hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
08b0acbc7394ce5893d3df7a26e705e6745a5d15664ddb508beb7da966d8dcbe | from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos,
cot, sec, csc, Abs, symbols, I, re, Lambda, simplify,
ImageSet)
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
periodicity, lcim, AccumBounds, is_convex,
stationary_points, minimum, maximum)
from sympy.core import Add, Mul, Pow
from sympy.sets.sets import (Interval, FiniteSet, EmptySet, Complement,
Union, Intersection)
from sympy.utilities.pytest import raises
from sympy.abc import x
a = Symbol('a', real=True)
def test_function_range():
x, y, a, b = symbols('x y a b')
assert function_range(sin(x), x, Interval(-pi/2, pi/2)
) == Interval(-1, 1)
assert function_range(sin(x), x, Interval(0, pi)
) == Interval(0, 1)
assert function_range(tan(x), x, Interval(0, pi)
) == Interval(-oo, oo)
assert function_range(tan(x), x, Interval(pi/2, pi)
) == Interval(-oo, 0)
assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
) == Union(Interval(-oo, S(2)/7), Interval(S(8)/3, oo))
assert function_range(1/(x**2), x, Interval(-1, 1)
) == Interval(1, oo)
assert function_range(exp(x), x, Interval(-1, 1)
) == Interval(exp(-1), exp(1))
assert function_range(log(x) - x, x, S.Reals
) == Interval(-oo, -1)
assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
) == Interval(0, sqrt(5))
assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
) == FiniteSet(0)
assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
) == FiniteSet(y)
assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
assert function_range(cos(x), x, Interval(-oo, -4)
) == Interval(-1, 1)
raises(NotImplementedError, lambda : function_range(
exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
raises(NotImplementedError, lambda : function_range(
log(x), x, S.Integers))
raises(NotImplementedError, lambda : function_range(
sin(x)/2, x, S.Naturals))
def test_continuous_domain():
x = Symbol('x')
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
Union(Interval(0, pi/2, False, True), Interval(pi/2, 3*pi/2, True, True),
Interval(3*pi/2, 2*pi, True, False))
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
Interval(S(1)/4, oo, True, True)
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
assert continuous_domain(1/x - 2, x, S.Reals) == \
Union(Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
def test_not_empty_in():
assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
Interval(S(1)/2, 2, True, False)
assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
Union(Interval(-sqrt(2), -1), Interval(1, 2))
assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
Union(Interval(-sqrt(17)/2 - S(1)/2, -2),
Interval(1, -S(1)/2 + sqrt(17)/2), Interval(2, 4))
assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Union(Interval(S(3)/2, 2), FiniteSet(3))
assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(-1, 1))
assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
Interval(4, 5))), x) == \
Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
Interval(1, 3, True, True), Interval(4, 5))
assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
Union(Interval(-2, -1, True, False), Interval(2, oo))
def test_periodicity():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', real=True)
assert periodicity(sin(2*x), x) == pi
assert periodicity((-2)*tan(4*x), x) == pi/4
assert periodicity(sin(x)**2, x) == 2*pi
assert periodicity(3**tan(3*x), x) == pi/3
assert periodicity(tan(x)*cos(x), x) == 2*pi
assert periodicity(sin(x)**(tan(x)), x) == 2*pi
assert periodicity(tan(x)*sec(x), x) == 2*pi
assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
assert periodicity(tan(x) + cot(x), x) == pi
assert periodicity(sin(x) - cos(2*x), x) == 2*pi
assert periodicity(sin(x) - 1, x) == 2*pi
assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
assert periodicity(exp(sin(x)), x) == 2*pi
assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
assert periodicity(tan(sin(2*x)), x) == pi
assert periodicity(2*tan(x)**2, x) == pi
assert periodicity(sin(x%4), x) == 4
assert periodicity(sin(x)%4, x) == 2*pi
assert periodicity(tan((3*x-2)%4), x) == S(4)/3
assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
assert periodicity((x**2+1) % x, x) == None
assert periodicity(sin(re(x)), x) == 2*pi
assert periodicity(sin(x)**2 + cos(x)**2, x) == S.Zero
assert periodicity(tan(x), y) == S.Zero
assert periodicity(sin(x) + I*cos(x), x) == 2*pi
assert periodicity(x - sin(2*y), y) == pi
assert periodicity(exp(x), x) is None
assert periodicity(exp(I*x), x) == 2*pi
assert periodicity(exp(I*z), z) == 2*pi
assert periodicity(exp(z), z) is None
assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi
assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi
assert periodicity(exp(sin(z)), z) == 2*pi
assert periodicity(exp(2*I*z), z) == pi
assert periodicity(exp(z + I*sin(z)), z) is None
assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi
assert periodicity(log(x), x) is None
assert periodicity(exp(x)**sin(x), x) is None
assert periodicity(sin(x)**y, y) is None
assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
assert all(periodicity(Abs(f(x)), x) == pi for f in (
cos, sin, sec, csc, tan, cot))
assert periodicity(Abs(sin(tan(x))), x) == pi
assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
assert periodicity(sin(x) > S.Half, x) is 2*pi
assert periodicity(x > 2, x) is None
assert periodicity(x**3 - x**2 + 1, x) is None
assert periodicity(Abs(x), x) is None
assert periodicity(Abs(x**2 - 1), x) is None
assert periodicity((x**2 + 4)%2, x) is None
assert periodicity((E**x)%3, x) is None
def test_periodicity_check():
x = Symbol('x')
y = Symbol('y')
assert periodicity(tan(x), x, check=True) == pi
assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
assert periodicity(sec(x), x) == 2*pi
assert periodicity(sin(x*y), x) == 2*pi/abs(y)
assert periodicity(Abs(sec(sec(x))), x) == pi
def test_lcim():
from sympy import pi
assert lcim([S(1)/2, S(2), S(3)]) == 6
assert lcim([pi/2, pi/4, pi]) == pi
assert lcim([2*pi, pi/2]) == 2*pi
assert lcim([S(1), 2*pi]) is None
assert lcim([S(2) + 2*E, E/3 + S(1)/3, S(1) + E]) == S(2) + 2*E
def test_is_convex():
assert is_convex(1/x, x, domain=Interval(0, oo)) == True
assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
assert is_convex(x**2, x, domain=Interval(0, oo)) == True
assert is_convex(log(x), x) == False
def test_stationary_points():
x, y = symbols('x y')
assert stationary_points(sin(x), x, Interval(-pi/2, pi/2)
) == {-pi/2, pi/2}
assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4)
) == EmptySet()
assert stationary_points(tan(x), x,
) == EmptySet()
assert stationary_points(sin(x)*cos(x), x, Interval(0, pi)
) == {pi/4, 3*pi/4}
assert stationary_points(sec(x), x, Interval(0, pi)
) == {0, pi}
assert stationary_points((x+3)*(x-2), x
) == FiniteSet(-S.Half)
assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5)
) == EmptySet()
assert stationary_points((x**2+3)/(x-2), x
) == {2 - sqrt(7), 2 + sqrt(7)}
assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5)
) == {2 + sqrt(7)}
assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals
) == FiniteSet(-2, 0, S(5)/4)
assert stationary_points(exp(x), x
) == EmptySet()
assert stationary_points(log(x) - x, x, S.Reals
) == {1}
assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) == {0, -pi, pi}
assert stationary_points(y, x, S.Reals
) == S.Reals
def test_maximum():
x, y = symbols('x y')
assert maximum(sin(x), x) == S.One
assert maximum(sin(x), x, Interval(0, 1)) == sin(1)
assert maximum(tan(x), x) == oo
assert maximum(tan(x), x, Interval(-pi/4, pi/4)) == S.One
assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half
assert simplify(maximum(sin(x)*cos(x), x, Interval(3*pi/8, 5*pi/8))
) == sqrt(2)/4
assert maximum((x+3)*(x-2), x) == oo
assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14)
assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == S(2)/7
assert simplify(maximum(-x**4-x**3+x**2+10, x)
) == 41*sqrt(41)/512 + S(5419)/512
assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2)
assert maximum(log(x) - x, x, S.Reals) == -S.One
assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) == S.One
assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2)
assert maximum(y, x, S.Reals) == y
raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), sin(x)))
raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), S(1)))
def test_minimum():
x, y = symbols('x y')
assert minimum(sin(x), x) == -S.One
assert minimum(sin(x), x, Interval(1, 4)) == sin(4)
assert minimum(tan(x), x) == -oo
assert minimum(tan(x), x, Interval(-pi/4, pi/4)) == -S.One
assert minimum(sin(x)*cos(x), x, S.Reals) == -S.Half
assert simplify(minimum(sin(x)*cos(x), x, Interval(3*pi/8, 5*pi/8))
) == -sqrt(2)/4
assert minimum((x+3)*(x-2), x) == -S(25)/4
assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == -S(3)/2
assert minimum(x**4-x**3+x**2+10, x) == S(10)
assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2)
assert minimum(log(x) - x, x, S.Reals) == -oo
assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) == -S.One
assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2)
assert minimum(y, x, S.Reals) == y
raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), sin(x)))
raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), S(1)))
def test_AccumBounds():
assert AccumBounds(1, 2).args == (1, 2)
assert AccumBounds(1, 2).delta == S(1)
assert AccumBounds(1, 2).mid == S(3)/2
assert AccumBounds(1, 3).is_real == True
assert AccumBounds(1, 1) == S(1)
assert AccumBounds(1, 2) + 1 == AccumBounds(2, 3)
assert 1 + AccumBounds(1, 2) == AccumBounds(2, 3)
assert AccumBounds(1, 2) + AccumBounds(2, 3) == AccumBounds(3, 5)
assert -AccumBounds(1, 2) == AccumBounds(-2, -1)
assert AccumBounds(1, 2) - 1 == AccumBounds(0, 1)
assert 1 - AccumBounds(1, 2) == AccumBounds(-1, 0)
assert AccumBounds(2, 3) - AccumBounds(1, 2) == AccumBounds(0, 2)
assert x + AccumBounds(1, 2) == Add(AccumBounds(1, 2), x)
assert a + AccumBounds(1, 2) == AccumBounds(1 + a, 2 + a)
assert AccumBounds(1, 2) - x == Add(AccumBounds(1, 2), -x)
assert AccumBounds(-oo, 1) + oo == AccumBounds(-oo, oo)
assert AccumBounds(1, oo) + oo == oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(-1, oo)) == -oo
assert AccumBounds(-oo, 1) - oo == -oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 1) - (-oo) == AccumBounds(-oo, oo)
assert (oo - AccumBounds(1, oo)) == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(1, oo)) == -oo
assert AccumBounds(1, 2)/2 == AccumBounds(S(1)/2, 1)
assert 2/AccumBounds(2, 3) == AccumBounds(S(2)/3, 1)
assert 1/AccumBounds(-1, 1) == AccumBounds(-oo, oo)
assert abs(AccumBounds(1, 2)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, -1)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, 1)) == AccumBounds(0, 2)
assert abs(AccumBounds(-1, 2)) == AccumBounds(0, 2)
def test_AccumBounds_mul():
assert AccumBounds(1, 2)*2 == AccumBounds(2, 4)
assert 2*AccumBounds(1, 2) == AccumBounds(2, 4)
assert AccumBounds(1, 2)*AccumBounds(2, 3) == AccumBounds(2, 6)
assert AccumBounds(1, 2)*0 == 0
assert AccumBounds(1, oo)*0 == AccumBounds(0, oo)
assert AccumBounds(-oo, 1)*0 == AccumBounds(-oo, 0)
assert AccumBounds(-oo, oo)*0 == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)*x == Mul(AccumBounds(1, 2), x, evaluate=False)
assert AccumBounds(0, 2)*oo == AccumBounds(0, oo)
assert AccumBounds(-2, 0)*oo == AccumBounds(-oo, 0)
assert AccumBounds(0, 2)*(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-2, 0)*(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 1)*oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 1)*(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)*oo == AccumBounds(-oo, oo)
def test_AccumBounds_div():
assert AccumBounds(-1, 3)/AccumBounds(3, 4) == AccumBounds(-S(1)/3, 1)
assert AccumBounds(-2, 4)/AccumBounds(-3, 4) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(-4, 0) == AccumBounds(S(1)/2, oo)
# these two tests can have a better answer
# after Union of AccumBounds is improved
assert AccumBounds(-3, -2)/AccumBounds(-2, 1) == AccumBounds(-oo, oo)
assert AccumBounds(2, 3)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(0, 4) == AccumBounds(-oo, -S(1)/2)
assert AccumBounds(2, 4)/AccumBounds(-3, 0) == AccumBounds(-oo, -S(2)/3)
assert AccumBounds(2, 4)/AccumBounds(0, 3) == AccumBounds(S(2)/3, oo)
assert AccumBounds(0, 1)/AccumBounds(0, 1) == AccumBounds(0, oo)
assert AccumBounds(-1, 0)/AccumBounds(0, 1) == AccumBounds(-oo, 0)
assert AccumBounds(-1, 2)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(-1, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(0, 2) == AccumBounds(S(1)/2, oo)
assert (-1)/AccumBounds(0, 2) == AccumBounds(-oo, -S(1)/2)
assert 1/AccumBounds(-oo, 0) == AccumBounds(-oo, 0)
assert 1/AccumBounds(-1, 0) == AccumBounds(-oo, -1)
assert (-2)/AccumBounds(-oo, 0) == AccumBounds(0, oo)
assert 1/AccumBounds(-oo, -1) == AccumBounds(-1, 0)
assert AccumBounds(1, 2)/a == Mul(AccumBounds(1, 2), 1/a, evaluate=False)
assert AccumBounds(1, 2)/0 == AccumBounds(1, 2)*zoo
assert AccumBounds(1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/(-oo) == AccumBounds(0, oo)
assert AccumBounds(-oo, oo)/oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)/(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(-1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/(-oo) == AccumBounds(0, oo)
def test_AccumBounds_func():
assert (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) == AccumBounds(-1, 4)
assert exp(AccumBounds(0, 1)) == AccumBounds(1, E)
assert exp(AccumBounds(-oo, oo)) == AccumBounds(0, oo)
assert log(AccumBounds(3, 6)) == AccumBounds(log(3), log(6))
def test_AccumBounds_pow():
assert AccumBounds(0, 2)**2 == AccumBounds(0, 4)
assert AccumBounds(-1, 1)**2 == AccumBounds(0, 1)
assert AccumBounds(1, 2)**2 == AccumBounds(1, 4)
assert AccumBounds(-1, 2)**3 == AccumBounds(-1, 8)
assert AccumBounds(-1, 1)**0 == 1
assert AccumBounds(1, 2)**(S(5)/2) == AccumBounds(1, 4*sqrt(2))
assert AccumBounds(-1, 2)**(S(1)/3) == AccumBounds(-1, 2**(S(1)/3))
assert AccumBounds(0, 2)**(S(1)/2) == AccumBounds(0, sqrt(2))
assert AccumBounds(-4, 2)**(S(2)/3) == AccumBounds(0, 2*2**(S(1)/3))
assert AccumBounds(-1, 5)**(S(1)/2) == AccumBounds(0, sqrt(5))
assert AccumBounds(-oo, 2)**(S(1)/2) == AccumBounds(0, sqrt(2))
assert AccumBounds(-2, 3)**(S(-1)/4) == AccumBounds(0, oo)
assert AccumBounds(1, 5)**(-2) == AccumBounds(S(1)/25, 1)
assert AccumBounds(-1, 3)**(-2) == AccumBounds(0, oo)
assert AccumBounds(0, 2)**(-2) == AccumBounds(S(1)/4, oo)
assert AccumBounds(-1, 2)**(-3) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**(-3) == AccumBounds(S(-1)/8, -S(1)/27)
assert AccumBounds(-3, -2)**(-2) == AccumBounds(S(1)/9, S(1)/4)
assert AccumBounds(0, oo)**(S(1)/2) == AccumBounds(0, oo)
assert AccumBounds(-oo, -1)**(S(1)/3) == AccumBounds(-oo, -1)
assert AccumBounds(-2, 3)**(-S(1)/3) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 0)**(-2) == AccumBounds(0, oo)
assert AccumBounds(-2, 0)**(-2) == AccumBounds(S(1)/4, oo)
assert AccumBounds(S(1)/3, S(1)/2)**oo == S(0)
assert AccumBounds(0, S(1)/2)**oo == S(0)
assert AccumBounds(S(1)/2, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(0, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(2, 3)**oo == oo
assert AccumBounds(1, 2)**oo == AccumBounds(0, oo)
assert AccumBounds(S(1)/2, 3)**oo == AccumBounds(0, oo)
assert AccumBounds(-S(1)/3, -S(1)/4)**oo == S(0)
assert AccumBounds(-1, -S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**oo == FiniteSet(-oo, oo)
assert AccumBounds(-2, -1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, -S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-S(1)/2, S(1)/2)**oo == S(0)
assert AccumBounds(-S(1)/2, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(-S(2)/3, 2)**oo == AccumBounds(0, oo)
assert AccumBounds(-1, 1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)**x == Pow(AccumBounds(1, 2), x, evaluate=False)
assert AccumBounds(2, 3)**(-oo) == S(0)
assert AccumBounds(0, 2)**(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 2)**(-oo) == AccumBounds(-oo, oo)
assert (tan(x)**sin(2*x)).subs(x, AccumBounds(0, pi/2)) == \
Pow(AccumBounds(-oo, oo), AccumBounds(0, 1), evaluate=False)
def test_comparison_AccumBounds():
assert (AccumBounds(1, 3) < 4) == S.true
assert (AccumBounds(1, 3) < -1) == S.false
assert (AccumBounds(1, 3) < 2).rel_op == '<'
assert (AccumBounds(1, 3) <= 2).rel_op == '<='
assert (AccumBounds(1, 3) > 4) == S.false
assert (AccumBounds(1, 3) > -1) == S.true
assert (AccumBounds(1, 3) > 2).rel_op == '>'
assert (AccumBounds(1, 3) >= 2).rel_op == '>='
assert (AccumBounds(1, 3) < AccumBounds(4, 6)) == S.true
assert (AccumBounds(1, 3) < AccumBounds(2, 4)).rel_op == '<'
assert (AccumBounds(1, 3) < AccumBounds(-2, 0)) == S.false
# issue 13499
assert (cos(x) > 0).subs(x, oo) == (AccumBounds(-1, 1) > 0)
def test_contains_AccumBounds():
assert (1 in AccumBounds(1, 2)) == S.true
raises(TypeError, lambda: a in AccumBounds(1, 2))
assert 0 in AccumBounds(-1, 0)
raises(TypeError, lambda:
(cos(1)**2 + sin(1)**2 - 1) in AccumBounds(-1, 0))
assert (-oo in AccumBounds(1, oo)) == S.true
assert (oo in AccumBounds(-oo, 0)) == S.true
# issue 13159
assert Mul(0, AccumBounds(-1, 1)) == Mul(AccumBounds(-1, 1), 0) == 0
import itertools
for perm in itertools.permutations([0, AccumBounds(-1, 1), x]):
assert Mul(*perm) == 0
|
514f3dfe5a50480ff579a9ce4b1bd594417ae0310cee8a1733b48147418c318c | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Or, Ne, Eq, Le, Lt, Min,
ask, refine, AlgebraicNumber, continued_fraction_iterator as cf_i,
continued_fraction_periodic as cf_p, continued_fraction_convergents as cf_c,
continued_fraction_reduce as cf_r, FiniteSet, elliptic_e, elliptic_f,
powsimp, hessian, wronskian, fibonacci, sign, Lambda, Piecewise, Subs,
residue, Derivative, logcombine, Symbol, Intersection, Union,
EmptySet, Interval, Integral, idiff, ImageSet, acos, Max, MatMul)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.utilities.pytest import XFAIL, slow, SKIP, skip, ON_TRAVIS
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import vring
from sympy.polys.fields import vfield
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from sympy.core.compatibility import range, PY3
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
a, b, c = FiniteSet(j), FiniteSet(m), FiniteSet(j, k)
d, e = FiniteSet(i), FiniteSet(j, k, l)
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Union(a, Intersection(b, Union(c, Intersection(d, FiniteSet(l)))))
# {j} U Intersection({m}, {j, k} U Intersection({i}, {l}))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 == oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == Rational(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
Rational(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]) == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
@XFAIL
def test_I1():
assert tan(7*pi/10) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) == nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
try:
