primitive(F, polys=False) == (2, g)
raises(ComputationFailed, lambda: primitive(4))
f = Poly(2*x, modulus=3)
g = Poly(2.0*x, domain=RR)
assert f.primitive() == (1, f)
assert g.primitive() == (1.0, g)
assert primitive(S('-3*x/4 + y + 11/8')) == \
S('(1/8, -6*x + 8*y + 11)')
def test_compose():
f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9
g = x**4 - 2*x + 9
h = x**3 + 5*x
F, G, H = map(Poly, (f, g, h))
assert G.compose(H) == F
assert compose(g, h) == f
assert compose(g, h, x) == f
assert compose(g, h, (x,)) == f
assert compose(G, H) == F
assert compose(g, h, polys=True) == F
assert compose(G, H, polys=False) == f
assert F.decompose() == [G, H]
assert decompose(f) == [g, h]
assert decompose(f, x) == [g, h]
assert decompose(f, (x,)) == [g, h]
assert decompose(F) == [G, H]
assert decompose(f, polys=True) == [G, H]
assert decompose(F, polys=False) == [g, h]
raises(ComputationFailed, lambda: compose(4, 2))
raises(ComputationFailed, lambda: decompose(4))
assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y
assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y
def test_shift():
assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x)
def test_transform():
# Also test that 3-way unification is done correctly
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
Poly(4, x) == \
cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1)))
assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
Poly(3*x**2/2 + S(5)/2, x) == \
cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1)))
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S(1)/2), Poly(x - 1)) == \
Poly(S(9)/4, x) == \
cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S(1)/2)/(x - 1)))
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S(1)/2)) == \
Poly(S(9)/4, x) == \
cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S(1)/2)))
# Unify ZZ, QQ, and RR
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S(1)/2)) == \
Poly(S(9)/4, x) == \
cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S(1)/2)))
raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1)))
def test_sturm():
f, F = x, Poly(x, domain='QQ')
g, G = 1, Poly(1, x, domain='QQ')
assert F.sturm() == [F, G]
assert sturm(f) == [f, g]
assert sturm(f, x) == [f, g]
assert sturm(f, (x,)) == [f, g]
assert sturm(F) == [F, G]
assert sturm(f, polys=True) == [F, G]
assert sturm(F, polys=False) == [f, g]
raises(ComputationFailed, lambda: sturm(4))
raises(DomainError, lambda: sturm(f, auto=False))
f = Poly(S(1024)/(15625*pi**8)*x**5
- S(4096)/(625*pi**8)*x**4
+ S(32)/(15625*pi**4)*x**3
- S(128)/(625*pi**4)*x**2
+ S(1)/62500*x
- S(1)/625, x, domain='ZZ(pi)')
assert sturm(f) == \
[Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'),
Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'),
Poly((S(20000)/9 - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'),
Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')]
def test_gff():
f = x**5 + 2*x**4 - x**3 - 2*x**2
assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)]
assert gff_list(f) == [(x, 1), (x + 2, 4)]
raises(NotImplementedError, lambda: gff(f))
f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5)
assert Poly(f).gff_list() == [(
Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)]
assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]
raises(NotImplementedError, lambda: gff(f))
def test_norm():
a, b = sqrt(2), sqrt(3)
f = Poly(a*x + b*y, x, y, extension=(a, b))
assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ')
def test_sqf_norm():
assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \
(1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1)
assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \
(1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1)
assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \
(1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)),
Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))
assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \
(1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)),
Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))
def test_sqf():
f = x**5 - x**3 - x**2 + 1
g = x**3 + 2*x**2 + 2*x + 1
h = x - 1
p = x**4 + x**3 - x - 1
F, G, H, P = map(Poly, (f, g, h, p))
assert F.sqf_part() == P
assert sqf_part(f) == p
assert sqf_part(f, x) == p
assert sqf_part(f, (x,)) == p
assert sqf_part(F) == P
assert sqf_part(f, polys=True) == P
assert sqf_part(F, polys=False) == p
assert F.sqf_list() == (1, [(G, 1), (H, 2)])
assert sqf_list(f) == (1, [(g, 1), (h, 2)])
assert sqf_list(f, x) == (1, [(g, 1), (h, 2)])
assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)])
assert sqf_list(F) == (1, [(G, 1), (H, 2)])
assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)])
assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)])
assert F.sqf_list_include() == [(G, 1), (H, 2)]
raises(ComputationFailed, lambda: sqf_part(4))
assert sqf(1) == 1
assert sqf_list(1) == (1, [])
assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7
assert sqf(f) == g*h**2
assert sqf(f, x) == g*h**2
assert sqf(f, (x,)) == g*h**2
d = x**2 + y**2
assert sqf(f/d) == (g*h**2)/d
assert sqf(f/d, x) == (g*h**2)/d
assert sqf(f/d, (x,)) == (g*h**2)/d
assert sqf(x - 1) == x - 1
assert sqf(-x - 1) == -x - 1
assert sqf(x - 1) == x - 1
assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert sqf((6*x - 10)/(3*x - 6)) == S(2)/3*((3*x - 5)/(x - 2))
assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2
f = 3 + x - x*(1 + x) + x**2
assert sqf(f) == 3
f = (x**2 + 2*x + 1)**20000000000
assert sqf(f) == (x + 1)**40000000000
assert sqf_list(f) == (1, [(x + 1, 40000000000)])
def test_factor():
f = x**5 - x**3 - x**2 + 1
u = x + 1
v = x - 1
w = x**2 + x + 1
F, U, V, W = map(Poly, (f, u, v, w))
assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)])
assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)]
assert factor_list(1) == (1, [])
assert factor_list(6) == (6, [])
assert factor_list(sqrt(3), x) == (sqrt(3), [])
assert factor_list((-1)**x, x) == (1, [(-1, x)])
assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)])
assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)])
assert factor(6) == 6 and factor(6).is_Integer
assert factor_list(3*x) == (3, [(x, 1)])
assert factor_list(3*x**2) == (3, [(x, 2)])
assert factor(3*x) == 3*x
assert factor(3*x**2) == 3*x**2
assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7
assert factor(f) == u*v**2*w
assert factor(f, x) == u*v**2*w
assert factor(f, (x,)) == u*v**2*w
g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1
assert factor(f/g) == (u*v**2*w)/(p*q)
assert factor(f/g, x) == (u*v**2*w)/(p*q)
assert factor(f/g, (x,)) == (u*v**2*w)/(p*q)
p = Symbol('p', positive=True)
i = Symbol('i', integer=True)
r = Symbol('r', real=True)
assert factor(sqrt(x*y)).is_Pow is True
assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1))
assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1)
assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i
assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i
assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t
assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t
f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3))
g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1)
assert factor(f) == g
assert factor(g) == g
g = (x - 1)**5*(r**2 + 1)
f = sqrt(expand(g))
assert factor(f) == sqrt(g)
f = Poly(sin(1)*x + 1, x, domain=EX)
assert f.factor_list() == (1, [(f, 1)])
f = x**4 + 1
assert factor(f) == f
assert factor(f, extension=I) == (x**2 - I)*(x**2 + I)
assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I)
assert factor(
f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1)
f = x**2 + 2*sqrt(2)*x + 2
assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2
assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6
assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \
(x + sqrt(2)*y)*(x - sqrt(2)*y)
assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \
2*((x + sqrt(2)*y)*(x - sqrt(2)*y))
assert factor(x - 1) == x - 1
assert factor(-x - 1) == -x - 1
assert factor(x - 1) == x - 1
assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \
(x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1)
assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \
(x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 +
x**3 + 65536*x** 2 + 1)
f = x/pi + x*sin(x)/pi
g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1)
assert factor(f) == x*(sin(x) + 1)/pi
assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2
assert factor(Eq(
x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1))
f = (x**2 - 1)/(x**2 + 4*x + 4)
assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2
assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2
f = 3 + x - x*(1 + x) + x**2
assert factor(f) == 3
assert factor(f, x) == 3
assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 +
x**3)/(1 + 2*x**2 + x**3))
assert factor(f, expand=False) == f
raises(PolynomialError, lambda: factor(f, x, expand=False))
raises(FlagError, lambda: factor(x**2 - 1, polys=True))
assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \
[x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))]
assert not isinstance(
Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True
assert isinstance(
PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True
assert factor(sqrt(-x)) == sqrt(-x)
# issue 5917
e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x -
1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) +
x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)))
assert factor(e) == 0
# deep option
assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x
assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x
assert factor(sqrt(x**2)) == sqrt(x**2)
# issue 13149
assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0,
0.5*y + 1.0, evaluate = False)
assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2
eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360
assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12)
# fraction option
f = 5*x + 3*exp(2 - 7*x)
assert factor(f, deep=True) == factor(f, deep=True, fraction=True)
assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x)
def test_factor_large():
f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567
g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + (
x**2 + 2*x + 1)**3000)
assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134
assert factor(g) == (x + 1)**6000*(y + 1)**2
assert factor_list(
f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)])
assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)])
f = (x**2 - y**2)**200000*(x**7 + 1)
g = (x**2 + y**2)**200000*(x**7 + 1)
assert factor(f) == \
(x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 +
x**4 - x**3 + x**2 - x + 1)
assert factor(g, gaussian=True) == \
(x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 +
x**4 - x**3 + x**2 - x + 1)
assert factor_list(f) == \
(1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 -
x**5 + x**4 - x**3 + x**2 - x + 1, 1)])
assert factor_list(g, gaussian=True) == \
(1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), (
x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)])
def test_factor_noeval():
assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert factor((6*x - 10)/(3*x - 6)) == Mul(S(2)/3, 3*x - 5, 1/(x - 2))
def test_intervals():
assert intervals(0) == []
assert intervals(1) == []
assert intervals(x, sqf=True) == [(0, 0)]
assert intervals(x) == [((0, 0), 1)]
assert intervals(x**128) == [((0, 0), 128)]
assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})]
f = Poly((2*x/5 - S(17)/3)*(4*x + S(1)/257))
assert f.intervals(sqf=True) == [(-1, 0), (14, 15)]
assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)]
assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)]
assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)]
assert f.intervals(eps=S(1)/10) == f.intervals(eps=0.1) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/100) == f.intervals(eps=0.01) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/1000) == f.intervals(eps=0.001) == \
[((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/10000) == f.intervals(eps=0.0001) == \
[((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)]
f = (2*x/5 - S(17)/3)*(4*x + S(1)/257)
assert intervals(f, sqf=True) == [(-1, 0), (14, 15)]
assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)]
assert intervals(f, eps=S(1)/10) == intervals(f, eps=0.1) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/100) == intervals(f, eps=0.01) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/1000) == intervals(f, eps=0.001) == \
[((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/10000) == intervals(f, eps=0.0001) == \
[((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)]
f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3)
assert f.intervals() == \
[((-2, -S(3)/2), 7), ((-S(3)/2, -1), 1),
((-1, -1), 1), ((-1, 0), 3),
((1, S(3)/2), 1), ((S(3)/2, 2), 7)]
assert intervals([x**5 - 200, x**5 - 201]) == \
[((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})]
assert intervals([x**5 - 200, x**5 - 201], fast=True) == \
[((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})]
assert intervals([x**2 - 200, x**2 - 201]) == \
[((-S(71)/5, -S(85)/6), {1: 1}), ((-S(85)/6, -14), {0: 1}),
((14, S(85)/6), {0: 1}), ((S(85)/6, S(71)/5), {1: 1})]
assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \
[((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2:
1, 5: 1, 6: 1}), ((2, 2), {7: 2})]
f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1
assert intervals(f, inf=S(7)/4, sqf=True) == []
assert intervals(f, inf=S(7)/5, sqf=True) == [(S(7)/5, S(3)/2)]
assert intervals(f, sup=S(7)/4, sqf=True) == [(-2, -1), (1, S(3)/2)]
assert intervals(f, sup=S(7)/5, sqf=True) == [(-2, -1)]
assert intervals(g, inf=S(7)/4) == []
assert intervals(g, inf=S(7)/5) == [((S(7)/5, S(3)/2), 2)]
assert intervals(g, sup=S(7)/4) == [((-2, -1), 2), ((1, S(3)/2), 2)]
assert intervals(g, sup=S(7)/5) == [((-2, -1), 2)]
assert intervals([g, h], inf=S(7)/4) == []
assert intervals([g, h], inf=S(7)/5) == [((S(7)/5, S(3)/2), {0: 2})]
assert intervals([g, h], sup=S(
7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, S(3)/2), {0: 2})]
assert intervals(
[g, h], sup=S(7)/5) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})]
assert intervals([x + 2, x**2 - 2]) == \
[((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})]
assert intervals([x + 2, x**2 - 2], strict=True) == \
[((-2, -2), {0: 1}), ((-S(3)/2, -1), {1: 1}), ((1, 2), {1: 1})]
f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20
assert intervals(f) == []
real_part, complex_part = intervals(f, all=True, sqf=True)
assert real_part == []
assert all(re(a) < re(r) < re(b) and im(
a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))
assert complex_part == [(-S(40)/7 - 40*I/7, 0), (-S(40)/7, 40*I/7),
(-40*I/7, S(40)/7), (0, S(40)/7 + 40*I/7)]
real_part, complex_part = intervals(f, all=True, sqf=True, eps=S(1)/10)
assert real_part == []
assert all(re(a) < re(r) < re(b) and im(
a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))
raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000))
raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000))
raises(
ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000))
def test_refine_root():
f = Poly(x**2 - 2)
assert f.refine_root(1, 2, steps=0) == (1, 2)
assert f.refine_root(-2, -1, steps=0) == (-2, -1)
assert f.refine_root(1, 2, steps=None) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=None) == (-S(3)/2, -1)
assert f.refine_root(1, 2, steps=1) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=1) == (-S(3)/2, -1)
assert f.refine_root(1, 2, steps=1, fast=True) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=1, fast=True) == (-S(3)/2, -1)
assert f.refine_root(1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12)
assert f.refine_root(1, 2, eps=1e-2) == (S(24)/17, S(17)/12)
raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True))
raises(RefinementFailed, lambda: (f**2).refine_root(1, 2))
raises(RefinementFailed, lambda: (f**2).refine_root(2, 3))
f = x**2 - 2
assert refine_root(f, 1, 2, steps=1) == (1, S(3)/2)
assert refine_root(f, -2, -1, steps=1) == (-S(3)/2, -1)
assert refine_root(f, 1, 2, steps=1, fast=True) == (1, S(3)/2)
assert refine_root(f, -2, -1, steps=1, fast=True) == (-S(3)/2, -1)
assert refine_root(f, 1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12)
assert refine_root(f, 1, 2, eps=1e-2) == (S(24)/17, S(17)/12)
raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=S(1)/100))
raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000))
raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000))
def test_count_roots():
assert count_roots(x**2 - 2) == 2
assert count_roots(x**2 - 2, inf=-oo) == 2
assert count_roots(x**2 - 2, sup=+oo) == 2
assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2
assert count_roots(x**2 - 2, inf=-2) == 2
assert count_roots(x**2 - 2, inf=-1) == 1
assert count_roots(x**2 - 2, sup=1) == 1
assert count_roots(x**2 - 2, sup=2) == 2
assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
assert count_roots(x**2 - 2, inf=-2, sup=2) == 2
assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
assert count_roots(x**2 - 2, inf=-2, sup=2) == 2
assert count_roots(x**2 + 2) == 0
assert count_roots(x**2 + 2, inf=-2*I) == 2
assert count_roots(x**2 + 2, sup=+2*I) == 2
assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2
assert count_roots(x**2 + 2, inf=0) == 0
assert count_roots(x**2 + 2, sup=0) == 0
assert count_roots(x**2 + 2, inf=-I) == 1
assert count_roots(x**2 + 2, sup=+I) == 1
assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0
assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0
raises(PolynomialError, lambda: count_roots(1))
def test_Poly_root():
f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
assert f.root(0) == -S(1)/2
assert f.root(1) == 2
assert f.root(2) == 2
raises(IndexError, lambda: f.root(3))
assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0)
def test_real_roots():
assert real_roots(x) == [0]
assert real_roots(x, multiple=False) == [(0, 1)]
assert real_roots(x**3) == [0, 0, 0]
assert real_roots(x**3, multiple=False) == [(0, 3)]
assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0]
assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof(
x**3 + x + 3, 0), 1), (0, 1)]
assert real_roots(
x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0]
assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof(
x**3 + x + 3, 0), 1), (0, 3)]
f = 2*x**3 - 7*x**2 + 4*x + 4
g = x**3 + x + 1
assert Poly(f).real_roots() == [-S(1)/2, 2, 2]
assert Poly(g).real_roots() == [rootof(g, 0)]
def test_all_roots():
f = 2*x**3 - 7*x**2 + 4*x + 4
g = x**3 + x + 1
assert Poly(f).all_roots() == [-S(1)/2, 2, 2]
assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)]
def test_nroots():
assert Poly(0, x).nroots() == []
assert Poly(1, x).nroots() == []
assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0]
assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I]
roots = Poly(x**2 - 1, x).nroots()
assert roots == [-1.0, 1.0]
roots = Poly(x**2 + 1, x).nroots()
assert roots == [-1.0*I, 1.0*I]
roots = Poly(x**2/3 - S(1)/3, x).nroots()
assert roots == [-1.0, 1.0]
roots = Poly(x**2/3 + S(1)/3, x).nroots()
assert roots == [-1.0*I, 1.0*I]
assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]
assert Poly(
x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]
assert Poly(0.2*x + 0.1).nroots() == [-0.5]
roots = nroots(x**5 + x + 1, n=5)
eps = Float("1e-5")
assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true
assert im(roots[0]) == 0.0
assert re(roots[1]) == -0.5
assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true
assert re(roots[2]) == -0.5
assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true
assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true
assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true
assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true
assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true
eps = Float("1e-6")
assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false
assert im(roots[0]) == 0.0
assert re(roots[1]) == -0.5
assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false
assert re(roots[2]) == -0.5
assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false
assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false
assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false
assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false
assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false
raises(DomainError, lambda: Poly(x + y, x).nroots())
raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots())
assert nroots(x**2 - 1) == [-1.0, 1.0]
roots = nroots(x**2 - 1)
assert roots == [-1.0, 1.0]
assert nroots(x + I) == [-1.0*I]
assert nroots(x + 2*I) == [-2.0*I]
raises(PolynomialError, lambda: nroots(0))
# issue 8296
f = Poly(x**4 - 1)
assert f.nroots(2) == [w.n(2) for w in f.all_roots()]
assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 +
39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 +
877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 '
'- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, '
'2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, '
'1.7 + 2.5*I]')
def test_ground_roots():
f = x**6 - 4*x**4 + 4*x**3 - x**2
assert Poly(f).ground_roots() == {S(1): 2, S(0): 2}
assert ground_roots(f) == {S(1): 2, S(0): 2}
def test_nth_power_roots_poly():
f = x**4 - x**2 + 1
f_2 = (x**2 - x + 1)**2
f_3 = (x**2 + 1)**2
f_4 = (x**2 + x + 1)**2
f_12 = (x - 1)**4
assert nth_power_roots_poly(f, 1) == f
raises(ValueError, lambda: nth_power_roots_poly(f, 0))
raises(ValueError, lambda: nth_power_roots_poly(f, x))
assert factor(nth_power_roots_poly(f, 2)) == f_2
assert factor(nth_power_roots_poly(f, 3)) == f_3
assert factor(nth_power_roots_poly(f, 4)) == f_4
assert factor(nth_power_roots_poly(f, 12)) == f_12
raises(MultivariatePolynomialError, lambda: nth_power_roots_poly(
x + y, 2, x, y))
def test_torational_factor_list():
p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
assert _torational_factor_list(p, x) == (-2, [
(-x*(1 + sqrt(2))/2 + 1, 1),
(-x*(1 + sqrt(2)) - 1, 1),
(-x*(1 + sqrt(2)) + 1, 1)])
p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))}))
assert _torational_factor_list(p, x) is None
def test_cancel():
assert cancel(0) == 0
assert cancel(7) == 7
assert cancel(x) == x
assert cancel(oo) == oo
assert cancel((2, 3)) == (1, 2, 3)
assert cancel((1, 0), x) == (1, 1, 0)
assert cancel((0, 1), x) == (1, 0, 1)
f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1
F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ]
assert F.cancel(G) == (1, P, Q)
assert cancel((f, g)) == (1, p, q)
assert cancel((f, g), x) == (1, p, q)
assert cancel((f, g), (x,)) == (1, p, q)
assert cancel((F, G)) == (1, P, Q)
assert cancel((f, g), polys=True) == (1, P, Q)
assert cancel((F, G), polys=False) == (1, p, q)
f = (x**2 - 2)/(x + sqrt(2))
assert cancel(f) == f
assert cancel(f, greedy=False) == x - sqrt(2)
f = (x**2 - 2)/(x - sqrt(2))
assert cancel(f) == f
assert cancel(f, greedy=False) == x + sqrt(2)
assert cancel((x**2/4 - 1, x/2 - 1)) == (S(1)/2, x + 2, 1)
assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y)
assert cancel((x**2 - y**2)/(x - y), x) == x + y
assert cancel((x**2 - y**2)/(x - y), y) == x + y
assert cancel((x**2 - y**2)/(x - y)) == x + y
assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1)
assert cancel((x**3/2 - S(1)/2)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2)
assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1
f = Poly(x**2 - a**2, x)
g = Poly(x - a, x)
F = Poly(x + a, x)
G = Poly(1, x)
assert cancel((f, g)) == (1, F, G)
f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2)
g = x**2 - 2
assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2))
f = Poly(-2*x + 3, x)
g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x)
assert cancel((f, g)) == (1, -f, -g)
f = Poly(y, y, domain='ZZ(x)')
g = Poly(1, y, domain='ZZ[x]')
assert f.cancel(
g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))
assert f.cancel(g, include=True) == (
Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))
f = Poly(5*x*y + x, y, domain='ZZ(x)')
g = Poly(2*x**2*y, y, domain='ZZ(x)')
assert f.cancel(g, include=True) == (
Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)'))
f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2))
assert cancel(f).is_Mul == True
P = tanh(x - 3.0)
Q = tanh(x + 3.0)
f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \
+ (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**(S(3)/2))
assert cancel(f).is_Mul == True
# issue 7022
A = Symbol('A', commutative=False)
p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
p2 = Piecewise((A*(x - 1), x > 1), (1/x, True))
assert cancel(p1) == p2
assert cancel(2*p1) == 2*p2
assert cancel(1 + p1) == 1 + p2
assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2
assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2
p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
p4 = Piecewise(((x - 1), x > 1), (1/x, True))
assert cancel(p3) == p4
assert cancel(2*p3) == 2*p4
assert cancel(1 + p3) == 1 + p4
assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4
assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4
# issue 9363
M = MatrixSymbol('M', 5, 5)
assert cancel(M[0,0] + 7) == M[0,0] + 7
expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z
assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z
def test_reduced():
f = 2*x**4 + y**2 - x**2 + y**3
G = [x**3 - x, y**3 - y]
Q = [2*x, 1]
r = x**2 + y**2 + y
assert reduced(f, G) == (Q, r)
assert reduced(f, G, x, y) == (Q, r)
H = groebner(G)
assert H.reduce(f) == (Q, r)
Q = [Poly(2*x, x, y), Poly(1, x, y)]
r = Poly(x**2 + y**2 + y, x, y)
assert _strict_eq(reduced(f, G, polys=True), (Q, r))
assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r))
H = groebner(G, polys=True)
assert _strict_eq(H.reduce(f), (Q, r))
f = 2*x**3 + y**3 + 3*y
G = groebner([x**2 + y**2 - 1, x*y - 2])
Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + 3*y/4]
r = 0
assert reduced(f, G) == (Q, r)
assert G.reduce(f) == (Q, r)
assert reduced(f, G, auto=False)[1] != 0
assert G.reduce(f, auto=False)[1] != 0
assert G.contains(f) is True
assert G.contains(f + 1) is False
assert reduced(1, [1], x) == ([1], 0)
raises(ComputationFailed, lambda: reduced(1, [1]))
def test_groebner():
assert groebner([], x, y, z) == []
assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4]
assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2]
assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \
[Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)]
assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \
[Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)]
assert groebner([x**3 - 1, x**2 - 1]) == [x - 1]
assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1]
F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2]
f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5
G = groebner(F, x, y, z, modulus=7, symmetric=False)
assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5,
1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6,
1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6,
6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7]
Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True)
assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7)
F = [x*y - 2*y, 2*y**2 - x**2]
assert groebner(F, x, y, order='grevlex') == \
[y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
assert groebner(F, y, x, order='grevlex') == \
[x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y]
assert groebner(F, order='grevlex', field=True) == \
[y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
assert groebner([1], x) == [1]
assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y]
raises(ComputationFailed, lambda: groebner([1]))
assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1]
assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1]
raises(ValueError, lambda: groebner([x, y], method='unknown'))
def test_fglm():
F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1]
G = groebner(F, a, b, c, d, order=grlex)
B = [
4*a + 3*d**9 - 4*d**5 - 3*d,
4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d,
d**12 - d**8 - d**4 + 1,
]
assert groebner(F, a, b, c, d, order=lex) == B
assert G.fglm(lex) == B
F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
-72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \
108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96]
G = groebner(F, t, x, order=grlex)
B = [
203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \
10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \
20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194,
9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
]
assert groebner(F, t, x, order=lex) == B
assert G.fglm(lex) == B
F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1]
G = groebner(F, x, y, order=lex)
B = [
x**2 - x - 3*y + 1,
y**2 - 2*x + y - 1,
]
assert groebner(F, x, y, order=grlex) == B
assert G.fglm(grlex) == B
def test_is_zero_dimensional():
assert is_zero_dimensional([x, y], x, y) is True
assert is_zero_dimensional([x**3 + y**2], x, y) is False
assert is_zero_dimensional([x, y, z], x, y, z) is True
assert is_zero_dimensional([x, y, z], x, y, z, t) is False
F = [x*y - z, y*z - x, x*y - y]
assert is_zero_dimensional(F, x, y, z) is True
F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2]
assert is_zero_dimensional(F, x, y, z) is True
def test_GroebnerBasis():
F = [x*y - 2*y, 2*y**2 - x**2]
G = groebner(F, x, y, order='grevlex')
H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
P = [ Poly(h, x, y) for h in H ]
assert groebner(F + [0], x, y, order='grevlex') == G
assert isinstance(G, GroebnerBasis) is True
assert len(G) == 3
assert G[0] == H[0] and not G[0].is_Poly
assert G[1] == H[1] and not G[1].is_Poly
assert G[2] == H[2] and not G[2].is_Poly
assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:])
assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:])
assert G.exprs == H
assert G.polys == P
assert G.gens == (x, y)
assert G.domain == ZZ
assert G.order == grevlex
assert G == H
assert G == tuple(H)
assert G == P
assert G == tuple(P)
assert G != []
G = groebner(F, x, y, order='grevlex', polys=True)
assert G[0] == P[0] and G[0].is_Poly
assert G[1] == P[1] and G[1].is_Poly
assert G[2] == P[2] and G[2].is_Poly
assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:])
assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:])
def test_poly():
assert poly(x) == Poly(x, x)
assert poly(y) == Poly(y, y)
assert poly(x + y) == Poly(x + y, x, y)
assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x))
assert poly(x + y, wrt=y) == Poly(x + y, y, x)
assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x)
assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z)
assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z)
assert poly(
x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z)
assert poly(2*x*(
y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z)
assert poly(2*(
y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z)
assert poly(x*(
y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z)
assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*
x*z**2 - x - 1, x, y, z)
assert poly(x*y + (x + y)**2 + (x + z)**2) == \
Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z)
assert poly(x*y*(x + y)*(x + z)**2) == \
Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2*
y**2 + 2*y*z*x**3 + y*x**4, x, y, z)
assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z)
assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y])
assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x])
assert poly(1, x) == Poly(1, x)
raises(GeneratorsNeeded, lambda: poly(1))
# issue 6184
assert poly(x + y, x, y) == Poly(x + y, x, y)
assert poly(x + y, y, x) == Poly(x + y, y, x)
def test_keep_coeff():
u = Mul(2, x + 1, evaluate=False)
assert _keep_coeff(S(1), x) == x
assert _keep_coeff(S(-1), x) == -x
assert _keep_coeff(S(1.0), x) == 1.0*x
assert _keep_coeff(S(-1.0), x) == -1.0*x
assert _keep_coeff(S(1), 2*x) == 2*x
assert _keep_coeff(S(2), x/2) == x
assert _keep_coeff(S(2), sin(x)) == 2*sin(x)
assert _keep_coeff(S(2), x + 1) == u
assert _keep_coeff(x, 1/x) == 1
assert _keep_coeff(x + 1, S(2)) == u
# @XFAIL
# Seems to pass on Python 3.X, but not on Python 2.7
def test_poly_matching_consistency():
# Test for this issue:
# https://github.com/sympy/sympy/issues/5514
assert I * Poly(x, x) == Poly(I*x, x)
assert Poly(x, x) * I == Poly(I*x, x)
if not PY3:
test_poly_matching_consistency = XFAIL(test_poly_matching_consistency)
@XFAIL
def test_issue_5786():
assert expand(factor(expand(
(x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z
def test_noncommutative():
class foo(Expr):
is_commutative=False
e = x/(x + x*y)
c = 1/( 1 + y)
assert cancel(foo(e)) == foo(c)
assert cancel(e + foo(e)) == c + foo(c)
assert cancel(e*foo(c)) == c*foo(c)
def test_to_rational_coeffs():
assert to_rational_coeffs(
Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None
def test_factor_terms():
# issue 7067
assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)])
assert sqf_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)])
def test_as_list():
# issue 14496
assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2]
assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]]
assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \
[[[1]], [[]], [[1], [1]]]
def test_issue_11198():
assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)])
assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)])
def test_Poly_precision():
# Make sure Poly doesn't lose precision
p = Poly(pi.evalf(100)*x)
assert p.as_expr() == pi.evalf(100)*x
def test_issue_12400():
# Correction of check for negative exponents
assert poly(1/(1+sqrt(2)), x) == \
Poly(1/(1+sqrt(2)), x , domain='EX')
def test_issue_14364():
assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == S(3)/10 * (1 + sqrt(3))
assert gcd(sqrt(5)*S(4)/7, sqrt(5)*S(2)/3) == sqrt(5)*S(2)/21
assert lcm(S(2)/3*sqrt(3), S(5)/6*sqrt(3)) == S(10)*sqrt(3)/3
assert lcm(3*sqrt(3), S(4)/sqrt(3)) == 12*sqrt(3)
assert lcm(S(5)*(1 + 2**(S(1)/3))/6, S(3)*(1 + 2**(S(1)/3))/8) == S(15)/2 * (1 + 2**(S(1)/3))
assert gcd(S(2)/3*sqrt(3), S(5)/6/sqrt(3)) == sqrt(3)/18
assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14
# gcd_list and lcm_list
assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == S(2)*sqrt(47)/35
assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == S(2)/455 * (1 + sqrt(7))
assert lcm((S(7)/sqrt(15)/2, S(5)/sqrt(15)/6, S(5)/sqrt(15)/8)) == S(35)/(2*sqrt(15))
assert lcm([S(5)*(2 + 2**(S(5)/7))/6, S(7)*(2 + 2**(S(5)/7))/2, S(13)*(2 + 2**(S(5)/7))/4]) == S(455)/2 * (2 + 2**(S(5)/7))
def test_issue_15669():
x = Symbol("x", positive=True)
expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 -
2*2**(S(4)/5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**(S(3)/5) + 10*x)
assert factor(expr, deep=True) == x*(x**2 + 2)
|
6114a3c9d45bb2b4e36eaf5d6ce01d1c7f71d858b12562258f9bafe87efc49cc | """Tests for algorithms for computing symbolic roots of polynomials. """
from sympy import (S, symbols, Symbol, Wild, Rational, sqrt,
powsimp, sin, cos, pi, I, Interval, re, im, exp, ZZ, Piecewise,
acos, root, conjugate)
from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof
from sympy.polys.polyroots import (root_factors, roots_linear,
roots_quadratic, roots_cubic, roots_quartic, roots_cyclotomic,
roots_binomial, preprocess_roots, roots)
from sympy.polys.orthopolys import legendre_poly
from sympy.polys.polyutils import _nsort
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import raises, slow
from sympy.utilities.randtest import verify_numerically
from sympy.core.compatibility import range
import mpmath
a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z')
def _check(roots):