# This should fail or return nan or something.
diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
except:
assert True
else:
assert False, "taking the derivative with a fraction equivalent to 0/0 should fail"
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S(1)/2, S(1)/2], [S(3)/2], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(S(4)/5) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
@XFAIL
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*2*pi/7) + I*sin(n*2*pi/7) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - 7*pi/4), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
def test_M15():
if PY3:
n = Dummy('n')
assert solveset(sin(x) - S.Half) in (Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers)))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet()
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(-S.Half + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
@XFAIL
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/e**2))**R(3/2), b + sin(1 + cos(1/e**2))**R(3/2)]
@XFAIL
def test_M28():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solve(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(-S(3)/2, S(3)/2)
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
variables = vring("k1:50", vfield("a,b,c", ZZ).to_domain())
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, variables) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(Q.is_true(E**pi > pi**E))
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(Q.is_true(x**4 - x + 1 > 0)) is True
assert ask(Q.is_true(x**4 - x + 1 > 1)) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 ))
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True
@XFAIL
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Q.is_true((x == y) & (y == z)),
Q.is_true((x >= y) & (y >= z) & (z >= x)))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O5():
assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[S(23)/19],
[S(63)/19],
[S(-47)/19]]),
Matrix([
[S(1692)/353],
[S(-1551)/706],
[S(-423)/706]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
from sympy.utilities.pytest import raises
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
M = Matrix([[x, y], [1, x*y]]).inv()
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[-x*y, y],
[ 1, -x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
assert (Matrix(sorted(MF.eigenvals())) - Matrix(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [(a, 3, [Matrix([[1],
[0],
[0],
[0],
[0]]),
Matrix([[0],
[0],
[1],
[0],
[0]]),
Matrix([[0],
[0],
[0],
[1],
[0]])]),
(1 - I, 1, [Matrix([[ 0],
[-1/(-1 + I)],
[ 0],
[ 0],
[ 1]])]),
(1 + I, 1, [Matrix([[ 0],
[-1/(-1 - I)],
[ 0],
[ 0],
[ 1]])])]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**Rational(1, 2) == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises ValueError: Matrix det == 0; not invertible
M**Rational(1,2)
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + Rational(1, 2))/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == Rational(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == Rational(1, 2)
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == Rational(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
@XFAIL
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == Rational(-9, 4)
@XFAIL
def test_U11():
assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**Rational(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**(Rational(7, 2)), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**Rational(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == -3*x/2 + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + Rational(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**Rational(1, 3)))
@XFAIL
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
# Correct result in python2.7.4, wrong result in python3.5
# https://github.com/sympy/sympy/issues/7157
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) == zoo
@XFAIL
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == S(4)/3
@XFAIL
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + S(4)/3
@XFAIL
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + S(8)/3
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, -3*pi/4, -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(2*pi/5)/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**Rational(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == S(1)/12
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == S(36)/35
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - S(17)/108 + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi) == pi*(-a + b)
def test_W23b():
# like W23 but limits are reversed
x = symbols('x', real=True, positive=True)
y = symbols('y', real=True)
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == S(46)/15
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
S(1)/12 - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - 3*pi/2) + (x - 3*pi/2)**(S(3)/2)/12 +
(x - 3*pi/2)**(S(7)/2)/160 + O((x - 3*pi/2)**4, (x, 3*pi/2)))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, sympy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S(1)/2*k)*sin(S(3)/4*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n),
{r(1): 1, r(2): 2}).simplify()
== 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) +
(-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10)
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
b32114aa76a9662a376824c877e9642a947f79a846ab6fffab85640e8121af24 | from sympy.core import symbols, Eq, pi, Catalan, Lambda, Dummy
from sympy.core.compatibility import StringIO
from sympy import erf, Integral, Symbol
from sympy import Equality
from sympy.matrices import Matrix, MatrixSymbol
from sympy.utilities.codegen import (
codegen, make_routine, CCodeGen, C89CodeGen, C99CodeGen, InputArgument,
CodeGenError, FCodeGen, CodeGenArgumentListError, OutputArgument,
InOutArgument)
from sympy.utilities.pytest import raises
from sympy.utilities.lambdify import implemented_function
#FIXME: Fails due to circular import in with core
# from sympy import codegen
def get_string(dump_fn, routines, prefix="file", header=False, empty=False):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generated to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, header, empty)
source = output.getvalue()
output.close()
return source
def test_Routine_argument_order():
a, x, y, z = symbols('a x y z')
expr = (x + y)*z
raises(CodeGenArgumentListError, lambda: make_routine("test", expr,
argument_sequence=[z, x]))
raises(CodeGenArgumentListError, lambda: make_routine("test", Eq(a,
expr), argument_sequence=[z, x, y]))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
assert [ type(arg) for arg in r.arguments ] == [
InputArgument, InputArgument, OutputArgument, InputArgument ]
r = make_routine('test', Eq(z, expr), argument_sequence=[z, x, y])
assert [ type(arg) for arg in r.arguments ] == [
InOutArgument, InputArgument, InputArgument ]
from sympy.tensor import IndexedBase, Idx
A, B = map(IndexedBase, ['A', 'B'])
m = symbols('m', integer=True)
i = Idx('i', m)
r = make_routine('test', Eq(A[i], B[i]), argument_sequence=[B, A, m])
assert [ arg.name for arg in r.arguments ] == [B.label, A.label, m]
expr = Integral(x*y*z, (x, 1, 2), (y, 1, 3))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
def test_empty_c_code():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [])
assert source == "#include \"file.h\"\n#include <math.h>\n"
def test_empty_c_code_with_comment():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [], header=True)
assert source[:82] == (
"/******************************************************************************\n *"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
" * *\n"
" * See http://www.sympy.org/ for more information. *\n"
" * *\n"
" * This file is part of 'project' *\n"
" ******************************************************************************/\n"
"#include \"file.h\"\n"
"#include <math.h>\n"
)
def test_empty_c_header():
code_gen = C99CodeGen()
source = get_string(code_gen.dump_h, [])
assert source == "#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n#endif\n"
def test_simple_c_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_c_code_reserved_words():
x, y, z = symbols('if, typedef, while')
expr = (x + y) * z
routine = make_routine("test", expr)
code_gen = C99CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double if_, double typedef_, double while_) {\n"
" double test_result;\n"
" test_result = while_*(if_ + typedef_);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_numbersymbol_c_code():
routine = make_routine("test", pi**Catalan)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test() {\n"
" double test_result;\n"
" double const Catalan = %s;\n"
" test_result = pow(M_PI, Catalan);\n"
" return test_result;\n"
"}\n"
) % Catalan.evalf(17)
assert source == expected
def test_c_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double z, double x, double y) {\n"
" double test_result;\n"
" test_result = x + y;\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_simple_c_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n"
)
assert source == expected
def test_simple_c_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
expected = [
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n")
]
result = codegen(("test", expr), "C", "file", header=False, empty=False)
assert result == expected
def test_multiple_results_c():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = C99CodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_c():
raises(ValueError, lambda: make_routine("test", []))
def test_ansi_math1_codegen():
# not included: log10
from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
sin, sinh, sqrt, tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_fabs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_ceil", ceiling(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_floor", floor(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_fabs(double x) {\n double test_fabs_result;\n test_fabs_result = fabs(x);\n return test_fabs_result;\n}\n'
'double test_acos(double x) {\n double test_acos_result;\n test_acos_result = acos(x);\n return test_acos_result;\n}\n'
'double test_asin(double x) {\n double test_asin_result;\n test_asin_result = asin(x);\n return test_asin_result;\n}\n'
'double test_atan(double x) {\n double test_atan_result;\n test_atan_result = atan(x);\n return test_atan_result;\n}\n'
'double test_ceil(double x) {\n double test_ceil_result;\n test_ceil_result = ceil(x);\n return test_ceil_result;\n}\n'
'double test_cos(double x) {\n double test_cos_result;\n test_cos_result = cos(x);\n return test_cos_result;\n}\n'
'double test_cosh(double x) {\n double test_cosh_result;\n test_cosh_result = cosh(x);\n return test_cosh_result;\n}\n'
'double test_floor(double x) {\n double test_floor_result;\n test_floor_result = floor(x);\n return test_floor_result;\n}\n'
'double test_log(double x) {\n double test_log_result;\n test_log_result = log(x);\n return test_log_result;\n}\n'
'double test_ln(double x) {\n double test_ln_result;\n test_ln_result = log(x);\n return test_ln_result;\n}\n'
'double test_sin(double x) {\n double test_sin_result;\n test_sin_result = sin(x);\n return test_sin_result;\n}\n'
'double test_sinh(double x) {\n double test_sinh_result;\n test_sinh_result = sinh(x);\n return test_sinh_result;\n}\n'
'double test_sqrt(double x) {\n double test_sqrt_result;\n test_sqrt_result = sqrt(x);\n return test_sqrt_result;\n}\n'
'double test_tan(double x) {\n double test_tan_result;\n test_tan_result = tan(x);\n return test_tan_result;\n}\n'
'double test_tanh(double x) {\n double test_tanh_result;\n test_tanh_result = tanh(x);\n return test_tanh_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_fabs(double x);\ndouble test_acos(double x);\n'
'double test_asin(double x);\ndouble test_atan(double x);\n'
'double test_ceil(double x);\ndouble test_cos(double x);\n'
'double test_cosh(double x);\ndouble test_floor(double x);\n'
'double test_log(double x);\ndouble test_ln(double x);\n'
'double test_sin(double x);\ndouble test_sinh(double x);\n'
'double test_sqrt(double x);\ndouble test_tan(double x);\n'
'double test_tanh(double x);\n#endif\n'
)
def test_ansi_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_atan2(double x, double y) {\n double test_atan2_result;\n test_atan2_result = atan2(x, y);\n return test_atan2_result;\n}\n'
'double test_pow(double x, double y) {\n double test_pow_result;\n test_pow_result = pow(x, y);\n return test_pow_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_atan2(double x, double y);\n'
'double test_pow(double x, double y);\n'
'#endif\n'
)
def test_complicated_codegen():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test1(double x, double y, double z) {\n'
' double test1_result;\n'
' test1_result = '
'pow(sin(x), 7) + '
'7*pow(sin(x), 6)*cos(y) + '
'7*pow(sin(x), 6)*tan(z) + '
'21*pow(sin(x), 5)*pow(cos(y), 2) + '
'42*pow(sin(x), 5)*cos(y)*tan(z) + '
'21*pow(sin(x), 5)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(cos(y), 3) + '
'105*pow(sin(x), 4)*pow(cos(y), 2)*tan(z) + '
'105*pow(sin(x), 4)*cos(y)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(cos(y), 4) + '
'140*pow(sin(x), 3)*pow(cos(y), 3)*tan(z) + '
'210*pow(sin(x), 3)*pow(cos(y), 2)*pow(tan(z), 2) + '
'140*pow(sin(x), 3)*cos(y)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(cos(y), 5) + '
'105*pow(sin(x), 2)*pow(cos(y), 4)*tan(z) + '
'210*pow(sin(x), 2)*pow(cos(y), 3)*pow(tan(z), 2) + '
'210*pow(sin(x), 2)*pow(cos(y), 2)*pow(tan(z), 3) + '
'105*pow(sin(x), 2)*cos(y)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(tan(z), 5) + '
'7*sin(x)*pow(cos(y), 6) + '
'42*sin(x)*pow(cos(y), 5)*tan(z) + '
'105*sin(x)*pow(cos(y), 4)*pow(tan(z), 2) + '
'140*sin(x)*pow(cos(y), 3)*pow(tan(z), 3) + '
'105*sin(x)*pow(cos(y), 2)*pow(tan(z), 4) + '
'42*sin(x)*cos(y)*pow(tan(z), 5) + '
'7*sin(x)*pow(tan(z), 6) + '
'pow(cos(y), 7) + '
'7*pow(cos(y), 6)*tan(z) + '
'21*pow(cos(y), 5)*pow(tan(z), 2) + '
'35*pow(cos(y), 4)*pow(tan(z), 3) + '
'35*pow(cos(y), 3)*pow(tan(z), 4) + '
'21*pow(cos(y), 2)*pow(tan(z), 5) + '
'7*cos(y)*pow(tan(z), 6) + '
'pow(tan(z), 7);\n'
' return test1_result;\n'
'}\n'
'double test2(double x, double y, double z) {\n'
' double test2_result;\n'
' test2_result = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n'
' return test2_result;\n'
'}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'double test1(double x, double y, double z);\n'
'double test2(double x, double y, double z);\n'
'#endif\n'
)
def test_loops_c():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y) {\n'
' for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
)
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*n + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*n)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*n + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*n)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y);\n'
'#endif\n'
)
def test_dummy_loops_c():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void test_dummies(int m_%(mno)i, double *x, double *y) {\n'
' for (int i_%(ino)i=0; i_%(ino)i<m_%(mno)i; i_%(ino)i++){\n'
' y[i_%(ino)i] = x[i_%(ino)i];\n'
' }\n'
'}\n'
) % {'ino': i.label.dummy_index, 'mno': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c89 = C89CodeGen()
c99 = C99CodeGen()
code = get_string(c99.dump_c, [r])
assert code == expected
with raises(NotImplementedError):
get_string(c89.dump_c, [r])
def test_partial_loops_c():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y) {\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
) % {'upperi': m - 4, 'rhs': '%(rhs)s'}
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*p + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*p)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*p + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*p)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y);\n'
'#endif\n'
)
def test_output_arg_c():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double x, double *y) {\n'
' (*y) = sin(x);\n'
' double foo_result;\n'
' foo_result = cos(x);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_output_arg_c_reserved_words():
from sympy import sin, cos, Equality
x, y, z = symbols("if, while, z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double if_, double *while_) {\n'
' (*while_) = sin(if_);\n'
' double foo_result;\n'
' foo_result = cos(if_);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_ccode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double x, double *C, double z, double y, double *A, double *B) {\n'
' (*C) = z*(x + y);\n'
' A[0] = 1;\n'
' A[1] = 2;\n'
' A[2] = x;\n'
' (*B) = 2*x;\n'
'}\n'
)
result = codegen(name_expr, "c", "test", header=False, empty=False,
argument_sequence=(x, C, z, y, A, B))
source = result[0][1]
assert source == expected
def test_ccode_matrixsymbol_slice():
A = MatrixSymbol('A', 5, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 5, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "c99", "test", header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double *A, double *B, double *C, double *D) {\n'
' B[0] = A[0];\n'
' B[1] = A[1];\n'
' B[2] = A[2];\n'
' C[0] = A[3];\n'
' C[1] = A[4];\n'
' C[2] = A[5];\n'
' D[0] = A[2];\n'
' D[1] = A[5];\n'
' D[2] = A[8];\n'
' D[3] = A[11];\n'
' D[4] = A[14];\n'
'}\n'
)
assert source == expected
def test_ccode_cse():
a, b, c, d = symbols('a b c d')
e = MatrixSymbol('e', 3, 1)
name_expr = ("test", [Equality(e, Matrix([[a*b], [a*b + c*d], [a*b*c*d]]))])
generator = CCodeGen(cse=True)
result = codegen(name_expr, code_gen=generator, header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double a, double b, double c, double d, double *e) {\n'
' const double x0 = a*b;\n'
' const double x1 = c*d;\n'
' e[0] = x0;\n'
' e[1] = x0 + x1;\n'
' e[2] = x0*x1;\n'
'}\n'
)
assert source == expected
def test_empty_f_code():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [])
assert source == ""
def test_empty_f_code_with_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [], header=True)
assert source[:82] == (
"!******************************************************************************\n!*"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
"!* *\n"
"!* See http://www.sympy.org/ for more information. *\n"
"!* *\n"
"!* This file is part of 'project' *\n"
"!******************************************************************************\n"
)
def test_empty_f_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [])
assert source == ""
def test_simple_f_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"
)
assert source == expected
def test_numbersymbol_f_code():
routine = make_routine("test", pi**Catalan)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test()\n"
"implicit none\n"
"REAL*8, parameter :: Catalan = %sd0\n"
"REAL*8, parameter :: pi = %sd0\n"
"test = pi**Catalan\n"
"end function\n"
) % (Catalan.evalf(17), pi.evalf(17))
assert source == expected
def test_erf_f_code():
x = symbols('x')
routine = make_routine("test", erf(x) - erf(-2 * x))
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"test = erf(x) + erf(2.0d0*x)\n"
"end function\n"
)
assert source == expected, source
def test_f_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(z, x, y)\n"
"implicit none\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n"
)
assert source == expected
def test_simple_f_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n"
)
assert source == expected
def test_simple_f_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
result = codegen(
("test", expr), "F95", "file", header=False, empty=False)
expected = [
("file.f90",
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"),
("file.h",
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n")
]
assert result == expected
def test_multiple_results_f():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = FCodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_f():
raises(ValueError, lambda: make_routine("test", []))
def test_intrinsic_math_codegen():
# not included: log10
from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
sin, sinh, sqrt, tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_abs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_abs = abs(x)\n'
'end function\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_acos = acos(x)\n'
'end function\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_asin = asin(x)\n'
'end function\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_atan = atan(x)\n'
'end function\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cos = cos(x)\n'
'end function\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cosh = cosh(x)\n'
'end function\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_log = log(x)\n'
'end function\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_ln = log(x)\n'
'end function\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sin = sin(x)\n'
'end function\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sinh = sinh(x)\n'
'end function\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sqrt = sqrt(x)\n'
'end function\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tan = tan(x)\n'
'end function\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tanh = tanh(x)\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_intrinsic_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_atan2 = atan2(x, y)\n'
'end function\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_pow = x**y\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_complicated_codegen_f95():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n'
' **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n'
' **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n'
' 105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n'
' x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n'
' cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n'
' **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n'
' tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n'
' **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n'
' (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n'
' sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n'
' *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n'
' x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n'
' z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n'
' y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n'
'end function\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_loops():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n,m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' y(i) = 0\n'
'end do\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_dummy_loops_f95():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'subroutine test_dummies(m_%(mcount)i, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m_%(mcount)i\n'
'REAL*8, intent(in), dimension(1:m_%(mcount)i) :: x\n'
'REAL*8, intent(out), dimension(1:m_%(mcount)i) :: y\n'
'INTEGER*4 :: i_%(icount)i\n'
'do i_%(icount)i = 1, m_%(mcount)i\n'
' y(i_%(icount)i) = x(i_%(icount)i)\n'
'end do\n'
'end subroutine\n'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c = FCodeGen()
code = get_string(c.dump_f95, [r])
assert code == expected
def test_loops_InOut():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
i, j, n, m = symbols('i,j,n,m', integer=True)
A, x, y = symbols('A,x,y')
A = IndexedBase(A)[Idx(i, m), Idx(j, n)]
x = IndexedBase(x)[Idx(j, n)]
y = IndexedBase(y)[Idx(i, m)]
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y, y + A*x)), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert (code == expected % {'rhs': 'A(i, j)*x(j)'} or
code == expected % {'rhs': 'x(j)*A(i, j)'})
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_partial_loops_f():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
expected = (
'subroutine matrix_vector(A, m, n, o, p, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'INTEGER*4, intent(in) :: o\n'
'INTEGER*4, intent(in) :: p\n'
'REAL*8, intent(in), dimension(1:m, 1:p) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:%(iup-ilow)s) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = %(ilow)s, %(iup)s\n'
' y(i) = 0\n'
'end do\n'
'do i = %(ilow)s, %(iup)s\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
) % {
'rhs': '%(rhs)s',
'iup': str(m - 4),
'ilow': str(1 + o),
'iup-ilow': str(m - 4 - o)
}
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
def test_output_arg_f():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = FCodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.f90"
assert result[0][1] == (
'REAL*8 function foo(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(out) :: y\n'
'y = sin(x)\n'
'foo = cos(x)\n'
'end function\n'
)
def test_inline_function():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
p = FCodeGen()
func = implemented_function('func', Lambda(n, n*(n + 1)))
routine = make_routine('test_inline', Eq(y[i], func(x[i])))
code = get_string(p.dump_f95, [routine])
expected = (
'subroutine test_inline(m, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'REAL*8, intent(in), dimension(1:m) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'do i = 1, m\n'
' y(i) = %s*%s\n'
'end do\n'
'end subroutine\n'
)
args = ('x(i)', '(x(i) + 1)')
assert code == expected % args or\
code == expected % args[::-1]
def test_f_code_call_signature_wrap():
# Issue #7934
x = symbols('x:20')
expr = 0
for sym in x:
expr += sym
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = """\
REAL*8 function test(x0, x1, x10, x11, x12, x13, x14, x15, x16, x17, x18, &
x19, x2, x3, x4, x5, x6, x7, x8, x9)
implicit none
REAL*8, intent(in) :: x0
REAL*8, intent(in) :: x1
REAL*8, intent(in) :: x10
REAL*8, intent(in) :: x11
REAL*8, intent(in) :: x12
REAL*8, intent(in) :: x13
REAL*8, intent(in) :: x14
REAL*8, intent(in) :: x15
REAL*8, intent(in) :: x16
REAL*8, intent(in) :: x17
REAL*8, intent(in) :: x18
REAL*8, intent(in) :: x19
REAL*8, intent(in) :: x2
REAL*8, intent(in) :: x3
REAL*8, intent(in) :: x4
REAL*8, intent(in) :: x5
REAL*8, intent(in) :: x6
REAL*8, intent(in) :: x7
REAL*8, intent(in) :: x8
REAL*8, intent(in) :: x9
test = x0 + x1 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + &
x19 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
end function
"""
assert source == expected
def test_check_case():
x, X = symbols('x,X')
raises(CodeGenError, lambda: codegen(('test', x*X), 'f95', 'prefix'))
def test_check_case_false_positive():
# The upper case/lower case exception should not be triggered by SymPy
# objects that differ only because of assumptions. (It may be useful to
# have a check for that as well, but here we only want to test against
# false positives with respect to case checking.)
x1 = symbols('x')
x2 = symbols('x', my_assumption=True)
try:
codegen(('test', x1*x2), 'f95', 'prefix')
except CodeGenError as e:
if e.args[0].startswith("Fortran ignores case."):
raise AssertionError("This exception should not be raised!")
def test_c_fortran_omit_routine_name():
x, y = symbols("x,y")
name_expr = [("foo", 2*x)]
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", x*y)
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", Matrix([[x, y], [x+y, x-y]]))
result = codegen(name_expr, "C89", header=False, empty=False)
expresult = codegen(name_expr, "C89", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
def test_fcode_matrix_output():
x, y, z = symbols('x,y,z')
e1 = x + y
e2 = Matrix([[x, y], [z, 16]])
name_expr = ("test", (e1, e2))
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"REAL*8 function test(x, y, z, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(out), dimension(1:2, 1:2) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = x\n"
"out_%(hash)s(2, 1) = z\n"
"out_%(hash)s(1, 2) = y\n"
"out_%(hash)s(2, 2) = 16\n"
"test = x + y\n"
"end function\n"
)
# look for the magic number
a = source.splitlines()[5]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_fcode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "f95", "test", header=False, empty=False,
argument_sequence=(x, z, y, C, A, B))
source = result[0][1]
expected = (
"subroutine test(x, z, y, C, A, B)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(out) :: C\n"
"REAL*8, intent(out) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: A\n"
"C = z*(x + y)\n"
"A(1, 1) = 1\n"
"A(1, 2) = 2\n"
"A(1, 3) = x\n"
"B = 2*x\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 2, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, B, C, D)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: C\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: D\n"
"B(1, 1) = A(1, 1)\n"
"B(1, 2) = A(1, 2)\n"
"B(1, 3) = A(1, 3)\n"
"C(1, 1) = A(2, 1)\n"
"C(1, 2) = A(2, 2)\n"
"C(1, 3) = A(2, 3)\n"
"D(1, 1) = A(1, 3)\n"
"D(2, 1) = A(2, 3)\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice_autoname():
# see issue #8093
A = MatrixSymbol('A', 2, 3)
name_expr = ("test", A[:, 1])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = A(1, 2)\n"
"out_%(hash)s(2, 1) = A(2, 2)\n"
"end subroutine\n"
)
# look for the magic number
a = source.splitlines()[3]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_global_vars():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "F95", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"REAL*8 function f(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"f = x*y\n"
"end function\n"
)
assert source == expected
expected = (
'#include "f.h"\n'
'#include <math.h>\n'
'double f(double x, double y) {\n'
' double f_result;\n'
' f_result = x*y + z;\n'
' return f_result;\n'
'}\n'
)
result = codegen(('f', x*y+z), "C", header=False, empty=False,
global_vars=(z, t))
source = result[0][1]
assert source == expected
def test_custom_codegen():
from sympy.printing.ccode import C99CodePrinter
from sympy.functions.elementary.exponential import exp
printer = C99CodePrinter(settings={'user_functions': {'exp': 'fastexp'}})
x, y = symbols('x y')
expr = exp(x + y)
# replace math.h with a different header
gen = C99CodeGen(printer=printer,
preprocessor_statements=['#include "fastexp.h"'])
expected = (
'#include "expr.h"\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
# use both math.h and an external header
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "fastexp.h"')
expected = (
'#include "expr.h"\n'
'#include <math.h>\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
def test_c_with_printer():
#issue 13586
from sympy.printing.ccode import C99CodePrinter
class CustomPrinter(C99CodePrinter):
def _print_Pow(self, expr):
return "fastpow({}, {})".format(self._print(expr.base),
self._print(expr.exp))
x = symbols('x')
expr = x**3
expected =[
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x) {\n"
" double test_result;\n"
" test_result = fastpow(x, 3);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x);\n"
"#endif\n")
]
result = codegen(("test", expr), "C","file", header=False, empty=False, printer = CustomPrinter())
assert result == expected
def test_fcode_complex():
import sympy.utilities.codegen
sympy.utilities.codegen.COMPLEX_ALLOWED = True
x = Symbol('x', real=True)
y = Symbol('y',real=True)
result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False)
source = (result[0][1])
expected = (
"REAL*8 function test(x, y)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n")
assert source == expected
x = Symbol('x')
y = Symbol('y',real=True)
result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False)
source = (result[0][1])
expected = (
"COMPLEX*16 function test(x, y)\n"
"implicit none\n"
"COMPLEX*16, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n"
)
assert source==expected
sympy.utilities.codegen.COMPLEX_ALLOWED = False
|
cc5e17b5314894afa3dbea848194a6f2189624a0e3165ce615054b485826a457 | from __future__ import print_function, division
import itertools
from sympy.core import S
from sympy.core.compatibility import range, string_types
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.relational import Equality
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import xstr, hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], string_types):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
self.emptyPrinter = lambda x: prettyForm(xstr(x))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Complexes = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(u' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
pretty_upper = self._print(lim[2])
pretty_lower = self._print(Equality(lim[0], lim[1]))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
if len(lim) == 3:
prettyUpper = self._print(lim[2])
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 2:
prettyUpper = self._print("")
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 1:
prettyUpper = self._print("")
prettyLower = self._print(lim[0])
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
_print_ImmutableMatrix = _print_MatrixBase
_print_Matrix = _print_MatrixBase
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = u"\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
prettyFunc = self._print(m.parent)
def ppslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice),
ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm(u'\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append(u"" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append(u"(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(u" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == u'\N{right parenthesis extension}':
tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}',
u'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}',
u'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm(u'\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', '):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name:
func_name = func.__name__
prettyFunc = self._print(Symbol(func_name))
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg, "..."]
return self._helper_print_function(func, args, delimiter="")
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_Lambda(self, e):
vars, expr = e.args
if self._use_unicode:
arrow = u" \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(vars) == 1:
var_form = self._print(vars[0])
else:
var_form = self._print(tuple(vars))
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
pform = self._print(Mul(-coeff, *other, evaluate=False))
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) > 1 and not has_variety(p.sets):
from sympy import Pow
return self._print(Pow(p.sets[0], len(p.sets), evaluate=False))
else:
prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = ts.lamda.variables
expr = self._print(ts.lamda.expr)
bar = self._print("|")
sets = [self._print(i) for i in ts.args[1:]]
if len(sets) == 1:
return self._print_seq((expr, bar, variables[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(variables, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = u"\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print_seq(cond, "(", ")")
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = u" \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
try:
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
# XXX: Under the tests from #15686 this raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm(u"\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_euler(self, e):
pform = prettyForm("E")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_catalan(self, e):
pform = prettyForm("C")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_bernoulli(self, e):
pform = prettyForm("B")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
_print_bell = _print_bernoulli
def _print_lucas(self, e):
pform = prettyForm("L")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_fibonacci(self, e):
pform = prettyForm("F")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_tribonacci(self, e):
pform = prettyForm("T")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right((prettyForm(','))))
pform = prettyForm(*pform.right((self._print(e.args[1]))))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index]
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print(u"\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, wrap_line=True, num_columns=None, use_unicode=None,
full_prec="auto", order=None, use_unicode_sqrt_char=True,
root_notation = True, mat_symbol_style="plain", imaginary_unit="i"):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, wrap_line=wrap_line, num_columns=num_columns,
use_unicode=use_unicode, full_prec=full_prec, order=order,
use_unicode_sqrt_char=use_unicode_sqrt_char,
root_notation=root_notation, mat_symbol_style=mat_symbol_style,
imaginary_unit=imaginary_unit))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
c8549c9a59007f46fcb174bfc48c062ad6b164016d68602d9bbed571dcf67225 | from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, log, MatrixSymbol)
from sympy.core import Expr, Mul
from sympy.physics.units import second, joule
from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex
from sympy.geometry import Point, Circle
from sympy.utilities.pytest import raises
from sympy.core.compatibility import range
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
# TODO test other Geometry entities
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert str(p) == s
Permutation.print_cyclic = False
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert str(p) == s
Permutation.print_cyclic = True
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert str(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr(set([1])) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr(set([1, 2, 3])) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == '{1, 2, 3, ..., 48, 49, 50}'
assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \
"2*(X + Y)"
def test_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]'
assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "Xor(x, y)"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Reals \\ Naturals'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-(A + B) + A*B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
x = Symbol('x')
e = -3**x*exp(-3)*log(3**x*exp(-3)/factorial(x))/factorial(x)
assert str(Integral(e, (x, -oo, oo)).doit()) == '-(Integral(-3*3**x/factorial(x), (x, -oo, oo))' \
' + Integral(3**x*log(3**x/factorial(x))/factorial(x), (x, -oo, oo)))*exp(-3)'
|
c2f05c69f3d8186854d0d292bd47461d2200b95ad8c239f39931b7df51a76489 | from sympy import (
Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Union, Ynm, Znm, arg, asin, acsc, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, Complement,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SymmetricDifference, SeqPer, SeqFormula,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, Intersection)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray)
from sympy.tensor.array import tensorproduct
from sympy.utilities.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import degree, radian, kg, meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.core.compatibility import range
from sympy.combinatorics.permutations import Cycle, Permutation
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, a, b, c = symbols('x y z t a b c')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = set(l.capitalize() for l in greek_letters_set)
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r'\zeta\left(x\right)'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == \
r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == \
r'\left\{-2, -3, \ldots\right\}'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex(line * bigline * fset) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \
r'X\left[:5, 1:9:2\right]'
assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \
r'X\left[5, :5:2\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ {-1}}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ {-1}}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ {-1}}\right)^{-1}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"\sin\left({X^{T} X}\ldots\right)"
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1)) == r"\mathbb{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4)) == r"\mathbb{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1)) == r"\mathbb{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.One/2, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_7117():
# See also issue #5031 (hence the evaluate=False in these).
e = Eq(x + 1, 2*x)
q = Mul(2, e, evaluate=False)
assert latex(q) == r"2 \left(x + 1 = 2 x\right)"
q = Add(6, e, evaluate=False)
assert latex(q) == r"6 + \left(x + 1 = 2 x\right)"
q = Pow(e, 2, evaluate=False)
assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_14041():
import sympy.physics.mechanics as me
A_frame = me.ReferenceFrame('A')
thetad, phid = me.dynamicsymbols('theta, phi', 1)
L = Symbol('L')
assert latex(L*(phid + thetad)**2*A_frame.x) == \
r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid + thetad)**2*A_frame.x) == \
r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid*thetad)**a*A_frame.x) == \
r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
K = tensorhead("K", [L, L, L, L], [[1], [1], [1], [1]])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
def test_issue_15353():
from sympy import ConditionSet, Tuple, FiniteSet, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(Tuple(x, a), FiniteSet(sin(a*x), cos(a*x)), S.Complexes)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in '\
r'\mathbb{C} \wedge \left\{\sin{\left(a x \right)}, \cos{\left(a x '\
r'\right)}\right\} \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A = MatrixSymbol("A_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}"
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_DiffGeomMethods():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p)
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{rect_{0}}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_ptinting():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
|
7c1be44a06ac83a9a66fc7339a515a2b4ed8891cb219910227f0914c610eb664 | # coding=utf-8
from sympy.printing.tree import tree
def test_print_tree_MatAdd():
from sympy.matrices.expressions import MatrixSymbol, MatAdd
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
test_str = [
'MatAdd: A + B\n',
'algebraic: False\n',
'commutative: False\n',
'complex: False\n',
'composite: False\n',
'even: False\n',
'imaginary: False\n',
'integer: False\n',
'irrational: False\n',
'negative: False\n',
'noninteger: False\n',
'nonnegative: False\n',
'nonpositive: False\n',
'nonzero: False\n',
'odd: False\n',
'positive: False\n',
'prime: False\n',
'rational: False\n',
'real: False\n',
'transcendental: False\n',
'zero: False\n',
'+-MatrixSymbol: A\n',
'| algebraic: False\n',
'| commutative: False\n',
'| complex: False\n',
'| composite: False\n',
'| even: False\n',
'| imaginary: False\n',
'| integer: False\n',
'| irrational: False\n',
'| negative: False\n',
'| noninteger: False\n',
'| nonnegative: False\n',
'| nonpositive: False\n',
'| nonzero: False\n',
'| odd: False\n',
'| positive: False\n',
'| prime: False\n',
'| rational: False\n',
'| real: False\n',
'| transcendental: False\n',
'| zero: False\n',
'| +-Symbol: A\n',
'| | commutative: True\n',
'| +-Integer: 3\n',
'| | algebraic: True\n',
'| | commutative: True\n',
'| | complex: True\n',
'| | finite: True\n',
'| | hermitian: True\n',
'| | imaginary: False\n',
'| | infinite: False\n',
'| | integer: True\n',
'| | irrational: False\n',
'| | noninteger: False\n',
'| | rational: True\n',
'| | real: True\n',
'| | transcendental: False\n',
'| +-Integer: 3\n',
'| algebraic: True\n',
'| commutative: True\n',
'| complex: True\n',
'| finite: True\n',
'| hermitian: True\n',
'| imaginary: False\n',
'| infinite: False\n',
'| integer: True\n',
'| irrational: False\n',
'| noninteger: False\n',
'| rational: True\n',
'| real: True\n',
'| transcendental: False\n',
'+-MatrixSymbol: B\n',
' algebraic: False\n',
' commutative: False\n',
' complex: False\n',
' composite: False\n',
' even: False\n',
' imaginary: False\n',
' integer: False\n',
' irrational: False\n',
' negative: False\n',
' noninteger: False\n',
' nonnegative: False\n',
' nonpositive: False\n',
' nonzero: False\n',
' odd: False\n',
' positive: False\n',
' prime: False\n',
' rational: False\n',
' real: False\n',
' transcendental: False\n',
' zero: False\n',
' +-Symbol: B\n',
' | commutative: True\n',
' +-Integer: 3\n',
' | algebraic: True\n',
' | commutative: True\n',
' | complex: True\n',
' | finite: True\n',
' | hermitian: True\n',
' | imaginary: False\n',
' | infinite: False\n',
' | integer: True\n',
' | irrational: False\n',
' | noninteger: False\n',
' | rational: True\n',
' | real: True\n',
' | transcendental: False\n',
' +-Integer: 3\n',
' algebraic: True\n',
' commutative: True\n',
' complex: True\n',
' finite: True\n',
' hermitian: True\n',
' imaginary: False\n',
' infinite: False\n',
' integer: True\n',
' irrational: False\n',
' noninteger: False\n',
' rational: True\n',
' real: True\n',
' transcendental: False\n'
]
assert tree(A + B) == "".join(test_str)
|
4341526bacf0038628c4fddd886a12cd27b3d6ce0e11564dc94efdccf277ec06 | from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \
tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \
pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \
S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \
Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \
expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \
laguerre, assoc_laguerre, hermite
from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \
fresnelc, fresnels, Heaviside
from sympy.calculus.util import AccumBounds
from sympy.core.containers import Tuple
from sympy.functions.combinatorial.factorials import factorial, factorial2, \
binomial
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci, catalan
from sympy.functions.elementary.complexes import re, im, Abs, conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta
from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not
from sympy.matrices.expressions.determinant import Determinant
from sympy.printing.mathml import mathml, MathMLContentPrinter, \
MathMLPresentationPrinter, MathMLPrinter
from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \
SymmetricDifference, Interval, EmptySet
from sympy.stats.rv import RandomSymbol
from sympy.utilities.pytest import raises
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
x, y, z, a, b, c, d, e, n = symbols('x:z a:e n')
mp = MathMLContentPrinter()
mpp = MathMLPresentationPrinter()
def test_mathml_printer():
m = MathMLPrinter()
assert m.doprint(1+x) == mp.doprint(1+x)
def test_content_printmethod():
assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>'
def test_content_mathml_core():
mml_1 = mp._print(1 + x)
assert mml_1.nodeName == 'apply'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName == 'plus'
assert nodes[0].hasChildNodes() is False
assert nodes[0].nodeValue is None
assert nodes[1].nodeName in ['cn', 'ci']
if nodes[1].nodeName == 'cn':
assert nodes[1].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(x**2)
assert mml_2.nodeName == 'apply'
nodes = mml_2.childNodes
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '2'
mml_3 = mp._print(2*x)
assert mml_3.nodeName == 'apply'
nodes = mml_3.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '2'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'apply'
nodes = mml.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '1.0'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_content_mathml_functions():
mml_1 = mp._print(sin(x))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'sin'
assert mml_1.childNodes[1].nodeName == 'ci'
mml_2 = mp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'diff'
assert mml_2.childNodes[1].nodeName == 'bvar'
assert mml_2.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
mml_3 = mp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'partialdiff'
assert mml_3.childNodes[1].nodeName == 'bvar'
assert mml_3.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
def test_content_mathml_limits():
# XXX No unevaluated limits
lim_fun = sin(x)/x
mml_1 = mp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'limit'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml()
def test_content_mathml_integrals():
integrand = x
mml_1 = mp._print(Integral(integrand, (x, 0, 1)))
assert mml_1.childNodes[0].nodeName == 'int'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml()
def test_content_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mp._print(A)
assert mll_1.childNodes[0].nodeName == 'matrixrow'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[1].nodeName == 'matrixrow'
assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[2].nodeName == 'matrixrow'
assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mp._print(B)
assert mll_2.childNodes[0].nodeName == 'matrixrow'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[1].nodeName == 'matrixrow'
assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[2].nodeName == 'matrixrow'
assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9'
def test_content_mathml_sums():
summand = x
mml_1 = mp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'sum'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml()
def test_content_mathml_tuples():
mml_1 = mp._print([2])
assert mml_1.nodeName == 'list'
assert mml_1.childNodes[0].nodeName == 'cn'
assert len(mml_1.childNodes) == 1
mml_2 = mp._print([2, Integer(1)])
assert mml_2.nodeName == 'list'
assert mml_2.childNodes[0].nodeName == 'cn'
assert mml_2.childNodes[1].nodeName == 'cn'
assert len(mml_2.childNodes) == 2
def test_content_mathml_add():
mml = mp._print(x**5 - x**4 + x)
assert mml.childNodes[0].nodeName == 'plus'
assert mml.childNodes[1].childNodes[0].nodeName == 'minus'
assert mml.childNodes[1].childNodes[1].nodeName == 'apply'
def test_content_mathml_Rational():
mml_1 = mp._print(Rational(1, 1))
"""should just return a number"""
assert mml_1.nodeName == 'cn'
mml_2 = mp._print(Rational(2, 5))
assert mml_2.childNodes[0].nodeName == 'divide'
def test_content_mathml_constants():
mml = mp._print(I)
assert mml.nodeName == 'imaginaryi'
mml = mp._print(E)
assert mml.nodeName == 'exponentiale'
mml = mp._print(oo)
assert mml.nodeName == 'infinity'
mml = mp._print(pi)
assert mml.nodeName == 'pi'
assert mathml(GoldenRatio) == '<cn>φ</cn>'
mml = mathml(EulerGamma)
assert mml == '<eulergamma/>'
def test_content_mathml_trig():
mml = mp._print(sin(x))
assert mml.childNodes[0].nodeName == 'sin'
mml = mp._print(cos(x))
assert mml.childNodes[0].nodeName == 'cos'
mml = mp._print(tan(x))
assert mml.childNodes[0].nodeName == 'tan'
mml = mp._print(asin(x))
assert mml.childNodes[0].nodeName == 'arcsin'
mml = mp._print(acos(x))
assert mml.childNodes[0].nodeName == 'arccos'
mml = mp._print(atan(x))
assert mml.childNodes[0].nodeName == 'arctan'
mml = mp._print(sinh(x))
assert mml.childNodes[0].nodeName == 'sinh'
mml = mp._print(cosh(x))
assert mml.childNodes[0].nodeName == 'cosh'
mml = mp._print(tanh(x))
assert mml.childNodes[0].nodeName == 'tanh'
mml = mp._print(asinh(x))
assert mml.childNodes[0].nodeName == 'arcsinh'
mml = mp._print(atanh(x))
assert mml.childNodes[0].nodeName == 'arctanh'
mml = mp._print(acosh(x))
assert mml.childNodes[0].nodeName == 'arccosh'
def test_content_mathml_relational():
mml_1 = mp._print(Eq(x, 1))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'eq'
assert mml_1.childNodes[1].nodeName == 'ci'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[2].nodeName == 'cn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(Ne(1, x))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'neq'
assert mml_2.childNodes[1].nodeName == 'cn'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[2].nodeName == 'ci'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mp._print(Ge(1, x))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'geq'
assert mml_3.childNodes[1].nodeName == 'cn'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[2].nodeName == 'ci'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mp._print(Lt(1, x))
assert mml_4.nodeName == 'apply'
assert mml_4.childNodes[0].nodeName == 'lt'
assert mml_4.childNodes[1].nodeName == 'cn'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[2].nodeName == 'ci'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_content_symbol():
mml = mp._print(x)
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mp._print(Symbol("x^2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x__2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x^3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x__3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x_2_a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x^2^a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x__2__a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
def test_content_mathml_greek():
mml = mp._print(Symbol('alpha'))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>'
assert mp.doprint(Symbol('beta')) == '<ci>β</ci>'
assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>'
assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>'
assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>'
assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>'
assert mp.doprint(Symbol('eta')) == '<ci>η</ci>'
assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>'
assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>'
assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>'
assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>'
assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>'
assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>'
assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>'
assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>'
assert mp.doprint(Symbol('pi')) == '<ci>π</ci>'
assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>'
assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>'
assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>'
assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>'
assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>'
assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>'
assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>'
assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>'
assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>'
assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>'
assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>'
assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>'
assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>'
assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>'
assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>'
assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>'
assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>'
assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>'
assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>'
assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>'
assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>'
assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>'
assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>'
assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>'
assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>'
assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>'
assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>'
assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>'
assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>'
assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>'
assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>'
assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>'
assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>'
def test_content_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLContentPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4'
mp = MathMLContentPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3'
def test_content_settings():
raises(TypeError, lambda: mathml(x, method="garbage"))
def test_presentation_printmethod():
assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>'
assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>'
assert mpp.doprint(x**-2) == \
'<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>'
assert mpp.doprint(2*x) == \
'<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>'
def test_presentation_mathml_core():
mml_1 = mpp._print(1 + x)
assert mml_1.nodeName == 'mrow'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName in ['mi', 'mn']
assert nodes[1].nodeName == 'mo'
if nodes[0].nodeName == 'mn':
assert nodes[0].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(x**2)
assert mml_2.nodeName == 'msup'
nodes = mml_2.childNodes
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[1].childNodes[0].nodeValue == '2'
mml_3 = mpp._print(2*x)
assert mml_3.nodeName == 'mrow'
nodes = mml_3.childNodes
assert nodes[0].childNodes[0].nodeValue == '2'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mpp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'mrow'
nodes = mml.childNodes
assert nodes[0].childNodes[0].nodeValue == '1.0'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_functions():
mml_1 = mpp._print(sin(x))
assert mml_1.childNodes[0].childNodes[0
].nodeValue == 'sin'
assert mml_1.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'x'
mml_2 = mpp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'mrow'
assert mml_2.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
assert mml_2.childNodes[1].childNodes[1
].nodeName == 'mfenced'
assert mml_2.childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.childNodes[0].nodeName == 'mfrac'
assert mml_3.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '∂'
assert mml_3.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'cos'
def test_print_derivative():
f = Function('f')
d = Derivative(f(x, y, z), x, z, x, z, z, y)
assert mathml(d) == \
'<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>'
assert mathml(d, printer='presentation') == \
'<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>'
def test_presentation_mathml_limits():
lim_fun = sin(x)/x
mml_1 = mpp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'munder'
assert mml_1.childNodes[0].childNodes[0
].childNodes[0].nodeValue == 'lim'
assert mml_1.childNodes[0].childNodes[1
].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml_1.childNodes[0].childNodes[1
].childNodes[1].childNodes[0
].nodeValue == '→'
assert mml_1.childNodes[0].childNodes[1
].childNodes[2].childNodes[0
].nodeValue == '0'