# this is the desired invariant for roots returned
# by all_roots. It is trivially true for linear
# polynomials.
nreal = sum([1 if i.is_real else 0 for i in roots])
assert list(sorted(roots[:nreal])) == list(roots[:nreal])
for ix in range(nreal, len(roots), 2):
if not (
roots[ix + 1] == roots[ix] or
roots[ix + 1] == conjugate(roots[ix])):
return False
return True
def test_roots_linear():
assert roots_linear(Poly(2*x + 1, x)) == [-Rational(1, 2)]
def test_roots_quadratic():
assert roots_quadratic(Poly(2*x**2, x)) == [0, 0]
assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [-Rational(3, 2), 0]
assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2]
assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2]
_check(Poly(2*x**2 + 4*x + 3, x).all_roots())
f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c)
assert roots_quadratic(Poly(f, x)) == \
[-e*(a + c)/(a - c) - sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2))/(a - c),
-e*(a + c)/(a - c) + sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2))/(a - c)]
# check for simplification
f = Poly(y*x**2 - 2*x - 2*y, x)
assert roots_quadratic(f) == \
[-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y]
f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x)
assert roots_quadratic(f) == \
[1,y**2 + 1]
f = Poly(sqrt(2)*x**2 - 1, x)
r = roots_quadratic(f)
assert r == _nsort(r)
# issue 8255
f = Poly(-24*x**2 - 180*x + 264)
assert [w.n(2) for w in f.all_roots(radicals=True)] == \
[w.n(2) for w in f.all_roots(radicals=False)]
for _a, _b, _c in cartes((-2, 2), (-2, 2), (0, -1)):
f = Poly(_a*x**2 + _b*x + _c)
roots = roots_quadratic(f)
assert roots == _nsort(roots)
def test_issue_8438():
p = Poly([1, y, -2, -3], x).as_expr()
roots = roots_cubic(Poly(p, x), x)
z = -S(3)/2 - 7*I/2 # this will fail in code given in commit msg
post = [r.subs(y, z) for r in roots]
assert set(post) == \
set(roots_cubic(Poly(p.subs(y, z), x)))
# /!\ if p is not made an expression, this is *very* slow
assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post)
def test_issue_8285():
roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots()
assert _check(roots)
f = Poly(x**4 + 5*x**2 + 6, x)
ro = [rootof(f, i) for i in range(4)]
roots = Poly(x**4 + 5*x**2 + 6, x).all_roots()
assert roots == ro
assert _check(roots)
# more than 2 complex roots from which to identify the
# imaginary ones
roots = Poly(2*x**8 - 1).all_roots()
assert _check(roots)
assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail
def test_issue_8289():
roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots()
assert _check(roots)
roots = Poly(x**6 + 3*x**3 + 2, x).all_roots()
assert _check(roots)
roots = Poly(x**6 - x + 1).all_roots()
assert _check(roots)
# all imaginary roots with multiplicity of 2
roots = Poly(x**4 + 4*x**2 + 4, x).all_roots()
assert _check(roots)
def test_issue_14291():
assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1)
).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I]
p = x**4 + 10*x**2 + 1
ans = [rootof(p, i) for i in range(4)]
assert Poly(p).all_roots() == ans
_check(ans)
def test_issue_13340():
eq = Poly(y**3 + exp(x)*y + x, y, domain='EX')
roots_d = roots(eq)
assert len(roots_d) == 3
def test_issue_14522():
eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x)
roots_eq = roots(eq)
assert all(eq(r) == 0 for r in roots_eq)
def test_issue_15076():
sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t))
assert sol[0].has(x)
def test_issue_16589():
eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x)
roots_eq = roots(eq)
assert 0 in roots_eq
def test_roots_cubic():
assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0]
assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1]
assert roots_cubic(Poly(x**3 + 1, x)) == \
[-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]
assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \
S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2
eq = -x**3 + 2*x**2 + 3*x - 2
assert roots(eq, trig=True, multiple=True) == \
roots_cubic(Poly(eq, x), trig=True) == [
S(2)/3 + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3,
-2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + S(2)/3,
-2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + S(2)/3,
]
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4),
(6, -5, -10, -3)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
z = symbols('z', negative=True)
eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
zans = roots_quartic(Poly(eq, x))
assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans])
# but some are (see also issue 4989)
# it's ok if the solution is not Piecewise, but the tests below should pass
eq = Poly(y*x**4 + x**3 - x + z, x)
ans = roots_quartic(eq)
assert all(type(i) == Piecewise for i in ans)
reps = (
dict(y=-Rational(1, 3), z=-Rational(1, 4)), # 4 real
dict(y=-Rational(1, 3), z=-Rational(1, 2)), # 2 real
dict(y=-Rational(1, 3), z=-2)) # 0 real
for rep in reps:
sol = roots_quartic(Poly(eq.subs(rep), x))
assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)])
def test_roots_cyclotomic():
assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1]
assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1]
assert roots_cyclotomic(cyclotomic_poly(
3, x, polys=True)) == [-S(1)/2 - I*sqrt(3)/2, -S(1)/2 + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I]
assert roots_cyclotomic(cyclotomic_poly(
6, x, polys=True)) == [S(1)/2 - I*sqrt(3)/2, S(1)/2 + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [
-cos(pi/7) - I*sin(pi/7),
-cos(pi/7) + I*sin(pi/7),
-cos(3*pi/7) - I*sin(3*pi/7),
-cos(3*pi/7) + I*sin(3*pi/7),
cos(2*pi/7) - I*sin(2*pi/7),
cos(2*pi/7) + I*sin(2*pi/7),
]
assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [
-sqrt(2)/2 - I*sqrt(2)/2,
-sqrt(2)/2 + I*sqrt(2)/2,
sqrt(2)/2 - I*sqrt(2)/2,
sqrt(2)/2 + I*sqrt(2)/2,
]
assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [
-sqrt(3)/2 - I/2,
-sqrt(3)/2 + I/2,
sqrt(3)/2 - I/2,
sqrt(3)/2 + I/2,
]
assert roots_cyclotomic(
cyclotomic_poly(1, x, polys=True), factor=True) == [1]
assert roots_cyclotomic(
cyclotomic_poly(2, x, polys=True), factor=True) == [-1]
assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \
[-root(-1, 3), -1 + root(-1, 3)]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \
[-I, I]
assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \
[-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3]
assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \
[1 - root(-1, 3), root(-1, 3)]
def test_roots_binomial():
assert roots_binomial(Poly(5*x, x)) == [0]
assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0]
assert roots_binomial(Poly(5*x + 2, x)) == [-Rational(2, 5)]
A = 10**Rational(3, 4)/10
assert roots_binomial(Poly(5*x**4 + 2, x)) == \
[-A - A*I, -A + A*I, A - A*I, A + A*I]
_check(roots_binomial(Poly(x**8 - 2)))
a1 = Symbol('a1', nonnegative=True)
b1 = Symbol('b1', nonnegative=True)
r0 = roots_quadratic(Poly(a1*x**2 + b1, x))
r1 = roots_binomial(Poly(a1*x**2 + b1, x))
assert powsimp(r0[0]) == powsimp(r1[0])
assert powsimp(r0[1]) == powsimp(r1[1])
for a, b, s, n in cartes((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
if a == b and a != 1: # a == b == 1 is sufficient
continue
p = Poly(a*x**n + s*b)
ans = roots_binomial(p)
assert ans == _nsort(ans)
# issue 8813
assert roots(Poly(2*x**3 - 16*y**3, x)) == {
2*y*(-S(1)/2 - sqrt(3)*I/2): 1,
2*y: 1,
2*y*(-S(1)/2 + sqrt(3)*I/2): 1}
def test_roots_preprocessing():
f = a*y*x**2 + y - b
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1
assert poly == Poly(a*y*x**2 + y - b, x)
f = c**3*x**3 + c**2*x**2 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + x + a, x)
f = c**3*x**3 + c**2*x**2 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + a, x)
f = c**3*x**3 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x + a, x)
f = c**3*x**3 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + a, x)
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 20*E*J/(F*L**2)
assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \
809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875
f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)])
g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)])
assert preprocess_roots(f) == (x, g)
def test_roots0():
assert roots(1, x) == {}
assert roots(x, x) == {S.Zero: 1}
assert roots(x**9, x) == {S.Zero: 9}
assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(2*x + 1, x) == {-S.Half: 1}
assert roots((2*x + 1)**2, x) == {-S.Half: 2}
assert roots((2*x + 1)**5, x) == {-S.Half: 5}
assert roots((2*x + 1)**10, x) == {-S.Half: 10}
assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1}
assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2}
assert roots(((2*x - 3)**2).expand(), x) == { Rational(3, 2): 2}
assert roots(((2*x + 3)**2).expand(), x) == {-Rational(3, 2): 2}
assert roots(((2*x - 3)**3).expand(), x) == { Rational(3, 2): 3}
assert roots(((2*x + 3)**3).expand(), x) == {-Rational(3, 2): 3}
assert roots(((2*x - 3)**5).expand(), x) == { Rational(3, 2): 5}
assert roots(((2*x + 3)**5).expand(), x) == {-Rational(3, 2): 5}
assert roots(((a*x - b)**5).expand(), x) == { b/a: 5}
assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5}
assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1}
assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, -S.One: 2}
assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \
{S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1}
assert roots(x**8 - 1, x) == {
sqrt(2)/2 + I*sqrt(2)/2: 1,
sqrt(2)/2 - I*sqrt(2)/2: 1,
-sqrt(2)/2 + I*sqrt(2)/2: 1,
-sqrt(2)/2 - I*sqrt(2)/2: 1,
S.One: 1, -S.One: 1, I: 1, -I: 1
}
f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \
224*x**7 - 384*x**8 - 64*x**9
assert roots(f) == {S(0): 2, -S(2): 2, S(2): 1, -S(7)/2: 1, -S(3)/2: 1, -S(1)/2: 1, S(3)/2: 1}
assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1}
assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {}
assert roots(((x - 2)*(
x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \
{-S(3): 1, S(2): 1, S(4): 1, S(5): 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \
{-2*I: 1, 2*I: 1, -S(2): 1}
assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \
{S(1): 1, S(0): 1, -S(2): 1, -2*I: 1, 2*I: 1}
r1_2, r1_3 = Rational(1, 2), Rational(1, 3)
x0 = (3*sqrt(33) + 19)**r1_3
x1 = 4/x0/3
x2 = x0/3
x3 = sqrt(3)*I/2
x4 = x3 - r1_2
x5 = -x3 - r1_2
assert roots(x**3 + x**2 - x + 1, x, cubics=True) == {
-x1 - x2 - r1_3: 1,
-x1/x4 - x2*x4 - r1_3: 1,
-x1/x5 - x2*x5 - r1_3: 1,
}
f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4)
r13_20, r1_20 = [ Rational(*r)
for r in ((13, 20), (1, 20)) ]
s2 = sqrt(2)
assert roots(f, x) == {
r13_20 + r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 + r1_20*sqrt(1 + 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 + 8*I*s2): 1,
}
f = x**4 + x**3 + x**2 + x + 1
r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ]
assert roots(f, x) == {
-r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
}
f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2
assert roots(f, z) == {
S.One: 1,
S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {}
assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1}
assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1}
assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1}
assert roots(
(x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1}
assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One]
assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I]
assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero]
assert roots(1234, x, multiple=True) == []
f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1
assert roots(f) == {
-I*sin(pi/7) + cos(pi/7): 1,
-I*sin(2*pi/7) - cos(2*pi/7): 1,
-I*sin(3*pi/7) + cos(3*pi/7): 1,
I*sin(pi/7) + cos(pi/7): 1,
I*sin(2*pi/7) - cos(2*pi/7): 1,
I*sin(3*pi/7) + cos(3*pi/7): 1,
}
g = ((x**2 + 1)*f**2).expand()
assert roots(g) == {
-I*sin(pi/7) + cos(pi/7): 2,
-I*sin(2*pi/7) - cos(2*pi/7): 2,
-I*sin(3*pi/7) + cos(3*pi/7): 2,
I*sin(pi/7) + cos(pi/7): 2,
I*sin(2*pi/7) - cos(2*pi/7): 2,
I*sin(3*pi/7) + cos(3*pi/7): 2,
-I: 1, I: 1,
}
r = roots(x**3 + 40*x + 64)
real_root = [rx for rx in r if rx.is_real][0]
cr = 108 + 6*sqrt(1074)
assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3)
eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX')
assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1}
eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 +
175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x -
26*x + 24, x, domain='EX')
assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1,
-4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1}
eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 +
14*sqrt(2), x, domain='EX')
assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1}
assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \
{-sqrt(2) - root(7, 3)/2 - sqrt(3)*root(7, 3)*I/2: 1,
-sqrt(2) - root(7, 3)/2 + sqrt(3)*root(7, 3)*I/2: 1,
-sqrt(2) + root(7, 3): 1}
def test_roots_slow():
"""Just test that calculating these roots does not hang. """
a, b, c, d, x = symbols("a,b,c,d,x")
f1 = x**2*c + (a/b) + x*c*d - a
f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d)
assert list(roots(f1, x).values()) == [1, 1]
assert list(roots(f2, x).values()) == [1, 1]
(zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k")
e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx
e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k)
assert list(roots(e1 - e2, k).values()) == [1, 1, 1]
f = x**3 + 2*x**2 + 8
R = list(roots(f).keys())
assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R])
def test_roots_inexact():
R1 = roots(x**2 + x + 1, x, multiple=True)
R2 = roots(x**2 + x + 1.0, x, multiple=True)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-12
f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \
+ 144.0*(2*sqrt(3.0) + 9.0)
R1 = roots(f, multiple=True)
R2 = (-12.7530479110482, -3.85012393732929,
4.89897948556636, 7.46155167569183)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-10
def test_roots_preprocessed():
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
assert roots(f, x) == {}
R1 = roots(f.evalf(), x, multiple=True)
R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065,
503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851]
w = Wild('w')
p = w*E*J/(F*L**2)
assert len(R1) == len(R2)
for r1, r2 in zip(R1, R2):
match = r1.match(p)
assert match is not None and abs(match[w] - r2) < 1e-10
def test_roots_mixed():
f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4
_re, _im = intervals(f, all=True)
_nroots = nroots(f)
_sroots = roots(f, multiple=True)
_re = [ Interval(a, b) for (a, b), _ in _re ]
_im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b),
_ in _im ]
_intervals = _re + _im
_sroots = [ r.evalf() for r in _sroots ]
_nroots = sorted(_nroots, key=lambda x: x.sort_key())
_sroots = sorted(_sroots, key=lambda x: x.sort_key())
for _roots in (_nroots, _sroots):
for i, r in zip(_intervals, _roots):
if r.is_real:
assert r in i
else:
assert (re(r), im(r)) in i
def test_root_factors():
assert root_factors(Poly(1, x)) == [Poly(1, x)]
assert root_factors(Poly(x, x)) == [Poly(x, x)]
assert root_factors(x**2 - 1, x) == [x + 1, x - 1]
assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)]
assert root_factors((x**4 - 1)**2) == \
[x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I]
assert root_factors(Poly(x**4 - 1, x), filter='Z') == \
[Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)]
assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \
[x, x, x**6 + 6*x**4 + 12*x**2 + 8]
@slow
def test_nroots1():
n = 64
p = legendre_poly(n, x, polys=True)
raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5))
roots = p.nroots(n=3)
# The order of roots matters. They are ordered from smallest to the
# largest.
assert [str(r) for r in roots] == \
['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961',
'-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841',
'-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649',
'-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402',
'-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121',
'-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170',
'0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489',
'0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753',
'0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930',
'0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999']
def test_nroots2():
p = Poly(x**5 + 3*x + 1, x)
roots = p.nroots(n=3)
# The order of roots matters. The roots are ordered by their real
# components (if they agree, then by their imaginary components),
# with real roots appearing first.
assert [str(r) for r in roots] == \
['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I',
'1.01 - 0.937*I', '1.01 + 0.937*I']
roots = p.nroots(n=5)
assert [str(r) for r in roots] == \
['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I',
'1.0051 - 0.93726*I', '1.0051 + 0.93726*I']
def test_roots_composite():
assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3
|
be42cc5aeabd0edd53fedcad1ad35c416d23137800bcf65a85145137723ebced | from sympy import Add, Basic, symbols, Symbol, And
from sympy.unify.core import Compound, Variable
from sympy.unify.usympy import (deconstruct, construct, unify, is_associative,
is_commutative)
from sympy.abc import x, y, z, n
from sympy.utilities.pytest import XFAIL
def test_deconstruct():
expr = Basic(1, 2, 3)
expected = Compound(Basic, (1, 2, 3))
assert deconstruct(expr) == expected
assert deconstruct(1) == 1
assert deconstruct(x) == x
assert deconstruct(x, variables=(x,)) == Variable(x)
assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x))
assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \
Compound(Add, (1, Variable(x)))
def test_construct():
expr = Compound(Basic, (1, 2, 3))
expected = Basic(1, 2, 3)
assert construct(expr) == expected
def test_nested():
expr = Basic(1, Basic(2), 3)
cmpd = Compound(Basic, (1, Compound(Basic, (2,)), 3))
assert deconstruct(expr) == cmpd
assert construct(cmpd) == expr
def test_unify():
expr = Basic(1, 2, 3)
a, b, c = map(Symbol, 'abc')
pattern = Basic(a, b, c)
assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}]
assert list(unify(expr, pattern, variables=(a, b, c))) == \
[{a: 1, b: 2, c: 3}]
def test_unify_variables():
assert list(unify(Basic(1, 2), Basic(1, x), {}, variables=(x,))) == [{x: 2}]
def test_s_input():
expr = Basic(1, 2)
a, b = map(Symbol, 'ab')
pattern = Basic(a, b)
assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}]
assert list(unify(expr, pattern, {a: 5}, (a, b))) == []
def iterdicteq(a, b):
a = tuple(a)
b = tuple(b)
return len(a) == len(b) and all(x in b for x in a)
def test_unify_commutative():
expr = Add(1, 2, 3, evaluate=False)
a, b, c = map(Symbol, 'abc')
pattern = Add(a, b, c, evaluate=False)
result = tuple(unify(expr, pattern, {}, (a, b, c)))
expected = ({a: 1, b: 2, c: 3},
{a: 1, b: 3, c: 2},
{a: 2, b: 1, c: 3},
{a: 2, b: 3, c: 1},
{a: 3, b: 1, c: 2},
{a: 3, b: 2, c: 1})
assert iterdicteq(result, expected)
def test_unify_iter():
expr = Add(1, 2, 3, evaluate=False)
a, b, c = map(Symbol, 'abc')
pattern = Add(a, c, evaluate=False)
assert is_associative(deconstruct(pattern))
assert is_commutative(deconstruct(pattern))
result = list(unify(expr, pattern, {}, (a, c)))
expected = [{a: 1, c: Add(2, 3, evaluate=False)},
{a: 1, c: Add(3, 2, evaluate=False)},
{a: 2, c: Add(1, 3, evaluate=False)},
{a: 2, c: Add(3, 1, evaluate=False)},
{a: 3, c: Add(1, 2, evaluate=False)},
{a: 3, c: Add(2, 1, evaluate=False)},
{a: Add(1, 2, evaluate=False), c: 3},
{a: Add(2, 1, evaluate=False), c: 3},
{a: Add(1, 3, evaluate=False), c: 2},
{a: Add(3, 1, evaluate=False), c: 2},
{a: Add(2, 3, evaluate=False), c: 1},
{a: Add(3, 2, evaluate=False), c: 1}]
assert iterdicteq(result, expected)
def test_hard_match():
from sympy import sin, cos
expr = sin(x) + cos(x)**2
p, q = map(Symbol, 'pq')
pattern = sin(p) + cos(p)**2
assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}]
def test_matrix():
from sympy import MatrixSymbol
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 2, 2)
Z = MatrixSymbol('Z', 2, 3)
assert list(unify(X, Y, {}, variables=[n, Symbol('X')])) == [{Symbol('X'): Symbol('Y'), n: 2}]
assert list(unify(X, Z, {}, variables=[n, Symbol('X')])) == []
def test_non_frankenAdds():
# the is_commutative property used to fail because of Basic.__new__
# This caused is_commutative and str calls to fail
expr = x+y*2
rebuilt = construct(deconstruct(expr))
# Ensure that we can run these commands without causing an error
str(rebuilt)
rebuilt.is_commutative
def test_FiniteSet_commutivity():
from sympy import FiniteSet
a, b, c, x, y = symbols('a,b,c,x,y')
s = FiniteSet(a, b, c)
t = FiniteSet(x, y)
variables = (x, y)
assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables))
def test_FiniteSet_complex():
from sympy import FiniteSet
a, b, c, x, y, z = symbols('a,b,c,x,y,z')
expr = FiniteSet(Basic(1, x), y, Basic(x, z))
pattern = FiniteSet(a, Basic(x, b))
variables = a, b
expected = tuple([{b: 1, a: FiniteSet(y, Basic(x, z))},
{b: z, a: FiniteSet(y, Basic(1, x))}])
assert iterdicteq(unify(expr, pattern, variables=variables), expected)
def test_and():
variables = x, y
expected = tuple([{x: z > 0, y: n < 3}])
assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables),
expected)
def test_Union():
from sympy import Interval
assert list(unify(Interval(0, 1) + Interval(10, 11),
Interval(0, 1) + Interval(12, 13),
variables=(Interval(12, 13),)))
def test_is_commutative():
assert is_commutative(deconstruct(x+y))
assert is_commutative(deconstruct(x*y))
assert not is_commutative(deconstruct(x**y))
def test_commutative_in_commutative():
from sympy.abc import a,b,c,d
from sympy import sin, cos
eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4)
pat = a*cos(b)*cos(c) + d*sin(b)*sin(c)
assert next(unify(eq, pat, variables=(a,b,c,d)))
|
63edb7052401aa9a16f136a1ff9c8536e6ba520fc653668e906c49070597a070 | from sympy import (Rational, Float, S, Symbol, cos, oo, pi, simplify,
sin, sqrt, symbols, acos)
from sympy.core.compatibility import range
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
Point2D, Line2D)
from sympy.geometry.line import Undecidable
from sympy.geometry.polygon import _asa as asa
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import raises, slow, warns
import traceback
import sys
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
k = Symbol('k', real=True)
x1 = Symbol('x1', real=True)
y1 = Symbol('y1', real=True)
t = Symbol('t', real=True)
a, b = symbols('a,b', real=True)
m = symbols('m', real=True)
def test_object_from_equation():
from sympy.abc import x, y, a, b
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, -S(1)/5), Point2D(1, -S(4)/5))
assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
raises(ValueError, lambda: Line(x))
raises(ValueError, lambda: Line(y))
raises(ValueError, lambda: Line(x/y))
raises(ValueError, lambda: Line(a/b, x='a', y='b'))
raises(ValueError, lambda: Line(y/x))
raises(ValueError, lambda: Line(b/a, x='a', y='b'))
raises(ValueError, lambda: Line((x + 1)**2 + y))
def feq(a, b):
"""Test if two floating point values are 'equal'."""
t_float = Float("1.0E-10")
return -t_float < a - b < t_float
def test_angle_between():
a = Point(1, 2, 3, 4)
b = a.orthogonal_direction
o = a.origin
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
def test_closing_angle():
a = Ray((0, 0), angle=0)
b = Ray((1, 2), angle=pi/2)
assert a.closing_angle(b) == -pi/2
assert b.closing_angle(a) == pi/2
assert a.closing_angle(a) == 0
def test_arbitrary_point():
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
l2 = Line(Point(x1, x1), Point(y1, y1))
assert l2.arbitrary_point() in l2
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
Point(t + 1, t + 1)
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
def test_are_concurrent_2d():
l1 = Line(Point(0, 0), Point(1, 1))
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.are_concurrent(l1) is False
assert Line.are_concurrent(l1, l2)
assert Line.are_concurrent(l1, l1, l1, l2)
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(-Rational(3, 5), x1)))
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
def test_are_concurrent_3d():
p1 = Point3D(0, 0, 0)
l1 = Line(p1, Point3D(1, 1, 1))
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
assert Line3D.are_concurrent(l1) is False
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
def test_arguments():
"""Functions accepting `Point` objects in `geometry`
should also accept tuples, lists, and generators and
automatically convert them to points."""
from sympy import subsets
singles2d = ((1, 2), [1, 3], Point(1, 5))
doubles2d = subsets(singles2d, 2)
l2d = Line(Point2D(1, 2), Point2D(2, 3))
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
doubles3d = subsets(singles3d, 2)
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
doubles4d = subsets(singles4d, 2)
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
# test 2D
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
'projection', 'intersection']
for p in doubles2d:
Line2D(*p)
for func in test_single:
for p in singles2d:
getattr(l2d, func)(p)
# test 3D
for p in doubles3d:
Line3D(*p)
for func in test_single:
for p in singles3d:
getattr(l3d, func)(p)
# test 4D
for p in doubles4d:
Line(*p)
for func in test_single:
for p in singles4d:
getattr(l4d, func)(p)
def test_basic_properties_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p10 = Point(2000, 2000)
p_r3 = Ray(p1, p2).random_point()
p_r4 = Ray(p2, p1).random_point()
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
l4 = Line(p1, Point(1, 0))
r1 = Ray(p1, Point(0, 1))
r2 = Ray(Point(0, 1), p1)
s1 = Segment(p1, p10)
p_s1 = s1.random_point()
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
assert Line(p1, p2) == Line(p1, p2)
assert Line(p1, p2) != Line(p2, p1)
assert l1 != Line(Point(x1, x1), Point(y1, y1))
assert l1 != l3
assert Line(p1, p10) != Line(p10, p1)
assert Line(p1, p10) != p1
assert p1 in l1 # is p1 on the line l1?
assert p1 not in l3
assert s1 in Line(p1, p10)
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
assert (r1 in s1) is False
assert Segment(p1, p2) in s1
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2))
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
assert l1.slope == 1
assert l3.slope == oo
assert l4.slope == 0
assert Line(p1, Point(0, 1)).slope == oo
assert Line(r1.source, r1.random_point()).slope == r1.slope
assert Line(r2.source, r2.random_point()).slope == r2.slope
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
assert l4.coefficients == (0, 1, 0)
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
# issue 7963
r = Ray((0, 0), angle=x)
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
for ind in range(0, 5):
assert l3.random_point() in l3
assert p_r3.x >= p1.x and p_r3.y >= p1.y
assert p_r4.x <= p2.x and p_r4.y <= p2.y
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
assert hash(s1) != hash(Segment(p10, p1))
assert s1.plot_interval() == [t, 0, 1]
assert Line(p1, p10).plot_interval() == [t, -5, 5]
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_basic_properties_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
p5 = Point3D(x1, 1 + x1, 1)
l1 = Line3D(p1, p2)
l3 = Line3D(p3, p5)
r1 = Ray3D(p1, Point3D(-1, 5, 0))
r3 = Ray3D(p1, p2)
s1 = Segment3D(p1, p2)
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
assert Line3D(p1, p2) != Line3D(p2, p1)
assert l1 != l3
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
assert r3 != r1
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
assert p1 in l1
assert p1 not in l3
assert l1.direction_ratio == [1, 1, 1]
assert s1.midpoint == Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
# Test zdirection
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection == S.NegativeInfinity
def test_contains():
p1 = Point(0, 0)
r = Ray(p1, Point(4, 4))
r1 = Ray3D(p1, Point3D(0, 0, -1))
r2 = Ray3D(p1, Point3D(0, 1, 0))
r3 = Ray3D(p1, Point3D(0, 0, 1))
l = Line(Point(0, 1), Point(3, 4))
# Segment contains
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
# Line contains
assert l.contains(Point(0, 1)) is True
assert l.contains((0, 1)) is True
assert l.contains((0, 0)) is False
# Ray contains
assert r.contains(p1) is True
assert r.contains((1, 1)) is True
assert r.contains((1, 3)) is False
assert r.contains(Segment((1, 1), (2, 2))) is True
assert r.contains(Segment((1, 2), (2, 5))) is False
assert r.contains(Ray((2, 2), (3, 3))) is True
assert r.contains(Ray((2, 2), (3, 5))) is False
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
assert r2.contains(Point3D(0, 0, 0)) is True
assert r3.contains(Point3D(0, 0, 0)) is True
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
with warns(UserWarning):
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
with warns(UserWarning):
assert r3.contains(Point(1.0, 1.0)) is False
def test_contains_nonreal_symbols():
u, v, w, z = symbols('u, v, w, z')
l = Segment(Point(u, w), Point(v, z))
p = Point(2*u/3 + v/3, 2*w/3 + z/3)
assert l.contains(p)
def test_distance_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
half = Rational(1, 2)
s1 = Segment(Point(0, 0), Point(1, 1))
s2 = Segment(Point(half, half), Point(1, 0))
r = Ray(p1, p2)
assert s1.distance(Point(0, 0)) == 0
assert s1.distance((0, 0)) == 0
assert s2.distance(Point(0, 0)) == 2 ** half / 2
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
assert Line(p1, p2).distance(Point(2, 2)) == 0
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
assert Line((0, 0), (0, 1)).distance(p1) == 0
assert Line((0, 0), (0, 1)).distance(p2) == 1
assert Line((0, 0), (1, 0)).distance(p1) == 0
assert Line((0, 0), (1, 0)).distance(p2) == 1
assert r.distance(Point(-1, -1)) == sqrt(2)
assert r.distance(Point(1, 1)) == 0
assert r.distance(Point(-1, 1)) == sqrt(2)
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
assert r.distance((1, 1)) == 0
def test_dimension_normalization():
with warns(UserWarning):
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
def test_distance_3d():
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
s2 = Segment3D(Point3D(S(1) / 2, S(1) / 2, S(1) / 2), Point3D(1, 0, 1))
r = Ray3D(p1, p2)
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
# Line to point
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
# Ray to point
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
assert r.distance(Point3D(1, 1, 1)) == 0
assert r.distance((-1, -1, -1)) == sqrt(3)
assert r.distance((1, 1, 1)) == 0
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
def test_equals():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line((0, 5), slope=m)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
Line3D(Point3D(0, 1, 0), Point3D(S(1) / 2, S(1) / 2, 0)))
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S(1) / 2, S(1) / 2)))
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_equation():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
assert Line(p1, Point(0, 1)).equation() == x
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
assert Line(p2, Point(2, 1)).equation() == y - 1
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
).equation() == (-x + y, -x + z)
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
).equation() == (-x + y - 1, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
).equation() == (x - 1, -y + z - 1)
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
).equation() == (y - 2, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
).equation() == (-x + y - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
).equation() == (x - 1, y - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
).equation() == (x - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
).equation() == (y - 2, z - 3)
def test_intersection_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(x1, x1)
p4 = Point(y1, y1)
l1 = Line(p1, p2)
l3 = Line(Point(0, 0), Point(3, 4))
r1 = Ray(Point(1, 1), Point(2, 2))
r2 = Ray(Point(0, 0), Point(3, 4))
r4 = Ray(p1, p2)
r6 = Ray(Point(0, 1), Point(1, 2))
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
s1 = Segment(p1, p2)
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
s3 = Segment(Point(0, 0), Point(3, 4))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point(x1, 1 + x1)) == []
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
assert intersection(l3, l3) == [l3]
assert intersection(l3, r2) == [r2]
assert intersection(l3, s3) == [s3]
assert intersection(s3, l3) == [s3]
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
assert intersection(r2, l3) == [r2]
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
assert r4.intersection(s2) == [s2]
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert r4.intersection(Ray(p2, p1)) == [s1]
assert Ray(p2, p1).intersection(r6) == []
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
[Segment(Point(0, 0), Point(0, 1))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((1, 0), (2, 0)).intersection(
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
assert s1.intersection(s2) == [s2]
assert s2.intersection(s1) == [s2]
assert asa(120, 8, 52) == \
Triangle(
Point(0, 0),
Point(8, 0),
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
# 16628 - this should be fast
p0 = Point2D(S(249)/5, S(497999)/10000)
p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
/(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
+ 1991998000*sqrt(630547164901) + 1622561172902000),
(-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
90004251917891999 +
496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
+ 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
8112805864510000))
p2 = Point2D(S(497)/10, -S(497)/10)
p3 = Point2D(-S(497)/10, -S(497)/10)
l = Line(p0, p1)
s = Segment(p2, p3)
n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
9803028531*sqrt(630547164901) +
33200*sqrt(255775022850776494562626))
d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
630547164901) + sqrt(255775022850776494562626)
assert intersection(l, s) == [
Point2D(n/d*S(3)/2000, -S(497)/10)]
def test_line_intersection():
# see also test_issue_11238 in test_matrices.py
x0 = tan(13*pi/45)
x1 = sqrt(3)
x2 = x0**2
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
def test_intersection_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
l1 = Line3D(p1, p2)
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
assert intersection(l2, r2) == [r2]
assert intersection(l2, s1) == [s1]
assert intersection(r2, l2) == [r2]
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
== [Point3D(0, 0, 0)]
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(s1, r2) == [s1]
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
[Point3D(2, 2, 1)]
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
[Point3D(t, t)]
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
def test_is_parallel():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
l2 = Line(Point(x1, x1), Point(y1, y1))
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(p1, p2).parallel_line(p3.args) == \
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_is_perpendicular():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line(Point(x1, x1), Point(y1, y1))
l1_1 = Line(p1, Point(-x1, x1))
# 2D
assert Line.is_perpendicular(l1, l1_1)
assert Line.is_perpendicular(l1, l2) is False
p = l1.random_point()
assert l1.perpendicular_segment(p) == p
# 3D
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_is_similar():
p1 = Point(2000, 2000)
p2 = p1.scale(2, 2)
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
r2 = Ray(Point(0, 0), Point(0, 1))
s1 = Segment(Point(0, 0), p1)
assert s1.is_similar(Segment(p1, p2))
assert s1.is_similar(r2) is False
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
def test_length():
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
assert Line(Point(0, 0), Point(1, 1)).length == oo
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo
def test_projection():
p1 = Point(0, 0)
p2 = Point3D(0, 0, 0)
p3 = Point(-x1, x1)
l1 = Line(p1, Point(1, 1))
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
l3 = Line3D(p2, Point3D(1, 1, 1))
r1 = Ray(Point(1, 1), Point(2, 2))
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
assert l1.projection(p3) == p1
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(S(4)/3, S(4)/3, S(4)/3))
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(S(1)/3, S(1)/3, S(1)/3))
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_perpendicular_bisector():
s1 = Segment(Point(0, 0), Point(1, 1))
aline = Line(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2))
on_line = Segment(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2)).midpoint
assert s1.perpendicular_bisector().equals(aline)
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
def test_raises():
d, e = symbols('a,b', real=True)
s = Segment((d, 0), (e, 0))
raises(TypeError, lambda: Line((1, 1), 1))
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
raises(Undecidable, lambda: Point(2 * d, 0) in s)
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
raises(TypeError, lambda: Line3D((1, 1), 1))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
raises(TypeError, lambda: Ray((1, 1), 1))
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
.projection(Circle(Point(0, 0), 1)))
def test_ray_generation():
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
Point(2, 1 + tan(4.02 * pi)))
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
def test_symbolic_intersect():
# Issue 7814.
circle = Circle(Point(x, 0), y)
line = Line(Point(k, z), slope=0)
assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
def test_issue_2941():
def _check():
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
l1 = f(a, b)
l2 = g(c, d)
assert l1.intersection(l2) == l2.intersection(l1)
# intersect at end point
c, d = (-2, -2), (-2, 0)
a, b = (0, 0), (1, 1)
_check()
# midline intersection
c, d = (-2, -3), (-2, 0)
_check()
def test_parameter_value():
t = Symbol('t')
p1, p2 = Point(0, 1), Point(5, 6)
l = Line(p1, p2)
assert l.parameter_value((5, 6), t) == {t: 1}
raises(ValueError, lambda: l.parameter_value((0, 0), t))
|
5b29a14bf987000391f8456e9dd7e6df2949366cda6cfcd6587c0febcc9a0611 | # -*- coding: utf-8 -*-
import sys
from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq
from sympy.core.compatibility import PY3
from sympy.functions import exp, factorial, factorial2, sin
from sympy.logic import And
from sympy.series import Limit
from sympy.utilities.pytest import raises, skip
from sympy.parsing.sympy_parser import (
parse_expr, standard_transformations, rationalize, TokenError,
split_symbols, implicit_multiplication, convert_equals_signs,
convert_xor, function_exponentiation,
implicit_multiplication_application,
)
def test_sympy_parser():
x = Symbol('x')
inputs = {
'2*x': 2 * x,
'3.00': Float(3),
'22/7': Rational(22, 7),
'2+3j': 2 + 3*I,
'exp(x)': exp(x),
'x!': factorial(x),
'x!!': factorial2(x),
'(x + 1)! - 1': factorial(x + 1) - 1,
'3.[3]': Rational(10, 3),
'.0[3]': Rational(1, 30),
'3.2[3]': Rational(97, 30),
'1.3[12]': Rational(433, 330),
'1 + 3.[3]': Rational(13, 3),
'1 + .0[3]': Rational(31, 30),
'1 + 3.2[3]': Rational(127, 30),
'.[0011]': Rational(1, 909),
'0.1[00102] + 1': Rational(366697, 333330),
'1.[0191]': Rational(10190, 9999),
'10!': 3628800,
'-(2)': -Integer(2),
'[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)],
'Symbol("x").free_symbols': x.free_symbols,
"S('S(3).n(n=3)')": 3.00,
'factorint(12, visual=True)': Mul(
Pow(2, 2, evaluate=False),
Pow(3, 1, evaluate=False),
evaluate=False),
'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'),
}
for text, result in inputs.items():
assert parse_expr(text) == result
raises(TypeError, lambda:
parse_expr('x', standard_transformations))
raises(TypeError, lambda:
parse_expr('x', transformations=lambda x,y: 1))
raises(TypeError, lambda:
parse_expr('x', transformations=(lambda x,y: 1,)))
raises(TypeError, lambda: parse_expr('x', transformations=((),)))
raises(TypeError, lambda: parse_expr('x', {}, [], []))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
def test_rationalize():
inputs = {
'0.123': Rational(123, 1000)
}
transformations = standard_transformations + (rationalize,)
for text, result in inputs.items():
assert parse_expr(text, transformations=transformations) == result
def test_factorial_fail():
inputs = ['x!!!', 'x!!!!', '(!)']
for text in inputs:
try:
parse_expr(text)
assert False
except TokenError:
assert True
def test_repeated_fail():
inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]',
'0.1[[1]]', '0x1.1[1]']
# All are valid Python, so only raise TypeError for invalid indexing
for text in inputs:
raises(TypeError, lambda: parse_expr(text))
inputs = ['0.1[', '0.1[1', '0.1[]']
for text in inputs:
raises((TokenError, SyntaxError), lambda: parse_expr(text))
def test_repeated_dot_only():
assert parse_expr('.[1]') == Rational(1, 9)
assert parse_expr('1 + .[1]') == Rational(10, 9)
def test_local_dict():
local_dict = {
'my_function': lambda x: x + 2
}
inputs = {
'my_function(2)': Integer(4)
}
for text, result in inputs.items():
assert parse_expr(text, local_dict=local_dict) == result
def test_local_dict_split_implmult():
t = standard_transformations + (split_symbols, implicit_multiplication,)
w = Symbol('w', real=True)
y = Symbol('y')
assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w
def test_local_dict_symbol_to_fcn():
x = Symbol('x')
d = {'foo': Function('bar')}
assert parse_expr('foo(x)', local_dict=d) == d['foo'](x)
# XXX: bit odd, but would be error if parser left the Symbol
d = {'foo': Symbol('baz')}
assert parse_expr('foo(x)', local_dict=d) == Function('baz')(x)
def test_global_dict():
global_dict = {
'Symbol': Symbol
}
inputs = {
'Q & S': And(Symbol('Q'), Symbol('S'))
}
for text, result in inputs.items():
assert parse_expr(text, global_dict=global_dict) == result
def test_issue_2515():
raises(TokenError, lambda: parse_expr('(()'))
raises(TokenError, lambda: parse_expr('"""'))
def test_issue_7663():
x = Symbol('x')
e = '2*(x+1)'
assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False)
assert parse_expr(e, evaluate=0).equals(2*(x+1))
def test_issue_10560():
inputs = {
'4*-3' : '(-3)*4',
'-4*3' : '(-4)*3',
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_issue_10773():
inputs = {
'-10/5': '(-10)/5',
'-10/-5' : '(-10)/(-5)',
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_split_symbols():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
xy = Symbol('xy')
assert parse_expr("xy") == xy
assert parse_expr("xy", transformations=transformations) == x*y
def test_split_symbols_function():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
f = Function('f')
assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1)
assert parse_expr("af(x+1)", transformations=transformations,
local_dict={'f':f}) == a*f(x+1)
def test_functional_exponent():
t = standard_transformations + (convert_xor, function_exponentiation)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
yfcn = Function('y')
assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2
assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y
assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y
assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x))
assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x))
def test_match_parentheses_implicit_multiplication():
transformations = standard_transformations + \
(implicit_multiplication,)
raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations))
def test_convert_equals_signs():
transformations = standard_transformations + \
(convert_equals_signs, )
x = Symbol('x')
y = Symbol('y')
assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x)
assert parse_expr("y = x", transformations=transformations) == Eq(y, x)
assert parse_expr("(2*y = x) = False",
transformations=transformations) == Eq(Eq(2*y, x), False)
def test_parse_function_issue_3539():
x = Symbol('x')
f = Function('f')
assert parse_expr('f(x)') == f(x)
def test_split_symbols_numeric():
transformations = (
standard_transformations +
(implicit_multiplication_application,))
n = Symbol('n')
expr1 = parse_expr('2**n * 3**n')
expr2 = parse_expr('2**n3**n', transformations=transformations)
assert expr1 == expr2 == 2**n*3**n
expr1 = parse_expr('n12n34', transformations=transformations)
assert expr1 == n*12*n*34
def test_unicode_names():
if not PY3:
skip("test_unicode_names can only pass in Python 3")
assert parse_expr(u'α') == Symbol(u'α')
def test_python3_features():
# Make sure the tokenizer can handle Python 3-only features
if sys.version_info < (3, 6):
skip("test_python3_features requires Python 3.6 or newer")
assert parse_expr("123_456") == 123456
assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495)
assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333)
assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99)
assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990)
assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000)
|
e1af13c7f531894227ff9dba38ce821ca70e08173693e3e2bf0d94192109757e | # Testing import
from sympy.parsing.latex._build_latex_antlr import (
build_parser,
check_antlr_version,
dir_latex_antlr
)
from sympy.utilities.pytest import raises, XFAIL
from sympy.external import import_module
from sympy import (
Symbol, Mul, Add, Eq, Abs, sin, asin, cos, Pow,
csc, sec, Limit, oo, Derivative, Integral, factorial,
sqrt, root, StrictLessThan, LessThan, StrictGreaterThan,
GreaterThan, Sum, Product, E, log, tan, Function
)
from sympy.abc import x, y, z, a, b, c, t, k, n
antlr4 = import_module("antlr4")
# disable tests if antlr4-python*-runtime is not present
if not antlr4:
disabled = True
theta = Symbol('theta')
f = Function('f')
# shorthand definitions
def _Add(a, b):
return Add(a, b, evaluate=False)
def _Mul(a, b):
return Mul(a, b, evaluate=False)
def _Pow(a, b):
return Pow(a, b, evaluate=False)
def _Abs(a):
return Abs(a, evaluate=False)
def _factorial(a):
return factorial(a, evaluate=False)
def _log(a, b):
return log(a, b, evaluate=False)
# These LaTeX strings should parse to the corresponding SymPy expression
GOOD_PAIRS = [
("0", 0),
("1", 1),
("-3.14", _Mul(-1, 3.14)),
("(-7.13)(1.5)", _Mul(_Mul(-1, 7.13), 1.5)),
("x", x),
("2x", 2*x),
("x^2", x**2),
("x^{3 + 1}", x**_Add(3, 1)),
("-c", -c),
("a \\cdot b", a * b),
("a / b", a / b),
("a \\div b", a / b),
("a + b", a + b),
("a + b - a", _Add(a+b, -a)),
("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
("\\sin \\theta", sin(theta)),
("\\sin(\\theta)", sin(theta)),
("\\sin^{-1} a", asin(a)),
("\\sin a \\cos b", _Mul(sin(a), cos(b))),
("\\sin \\cos \\theta", sin(cos(theta))),
("\\sin(\\cos \\theta)", sin(cos(theta))),
("\\frac{a}{b}", a / b),
("\\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
("\\frac{7}{3}", _Mul(7, _Pow(3, -1))),
("(\\csc x)(\\sec y)", csc(x)*sec(y)),
("\\lim_{x \\to 3} a", Limit(a, x, 3)),
("\\lim_{x \\rightarrow 3} a", Limit(a, x, 3)),
("\\lim_{x \\Rightarrow 3} a", Limit(a, x, 3)),
("\\lim_{x \\longrightarrow 3} a", Limit(a, x, 3)),
("\\lim_{x \\Longrightarrow 3} a", Limit(a, x, 3)),
("\\lim_{x \\to 3^{+}} a", Limit(a, x, 3, dir='+')),
("\\lim_{x \\to 3^{-}} a", Limit(a, x, 3, dir='-')),
("\\infty", oo),
("\\lim_{x \\to \\infty} \\frac{1}{x}",
Limit(_Mul(1, _Pow(x, -1)), x, oo)),
("\\frac{d}{dx} x", Derivative(x, x)),
("\\frac{d}{dt} x", Derivative(x, t)),
("f(x)", f(x)),
("f(x, y)", f(x, y)),
("f(x, y, z)", f(x, y, z)),
("\\frac{d f(x)}{dx}", Derivative(f(x), x)),
("\\frac{d\\theta(x)}{dx}", Derivative(Function('theta')(x), x)),
("|x|", _Abs(x)),
("||x||", _Abs(Abs(x))),
("|x||y|", _Abs(x)*_Abs(y)),
("||x||y||", _Abs(_Abs(x)*_Abs(y))),
("\\pi^{|xy|}", Symbol('pi')**_Abs(x*y)),
("\\int x dx", Integral(x, x)),
("\\int x d\\theta", Integral(x, theta)),
("\\int (x^2 - y)dx", Integral(x**2 - y, x)),
("\\int x + a dx", Integral(_Add(x, a), x)),
("\\int da", Integral(1, a)),
("\\int_0^7 dx", Integral(1, (x, 0, 7))),
("\\int_a^b x dx", Integral(x, (x, a, b))),
("\\int^b_a x dx", Integral(x, (x, a, b))),
("\\int_{a}^b x dx", Integral(x, (x, a, b))),
("\\int^{b}_a x dx", Integral(x, (x, a, b))),
("\\int_{a}^{b} x dx", Integral(x, (x, a, b))),
("\\int^{b}_{a} x dx", Integral(x, (x, a, b))),
("\\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
("\\int (x+a)", Integral(_Add(x, a), x)),
("\\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)),
("\\int \\frac{dz}{z}", Integral(Pow(z, -1), z)),
("\\int \\frac{3 dz}{z}", Integral(3*Pow(z, -1), z)),
("\\int \\frac{1}{x} dx", Integral(Pow(x, -1), x)),
("\\int \\frac{1}{a} + \\frac{1}{b} dx",
Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
("\\int \\frac{3 \\cdot d\\theta}{\\theta}",
Integral(3*_Pow(theta, -1), theta)),
("\\int \\frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
("x_0", Symbol('x_{0}')),
("x_{1}", Symbol('x_{1}')),
("x_a", Symbol('x_{a}')),
("x_{b}", Symbol('x_{b}')),
("h_\\theta", Symbol('h_{theta}')),
("h_{\\theta}", Symbol('h_{theta}')),
("h_{\\theta}(x_0, x_1)",
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))),
("x!", _factorial(x)),
("100!", _factorial(100)),
("\\theta!", _factorial(theta)),
("(x + 1)!", _factorial(_Add(x, 1))),
("(x!)!", _factorial(_factorial(x))),
("x!!!", _factorial(_factorial(_factorial(x)))),
("5!7!", _Mul(_factorial(5), _factorial(7))),
("\\sqrt{x}", sqrt(x)),
("\\sqrt{x + b}", sqrt(_Add(x, b))),
("\\sqrt[3]{\\sin x}", root(sin(x), 3)),
("\\sqrt[y]{\\sin x}", root(sin(x), y)),
("\\sqrt[\\theta]{\\sin x}", root(sin(x), theta)),
("x < y", StrictLessThan(x, y)),
("x \\leq y", LessThan(x, y)),
("x > y", StrictGreaterThan(x, y)),
("x \\geq y", GreaterThan(x, y)),
("\\mathit{x}", Symbol('x')),
("\\mathit{test}", Symbol('test')),
("\\mathit{TEST}", Symbol('TEST')),
("\\mathit{HELLO world}", Symbol('HELLO world')),
("\\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
("\\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
("\\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
("\\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
("\\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
("\\sum_{n = 0}^{\\infty} \\frac{1}{n!}",
Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
("\\prod_{a = b}^{c} x", Product(x, (a, b, c))),
("\\prod_{a = b}^c x", Product(x, (a, b, c))),
("\\prod^{c}_{a = b} x", Product(x, (a, b, c))),
("\\prod^c_{a = b} x", Product(x, (a, b, c))),
("\\ln x", _log(x, E)),
("\\ln xy", _log(x*y, E)),
("\\log x", _log(x, 10)),
("\\log xy", _log(x*y, 10)),
("\\log_{2} x", _log(x, 2)),
("\\log_{a} x", _log(x, a)),
("\\log_{11} x", _log(x, 11)),
("\\log_{a^2} x", _log(x, _Pow(a, 2))),
("[x]", x),
("[a + b]", _Add(a, b)),
("\\frac{d}{dx} [ \\tan x ]", Derivative(tan(x), x))
]
def test_parseable():
from sympy.parsing.latex import parse_latex
for latex_str, sympy_expr in GOOD_PAIRS:
assert parse_latex(latex_str) == sympy_expr
# At time of migration from latex2sympy, should work but doesn't
FAILING_PAIRS = [
("\\log_2 x", _log(x, 2)),
("\\log_a x", _log(x, a)),
]
def test_failing_parseable():
from sympy.parsing.latex import parse_latex
for latex_str, sympy_expr in FAILING_PAIRS:
with raises(Exception):
assert parse_latex(latex_str) == sympy_expr
# These bad LaTeX strings should raise a LaTeXParsingError when parsed
BAD_STRINGS = [
"(",
")",
"\\frac{d}{dx}",
"(\\frac{d}{dx})"
"\\sqrt{}",
"\\sqrt",
"{",
"}",
"\\mathit{x + y}",
"\\mathit{21}",
"\\frac{2}{}",
"\\frac{}{2}",
"\\int",
"!",
"!0",
"_",
"^",
"|",
"||x|",
"()",
"((((((((((((((((()))))))))))))))))",
"-",
"\\frac{d}{dx} + \\frac{d}{dt}",
"f(x,,y)",
"f(x,y,",
"\\sin^x",
"\\cos^2",
"@",
"#",
"$",
"%",
"&",
"*",
"\\",
"~",
"\\frac{(2 + x}{1 - x)}"
]
def test_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
# At time of migration from latex2sympy, should fail but doesn't
FAILING_BAD_STRINGS = [
"\\cos 1 \\cos",
"f(,",
"f()",
"a \\div \\div b",
"a \\cdot \\cdot b",
"a // b",
"a +",
"1.1.1",
"1 +",
"a / b /",
]
@XFAIL
def test_failing_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in FAILING_BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
|
e5395a7e9127f2681b3d32e0e51961058eccdb8bab1f4fd6825db5f38097ca8d | import os
from sympy import sin, cos
from sympy.external import import_module
from sympy.utilities.pytest import skip
from sympy.parsing.autolev import parse_autolev
antlr4 = import_module("antlr4")
if not antlr4:
disabled = True
FILE_DIR = os.path.dirname(
os.path.dirname(os.path.abspath(os.path.realpath(__file__))))
def _test_examples(in_filename, out_filename, test_name=""):
in_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
in_filename)
correct_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
out_filename)
with open(in_file_path) as f:
generated_code = parse_autolev(f, include_numeric=True)
with open(correct_file_path) as f:
for idx, line1 in enumerate(f):
if line1.startswith("#"):
break
try:
line2 = generated_code.split('\n')[idx]
assert line1.rstrip() == line2.rstrip()
except Exception:
msg = 'mismatch in ' + test_name + ' in line no: {0}'
raise AssertionError(msg.format(idx+1))
def test_rule_tests():
l = ["ruletest1", "ruletest2", "ruletest3", "ruletest4", "ruletest5",
"ruletest6", "ruletest7", "ruletest8", "ruletest9", "ruletest10",
"ruletest11", "ruletest12"]
for i in l:
in_filepath = i + ".al"
out_filepath = i + ".py"
_test_examples(in_filepath, out_filepath, i)
def test_pydy_examples():
l = ["mass_spring_damper", "chaos_pendulum", "double_pendulum",
"non_min_pendulum"]
for i in l:
in_filepath = os.path.join("pydy-example-repo", i + ".al")
out_filepath = os.path.join("pydy-example-repo", i + ".py")
_test_examples(in_filepath, out_filepath, i)
def test_autolev_tutorial():
dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
'autolev-tutorial')
if os.path.isdir(dir_path):
l = ["tutor1", "tutor2", "tutor3", "tutor4", "tutor5", "tutor6",
"tutor7"]
for i in l:
in_filepath = os.path.join("autolev-tutorial", i + ".al")
out_filepath = os.path.join("autolev-tutorial", i + ".py")
_test_examples(in_filepath, out_filepath, i)
def test_dynamics_online():
dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
'dynamics-online')
if os.path.isdir(dir_path):
ch1 = ["1-4", "1-5", "1-6", "1-7", "1-8", "1-9_1", "1-9_2", "1-9_3"]
ch2 = ["2-1", "2-2", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "2-9",
"circular"]
ch3 = ["3-1_1", "3-1_2", "3-2_1", "3-2_2", "3-2_3", "3-2_4", "3-2_5",
"3-3"]
ch4 = ["4-1_1", "4-2_1", "4-4_1", "4-4_2", "4-5_1", "4-5_2"]
chapters = [(ch1, "ch1"), (ch2, "ch2"), (ch3, "ch3"), (ch4, "ch4")]
for ch, name in chapters:
for i in ch:
in_filepath = os.path.join("dynamics-online", name, i + ".al")
out_filepath = os.path.join("dynamics-online", name, i + ".py")
_test_examples(in_filepath, out_filepath, i)
def test_output_01():
"""Autolev example calculates the position, velocity, and acceleration of a
point and expresses in a single reference frame::
(1) FRAMES C,D,F
(2) VARIABLES FD'',DC''
(3) CONSTANTS R,L
(4) POINTS O,E
(5) SIMPROT(F,D,1,FD)
-> (6) F_D = [1, 0, 0; 0, COS(FD), -SIN(FD); 0, SIN(FD), COS(FD)]
(7) SIMPROT(D,C,2,DC)
-> (8) D_C = [COS(DC), 0, SIN(DC); 0, 1, 0; -SIN(DC), 0, COS(DC)]
(9) W_C_F> = EXPRESS(W_C_F>, F)
-> (10) W_C_F> = FD'*F1> + COS(FD)*DC'*F2> + SIN(FD)*DC'*F3>
(11) P_O_E>=R*D2>-L*C1>
(12) P_O_E>=EXPRESS(P_O_E>, D)
-> (13) P_O_E> = -L*COS(DC)*D1> + R*D2> + L*SIN(DC)*D3>
(14) V_E_F>=EXPRESS(DT(P_O_E>,F),D)
-> (15) V_E_F> = L*SIN(DC)*DC'*D1> - L*SIN(DC)*FD'*D2> + (R*FD'+L*COS(DC)*DC')*D3>
(16) A_E_F>=EXPRESS(DT(V_E_F>,F),D)
-> (17) A_E_F> = L*(COS(DC)*DC'^2+SIN(DC)*DC'')*D1> + (-R*FD'^2-2*L*COS(DC)*DC'*FD'-L*SIN(DC)*FD'')*D2> + (R*FD''+L*COS(DC)*DC''-L*SIN(DC)*DC'^2-L*SIN(DC)*FD'^2)*D3>
"""
if not antlr4:
skip('Test skipped: antlr4 is not installed.')
autolev_input = """\
FRAMES C,D,F
VARIABLES FD'',DC''
CONSTANTS R,L
POINTS O,E
SIMPROT(F,D,1,FD)
SIMPROT(D,C,2,DC)
W_C_F>=EXPRESS(W_C_F>,F)
P_O_E>=R*D2>-L*C1>
P_O_E>=EXPRESS(P_O_E>,D)
V_E_F>=EXPRESS(DT(P_O_E>,F),D)
A_E_F>=EXPRESS(DT(V_E_F>,F),D)\
"""
sympy_input = parse_autolev(autolev_input)
g = {}
l = {}
exec(sympy_input, g, l)
w_c_f = l['frame_c'].ang_vel_in(l['frame_f'])
# P_O_E> means "the position of point E wrt to point O"
p_o_e = l['point_e'].pos_from(l['point_o'])
v_e_f = l['point_e'].vel(l['frame_f'])
a_e_f = l['point_e'].acc(l['frame_f'])
# NOTE : The Autolev outputs above were manually transformed into
# equivalent SymPy physics vector expressions. Would be nice to automate
# this transformation.
expected_w_c_f = (l['fd'].diff()*l['frame_f'].x +
cos(l['fd'])*l['dc'].diff()*l['frame_f'].y +
sin(l['fd'])*l['dc'].diff()*l['frame_f'].z)
assert (w_c_f - expected_w_c_f).simplify() == 0
expected_p_o_e = (-l['l']*cos(l['dc'])*l['frame_d'].x +
l['r']*l['frame_d'].y +
l['l']*sin(l['dc'])*l['frame_d'].z)
assert (p_o_e - expected_p_o_e).simplify() == 0
expected_v_e_f = (l['l']*sin(l['dc'])*l['dc'].diff()*l['frame_d'].x -
l['l']*sin(l['dc'])*l['fd'].diff()*l['frame_d'].y +
(l['r']*l['fd'].diff() +
l['l']*cos(l['dc'])*l['dc'].diff())*l['frame_d'].z)
assert (v_e_f - expected_v_e_f).simplify() == 0
expected_a_e_f = (l['l']*(cos(l['dc'])*l['dc'].diff()**2 +
sin(l['dc'])*l['dc'].diff().diff())*l['frame_d'].x +
(-l['r']*l['fd'].diff()**2 -
2*l['l']*cos(l['dc'])*l['dc'].diff()*l['fd'].diff() -
l['l']*sin(l['dc'])*l['fd'].diff().diff())*l['frame_d'].y +
(l['r']*l['fd'].diff().diff() +
l['l']*cos(l['dc'])*l['dc'].diff().diff() -
l['l']*sin(l['dc'])*l['dc'].diff()**2 -
l['l']*sin(l['dc'])*l['fd'].diff()**2)*l['frame_d'].z)
assert (a_e_f - expected_a_e_f).simplify() == 0
|
71689fd69f20d5e64d3d7a61076806819f5178b74527ac035ba770df2459cc1c | from sympy.parsing.maxima import parse_maxima
from sympy import Rational, Abs, Symbol, sin, cos, E, oo, log, factorial
from sympy.abc import x
n = Symbol('n', integer=True)
def test_parser():
assert Abs(parse_maxima('float(1/3)') - 0.333333333) < 10**(-5)
assert parse_maxima('13^26') == 91733330193268616658399616009
assert parse_maxima('sin(%pi/2) + cos(%pi/3)') == Rational(3, 2)
assert parse_maxima('log(%e)') == 1
def test_injection():
parse_maxima('c: x+1', globals=globals())
# c created by parse_maxima
assert c == x + 1
parse_maxima('g: sqrt(81)', globals=globals())
# g created by parse_maxima
assert g == 9
def test_maxima_functions():
assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
-1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
assert parse_maxima('solve(x^2-4,x)') == [-2, 2]
assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') == -oo
assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
assert parse_maxima('sum(k, k, 1, n)', name_dict=dict(
n=Symbol('n', integer=True),
k=Symbol('k', integer=True)
)) == (n**2 + n)/2
assert parse_maxima('product(k, k, 1, n)', name_dict=dict(
n=Symbol('n', integer=True),
k=Symbol('k', integer=True)
)) == factorial(n)
assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
assert Abs( parse_maxima(
'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
|
26fd8376874c7473ebcc3ef532c81e7d138110c1cfaf0d1c70982c928a146007 | from __future__ import print_function, division
from sympy.core.backend import zeros, Matrix, diff, eye
from sympy import solve_linear_system_LU
from sympy.core.compatibility import range
from sympy.utilities import default_sort_key
from sympy.physics.vector import (ReferenceFrame, dynamicsymbols,
partial_velocity)
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.physics.mechanics.functions import (msubs, find_dynamicsymbols,
_f_list_parser)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import iterable
__all__ = ['KanesMethod']
class KanesMethod(object):
"""Kane's method object.