def test_presentation_mathml_integrals():
assert mpp.doprint(Integral(x, (x, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(log(x), x)) == \
'<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y, x, y)) == \
'<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
z, w = symbols('z w')
assert mpp.doprint(Integral(x*y*z, x, y, z)) == \
'<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\
'<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \
'<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\
'<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\
'<mi>x</mi><mo>⁢</mo><mi>y</mi>'\
'<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\
'<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\
'<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, (x, 0))) == \
'<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\
'<mi>x</mi></mrow>'
def test_presentation_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mpp._print(A)
assert mll_1.childNodes[0].nodeName == 'mtable'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_1.childNodes[0].childNodes) == 3
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1
assert mll_1.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mpp._print(B)
assert mll_2.childNodes[0].nodeName == 'mtable'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_2.childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[0].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[0].childNodes[1].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[0].childNodes[1].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[0].childNodes[2].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[0].childNodes[2].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '9'
def test_presentation_mathml_sums():
summand = x
mml_1 = mpp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'munderover'
assert len(mml_1.childNodes[0].childNodes) == 3
assert mml_1.childNodes[0].childNodes[0].childNodes[0
].nodeValue == '∑'
assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3
assert mml_1.childNodes[0].childNodes[2].childNodes[0
].nodeValue == '10'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_add():
mml = mpp._print(x**5 - x**4 + x)
assert len(mml.childNodes) == 5
assert mml.childNodes[0].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0
].nodeValue == '5'
assert mml.childNodes[1].childNodes[0].nodeValue == '-'
assert mml.childNodes[2].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[2].childNodes[1].childNodes[0
].nodeValue == '4'
assert mml.childNodes[3].childNodes[0].nodeValue == '+'
assert mml.childNodes[4].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_Rational():
mml_1 = mpp._print(Rational(1, 1))
assert mml_1.nodeName == 'mn'
mml_2 = mpp._print(Rational(2, 5))
assert mml_2.nodeName == 'mfrac'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '2'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '5'
def test_presentation_mathml_constants():
mml = mpp._print(I)
assert mml.childNodes[0].nodeValue == 'ⅈ'
mml = mpp._print(E)
assert mml.childNodes[0].nodeValue == 'ⅇ'
mml = mpp._print(oo)
assert mml.childNodes[0].nodeValue == '∞'
mml = mpp._print(pi)
assert mml.childNodes[0].nodeValue == 'π'
assert mathml(GoldenRatio, printer='presentation') == '<mi>Φ</mi>'
assert mathml(zoo, printer='presentation') == \
'<mover><mo>∞</mo><mo>~</mo></mover>'
assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>'
def test_presentation_mathml_trig():
mml = mpp._print(sin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sin'
mml = mpp._print(cos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cos'
mml = mpp._print(tan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tan'
mml = mpp._print(asin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin'
mml = mpp._print(acos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos'
mml = mpp._print(atan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan'
mml = mpp._print(sinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh'
mml = mpp._print(cosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh'
mml = mpp._print(tanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh'
mml = mpp._print(asinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh'
mml = mpp._print(atanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh'
mml = mpp._print(acosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh'
def test_presentation_mathml_relational():
mml_1 = mpp._print(Eq(x, 1))
assert len(mml_1.childNodes) == 3
assert mml_1.childNodes[0].nodeName == 'mi'
assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[1].nodeName == 'mo'
assert mml_1.childNodes[1].childNodes[0].nodeValue == '='
assert mml_1.childNodes[2].nodeName == 'mn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(Ne(1, x))
assert len(mml_2.childNodes) == 3
assert mml_2.childNodes[0].nodeName == 'mn'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[1].nodeName == 'mo'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠'
assert mml_2.childNodes[2].nodeName == 'mi'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mpp._print(Ge(1, x))
assert len(mml_3.childNodes) == 3
assert mml_3.childNodes[0].nodeName == 'mn'
assert mml_3.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[1].nodeName == 'mo'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥'
assert mml_3.childNodes[2].nodeName == 'mi'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mpp._print(Lt(1, x))
assert len(mml_4.childNodes) == 3
assert mml_4.childNodes[0].nodeName == 'mn'
assert mml_4.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[1].nodeName == 'mo'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '<'
assert mml_4.childNodes[2].nodeName == 'mi'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_symbol():
mml = mpp._print(x)
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mpp._print(Symbol("x^2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x__2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x_2"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x^3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x__3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x_2_a"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x^2^a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x__2__a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
def test_presentation_mathml_greek():
mml = mpp._print(Symbol('alpha'))
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}'
assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>'
assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>'
assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>'
assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>'
assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>'
assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>'
assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>'
assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>'
assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>'
assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>'
assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>'
assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>'
assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>'
assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>'
assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>'
assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>'
assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>'
assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>'
assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>'
assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>'
assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>'
assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>'
assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>'
assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>'
assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>'
assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>'
assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>'
assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>'
assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>'
assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>'
assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>'
assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>'
assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>'
assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>'
assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>'
assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>'
assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>'
assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>'
assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>'
assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>'
assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>'
assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>'
assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>'
assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>'
assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>'
assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>'
assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>'
assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>'
assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>'
def test_presentation_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLPresentationPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4'
mp = MathMLPresentationPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3'
def test_print_intervals():
a = Symbol('a', real=True)
assert mpp.doprint(Interval(0, a)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, False)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, False)) == \
'<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, True)) == \
'<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, True)) == \
'<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
def test_print_tuples():
assert mpp.doprint(Tuple(0,)) == \
'<mrow><mfenced><mn>0</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\
'</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>'
def test_print_re_im():
assert mpp.doprint(re(x)) == \
'<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(im(x)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(re(x + 1)) == \
'<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(im(x + 1)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_Abs():
assert mpp.doprint(Abs(x)) == \
'<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Abs(x + 1)) == \
'<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>'
def test_print_Determinant():
assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \
'<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>'
def test_presentation_settings():
raises(TypeError, lambda: mathml(x, printer='presentation',
method="garbage"))
def test_toprettyxml_hooking():
# test that the patch doesn't influence the behavior of the standard
# library
import xml.dom.minidom
doc1 = xml.dom.minidom.parseString(
"<apply><plus/><ci>x</ci><cn>1</cn></apply>")
doc2 = xml.dom.minidom.parseString(
"<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>")
prettyxml_old1 = doc1.toprettyxml()
prettyxml_old2 = doc2.toprettyxml()
mp.apply_patch()
mp.restore_patch()
assert prettyxml_old1 == doc1.toprettyxml()
assert prettyxml_old2 == doc2.toprettyxml()
def test_print_domains():
from sympy import Complexes, Integers, Naturals, Naturals0, Reals
assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>'
assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>'
assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>'
assert mpp.doprint(Naturals0) == \
'<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>'
assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>'
def test_print_expression_with_minus():
assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>'
assert mpp.doprint(-x/y) == \
'<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>'
assert mpp.doprint(-Rational(1, 2)) == \
'<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>'
def test_print_AssocOp():
from sympy.core.operations import AssocOp
class TestAssocOp(AssocOp):
identity = 0
expr = TestAssocOp(1, 2)
mpp.doprint(expr) == \
'<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>'
def test_print_basic():
expr = Basic(1, 2)
assert mpp.doprint(expr) == \
'<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>'
assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>'
def test_mat_delim_print():
expr = Matrix([[1, 2], [3, 4]])
assert mathml(expr, printer='presentation', mat_delim='[') == \
'<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\
'<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\
'</mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='(') == \
'<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\
'</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='') == \
'<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\
'<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>'
def test_ln_notation_print():
expr = log(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=False) == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=True) == \
'<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mul_symbol_print():
expr = x * y
assert mathml(expr, printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol=None) == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='dot') == \
'<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='ldot') == \
'<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='times') == \
'<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>'
def test_print_lerchphi():
assert mpp.doprint(lerchphi(1, 2, 3)) == \
'<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>'
def test_print_polylog():
assert mp.doprint(polylog(x, y)) == \
'<apply><polylog/><ci>x</ci><ci>y</ci></apply>'
assert mpp.doprint(polylog(x, y)) == \
'<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
def test_print_set_frozenset():
f = frozenset({1, 5, 3})
assert mpp.doprint(f) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>'
s = set({1, 2, 3})
assert mpp.doprint(s) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
def test_print_FiniteSet():
f1 = FiniteSet(x, 1, 3)
assert mpp.doprint(f1) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>'
def test_print_EmptySet():
assert mpp.doprint(EmptySet()) == '<mo>∅</mo>'
def test_print_UniversalSet():
assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>'
def test_print_SetOp():
f1 = FiniteSet(x, 1, 3)
f2 = FiniteSet(y, 2, 4)
assert mpp.doprint(Union(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Intersection(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Complement(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(SymmetricDifference(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
def test_print_logic():
assert mpp.doprint(And(x, y)) == \
'<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>'
assert mpp.doprint(Or(x, y)) == \
'<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>'
assert mpp.doprint(Xor(x, y)) == \
'<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>'
assert mpp.doprint(Implies(x, y)) == \
'<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>'
assert mpp.doprint(Equivalent(x, y)) == \
'<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>'
assert mpp.doprint(And(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\
'</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>'
assert mpp.doprint(Or(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\
'<mn>3</mn></mrow></mrow></mfenced></mrow>'
assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>'
assert mpp.doprint(Not(And(x, y))) == \
'<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\
'<mi>y</mi></mrow></mfenced></mrow>'
def test_root_notation_print():
assert mathml(x**(S(1)/3), printer='presentation') == \
'<mroot><mi>x</mi><mn>3</mn></mroot>'
assert mathml(x**(S(1)/3), printer='presentation', root_notation=False) ==\
'<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>'
assert mathml(x**(S(1)/3), printer='content') == \
'<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>'
assert mathml(x**(S(1)/3), printer='content', root_notation=False) == \
'<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>'
assert mathml(x**(-S(1)/3), printer='presentation') == \
'<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>'
assert mathml(x**(-S(1)/3), printer='presentation', root_notation=False) \
== '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>'
def test_fold_frac_powers_print():
expr = x ** Rational(5, 2)
assert mathml(expr, printer='presentation') == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=True) == \
'<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=False) == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
def test_fold_short_frac_print():
expr = Rational(2, 5)
assert mathml(expr, printer='presentation') == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=True) == \
'<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=False) == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
def test_print_factorials():
assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>'
assert mpp.doprint(factorial(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>'
assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>'
assert mpp.doprint(factorial2(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>'
assert mpp.doprint(binomial(x, y)) == \
'<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>'
assert mpp.doprint(binomial(4, x + y)) == \
'<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\
'<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>'
def test_print_floor():
expr = floor(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>'
def test_print_ceiling():
expr = ceiling(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>'
def test_print_Lambda():
expr = Lambda(x, x+1)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow></mfenced>'
expr = Lambda((x, y), x + y)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\
'<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>'
def test_print_conjugate():
assert mpp.doprint(conjugate(x)) == \
'<menclose notation="top"><mi>x</mi></menclose>'
assert mpp.doprint(conjugate(x + 1)) == \
'<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>'
def test_print_AccumBounds():
a = Symbol('a', real=True)
assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>'
assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>'
assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>'
def test_print_Float():
assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>'
assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>'
assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>'
def test_print_different_functions():
assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_builtins():
assert mpp.doprint(None) == '<mi>None</mi>'
assert mpp.doprint(true) == '<mi>True</mi>'
assert mpp.doprint(false) == '<mi>False</mi>'
def test_mathml_Range():
assert mpp.doprint(Range(1, 51)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>'
assert mpp.doprint(Range(1, 4)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
assert mpp.doprint(Range(0, 3, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, 30, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>'
assert mpp.doprint(Range(30, 1, -1)) == \
'<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\
'<mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, oo, 2)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>'
assert mpp.doprint(Range(oo, -2, -2)) == \
'<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>'
assert mpp.doprint(Range(-2, -oo, -1)) == \
'<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>'
def test_print_exp():
assert mpp.doprint(exp(x)) == \
'<msup><mi>ⅇ</mi><mi>x</mi></msup>'
assert mpp.doprint(exp(1) + exp(2)) == \
'<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>'
def test_print_MinMax():
assert mpp.doprint(Min(x, y)) == \
'<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Min(x, 2, x**3)) == \
'<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
assert mpp.doprint(Max(x, y)) == \
'<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Max(x, 2, x**3)) == \
'<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
def test_mathml_presentation_numbers():
n = Symbol('n')
assert mathml(catalan(n), printer='presentation') == \
'<msub><mi>C</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(bell(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(fibonacci(n), printer='presentation') == \
'<msub><mi>F</mi><mi>n</mi></msub>'
assert mathml(lucas(n), printer='presentation') == \
'<msub><mi>L</mi><mi>n</mi></msub>'
assert mathml(tribonacci(n), printer='presentation') == \
'<msub><mi>T</mi><mi>n</mi></msub>'
def test_print_matrix_symbol():
A = MatrixSymbol('A', 1, 2)
assert mpp.doprint(A) == '<mi>A</mi>'
assert mp.doprint(A) == '<ci>A</ci>'
assert mathml(A, printer='presentation', mat_symbol_style="bold") == \
'<mi mathvariant="bold">A</mi>'
# No effect in content printer
assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>'
def test_print_hadamard():
from sympy.matrices.expressions import HadamardProduct
from sympy.matrices.expressions import Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi>' \
'<mo>∘</mo>' \
'<msup><mi>Y</mi><mn>2</mn></msup>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \
'<mrow>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>⁢</mo><mi>Y</mi>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi><mo>∘</mo>' \
'<mi>Y</mi><mo>∘</mo>' \
'<mi>Y</mi>' \
'</mrow>'
assert mathml(
Transpose(HadamardProduct(X, Y)), printer="presentation") == \
'<msup>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>T</mo>' \
'</msup>'
def test_print_random_symbol():
R = RandomSymbol(Symbol('R'))
assert mpp.doprint(R) == '<mi>R</mi>'
assert mp.doprint(R) == '<ci>R</ci>'
def test_print_IndexedBase():
assert mathml(IndexedBase(a)[b], printer='presentation') == \
'<msub><mi>a</mi><mi>b</mi></msub>'
assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \
'<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>'
assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e),
printer='presentation') == \
'<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\
'</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>'
def test_print_Indexed():
assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>'
assert mathml(IndexedBase(a/b), printer='presentation') == \
'<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>'
assert mathml(IndexedBase((a, b)), printer='presentation') == \
'<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>'
def test_print_MatrixElement():
i, j = symbols('i j')
A = MatrixSymbol('A', i, j)
assert mathml(A[0,0],printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>'
assert mathml(A[i,j], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>'
assert mathml(A[i*j,0], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>'
def test_print_Vector():
ACS = CoordSys3D('A')
assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\
'A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\
'<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><mo>∇</mo>'\
'<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><mo>∇</mo>'\
'<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Gradient(ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Gradient(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><mo>∇</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mrow>'
assert mathml(Gradient(x*ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \
'<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>'
assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\
'<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Laplacian(ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Laplacian(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mrow><mo>∆</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mrow>'
assert mathml(Laplacian(x*ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
def test_print_elliptic_f():
assert mathml(elliptic_f(x, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_e():
assert mathml(elliptic_e(x), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>'
assert mathml(elliptic_e(x, y), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_pi():
assert mathml(elliptic_pi(x, y), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_print_Ei():
assert mathml(Ei(x), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(Ei(x**y), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>'
def test_print_expint():
assert mathml(expint(x, y), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>'
def test_print_jacobi():
assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_gegenbauer():
assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevt():
assert mathml(chebyshevt(n, x), printer = 'presentation') == \
'<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevu():
assert mathml(chebyshevu(n, x), printer = 'presentation') == \
'<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_legendre():
assert mathml(legendre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_legendre():
assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_laguerre():
assert mathml(laguerre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_laguerre():
assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_hermite():
assert mathml(hermite(n, x), printer = 'presentation') == \
'<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_SingularityFunction():
assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>'
assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>'
assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \
'<mn>4</mn></msup>'
assert mathml(SingularityFunction(x, a, n), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \
'<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \
'<mi>n</mi></msup>'
assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>'
assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>'
def test_mathml_matrix_functions():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(Adjoint(X), printer='presentation') == \
'<msup><mi>X</mi><mo>†</mo></msup>'
assert mathml(Adjoint(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \
'<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \
'<mi>Y</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X*Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \
'<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \
'<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \
'</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X**2), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X)**2, printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>'
assert mathml(Adjoint(Inverse(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Inverse(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>'
assert mathml(Adjoint(Transpose(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>'
assert mathml(Transpose(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \
'<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \
'<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(X), printer='presentation') == \
'<msup><mi>X</mi><mo>T</mo></msup>'
assert mathml(Transpose(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
def test_mathml_special_matrices():
from sympy.matrices import Identity, ZeroMatrix
assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>'
assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>'
|
16862ad70ccc4bb36c49b9025f9d6e271eac05fe7bfa233a28cb2171d3f8ffc7 | """
Important note on tests in this module - the Theano printing functions use a
global cache by default, which means that tests using it will modify global
state and thus not be independent from each other. Instead of using the "cache"
keyword argument each time, this module uses the theano_code_ and
theano_function_ functions defined below which default to using a new, empty
cache instead.
"""
import logging
from sympy.external import import_module
from sympy.utilities.pytest import raises, SKIP
theanologger = logging.getLogger('theano.configdefaults')
theanologger.setLevel(logging.CRITICAL)
theano = import_module('theano')
theanologger.setLevel(logging.WARNING)
if theano:
import numpy as np
ts = theano.scalar
tt = theano.tensor
xt, yt, zt = [tt.scalar(name, 'floatX') for name in 'xyz']
Xt, Yt, Zt = [tt.tensor('floatX', (False, False), name=n) for n in 'XYZ']
else:
#bin/test will not execute any tests now
disabled = True
import sympy as sy
from sympy import S
from sympy.abc import x, y, z, t
from sympy.printing.theanocode import (theano_code, dim_handling,
theano_function)
# Default set of matrix symbols for testing - make square so we can both
# multiply and perform elementwise operations between them.
X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ']
# For testing AppliedUndef
f_t = sy.Function('f')(t)
def theano_code_(expr, **kwargs):
""" Wrapper for theano_code that uses a new, empty cache by default. """
kwargs.setdefault('cache', {})
return theano_code(expr, **kwargs)
def theano_function_(inputs, outputs, **kwargs):
""" Wrapper for theano_function that uses a new, empty cache by default. """
kwargs.setdefault('cache', {})
return theano_function(inputs, outputs, **kwargs)
def fgraph_of(*exprs):
""" Transform SymPy expressions into Theano Computation.
Parameters
==========
exprs
Sympy expressions
Returns
=======
theano.gof.FunctionGraph
"""
outs = list(map(theano_code_, exprs))
ins = theano.gof.graph.inputs(outs)
ins, outs = theano.gof.graph.clone(ins, outs)
return theano.gof.FunctionGraph(ins, outs)
def theano_simplify(fgraph):
""" Simplify a Theano Computation.
Parameters
==========
fgraph : theano.gof.FunctionGraph
Returns
=======
theano.gof.FunctionGraph
"""
mode = theano.compile.get_default_mode().excluding("fusion")
fgraph = fgraph.clone()
mode.optimizer.optimize(fgraph)
return fgraph
def theq(a, b):
""" Test two Theano objects for equality.
Also accepts numeric types and lists/tuples of supported types.
Note - debugprint() has a bug where it will accept numeric types but does
not respect the "file" argument and in this case and instead prints the number
to stdout and returns an empty string. This can lead to tests passing where
they should fail because any two numbers will always compare as equal. To
prevent this we treat numbers as a separate case.
"""
numeric_types = (int, float, np.number)
a_is_num = isinstance(a, numeric_types)
b_is_num = isinstance(b, numeric_types)
# Compare numeric types using regular equality
if a_is_num or b_is_num:
if not (a_is_num and b_is_num):
return False
return a == b
# Compare sequences element-wise
a_is_seq = isinstance(a, (tuple, list))
b_is_seq = isinstance(b, (tuple, list))
if a_is_seq or b_is_seq:
if not (a_is_seq and b_is_seq) or type(a) != type(b):
return False
return list(map(theq, a)) == list(map(theq, b))
# Otherwise, assume debugprint() can handle it
astr = theano.printing.debugprint(a, file='str')
bstr = theano.printing.debugprint(b, file='str')
# Check for bug mentioned above
for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]:
if argstr == '':
raise TypeError(
'theano.printing.debugprint(%s) returned empty string '
'(%s is instance of %r)'
% (argname, argname, type(argval))
)
return astr == bstr
def test_example_symbols():
"""
Check that the example symbols in this module print to their Theano
equivalents, as many of the other tests depend on this.