This object is used to do the "book-keeping" as you go through and form
equations of motion in the way Kane presents in:
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
The attributes are for equations in the form [M] udot = forcing.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
bodylist : iterable
Iterable of Point and RigidBody objects in the system.
forcelist : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
auxiliary : Matrix
If applicable, the set of auxiliary Kane's
equations used to solve for non-contributing
forces.
mass_matrix : Matrix
The system's mass matrix
forcing : Matrix
The system's forcing vector
mass_matrix_full : Matrix
The "mass matrix" for the u's and q's
forcing_full : Matrix
The "forcing vector" for the u's and q's
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized speeds and coordinates and their
derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> m, c, k = symbols('m c k')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
Next we need to arrange/store information in the way that KanesMethod
requires. The kinematic differential equations need to be stored in a
dict. A list of forces/torques must be constructed, where each entry in
the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the
Vectors represent the Force or Torque.
Next a particle needs to be created, and it needs to have a point and mass
assigned to it.
Finally, a list of all bodies and particles needs to be created.
>>> kd = [qd - u]
>>> FL = [(P, (-k * q - c * u) * N.x)]
>>> pa = Particle('pa', P, m)
>>> BL = [pa]
Finally we can generate the equations of motion.
First we create the KanesMethod object and supply an inertial frame,
coordinates, generalized speeds, and the kinematic differential equations.
Additional quantities such as configuration and motion constraints,
dependent coordinates and speeds, and auxiliary speeds are also supplied
here (see the online documentation).
Next we form FR* and FR to complete: Fr + Fr* = 0.
We have the equations of motion at this point.
It makes sense to rearrange them though, so we calculate the mass matrix and
the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is
the mass matrix, udot is a vector of the time derivatives of the
generalized speeds, and forcing is a vector representing "forcing" terms.
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> rhs
Matrix([[(-c*u(t) - k*q(t))/m]])
>>> KM.linearize(A_and_B=True)[0]
Matrix([
[ 0, 1],
[-k/m, -c/m]])
Please look at the documentation pages for more information on how to
perform linearization and how to deal with dependent coordinates & speeds,
and how do deal with bringing non-contributing forces into evidence.
"""
def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None,
configuration_constraints=None, u_dependent=None,
velocity_constraints=None, acceleration_constraints=None,
u_auxiliary=None):
"""Please read the online documentation. """
if not q_ind:
q_ind = [dynamicsymbols('dummy_q')]
kd_eqs = [dynamicsymbols('dummy_kd')]
if not isinstance(frame, ReferenceFrame):
raise TypeError('An inertial ReferenceFrame must be supplied')
self._inertial = frame
self._fr = None
self._frstar = None
self._forcelist = None
self._bodylist = None
self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent,
u_auxiliary)
self._initialize_kindiffeq_matrices(kd_eqs)
self._initialize_constraint_matrices(configuration_constraints,
velocity_constraints, acceleration_constraints)
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux):
"""Initialize the coordinate and speed vectors."""
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize generalized coordinates
q_dep = none_handler(q_dep)
if not iterable(q_ind):
raise TypeError('Generalized coordinates must be an iterable.')
if not iterable(q_dep):
raise TypeError('Dependent coordinates must be an iterable.')
q_ind = Matrix(q_ind)
self._qdep = q_dep
self._q = Matrix([q_ind, q_dep])
self._qdot = self.q.diff(dynamicsymbols._t)
# Initialize generalized speeds
u_dep = none_handler(u_dep)
if not iterable(u_ind):
raise TypeError('Generalized speeds must be an iterable.')
if not iterable(u_dep):
raise TypeError('Dependent speeds must be an iterable.')
u_ind = Matrix(u_ind)
self._udep = u_dep
self._u = Matrix([u_ind, u_dep])
self._udot = self.u.diff(dynamicsymbols._t)
self._uaux = none_handler(u_aux)
def _initialize_constraint_matrices(self, config, vel, acc):
"""Initializes constraint matrices."""
# Define vector dimensions
o = len(self.u)
m = len(self._udep)
p = o - m
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize configuration constraints
config = none_handler(config)
if len(self._qdep) != len(config):
raise ValueError('There must be an equal number of dependent '
'coordinates and configuration constraints.')
self._f_h = none_handler(config)
# Initialize velocity and acceleration constraints
vel = none_handler(vel)
acc = none_handler(acc)
if len(vel) != m:
raise ValueError('There must be an equal number of dependent '
'speeds and velocity constraints.')
if acc and (len(acc) != m):
raise ValueError('There must be an equal number of dependent '
'speeds and acceleration constraints.')
if vel:
u_zero = dict((i, 0) for i in self.u)
udot_zero = dict((i, 0) for i in self._udot)
# When calling kanes_equations, another class instance will be
# created if auxiliary u's are present. In this case, the
# computation of kinetic differential equation matrices will be
# skipped as this was computed during the original KanesMethod
# object, and the qd_u_map will not be available.
if self._qdot_u_map is not None:
vel = msubs(vel, self._qdot_u_map)
self._f_nh = msubs(vel, u_zero)
self._k_nh = (vel - self._f_nh).jacobian(self.u)
# If no acceleration constraints given, calculate them.
if not acc:
self._f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u +
self._f_nh.diff(dynamicsymbols._t))
self._k_dnh = self._k_nh
else:
if self._qdot_u_map is not None:
acc = msubs(acc, self._qdot_u_map)
self._f_dnh = msubs(acc, udot_zero)
self._k_dnh = (acc - self._f_dnh).jacobian(self._udot)
# Form of non-holonomic constraints is B*u + C = 0.
# We partition B into independent and dependent columns:
# Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds
# to independent speeds as: udep = Ars*uind, neglecting the C term.
B_ind = self._k_nh[:, :p]
B_dep = self._k_nh[:, p:o]
self._Ars = -B_dep.LUsolve(B_ind)
else:
self._f_nh = Matrix()
self._k_nh = Matrix()
self._f_dnh = Matrix()
self._k_dnh = Matrix()
self._Ars = Matrix()
def _initialize_kindiffeq_matrices(self, kdeqs):
"""Initialize the kinematic differential equation matrices."""
if kdeqs:
if len(self.q) != len(kdeqs):
raise ValueError('There must be an equal number of kinematic '
'differential equations and coordinates.')
kdeqs = Matrix(kdeqs)
u = self.u
qdot = self._qdot
# Dictionaries setting things to zero
u_zero = dict((i, 0) for i in u)
uaux_zero = dict((i, 0) for i in self._uaux)
qdot_zero = dict((i, 0) for i in qdot)
f_k = msubs(kdeqs, u_zero, qdot_zero)
k_ku = (msubs(kdeqs, qdot_zero) - f_k).jacobian(u)
k_kqdot = (msubs(kdeqs, u_zero) - f_k).jacobian(qdot)
f_k = k_kqdot.LUsolve(f_k)
k_ku = k_kqdot.LUsolve(k_ku)
k_kqdot = eye(len(qdot))
self._qdot_u_map = solve_linear_system_LU(
Matrix([k_kqdot.T, -(k_ku * u + f_k).T]).T, qdot)
self._f_k = msubs(f_k, uaux_zero)
self._k_ku = msubs(k_ku, uaux_zero)
self._k_kqdot = k_kqdot
else:
self._qdot_u_map = None
self._f_k = Matrix()
self._k_ku = Matrix()
self._k_kqdot = Matrix()
def _form_fr(self, fl):
"""Form the generalized active force."""
if fl is not None and (len(fl) == 0 or not iterable(fl)):
raise ValueError('Force pairs must be supplied in an '
'non-empty iterable or None.')
N = self._inertial
# pull out relevant velocities for constructing partial velocities
vel_list, f_list = _f_list_parser(fl, N)
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
f_list = [msubs(i, self._qdot_u_map) for i in f_list]
# Fill Fr with dot product of partial velocities and forces
o = len(self.u)
b = len(f_list)
FR = zeros(o, 1)
partials = partial_velocity(vel_list, self.u, N)
for i in range(o):
FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))
# In case there are dependent speeds
if self._udep:
p = o - len(self._udep)
FRtilde = FR[:p, 0]
FRold = FR[p:o, 0]
FRtilde += self._Ars.T * FRold
FR = FRtilde
self._forcelist = fl
self._fr = FR
return FR
def _form_frstar(self, bl):
"""Form the generalized inertia force."""
if not iterable(bl):
raise TypeError('Bodies must be supplied in an iterable.')
t = dynamicsymbols._t
N = self._inertial
# Dicts setting things to zero
udot_zero = dict((i, 0) for i in self._udot)
uaux_zero = dict((i, 0) for i in self._uaux)
uauxdot = [diff(i, t) for i in self._uaux]
uauxdot_zero = dict((i, 0) for i in uauxdot)
# Dictionary of q' and q'' to u and u'
q_ddot_u_map = dict((k.diff(t), v.diff(t)) for (k, v) in
self._qdot_u_map.items())
q_ddot_u_map.update(self._qdot_u_map)
# Fill up the list of partials: format is a list with num elements
# equal to number of entries in body list. Each of these elements is a
# list - either of length 1 for the translational components of
# particles or of length 2 for the translational and rotational
# components of rigid bodies. The inner most list is the list of
# partial velocities.
def get_partial_velocity(body):
if isinstance(body, RigidBody):
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
elif isinstance(body, Particle):
vlist = [body.point.vel(N),]
else:
raise TypeError('The body list may only contain either '
'RigidBody or Particle as list elements.')
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
return partial_velocity(v, self.u, N)
partials = [get_partial_velocity(body) for body in bl]
# Compute fr_star in two components:
# fr_star = -(MM*u' + nonMM)
o = len(self.u)
MM = zeros(o, o)
nonMM = zeros(o, 1)
zero_uaux = lambda expr: msubs(expr, uaux_zero)
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
for i, body in enumerate(bl):
if isinstance(body, RigidBody):
M = zero_uaux(body.mass)
I = zero_uaux(body.central_inertia)
vel = zero_uaux(body.masscenter.vel(N))
omega = zero_uaux(body.frame.ang_vel_in(N))
acc = zero_udot_uaux(body.masscenter.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
msubs(I & body.frame.ang_acc_in(N), udot_zero) +
(omega ^ (I & omega)))
for j in range(o):
tmp_vel = zero_uaux(partials[i][0][j])
tmp_ang = zero_uaux(I & partials[i][1][j])
for k in range(o):
# translational
MM[j, k] += M * (tmp_vel & partials[i][0][k])
# rotational
MM[j, k] += (tmp_ang & partials[i][1][k])
nonMM[j] += inertial_force & partials[i][0][j]
nonMM[j] += inertial_torque & partials[i][1][j]
else:
M = zero_uaux(body.mass)
vel = zero_uaux(body.point.vel(N))
acc = zero_udot_uaux(body.point.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
for j in range(o):
temp = zero_uaux(partials[i][0][j])
for k in range(o):
MM[j, k] += M * (temp & partials[i][0][k])
nonMM[j] += inertial_force & partials[i][0][j]
# Compose fr_star out of MM and nonMM
MM = zero_uaux(msubs(MM, q_ddot_u_map))
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
udot_zero, uauxdot_zero, uaux_zero)
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
# If there are dependent speeds, we need to find fr_star_tilde
if self._udep:
p = o - len(self._udep)
fr_star_ind = fr_star[:p, 0]
fr_star_dep = fr_star[p:o, 0]
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
# Apply the same to MM
MMi = MM[:p, :]
MMd = MM[p:o, :]
MM = MMi + (self._Ars.T * MMd)
self._bodylist = bl
self._frstar = fr_star
self._k_d = MM
self._f_d = -msubs(self._fr + self._frstar, udot_zero)
return fr_star
def to_linearizer(self):
"""Returns an instance of the Linearizer class, initiated from the
data in the KanesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points)."""
if (self._fr is None) or (self._frstar is None):
raise ValueError('Need to compute Fr, Fr* first.')
# Get required equation components. The Kane's method class breaks
# these into pieces. Need to reassemble
f_c = self._f_h
if self._f_nh and self._k_nh:
f_v = self._f_nh + self._k_nh*Matrix(self.u)
else:
f_v = Matrix()
if self._f_dnh and self._k_dnh:
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
else:
f_a = Matrix()
# Dicts to sub to zero, for splitting up expressions
u_zero = dict((i, 0) for i in self.u)
ud_zero = dict((i, 0) for i in self._udot)
qd_zero = dict((i, 0) for i in self._qdot)
qd_u_zero = dict((i, 0) for i in Matrix([self._qdot, self.u]))
# Break the kinematic differential eqs apart into f_0 and f_1
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
# Break the dynamic differential eqs into f_2 and f_3
f_2 = msubs(self._frstar, qd_u_zero)
f_3 = msubs(self._frstar, ud_zero) + self._fr
f_4 = zeros(len(f_2), 1)
# Get the required vector components
q = self.q
u = self.u
if self._qdep:
q_i = q[:-len(self._qdep)]
else:
q_i = q
q_d = self._qdep
if self._udep:
u_i = u[:-len(self._udep)]
else:
u_i = u
u_d = self._udep
# Form dictionary to set auxiliary speeds & their derivatives to 0.
uaux = self._uaux
uauxdot = uaux.diff(dynamicsymbols._t)
uaux_zero = dict((i, 0) for i in Matrix([uaux, uauxdot]))
# Checking for dynamic symbols outside the dynamic differential
# equations; throws error if there is.
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
raise ValueError('Cannot have dynamicsymbols outside dynamic \
forcing vector.')
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r)
def linearize(self, **kwargs):
""" Linearize the equations of motion about a symbolic operating point.
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
# TODO : Remove this after 1.1 has been released.
_ = kwargs.pop('new_method', None)
linearizer = self.to_linearizer()
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def kanes_equations(self, bodies, loads=None):
""" Method to form Kane's equations, Fr + Fr* = 0.
Returns (Fr, Fr*). In the case where auxiliary generalized speeds are
present (say, s auxiliary speeds, o generalized speeds, and m motion
constraints) the length of the returned vectors will be o - m + s in
length. The first o - m equations will be the constrained Kane's
equations, then the s auxiliary Kane's equations. These auxiliary
equations can be accessed with the auxiliary_eqs().
Parameters
==========
bodies : iterable
An iterable of all RigidBody's and Particle's in the system.
A system must have at least one body.
loads : iterable
Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
Must be either a non-empty iterable of tuples or None which corresponds
to a system with no constraints.
"""
if (bodies is None and loads is not None) or isinstance(bodies[0], tuple):
# This switches the order if they use the old way.
bodies, loads = loads, bodies
SymPyDeprecationWarning(value='The API for kanes_equations() has changed such '
'that the loads (forces and torques) are now the second argument '
'and is optional with None being the default.',
feature='The kanes_equation() argument order',
useinstead='switched argument order to update your code, For example: '
'kanes_equations(loads, bodies) > kanes_equations(bodies, loads).',
issue=10945, deprecated_since_version="1.1").warn()
if not self._k_kqdot:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
fr = self._form_fr(loads)
frstar = self._form_frstar(bodies)
if self._uaux:
if not self._udep:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux)
else:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux, u_dependent=self._udep,
velocity_constraints=(self._k_nh * self.u +
self._f_nh))
km._qdot_u_map = self._qdot_u_map
self._km = km
fraux = km._form_fr(loads)
frstaraux = km._form_frstar(bodies)
self._aux_eq = fraux + frstaraux
self._fr = fr.col_join(fraux)
self._frstar = frstar.col_join(frstaraux)
return (self._fr, self._frstar)
def rhs(self, inv_method=None):
"""Returns the system's equations of motion in first order form. The
output is the right hand side of::
x' = |q'| =: f(q, u, r, p, t)
|u'|
The right hand side is what is needed by most numerical ODE
integrators.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
rhs = zeros(len(self.q) + len(self.u), 1)
kdes = self.kindiffdict()
for i, q_i in enumerate(self.q):
rhs[i] = kdes[q_i.diff()]
if inv_method is None:
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
else:
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
try_block_diag=True) *
self.forcing)
return rhs
def kindiffdict(self):
"""Returns a dictionary mapping q' to u."""
if not self._qdot_u_map:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
return self._qdot_u_map
@property
def auxiliary_eqs(self):
"""A matrix containing the auxiliary equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
if not self._uaux:
raise ValueError('No auxiliary speeds have been declared.')
return self._aux_eq
@property
def mass_matrix(self):
"""The mass matrix of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return Matrix([self._k_d, self._k_dnh])
@property
def mass_matrix_full(self):
"""The mass matrix of the system, augmented by the kinematic
differential equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
o = len(self.u)
n = len(self.q)
return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o,
n)).row_join(self.mass_matrix))
@property
def forcing(self):
"""The forcing vector of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return -Matrix([self._f_d, self._f_dnh])
@property
def forcing_full(self):
"""The forcing vector of the system, augmented by the kinematic
differential equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
f1 = self._k_ku * Matrix(self.u) + self._f_k
return -Matrix([f1, self._f_d, self._f_dnh])
@property
def q(self):
return self._q
@property
def u(self):
return self._u
@property
def bodylist(self):
return self._bodylist
@property
def forcelist(self):
return self._forcelist
|
fbe3ddcc5fa1d3f2106bab856e7efd3721a74f2a05371f1b97f48c235804a4bf | from __future__ import print_function, division
from sympy.core.backend import diff, zeros, Matrix, eye, sympify
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.physics.mechanics.functions import (find_dynamicsymbols, msubs,
_f_list_parser)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import iterable
__all__ = ['LagrangesMethod']
class LagrangesMethod(object):
"""Lagrange's method object.
This object generates the equations of motion in a two step procedure. The
first step involves the initialization of LagrangesMethod by supplying the
Lagrangian and the generalized coordinates, at the bare minimum. If there
are any constraint equations, they can be supplied as keyword arguments.
The Lagrange multipliers are automatically generated and are equal in
number to the constraint equations. Similarly any non-conservative forces
can be supplied in an iterable (as described below and also shown in the
example) along with a ReferenceFrame. This is also discussed further in the
__init__ method.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
forcelist : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
bodies : iterable
Iterable containing the rigid bodies and particles of the system.
mass_matrix : Matrix
The system's mass matrix
forcing : Matrix
The system's forcing vector
mass_matrix_full : Matrix
The "mass matrix" for the qdot's, qdoubledot's, and the
lagrange multipliers (lam)
forcing_full : Matrix
The forcing vector for the qdot's, qdoubledot's and
lagrange multipliers (lam)
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized coordinates and their derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
>>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
>>> from sympy.physics.mechanics import dynamicsymbols, kinetic_energy
>>> from sympy import symbols
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, qd * N.x)
We need to then prepare the information as required by LagrangesMethod to
generate equations of motion.
First we create the Particle, which has a point attached to it.
Following this the lagrangian is created from the kinetic and potential
energies.
Then, an iterable of nonconservative forces/torques must be constructed,
where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
with the Vectors representing the nonconservative forces or torques.
>>> Pa = Particle('Pa', P, m)
>>> Pa.potential_energy = k * q**2 / 2.0
>>> L = Lagrangian(N, Pa)
>>> fl = [(P, -b * qd * N.x)]
Finally we can generate the equations of motion.
First we create the LagrangesMethod object. To do this one must supply
the Lagrangian, and the generalized coordinates. The constraint equations,
the forcelist, and the inertial frame may also be provided, if relevant.
Next we generate Lagrange's equations of motion, such that:
Lagrange's equations of motion = 0.
We have the equations of motion at this point.
>>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
>>> print(l.form_lagranges_equations())
Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> print(l.rhs())
Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])
Please refer to the docstrings on each method for more details.
"""
def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None,
hol_coneqs=None, nonhol_coneqs=None):
"""Supply the following for the initialization of LagrangesMethod
Lagrangian : Sympifyable
qs : array_like
The generalized coordinates
hol_coneqs : array_like, optional
The holonomic constraint equations
nonhol_coneqs : array_like, optional
The nonholonomic constraint equations
forcelist : iterable, optional
Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
This feature is primarily to account for the nonconservative forces
and/or moments.
bodies : iterable, optional
Takes an iterable containing the rigid bodies and particles of the
system.
frame : ReferenceFrame, optional
Supply the inertial frame. This is used to determine the
generalized forces due to non-conservative forces.
"""
self._L = Matrix([sympify(Lagrangian)])
self.eom = None
self._m_cd = Matrix() # Mass Matrix of differentiated coneqs
self._m_d = Matrix() # Mass Matrix of dynamic equations
self._f_cd = Matrix() # Forcing part of the diff coneqs
self._f_d = Matrix() # Forcing part of the dynamic equations
self.lam_coeffs = Matrix() # The coeffecients of the multipliers
forcelist = forcelist if forcelist else []
if not iterable(forcelist):
raise TypeError('Force pairs must be supplied in an iterable.')
self._forcelist = forcelist
if frame and not isinstance(frame, ReferenceFrame):
raise TypeError('frame must be a valid ReferenceFrame')
self._bodies = bodies
self.inertial = frame
self.lam_vec = Matrix()
self._term1 = Matrix()
self._term2 = Matrix()
self._term3 = Matrix()
self._term4 = Matrix()
# Creating the qs, qdots and qdoubledots
if not iterable(qs):
raise TypeError('Generalized coordinates must be an iterable')
self._q = Matrix(qs)
self._qdots = self.q.diff(dynamicsymbols._t)
self._qdoubledots = self._qdots.diff(dynamicsymbols._t)
mat_build = lambda x: Matrix(x) if x else Matrix()
hol_coneqs = mat_build(hol_coneqs)
nonhol_coneqs = mat_build(nonhol_coneqs)
self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t),
nonhol_coneqs])
self._hol_coneqs = hol_coneqs
def form_lagranges_equations(self):
"""Method to form Lagrange's equations of motion.
Returns a vector of equations of motion using Lagrange's equations of
the second kind.
"""
qds = self._qdots
qdd_zero = dict((i, 0) for i in self._qdoubledots)
n = len(self.q)
# Internally we represent the EOM as four terms:
# EOM = term1 - term2 - term3 - term4 = 0
# First term
self._term1 = self._L.jacobian(qds)
self._term1 = self._term1.diff(dynamicsymbols._t).T
# Second term
self._term2 = self._L.jacobian(self.q).T
# Third term
if self.coneqs:
coneqs = self.coneqs
m = len(coneqs)
# Creating the multipliers
self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
self.lam_coeffs = -coneqs.jacobian(qds)
self._term3 = self.lam_coeffs.T * self.lam_vec
# Extracting the coeffecients of the qdds from the diff coneqs
diffconeqs = coneqs.diff(dynamicsymbols._t)
self._m_cd = diffconeqs.jacobian(self._qdoubledots)
# The remaining terms i.e. the 'forcing' terms in diff coneqs
self._f_cd = -diffconeqs.subs(qdd_zero)
else:
self._term3 = zeros(n, 1)
# Fourth term
if self.forcelist:
N = self.inertial
self._term4 = zeros(n, 1)
for i, qd in enumerate(qds):
flist = zip(*_f_list_parser(self.forcelist, N))
self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
else:
self._term4 = zeros(n, 1)
# Form the dynamic mass and forcing matrices
without_lam = self._term1 - self._term2 - self._term4
self._m_d = without_lam.jacobian(self._qdoubledots)
self._f_d = -without_lam.subs(qdd_zero)
# Form the EOM
self.eom = without_lam - self._term3
return self.eom
@property
def mass_matrix(self):
"""Returns the mass matrix, which is augmented by the Lagrange
multipliers, if necessary.
If the system is described by 'n' generalized coordinates and there are
no constraint equations then an n X n matrix is returned.
If there are 'n' generalized coordinates and 'm' constraint equations
have been supplied during initialization then an n X (n+m) matrix is
returned. The (n + m - 1)th and (n + m)th columns contain the
coefficients of the Lagrange multipliers.
"""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return (self._m_d).row_join(self.lam_coeffs.T)
else:
return self._m_d
@property
def mass_matrix_full(self):
"""Augments the coefficients of qdots to the mass_matrix."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
n = len(self.q)
m = len(self.coneqs)
row1 = eye(n).row_join(zeros(n, n + m))
row2 = zeros(n, n).row_join(self.mass_matrix)
if self.coneqs:
row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
return row1.col_join(row2).col_join(row3)
else:
return row1.col_join(row2)
@property
def forcing(self):
"""Returns the forcing vector from 'lagranges_equations' method."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
return self._f_d
@property
def forcing_full(self):
"""Augments qdots to the forcing vector above."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return self._qdots.col_join(self.forcing).col_join(self._f_cd)
else:
return self._qdots.col_join(self.forcing)
def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
"""Returns an instance of the Linearizer class, initiated from the
data in the LagrangesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points).
Parameters
==========
q_ind, qd_ind : array_like, optional
The independent generalized coordinates and speeds.
q_dep, qd_dep : array_like, optional
The dependent generalized coordinates and speeds.
"""
# Compose vectors
t = dynamicsymbols._t
q = self.q
u = self._qdots
ud = u.diff(t)
# Get vector of lagrange multipliers
lams = self.lam_vec
mat_build = lambda x: Matrix(x) if x else Matrix()
q_i = mat_build(q_ind)
q_d = mat_build(q_dep)
u_i = mat_build(qd_ind)
u_d = mat_build(qd_dep)
# Compose general form equations
f_c = self._hol_coneqs
f_v = self.coneqs
f_a = f_v.diff(t)
f_0 = u
f_1 = -u
f_2 = self._term1
f_3 = -(self._term2 + self._term4)
f_4 = -self._term3
# Check that there are an appropriate number of independent and
# dependent coordinates
if len(q_d) != len(f_c) or len(u_d) != len(f_v):
raise ValueError(("Must supply {:} dependent coordinates, and " +
"{:} dependent speeds").format(len(f_c), len(f_v)))
if set(Matrix([q_i, q_d])) != set(q):
raise ValueError("Must partition q into q_ind and q_dep, with " +
"no extra or missing symbols.")
if set(Matrix([u_i, u_d])) != set(u):
raise ValueError("Must partition qd into qd_ind and qd_dep, " +
"with no extra or missing symbols.")
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
insyms = set(Matrix([q, u, ud, lams]))
r = list(find_dynamicsymbols(f_3, insyms))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r, lams)
def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None,
**kwargs):
"""Linearize the equations of motion about a symbolic operating point.
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def solve_multipliers(self, op_point=None, sol_type='dict'):
"""Solves for the values of the lagrange multipliers symbolically at
the specified operating point
Parameters
==========
op_point : dict or iterable of dicts, optional
Point at which to solve at. The operating point is specified as
a dictionary or iterable of dictionaries of {symbol: value}. The
value may be numeric or symbolic itself.
sol_type : str, optional
Solution return type. Valid options are:
- 'dict': A dict of {symbol : value} (default)
- 'Matrix': An ordered column matrix of the solution
"""
# Determine number of multipliers
k = len(self.lam_vec)
if k == 0:
raise ValueError("System has no lagrange multipliers to solve for.")
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif iterable(op_point):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
elif op_point is None:
op_point_dict = {}
else:
raise TypeError("op_point must be either a dictionary or an "
"iterable of dictionaries.")
# Compose the system to be solved
mass_matrix = self.mass_matrix.col_join((-self.lam_coeffs.row_join(
zeros(k, k))))
force_matrix = self.forcing.col_join(self._f_cd)
# Sub in the operating point
mass_matrix = msubs(mass_matrix, op_point_dict)
force_matrix = msubs(force_matrix, op_point_dict)
# Solve for the multipliers
sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
if sol_type == 'dict':
return dict(zip(self.lam_vec, sol_list))
elif sol_type == 'Matrix':
return Matrix(sol_list)
else:
raise ValueError("Unknown sol_type {:}.".format(sol_type))
def rhs(self, inv_method=None, **kwargs):
"""Returns equations that can be solved numerically
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
if inv_method is None:
self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
else:
self._rhs = (self.mass_matrix_full.inv(inv_method,
try_block_diag=True) * self.forcing_full)
return self._rhs
@property
def q(self):
return self._q
@property
def u(self):
return self._qdots
@property
def bodies(self):
return self._bodies
@property
def forcelist(self):
return self._forcelist
|
2c0508258cf79e5e0a10fe630f07329e92fc33a7e4c811af88d3e25799c44fc7 | from sympy.core.backend import (S, sympify, expand, sqrt, Add, zeros,
ImmutableMatrix as Matrix)
from sympy import trigsimp
from sympy.core.compatibility import unicode
from sympy.utilities.misc import filldedent
__all__ = ['Vector']
class Vector(object):
"""The class used to define vectors.
It along with ReferenceFrame are the building blocks of describing a
classical mechanics system in PyDy and sympy.physics.vector.
Attributes
==========
simp : Boolean
Let certain methods use trigsimp on their outputs
"""
simp = False
def __init__(self, inlist):
"""This is the constructor for the Vector class. You shouldn't be
calling this, it should only be used by other functions. You should be
treating Vectors like you would with if you were doing the math by
hand, and getting the first 3 from the standard basis vectors from a
ReferenceFrame.
The only exception is to create a zero vector:
zv = Vector(0)
"""
self.args = []
if inlist == 0:
inlist = []
if isinstance(inlist, dict):
d = inlist
else:
d = {}
for inp in inlist:
if inp[1] in d:
d[inp[1]] += inp[0]
else:
d[inp[1]] = inp[0]
for k, v in d.items():
if v != Matrix([0, 0, 0]):
self.args.append((v, k))
def __hash__(self):
return hash(tuple(self.args))
def __add__(self, other):
"""The add operator for Vector. """
if other == 0:
return self
other = _check_vector(other)
return Vector(self.args + other.args)
def __and__(self, other):
"""Dot product of two vectors.
Returns a scalar, the dot product of the two Vectors
Parameters
==========
other : Vector
The Vector which we are dotting with
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, dot
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> dot(N.x, N.x)
1
>>> dot(N.x, N.y)
0
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> dot(N.y, A.y)
cos(q1)
"""
from sympy.physics.vector.dyadic import Dyadic
if isinstance(other, Dyadic):
return NotImplemented
other = _check_vector(other)
out = S(0)
for i, v1 in enumerate(self.args):
for j, v2 in enumerate(other.args):
out += ((v2[0].T)
* (v2[1].dcm(v1[1]))
* (v1[0]))[0]
if Vector.simp:
return trigsimp(sympify(out), recursive=True)
else:
return sympify(out)
def __div__(self, other):
"""This uses mul and inputs self and 1 divided by other. """
return self.__mul__(sympify(1) / other)
__truediv__ = __div__
def __eq__(self, other):
"""Tests for equality.
It is very import to note that this is only as good as the SymPy
equality test; False does not always mean they are not equivalent
Vectors.
If other is 0, and self is empty, returns True.
If other is 0 and self is not empty, returns False.
If none of the above, only accepts other as a Vector.
"""
if other == 0:
other = Vector(0)
try:
other = _check_vector(other)
except TypeError:
return False
if (self.args == []) and (other.args == []):
return True
elif (self.args == []) or (other.args == []):
return False
frame = self.args[0][1]
for v in frame:
if expand((self - other) & v) != 0:
return False
return True
def __mul__(self, other):
"""Multiplies the Vector by a sympifyable expression.
Parameters
==========
other : Sympifyable
The scalar to multiply this Vector with
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy import Symbol
>>> N = ReferenceFrame('N')
>>> b = Symbol('b')
>>> V = 10 * b * N.x
>>> print(V)
10*b*N.x
"""
newlist = [v for v in self.args]
for i, v in enumerate(newlist):
newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1])
return Vector(newlist)
def __ne__(self, other):
return not self == other
def __neg__(self):
return self * -1
def __or__(self, other):
"""Outer product between two Vectors.
A rank increasing operation, which returns a Dyadic from two Vectors
Parameters
==========
other : Vector
The Vector to take the outer product with
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> outer(N.x, N.x)
(N.x|N.x)
"""
from sympy.physics.vector.dyadic import Dyadic
other = _check_vector(other)
ol = Dyadic(0)
for i, v in enumerate(self.args):
for i2, v2 in enumerate(other.args):
# it looks this way because if we are in the same frame and
# use the enumerate function on the same frame in a nested
# fashion, then bad things happen
ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)])
ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)])
ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)])
ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)])
ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)])
ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)])
ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)])
ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)])
ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)])
return ol
def _latex(self, printer=None):
"""Latex Printing method. """
from sympy.physics.vector.printing import VectorLatexPrinter
ar = self.args # just to shorten things
if len(ar) == 0:
return str(0)
ol = [] # output list, to be concatenated to a string
for i, v in enumerate(ar):
for j in 0, 1, 2:
# if the coef of the basis vector is 1, we skip the 1
if ar[i][0][j] == 1:
ol.append(' + ' + ar[i][1].latex_vecs[j])
# if the coef of the basis vector is -1, we skip the 1
elif ar[i][0][j] == -1:
ol.append(' - ' + ar[i][1].latex_vecs[j])
elif ar[i][0][j] != 0:
# If the coefficient of the basis vector is not 1 or -1;
# also, we might wrap it in parentheses, for readability.
arg_str = VectorLatexPrinter().doprint(ar[i][0][j])
if isinstance(ar[i][0][j], Add):
arg_str = "(%s)" % arg_str
if arg_str[0] == '-':
arg_str = arg_str[1:]
str_start = ' - '
else:
str_start = ' + '
ol.append(str_start + arg_str + ar[i][1].latex_vecs[j])
outstr = ''.join(ol)
if outstr.startswith(' + '):
outstr = outstr[3:]
elif outstr.startswith(' '):
outstr = outstr[1:]
return outstr
def _pretty(self, printer=None):
"""Pretty Printing method. """
from sympy.physics.vector.printing import VectorPrettyPrinter
from sympy.printing.pretty.stringpict import prettyForm
e = self
class Fake(object):
def render(self, *args, **kwargs):
ar = e.args # just to shorten things
if len(ar) == 0:
return unicode(0)
settings = printer._settings if printer else {}
vp = printer if printer else VectorPrettyPrinter(settings)
pforms = [] # output list, to be concatenated to a string
for i, v in enumerate(ar):
for j in 0, 1, 2:
# if the coef of the basis vector is 1, we skip the 1
if ar[i][0][j] == 1:
pform = vp._print(ar[i][1].pretty_vecs[j])
# if the coef of the basis vector is -1, we skip the 1
elif ar[i][0][j] == -1:
pform = vp._print(ar[i][1].pretty_vecs[j])
pform = prettyForm(*pform.left(" - "))
bin = prettyForm.NEG
pform = prettyForm(binding=bin, *pform)
elif ar[i][0][j] != 0:
# If the basis vector coeff is not 1 or -1,
# we might wrap it in parentheses, for readability.
pform = vp._print(ar[i][0][j])
if isinstance(ar[i][0][j], Add):
tmp = pform.parens()
pform = prettyForm(tmp[0], tmp[1])
pform = prettyForm(*pform.right(" ",
ar[i][1].pretty_vecs[j]))
else:
continue
pforms.append(pform)
pform = prettyForm.__add__(*pforms)
kwargs["wrap_line"] = kwargs.get("wrap_line")
kwargs["num_columns"] = kwargs.get("num_columns")
out_str = pform.render(*args, **kwargs)
mlines = [line.rstrip() for line in out_str.split("\n")]
return "\n".join(mlines)
return Fake()
def __ror__(self, other):
"""Outer product between two Vectors.
A rank increasing operation, which returns a Dyadic from two Vectors
Parameters
==========
other : Vector
The Vector to take the outer product with
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> outer(N.x, N.x)
(N.x|N.x)
"""
from sympy.physics.vector.dyadic import Dyadic
other = _check_vector(other)
ol = Dyadic(0)
for i, v in enumerate(other.args):
for i2, v2 in enumerate(self.args):
# it looks this way because if we are in the same frame and
# use the enumerate function on the same frame in a nested
# fashion, then bad things happen
ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)])
ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)])
ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)])
ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)])
ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)])
ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)])
ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)])
ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)])
ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)])
return ol
def __rsub__(self, other):
return (-1 * self) + other
def __str__(self, printer=None, order=True):
"""Printing method. """
from sympy.physics.vector.printing import VectorStrPrinter
if not order or len(self.args) == 1:
ar = list(self.args)
elif len(self.args) == 0:
return str(0)
else:
d = {v[1]: v[0] for v in self.args}
keys = sorted(d.keys(), key=lambda x: x.index)
ar = []
for key in keys:
ar.append((d[key], key))
ol = [] # output list, to be concatenated to a string
for i, v in enumerate(ar):
for j in 0, 1, 2:
# if the coef of the basis vector is 1, we skip the 1
if ar[i][0][j] == 1:
ol.append(' + ' + ar[i][1].str_vecs[j])
# if the coef of the basis vector is -1, we skip the 1
elif ar[i][0][j] == -1:
ol.append(' - ' + ar[i][1].str_vecs[j])
elif ar[i][0][j] != 0:
# If the coefficient of the basis vector is not 1 or -1;
# also, we might wrap it in parentheses, for readability.
arg_str = VectorStrPrinter().doprint(ar[i][0][j])
if isinstance(ar[i][0][j], Add):
arg_str = "(%s)" % arg_str
if arg_str[0] == '-':
arg_str = arg_str[1:]
str_start = ' - '
else:
str_start = ' + '
ol.append(str_start + arg_str + '*' + ar[i][1].str_vecs[j])
outstr = ''.join(ol)
if outstr.startswith(' + '):
outstr = outstr[3:]
elif outstr.startswith(' '):
outstr = outstr[1:]
return outstr
def __sub__(self, other):
"""The subtraction operator. """
return self.__add__(other * -1)
def __xor__(self, other):
"""The cross product operator for two Vectors.
Returns a Vector, expressed in the same ReferenceFrames as self.
Parameters
==========
other : Vector
The Vector which we are crossing with
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, Vector
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> N.x ^ N.y
N.z
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> A.x ^ N.y
N.z
>>> N.y ^ A.x
- sin(q1)*A.y - cos(q1)*A.z
"""
from sympy.physics.vector.dyadic import Dyadic
if isinstance(other, Dyadic):
return NotImplemented
other = _check_vector(other)
if other.args == []:
return Vector(0)
def _det(mat):
"""This is needed as a little method for to find the determinant
of a list in python; needs to work for a 3x3 list.
SymPy's Matrix won't take in Vector, so need a custom function.
You shouldn't be calling this.
"""
return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1])
+ mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] *
mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] -
mat[1][1] * mat[2][0]))
outlist = []
ar = other.args # For brevity
for i, v in enumerate(ar):
tempx = v[1].x
tempy = v[1].y
tempz = v[1].z
tempm = ([[tempx, tempy, tempz], [self & tempx, self & tempy,
self & tempz], [Vector([ar[i]]) & tempx,
Vector([ar[i]]) & tempy, Vector([ar[i]]) & tempz]])
outlist += _det(tempm).args
return Vector(outlist)
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
_sympystr = __str__
_sympyrepr = _sympystr
__repr__ = __str__
__radd__ = __add__
__rand__ = __and__
__rmul__ = __mul__
def separate(self):
"""
The constituents of this vector in different reference frames,
as per its definition.
Returns a dict mapping each ReferenceFrame to the corresponding
constituent Vector.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> R1 = ReferenceFrame('R1')
>>> R2 = ReferenceFrame('R2')
>>> v = R1.x + R2.x
>>> v.separate() == {R1: R1.x, R2: R2.x}
True
"""
components = {}
for x in self.args:
components[x[1]] = Vector([x])
return components
def dot(self, other):
return self & other
dot.__doc__ = __and__.__doc__
def cross(self, other):
return self ^ other
cross.__doc__ = __xor__.__doc__
def outer(self, other):
return self | other
outer.__doc__ = __or__.__doc__
def diff(self, var, frame, var_in_dcm=True):
"""Returns the partial derivative of the vector with respect to a
variable in the provided reference frame.
Parameters
==========
var : Symbol
What the partial derivative is taken with respect to.
frame : ReferenceFrame
The reference frame that the partial derivative is taken in.
var_in_dcm : boolean
If true, the differentiation algorithm assumes that the variable
may be present in any of the direction cosine matrices that relate
the frame to the frames of any component of the vector. But if it
is known that the variable is not present in the direction cosine
matrices, false can be set to skip full reexpression in the desired
frame.
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.vector import Vector
>>> Vector.simp = True
>>> t = Symbol('t')
>>> q1 = dynamicsymbols('q1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.y])
>>> A.x.diff(t, N)
- q1'*A.z
>>> B = ReferenceFrame('B')
>>> u1, u2 = dynamicsymbols('u1, u2')
>>> v = u1 * A.x + u2 * B.y
>>> v.diff(u2, N, var_in_dcm=False)
B.y
"""
from sympy.physics.vector.frame import _check_frame
var = sympify(var)
_check_frame(frame)
inlist = []
for vector_component in self.args:
measure_number = vector_component[0]
component_frame = vector_component[1]
if component_frame == frame:
inlist += [(measure_number.diff(var), frame)]
else:
# If the direction cosine matrix relating the component frame
# with the derivative frame does not contain the variable.
if not var_in_dcm or (frame.dcm(component_frame).diff(var) ==
zeros(3, 3)):
inlist += [(measure_number.diff(var),
component_frame)]
else: # else express in the frame
reexp_vec_comp = Vector([vector_component]).express(frame)
deriv = reexp_vec_comp.args[0][0].diff(var)
inlist += Vector([(deriv, frame)]).express(component_frame).args
return Vector(inlist)
def express(self, otherframe, variables=False):
"""
Returns a Vector equivalent to this one, expressed in otherframe.
Uses the global express method.
Parameters
==========
otherframe : ReferenceFrame
The frame for this Vector to be described in
variables : boolean
If True, the coordinate symbols(if present) in this Vector
are re-expressed in terms otherframe
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols
>>> q1 = dynamicsymbols('q1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.y])
>>> A.x.express(N)
cos(q1)*N.x - sin(q1)*N.z
"""
from sympy.physics.vector import express
return express(self, otherframe, variables=variables)
def to_matrix(self, reference_frame):
"""Returns the matrix form of the vector with respect to the given
frame.
Parameters
----------
reference_frame : ReferenceFrame
The reference frame that the rows of the matrix correspond to.
Returns
-------
matrix : ImmutableMatrix, shape(3,1)
The matrix that gives the 1D vector.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.mechanics.functions import inertia
>>> a, b, c = symbols('a, b, c')
>>> N = ReferenceFrame('N')
>>> vector = a * N.x + b * N.y + c * N.z
>>> vector.to_matrix(N)
Matrix([
[a],
[b],
[c]])
>>> beta = symbols('beta')
>>> A = N.orientnew('A', 'Axis', (beta, N.x))
>>> vector.to_matrix(A)
Matrix([
[ a],
[ b*cos(beta) + c*sin(beta)],
[-b*sin(beta) + c*cos(beta)]])
"""
return Matrix([self.dot(unit_vec) for unit_vec in
reference_frame]).reshape(3, 1)
def doit(self, **hints):
"""Calls .doit() on each term in the Vector"""
d = {}
for v in self.args:
d[v[1]] = v[0].applyfunc(lambda x: x.doit(**hints))
return Vector(d)
def dt(self, otherframe):
"""
Returns a Vector which is the time derivative of
the self Vector, taken in frame otherframe.
Calls the global time_derivative method
Parameters
==========
otherframe : ReferenceFrame
The frame to calculate the time derivative in
"""
from sympy.physics.vector import time_derivative
return time_derivative(self, otherframe)
def simplify(self):
"""Returns a simplified Vector."""
d = {}
for v in self.args:
d[v[1]] = v[0].simplify()
return Vector(d)
def subs(self, *args, **kwargs):
"""Substitution on the Vector.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy import Symbol
>>> N = ReferenceFrame('N')
>>> s = Symbol('s')
>>> a = N.x * s
>>> a.subs({s: 2})
2*N.x
"""
d = {}
for v in self.args:
d[v[1]] = v[0].subs(*args, **kwargs)
return Vector(d)
def magnitude(self):
"""Returns the magnitude (Euclidean norm) of self."""
return sqrt(self & self)
def normalize(self):
"""Returns a Vector of magnitude 1, codirectional with self."""
return Vector(self.args + []) / self.magnitude()
def applyfunc(self, f):
"""Apply a function to each component of a vector."""
if not callable(f):
raise TypeError("`f` must be callable.")
d = {}
for v in self.args:
d[v[1]] = v[0].applyfunc(f)
return Vector(d)
def free_symbols(self, reference_frame):
"""
Returns the free symbols in the measure numbers of the vector
expressed in the given reference frame.
Parameter
=========
reference_frame : ReferenceFrame
The frame with respect to which the free symbols of the
given vector is to be determined.
"""
return self.to_matrix(reference_frame).free_symbols
class VectorTypeError(TypeError):
def __init__(self, other, want):
msg = filldedent("Expected an instance of %s, but received object "
"'%s' of %s." % (type(want), other, type(other)))
super(VectorTypeError, self).__init__(msg)
def _check_vector(other):
if not isinstance(other, Vector):
raise TypeError('A Vector must be supplied')
return other
|
b6552d80cc4baf42bd1065edd21f2522b4f263f68c92307fa59ce8f34a71c09a | from __future__ import print_function, division
from sympy.core.backend import (sympify, diff, sin, cos, Matrix, symbols,
Function, S, Symbol)
from sympy import integrate, trigsimp
from sympy.core.compatibility import reduce
from .vector import Vector, _check_vector
from .frame import CoordinateSym, _check_frame
from .dyadic import Dyadic
from .printing import vprint, vsprint, vpprint, vlatex, init_vprinting
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import translate
__all__ = ['cross', 'dot', 'express', 'time_derivative', 'outer',
'kinematic_equations', 'get_motion_params', 'partial_velocity',
'dynamicsymbols', 'vprint', 'vsprint', 'vpprint', 'vlatex',
'init_vprinting']
def cross(vec1, vec2):
"""Cross product convenience wrapper for Vector.cross(): \n"""
if not isinstance(vec1, (Vector, Dyadic)):
raise TypeError('Cross product is between two vectors')
return vec1 ^ vec2
cross.__doc__ += Vector.cross.__doc__
def dot(vec1, vec2):
"""Dot product convenience wrapper for Vector.dot(): \n"""
if not isinstance(vec1, (Vector, Dyadic)):
raise TypeError('Dot product is between two vectors')
return vec1 & vec2
dot.__doc__ += Vector.dot.__doc__
def express(expr, frame, frame2=None, variables=False):
"""
Global function for 'express' functionality.
Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.
Refer to the local methods of Vector and Dyadic for details.
If 'variables' is True, then the coordinate variables (CoordinateSym
instances) of other frames present in the vector/scalar field or
dyadic expression are also substituted in terms of the base scalars of
this frame.
Parameters
==========
expr : Vector/Dyadic/scalar(sympyfiable)
The expression to re-express in ReferenceFrame 'frame'
frame: ReferenceFrame
The reference frame to express expr in
frame2 : ReferenceFrame
The other frame required for re-expression(only for Dyadic expr)
variables : boolean
Specifies whether to substitute the coordinate variables present
in expr, in terms of those of frame
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
>>> N = ReferenceFrame('N')
>>> q = dynamicsymbols('q')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> d = outer(N.x, N.x)
>>> from sympy.physics.vector import express
>>> express(d, B, N)
cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
>>> express(B.x, N)
cos(q)*N.x + sin(q)*N.y
>>> express(N[0], B, variables=True)
B_x*cos(q(t)) - B_y*sin(q(t))
"""
_check_frame(frame)
if expr == 0:
return expr
if isinstance(expr, Vector):
#Given expr is a Vector
if variables:
#If variables attribute is True, substitute
#the coordinate variables in the Vector
frame_list = [x[-1] for x in expr.args]
subs_dict = {}
for f in frame_list:
subs_dict.update(f.variable_map(frame))
expr = expr.subs(subs_dict)
#Re-express in this frame
outvec = Vector([])
for i, v in enumerate(expr.args):
if v[1] != frame:
temp = frame.dcm(v[1]) * v[0]
if Vector.simp:
temp = temp.applyfunc(lambda x:
trigsimp(x, method='fu'))
outvec += Vector([(temp, frame)])
else:
outvec += Vector([v])
return outvec
if isinstance(expr, Dyadic):
if frame2 is None:
frame2 = frame
_check_frame(frame2)
ol = Dyadic(0)
for i, v in enumerate(expr.args):
ol += express(v[0], frame, variables=variables) * \
(express(v[1], frame, variables=variables) |
express(v[2], frame2, variables=variables))
return ol
else:
if variables:
#Given expr is a scalar field
frame_set = set([])
expr = sympify(expr)
#Substitute all the coordinate variables
for x in expr.free_symbols:
if isinstance(x, CoordinateSym)and x.frame != frame:
frame_set.add(x.frame)
subs_dict = {}
for f in frame_set:
subs_dict.update(f.variable_map(frame))
return expr.subs(subs_dict)
return expr
def time_derivative(expr, frame, order=1):
"""
Calculate the time derivative of a vector/scalar field function
or dyadic expression in given frame.
References
==========
https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames
Parameters
==========
expr : Vector/Dyadic/sympifyable
The expression whose time derivative is to be calculated
frame : ReferenceFrame
The reference frame to calculate the time derivative in
order : integer
The order of the derivative to be calculated
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> from sympy import Symbol
>>> q1 = Symbol('q1')
>>> u1 = dynamicsymbols('u1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> v = u1 * N.x
>>> A.set_ang_vel(N, 10*A.x)
>>> from sympy.physics.vector import time_derivative
>>> time_derivative(v, N)
u1'*N.x
>>> time_derivative(u1*A[0], N)
N_x*Derivative(u1(t), t)
>>> B = N.orientnew('B', 'Axis', [u1, N.z])
>>> from sympy.physics.vector import outer
>>> d = outer(N.x, N.x)
>>> time_derivative(d, B)
- u1'*(N.y|N.x) - u1'*(N.x|N.y)
"""
t = dynamicsymbols._t
_check_frame(frame)
if order == 0:
return expr
if order % 1 != 0 or order < 0:
raise ValueError("Unsupported value of order entered")
if isinstance(expr, Vector):
outlist = []
for i, v in enumerate(expr.args):
if v[1] == frame:
outlist += [(express(v[0], frame,
variables=True).diff(t), frame)]
else:
outlist += (time_derivative(Vector([v]), v[1]) + \
(v[1].ang_vel_in(frame) ^ Vector([v]))).args
outvec = Vector(outlist)
return time_derivative(outvec, frame, order - 1)
if isinstance(expr, Dyadic):
ol = Dyadic(0)
for i, v in enumerate(expr.args):
ol += (v[0].diff(t) * (v[1] | v[2]))
ol += (v[0] * (time_derivative(v[1], frame) | v[2]))
ol += (v[0] * (v[1] | time_derivative(v[2], frame)))
return time_derivative(ol, frame, order - 1)
else:
return diff(express(expr, frame, variables=True), t, order)
def outer(vec1, vec2):
"""Outer product convenience wrapper for Vector.outer():\n"""
if not isinstance(vec1, Vector):
raise TypeError('Outer product is between two Vectors')
return vec1 | vec2
outer.__doc__ += Vector.outer.__doc__
def kinematic_equations(speeds, coords, rot_type, rot_order=''):
"""Gives equations relating the qdot's to u's for a rotation type.
Supply rotation type and order as in orient. Speeds are assumed to be
body-fixed; if we are defining the orientation of B in A using by rot_type,
the angular velocity of B in A is assumed to be in the form: speed[0]*B.x +
speed[1]*B.y + speed[2]*B.z
Parameters
==========
speeds : list of length 3
The body fixed angular velocity measure numbers.
coords : list of length 3 or 4
The coordinates used to define the orientation of the two frames.
rot_type : str
The type of rotation used to create the equations. Body, Space, or
Quaternion only
rot_order : str or int
If applicable, the order of a series of rotations.
Examples
========
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import kinematic_equations, vprint
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> q1, q2, q3 = dynamicsymbols('q1 q2 q3')
>>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'),
... order=None)
[-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3']
"""
# Code below is checking and sanitizing input
approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131',
'212', '232', '313', '323', '1', '2', '3', '')
# make sure XYZ => 123 and rot_type is in lower case
rot_order = translate(str(rot_order), 'XYZxyz', '123123')
rot_type = rot_type.lower()
if not isinstance(speeds, (list, tuple)):
raise TypeError('Need to supply speeds in a list')
if len(speeds) != 3:
raise TypeError('Need to supply 3 body-fixed speeds')
if not isinstance(coords, (list, tuple)):
raise TypeError('Need to supply coordinates in a list')
if rot_type in ['body', 'space']:
if rot_order not in approved_orders:
raise ValueError('Not an acceptable rotation order')
if len(coords) != 3:
raise ValueError('Need 3 coordinates for body or space')
# Actual hard-coded kinematic differential equations
w1, w2, w3 = speeds
if w1 == w2 == w3 == 0:
return [S.Zero]*3
q1, q2, q3 = coords
q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords]
s1, s2, s3 = [sin(q1), sin(q2), sin(q3)]
c1, c2, c3 = [cos(q1), cos(q2), cos(q3)]
if rot_type == 'body':
if rot_order == '123':
return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 *
c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3]
if rot_order == '231':
return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 *
c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2]
if rot_order == '312':
return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 *
s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2]
if rot_order == '132':
return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 *
c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2]
if rot_order == '213':
return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 *
s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3]
if rot_order == '321':
return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 *
s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2]
if rot_order == '121':
return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 *
s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2]
if rot_order == '131':
return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 *
c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2]
if rot_order == '212':
return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 *
s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2]
if rot_order == '232':
return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 *
c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2]
if rot_order == '313':
return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 *
s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3]
if rot_order == '323':
return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 *
c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3]
if rot_type == 'space':
if rot_order == '123':
return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 *
c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2]
if rot_order == '231':
return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 *
s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2]
if rot_order == '312':
return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 *
c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2]
if rot_order == '132':
return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 *
s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2]
if rot_order == '213':
return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 *
c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2]
if rot_order == '321':
return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 *
s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2]
if rot_order == '121':
return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 *
c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2]
if rot_order == '131':
return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 *
s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2]
if rot_order == '212':
return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 *
c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2]
if rot_order == '232':
return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 *
s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2]
if rot_order == '313':
return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 *
c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2]
if rot_order == '323':
return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 *
s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2]
elif rot_type == 'quaternion':
if rot_order != '':
raise ValueError('Cannot have rotation order for quaternion')
if len(coords) != 4:
raise ValueError('Need 4 coordinates for quaternion')
# Actual hard-coded kinematic differential equations
e0, e1, e2, e3 = coords
w = Matrix(speeds + [0])
E = Matrix([[e0, -e3, e2, e1], [e3, e0, -e1, e2], [-e2, e1, e0, e3],
[-e1, -e2, -e3, e0]])
edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]])
return list(edots.T - 0.5 * w.T * E.T)
else:
raise ValueError('Not an approved rotation type for this function')
def get_motion_params(frame, **kwargs):
"""
Returns the three motion parameters - (acceleration, velocity, and
position) as vectorial functions of time in the given frame.
If a higher order differential function is provided, the lower order
functions are used as boundary conditions. For example, given the
acceleration, the velocity and position parameters are taken as
boundary conditions.
The values of time at which the boundary conditions are specified
are taken from timevalue1(for position boundary condition) and
timevalue2(for velocity boundary condition).
If any of the boundary conditions are not provided, they are taken
to be zero by default (zero vectors, in case of vectorial inputs). If
the boundary conditions are also functions of time, they are converted
to constants by substituting the time values in the dynamicsymbols._t
time Symbol.
This function can also be used for calculating rotational motion
parameters. Have a look at the Parameters and Examples for more clarity.
Parameters
==========
frame : ReferenceFrame
The frame to express the motion parameters in
acceleration : Vector
Acceleration of the object/frame as a function of time
velocity : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
position : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
timevalue1 : sympyfiable
Value of time for position boundary condition
timevalue2 : sympyfiable
Value of time for velocity boundary condition
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
>>> from sympy import symbols
>>> R = ReferenceFrame('R')
>>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
>>> v = v1*R.x + v2*R.y + v3*R.z
>>> get_motion_params(R, position = v)
(v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
>>> a, b, c = symbols('a b c')
>>> v = a*R.x + b*R.y + c*R.z
>>> get_motion_params(R, velocity = v)
(0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
>>> parameters = get_motion_params(R, acceleration = v)
>>> parameters[1]
a*t*R.x + b*t*R.y + c*t*R.z
>>> parameters[2]
a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z
"""
##Helper functions
def _process_vector_differential(vectdiff, condition, \
variable, ordinate, frame):
"""
Helper function for get_motion methods. Finds derivative of vectdiff wrt
variable, and its integral using the specified boundary condition at
value of variable = ordinate.
Returns a tuple of - (derivative, function and integral) wrt vectdiff
"""
#Make sure boundary condition is independent of 'variable'
if condition != 0:
condition = express(condition, frame, variables=True)
#Special case of vectdiff == 0
if vectdiff == Vector(0):
return (0, 0, condition)
#Express vectdiff completely in condition's frame to give vectdiff1
vectdiff1 = express(vectdiff, frame)
#Find derivative of vectdiff
vectdiff2 = time_derivative(vectdiff, frame)
#Integrate and use boundary condition
vectdiff0 = Vector(0)
lims = (variable, ordinate, variable)
for dim in frame:
function1 = vectdiff1.dot(dim)
abscissa = dim.dot(condition).subs({variable : ordinate})
# Indefinite integral of 'function1' wrt 'variable', using
# the given initial condition (ordinate, abscissa).
vectdiff0 += (integrate(function1, lims) + abscissa) * dim
#Return tuple
return (vectdiff2, vectdiff, vectdiff0)
##Function body
_check_frame(frame)
#Decide mode of operation based on user's input
if 'acceleration' in kwargs:
mode = 2
elif 'velocity' in kwargs:
mode = 1
else:
mode = 0
#All the possible parameters in kwargs
#Not all are required for every case
#If not specified, set to default values(may or may not be used in
#calculations)
conditions = ['acceleration', 'velocity', 'position',
'timevalue', 'timevalue1', 'timevalue2']
for i, x in enumerate(conditions):
if x not in kwargs:
if i < 3:
kwargs[x] = Vector(0)
else:
kwargs[x] = S(0)
elif i < 3:
_check_vector(kwargs[x])
else:
kwargs[x] = sympify(kwargs[x])
if mode == 2:
vel = _process_vector_differential(kwargs['acceleration'],
kwargs['velocity'],
dynamicsymbols._t,
kwargs['timevalue2'], frame)[2]
pos = _process_vector_differential(vel, kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)[2]
return (kwargs['acceleration'], vel, pos)
elif mode == 1:
return _process_vector_differential(kwargs['velocity'],
kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)
else:
vel = time_derivative(kwargs['position'], frame)
acc = time_derivative(vel, frame)
return (acc, vel, kwargs['position'])
def partial_velocity(vel_vecs, gen_speeds, frame):
"""Returns a list of partial velocities with respect to the provided
generalized speeds in the given reference frame for each of the supplied
velocity vectors.
The output is a list of lists. The outer list has a number of elements
equal to the number of supplied velocity vectors. The inner lists are, for
each velocity vector, the partial derivatives of that velocity vector with
respect to the generalized speeds supplied.
Parameters
==========
vel_vecs : iterable
An iterable of velocity vectors (angular or linear).
gen_speeds : iterable
An iterable of generalized speeds.
frame : ReferenceFrame
The reference frame that the partial derivatives are going to be taken
in.
Examples
========
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import partial_velocity
>>> u = dynamicsymbols('u')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
>>> vel_vecs = [P.vel(N)]
>>> gen_speeds = [u]
>>> partial_velocity(vel_vecs, gen_speeds, N)
[[N.x]]
"""
if not iterable(vel_vecs):
raise TypeError('Velocity vectors must be contained in an iterable.')
if not iterable(gen_speeds):
raise TypeError('Generalized speeds must be contained in an iterable')
vec_partials = []
for vec in vel_vecs:
partials = []
for speed in gen_speeds:
partials.append(vec.diff(speed, frame, var_in_dcm=False))
vec_partials.append(partials)
return vec_partials
def dynamicsymbols(names, level=0):
"""Uses symbols and Function for functions of time.
Creates a SymPy UndefinedFunction, which is then initialized as a function
of a variable, the default being Symbol('t').
Parameters
==========
names : str
Names of the dynamic symbols you want to create; works the same way as
inputs to symbols
level : int
Level of differentiation of the returned function; d/dt once of t,
twice of t, etc.
Examples
========
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy import diff, Symbol
>>> q1 = dynamicsymbols('q1')
>>> q1
q1(t)
>>> diff(q1, Symbol('t'))
Derivative(q1(t), t)
"""
esses = symbols(names, cls=Function)
t = dynamicsymbols._t
if iterable(esses):
esses = [reduce(diff, [t] * level, e(t)) for e in esses]
return esses
else:
return reduce(diff, [t] * level, esses(t))
dynamicsymbols._t = Symbol('t')
dynamicsymbols._str = '\''
|
c7d59bdb0d0bfe6ab72712d7a3bf627c685d5b69e7434a6ceccca23c39970cd8 | from sympy import diff, integrate, S
from sympy.physics.vector import Vector, express
from sympy.physics.vector.frame import _check_frame
from sympy.physics.vector.vector import _check_vector
__all__ = ['curl', 'divergence', 'gradient', 'is_conservative',
'is_solenoidal', 'scalar_potential',
'scalar_potential_difference']
def curl(vect, frame):
"""
Returns the curl of a vector field computed wrt the coordinate
symbols of the given frame.