"""
assert theq(xt, theano_code_(x))
assert theq(yt, theano_code_(y))
assert theq(zt, theano_code_(z))
assert theq(Xt, theano_code_(X))
assert theq(Yt, theano_code_(Y))
assert theq(Zt, theano_code_(Z))
def test_Symbol():
""" Test printing a Symbol to a theano variable. """
xx = theano_code_(x)
assert isinstance(xx, (tt.TensorVariable, ts.ScalarVariable))
assert xx.broadcastable == ()
assert xx.name == x.name
xx2 = theano_code_(x, broadcastables={x: (False,)})
assert xx2.broadcastable == (False,)
assert xx2.name == x.name
def test_MatrixSymbol():
""" Test printing a MatrixSymbol to a theano variable. """
XX = theano_code_(X)
assert isinstance(XX, tt.TensorVariable)
assert XX.broadcastable == (False, False)
@SKIP # TODO - this is currently not checked but should be implemented
def test_MatrixSymbol_wrong_dims():
""" Test MatrixSymbol with invalid broadcastable. """
bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)]
for bc in bcs:
with raises(ValueError):
theano_code_(X, broadcastables={X: bc})
def test_AppliedUndef():
""" Test printing AppliedUndef instance, which works similarly to Symbol. """
ftt = theano_code_(f_t)
assert isinstance(ftt, tt.TensorVariable)
assert ftt.broadcastable == ()
assert ftt.name == 'f_t'
def test_add():
expr = x + y
comp = theano_code_(expr)
assert comp.owner.op == theano.tensor.add
def test_trig():
assert theq(theano_code_(sy.sin(x)), tt.sin(xt))
assert theq(theano_code_(sy.tan(x)), tt.tan(xt))
def test_many():
""" Test printing a complex expression with multiple symbols. """
expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z)
comp = theano_code_(expr)
expected = tt.exp(xt**2 + tt.cos(yt)) * tt.log(2*zt)
assert theq(comp, expected)
def test_dtype():
""" Test specifying specific data types through the dtype argument. """
for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']:
assert theano_code_(x, dtypes={x: dtype}).type.dtype == dtype
# "floatX" type
assert theano_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64')
# Type promotion
assert theano_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32'
assert theano_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64'
def test_broadcastables():
""" Test the "broadcastables" argument when printing symbol-like objects. """
# No restrictions on shape
for s in [x, f_t]:
for bc in [(), (False,), (True,), (False, False), (True, False)]:
assert theano_code_(s, broadcastables={s: bc}).broadcastable == bc
# TODO - matrix broadcasting?
def test_broadcasting():
""" Test "broadcastable" attribute after applying element-wise binary op. """
expr = x + y
cases = [
[(), (), ()],
[(False,), (False,), (False,)],
[(True,), (False,), (False,)],
[(False, True), (False, False), (False, False)],
[(True, False), (False, False), (False, False)],
]
for bc1, bc2, bc3 in cases:
comp = theano_code_(expr, broadcastables={x: bc1, y: bc2})
assert comp.broadcastable == bc3
def test_MatMul():
expr = X*Y*Z
expr_t = theano_code_(expr)
assert isinstance(expr_t.owner.op, tt.Dot)
assert theq(expr_t, Xt.dot(Yt).dot(Zt))
def test_Transpose():
assert isinstance(theano_code_(X.T).owner.op, tt.DimShuffle)
def test_MatAdd():
expr = X+Y+Z
assert isinstance(theano_code_(expr).owner.op, tt.Elemwise)
def test_Rationals():
assert theq(theano_code_(sy.Integer(2) / 3), tt.true_div(2, 3))
assert theq(theano_code_(S.Half), tt.true_div(1, 2))
def test_Integers():
assert theano_code_(sy.Integer(3)) == 3
def test_factorial():
n = sy.Symbol('n')
assert theano_code_(sy.factorial(n))
def test_Derivative():
simp = lambda expr: theano_simplify(fgraph_of(expr))
assert theq(simp(theano_code_(sy.Derivative(sy.sin(x), x, evaluate=False))),
simp(theano.grad(tt.sin(xt), xt)))
def test_theano_function_simple():
""" Test theano_function() with single output. """
f = theano_function_([x, y], [x+y])
assert f(2, 3) == 5
def test_theano_function_multi():
""" Test theano_function() with multiple outputs. """
f = theano_function_([x, y], [x+y, x-y])
o1, o2 = f(2, 3)
assert o1 == 5
assert o2 == -1
def test_theano_function_numpy():
""" Test theano_function() vs Numpy implementation. """
f = theano_function_([x, y], [x+y], dim=1,
dtypes={x: 'float64', y: 'float64'})
assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9
f = theano_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'},
dim=1)
xx = np.arange(3).astype('float64')
yy = 2*np.arange(3).astype('float64')
assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9
def test_theano_function_matrix():
m = sy.Matrix([[x, y], [z, x + y + z]])
expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]])
f = theano_function_([x, y, z], [m])
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
f = theano_function_([x, y, z], [m], scalar=True)
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
f = theano_function_([x, y, z], [m, m])
assert isinstance(f(1.0, 2.0, 3.0), type([]))
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected)
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected)
def test_dim_handling():
assert dim_handling([x], dim=2) == {x: (False, False)}
assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True),
y: (False, False)}
assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)}
def test_theano_function_kwargs():
"""
Test passing additional kwargs from theano_function() to theano.function().
"""
import numpy as np
f = theano_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore',
dtypes={x: 'float64', y: 'float64', z: 'float64'})
assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9
f = theano_function_([x, y, z], [x+y],
dtypes={x: 'float64', y: 'float64', z: 'float64'},
dim=1, on_unused_input='ignore')
xx = np.arange(3).astype('float64')
yy = 2*np.arange(3).astype('float64')
zz = 2*np.arange(3).astype('float64')
assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9
def test_theano_function_scalar():
""" Test the "scalar" argument to theano_function(). """
args = [
([x, y], [x + y], None, [0]), # Single 0d output
([X, Y], [X + Y], None, [2]), # Single 2d output
([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output
([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs
([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d
]
# Create and test functions with and without the scalar setting
for inputs, outputs, in_dims, out_dims in args:
for scalar in [False, True]:
f = theano_function_(inputs, outputs, dims=in_dims, scalar=scalar)
# Check the theano_function attribute is set whether wrapped or not
assert isinstance(f.theano_function, theano.compile.function_module.Function)
# Feed in inputs of the appropriate size and get outputs
in_values = [
np.ones([1 if bc else 5 for bc in i.type.broadcastable])
for i in f.theano_function.input_storage
]
out_values = f(*in_values)
if not isinstance(out_values, list):
out_values = [out_values]
# Check output types and shapes
assert len(out_dims) == len(out_values)
for d, value in zip(out_dims, out_values):
if scalar and d == 0:
# Should have been converted to a scalar value
assert isinstance(value, np.number)
else:
# Otherwise should be an array
assert isinstance(value, np.ndarray)
assert value.ndim == d
def test_theano_function_bad_kwarg():
"""
Passing an unknown keyword argument to theano_function() should raise an
exception.
"""
raises(Exception, lambda : theano_function_([x], [x+1], foobar=3))
def test_slice():
assert theano_code_(slice(1, 2, 3)) == slice(1, 2, 3)
def theq_slice(s1, s2):
for attr in ['start', 'stop', 'step']:
a1 = getattr(s1, attr)
a2 = getattr(s2, attr)
if a1 is None or a2 is None:
if not (a1 is None or a2 is None):
return False
elif not theq(a1, a2):
return False
return True
dtypes = {x: 'int32', y: 'int32'}
assert theq_slice(theano_code_(slice(x, y), dtypes=dtypes), slice(xt, yt))
assert theq_slice(theano_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3))
def test_MatrixSlice():
from theano import Constant
cache = {}
n = sy.Symbol('n', integer=True)
X = sy.MatrixSymbol('X', n, n)
Y = X[1:2:3, 4:5:6]
Yt = theano_code_(Y, cache=cache)
s = ts.Scalar('int64')
assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s))
assert Yt.owner.inputs[0] == theano_code_(X, cache=cache)
# == doesn't work in theano like it does in SymPy. You have to use
# equals.
assert all(Yt.owner.inputs[i].equals(Constant(s, i)) for i in range(1, 7))
k = sy.Symbol('k')
kt = theano_code_(k, dtypes={k: 'int32'})
start, stop, step = 4, k, 2
Y = X[start:stop:step]
Yt = theano_code_(Y, dtypes={n: 'int32', k: 'int32'})
# assert Yt.owner.op.idx_list[0].stop == kt
def test_BlockMatrix():
n = sy.Symbol('n', integer=True)
A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD']
At, Bt, Ct, Dt = map(theano_code_, (A, B, C, D))
Block = sy.BlockMatrix([[A, B], [C, D]])
Blockt = theano_code_(Block)
solutions = [tt.join(0, tt.join(1, At, Bt), tt.join(1, Ct, Dt)),
tt.join(1, tt.join(0, At, Ct), tt.join(0, Bt, Dt))]
assert any(theq(Blockt, solution) for solution in solutions)
@SKIP
def test_BlockMatrix_Inverse_execution():
k, n = 2, 4
dtype = 'float32'
A = sy.MatrixSymbol('A', n, k)
B = sy.MatrixSymbol('B', n, n)
inputs = A, B
output = B.I*A
cutsizes = {A: [(n//2, n//2), (k//2, k//2)],
B: [(n//2, n//2), (n//2, n//2)]}
cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs]
cutoutput = output.subs(dict(zip(inputs, cutinputs)))
dtypes = dict(zip(inputs, [dtype]*len(inputs)))
f = theano_function_(inputs, [output], dtypes=dtypes, cache={})
fblocked = theano_function_(inputs, [sy.block_collapse(cutoutput)],
dtypes=dtypes, cache={})
ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs]
ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype),
np.eye(n).astype(dtype)]
ninputs[1] += np.ones(B.shape)*1e-5
assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5)
def test_DenseMatrix():
t = sy.Symbol('theta')
for MatrixType in [sy.Matrix, sy.ImmutableMatrix]:
X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]])
tX = theano_code_(X)
assert isinstance(tX, tt.TensorVariable)
assert tX.owner.op == tt.join_
def test_cache_basic():
""" Test single symbol-like objects are cached when printed by themselves. """
# Pairs of objects which should be considered equivalent with respect to caching
pairs = [
(x, sy.Symbol('x')),
(X, sy.MatrixSymbol('X', *X.shape)),
(f_t, sy.Function('f')(sy.Symbol('t'))),
]
for s1, s2 in pairs:
cache = {}
st = theano_code_(s1, cache=cache)
# Test hit with same instance
assert theano_code_(s1, cache=cache) is st
# Test miss with same instance but new cache
assert theano_code_(s1, cache={}) is not st
# Test hit with different but equivalent instance
assert theano_code_(s2, cache=cache) is st
def test_global_cache():
""" Test use of the global cache. """
from sympy.printing.theanocode import global_cache
backup = dict(global_cache)
try:
# Temporarily empty global cache
global_cache.clear()
for s in [x, X, f_t]:
st = theano_code(s)
assert theano_code(s) is st
finally:
# Restore global cache
global_cache.update(backup)
def test_cache_types_distinct():
"""
Test that symbol-like objects of different types (Symbol, MatrixSymbol,
AppliedUndef) are distinguished by the cache even if they have the same
name.
"""
symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t]
cache = {} # Single shared cache
printed = {}
for s in symbols:
st = theano_code_(s, cache=cache)
assert st not in printed.values()
printed[s] = st
# Check all printed objects are distinct
assert len(set(map(id, printed.values()))) == len(symbols)
# Check retrieving
for s, st in printed.items():
assert theano_code(s, cache=cache) is st
def test_symbols_are_created_once():
"""
Test that a symbol is cached and reused when it appears in an expression
more than once.
"""
expr = sy.Add(x, x, evaluate=False)
comp = theano_code_(expr)
assert theq(comp, xt + xt)
assert not theq(comp, xt + theano_code_(x))
def test_cache_complex():
"""
Test caching on a complicated expression with multiple symbols appearing
multiple times.
"""
expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y)
symbol_names = {s.name for s in expr.free_symbols}
expr_t = theano_code_(expr)
# Iterate through variables in the Theano computational graph that the
# printed expression depends on
seen = set()
for v in theano.gof.graph.ancestors([expr_t]):
# Owner-less, non-constant variables should be our symbols
if v.owner is None and not isinstance(v, theano.gof.graph.Constant):
# Check it corresponds to a symbol and appears only once
assert v.name in symbol_names
assert v.name not in seen
seen.add(v.name)
# Check all were present
assert seen == symbol_names
def test_Piecewise():
# A piecewise linear
expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III
result = theano_code_(expr)
assert result.owner.op == tt.switch
expected = tt.switch(xt<0, 0, tt.switch(xt<2, xt, 1))
assert theq(result, expected)
expr = sy.Piecewise((x, x < 0))
result = theano_code_(expr)
expected = tt.switch(xt < 0, xt, np.nan)
assert theq(result, expected)
expr = sy.Piecewise((0, sy.And(x>0, x<2)), \
(x, sy.Or(x>2, x<0)))
result = theano_code_(expr)
expected = tt.switch(tt.and_(xt>0,xt<2), 0, \
tt.switch(tt.or_(xt>2, xt<0), xt, np.nan))
assert theq(result, expected)
def test_Relationals():
assert theq(theano_code_(sy.Eq(x, y)), tt.eq(xt, yt))
# assert theq(theano_code_(sy.Ne(x, y)), tt.neq(xt, yt)) # TODO - implement
assert theq(theano_code_(x > y), xt > yt)
assert theq(theano_code_(x < y), xt < yt)
assert theq(theano_code_(x >= y), xt >= yt)
assert theq(theano_code_(x <= y), xt <= yt)
def test_complexfunctions():
xt, yt = theano_code(x, dtypes={x:'complex128'}), theano_code(y, dtypes={y: 'complex128'})
from sympy import conjugate
from theano.tensor import as_tensor_variable as atv
from theano.tensor import complex as cplx
assert theq(theano_code(y*conjugate(x)), yt*(xt.conj()))
assert theq(theano_code((1+2j)*x), xt*(atv(1.0)+atv(2.0)*cplx(0,1)))
def test_constantfunctions():
tf = theano_function([],[1+1j])
assert(tf()==1+1j)
|
90ab6015f24401ee953743a440c9ad70c95969fa51407c0088f817e16036a9c9 | # -*- coding: utf-8 -*-
from sympy import (
Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.compatibility import range, u_decode as u, PY3
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.physics import mechanics
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent
from sympy.sets import ImageSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, tensorhead,
TensorElement)
from sympy.utilities.pytest import raises, XFAIL
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx' ) == u'xxx'
assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx'
assert pretty( u'xxx"xxx' ) == u'xxx\"xxx'
assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx'
assert pretty( u"xxx'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx'
assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx'
assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx'
assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == u'∞'
assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁'
assert upretty( Symbol('beta') ) == u'β'
assert upretty(Symbol('lambda')) == u'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == u'β₁₂'
assert upretty( Symbol('Y00') ) == u'Y₀₀'
assert upretty( Symbol('Y_00') ) == u'Y₀₀'
assert upretty( Symbol('F^+-') ) == u'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == u'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == u'β²₁'
assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == u'Fᵦ'
assert upretty( Symbol('F_gamma') ) == u'Fᵧ'
assert upretty( Symbol('F_rho') ) == u'Fᵨ'
assert upretty( Symbol('F_phi') ) == u'Fᵩ'
assert upretty( Symbol('F_chi') ) == u'Fᵪ'
assert upretty( Symbol('F_a') ) == u'Fₐ'
assert upretty( Symbol('F_e') ) == u'Fₑ'
assert upretty( Symbol('F_i') ) == u'Fᵢ'
assert upretty( Symbol('F_o') ) == u'Fₒ'
assert upretty( Symbol('F_u') ) == u'Fᵤ'
assert upretty( Symbol('F_r') ) == u'Fᵣ'
assert upretty( Symbol('F_v') ) == u'Fᵥ'
assert upretty( Symbol('F_x') ) == u'Fₓ'
def test_missing_in_2X_issue_9047():
if PY3:
assert upretty( Symbol('F_h') ) == u'Fₕ'
assert upretty( Symbol('F_k') ) == u'Fₖ'
assert upretty( Symbol('F_l') ) == u'Fₗ'
assert upretty( Symbol('F_m') ) == u'Fₘ'
assert upretty( Symbol('F_n') ) == u'Fₙ'
assert upretty( Symbol('F_p') ) == u'Fₚ'
assert upretty( Symbol('F_s') ) == u'Fₛ'
assert upretty( Symbol('F_t') ) == u'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == u'F̊'
assert upretty( Symbol('Fddddot') ) == u'F⃜'
assert upretty( Symbol('Fdddot') ) == u'F⃛'
assert upretty( Symbol('Fddot') ) == u'F̈'
assert upretty( Symbol('Fdot') ) == u'Ḟ'
assert upretty( Symbol('Fcheck') ) == u'F̌'
assert upretty( Symbol('Fbreve') ) == u'F̆'
assert upretty( Symbol('Facute') ) == u'F́'
assert upretty( Symbol('Fgrave') ) == u'F̀'
assert upretty( Symbol('Ftilde') ) == u'F̃'
assert upretty( Symbol('Fhat') ) == u'F̂'
assert upretty( Symbol('Fbar') ) == u'F̅'
assert upretty( Symbol('Fvec') ) == u'F⃗'
assert upretty( Symbol('Fprime') ) == u'F′'
assert upretty( Symbol('Fprm') ) == u'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == u'Fbold'
assert upretty( Symbol('Fbm') ) == u'Fbm'
assert upretty( Symbol('Fcal') ) == u'Fcal'
assert upretty( Symbol('Fscr') ) == u'Fscr'
assert upretty( Symbol('Ffrak') ) == u'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == u'‖F‖'
assert upretty( Symbol('Favg') ) == u'⟨F⟩'
assert upretty( Symbol('Fabs') ) == u'|F|'
assert upretty( Symbol('Fmag') ) == u'|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == u'x⃗̇'
assert upretty( Symbol('xDotVec') ) == u'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == u'x_dot'
assert upretty( Symbol('x__dot') ) == u'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
u("""\
∞\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
u("""\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
("""\
-1.0\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
("""\
-1.0\n\
2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
u("""\
1/3\n\
x \
""")
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
1 \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
u("""\
x\n\
(-2) \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
u("""\
1\n\
3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
u("""\
2\n\
1 + x + x \
""")
ucode_str_2 = \
u("""\
2 \n\
x + x + 1\
""")
ucode_str_3 = \
u("""\
2 \n\
x + 1 + x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
u("""\
1 - x\
""")
ucode_str_2 = \
u("""\
-x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
u("""\
1 - 2⋅x\
""")
ucode_str_2 = \
u("""\
-2⋅x + 1\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
u("""\
x\n\
─\n\
y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
u("""\
2 + x\n\
─────\n\
y \
""")
ucode_str_2 = \
u("""\
x + 2\n\
─────\n\
y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
u("""\
y⋅(1 + x)\
""")
ucode_str_2 = \
u("""\
(1 + x)⋅y\
""")
ucode_str_3 = \
u("""\
y⋅(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
u("""\
-5⋅x \n\
──────\n\
10 + x\
""")
ucode_str_2 = \
u("""\
-5⋅x \n\
──────\n\
x + 10\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S(1)/2 - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
u("""\
-3⋅x - 1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S(1)/2 - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
u("""\
1/2 - 3⋅x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S(1)/2 - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
u("""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S(1)/2 - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
u("""\
1 3⋅x\n\
─ - ───\n\
2 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
u("""\
-x \n\
───\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
u("""\
-x⋅z \n\
─────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
u("""\
2\n\
x \n\
──\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
u("""\
2 \n\
-x \n\
────\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
u("""\
-x \n\
───\n\
y⋅z\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
u("""\
-a \n\
───\n\
b \n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
u("""\
-1 \n\
───\n\
2\n\
y \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
u("""\
-10 \n\
────\n\
2 \n\
b \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
u("""\
-200 \n\
─────\n\
37 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
u("""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
""")
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
u("""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
""")
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == u"γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == u"φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
u("""\
x = y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
u("""\
x < y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
u("""\
x > y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
u("""\
x ≤ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
u("""\
x ≥ y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
u("""\
x 2\n\
───── ≠ y \n\
1 + y \
""")
ucode_str_2 = \
u("""\
x 2\n\
───── ≠ y \n\
y + 1 \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
u("""\
x := y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
u("""\
x += y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
u("""\
x -= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
u("""\
x *= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
u("""\
x /= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
u("""\
x %= y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_7117():
# See also issue #5031 (hence the evaluate=False in these).
e = Eq(x + 1, x/2)
q = Mul(2, e, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞\n\
2⋅⎜x + 1 = ─⎟\n\
⎝ 2⎠\
""")
q = Add(e, 6, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞\n\
6 + ⎜x + 1 = ─⎟\n\
⎝ 2⎠\
""")
q = Pow(e, 2, evaluate=False)
assert upretty(q) == u("""\
2\n\
⎛ x⎞ \n\
⎜x + 1 = ─⎟ \n\
⎝ 2⎠ \
""")
e2 = Eq(x, 2)
q = Mul(e, e2, evaluate=False)
assert upretty(q) == u("""\
⎛ x⎞ \n\
⎜x + 1 = ─⎟⋅(x = 2)\n\
⎝ 2⎠ \
""")
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
u("""\
y \n\
──\n\
2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
u("""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
u("""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
u("""\
x\n\
2⋅x + ℯ \
""")
ucode_str_2 = \
u("""\
x \n\
ℯ + 2⋅x\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
u("""\
│x│\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
u("""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
""")
ucode_str_2 = \
u("""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
| 1 |\n\
|-------|\n\
|y - |x||\
"""
ucode_str = \
u("""\
│ 1 │\n\
│───────│\n\
│y - │x││\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
u("""\
n!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
u("""\
(2⋅n)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
u("""\
((n!)!)!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
u("""\
(1 + n)!\
""")
ucode_str_2 = \
u("""\
(n + 1)!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
u("""\
!n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
u("""\
!(2⋅n)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
u("""\
n!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
u("""\
(2⋅n)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
u("""\
((n!!)!!)!!\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
u("""\
(1 + n)!!\
""")
ucode_str_2 = \
u("""\
(n + 1)!!\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
u("""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
u("""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
u("""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
u("""\
C \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
u("""\
B \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
u("""\
F \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
u("""\
L \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
u("""\
T \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
u("""\
_\n\
x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
u("""\
________\n\
f(1 + x)\
""")
ucode_str_2 = \
u("""\
________\n\
f(x + 1)\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
u("""\
f(x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
u("""\
f(x, y)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
u("""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
u("""\
2 \n\
sin (x)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
u("""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
u("""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
""")
ucode_str_2 = \
u("""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
""")
ucode_str_2 = \
u("""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
u("""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
u("""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
u("""\
E \n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
u("""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
u("""\
E (x)\n\
n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
u("""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
u"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
3 ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
1000___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
u("""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
u("""\
3 ________\n\
╲╱ 1 + √5 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
u("""\
x ___\n\
╲╱ 2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
u("""\
_______\n\
╲╱ 2 + π \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
u("""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
u("""\
___\n\
╲╱ 2 \
""")
ucode_str2 = \
u"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
u("""\
____\n\
╲╱ C₁ \
""")
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
u("""\
δ \n\
x,y\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
u("""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """)
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
u("""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """)
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == u"x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == u"x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
u("""\
2\n\
x ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
u("""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = u"(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
u("""\
2\n\
(x, y) ↦ x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
u("""\
O(1)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
u("""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
u("""\
O(1; x → ∞)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
u("""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
u("""\
d \n\
──(log(x))\n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
u("""\
d \n\
x + ──(log(x))\n\
dx \
""")
ucode_str_2 = \
u("""\
d \n\
──(log(x)) + x\n\
dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
u("""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
""")
ucode_str_2 = \
u("""\
∂ \n\
──(x + log(x + y))\n\
∂x \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
u("""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
""")
ucode_str_2 = \
u("""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
u("""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
""")
ucode_str_2 = \
u("""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
u("""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
u("""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
u("""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
u("""\
d \n\
──(β(α))\n\
dα \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
u("""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
u("""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
u("""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
u("""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
u("""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
u("""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
ucode_str_2 = \
u("""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
""")
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
u("""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
""")
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
u("""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
""")
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
u("""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
""")
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
u("""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
""")
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
u("""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
""")
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
u("""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
""")
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
u("""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
""")
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == u("ⅆ x∧ⅆ y")
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == u" †\nX "
assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y "
assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
u" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
u" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
u" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
u" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
u" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
u" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
u("""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
""")
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
u("""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
""")
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
Y = X[1:2:3, 4:5:6]
ascii_str = ucode_str = "X[1:3, 4:6]"
assert pretty(Y) == ascii_str
assert upretty(Y) == ucode_str
Z = X[1:10:2]
ascii_str = ucode_str = "X[1:10:2, :n]"
assert pretty(Z) == ascii_str
assert upretty(Z) == ucode_str
# Apply function elementwise:
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
sin\\X *X.../\
"""
ucode_str = u("""\
⎛ T ⎞\n\
sin⎝X ⋅X...⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == u"A*B"
assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == u"A⋅B"
assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
u("""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
u("""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
u("""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
u("""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ |1| \n\
| 0 for |-| < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
u("""\
⎧ │1│ \n\
⎪ 0 for │─│ < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
u("""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == u("""\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
""")
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
u("""\
()\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
u("""\
[]\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
u("""\
{}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
u("""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
u("""\
{x: sin(x)}\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
u("""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
u("""\
⎡ 2⎤\n\
⎣x ⎦\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
u("""\
⎛ 2 ⎞\n\
⎝x ,⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
u("""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
""")
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == u"[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == u"{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == u'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == u'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
u"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
u"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(set([x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = u'{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = u('{30, 29, …, 2}')
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = u'{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = u('{…, 2, 0}')
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = u('{-2, -3, …}')
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = u("SetExpr([1, 3])")
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}'
ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = \
' 2 \n'\
'{x | x in Naturals}'
ucode_str = u('''\
⎧ 2 ⎫\n\
⎨x | x ∊ ℕ⎬\n\
⎩ ⎭''')
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = u'{x | x ∊ ℝ ∧ sin(x) = 0}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet()"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}'
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}'
assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str
ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = u'[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = u'[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_paranthesis():
ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b, c = Interval(2, 3), Interval(4, 7), Interval(1, 9)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = u'[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = u'[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = u'[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = u'[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = u'[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = u'[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = u'[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = u'[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = u'[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = u'[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = u'[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = u'[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = u'[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = u'[0, b, 4*b]'
ucode_str = u'[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
u("""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
""")
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
u("""\
lim x\n\
x─→∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
u("""\
2\n\
lim x \n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
u("""\
1\n\
lim ─\n\
x─→0⁺x\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
u("""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
u("""\
lim (x + sin(x))\n\
x─→0⁺ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
u("""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
u("""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
u("""\
lim sin(x)\n\
x─→0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
u("""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
u("""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
u("""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
u("""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == u'𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == u"¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == u"x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == u"x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == u"x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == u"x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == u"x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == u"x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == u"y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == u"x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == u"ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == u"ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == u"ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == u"ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == u"ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == u"ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == u"ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == u"ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == u"ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == u"ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from sympy.core.compatibility import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D(object):
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
u("""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
u("""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
u("""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
u("""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
""")
ucode_str = \
u("""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
u("""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
u("""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
""")
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
u("""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
u("""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
""")
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
u("""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
""")
from sympy.physics.units import kg, m, s
assert upretty(expr) == u("joule")
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
u("""\
(f(x))│ 2\n\
│x=φ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
u("""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == u"γ(x, y)"
assert upretty(uppergamma(x, y)) == u"Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)'
assert xpretty(gamma, use_unicode=True) == u'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)'
assert xpretty(beta, use_unicode=True) == u'Β'
assert xpretty(beta, use_unicode=False) == u'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == u'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == u'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
δ (x)\
""")
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
u("""\
(1) \n\
x⋅δ (x)\
""")
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
u("""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
u("""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
u("""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
""")
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
u("""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
""")
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
u("""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
""")
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
u("""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
""")
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
""")
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
u("""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
""")
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
u("""\
-1\n\
A⋅B⋅C \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
u("""\
-1 \n\
C ⋅A⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
u("""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
u("""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = u"E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
u("""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
""")
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
u("""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
""")
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
u("""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
""")
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
u("""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
""")
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == u"x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == u"x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
u("""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
""")
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
u("""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
""")
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
u("""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
""")
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
u("""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
""")
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
u("""\
1 \n\
──\n\
√x\
""")
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == u"A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == u"f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == u"id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == u"K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet()"
assert upretty(d) == u"∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \
"EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \
"EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}")
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \
"EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \
"EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}")
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == u"A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
u("""\
2\n\
ℚ[x, y] \
""")
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
u("""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
u("""\
╱ 2 ╲\n\
╲x , y╱\
""")
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
u("""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
""")
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
u("""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
""")
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
u("""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
""")
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
u("""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
""")
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
u("""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
""")
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
u("""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
""")
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
u("""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
""")
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == u'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y'
assert upretty(Not(Implies(x, y))) == u'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == u'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.utilities.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == u'[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
u("""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
""")
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
u("""\
d \n\
-──(y(x))\n\
dx \
""")
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
u("""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
""")
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
u("""\
3\n\
2 \n\
───\n\
2\n\
10 \
""")
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
u("""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
""")
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
u("""\
11\n\
──\n\
13\n\
(sin(x)) \
""")
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
u("""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
""")
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = u("ν(n)")
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = u("Ω(n)")
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = u("x mod 7")
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = u("(x + 1) mod 7")
ascii_str3 = "2*x mod 7"
ucode_str3 = u("2⋅x mod 7")
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = u("(x mod 7) + 1")
ascii_str5 = "2*(x mod 7)"
ucode_str5 = u("2⋅(x mod 7)")
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
u("""\
1\n\
─\n\
x\
""")
assert upretty(he) == ucode_str
ucode_str = \
u("""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
""")
assert upretty(he**2) == ucode_str
ucode_str = \
u("""\
1\n\
1 + ─\n\
x\
""")
assert upretty(he + 1) == ucode_str
ucode_str = \
u('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
u("""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
""")
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = u("A₀₀")
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = u("3⋅A₀₀")
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = u("(-B + A)[0, 0]")
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
u("""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
""")
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
u("""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
""")
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == u'90°'
expr2 = x*degree
assert pretty(expr2) == u'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == u'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)')
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)")
assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)")
assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)")
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
u("""\
-i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
u("""\
i\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
u("""\
i₀\n\
A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
u("""\
\n\
A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
u("""\
\n\
-3⋅A \n\
i\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
u("""\
i \n\
H \n\
j\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
u("""\
L₀ \n\
H \n\
L₀\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
u("""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
u("""\
i\n\
(x + 1)⋅A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
A + 3*B \n\
\
"""
ucode_str = \
u("""\
i i\n\
A + 3⋅B \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
u("""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|B *C + 3*H |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
u("""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜B ⋅C + 3⋅H ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-j), D(j))
ascii_str = \
"""\
/ i i\\ d / \\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ i i⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
u("""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1, j:1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j:1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i:1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = u'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == u'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == u'-𝐀'
assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == u'𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == u'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == u'‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == u'𝐀₂'
def test_center_accent():
assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã'
assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã'
assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa'
assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa'
assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa'
assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
|
be53cc22b33ddc4c7897d4bd21a080f262483237516ddff34edc852255241c46 | from sympy import (
Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh,
tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi,
EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase,
Integral, integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan,
Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign,
simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol,
symbols, sympify, tan, trigsimp, Tuple
)
from sympy.functions.elementary.complexes import periodic_argument
from sympy.functions.elementary.integers import floor
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.core.compatibility import range
from sympy.utilities.pytest import XFAIL, raises, slow, skip, ON_TRAVIS
from sympy.utilities.randtest import verify_numerically
from sympy.integrals.integrals import Integral
x, y, a, t, x_1, x_2, z, s, b= symbols('x y a t x_1 x_2 z s b')
n = Symbol('n', integer=True)
f = Function('f')
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() == oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) == S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S(0), S(1), x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == S(3)/2
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
-S(1)/8*log(3 + x) + S(1)/8*log(1 + x) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
qx = integrate(p, x)
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_defined():
p = Poly(x + x**2*y + y**3, x, y)
Qx = integrate(p, (x, 0, 1))
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == Rational(1, 2) + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in sympy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
assert integrate(-Rational(1)/2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == -S.Half
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
def test_issue_4052():
f = S(1)/2*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
@XFAIL
def test_failing_integrals():
#---
# Double integrals not implemented
assert NS(Integral(
sqrt(x) + x*y, (x, 1, 2), (y, -1, 1)), 15) == '2.43790283299492'
# double integral + zero detection
assert NS(Integral(sin(x + x*y), (x, -1, 1), (y, -1, 1)), 15) == '0.0'
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert Integral(in_3, x) == Integral(in_3, x)
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
@XFAIL
def test_integrate_DiracDelta_fails():
# issue 6427
assert integrate(integrate(integrate(
DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S(1)/2
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == S(49)/12
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == S(5)/2
assert integrate(Abs(x), (x, 0, 1)) == S(1)/2
assert integrate(Abs(x + 1), (x, 0, 1)) == S(3)/2
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == S(11)/3
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == S(1)/4 + y + y**2
assert e.as_sum(2, method="midpoint").expand() == S(5)/16 + y + y**2
assert e.as_sum(3, method="midpoint").expand() == S(35)/108 + y + y**2
assert e.as_sum(4, method="midpoint").expand() == S(21)/64 + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + S(1)/3 - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == S(1)/8 + y/2 + y**2
assert e.as_sum(3, method="left").expand() == S(5)/27 + 2*y/3 + y**2
assert e.as_sum(4, method="left").expand() == S(7)/32 + 3*y/4 + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + S(1)/3 - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == S(5)/8 + 3*y/2 + y**2
assert e.as_sum(3, method="right").expand() == S(14)/27 + 4*y/3 + y**2
assert e.as_sum(4, method="right").expand() == S(15)/32 + 5*y/4 + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + S(1)/3 + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S(1)/2
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + S(3)/8
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + S(19)/54
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + S(11)/32
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + S(1)/3 + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S(1)/2
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == S(1)/4
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
{x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
-z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(S(1)/4)*erf(log(x)-S(1)/2)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(-S(1)/4)*erfi(log(x)+S(1)/2)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
ans = integrate(sin(k*x)*sin(m*x), (x, 0, pi)
).simplify() == Piecewise(
(0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m)),
(pi/2, Eq(k, m)),
(0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
@slow
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True, finite=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy import meijerg
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \
(log(z**2) + 2*EulerGamma + 2*log(pi))/(2*z) - \
(-log(pi*z) + log(pi**2*z**2)/2 + Ci(pi**2*z))/z + log(pi)/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
from sympy import Si
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
from sympy import simplify
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy import simplify, expand_func, polygamma, gamma
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy import lowergamma, simplify
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) == oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
assert not integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)).has(nan)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**(S(3)/4), x, heurisch=False) == (
-128*x**(S(1)/4)*sin(log(x))/289 + 240*x**(S(1)/4)*cos(log(x))/289 +
(16*x**(S(1)/4)*sin(log(x))/17 + 4*x**(S(1)/4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
@XFAIL
def test_integrate_Piecewise_rational_over_reals():
f = Piecewise(