Parameters
==========
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the curl in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import curl
>>> R = ReferenceFrame('R')
>>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z
>>> curl(v1, R)
0
>>> v2 = R[0]*R[1]*R[2]*R.x
>>> curl(v2, R)
R_x*R_y*R.y - R_x*R_z*R.z
"""
_check_vector(vect)
if vect == 0:
return Vector(0)
vect = express(vect, frame, variables=True)
#A mechanical approach to avoid looping overheads
vectx = vect.dot(frame.x)
vecty = vect.dot(frame.y)
vectz = vect.dot(frame.z)
outvec = Vector(0)
outvec += (diff(vectz, frame[1]) - diff(vecty, frame[2])) * frame.x
outvec += (diff(vectx, frame[2]) - diff(vectz, frame[0])) * frame.y
outvec += (diff(vecty, frame[0]) - diff(vectx, frame[1])) * frame.z
return outvec
def divergence(vect, frame):
"""
Returns the divergence of a vector field computed wrt the coordinate
symbols of the given frame.
Parameters
==========
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the divergence in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import divergence
>>> R = ReferenceFrame('R')
>>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
>>> divergence(v1, R)
R_x*R_y + R_x*R_z + R_y*R_z
>>> v2 = 2*R[1]*R[2]*R.y
>>> divergence(v2, R)
2*R_z
"""
_check_vector(vect)
if vect == 0:
return S(0)
vect = express(vect, frame, variables=True)
vectx = vect.dot(frame.x)
vecty = vect.dot(frame.y)
vectz = vect.dot(frame.z)
out = S(0)
out += diff(vectx, frame[0])
out += diff(vecty, frame[1])
out += diff(vectz, frame[2])
return out
def gradient(scalar, frame):
"""
Returns the vector gradient of a scalar field computed wrt the
coordinate symbols of the given frame.
Parameters
==========
scalar : sympifiable
The scalar field to take the gradient of
frame : ReferenceFrame
The frame to calculate the gradient in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import gradient
>>> R = ReferenceFrame('R')
>>> s1 = R[0]*R[1]*R[2]
>>> gradient(s1, R)
R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z
>>> s2 = 5*R[0]**2*R[2]
>>> gradient(s2, R)
10*R_x*R_z*R.x + 5*R_x**2*R.z
"""
_check_frame(frame)
outvec = Vector(0)
scalar = express(scalar, frame, variables=True)
for i, x in enumerate(frame):
outvec += diff(scalar, frame[i]) * x
return outvec
def is_conservative(field):
"""
Checks if a field is conservative.
Parameters
==========
field : Vector
The field to check for conservative property
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_conservative
>>> R = ReferenceFrame('R')
>>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)
True
>>> is_conservative(R[2] * R.y)
False
"""
#Field is conservative irrespective of frame
#Take the first frame in the result of the
#separate method of Vector
if field == Vector(0):
return True
frame = list(field.separate())[0]
return curl(field, frame).simplify() == Vector(0)
def is_solenoidal(field):
"""
Checks if a field is solenoidal.
Parameters
==========
field : Vector
The field to check for solenoidal property
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_solenoidal
>>> R = ReferenceFrame('R')
>>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)
True
>>> is_solenoidal(R[1] * R.y)
False
"""
#Field is solenoidal irrespective of frame
#Take the first frame in the result of the
#separate method in Vector
if field == Vector(0):
return True
frame = list(field.separate())[0]
return divergence(field, frame).simplify() == S(0)
def scalar_potential(field, frame):
"""
Returns the scalar potential function of a field in a given frame
(without the added integration constant).
Parameters
==========
field : Vector
The vector field whose scalar potential function is to be
calculated
frame : ReferenceFrame
The frame to do the calculation in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import scalar_potential, gradient
>>> R = ReferenceFrame('R')
>>> scalar_potential(R.z, R) == R[2]
True
>>> scalar_field = 2*R[0]**2*R[1]*R[2]
>>> grad_field = gradient(scalar_field, R)
>>> scalar_potential(grad_field, R)
2*R_x**2*R_y*R_z
"""
#Check whether field is conservative
if not is_conservative(field):
raise ValueError("Field is not conservative")
if field == Vector(0):
return S(0)
#Express the field exntirely in frame
#Substitute coordinate variables also
_check_frame(frame)
field = express(field, frame, variables=True)
#Make a list of dimensions of the frame
dimensions = [x for x in frame]
#Calculate scalar potential function
temp_function = integrate(field.dot(dimensions[0]), frame[0])
for i, dim in enumerate(dimensions[1:]):
partial_diff = diff(temp_function, frame[i + 1])
partial_diff = field.dot(dim) - partial_diff
temp_function += integrate(partial_diff, frame[i + 1])
return temp_function
def scalar_potential_difference(field, frame, point1, point2, origin):
"""
Returns the scalar potential difference between two points in a
certain frame, wrt a given field.
If a scalar field is provided, its values at the two points are
considered. If a conservative vector field is provided, the values
of its scalar potential function at the two points are used.
Returns (potential at position 2) - (potential at position 1)
Parameters
==========
field : Vector/sympyfiable
The field to calculate wrt
frame : ReferenceFrame
The frame to do the calculations in
point1 : Point
The initial Point in given frame
position2 : Point
The second Point in the given frame
origin : Point
The Point to use as reference point for position vector
calculation
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> from sympy.physics.vector import scalar_potential_difference
>>> R = ReferenceFrame('R')
>>> O = Point('O')
>>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z)
>>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y
>>> scalar_potential_difference(vectfield, R, O, P, O)
2*R_x**2*R_y
>>> Q = O.locatenew('O', 3*R.x + R.y + 2*R.z)
>>> scalar_potential_difference(vectfield, R, P, Q, O)
-2*R_x**2*R_y + 18
"""
_check_frame(frame)
if isinstance(field, Vector):
#Get the scalar potential function
scalar_fn = scalar_potential(field, frame)
else:
#Field is a scalar
scalar_fn = field
#Express positions in required frame
position1 = express(point1.pos_from(origin), frame, variables=True)
position2 = express(point2.pos_from(origin), frame, variables=True)
#Get the two positions as substitution dicts for coordinate variables
subs_dict1 = {}
subs_dict2 = {}
for i, x in enumerate(frame):
subs_dict1[frame[i]] = x.dot(position1)
subs_dict2[frame[i]] = x.dot(position2)
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
|
0a01e435d7af459e8dd4062356062178bbb8757a2608ec62af42a15d5cba607b | from sympy.physics.secondquant import (
Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis,
matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta,
AnnihilateBoson, CreateBoson, BosonicOperator,
F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion,
evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks,
PermutationOperator, simplify_index_permutations,
_sort_anticommuting_fermions, _get_ordered_dummies,
substitute_dummies, FockState, FockStateBosonKet,
ContractionAppliesOnlyToFermions
)
from sympy import (Dummy, expand, Function, I, Rational, simplify, sqrt, Sum,
Symbol, symbols, srepr)
from sympy.core.compatibility import range
from sympy.utilities.pytest import XFAIL, slow, raises
from sympy.printing.latex import latex
def test_PermutationOperator():
p, q, r, s = symbols('p,q,r,s')
f, g, h, i = map(Function, 'fghi')
P = PermutationOperator
assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p)
assert P(p, q).get_permuted(f(p, q)) == -f(q, p)
assert P(p, q).get_permuted(f(p)) == f(p)
expr = (f(p)*g(q)*h(r)*i(s)
- f(q)*g(p)*h(r)*i(s)
- f(p)*g(q)*h(s)*i(r)
+ f(q)*g(p)*h(s)*i(r))
perms = [P(p, q), P(r, s)]
assert (simplify_index_permutations(expr, perms) ==
P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s))
assert latex(P(p, q)) == 'P(pq)'
def test_index_permutations_with_dummies():
a, b, c, d = symbols('a b c d')
p, q, r, s = symbols('p q r s', cls=Dummy)
f, g = map(Function, 'fg')
P = PermutationOperator
# No dummy substitution necessary
expr = f(a, b, p, q) - f(b, a, p, q)
assert simplify_index_permutations(
expr, [P(a, b)]) == P(a, b)*f(a, b, p, q)
# Cases where dummy substitution is needed
expected = P(a, b)*substitute_dummies(f(a, b, p, q))
expr = f(a, b, p, q) - f(b, a, q, p)
result = simplify_index_permutations(expr, [P(a, b)])
assert expected == substitute_dummies(result)
expr = f(a, b, q, p) - f(b, a, p, q)
result = simplify_index_permutations(expr, [P(a, b)])
assert expected == substitute_dummies(result)
# A case where nothing can be done
expr = f(a, b, q, p) - g(b, a, p, q)
result = simplify_index_permutations(expr, [P(a, b)])
assert expr == result
def test_dagger():
i, j, n, m = symbols('i,j,n,m')
assert Dagger(1) == 1
assert Dagger(1.0) == 1.0
assert Dagger(2*I) == -2*I
assert Dagger(Rational(1, 2)*I/3.0) == -Rational(1, 2)*I/3.0
assert Dagger(BKet([n])) == BBra([n])
assert Dagger(B(0)) == Bd(0)
assert Dagger(Bd(0)) == B(0)
assert Dagger(B(n)) == Bd(n)
assert Dagger(Bd(n)) == B(n)
assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1)
assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute
assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n)
assert Dagger(B(n)**10) == Dagger(B(n))**10
assert Dagger('a') == Dagger(Symbol('a'))
assert Dagger(Dagger('a')) == Symbol('a')
def test_operator():
i, j = symbols('i,j')
o = BosonicOperator(i)
assert o.state == i
assert o.is_symbolic
o = BosonicOperator(1)
assert o.state == 1
assert not o.is_symbolic
def test_create():
i, j, n, m = symbols('i,j,n,m')
o = Bd(i)
assert latex(o) == "b^\\dagger_{i}"
assert isinstance(o, CreateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Bd(0)
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
o = Bd(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_annihilate():
i, j, n, m = symbols('i,j,n,m')
o = B(i)
assert latex(o) == "b_{i}"
assert isinstance(o, AnnihilateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = B(0)
assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1])
o = B(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_basic_state():
i, j, n, m = symbols('i,j,n,m')
s = BosonState([0, 1, 2, 3, 4])
assert len(s) == 5
assert s.args[0] == tuple(range(5))
assert s.up(0) == BosonState([1, 1, 2, 3, 4])
assert s.down(4) == BosonState([0, 1, 2, 3, 3])
for i in range(5):
assert s.up(i).down(i) == s
assert s.down(0) == 0
for i in range(5):
assert s[i] == i
s = BosonState([n, m])
assert s.down(0) == BosonState([n - 1, m])
assert s.up(0) == BosonState([n + 1, m])
# 2019-07-24: No method move in the whole of SymPy
@XFAIL
def test_move1():
i, j = symbols('i,j')
A, C = symbols('A,C', cls=Function)
o = A(i)*C(j)
# This almost works, but has a minus sign wrong
assert move(o, 0, 1) == KroneckerDelta(i, j) + C(j)*A(i)
# 2019-07-24: No method move in the whole of SymPy
@XFAIL
def test_move2():
i, j = symbols('i,j')
A, C = symbols('A,C', cls=Function)
o = C(j)*A(i)
# This almost works, but has a minus sign wrong
assert move(o, 0, 1) == -KroneckerDelta(i, j) + A(i)*C(j)
def test_basic_apply():
n = symbols("n")
e = B(0)*BKet([n])
assert apply_operators(e) == sqrt(n)*BKet([n - 1])
e = Bd(0)*BKet([n])
assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1])
def test_complex_apply():
n, m = symbols("n,m")
o = Bd(0)*B(0)*Bd(1)*B(0)
e = apply_operators(o*BKet([n, m]))
answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m])
assert expand(e) == expand(answer)
def test_number_operator():
n = symbols("n")
o = Bd(0)*B(0)
e = apply_operators(o*BKet([n]))
assert e == n*BKet([n])
def test_inner_product():
i, j, k, l = symbols('i,j,k,l')
s1 = BBra([0])
s2 = BKet([1])
assert InnerProduct(s1, Dagger(s1)) == 1
assert InnerProduct(s1, s2) == 0
s1 = BBra([i, j])
s2 = BKet([k, l])
r = InnerProduct(s1, s2)
assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l)
def test_symbolic_matrix_elements():
n, m = symbols('n,m')
s1 = BBra([n])
s2 = BKet([m])
o = B(0)
e = apply_operators(s1*o*s2)
assert e == sqrt(m)*KroneckerDelta(n, m - 1)
def test_matrix_elements():
b = VarBosonicBasis(5)
o = B(0)
m = matrix_rep(o, b)
for i in range(4):
assert m[i, i + 1] == sqrt(i + 1)
o = Bd(0)
m = matrix_rep(o, b)
for i in range(4):
assert m[i + 1, i] == sqrt(i + 1)
def test_fixed_bosonic_basis():
b = FixedBosonicBasis(2, 2)
# assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
state = b.state(1)
assert state == FockStateBosonKet((1, 1))
assert b.index(state) == 1
assert b.state(1) == b[1]
assert len(b) == 3
assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
@slow
def test_sho():
n, m = symbols('n,m')
h_n = Bd(n)*B(n)*(n + Rational(1, 2))
H = Sum(h_n, (n, 0, 5))
o = H.doit(deep=False)
b = FixedBosonicBasis(2, 6)
m = matrix_rep(o, b)
# We need to double check these energy values to make sure that they
# are correct and have the proper degeneracies!
diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11]
for i in range(len(diag)):
assert diag[i] == m[i, i]
def test_commutation():
n, m = symbols("n,m", above_fermi=True)
c = Commutator(B(0), Bd(0))
assert c == 1
c = Commutator(Bd(0), B(0))
assert c == -1
c = Commutator(B(n), Bd(0))
assert c == KroneckerDelta(n, 0)
c = Commutator(B(0), B(0))
assert c == 0
c = Commutator(B(0), Bd(0))
e = simplify(apply_operators(c*BKet([n])))
assert e == BKet([n])
c = Commutator(B(0), B(1))
e = simplify(apply_operators(c*BKet([n, m])))
assert e == 0
c = Commutator(F(m), Fd(m))
assert c == +1 - 2*NO(Fd(m)*F(m))
c = Commutator(Fd(m), F(m))
assert c.expand() == -1 + 2*NO(Fd(m)*F(m))
C = Commutator
X, Y, Z = symbols('X,Y,Z', commutative=False)
assert C(C(X, Y), Z) != 0
assert C(C(X, Z), Y) != 0
assert C(Y, C(X, Z)) != 0
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
D = KroneckerDelta
assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a))
assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a)
assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0
c1 = Commutator(F(a), Fd(a))
assert Commutator.eval(c1, c1) == 0
c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
assert latex(c) == r'\left[a^\dagger_{a} a_{i},a^\dagger_{b} a_{j}\right]'
assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))'
assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]'
def test_create_f():
i, j, n, m = symbols('i,j,n,m')
o = Fd(i)
assert isinstance(o, CreateFermion)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Fd(1)
assert o.apply_operator(FKet([n])) == FKet([1, n])
assert o.apply_operator(FKet([n])) == -FKet([n, 1])
o = Fd(n)
assert o.apply_operator(FKet([])) == FKet([n])
vacuum = FKet([], fermi_level=4)
assert vacuum == FKet([], fermi_level=4)
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4)
assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4)
assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p)
assert repr(Fd(p)) == 'CreateFermion(p)'
assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))"
assert latex(Fd(p)) == r'a^\dagger_{p}'
def test_annihilate_f():
i, j, n, m = symbols('i,j,n,m')
o = F(i)
assert isinstance(o, AnnihilateFermion)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = F(1)
assert o.apply_operator(FKet([1, n])) == FKet([n])
assert o.apply_operator(FKet([n, 1])) == -FKet([n])
o = F(n)
assert o.apply_operator(FKet([n])) == FKet([])
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert F(i).apply_operator(FKet([i, j, k], 4)) == 0
assert F(a).apply_operator(FKet([i, b, k], 4)) == 0
assert F(l).apply_operator(FKet([i, j, k], 3)) == 0
assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4)
assert str(F(p)) == 'f(p)'
assert repr(F(p)) == 'AnnihilateFermion(p)'
assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))"
assert latex(F(p)) == 'a_{p}'
def test_create_b():
i, j, n, m = symbols('i,j,n,m')
o = Bd(i)
assert isinstance(o, CreateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Bd(0)
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
o = Bd(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_annihilate_b():
i, j, n, m = symbols('i,j,n,m')
o = B(i)
assert isinstance(o, AnnihilateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = B(0)
def test_wicks():
p, q, r, s = symbols('p,q,r,s', above_fermi=True)
# Testing for particles only
str = F(p)*Fd(q)
assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q)
str = Fd(p)*F(q)
assert wicks(str) == NO(Fd(p)*F(q))
str = F(p)*Fd(q)*F(r)*Fd(s)
nstr = wicks(str)
fasit = NO(
KroneckerDelta(p, q)*KroneckerDelta(r, s)
+ KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s)
+ KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q)
- KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q)
- AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s))
assert nstr == fasit
assert (p*q*nstr).expand() == wicks(p*q*str)
assert (nstr*p*q*2).expand() == wicks(str*p*q*2)
# Testing CC equations particles and holes
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) ==
NO(F(a)*F(i)*F(j)*Fd(b)) +
KroneckerDelta(a, b)*NO(F(i)*F(j)))
assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) ==
NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) -
KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k)))
expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l))
assert (expr ==
-KroneckerDelta(i, k)*NO(Fd(j)*F(l)) -
KroneckerDelta(j, l)*NO(Fd(i)*F(k)) -
KroneckerDelta(i, k)*KroneckerDelta(j, l) +
KroneckerDelta(i, l)*NO(Fd(j)*F(k)) +
NO(Fd(i)*Fd(j)*F(k)*F(l)))
expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d))
assert (expr ==
-KroneckerDelta(a, c)*NO(F(b)*Fd(d)) -
KroneckerDelta(b, d)*NO(F(a)*Fd(c)) -
KroneckerDelta(a, c)*KroneckerDelta(b, d) +
KroneckerDelta(a, d)*NO(F(b)*Fd(c)) +
NO(F(a)*F(b)*Fd(c)*Fd(d)))
def test_NO():
i, j, k, l = symbols('i j k l', below_fermi=True)
a, b, c, d = symbols('a b c d', above_fermi=True)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) ==
NO(Fd(p)*F(q)) + NO(Fd(a)*F(b)))
assert (NO(Fd(i)*NO(F(j)*Fd(a))) ==
NO(Fd(i)*F(j)*Fd(a)))
assert NO(1) == 1
assert NO(i) == i
assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) ==
NO(Fd(a)*Fd(b)*F(c)) +
NO(Fd(a)*Fd(b)*F(d)))
assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b)
assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i)
assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) ==
NO(Fd(a)*F(q)) + NO(Fd(i)*F(q)))
assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) ==
NO(Fd(p)*F(a)) + NO(Fd(p)*F(i)))
expr = NO(Fd(p)*F(q))._remove_brackets()
assert wicks(expr) == NO(expr)
assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a))
no = NO(Fd(a)*F(i)*F(b)*Fd(j))
l1 = [ ind for ind in no.iter_q_creators() ]
assert l1 == [0, 1]
l2 = [ ind for ind in no.iter_q_annihilators() ]
assert l2 == [3, 2]
no = NO(Fd(a)*Fd(i))
assert no.has_q_creators == 1
assert no.has_q_annihilators == -1
assert str(no) == ':CreateFermion(a)*CreateFermion(i):'
assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))'
assert latex(no) == r'\left\{a^\dagger_{a} a^\dagger_{i}\right\}'
raises(NotImplementedError, lambda: NO(Bd(p)*F(q)))
def test_sorting():
i, j = symbols('i,j', below_fermi=True)
a, b = symbols('a,b', above_fermi=True)
p, q = symbols('p,q')
# p, q
assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0)
assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1)
# i, p
assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1)
assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1)
assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1)
assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0)
assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1)
assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0)
# a, p
assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1)
assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0)
assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1)
assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0)
assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0)
assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1)
assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0)
assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1)
# i, a
assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0)
assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1)
assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1)
assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1)
assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0)
def test_contraction():
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j)
assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b)
assert contraction(F(a), Fd(i)) == 0
assert contraction(Fd(a), F(i)) == 0
assert contraction(F(i), Fd(a)) == 0
assert contraction(Fd(i), F(a)) == 0
assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p)
restr = evaluate_deltas(contraction(Fd(p), F(q)))
assert restr.is_only_below_fermi
restr = evaluate_deltas(contraction(F(p), Fd(q)))
assert restr.is_only_above_fermi
raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b)))
def test_evaluate_deltas():
i, j, k = symbols('i,j,k')
r = KroneckerDelta(i, j) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(i, k)
r = KroneckerDelta(i, 0) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k)
r = KroneckerDelta(1, j) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(1, k)
r = KroneckerDelta(j, 2) * KroneckerDelta(k, j)
assert evaluate_deltas(r) == KroneckerDelta(2, k)
r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1)
assert evaluate_deltas(r) == 0
r = (KroneckerDelta(0, i) * KroneckerDelta(0, j)
* KroneckerDelta(1, j) * KroneckerDelta(1, j))
assert evaluate_deltas(r) == 0
def test_Tensors():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s')
AT = AntiSymmetricTensor
assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j))
assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i))
assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i))
assert AT('t', (a, a), (i, j)) == 0
assert AT('t', (a, b), (i, i)) == 0
assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j))
assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j))
tabij = AT('t', (a, b), (i, j))
assert tabij.has(a)
assert tabij.has(b)
assert tabij.has(i)
assert tabij.has(j)
assert tabij.subs(b, c) == AT('t', (a, c), (i, j))
assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j))
assert tabij.symbol == Symbol('t')
assert latex(tabij) == 't^{ab}_{ij}'
assert str(tabij) == 't((_a, _b),(_i, _j))'
assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j))
assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j))
def test_fully_contracted():
i, j, k, l = symbols('i j k l', below_fermi=True)
a, b, c, d = symbols('a b c d', above_fermi=True)
p, q, r, s = symbols('p q r s', cls=Dummy)
Fock = (AntiSymmetricTensor('f', (p,), (q,))*
NO(Fd(p)*F(q)))
V = (AntiSymmetricTensor('v', (p, q), (r, s))*
NO(Fd(p)*Fd(q)*F(s)*F(r)))/4
Fai = wicks(NO(Fd(i)*F(a))*Fock,
keep_only_fully_contracted=True,
simplify_kronecker_deltas=True)
assert Fai == AntiSymmetricTensor('f', (a,), (i,))
Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V,
keep_only_fully_contracted=True,
simplify_kronecker_deltas=True)
assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j))
def test_substitute_dummies_without_dummies():
i, j = symbols('i,j')
assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2
assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1
def test_substitute_dummies_NO_operator():
i, j = symbols('i j', cls=Dummy)
assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j))
- att(j, i)*NO(Fd(j)*F(i))) == 0
def test_substitute_dummies_SQ_operator():
i, j = symbols('i j', cls=Dummy)
assert substitute_dummies(att(i, j)*Fd(i)*F(j)
- att(j, i)*Fd(j)*F(i)) == 0
def test_substitute_dummies_new_indices():
i, j = symbols('i j', below_fermi=True, cls=Dummy)
a, b = symbols('a b', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
f = Function('f')
assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0
def test_substitute_dummies_substitution_order():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
f = Function('f')
from sympy.utilities.iterables import variations
for permut in variations([i, j, k, l], 4):
assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0
def test_dummy_order_inner_outer_lines_VT1T1T1():
ii = symbols('i', below_fermi=True)
aa = symbols('a', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# Coupled-Cluster T1 terms with V*T1*T1*T1
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
exprs = [
# permut v and t <=> swapping internal lines, equivalent
# irrespective of symmetries in v
v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k),
v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l),
v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k),
v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_inner_outer_lines_VT1T1T1T1():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
exprs = [
# permut t <=> swapping external lines, not equivalent
# except if v has certain symmetries.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permut v <=> swapping external lines, not equivalent
# except if v has certain symmetries.
#
# Note that in contrast to above, these permutations have identical
# dummy order. That is because the proximity to external indices
# has higher influence on the canonical dummy ordering than the
# position of a dummy on the factors. In fact, the terms here are
# similar in structure as the result of the dummy substitutions above.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permut t and v <=> swapping internal lines, equivalent.
# Canonical dummy order is different, and a consistent
# substitution reveals the equivalence.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT1T1():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [ # permute v. Different dummy order. Not equivalent.
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, a, b)*t(a, i)*t(b, j),
v(i, j, b, a)*t(a, i)*t(b, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v. Different dummy order. Equivalent
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, b, a)*t(a, i)*t(b, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [ # permute t. Same dummy order, not equivalent.
v(i, j, a, b)*t(a, i)*t(b, j),
v(i, j, a, b)*t(b, i)*t(a, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Different dummy order, equivalent
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, a, b)*t(a, j)*t(b, i),
v(i, j, b, a)*t(b, i)*t(a, j),
v(j, i, b, a)*t(b, j)*t(a, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT2conjT2():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(ijcd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
# v(abcd)t(abij)t(jicd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(cdij)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
# permute v. Same dummy order, not equivalent.
#
# This test show that the dummy order may not be sensitive to all
# index permutations. The following expressions have identical
# structure as the resulting terms from of the dummy substitutions
# in the test above. Here, all expressions have the same dummy
# order, so they cannot be simplified by means of dummy
# substitution. In order to simplify further, it is necessary to
# exploit symmetries in the objects, for instance if t or v is
# antisymmetric.
v(i, j, a, b)*t(a, b, i, j),
v(j, i, a, b)*t(a, b, i, j),
v(i, j, b, a)*t(a, b, i, j),
v(j, i, b, a)*t(a, b, i, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permute t.
v(i, j, a, b)*t(a, b, i, j),
v(i, j, a, b)*t(b, a, i, j),
v(i, j, a, b)*t(a, b, j, i),
v(i, j, a, b)*t(b, a, j, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
v(i, j, a, b)*t(a, b, i, j),
v(j, i, a, b)*t(a, b, j, i),
v(i, j, b, a)*t(b, a, i, j),
v(j, i, b, a)*t(b, a, j, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_VT2T2():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_pqrs():
ii, jj = symbols('i j')
aa, bb = symbols('a b')
k, l = symbols('k l', cls=Dummy)
c, d = symbols('c d', cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_well_defined():
aa, bb = symbols('a b', above_fermi=True)
k, l, m = symbols('k l m', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
A = Function('A')
B = Function('B')
C = Function('C')
dums = _get_ordered_dummies
# We go through all key components in the order of increasing priority,
# and consider only fully orderable expressions. Non-orderable expressions
# are tested elsewhere.
# pos in first factor determines sort order
assert dums(A(k, l)*B(l, k)) == [k, l]
assert dums(A(l, k)*B(l, k)) == [l, k]
assert dums(A(k, l)*B(k, l)) == [k, l]
assert dums(A(l, k)*B(k, l)) == [l, k]
# factors involving the index
assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m]
assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m]
assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m]
assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m]
assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m]
assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m]
assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m]
assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m]
# same, but with factor order determined by non-dummies
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
# index range
assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p]
assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p]
assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p]
assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p]
assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p]
assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p]
assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p]
assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p]
assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p]
assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p]
assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p]
assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p]
def test_dummy_order_ambiguous():
aa, bb = symbols('a b', above_fermi=True)
i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy)
a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy)
A = Function('A')
B = Function('B')
from sympy.utilities.iterables import variations
# A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def atv(*args):
return AntiSymmetricTensor('v', args[:2], args[2:] )
def att(*args):
if len(args) == 4:
return AntiSymmetricTensor('t', args[:2], args[2:] )
elif len(args) == 2:
return AntiSymmetricTensor('t', (args[0],), (args[1],))
def test_dummy_order_inner_outer_lines_VT1T1T1_AT():
ii = symbols('i', below_fermi=True)
aa = symbols('a', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
# Coupled-Cluster T1 terms with V*T1*T1*T1
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
exprs = [
# permut v and t <=> swapping internal lines, equivalent
# irrespective of symmetries in v
atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k),
atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l),
atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k),
atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
# non-equivalent substitutions (change of sign)
exprs = [
# permut t <=> swapping external lines
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l),
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == -substitute_dummies(permut)
# equivalent substitutions
exprs = [
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
# permut t <=> swapping external lines
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT1T1_AT():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
exprs = [ # permute v. Different dummy order. Not equivalent.
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, a, b)*att(a, i)*att(b, j),
atv(i, j, b, a)*att(a, i)*att(b, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v. Different dummy order. Equivalent
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, b, a)*att(a, i)*att(b, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [ # permute t. Same dummy order, not equivalent.
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(i, j, a, b)*att(b, i)*att(a, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Different dummy order, equivalent
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, a, b)*att(a, j)*att(b, i),
atv(i, j, b, a)*att(b, i)*att(a, j),
atv(j, i, b, a)*att(b, j)*att(a, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT2conjT2_AT():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(ijcd)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# atv(abcd)att(abij)att(jicd)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(cdij)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2_AT():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
exprs = [
# permute v. Same dummy order, not equivalent.
atv(i, j, a, b)*att(a, b, i, j),
atv(j, i, a, b)*att(a, b, i, j),
atv(i, j, b, a)*att(a, b, i, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permute t.
atv(i, j, a, b)*att(a, b, i, j),
atv(i, j, a, b)*att(b, a, i, j),
atv(i, j, a, b)*att(a, b, j, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
atv(i, j, a, b)*att(a, b, i, j),
atv(j, i, a, b)*att(a, b, j, i),
atv(i, j, b, a)*att(b, a, i, j),
atv(j, i, b, a)*att(b, a, j, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_VT2T2_AT():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_pqrs_AT():
ii, jj = symbols('i j')
aa, bb = symbols('a b')
k, l = symbols('k l', cls=Dummy)
c, d = symbols('c d', cls=Dummy)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_canonical_ordering_AntiSymmetricTensor():
v = symbols("v")
virtual_indices = ('c', 'd')
occupied_indices = ('k', 'l')
c, d = symbols(('c','d'), above_fermi=True,
cls=Dummy)
k, l = symbols(('k','l'), below_fermi=True,
cls=Dummy)
# formerly, the left gave either the left or the right
assert AntiSymmetricTensor(v, (k, l), (d, c)
) == -AntiSymmetricTensor(v, (l, k), (d, c))
|
f3f849c9fe164576a09ba2e731b046d8d925d0102635e2ab04d14c61efe434c9 | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from __future__ import print_function, division
from sympy.core import S, Symbol, diff, symbols
from sympy.solvers import linsolve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.core import sympify
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
from sympy.geometry.entity import GeometryEntity
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
from sympy import lambdify
from sympy.core.compatibility import iterable
matplotlib = import_module('matplotlib', __import__kwargs={'fromlist':['pyplot']})
numpy = import_module('numpy', __import__kwargs={'fromlist':['linspace']})
__doctest_requires__ = {('Beam.plot_loading_results',): ['matplotlib']}
class Beam(object):
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention.