(0, t - 478.515625*pi < 0),
(13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0))
assert integrate(f, (t, 0, oo)) == 15235.9375*pi
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
(8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368():
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S(1)/2,), (0, 0)),
((0, S(1)/2), (0,)),
polar_lift(s)**2),
True)
),
And(
Abs(periodic_argument(polar_lift(s)**2, oo)) < pi,
cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0,
Ne(s**2, 1))
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Ne(1/s, 1),
Abs(periodic_argument(s, oo)) < pi/2,
Abs(periodic_argument(s, oo)) <= pi/2,
cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_TRAVIS:
skip("Too slow for travis.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) == oo
assert integrate(1/x**2, (x, -1, 1)) == oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) == oo
assert integrate(1/x**2, (x, 1, -1)) == -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) == -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S(1)/2)/(1 + exp(x))), x) == \
x - exp(S(1)/2)*log(exp(x) + exp(S(1)/2)/(1 + exp(S(1)/2)))/(exp(S(1)/2) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) == S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) == S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) == S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == \
log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1))
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
assert integrate(f, [x, 0, 1]) == S(1) / 3 - pi / 16
def test_issue_12081():
f = x**(-S(3)/2)*exp(-x)
assert integrate(f, [x, 0, oo]) == oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
@slow
def test_issue_4311():
x = symbols('x')
assert integrate(x*abs(9-x**2), x) == Integral(x*abs(9-x**2), x)
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - S(81)/2, x <= 3),
(x**4/4 - 9*x**2/2, True))
|
b1467222b7ac84afb90dd86342db1258a35379f68f6cd3700b7e1d30cba59f05 | from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I,
sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify,
WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo,
Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp,
simplify, together, collect, factorial, apart, combsimp, factor, refine,
cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E,
exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr,
integrate, gammasimp)
from sympy.core.expr import ExprBuilder
from sympy.core.function import AppliedUndef
from sympy.core.compatibility import range, round, PY3
from sympy.physics.secondquant import FockState
from sympy.physics.units import meter
from sympy.utilities.pytest import raises, XFAIL
from sympy.abc import a, b, c, n, t, u, x, y, z
# replace 3 instances with int when PY2 is dropped and
# delete this line
_rint = int if PY3 else float
class DummyNumber(object):
"""
Minimal implementation of a number that works with SymPy.
If one has a Number class (e.g. Sage Integer, or some other custom class)
that one wants to work well with SymPy, one has to implement at least the
methods of this class DummyNumber, resp. its subclasses I5 and F1_1.
Basically, one just needs to implement either __int__() or __float__() and
then one needs to make sure that the class works with Python integers and
with itself.
"""
def __radd__(self, a):
if isinstance(a, (int, float)):
return a + self.number
return NotImplemented
def __truediv__(a, b):
return a.__div__(b)
def __rtruediv__(a, b):
return a.__rdiv__(b)
def __add__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number + a
return NotImplemented
def __rsub__(self, a):
if isinstance(a, (int, float)):
return a - self.number
return NotImplemented
def __sub__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number - a
return NotImplemented
def __rmul__(self, a):
if isinstance(a, (int, float)):
return a * self.number
return NotImplemented
def __mul__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number * a
return NotImplemented
def __rdiv__(self, a):
if isinstance(a, (int, float)):
return a / self.number
return NotImplemented
def __div__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number / a
return NotImplemented
def __rpow__(self, a):
if isinstance(a, (int, float)):
return a ** self.number
return NotImplemented
def __pow__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number ** a
return NotImplemented
def __pos__(self):
return self.number
def __neg__(self):
return - self.number
class I5(DummyNumber):
number = 5
def __int__(self):
return self.number
class F1_1(DummyNumber):
number = 1.1
def __float__(self):
return self.number
i5 = I5()
f1_1 = F1_1()
# basic sympy objects
basic_objs = [
Rational(2),
Float("1.3"),
x,
y,
pow(x, y)*y,
]
# all supported objects
all_objs = basic_objs + [
5,
5.5,
i5,
f1_1
]
def dotest(s):
for x in all_objs:
for y in all_objs:
s(x, y)
return True
def test_basic():
def j(a, b):
x = a
x = +a
x = -a
x = a + b
x = a - b
x = a*b
x = a/b
x = a**b
assert dotest(j)
def test_ibasic():
def s(a, b):
x = a
x += b
x = a
x -= b
x = a
x *= b
x = a
x /= b
assert dotest(s)
def test_relational():
from sympy import Lt
assert (pi < 3) is S.false
assert (pi <= 3) is S.false
assert (pi > 3) is S.true
assert (pi >= 3) is S.true
assert (-pi < 3) is S.true
assert (-pi <= 3) is S.true
assert (-pi > 3) is S.false
assert (-pi >= 3) is S.false
r = Symbol('r', real=True)
assert (r - 2 < r - 3) is S.false
assert Lt(x + I, x + I + 2).func == Lt # issue 8288
def test_relational_assumptions():
from sympy import Lt, Gt, Le, Ge
m1 = Symbol("m1", nonnegative=False)
m2 = Symbol("m2", positive=False)
m3 = Symbol("m3", nonpositive=False)
m4 = Symbol("m4", negative=False)
assert (m1 < 0) == Lt(m1, 0)
assert (m2 <= 0) == Le(m2, 0)
assert (m3 > 0) == Gt(m3, 0)
assert (m4 >= 0) == Ge(m4, 0)
m1 = Symbol("m1", nonnegative=False, real=True)
m2 = Symbol("m2", positive=False, real=True)
m3 = Symbol("m3", nonpositive=False, real=True)
m4 = Symbol("m4", negative=False, real=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=True)
m2 = Symbol("m2", nonpositive=True)
m3 = Symbol("m3", positive=True)
m4 = Symbol("m4", nonnegative=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=False, real=True)
m2 = Symbol("m2", nonpositive=False, real=True)
m3 = Symbol("m3", positive=False, real=True)
m4 = Symbol("m4", nonnegative=False, real=True)
assert (m1 < 0) is S.false
assert (m2 <= 0) is S.false
assert (m3 > 0) is S.false
assert (m4 >= 0) is S.false
def test_relational_noncommutative():
from sympy import Lt, Gt, Le, Ge
A, B = symbols('A,B', commutative=False)
assert (A < B) == Lt(A, B)
assert (A <= B) == Le(A, B)
assert (A > B) == Gt(A, B)
assert (A >= B) == Ge(A, B)
def test_basic_nostr():
for obj in basic_objs:
raises(TypeError, lambda: obj + '1')
raises(TypeError, lambda: obj - '1')
if obj == 2:
assert obj * '1' == '11'
else:
raises(TypeError, lambda: obj * '1')
raises(TypeError, lambda: obj / '1')
raises(TypeError, lambda: obj ** '1')
def test_series_expansion_for_uniform_order():
assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x)
assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x)
assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x)
def test_leadterm():
assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0)
assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2
assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1
assert (x**2 + 1/x).leadterm(x)[1] == -1
assert (1 + x**2).leadterm(x)[1] == 0
assert (x + 1).leadterm(x)[1] == 0
assert (x + x**2).leadterm(x)[1] == 1
assert (x**2).leadterm(x)[1] == 2
def test_as_leading_term():
assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3
assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2
assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x
assert (x**2 + 1/x).as_leading_term(x) == 1/x
assert (1 + x**2).as_leading_term(x) == 1
assert (x + 1).as_leading_term(x) == 1
assert (x + x**2).as_leading_term(x) == x
assert (x**2).as_leading_term(x) == x**2
assert (x + oo).as_leading_term(x) == oo
raises(ValueError, lambda: (x + 1).as_leading_term(1))
def test_leadterm2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \
(sin(1 + sin(1)), 0)
def test_leadterm3():
assert (y + z + x).leadterm(x) == (y + z, 0)
def test_as_leading_term2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \
sin(1 + sin(1))
def test_as_leading_term3():
assert (2 + pi + x).as_leading_term(x) == 2 + pi
assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x
def test_as_leading_term4():
# see issue 6843
n = Symbol('n', integer=True, positive=True)
r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \
n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \
1 + 1/(n*x + x) + 1/(n + 1) - 1/x
assert r.as_leading_term(x).cancel() == n/2
def test_as_leading_term_stub():
class foo(Function):
pass
assert foo(1/x).as_leading_term(x) == foo(1/x)
assert foo(1).as_leading_term(x) == foo(1)
raises(NotImplementedError, lambda: foo(x).as_leading_term(x))
def test_as_leading_term_deriv_integral():
# related to issue 11313
assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2
assert Derivative(x ** 3, y).as_leading_term(x) == 0
assert Integral(x ** 3, x).as_leading_term(x) == x**4/4
assert Integral(x ** 3, y).as_leading_term(x) == y*x**3
assert Derivative(exp(x), x).as_leading_term(x) == 1
assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x)
def test_atoms():
assert x.atoms() == {x}
assert (1 + x).atoms() == {x, S(1)}
assert (1 + 2*cos(x)).atoms(Symbol) == {x}
assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S(1), S(2), x}
assert (2*(x**(y**x))).atoms() == {S(2), x, y}
assert Rational(1, 2).atoms() == {S.Half}
assert Rational(1, 2).atoms(Symbol) == set([])
assert sin(oo).atoms(oo) == set()
assert Poly(0, x).atoms() == {S.Zero}
assert Poly(1, x).atoms() == {S.One}
assert Poly(x, x).atoms() == {x}
assert Poly(x, x, y).atoms() == {x}
assert Poly(x + y, x, y).atoms() == {x, y}
assert Poly(x + y, x, y, z).atoms() == {x, y}
assert Poly(x + y*t, x, y, z).atoms() == {t, x, y}
assert (I*pi).atoms(NumberSymbol) == {pi}
assert (I*pi).atoms(NumberSymbol, I) == \
(I*pi).atoms(I, NumberSymbol) == {pi, I}
assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)}
assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \
{1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z}
# issue 6132
f = Function('f')
e = (f(x) + sin(x) + 2)
assert e.atoms(AppliedUndef) == \
{f(x)}
assert e.atoms(AppliedUndef, Function) == \
{f(x), sin(x)}
assert e.atoms(Function) == \
{f(x), sin(x)}
assert e.atoms(AppliedUndef, Number) == \
{f(x), S(2)}
assert e.atoms(Function, Number) == \
{S(2), sin(x), f(x)}
def test_is_polynomial():
k = Symbol('k', nonnegative=True, integer=True)
assert Rational(2).is_polynomial(x, y, z) is True
assert (S.Pi).is_polynomial(x, y, z) is True
assert x.is_polynomial(x) is True
assert x.is_polynomial(y) is True
assert (x**2).is_polynomial(x) is True
assert (x**2).is_polynomial(y) is True
assert (x**(-2)).is_polynomial(x) is False
assert (x**(-2)).is_polynomial(y) is True
assert (2**x).is_polynomial(x) is False
assert (2**x).is_polynomial(y) is True
assert (x**k).is_polynomial(x) is False
assert (x**k).is_polynomial(k) is False
assert (x**x).is_polynomial(x) is False
assert (k**k).is_polynomial(k) is False
assert (k**x).is_polynomial(k) is False
assert (x**(-k)).is_polynomial(x) is False
assert ((2*x)**k).is_polynomial(x) is False
assert (x**2 + 3*x - 8).is_polynomial(x) is True
assert (x**2 + 3*x - 8).is_polynomial(y) is True
assert (x**2 + 3*x - 8).is_polynomial() is True
assert sqrt(x).is_polynomial(x) is False
assert (sqrt(x)**3).is_polynomial(x) is False
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False
def test_is_rational_function():
assert Integer(1).is_rational_function() is True
assert Integer(1).is_rational_function(x) is True
assert Rational(17, 54).is_rational_function() is True
assert Rational(17, 54).is_rational_function(x) is True
assert (12/x).is_rational_function() is True
assert (12/x).is_rational_function(x) is True
assert (x/y).is_rational_function() is True
assert (x/y).is_rational_function(x) is True
assert (x/y).is_rational_function(x, y) is True
assert (x**2 + 1/x/y).is_rational_function() is True
assert (x**2 + 1/x/y).is_rational_function(x) is True
assert (x**2 + 1/x/y).is_rational_function(x, y) is True
assert (sin(y)/x).is_rational_function() is False
assert (sin(y)/x).is_rational_function(y) is False
assert (sin(y)/x).is_rational_function(x) is True
assert (sin(y)/x).is_rational_function(x, y) is False
assert (S.NaN).is_rational_function() is False
assert (S.Infinity).is_rational_function() is False
assert (-S.Infinity).is_rational_function() is False
assert (S.ComplexInfinity).is_rational_function() is False
def test_is_algebraic_expr():
assert sqrt(3).is_algebraic_expr(x) is True
assert sqrt(3).is_algebraic_expr() is True
eq = ((1 + x**2)/(1 - y**2))**(S(1)/3)
assert eq.is_algebraic_expr(x) is True
assert eq.is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True
assert (cos(y)/sqrt(x)).is_algebraic_expr() is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True
assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False
def test_SAGE1():
#see https://github.com/sympy/sympy/issues/3346
class MyInt:
def _sympy_(self):
return Integer(5)
m = MyInt()
e = Rational(2)*m
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE2():
class MyInt(object):
def __int__(self):
return 5
assert sympify(MyInt()) == 5
e = Rational(2)*MyInt()
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE3():
class MySymbol:
def __rmul__(self, other):
return ('mys', other, self)
o = MySymbol()
e = x*o
assert e == ('mys', x, o)
def test_len():
e = x*y
assert len(e.args) == 2
e = x + y + z
assert len(e.args) == 3
def test_doit():
a = Integral(x**2, x)
assert isinstance(a.doit(), Integral) is False
assert isinstance(a.doit(integrals=True), Integral) is False
assert isinstance(a.doit(integrals=False), Integral) is True
assert (2*Integral(x, x)).doit() == x**2
def test_attribute_error():
raises(AttributeError, lambda: x.cos())
raises(AttributeError, lambda: x.sin())
raises(AttributeError, lambda: x.exp())
def test_args():
assert (x*y).args in ((x, y), (y, x))
assert (x + y).args in ((x, y), (y, x))
assert (x*y + 1).args in ((x*y, 1), (1, x*y))
assert sin(x*y).args == (x*y,)
assert sin(x*y).args[0] == x*y
assert (x**y).args == (x, y)
assert (x**y).args[0] == x
assert (x**y).args[1] == y
def test_noncommutative_expand_issue_3757():
A, B, C = symbols('A,B,C', commutative=False)
assert A*B - B*A != 0
assert (A*(A + B)*B).expand() == A**2*B + A*B**2
assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B
def test_as_numer_denom():
a, b, c = symbols('a, b, c')
assert nan.as_numer_denom() == (nan, 1)
assert oo.as_numer_denom() == (oo, 1)
assert (-oo).as_numer_denom() == (-oo, 1)
assert zoo.as_numer_denom() == (zoo, 1)
assert (-zoo).as_numer_denom() == (zoo, 1)
assert x.as_numer_denom() == (x, 1)
assert (1/x).as_numer_denom() == (1, x)
assert (x/y).as_numer_denom() == (x, y)
assert (x/2).as_numer_denom() == (x, 2)
assert (x*y/z).as_numer_denom() == (x*y, z)
assert (x/(y*z)).as_numer_denom() == (x, y*z)
assert Rational(1, 2).as_numer_denom() == (1, 2)
assert (1/y**2).as_numer_denom() == (1, y**2)
assert (x/y**2).as_numer_denom() == (x, y**2)
assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y)
assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7)
assert (x**-2).as_numer_denom() == (1, x**2)
assert (a/x + b/2/x + c/3/x).as_numer_denom() == \
(6*a + 3*b + 2*c, 6*x)
assert (a/x + b/2/x + c/3/y).as_numer_denom() == \
(2*c*x + y*(6*a + 3*b), 6*x*y)
assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \
(2*a + b + 4.0*c, 2*x)
# this should take no more than a few seconds
assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)]
).as_numer_denom()[1]/x).n(4)) == 705
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).as_numer_denom() == \
(x + i, 3)
assert (S.Infinity + x/3 + y/4).as_numer_denom() == \
(4*x + 3*y + S.Infinity, 12)
assert (oo*x + zoo*y).as_numer_denom() == \
(zoo*y + oo*x, 1)
A, B, C = symbols('A,B,C', commutative=False)
assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1)
assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x)
assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1)
assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x)
assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1)
assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x)
def test_trunc():
import math
x, y = symbols('x y')
assert math.trunc(2) == 2
assert math.trunc(4.57) == 4
assert math.trunc(-5.79) == -5
assert math.trunc(pi) == 3
assert math.trunc(log(7)) == 1
assert math.trunc(exp(5)) == 148
assert math.trunc(cos(pi)) == -1
assert math.trunc(sin(5)) == 0
raises(TypeError, lambda: math.trunc(x))
raises(TypeError, lambda: math.trunc(x + y**2))
raises(TypeError, lambda: math.trunc(oo))
def test_as_independent():
assert S.Zero.as_independent(x, as_Add=True) == (0, 0)
assert S.Zero.as_independent(x, as_Add=False) == (0, 0)
assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x))
assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y)
assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y))
assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y))
assert (sin(x)).as_independent(x) == (1, sin(x))
assert (sin(x)).as_independent(y) == (sin(x), 1)
assert (2*sin(x)).as_independent(x) == (2, sin(x))
assert (2*sin(x)).as_independent(y) == (2*sin(x), 1)
# issue 4903 = 1766b
n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2)
assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1)
assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1)
assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1)
assert (3*x).as_independent(x, as_Add=True) == (0, 3*x)
assert (3*x).as_independent(x, as_Add=False) == (3, x)
assert (3 + x).as_independent(x, as_Add=True) == (3, x)
assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x)
# issue 5479
assert (3*x).as_independent(Symbol) == (3, x)
# issue 5648
assert (n1*x*y).as_independent(x) == (n1*y, x)
assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y))
assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y)
assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \
== (1, DiracDelta(x - n1)*DiracDelta(x - y))
assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3)
assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3)
assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3)
assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \
(DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1))
# issue 5784
assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \
(Integral(x, (x, 1, 2)), x)
eq = Add(x, -x, 2, -3, evaluate=False)
assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False))
eq = Mul(x, 1/x, 2, -3, evaluate=False)
eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False))
assert (x*y).as_independent(z, as_Add=True) == (x*y, 0)
@XFAIL
def test_call_2():
# TODO UndefinedFunction does not subclass Expr
f = Function('f')
assert (2*f)(x) == 2*f(x)
def test_replace():
f = log(sin(x)) + tan(sin(x**2))
assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
a = Wild('a')
b = Wild('b')
assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
# test exact
assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, b - a) == 2*x
assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x
g = 2*sin(x**3)
assert g.replace(
lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9)
assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)})
assert sin(x).replace(cos, sin) == sin(x)
cond, func = lambda x: x.is_Mul, lambda x: 2*x
assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y})
assert (x*(1 + x*y)).replace(cond, func, map=True) == \
(2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y})
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \
(sin(x), {sin(x): sin(x)/y})
# if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y,
simultaneous=False) == sin(x)/y
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x)
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e,
simultaneous=False) == x**2/2 + O(x**3)
assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \
x*(x*y + 5) + 2
e = (x*y + 1)*(2*x*y + 1) + 1
assert e.replace(cond, func, map=True) == (
2*((2*x*y + 1)*(4*x*y + 1)) + 1,
{2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1):
2*((2*x*y + 1)*(4*x*y + 1))})
assert x.replace(x, y) == y
assert (x + 1).replace(1, 2) == x + 2
# https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0
n1, n2, n3 = symbols('n1:4', commutative=False)
f = Function('f')
assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2
assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2
def test_find():
expr = (x + y + 2 + sin(3*x))
assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)}
assert expr.find(lambda u: u.is_Symbol) == {x, y}
assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1}
assert expr.find(Integer) == {S(2), S(3)}
assert expr.find(Symbol) == {x, y}
assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(Symbol, group=True) == {x: 2, y: 1}
a = Wild('a')
expr = sin(sin(x)) + sin(x) + cos(x) + x
assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))}
assert expr.find(
lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin(a)) == {sin(x), sin(sin(x))}
assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin) == {sin(x), sin(sin(x))}
assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
def test_count():
expr = (x + y + 2 + sin(3*x))
assert expr.count(lambda u: u.is_Integer) == 2
assert expr.count(lambda u: u.is_Symbol) == 3
assert expr.count(Integer) == 2
assert expr.count(Symbol) == 3
assert expr.count(2) == 1
a = Wild('a')
assert expr.count(sin) == 1
assert expr.count(sin(a)) == 1
assert expr.count(lambda u: type(u) is sin) == 1
f = Function('f')
assert f(x).count(f(x)) == 1
assert f(x).diff(x).count(f(x)) == 1
assert f(x).diff(x).count(x) == 2
def test_has_basics():
f = Function('f')
g = Function('g')
p = Wild('p')
assert sin(x).has(x)
assert sin(x).has(sin)
assert not sin(x).has(y)
assert not sin(x).has(cos)
assert f(x).has(x)
assert f(x).has(f)
assert not f(x).has(y)
assert not f(x).has(g)
assert f(x).diff(x).has(x)
assert f(x).diff(x).has(f)
assert f(x).diff(x).has(Derivative)
assert not f(x).diff(x).has(y)
assert not f(x).diff(x).has(g)
assert not f(x).diff(x).has(sin)
assert (x**2).has(Symbol)
assert not (x**2).has(Wild)
assert (2*p).has(Wild)
assert not x.has()
def test_has_multiple():
f = x**2*y + sin(2**t + log(z))
assert f.has(x)
assert f.has(y)
assert f.has(z)
assert f.has(t)
assert not f.has(u)
assert f.has(x, y, z, t)
assert f.has(x, y, z, t, u)
i = Integer(4400)
assert not i.has(x)
assert (i*x**i).has(x)
assert not (i*y**i).has(x)
assert (i*y**i).has(x, y)
assert not (i*y**i).has(x, z)
def test_has_piecewise():
f = (x*y + 3/y)**(3 + 2)
g = Function('g')
h = Function('h')
p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True))
assert p.has(x)
assert p.has(y)
assert not p.has(z)
assert p.has(1)
assert p.has(3)
assert not p.has(4)
assert p.has(f)
assert p.has(g)
assert not p.has(h)
def test_has_iterative():
A, B, C = symbols('A,B,C', commutative=False)
f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B)
assert f.has(x)
assert f.has(x*y)
assert f.has(x*sin(x))
assert not f.has(x*sin(y))
assert f.has(x*A)
assert f.has(x*A*B)
assert not f.has(x*A*C)
assert f.has(x*A*B*C)
assert not f.has(x*A*C*B)
assert f.has(x*sin(x)*A*B*C)
assert not f.has(x*sin(x)*A*C*B)
assert not f.has(x*sin(y)*A*B*C)
assert f.has(x*gamma(x))
assert not f.has(x + sin(x))
assert (x & y & z).has(x & z)
def test_has_integrals():
f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z))
assert f.has(x + y)
assert f.has(x + z)
assert f.has(y + z)
assert f.has(x*y)
assert f.has(x*z)
assert f.has(y*z)
assert not f.has(2*x + y)
assert not f.has(2*x*y)
def test_has_tuple():
f = Function('f')
g = Function('g')
h = Function('h')
assert Tuple(x, y).has(x)
assert not Tuple(x, y).has(z)
assert Tuple(f(x), g(x)).has(x)
assert not Tuple(f(x), g(x)).has(y)
assert Tuple(f(x), g(x)).has(f)
assert Tuple(f(x), g(x)).has(f(x))
assert not Tuple(f, g).has(x)
assert Tuple(f, g).has(f)
assert not Tuple(f, g).has(h)
assert Tuple(True).has(True) is True # .has(1) will also be True
def test_has_units():
from sympy.physics.units import m, s
assert (x*m/s).has(x)
assert (x*m/s).has(y, z) is False
def test_has_polys():
poly = Poly(x**2 + x*y*sin(z), x, y, t)
assert poly.has(x)
assert poly.has(x, y, z)
assert poly.has(x, y, z, t)
def test_has_physics():
assert FockState((x, y)).has(x)
def test_as_poly_as_expr():
f = x**2 + 2*x*y
assert f.as_poly().as_expr() == f
assert f.as_poly(x, y).as_expr() == f
assert (f + sin(x)).as_poly(x, y) is None
p = Poly(f, x, y)
assert p.as_poly() == p
def test_nonzero():
assert bool(S.Zero) is False
assert bool(S.One) is True
assert bool(x) is True
assert bool(x + y) is True
assert bool(x - x) is False
assert bool(x*y) is True
assert bool(x*1) is True
assert bool(x*0) is False
def test_is_number():
assert Float(3.14).is_number is True
assert Integer(737).is_number is True
assert Rational(3, 2).is_number is True
assert Rational(8).is_number is True
assert x.is_number is False
assert (2*x).is_number is False
assert (x + y).is_number is False
assert log(2).is_number is True
assert log(x).is_number is False
assert (2 + log(2)).is_number is True
assert (8 + log(2)).is_number is True
assert (2 + log(x)).is_number is False
assert (8 + log(2) + x).is_number is False
assert (1 + x**2/x - x).is_number is True
assert Tuple(Integer(1)).is_number is False
assert Add(2, x).is_number is False
assert Mul(3, 4).is_number is True
assert Pow(log(2), 2).is_number is True
assert oo.is_number is True
g = WildFunction('g')
assert g.is_number is False
assert (2*g).is_number is False
assert (x**2).subs(x, 3).is_number is True
# test extensibility of .is_number
# on subinstances of Basic
class A(Basic):
pass
a = A()
assert a.is_number is False
def test_as_coeff_add():
assert S(2).as_coeff_add() == (2, ())
assert S(3.0).as_coeff_add() == (0, (S(3.0),))
assert S(-3.0).as_coeff_add() == (0, (S(-3.0),))
assert x.as_coeff_add() == (0, (x,))
assert (x - 1).as_coeff_add() == (-1, (x,))
assert (x + 1).as_coeff_add() == (1, (x,))
assert (x + 2).as_coeff_add() == (2, (x,))
assert (x + y).as_coeff_add(y) == (x, (y,))
assert (3*x).as_coeff_add(y) == (3*x, ())
# don't do expansion
e = (x + y)**2
assert e.as_coeff_add(y) == (0, (e,))
def test_as_coeff_mul():
assert S(2).as_coeff_mul() == (2, ())
assert S(3.0).as_coeff_mul() == (1, (S(3.0),))
assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),))
assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ())
assert x.as_coeff_mul() == (1, (x,))
assert (-x).as_coeff_mul() == (-1, (x,))
assert (2*x).as_coeff_mul() == (2, (x,))
assert (x*y).as_coeff_mul(y) == (x, (y,))
assert (3 + x).as_coeff_mul() == (1, (3 + x,))
assert (3 + x).as_coeff_mul(y) == (3 + x, ())
# don't do expansion
e = exp(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
e = 2**(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,))
assert (1.1*x).as_coeff_mul() == (1, (1.1, x))
assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x))
def test_as_coeff_exponent():
assert (3*x**4).as_coeff_exponent(x) == (3, 4)
assert (2*x**3).as_coeff_exponent(x) == (2, 3)
assert (4*x**2).as_coeff_exponent(x) == (4, 2)
assert (6*x**1).as_coeff_exponent(x) == (6, 1)
assert (3*x**0).as_coeff_exponent(x) == (3, 0)
assert (2*x**0).as_coeff_exponent(x) == (2, 0)
assert (1*x**0).as_coeff_exponent(x) == (1, 0)
assert (0*x**0).as_coeff_exponent(x) == (0, 0)
assert (-1*x**0).as_coeff_exponent(x) == (-1, 0)
assert (-2*x**0).as_coeff_exponent(x) == (-2, 0)
assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3)
assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \
(log(2)/(2 + pi), 0)
# issue 4784
D = Derivative
f = Function('f')
fx = D(f(x), x)
assert fx.as_coeff_exponent(f(x)) == (fx, 0)
def test_extractions():
assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2
assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None
assert (2*x).extract_multiplicatively(2) == x
assert (2*x).extract_multiplicatively(3) is None
assert (2*x).extract_multiplicatively(-1) is None
assert (Rational(1, 2)*x).extract_multiplicatively(3) == x/6
assert (sqrt(x)).extract_multiplicatively(x) is None
assert (sqrt(x)).extract_multiplicatively(1/x) is None
assert x.extract_multiplicatively(-x) is None
assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I
assert (-2 - 4*I).extract_multiplicatively(3) is None
assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4
assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x
assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x
assert (-4*y**2*x).extract_multiplicatively(-3*y) is None
assert (2*x).extract_multiplicatively(1) == 2*x
assert (-oo).extract_multiplicatively(5) == -oo
assert (oo).extract_multiplicatively(5) == oo
assert ((x*y)**3).extract_additively(1) is None
assert (x + 1).extract_additively(x) == 1
assert (x + 1).extract_additively(2*x) is None
assert (x + 1).extract_additively(-x) is None
assert (-x + 1).extract_additively(2*x) is None
assert (2*x + 3).extract_additively(x) == x + 3
assert (2*x + 3).extract_additively(2) == 2*x + 1
assert (2*x + 3).extract_additively(3) == 2*x
assert (2*x + 3).extract_additively(-2) is None
assert (2*x + 3).extract_additively(3*x) is None
assert (2*x + 3).extract_additively(2*x) == 3
assert x.extract_additively(0) == x
assert S(2).extract_additively(x) is None
assert S(2.).extract_additively(2) == S.Zero
assert S(2*x + 3).extract_additively(x + 1) == x + 2
assert S(2*x + 3).extract_additively(y + 1) is None
assert S(2*x - 3).extract_additively(x + 1) is None
assert S(2*x - 3).extract_additively(y + z) is None
assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \
4*a*x + 3*x + y
assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \
4*a*x + 3*x + y
assert (y*(x + 1)).extract_additively(x + 1) is None
assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \
y*(x + 1) + 3
assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \
x*(x + y) + 3
assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \
x + y + (x + 1)*(x + y) + 3
assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \
(x + 2*y)*(y + 1) + 3
n = Symbol("n", integer=True)
assert (Integer(-3)).could_extract_minus_sign() is True
assert (-n*x + x).could_extract_minus_sign() != \
(n*x - x).could_extract_minus_sign()
assert (x - y).could_extract_minus_sign() != \
(-x + y).could_extract_minus_sign()
assert (1 - x - y).could_extract_minus_sign() is True
assert (1 - x + y).could_extract_minus_sign() is False
assert ((-x - x*y)/y).could_extract_minus_sign() is True
assert (-(x + x*y)/y).could_extract_minus_sign() is True
assert ((x + x*y)/(-y)).could_extract_minus_sign() is True
assert ((x + x*y)/y).could_extract_minus_sign() is False
assert (x*(-x - x**3)).could_extract_minus_sign() is True
assert ((-x - y)/(x + y)).could_extract_minus_sign() is True
class sign_invariant(Function, Expr):
nargs = 1
def __neg__(self):
return self
foo = sign_invariant(x)