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
-3*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 2, 1) - 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
-3*SingularityFunction(x, 0, 1) + 3*SingularityFunction(x, 2, 2) - 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2
+ Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I)
"""
def __init__(self, length, elastic_modulus, second_moment, variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable or Geometry object
Describes the cross-section of the beam via a SymPy expression
representing the Beam's second moment of area. It is a geometrical
property of an area which reflects how its points are distributed
with respect to its neutral axis. It can also be a continuous
function of position along the beam. Alternatively ``second_moment``
can be a shape object such as a ``Polygon`` from the geometry module
representing the shape of the cross-section of the beam. In such cases,
it is assumed that the x-axis of the shape object is aligned with the
bending axis of the beam. The second moment of area will be computed
from the shape object internally.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
if isinstance(second_moment, GeometryEntity):
self.cross_section = second_moment
else:
self.cross_section = None
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self._applied_loads = []
self._reaction_loads = {}
self._composite_type = None
self._hinge_position = None
def __str__(self):
shape_description = self._cross_section if self._cross_section else self._second_moment
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._cross_section = None
if isinstance(i, GeometryEntity):
raise ValueError("To update cross-section geometry use `cross_section` attribute")
else:
self._second_moment = sympify(i)
@property
def cross_section(self):
"""Cross-section of the beam"""
return self._cross_section
@cross_section.setter
def cross_section(self, s):
if s:
self._second_moment = s.second_moment_of_area()[0]
self._cross_section = s
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three keywords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/I - 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
+ 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
- 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
if end:
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value * x**order
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i) / factorial(i))
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# TODO : This is essentially duplicate code wrt to apply_load,
# would be better to move it to one location and both methods use
# it.
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value * x**order
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i) / factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l ,E,I)
>>> b2=Beam(2*l ,E,I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S(1)/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S(1)/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S(1)/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S(1)/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, linsolve, limit
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
-8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(shear_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(shear_curve, x, singularity[i-1], '+'), limit(shear_curve, x, s, '-')])
val = list(map(abs, val))
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
-8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(bending_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(bending_curve, x, singularity[i-1], '+'), limit(bending_curve, x, s, '-')])
val = list(map(abs, val))
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = integrate(S(1)/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S(1)/(E*I)*integrate(integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S(1)/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
in a Beam object.
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: -13750*SingularityFunction(x, 0, 0) + 5000*SingularityFunction(x, 2, 0)
+ 10000*SingularityFunction(x, 4, 1) - 31250*SingularityFunction(x, 8, 0)
- 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: -13750*SingularityFunction(x, 0, 1) + 5000*SingularityFunction(x, 2, 1)
+ 5000*SingularityFunction(x, 4, 2) - 31250*SingularityFunction(x, 8, 1)
- 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> from sympy.plotting import PlotGrid
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> b.slope()
[0, 0, l*x*(-l*q + 3*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) + 3*m)/(6*E*I)
+ x**2*(-3*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) - 3*m + q*x)/(6*E*I)]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*A*E*G*I*l**3*q - 24*A*E*G*I*l**2*m + 144*E**2*I**2*l*q +
... x**3*(A**2*G**2*l**2*q + 12*A*E*G*I*q) +
... x**2*(-2*A**2*G**2*l**3*q - 24*A*E*G*I*l*q - 48*A*E*G*I*m) +
... x*(A**2*G**2*l**4*q + 72*A*E*G*I*l*m - 144*E**2*I**2*q)
... )/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane prependicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super(Beam3D, self).__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self.area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def polar_moment(self):
"""
Returns the polar moment of area of the beam
about the X axis with respect to the centroid.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> b.polar_moment()
2*I
>>> I1 = [9, 15]
>>> b = Beam3D(l, E, G, I1, A)
>>> b.polar_moment()
24
"""
if not iterable(self.second_moment):
return 2*self.second_moment
return sum(self.second_moment)
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated rection exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_slope_deflection(self):
from sympy import dsolve, Function, Derivative, Eq
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self.area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
|
6bb0859a7cfe3056d06dfa29fed02145400793b0496447daf4f95c5f62bc6346 | from sympy.core.backend import (cos, sin, Matrix, symbols)
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
KanesMethod, Particle)
def test_replace_qdots_in_force():
# Test PR 16700 "Replaces qdots with us in force-list in kanes.py"
# The new functionality allows one to specify forces in qdots which will
# automatically be replaced with u:s which are defined by the kde supplied
# to KanesMethod. The test case is the double pendulum with interacting
# forces in the example of chapter 4.7 "CONTRIBUTING INTERACTION FORCES"
# in Ref. [1]. Reference list at end test function.
q1, q2 = dynamicsymbols('q1, q2')
qd1, qd2 = dynamicsymbols('q1, q2', level=1)
u1, u2 = dynamicsymbols('u1, u2')
l, m = symbols('l, m')
N = ReferenceFrame('N') # Inertial frame
A = N.orientnew('A', 'Axis', (q1, N.z)) # Rod A frame
B = A.orientnew('B', 'Axis', (q2, N.z)) # Rod B frame
O = Point('O') # Origo
O.set_vel(N, 0)
P = O.locatenew('P', ( l * A.x )) # Point @ end of rod A
P.v2pt_theory(O, N, A)
Q = P.locatenew('Q', ( l * B.x )) # Point @ end of rod B
Q.v2pt_theory(P, N, B)
Ap = Particle('Ap', P, m)
Bp = Particle('Bp', Q, m)
# The forces are specified below. sigma is the torsional spring stiffness
# and delta is the viscous damping coefficient acting between the two
# bodies. Here, we specify the viscous damper as function of qdots prior
# forming the kde. In more complex systems it not might be obvious which
# kde is most efficient, why it is convenient to specify viscous forces in
# qdots independently of the kde.
sig, delta = symbols('sigma, delta')
Ta = (sig * q2 + delta * qd2) * N.z
forces = [(A, Ta), (B, -Ta)]
# Try different kdes.
kde1 = [u1 - qd1, u2 - qd2]
kde2 = [u1 - qd1, u2 - (qd1 + qd2)]
KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
# Check EOM for KM2:
# Mass and force matrix from p.6 in Ref. [2] with added forces from
# example of chapter 4.7 in [1] and without gravity.
forcing_matrix_expected = Matrix( [ [ m * l**2 * sin(q2) * u2**2 + sig * q2
+ delta * (u2 - u1)],
[ m * l**2 * sin(q2) * -u1**2 - sig * q2
- delta * (u2 - u1)] ] )
mass_matrix_expected = Matrix( [ [ 2 * m * l**2, m * l**2 * cos(q2) ],
[ m * l**2 * cos(q2), m * l**2 ] ] )
assert (KM2.mass_matrix.expand() == mass_matrix_expected.expand())
assert (KM2.forcing.expand() == forcing_matrix_expected.expand())
# Check fr1 with reference fr_expected from [1] with u:s instead of qdots.
fr1_expected = Matrix([ 0, -(sig*q2 + delta * u2) ])
assert fr1.expand() == fr1_expected.expand()
# Check fr2
fr2_expected = Matrix([sig * q2 + delta * (u2 - u1),
- sig * q2 - delta * (u2 - u1)])
assert fr2.expand() == fr2_expected.expand()
# Specifying forces in u:s should stay the same:
Ta = (sig * q2 + delta * u2) * N.z
forces = [(A, Ta), (B, -Ta)]
KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
assert fr1.expand() == fr1_expected.expand()
Ta = (sig * q2 + delta * (u2-u1)) * N.z
forces = [(A, Ta), (B, -Ta)]
KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
assert fr2.expand() == fr2_expected.expand()
# Test if we have a qubic qdot force:
Ta = (sig * q2 + delta * qd2**3) * N.z
forces = [(A, Ta), (B, -Ta)]
KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)
fr1_cubic_expected = Matrix([ 0, -(sig*q2 + delta * u2**3) ])
assert fr1.expand() == fr1_cubic_expected.expand()
KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)
fr2_cubic_expected = Matrix([sig * q2 + delta * (u2 - u1)**3,
- sig * q2 - delta * (u2 - u1)**3])
assert fr2.expand() == fr2_cubic_expected.expand()
# References:
# [1] T.R. Kane, D. a Levinson, Dynamics Theory and Applications, 2005.
# [2] Arun K Banerjee, Flexible Multibody Dynamics:Efficient Formulations
# and Applications, John Wiley and Sons, Ltd, 2016.
# doi:http://dx.doi.org/10.1002/9781119015635.
|
c71056d96cf6adabe8a9ca749fbb4e6c6045baabeb3dba8898a854e07dc085ae | import itertools
from sympy import S, Tuple, diff
from sympy.core.compatibility import Iterable
from sympy.tensor.array import ImmutableDenseNDimArray
from sympy.tensor.array.ndim_array import NDimArray
def _arrayfy(a):
from sympy.matrices import MatrixBase
if isinstance(a, NDimArray):
return a
if isinstance(a, (MatrixBase, list, tuple, Tuple)):
return ImmutableDenseNDimArray(a)
return a
def tensorproduct(*args):
"""
Tensor product among scalars or array-like objects.
Examples
========
>>> from sympy.tensor.array import tensorproduct, Array
>>> from sympy.abc import x, y, z, t
>>> A = Array([[1, 2], [3, 4]])
>>> B = Array([x, y])
>>> tensorproduct(A, B)
[[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
>>> tensorproduct(A, x)
[[x, 2*x], [3*x, 4*x]]
>>> tensorproduct(A, B, B)
[[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]
Applying this function on two matrices will result in a rank 4 array.
>>> from sympy import Matrix, eye
>>> m = Matrix([[x, y], [z, t]])
>>> p = tensorproduct(eye(3), m)
>>> p
[[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]
"""
from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray
if len(args) == 0:
return S.One
if len(args) == 1:
return _arrayfy(args[0])
if len(args) > 2:
return tensorproduct(tensorproduct(args[0], args[1]), *args[2:])
# length of args is 2:
a, b = map(_arrayfy, args)
if not isinstance(a, NDimArray) or not isinstance(b, NDimArray):
return a*b
if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray):
lp = len(b)
new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()}
return ImmutableSparseNDimArray(new_array, a.shape + b.shape)
al = list(a)
bl = list(b)
product_list = [i*j for i in al for j in bl]
return ImmutableDenseNDimArray(product_list, a.shape + b.shape)
def tensorcontraction(array, *contraction_axes):
"""
Contraction of an array-like object on the specified axes.
Examples
========
>>> from sympy import Array, tensorcontraction
>>> from sympy import Matrix, eye
>>> tensorcontraction(eye(3), (0, 1))
3
>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
>>> tensorcontraction(A, (0, 2))
[21, 30]
Matrix multiplication may be emulated with a proper combination of
``tensorcontraction`` and ``tensorproduct``
>>> from sympy import tensorproduct
>>> from sympy.abc import a,b,c,d,e,f,g,h
>>> m1 = Matrix([[a, b], [c, d]])
>>> m2 = Matrix([[e, f], [g, h]])
>>> p = tensorproduct(m1, m2)
>>> p
[[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
>>> tensorcontraction(p, (1, 2))
[[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
>>> m1*m2
Matrix([
[a*e + b*g, a*f + b*h],
[c*e + d*g, c*f + d*h]])
"""
array = _arrayfy(array)
# Verify contraction_axes:
taken_dims = set([])
for axes_group in contraction_axes:
if not isinstance(axes_group, Iterable):
raise ValueError("collections of contraction axes expected")
dim = array.shape[axes_group[0]]
for d in axes_group:
if d in taken_dims:
raise ValueError("dimension specified more than once")
if dim != array.shape[d]:
raise ValueError("cannot contract between axes of different dimension")
taken_dims.add(d)
rank = array.rank()
remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims]
cum_shape = [0]*rank
_cumul = 1
for i in range(rank):
cum_shape[rank - i - 1] = _cumul
_cumul *= int(array.shape[rank - i - 1])
# DEFINITION: by absolute position it is meant the position along the one
# dimensional array containing all the tensor components.
# Possible future work on this module: move computation of absolute
# positions to a class method.
# Determine absolute positions of the uncontracted indices:
remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])]
for i in range(rank) if i not in taken_dims]
# Determine absolute positions of the contracted indices:
summed_deltas = []
for axes_group in contraction_axes:
lidx = []
for js in range(array.shape[axes_group[0]]):
lidx.append(sum([cum_shape[ig] * js for ig in axes_group]))
summed_deltas.append(lidx)
# Compute the contracted array:
#
# 1. external for loops on all uncontracted indices.
# Uncontracted indices are determined by the combinatorial product of
# the absolute positions of the remaining indices.
# 2. internal loop on all contracted indices.
# It sum the values of the absolute contracted index and the absolute
# uncontracted index for the external loop.
contracted_array = []
for icontrib in itertools.product(*remaining_indices):
index_base_position = sum(icontrib)
isum = S.Zero
for sum_to_index in itertools.product(*summed_deltas):
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
isum += array[idx]
contracted_array.append(isum)
if len(remaining_indices) == 0:
assert len(contracted_array) == 1
return contracted_array[0]
return type(array)(contracted_array, remaining_shape)
def derive_by_array(expr, dx):
r"""
Derivative by arrays. Supports both arrays and scalars.
Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
this function will return a new array `B` defined by
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
Examples
========
>>> from sympy import derive_by_array
>>> from sympy.abc import x, y, z, t
>>> from sympy import cos
>>> derive_by_array(cos(x*t), x)
-t*sin(t*x)
>>> derive_by_array(cos(x*t), [x, y, z, t])
[-t*sin(t*x), 0, 0, -x*sin(t*x)]
>>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]
"""
from sympy.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
array_types = (Iterable, MatrixBase, NDimArray)
if isinstance(dx, array_types):
dx = ImmutableDenseNDimArray(dx)
for i in dx:
if not i._diff_wrt:
raise ValueError("cannot derive by this array")
if isinstance(expr, array_types):
if isinstance(expr, NDimArray):
expr = expr.as_immutable()
else:
expr = ImmutableDenseNDimArray(expr)
if isinstance(dx, array_types):
if isinstance(expr, SparseNDimArray):
lp = len(expr)
new_array = {k + i*lp: v
for i, x in enumerate(dx)
for k, v in expr.diff(x)._sparse_array.items()}
else:
new_array = [[y.diff(x) for y in expr] for x in dx]
return type(expr)(new_array, dx.shape + expr.shape)
else:
return expr.diff(dx)
else:
if isinstance(dx, array_types):
return ImmutableDenseNDimArray([expr.diff(i) for i in dx], dx.shape)
else:
return diff(expr, dx)
def permutedims(expr, perm):
"""
Permutes the indices of an array.
Parameter specifies the permutation of the indices.
Examples
========
>>> from sympy.abc import x, y, z, t
>>> from sympy import sin
>>> from sympy import Array, permutedims
>>> a = Array([[x, y, z], [t, sin(x), 0]])
>>> a
[[x, y, z], [t, sin(x), 0]]
>>> permutedims(a, (1, 0))
[[x, t], [y, sin(x)], [z, 0]]
If the array is of second order, ``transpose`` can be used:
>>> from sympy import transpose
>>> transpose(a)
[[x, t], [y, sin(x)], [z, 0]]
Examples on higher dimensions:
>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
>>> permutedims(b, (2, 1, 0))
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>>> permutedims(b, (1, 2, 0))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
``Permutation`` objects are also allowed:
>>> from sympy.combinatorics import Permutation
>>> permutedims(b, Permutation([1, 2, 0]))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
"""
from sympy.tensor.array import SparseNDimArray
if not isinstance(expr, NDimArray):
raise TypeError("expression has to be an N-dim array")
from sympy.combinatorics import Permutation
if not isinstance(perm, Permutation):
perm = Permutation(list(perm))
if perm.size != expr.rank():
raise ValueError("wrong permutation size")
# Get the inverse permutation:
iperm = ~perm
new_shape = perm(expr.shape)
if isinstance(expr, SparseNDimArray):
return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
for k, v in expr._sparse_array.items()}, new_shape)
indices_span = perm([range(i) for i in expr.shape])
new_array = [None]*len(expr)
for i, idx in enumerate(itertools.product(*indices_span)):
t = iperm(idx)
new_array[i] = expr[t]
return type(expr)(new_array, new_shape)
|
0fdbde8b77317f4d9c0155565d06a889f8f41c6b6b7d5d0b30e68595164635fb | from __future__ import print_function, division
from sympy import S, Dict, Basic, Tuple
from sympy.core.sympify import _sympify
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray
from sympy.core.numbers import Integer
from sympy.core.compatibility import SYMPY_INTS
import functools
class SparseNDimArray(NDimArray):
def __new__(self, *args, **kwargs):
return ImmutableSparseNDimArray(*args, **kwargs)
def __getitem__(self, index):
"""
Get an element from a sparse N-dim array.
Examples
========
>>> from sympy import MutableSparseNDimArray
>>> a = MutableSparseNDimArray(range(4), (2, 2))
>>> a
[[0, 1], [2, 3]]
>>> a[0, 0]
0
>>> a[1, 1]
3
>>> a[0]
[0, 1]
>>> a[1]
[2, 3]
Symbolic indexing:
>>> from sympy.abc import i, j
>>> a[i, j]
[[0, 1], [2, 3]][i, j]
Replace `i` and `j` to get element `(0, 0)`:
>>> a[i, j].subs({i: 0, j: 0})
0
"""
syindex = self._check_symbolic_index(index)
if syindex is not None:
return syindex
if isinstance(index, (SYMPY_INTS, Integer)):
index = (index, )
if not isinstance(index, slice) and len(index) < self.rank():
index = tuple([i for i in index] + \
[slice(None) for i in range(len(index), self.rank())])
# `index` is a tuple with one or more slices:
if isinstance(index, tuple) and any([isinstance(i, slice) for i in index]):
sl_factors, eindices = self._get_slice_data_for_array_access(index)
array = [self._sparse_array.get(self._parse_index(i), S.Zero) for i in eindices]
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
return type(self)(array, nshape)
else:
# `index` is a single slice:
if isinstance(index, slice):
start, stop, step = index.indices(self._loop_size)
retvec = [self._sparse_array.get(ind, S.Zero) for ind in range(start, stop, step)]
return retvec
# `index` is a number or a tuple without any slice:
else:
index = self._parse_index(index)
return self._sparse_array.get(index, S.Zero)
@classmethod
def zeros(cls, *shape):
"""
Return a sparse N-dim array of zeros.
"""
return cls({}, shape)
def tomatrix(self):
"""
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
Examples
========
>>> from sympy import MutableSparseNDimArray
>>> a = MutableSparseNDimArray([1 for i in range(9)], (3, 3))
>>> b = a.tomatrix()
>>> b
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
from sympy.matrices import SparseMatrix
if self.rank() != 2:
raise ValueError('Dimensions must be of size of 2')
mat_sparse = {}
for key, value in self._sparse_array.items():
mat_sparse[self._get_tuple_index(key)] = value
return SparseMatrix(self.shape[0], self.shape[1], mat_sparse)
def __iter__(self):
def iterator():
for i in range(self._loop_size):
yield self[self._get_tuple_index(i)]
return iterator()
def reshape(self, *newshape):
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
if new_total_size != self._loop_size:
raise ValueError("Invalid reshape parameters " + newshape)
return type(self)(self._sparse_array, newshape)
class ImmutableSparseNDimArray(SparseNDimArray, ImmutableNDimArray):
def __new__(cls, iterable=None, shape=None, **kwargs):
from sympy.utilities.iterables import flatten
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
shape = Tuple(*map(_sympify, shape))
cls._check_special_bounds(flat_list, shape)
loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
# Sparse array:
if isinstance(flat_list, (dict, Dict)):
sparse_array = Dict(flat_list)
else:
sparse_array = {}
for i, el in enumerate(flatten(flat_list)):
if el != 0:
sparse_array[i] = _sympify(el)
sparse_array = Dict(sparse_array)
self = Basic.__new__(cls, sparse_array, shape, **kwargs)
self._shape = shape
self._rank = len(shape)
self._loop_size = loop_size
self._sparse_array = sparse_array
return self
def __setitem__(self, index, value):
raise TypeError("immutable N-dim array")
def as_mutable(self):
return MutableSparseNDimArray(self)
class MutableSparseNDimArray(MutableNDimArray, SparseNDimArray):
def __new__(cls, iterable=None, shape=None, **kwargs):
from sympy.utilities.iterables import flatten
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
self = object.__new__(cls)
self._shape = shape
self._rank = len(shape)
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
# Sparse array:
if isinstance(flat_list, (dict, Dict)):
self._sparse_array = dict(flat_list)
return self
self._sparse_array = {}
for i, el in enumerate(flatten(flat_list)):
if el != 0:
self._sparse_array[i] = _sympify(el)
return self
def __setitem__(self, index, value):
"""Allows to set items to MutableDenseNDimArray.
Examples
========
>>> from sympy import MutableSparseNDimArray
>>> a = MutableSparseNDimArray.zeros(2, 2)
>>> a[0, 0] = 1
>>> a[1, 1] = 1
>>> a
[[1, 0], [0, 1]]
"""
if isinstance(index, tuple) and any([isinstance(i, slice) for i in index]):
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
for i in eindices:
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
other_value = value[other_i]
complete_index = self._parse_index(i)
if other_value != 0:
self._sparse_array[complete_index] = other_value
elif complete_index in self._sparse_array:
self._sparse_array.pop(complete_index)
else:
index = self._parse_index(index)
value = _sympify(value)
if value == 0 and index in self._sparse_array:
self._sparse_array.pop(index)
else:
self._sparse_array[index] = value
def as_immutable(self):
return ImmutableSparseNDimArray(self)
@property
def free_symbols(self):
return {i for j in self._sparse_array.values() for i in j.free_symbols}
|
f9172efa0d0bd10e0eee9612669e586c22e7d9332c909556ed16f6a9280f21e1 | from __future__ import print_function, division
from sympy import Basic
from sympy import S
from sympy.core.expr import Expr
from sympy.core.numbers import Integer
from sympy.core.sympify import sympify
from sympy.core.compatibility import SYMPY_INTS, Iterable
import itertools
class NDimArray(object):
"""
Examples
========
Create an N-dim array of zeros:
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3, 4)
>>> a
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
Create an N-dim array from a list;
>>> a = MutableDenseNDimArray([[2, 3], [4, 5]])
>>> a
[[2, 3], [4, 5]]
>>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]])
>>> b
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]
Create an N-dim array from a flat list with dimension shape:
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
>>> a
[[1, 2, 3], [4, 5, 6]]
Create an N-dim array from a matrix:
>>> from sympy import Matrix
>>> a = Matrix([[1,2],[3,4]])
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> b = MutableDenseNDimArray(a)
>>> b
[[1, 2], [3, 4]]
Arithmetic operations on N-dim arrays
>>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2))
>>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2))
>>> c = a + b
>>> c
[[5, 5], [5, 5]]
>>> a - b
[[-3, -3], [-3, -3]]
"""
_diff_wrt = True
def __new__(cls, iterable, shape=None, **kwargs):
from sympy.tensor.array import ImmutableDenseNDimArray
return ImmutableDenseNDimArray(iterable, shape, **kwargs)
def _parse_index(self, index):
if isinstance(index, (SYMPY_INTS, Integer)):
raise ValueError("Only a tuple index is accepted")
if self._loop_size == 0:
raise ValueError("Index not valide with an empty array")
if len(index) != self._rank:
raise ValueError('Wrong number of array axes')
real_index = 0
# check if input index can exist in current indexing
for i in range(self._rank):
if index[i] >= self.shape[i]:
raise ValueError('Index ' + str(index) + ' out of border')
real_index = real_index*self.shape[i] + index[i]
return real_index
def _get_tuple_index(self, integer_index):
index = []
for i, sh in enumerate(reversed(self.shape)):
index.append(integer_index % sh)
integer_index //= sh
index.reverse()
return tuple(index)
def _check_symbolic_index(self, index):
# Check if any index is symbolic:
tuple_index = (index if isinstance(index, tuple) else (index,))
if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]):
for i, nth_dim in zip(tuple_index, self.shape):
if ((i < 0) == True) or ((i >= nth_dim) == True):
raise ValueError("index out of range")
from sympy.tensor import Indexed
return Indexed(self, *tuple_index)
return None
def _setter_iterable_check(self, value):
from sympy.matrices.matrices import MatrixBase
if isinstance(value, (Iterable, MatrixBase, NDimArray)):
raise NotImplementedError
@classmethod
def _scan_iterable_shape(cls, iterable):
def f(pointer):
if not isinstance(pointer, Iterable):
return [pointer], ()
result = []
elems, shapes = zip(*[f(i) for i in pointer])
if len(set(shapes)) != 1:
raise ValueError("could not determine shape unambiguously")
for i in elems:
result.extend(i)
return result, (len(shapes),)+shapes[0]
return f(iterable)
@classmethod
def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
from sympy import Dict, Tuple
if shape is None:
if iterable is None:
shape = ()
iterable = ()
# Construction of a sparse array from a sparse array
elif isinstance(iterable, SparseNDimArray):
return iterable._shape, iterable._sparse_array
# Construction from another `NDimArray`:
elif isinstance(iterable, NDimArray):
shape = iterable.shape
iterable = list(iterable)
# Construct N-dim array from an iterable (numpy arrays included):
elif isinstance(iterable, Iterable):
iterable, shape = cls._scan_iterable_shape(iterable)
# Construct N-dim array from a Matrix:
elif isinstance(iterable, MatrixBase):
shape = iterable.shape
# Construct N-dim array from another N-dim array:
elif isinstance(iterable, NDimArray):
shape = iterable.shape
else:
shape = ()
iterable = (iterable,)
if isinstance(iterable, (Dict, dict)) and shape is not None:
new_dict = iterable.copy()
for k, v in new_dict.items():
if isinstance(k, (tuple, Tuple)):
new_key = 0
for i, idx in enumerate(k):
new_key = new_key * shape[i] + idx
iterable[new_key] = iterable[k]
del iterable[k]
if isinstance(shape, (SYMPY_INTS, Integer)):
shape = (shape,)
if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]):
raise TypeError("Shape should contain integers only.")
return tuple(shape), iterable
def __len__(self):
"""Overload common function len(). Returns number of elements in array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> len(a)
9
"""
return self._loop_size
@property
def shape(self):
"""
Returns array shape (dimension).
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a.shape
(3, 3)
"""
return self._shape
def rank(self):
"""
Returns rank of array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3,4,5,6,3)
>>> a.rank()
5
"""
return self._rank
def diff(self, *args, **kwargs):
"""
Calculate the derivative of each element in the array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> from sympy.abc import x, y
>>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]])
>>> M.diff(x)
[[1, 0], [0, y]]
"""
from sympy import Derivative
kwargs.setdefault('evaluate', True)
return Derivative(self.as_immutable(), *args, **kwargs)
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _visit_eval_derivative_scalar(self, base):
# Types are (base: scalar, self: array)
return self.applyfunc(lambda x: base.diff(x))
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: array)
from sympy import derive_by_array
return derive_by_array(base, self)
def _eval_derivative_n_times(self, s, n):
return Basic._eval_derivative_n_times(self, s, n)
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def _eval_derivative_array(self, arg):
from sympy import derive_by_array
from sympy import Tuple
from sympy import SparseNDimArray
from sympy.matrices.common import MatrixCommon
if isinstance(arg, (Iterable, Tuple, MatrixCommon, NDimArray)):
return derive_by_array(self, arg)
else:
return self.applyfunc(lambda x: x.diff(arg))
def applyfunc(self, f):
"""Apply a function to each element of the N-dim array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2))
>>> m
[[0, 1], [2, 3]]
>>> m.applyfunc(lambda i: 2*i)
[[0, 2], [4, 6]]
"""
from sympy.tensor.array import SparseNDimArray
if isinstance(self, SparseNDimArray) and f(S.Zero) == 0:
return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape)
return type(self)(map(f, self), self.shape)
def __str__(self):
"""Returns string, allows to use standard functions print() and str().
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 2)
>>> a
[[0, 0], [0, 0]]
"""
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return "["+", ".join([str(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]"
sh //= shape_left[0]
return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left)
if self.rank() == 0:
return self[()].__str__()
return f(self._loop_size, self.shape, 0, self._loop_size)
def __repr__(self):
return self.__str__()
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def tolist(self):
"""
Converting MutableDenseNDimArray to one-dim list
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
>>> a
[[1, 2], [3, 4]]
>>> b = a.tolist()
>>> b
[[1, 2], [3, 4]]
"""
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return [self[self._get_tuple_index(e)] for e in range(i, j)]
result = []
sh //= shape_left[0]
for e in range(shape_left[0]):
result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh))
return result
return f(self._loop_size, self.shape, 0, self._loop_size)
def __add__(self, other):
if not isinstance(other, NDimArray):
raise TypeError(str(other))
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i+j for i,j in zip(self, other)]
return type(self)(result_list, self.shape)
def __sub__(self, other):
if not isinstance(other, NDimArray):
raise TypeError(str(other))
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i-j for i,j in zip(self, other)]
return type(self)(result_list, self.shape)
def __mul__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
if isinstance(self, SparseNDimArray):
if(other == S.Zero):
return type(self)({}, self.shape)
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [i*other for i in self]
return type(self)(result_list, self.shape)
def __rmul__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
if isinstance(self, SparseNDimArray):
if(other == S.Zero):
return type(self)({}, self.shape)
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [other*i for i in self]
return type(self)(result_list, self.shape)
def __div__(self, other):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected")
other = sympify(other)
if isinstance(self, SparseNDimArray) and other != S.Zero:
return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [i/other for i in self]
return type(self)(result_list, self.shape)
def __rdiv__(self, other):
raise NotImplementedError('unsupported operation on NDimArray')
def __neg__(self):
from sympy.tensor.array import SparseNDimArray
if isinstance(self, SparseNDimArray):
return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape)
result_list = [-i for i in self]
return type(self)(result_list, self.shape)
def __eq__(self, other):
"""
NDimArray instances can be compared to each other.
Instances equal if they have same shape and data.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3)
>>> b = MutableDenseNDimArray.zeros(2, 3)
>>> a == b
True
>>> c = a.reshape(3, 2)
>>> c == b
False
>>> a[0,0] = 1
>>> b[0,0] = 2
>>> a == b
False
"""
from sympy.tensor.array import SparseNDimArray
if not isinstance(other, NDimArray):
return False
if not self.shape == other.shape:
return False
if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray):
return dict(self._sparse_array) == dict(other._sparse_array)
return list(self) == list(other)
def __ne__(self, other):
return not self == other
__truediv__ = __div__
__rtruediv__ = __rdiv__
def _eval_transpose(self):
if self.rank() != 2:
raise ValueError("array rank not 2")
from .arrayop import permutedims
return permutedims(self, (1, 0))
def transpose(self):
return self._eval_transpose()
def _eval_conjugate(self):
return self.func([i.conjugate() for i in self], self.shape)
def conjugate(self):
return self._eval_conjugate()
def _eval_adjoint(self):
return self.transpose().conjugate()
def adjoint(self):
return self._eval_adjoint()
def _slice_expand(self, s, dim):
if not isinstance(s, slice):
return (s,)
start, stop, step = s.indices(dim)
return [start + i*step for i in range((stop-start)//step)]
def _get_slice_data_for_array_access(self, index):
sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
eindices = itertools.product(*sl_factors)
return sl_factors, eindices
def _get_slice_data_for_array_assignment(self, index, value):
if not isinstance(value, NDimArray):
value = type(self)(value)
sl_factors, eindices = self._get_slice_data_for_array_access(index)
slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors]
# TODO: add checks for dimensions for `value`?
return value, eindices, slice_offsets
@classmethod
def _check_special_bounds(cls, flat_list, shape):
if shape == () and len(flat_list) != 1:
raise ValueError("arrays without shape need one scalar value")
if shape == (0,) and len(flat_list) > 0:
raise ValueError("if array shape is (0,) there cannot be elements")
class ImmutableNDimArray(NDimArray, Basic):
_op_priority = 11.0
def __hash__(self):
return Basic.__hash__(self)
def as_immutable(self):
return self
def as_mutable(self):
raise NotImplementedError("abstract method")
|
5a132778e45fd88af6b583acfb12055a231d6dd3b131dbc329e569b2d0e394bc | from __future__ import print_function, division
import functools
from sympy import Basic, Tuple, S
from sympy.core.sympify import _sympify
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray
from sympy.core.compatibility import SYMPY_INTS
from sympy.core.numbers import Integer
class DenseNDimArray(NDimArray):
def __new__(self, *args, **kwargs):
return ImmutableDenseNDimArray(*args, **kwargs)
def __getitem__(self, index):
"""
Allows to get items from N-dim array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2))
>>> a
[[0, 1], [2, 3]]
>>> a[0, 0]
0
>>> a[1, 1]
3
>>> a[0]
[0, 1]
>>> a[1]
[2, 3]
Symbolic index:
>>> from sympy.abc import i, j
>>> a[i, j]
[[0, 1], [2, 3]][i, j]
Replace `i` and `j` to get element `(1, 1)`:
>>> a[i, j].subs({i: 1, j: 1})
3
"""
syindex = self._check_symbolic_index(index)
if syindex is not None:
return syindex
if isinstance(index, (SYMPY_INTS, Integer)):
index = (index, )
if not isinstance(index, slice) and len(index) < self.rank():
index = tuple([i for i in index] + \
[slice(None) for i in range(len(index), self.rank())])
if isinstance(index, tuple) and any([isinstance(i, slice) for i in index]):
sl_factors, eindices = self._get_slice_data_for_array_access(index)
array = [self._array[self._parse_index(i)] for i in eindices]
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
return type(self)(array, nshape)
else:
if isinstance(index, slice):
return self._array[index]
else:
index = self._parse_index(index)
return self._array[index]
@classmethod
def zeros(cls, *shape):
list_length = functools.reduce(lambda x, y: x*y, shape, S.One)
return cls._new(([0]*list_length,), shape)
def tomatrix(self):
"""
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3))
>>> b = a.tomatrix()
>>> b
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
from sympy.matrices import Matrix
if self.rank() != 2:
raise ValueError('Dimensions must be of size of 2')
return Matrix(self.shape[0], self.shape[1], self._array)
def __iter__(self):
def iterator():
for i in range(self._loop_size):
yield self[self._get_tuple_index(i)]
return iterator()
def reshape(self, *newshape):
"""
Returns MutableDenseNDimArray instance with new shape. Elements number
must be suitable to new shape. The only argument of method sets
new shape.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
>>> a.shape
(2, 3)
>>> a
[[1, 2, 3], [4, 5, 6]]
>>> b = a.reshape(3, 2)
>>> b.shape
(3, 2)
>>> b
[[1, 2], [3, 4], [5, 6]]
"""
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
if new_total_size != self._loop_size:
raise ValueError("Invalid reshape parameters " + newshape)
# there is no `.func` as this class does not subtype `Basic`:
return type(self)(self._array, newshape)
class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray):
"""
"""
def __new__(cls, iterable, shape=None, **kwargs):
return cls._new(iterable, shape, **kwargs)
@classmethod
def _new(cls, iterable, shape, **kwargs):
from sympy.utilities.iterables import flatten
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
shape = Tuple(*map(_sympify, shape))
cls._check_special_bounds(flat_list, shape)
flat_list = flatten(flat_list)
flat_list = Tuple(*flat_list)
self = Basic.__new__(cls, flat_list, shape, **kwargs)
self._shape = shape
self._array = list(flat_list)
self._rank = len(shape)
self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1)
return self
def __setitem__(self, index, value):
raise TypeError('immutable N-dim array')
def as_mutable(self):
return MutableDenseNDimArray(self)
class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray):
def __new__(cls, iterable=None, shape=None, **kwargs):
return cls._new(iterable, shape, **kwargs)
@classmethod
def _new(cls, iterable, shape, **kwargs):
from sympy.utilities.iterables import flatten
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
flat_list = flatten(flat_list)
self = object.__new__(cls)
self._shape = shape
self._array = list(flat_list)
self._rank = len(shape)
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
return self
def __setitem__(self, index, value):
"""Allows to set items to MutableDenseNDimArray.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 2)
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> a
[[1, 0], [0, 1]]
"""
if isinstance(index, tuple) and any([isinstance(i, slice) for i in index]):
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
for i in eindices:
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
self._array[self._parse_index(i)] = value[other_i]
else:
index = self._parse_index(index)
self._setter_iterable_check(value)
value = _sympify(value)
self._array[index] = value
def as_immutable(self):
return ImmutableDenseNDimArray(self)
@property
def free_symbols(self):
return {i for j in self._array for i in j.free_symbols}
|
99f77165f87b17c7a7575d03240366d0e14ce42e64c1adea2133cc93123af6b2 | import random
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import _af_invert
from sympy.utilities.pytest import raises
from sympy import symbols, sin, exp, log, cos, transpose, adjoint, conjugate, diff
from sympy.tensor.array import Array, ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray
from sympy.tensor.array import tensorproduct, tensorcontraction, derive_by_array, permutedims
# Test import although not used in file
from sympy.tensor.array import NDimArray
def test_tensorproduct():
x,y,z,t = symbols('x y z t')
from sympy.abc import a,b,c,d
assert tensorproduct() == 1
assert tensorproduct([x]) == Array([x])
assert tensorproduct([x], [y]) == Array([[x*y]])
assert tensorproduct([x], [y], [z]) == Array([[[x*y*z]]])
assert tensorproduct([x], [y], [z], [t]) == Array([[[[x*y*z*t]]]])
assert tensorproduct(x) == x
assert tensorproduct(x, y) == x*y
assert tensorproduct(x, y, z) == x*y*z
assert tensorproduct(x, y, z, t) == x*y*z*t
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
A = ArrayType([x, y])
B = ArrayType([1, 2, 3])
C = ArrayType([a, b, c, d])
assert tensorproduct(A, B, C) == ArrayType([[[a*x, b*x, c*x, d*x], [2*a*x, 2*b*x, 2*c*x, 2*d*x], [3*a*x, 3*b*x, 3*c*x, 3*d*x]],
[[a*y, b*y, c*y, d*y], [2*a*y, 2*b*y, 2*c*y, 2*d*y], [3*a*y, 3*b*y, 3*c*y, 3*d*y]]])
assert tensorproduct([x, y], [1, 2, 3]) == tensorproduct(A, B)
assert tensorproduct(A, 2) == ArrayType([2*x, 2*y])
assert tensorproduct(A, [2]) == ArrayType([[2*x], [2*y]])
assert tensorproduct([2], A) == ArrayType([[2*x, 2*y]])
assert tensorproduct(a, A) == ArrayType([a*x, a*y])
assert tensorproduct(a, A, B) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
assert tensorproduct(A, B, a) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
assert tensorproduct(B, a, A) == ArrayType([[a*x, a*y], [2*a*x, 2*a*y], [3*a*x, 3*a*y]])
# tests for large scale sparse array
for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
a = SparseArrayType({1:2, 3:4},(1000, 2000))
b = SparseArrayType({1:2, 3:4},(1000, 2000))
assert tensorproduct(a, b) == ImmutableSparseNDimArray({2000001: 4, 2000003: 8, 6000001: 8, 6000003: 16}, (1000, 2000, 1000, 2000))
def test_tensorcontraction():
from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x
B = Array(range(18), (2, 3, 3))
assert tensorcontraction(B, (1, 2)) == Array([12, 39])
C1 = Array([a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x], (2, 3, 2, 2))
assert tensorcontraction(C1, (0, 2)) == Array([[a + o, b + p], [e + s, f + t], [i + w, j + x]])
assert tensorcontraction(C1, (0, 2, 3)) == Array([a + p, e + t, i + x])
assert tensorcontraction(C1, (2, 3)) == Array([[a + d, e + h, i + l], [m + p, q + t, u + x]])
def test_derivative_by_array():
from sympy.abc import i, j, t, x, y, z
bexpr = x*y**2*exp(z)*log(t)
sexpr = sin(bexpr)
cexpr = cos(bexpr)
a = Array([sexpr])
assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
[[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
[[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
# test for large scale sparse array
for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
b = MutableSparseNDimArray({0:i, 1:j}, (10000, 20000))
assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000))
assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000))
def test_issue_emerged_while_discussing_10972():
ua = Array([-1,0])
Fa = Array([[0, 1], [-1, 0]])
po = tensorproduct(Fa, ua, Fa, ua)
assert tensorcontraction(po, (1, 2), (4, 5)) == Array([[0, 0], [0, 1]])
sa = symbols('a0:144')
po = Array(sa, [2, 2, 3, 3, 2, 2])
assert tensorcontraction(po, (0, 1), (2, 3), (4, 5)) == sa[0] + sa[108] + sa[111] + sa[124] + sa[127] + sa[140] + sa[143] + sa[16] + sa[19] + sa[3] + sa[32] + sa[35]
assert tensorcontraction(po, (0, 1, 4, 5), (2, 3)) == sa[0] + sa[111] + sa[127] + sa[143] + sa[16] + sa[32]
assert tensorcontraction(po, (0, 1), (4, 5)) == Array([[sa[0] + sa[108] + sa[111] + sa[3], sa[112] + sa[115] + sa[4] + sa[7],
sa[11] + sa[116] + sa[119] + sa[8]], [sa[12] + sa[120] + sa[123] + sa[15],
sa[124] + sa[127] + sa[16] + sa[19], sa[128] + sa[131] + sa[20] + sa[23]],
[sa[132] + sa[135] + sa[24] + sa[27], sa[136] + sa[139] + sa[28] + sa[31],
sa[140] + sa[143] + sa[32] + sa[35]]])
assert tensorcontraction(po, (0, 1), (2, 3)) == Array([[sa[0] + sa[108] + sa[124] + sa[140] + sa[16] + sa[32], sa[1] + sa[109] + sa[125] + sa[141] + sa[17] + sa[33]],
[sa[110] + sa[126] + sa[142] + sa[18] + sa[2] + sa[34], sa[111] + sa[127] + sa[143] + sa[19] + sa[3] + sa[35]]])
def test_array_permutedims():
sa = symbols('a0:144')
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
m1 = ArrayType(sa[:6], (2, 3))
assert permutedims(m1, (1, 0)) == transpose(m1)
assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix()
assert m1.tomatrix().T == transpose(m1).tomatrix()
assert m1.tomatrix().C == conjugate(m1).tomatrix()
assert m1.tomatrix().H == adjoint(m1).tomatrix()
assert m1.tomatrix().T == m1.transpose().tomatrix()
assert m1.tomatrix().C == m1.conjugate().tomatrix()
assert m1.tomatrix().H == m1.adjoint().tomatrix()
raises(ValueError, lambda: permutedims(m1, (0,)))
raises(ValueError, lambda: permutedims(m1, (0, 0)))
raises(ValueError, lambda: permutedims(m1, (1, 2, 0)))
# Some tests with random arrays:
dims = 6
shape = [random.randint(1,5) for i in range(dims)]
elems = [random.random() for i in range(tensorproduct(*shape))]
ra = ArrayType(elems, shape)
perm = list(range(dims))
# Randomize the permutation:
random.shuffle(perm)
# Test inverse permutation:
assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra
# Test that permuted shape corresponds to action by `Permutation`:
assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape))
z = ArrayType.zeros(4,5,6,7)
assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4)
assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4)
assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4)
po = ArrayType(sa, [2, 2, 3, 3, 2, 2])
raises(ValueError, lambda: permutedims(po, (1, 1)))
raises(ValueError, lambda: po.transpose())
raises(ValueError, lambda: po.adjoint())
assert permutedims(po, reversed(range(po.rank()))) == ArrayType(
[[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24],
sa[96]], [sa[60], sa[132]]]],
[[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16],
sa[88]], [sa[52], sa[124]]],
[[sa[28], sa[100]], [sa[64], sa[136]]]],
[[[sa[8],
sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32],
sa[104]], [sa[68], sa[140]]]]],
[[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14],
sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]],
[[[sa[6],
sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30],
sa[102]], [sa[66], sa[138]]]],
[[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22],
sa[94]], [sa[58], sa[130]]],
[[sa[34], sa[106]], [sa[70], sa[142]]]]]],
[[[[[sa[1],
sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25],
sa[97]], [sa[61], sa[133]]]],
[[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17],
sa[89]], [sa[53], sa[125]]],
[[sa[29], sa[101]], [sa[65], sa[137]]]],
[[[sa[9],
sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33],
sa[105]], [sa[69], sa[141]]]]],
[[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15],
sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]],
[[[sa[7],
sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31],
sa[103]], [sa[67], sa[139]]]],
[[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23],
sa[95]], [sa[59], sa[131]]],
[[sa[35], sa[107]], [sa[71], sa[143]]]]]]])
assert permutedims(po, (1, 0, 2, 3, 4, 5)) == ArrayType(
[[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10],
sa[11]]]],
[[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18],
sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]],
[[[sa[24], sa[25]], [sa[26],
sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34],
sa[35]]]]],
[[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78],
sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]],
[[[sa[84], sa[85]], [sa[86],
sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94],
sa[95]]]],
[[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102],
sa[103]]],
[[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38],
sa[39]]],
[[sa[40], sa[41]], [sa[42], sa[43]]],
[[sa[44], sa[45]], [sa[46],
sa[47]]]],
[[[sa[48], sa[49]], [sa[50], sa[51]]],
[[sa[52], sa[53]], [sa[54],
sa[55]]],
[[sa[56], sa[57]], [sa[58], sa[59]]]],
[[[sa[60], sa[61]], [sa[62],
sa[63]]],
[[sa[64], sa[65]], [sa[66], sa[67]]],
[[sa[68], sa[69]], [sa[70],
sa[71]]]]], [
[[[sa[108], sa[109]], [sa[110], sa[111]]],
[[sa[112], sa[113]], [sa[114],
sa[115]]],
[[sa[116], sa[117]], [sa[118], sa[119]]]],
[[[sa[120], sa[121]], [sa[122],
sa[123]]],
[[sa[124], sa[125]], [sa[126], sa[127]]],
[[sa[128], sa[129]], [sa[130],
sa[131]]]],
[[[sa[132], sa[133]], [sa[134], sa[135]]],
[[sa[136], sa[137]], [sa[138],
sa[139]]],
[[sa[140], sa[141]], [sa[142], sa[143]]]]]]])
assert permutedims(po, (0, 2, 1, 4, 3, 5)) == ArrayType(
[[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10],
sa[11]]]],
[[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38],
sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]],
[[[[sa[12], sa[13]], [sa[16],
sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22],
sa[23]]]],
[[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50],
sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]],
[[[[sa[24], sa[25]], [sa[28],
sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34],
sa[35]]]],
[[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62],
sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]],
[[[[[sa[72], sa[73]], [sa[76],
sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82],
sa[83]]]],
[[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110],
sa[111]], [sa[114], sa[115]],
[sa[118], sa[119]]]]],
[[[[sa[84], sa[85]], [sa[88],
sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94],
sa[95]]]],
[[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122],
sa[123]], [sa[126], sa[127]],
[sa[130], sa[131]]]]],
[[[[sa[96], sa[97]], [sa[100],
sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106],
sa[107]]]],
[[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134],
sa[135]], [sa[138], sa[139]],
[sa[142], sa[143]]]]]]])
po2 = po.reshape(4, 9, 2, 2)
assert po2 == ArrayType([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]])
assert permutedims(po2, (3, 2, 0, 1)) == ArrayType([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]])
# test for large scale sparse array
for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
A = SparseArrayType({1:1, 10000:2}, (10000, 20000, 10000))
assert permutedims(A, (0, 1, 2)) == A
assert permutedims(A, (1, 0, 2)) == SparseArrayType({1: 1, 100000000: 2}, (20000, 10000, 10000))
B = SparseArrayType({1:1, 20000:2}, (10000, 20000))
assert B.transpose() == SparseArrayType({10000: 1, 1: 2}, (20000, 10000))
|
3f939f34846d50f9dc874e962887c6e7f8cc82e203c6019d45628cd87b21171a | from copy import copy
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
from sympy import Symbol, Rational, SparseMatrix, Dict, diff, symbols, Indexed, IndexedBase, S
from sympy.core.compatibility import long
from sympy.matrices import Matrix
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
from sympy.utilities.pytest import raises
def test_ndim_array_initiation():
arr_with_no_elements = ImmutableDenseNDimArray([], shape=(0,))
assert len(arr_with_no_elements) == 0
assert arr_with_no_elements.rank() == 1
raises(ValueError, lambda: ImmutableDenseNDimArray([0], shape=(0,)))
raises(ValueError, lambda: ImmutableDenseNDimArray([1, 2, 3], shape=(0,)))
raises(ValueError, lambda: ImmutableDenseNDimArray([], shape=()))
raises(ValueError, lambda: ImmutableSparseNDimArray([0], shape=(0,)))
raises(ValueError, lambda: ImmutableSparseNDimArray([1, 2, 3], shape=(0,)))
raises(ValueError, lambda: ImmutableSparseNDimArray([], shape=()))
arr_with_one_element = ImmutableDenseNDimArray([23])
assert len(arr_with_one_element) == 1
assert arr_with_one_element[0] == 23
assert arr_with_one_element[:] == [23]
assert arr_with_one_element.rank() == 1
arr_with_symbol_element = ImmutableDenseNDimArray([Symbol('x')])
assert len(arr_with_symbol_element) == 1
assert arr_with_symbol_element[0] == Symbol('x')
assert arr_with_symbol_element[:] == [Symbol('x')]
assert arr_with_symbol_element.rank() == 1
number5 = 5
vector = ImmutableDenseNDimArray.zeros(number5)
assert len(vector) == number5
assert vector.shape == (number5,)
assert vector.rank() == 1
vector = ImmutableSparseNDimArray.zeros(number5)
assert len(vector) == number5
assert vector.shape == (number5,)
assert vector._sparse_array == Dict()
assert vector.rank() == 1
n_dim_array = ImmutableDenseNDimArray(range(3**4), (3, 3, 3, 3,))
assert len(n_dim_array) == 3 * 3 * 3 * 3
assert n_dim_array.shape == (3, 3, 3, 3)
assert n_dim_array.rank() == 4
array_shape = (3, 3, 3, 3)
sparse_array = ImmutableSparseNDimArray.zeros(*array_shape)
assert len(sparse_array._sparse_array) == 0
assert len(sparse_array) == 3 * 3 * 3 * 3
assert n_dim_array.shape == array_shape
assert n_dim_array.rank() == 4
one_dim_array = ImmutableDenseNDimArray([2, 3, 1])
assert len(one_dim_array) == 3
assert one_dim_array.shape == (3,)
assert one_dim_array.rank() == 1
assert one_dim_array.tolist() == [2, 3, 1]
shape = (3, 3)
array_with_many_args = ImmutableSparseNDimArray.zeros(*shape)
assert len(array_with_many_args) == 3 * 3
assert array_with_many_args.shape == shape
assert array_with_many_args[0, 0] == 0
assert array_with_many_args.rank() == 2
shape = (long(3), long(3))
array_with_long_shape = ImmutableSparseNDimArray.zeros(*shape)
assert len(array_with_long_shape) == 3 * 3
assert array_with_long_shape.shape == shape
assert array_with_long_shape[long(0), long(0)] == 0
assert array_with_long_shape.rank() == 2
vector_with_long_shape = ImmutableDenseNDimArray(range(5), long(5))
assert len(vector_with_long_shape) == 5
assert vector_with_long_shape.shape == (long(5),)
assert vector_with_long_shape.rank() == 1
raises(ValueError, lambda: vector_with_long_shape[long(5)])
from sympy.abc import x
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
rank_zero_array = ArrayType(x)
assert len(rank_zero_array) == 1
assert rank_zero_array.shape == ()
assert rank_zero_array.rank() == 0
assert rank_zero_array[()] == x
raises(ValueError, lambda: rank_zero_array[0])
def test_reshape():
array = ImmutableDenseNDimArray(range(50), 50)
assert array.shape == (50,)
assert array.rank() == 1
array = array.reshape(5, 5, 2)
assert array.shape == (5, 5, 2)
assert array.rank() == 3
assert len(array) == 50
def test_getitem():
for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
array = ArrayType(range(24)).reshape(2, 3, 4)
assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]
assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
assert array[0, 0] == ArrayType([0, 1, 2, 3])
value = 0
for i in range(2):
for j in range(3):
for k in range(4):
assert array[i, j, k] == value
value += 1
raises(ValueError, lambda: array[3, 4, 5])
raises(ValueError, lambda: array[3, 4, 5, 6])
def test_iterator():
array = ImmutableDenseNDimArray(range(4), (2, 2))
j = 0
for i in array:
assert i == j
j += 1
array = array.reshape(4)
j = 0
for i in array:
assert i == j
j += 1
def test_sparse():
sparse_array = ImmutableSparseNDimArray([0, 0, 0, 1], (2, 2))
assert len(sparse_array) == 2 * 2
# dictionary where all data is, only non-zero entries are actually stored:
assert len(sparse_array._sparse_array) == 1
assert list(sparse_array) == [0, 0, 0, 1]
for i, j in zip(sparse_array, [0, 0, 0, 1]):
assert i == j
def sparse_assignment():
sparse_array[0, 0] = 123
assert len(sparse_array._sparse_array) == 1
raises(TypeError, sparse_assignment)
assert len(sparse_array._sparse_array) == 1
assert sparse_array[0, 0] == 0
assert sparse_array/0 == ImmutableSparseNDimArray([[S.NaN, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2))
# test for large scale sparse array
# equality test
assert ImmutableSparseNDimArray.zeros(100000, 200000) == ImmutableSparseNDimArray.zeros(100000, 200000)
# __mul__ and __rmul__
a = ImmutableSparseNDimArray({200001: 1}, (100000, 200000))
assert a * 3 == ImmutableSparseNDimArray({200001: 3}, (100000, 200000))
assert 3 * a == ImmutableSparseNDimArray({200001: 3}, (100000, 200000))
assert a * 0 == ImmutableSparseNDimArray({}, (100000, 200000))
assert 0 * a == ImmutableSparseNDimArray({}, (100000, 200000))
# __div__
assert a/3 == ImmutableSparseNDimArray({200001: S.One/3}, (100000, 200000))
# __neg__
assert -a == ImmutableSparseNDimArray({200001: -1}, (100000, 200000))
def test_calculation():
a = ImmutableDenseNDimArray([1]*9, (3, 3))
b = ImmutableDenseNDimArray([9]*9, (3, 3))
c = a + b
for i in c:
assert i == 10
assert c == ImmutableDenseNDimArray([10]*9, (3, 3))
assert c == ImmutableSparseNDimArray([10]*9, (3, 3))
c = b - a
for i in c:
assert i == 8
assert c == ImmutableDenseNDimArray([8]*9, (3, 3))
assert c == ImmutableSparseNDimArray([8]*9, (3, 3))
def test_ndim_array_converting():
dense_array = ImmutableDenseNDimArray([1, 2, 3, 4], (2, 2))
alist = dense_array.tolist()
alist == [[1, 2], [3, 4]]
matrix = dense_array.tomatrix()
assert (isinstance(matrix, Matrix))
for i in range(len(dense_array)):
assert dense_array[dense_array._get_tuple_index(i)] == matrix[i]
assert matrix.shape == dense_array.shape
assert ImmutableDenseNDimArray(matrix) == dense_array
assert ImmutableDenseNDimArray(matrix.as_immutable()) == dense_array
assert ImmutableDenseNDimArray(matrix.as_mutable()) == dense_array
sparse_array = ImmutableSparseNDimArray([1, 2, 3, 4], (2, 2))
alist = sparse_array.tolist()
assert alist == [[1, 2], [3, 4]]
matrix = sparse_array.tomatrix()
assert(isinstance(matrix, SparseMatrix))
for i in range(len(sparse_array)):
assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i]
assert matrix.shape == sparse_array.shape
assert ImmutableSparseNDimArray(matrix) == sparse_array
assert ImmutableSparseNDimArray(matrix.as_immutable()) == sparse_array
assert ImmutableSparseNDimArray(matrix.as_mutable()) == sparse_array
def test_converting_functions():
arr_list = [1, 2, 3, 4]
arr_matrix = Matrix(((1, 2), (3, 4)))
# list
arr_ndim_array = ImmutableDenseNDimArray(arr_list, (2, 2))
assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray))
assert arr_matrix.tolist() == arr_ndim_array.tolist()
# Matrix
arr_ndim_array = ImmutableDenseNDimArray(arr_matrix)
assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray))
assert arr_matrix.tolist() == arr_ndim_array.tolist()
assert arr_matrix.shape == arr_ndim_array.shape
def test_equality():
first_list = [1, 2, 3, 4]
second_list = [1, 2, 3, 4]
third_list = [4, 3, 2, 1]
assert first_list == second_list
assert first_list != third_list
first_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2))
second_ndim_array = ImmutableDenseNDimArray(second_list, (2, 2))
fourth_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2))
assert first_ndim_array == second_ndim_array
def assignment_attempt(a):
a[0, 0] = 0
raises(TypeError, lambda: assignment_attempt(second_ndim_array))
assert first_ndim_array == second_ndim_array
assert first_ndim_array == fourth_ndim_array
def test_arithmetic():
a = ImmutableDenseNDimArray([3 for i in range(9)], (3, 3))
b = ImmutableDenseNDimArray([7 for i in range(9)], (3, 3))
c1 = a + b
c2 = b + a
assert c1 == c2
d1 = a - b
d2 = b - a
assert d1 == d2 * (-1)
e1 = a * 5
e2 = 5 * a
e3 = copy(a)
e3 *= 5
assert e1 == e2 == e3
f1 = a / 5
f2 = copy(a)
f2 /= 5
assert f1 == f2
assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \
f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5)
assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \
== type(e1) == type(e2) == type(e3) == type(f1)
z0 = -a
assert z0 == ImmutableDenseNDimArray([-3 for i in range(9)], (3, 3))
def test_higher_dimenions():
m3 = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert m3.tolist() == [[[10, 11, 12, 13],
[14, 15, 16, 17],
[18, 19, 20, 21]],
[[22, 23, 24, 25],
[26, 27, 28, 29],
[30, 31, 32, 33]]]
assert m3._get_tuple_index(0) == (0, 0, 0)
assert m3._get_tuple_index(1) == (0, 0, 1)
assert m3._get_tuple_index(4) == (0, 1, 0)
assert m3._get_tuple_index(12) == (1, 0, 0)
assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]'
m3_rebuilt = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]])
assert m3 == m3_rebuilt
m3_other = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4))
assert m3 == m3_other
def test_rebuild_immutable_arrays():
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert sparr == sparr.func(*sparr.args)
assert densarr == densarr.func(*densarr.args)
def test_slices():
md = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert md[:] == md._array
assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
assert md[:, :, :] == md
sd = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert sd == ImmutableSparseNDimArray(md)
assert sd[:] == md._array
assert sd[:] == list(sd)
assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]])
assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]])
assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]])
assert sd[:, :, :] == sd
def test_diff_and_applyfunc():
from sympy.abc import x, y, z
md = ImmutableDenseNDimArray([[x, y], [x*z, x*y*z]])
assert md.diff(x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]])
assert diff(md, x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]])
sd = ImmutableSparseNDimArray(md)
assert sd == ImmutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2))
assert sd.diff(x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]])
assert diff(sd, x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]])
mdn = md.applyfunc(lambda x: x*3)
assert mdn == ImmutableDenseNDimArray([[3*x, 3*y], [3*x*z, 3*x*y*z]])
assert md != mdn
sdn = sd.applyfunc(lambda x: x/2)
assert sdn == ImmutableSparseNDimArray([[x/2, y/2], [x*z/2, x*y*z/2]])
assert sd != sdn
sdp = sd.applyfunc(lambda x: x+1)
assert sdp == ImmutableSparseNDimArray([[x + 1, y + 1], [x*z + 1, x*y*z + 1]])
assert sd != sdp
def test_op_priority():
from sympy.abc import x
md = ImmutableDenseNDimArray([1, 2, 3])
e1 = (1+x)*md
e2 = md*(1+x)
assert e1 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x])
assert e1 == e2
sd = ImmutableSparseNDimArray([1, 2, 3])
e3 = (1+x)*sd
e4 = sd*(1+x)
assert e3 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x])
assert e3 == e4
def test_symbolic_indexing():
x, y, z, w = symbols("x y z w")
M = ImmutableDenseNDimArray([[x, y], [z, w]])
i, j = symbols("i, j")
Mij = M[i, j]
assert isinstance(Mij, Indexed)
Ms = ImmutableSparseNDimArray([[2, 3*x], [4, 5]])
msij = Ms[i, j]
assert isinstance(msij, Indexed)
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
A = IndexedBase("A", (0, 2))
assert A[0, 0].subs(A, M) == x
assert A[i, j].subs(A, M) == M[i, j]
assert M[i, j].subs(M, A) == A[i, j]
assert isinstance(M[3 * i - 2, j], Indexed)
assert M[3 * i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
assert isinstance(M[i, 0], Indexed)
assert M[i, 0].subs(i, 0) == M[0, 0]
assert M[0, i].subs(i, 1) == M[0, 1]
assert M[i, j].diff(x) == ImmutableDenseNDimArray([[1, 0], [0, 0]])[i, j]
assert Ms[i, j].diff(x) == ImmutableSparseNDimArray([[0, 3], [0, 0]])[i, j]
Mo = ImmutableDenseNDimArray([1, 2, 3])
assert Mo[i].subs(i, 1) == 2
Mos = ImmutableSparseNDimArray([1, 2, 3])
assert Mos[i].subs(i, 1) == 2
raises(ValueError, lambda: M[i, 2])
raises(ValueError, lambda: M[i, -1])
raises(ValueError, lambda: M[2, i])
raises(ValueError, lambda: M[-1, i])
raises(ValueError, lambda: Ms[i, 2])
raises(ValueError, lambda: Ms[i, -1])
raises(ValueError, lambda: Ms[2, i])
raises(ValueError, lambda: Ms[-1, i])
def test_issue_12665():
# Testing Python 3 hash of immutable arrays:
arr = ImmutableDenseNDimArray([1, 2, 3])
# This should NOT raise an exception:
hash(arr)
def test_zeros_without_shape():
arr = ImmutableDenseNDimArray.zeros()
assert arr == ImmutableDenseNDimArray(0)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.