assert foo == -foo
assert foo.could_extract_minus_sign() is False
# The results of each of these will vary on different machines, e.g.
# the first one might be False and the other (then) is true or vice versa,
# so both are included.
assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \
((-x - y)/(y - x)).could_extract_minus_sign() is False
assert (x - y).could_extract_minus_sign() is False
assert (-x + y).could_extract_minus_sign() is True
def test_nan_extractions():
for r in (1, 0, I, nan):
assert nan.extract_additively(r) is None
assert nan.extract_multiplicatively(r) is None
def test_coeff():
assert (x + 1).coeff(x + 1) == 1
assert (3*x).coeff(0) == 0
assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2
assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2
assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (3 + 2*x + 4*x**2).coeff(-1) == 0
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (-x/8 + x*y).coeff(x) == -S(1)/8 + y
assert (-x/8 + x*y).coeff(-x) == S(1)/8
assert (4*x).coeff(2*x) == 0
assert (2*x).coeff(2*x) == 1
assert (-oo*x).coeff(x*oo) == -1
assert (10*x).coeff(x, 0) == 0
assert (10*x).coeff(10*x, 0) == 0
n1, n2 = symbols('n1 n2', commutative=False)
assert (n1*n2).coeff(n1) == 1
assert (n1*n2).coeff(n2) == n1
assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x)
assert (n2*n1 + x*n1).coeff(n1) == n2 + x
assert (n2*n1 + x*n1**2).coeff(n1) == n2
assert (n1**x).coeff(n1) == 0
assert (n1*n2 + n2*n1).coeff(n1) == 0
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2
f = Function('f')
assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr.coeff(x + y) == 0
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
assert (x + y + 3*z).coeff(1) == x + y
assert (-x + 2*y).coeff(-1) == x
assert (x - 2*y).coeff(-1) == 2*y
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (-x - 2*y).coeff(2) == -y
assert (x + sqrt(2)*x).coeff(sqrt(2)) == x
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (z*(x + y)**2).coeff((x + y)**2) == z
assert (z*(x + y)**2).coeff(x + y) == 0
assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y
assert (x + 2*y + 3).coeff(1) == x
assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3
assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x
assert x.coeff(0, 0) == 0
assert x.coeff(x, 0) == 0
n, m, o, l = symbols('n m o l', commutative=False)
assert n.coeff(n) == 1
assert y.coeff(n) == 0
assert (3*n).coeff(n) == 3
assert (2 + n).coeff(x*m) == 0
assert (2*x*n*m).coeff(x) == 2*n*m
assert (2 + n).coeff(x*m*n + y) == 0
assert (2*x*n*m).coeff(3*n) == 0
assert (n*m + m*n*m).coeff(n) == 1 + m
assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m
assert (n*m + m*n).coeff(n) == 0
assert (n*m + o*m*n).coeff(m*n) == o
assert (n*m + o*m*n).coeff(m*n, right=1) == 1
assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1)
assert (x*y).coeff(z, 0) == x*y
def test_coeff2():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff((psi(r).diff(r))) == 2/r
def test_coeff2_0():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff(psi(r).diff(r, 2)) == 1
def test_coeff_expand():
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
def test_integrate():
assert x.integrate(x) == x**2/2
assert x.integrate((x, 0, 1)) == S(1)/2
def test_as_base_exp():
assert x.as_base_exp() == (x, S.One)
assert (x*y*z).as_base_exp() == (x*y*z, S.One)
assert (x + y + z).as_base_exp() == (x + y + z, S.One)
assert ((x + y)**z).as_base_exp() == (x + y, z)
def test_issue_4963():
assert hasattr(Mul(x, y), "is_commutative")
assert hasattr(Mul(x, y, evaluate=False), "is_commutative")
assert hasattr(Pow(x, y), "is_commutative")
assert hasattr(Pow(x, y, evaluate=False), "is_commutative")
expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1
assert hasattr(expr, "is_commutative")
def test_action_verbs():
assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \
(1/(exp(3*pi*x/5) + 1)).nsimplify()
assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True)
assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp()
assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \
(1/(a + b*sqrt(c))).radsimp(symbolic=False)
assert powsimp(x**y*x**z*y**z, combine='all') == \
(x**y*x**z*y**z).powsimp(combine='all')
assert (x**t*y**t).powsimp(force=True) == (x*y)**t
assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
assert together(1/x + 1/y) == (1/x + 1/y).together()
assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \
(a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y)
assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp()
assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp()
assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor()
assert refine(sqrt(x**2)) == sqrt(x**2).refine()
assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel()
def test_as_powers_dict():
assert x.as_powers_dict() == {x: 1}
assert (x**y*z).as_powers_dict() == {x: y, z: 1}
assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)}
assert (x*y).as_powers_dict()[z] == 0
assert (x + y).as_powers_dict()[z] == 0
def test_as_coefficients_dict():
check = [S(1), x, y, x*y, 1]
assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \
[3, 5, 1, 0, 3]
assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i]
for i in check] == [3, 5, 1, 0, 3]
assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3, 0]
assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3.0, 0]
assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0
def test_args_cnc():
A = symbols('A', commutative=False)
assert (x + A).args_cnc() == \
[[], [x + A]]
assert (x + a).args_cnc() == \
[[a + x], []]
assert (x*a).args_cnc() == \
[[a, x], []]
assert (x*y*A*(A + 1)).args_cnc(cset=True) == \
[{x, y}, [A, 1 + A]]
assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x}, []]
assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x, x**2}, []]
raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True))
assert Mul(x, y, x, evaluate=False).args_cnc() == \
[[x, y, x], []]
# always split -1 from leading number
assert (-1.*x).args_cnc() == [[-1, 1.0, x], []]
def test_new_rawargs():
n = Symbol('n', commutative=False)
a = x + n
assert a.is_commutative is False
assert a._new_rawargs(x).is_commutative
assert a._new_rawargs(x, y).is_commutative
assert a._new_rawargs(x, n).is_commutative is False
assert a._new_rawargs(x, y, n).is_commutative is False
m = x*n
assert m.is_commutative is False
assert m._new_rawargs(x).is_commutative
assert m._new_rawargs(n).is_commutative is False
assert m._new_rawargs(x, y).is_commutative
assert m._new_rawargs(x, n).is_commutative is False
assert m._new_rawargs(x, y, n).is_commutative is False
assert m._new_rawargs(x, n, reeval=False).is_commutative is False
assert m._new_rawargs(S.One) is S.One
def test_issue_5226():
assert Add(evaluate=False) == 0
assert Mul(evaluate=False) == 1
assert Mul(x + y, evaluate=False).is_Add
def test_free_symbols():
# free_symbols should return the free symbols of an object
assert S(1).free_symbols == set()
assert (x).free_symbols == {x}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert (-Integral(x, (x, 1, y))).free_symbols == {y}
assert meter.free_symbols == set()
assert (meter**x).free_symbols == {x}
def test_issue_5300():
x = Symbol('x', commutative=False)
assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3
def test_floordiv():
from sympy.functions.elementary.integers import floor
assert x // y == floor(x / y)
def test_as_coeff_Mul():
assert S(0).as_coeff_Mul() == (S.One, S.Zero)
assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1))
assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1))
assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1))
assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x)
assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x)
assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x)
assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y)
assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y)
assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y)
assert (x).as_coeff_Mul() == (S.One, x)
assert (x*y).as_coeff_Mul() == (S.One, x*y)
assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x)
def test_as_coeff_Add():
assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0))
assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0))
assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0))
assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x)
assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x)
assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x)
assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x)
assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y)
assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y)
assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y)
assert (x).as_coeff_Add() == (S.Zero, x)
assert (x*y).as_coeff_Add() == (S.Zero, x*y)
def test_expr_sorting():
f, g = symbols('f,g', cls=Function)
exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n,
sin(x**2), cos(x), cos(x**2), tan(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[3], [1, 2]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [1, 2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{x: -y}, {x: y}]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{1}, {1, 2}]
assert sorted(exprs, key=default_sort_key) == exprs
a, b = exprs = [Dummy('x'), Dummy('x')]
assert sorted([b, a], key=default_sort_key) == exprs
def test_as_ordered_factors():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_factors() == [x]
assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \
== [Integer(2), x, x**n, sin(x), cos(x)]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Mul(*args)
assert expr.as_ordered_factors() == args
A, B = symbols('A,B', commutative=False)
assert (A*B).as_ordered_factors() == [A, B]
assert (B*A).as_ordered_factors() == [B, A]
def test_as_ordered_terms():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_terms() == [x]
assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \
== [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Add(*args)
assert expr.as_ordered_terms() == args
assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1]
assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I]
assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I]
assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I]
assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I]
assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I]
assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I]
assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I]
assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I]
f = x**2*y**2 + x*y**4 + y + 2
assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2]
assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2]
assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2]
assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4]
k = symbols('k')
assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k])
def test_sort_key_atomic_expr():
from sympy.physics.units import m, s
assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s]
def test_eval_interval():
assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0)
# issue 4199
# first subs and limit gives NaN
a = x/y
assert a._eval_interval(x, S(0), oo)._eval_interval(y, oo, S(0)) is S.NaN
# second subs and limit gives NaN
assert a._eval_interval(x, S(0), oo)._eval_interval(y, S(0), oo) is S.NaN
# difference gives S.NaN
a = x - y
assert a._eval_interval(x, S(1), oo)._eval_interval(y, oo, S(1)) is S.NaN
raises(ValueError, lambda: x._eval_interval(x, None, None))
a = -y*Heaviside(x - y)
assert a._eval_interval(x, -oo, oo) == -y
assert a._eval_interval(x, oo, -oo) == y
def test_eval_interval_zoo():
# Test that limit is used when zoo is returned
assert Si(1/x)._eval_interval(x, S(0), S(1)) == -pi/2 + Si(1)
def test_primitive():
assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2)
assert (6*x + 2).primitive() == (2, 3*x + 1)
assert (x/2 + 3).primitive() == (S(1)/2, x + 6)
eq = (6*x + 2)*(x/2 + 3)
assert eq.primitive()[0] == 1
eq = (2 + 2*x)**2
assert eq.primitive()[0] == 1
assert (4.0*x).primitive() == (1, 4.0*x)
assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y)
assert (-2*x).primitive() == (2, -x)
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \
(S(1)/14, 7.0*x + 21*y + 10*z)
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).primitive() == \
(S(1)/3, i + x)
assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \
(S(1)/21, 14*x + 12*y + oo)
assert S.Zero.primitive() == (S.One, S.Zero)
def test_issue_5843():
a = 1 + x
assert (2*a).extract_multiplicatively(a) == 2
assert (4*a).extract_multiplicatively(2*a) == 2
assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a
def test_is_constant():
from sympy.solvers.solvers import checksol
Sum(x, (x, 1, 10)).is_constant() is True
Sum(x, (x, 1, n)).is_constant() is False
Sum(x, (x, 1, n)).is_constant(y) is True
Sum(x, (x, 1, n)).is_constant(n) is False
Sum(x, (x, 1, n)).is_constant(x) is True
eq = a*cos(x)**2 + a*sin(x)**2 - a
eq.is_constant() is True
assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
assert x.is_constant() is False
assert x.is_constant(y) is True
assert checksol(x, x, Sum(x, (x, 1, n))) is False
assert checksol(x, x, Sum(x, (x, 1, n))) is False
f = Function('f')
assert f(1).is_constant
assert checksol(x, x, f(x)) is False
assert Pow(x, S(0), evaluate=False).is_constant() is True # == 1
assert Pow(S(0), x, evaluate=False).is_constant() is False # == 0 or 1
assert (2**x).is_constant() is False
assert Pow(S(2), S(3), evaluate=False).is_constant() is True
z1, z2 = symbols('z1 z2', zero=True)
assert (z1 + 2*z2).is_constant() is True
assert meter.is_constant() is True
assert (3*meter).is_constant() is True
assert (x*meter).is_constant() is False
assert Poly(3,x).is_constant() is True
def test_equals():
assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0)
assert (x**2 - 1).equals((x + 1)*(x - 1))
assert (cos(x)**2 + sin(x)**2).equals(1)
assert (a*cos(x)**2 + a*sin(x)**2).equals(a)
r = sqrt(2)
assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0)
assert factorial(x + 1).equals((x + 1)*factorial(x))
assert sqrt(3).equals(2*sqrt(3)) is False
assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False
assert (sqrt(5) + sqrt(3)).equals(0) is False
assert (sqrt(5) + pi).equals(0) is False
assert meter.equals(0) is False
assert (3*meter**2).equals(0) is False
eq = -(-1)**(S(3)/4)*6**(S(1)/4) + (-6)**(S(1)/4)*I
if eq != 0: # if canonicalization makes this zero, skip the test
assert eq.equals(0)
assert sqrt(x).equals(0) is False
# from integrate(x*sqrt(1 + 2*x), x);
# diff is zero only when assumptions allow
i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \
2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x)
ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15
diff = i - ans
assert diff.equals(0) is False
assert diff.subs(x, -S.Half/2) == 7*sqrt(2)/120
# there are regions for x for which the expression is True, for
# example, when x < -1/2 or x > 0 the expression is zero
p = Symbol('p', positive=True)
assert diff.subs(x, p).equals(0) is True
assert diff.subs(x, -1).equals(0) is True
# prove via minimal_polynomial or self-consistency
eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert eq.equals(0)
q = 3**Rational(1, 3) + 3
p = expand(q**3)**Rational(1, 3)
assert (p - q).equals(0)
# issue 6829
# eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S(1)/3
# z = eq.subs(x, solve(eq, x)[0])
q = symbols('q')
z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4) + q/4 + (-sqrt(-2*(-(q
- S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q
- S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**2 - S(1)/3)
assert z.equals(0)
def test_random():
from sympy import posify, lucas
assert posify(x)[0]._random() is not None
assert lucas(n)._random(2, -2, 0, -1, 1) is None
# issue 8662
assert Piecewise((Max(x, y), z))._random() is None
def test_round():
from sympy.abc import x
assert Float('0.1249999').round(2) == 0.12
d20 = 12345678901234567890
ans = S(d20).round(2)
assert ans.is_Integer and ans == d20
ans = S(d20).round(-2)
assert ans.is_Integer and ans == 12345678901234567900
assert S('1/7').round(4) == 0.1429
assert S('.[12345]').round(4) == 0.1235
assert S('.1349').round(2) == 0.13
n = S(12345)
ans = n.round()
assert ans.is_Integer
assert ans == n
ans = n.round(1)
assert ans.is_Integer
assert ans == n
ans = n.round(4)
assert ans.is_Integer
assert ans == n
assert n.round(-1) == 12340
r = Float(str(n)).round(-4)
assert r == 10000
# in fact, it should equal many values since __eq__
# compares at equal precision
assert all(r == i for i in range(9984, 10049))
assert n.round(-5) == 0
assert (pi + sqrt(2)).round(2) == 4.56
assert (10*(pi + sqrt(2))).round(-1) == 50
raises(TypeError, lambda: round(x + 2, 2))
assert S(2.3).round(1) == 2.3
# rounding in SymPy (as in Decimal) should be
# exact for the given precision; we check here
# that when a 5 follows the last digit that
# the rounded digit will be even.
for i in range(-99, 100):
# construct a decimal that ends in 5, e.g. 123 -> 0.1235
s = str(abs(i))
p = len(s) # we are going to round to the last digit of i
n = '0.%s5' % s # put a 5 after i's digits
j = p + 2 # 2 for '0.'
if i < 0: # 1 for '-'
j += 1
n = '-' + n
v = str(Float(n).round(p))[:j] # pertinent digits
if v.endswith('.'):
continue # it ends with 0 which is even
L = int(v[-1]) # last digit
assert L % 2 == 0, (n, '->', v)
assert (Float(.3, 3) + 2*pi).round() == 7
assert (Float(.3, 3) + 2*pi*100).round() == 629
assert (pi + 2*E*I).round() == 3 + 5*I
# don't let request for extra precision give more than
# what is known (in this case, only 3 digits)
assert (Float(.03, 3) + 2*pi/100).round(5) == 0.0928
assert (Float(.03, 3) + 2*pi/100).round(4) == 0.0928
assert S.Zero.round() == 0
a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0))
assert a.round(10) == Float('3.0000000000', '')
assert a.round(25) == Float('3.0000000000000000000000000', '')
assert a.round(26) == Float('3.00000000000000000000000000', '')
assert a.round(27) == Float('2.999999999999999999999999999', '')
assert a.round(30) == Float('2.999999999999999999999999999', '')
raises(TypeError, lambda: x.round())
f = Function('f')
raises(TypeError, lambda: f(1).round())
# exact magnitude of 10
assert str(S(1).round()) == '1'
assert str(S(100).round()) == '100'
# applied to real and imaginary portions
assert (2*pi + E*I).round() == 6 + 3*I
assert (2*pi + I/10).round() == 6
assert (pi/10 + 2*I).round() == 2*I
# the lhs re and im parts are Float with dps of 2
# and those on the right have dps of 15 so they won't compare
# equal unless we use string or compare components (which will
# then coerce the floats to the same precision) or re-create
# the floats
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
assert (pi/10 + E*I).round(2).as_real_imag() == (0.31, 2.72)
assert (pi/10 + E*I).round(2) == Float(0.31, 2) + I*Float(2.72, 3)
# issue 6914
assert (I**(I + 3)).round(3) == Float('-0.208', '')*I
# issue 8720
assert S(-123.6).round() == -124
assert S(-1.5).round() == -2
assert S(-100.5).round() == -100
assert S(-1.5 - 10.5*I).round() == -2 - 10*I
# issue 7961
assert str(S(0.006).round(2)) == '0.01'
assert str(S(0.00106).round(4)) == '0.0011'
# issue 8147
assert S.NaN.round() == S.NaN
assert S.Infinity.round() == S.Infinity
assert S.NegativeInfinity.round() == S.NegativeInfinity
assert S.ComplexInfinity.round() == S.ComplexInfinity
# check that types match
for i in range(2):
f = float(i)
# 2 args
assert all(type(round(i, p)) is _rint for p in (-1, 0, 1))
assert all(S(i).round(p).is_Integer for p in (-1, 0, 1))
assert all(type(round(f, p)) is float for p in (-1, 0, 1))
assert all(S(f).round(p).is_Float for p in (-1, 0, 1))
# 1 arg (p is None)
assert type(round(i)) is _rint
assert S(i).round().is_Integer
assert type(round(f)) is _rint
assert S(f).round().is_Integer
def test_held_expression_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
e1 = x*he
assert isinstance(e1, Mul)
assert e1.args == (x, he)
assert e1.doit() == 1
assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False
) == Derivative(x, x)
assert UnevaluatedExpr(Derivative(x, x)).doit() == 1
xx = Mul(x, x, evaluate=False)
assert xx != x**2
ue2 = UnevaluatedExpr(xx)
assert isinstance(ue2, UnevaluatedExpr)
assert ue2.args == (xx,)
assert ue2.doit() == x**2
assert ue2.doit(deep=False) == xx
x2 = UnevaluatedExpr(2)*2
assert type(x2) is Mul
assert x2.args == (2, UnevaluatedExpr(2))
def test_round_exception_nostr():
# Don't use the string form of the expression in the round exception, as
# it's too slow
s = Symbol('bad')
try:
s.round()
except TypeError as e:
assert 'bad' not in str(e)
else:
# Did not raise
raise AssertionError("Did not raise")
def test_extract_branch_factor():
assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1)
def test_identity_removal():
assert Add.make_args(x + 0) == (x,)
assert Mul.make_args(x*1) == (x,)
def test_float_0():
assert Float(0.0) + 1 == Float(1.0)
@XFAIL
def test_float_0_fail():
assert Float(0.0)*x == Float(0.0)
assert (x + Float(0.0)).is_Add
def test_issue_6325():
ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/(
(a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2)
e = sqrt((a + b*t)**2 + (c + z*t)**2)
assert diff(e, t, 2) == ans
e.diff(t, 2) == ans
assert diff(e, t, 2, simplify=False) != ans
def test_issue_7426():
f1 = a % c
f2 = x % z
assert f1.equals(f2) is None
def test_issue_1112():
x = Symbol('x', positive=False)
assert (x > 0) is S.false
def test_issue_10161():
x = symbols('x', real=True)
assert x*abs(x)*abs(x) == x**3
def test_issue_10755():
x = symbols('x')
raises(TypeError, lambda: int(log(x)))
raises(TypeError, lambda: log(x).round(2))
def test_issue_11877():
x = symbols('x')
assert integrate(log(S(1)/2 - x), (x, 0, S(1)/2)) == -S(1)/2 -log(2)/2
def test_normal():
x = symbols('x')
e = Mul(S.Half, 1 + x, evaluate=False)
assert e.normal() == e
def test_ExprBuilder():
eb = ExprBuilder(Mul)
eb.args.extend([x, x])
assert eb.build() == x**2
|
16af85f3228c2eaf693402f0bcc0b5cd210279be0cec192f1d8f43244f5b22f9 | from sympy.core.compatibility import (default_sort_key, as_int, ordered,
iterable, NotIterable)
from sympy.core.singleton import S
from sympy.utilities.pytest import raises
from sympy.abc import x
def test_default_sort_key():
func = lambda x: x
assert sorted([func, x, func], key=default_sort_key) == [func, func, x]
def test_as_int():
raises(ValueError, lambda : as_int(1.1))
raises(ValueError, lambda : as_int([]))
raises(ValueError, lambda : as_int(S.NaN))
raises(ValueError, lambda : as_int(S.Infinity))
raises(ValueError, lambda : as_int(S.NegativeInfinity))
raises(ValueError, lambda : as_int(S.ComplexInfinity))
# for the following, limited precision makes int(arg) == arg
# but the int value is not necessarily what a user might have
# expected; Q.prime is more nuanced in its response for
# expressions which might be complex representations of an
# integer. This is not -- by design -- as_ints role.
raises(ValueError, lambda : as_int(1e23))
raises(ValueError, lambda : as_int(S('1.'+'0'*20+'1')))
def test_iterable():
assert iterable(0) is False
assert iterable(1) is False
assert iterable(None) is False
class Test1(NotIterable):
pass
assert iterable(Test1()) is False
class Test2(NotIterable):
_iterable = True
assert iterable(Test2()) is True
class Test3(object):
pass
assert iterable(Test3()) is False
class Test4(object):
_iterable = True
assert iterable(Test4()) is True
class Test5(object):
def __iter__(self):
yield 1
assert iterable(Test5()) is True
class Test6(Test5):
_iterable = False
assert iterable(Test6()) is False
def test_ordered():
# Issue 7210 - this had been failing with python2/3 problems
assert (list(ordered([{1:3, 2:4, 9:10}, {1:3}])) == \
[{1: 3}, {1: 3, 2: 4, 9: 10}])
# warnings should not be raised for identical items
l = [1, 1]
assert list(ordered(l, warn=True)) == l
l = [[1], [2], [1]]
assert list(ordered(l, warn=True)) == [[1], [1], [2]]
raises(ValueError, lambda: list(ordered(['a', 'ab'], keys=[lambda x: x[0]],
default=False, warn=True)))
def test_round():
from sympy.core.compatibility import round
# XXX delete this test when PY2 is dropped
assert round(S(12.3)).is_Integer
assert round(S(12.3), 0).is_Float
|
fd4ca6d9632926f21991a03f03f8671164dc075d95002f763d3e6d856cf51611 | """Test whether all elements of cls.args are instances of Basic. """
# NOTE: keep tests sorted by (module, class name) key. If a class can't
# be instantiated, add it here anyway with @SKIP("abstract class) (see
# e.g. Function).
import os
import re
import io
from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi,
Eq, log, Function)
from sympy.core.compatibility import range
from sympy.utilities.pytest import XFAIL, SKIP
x, y, z = symbols('x,y,z')
def test_all_classes_are_tested():
this = os.path.split(__file__)[0]
path = os.path.join(this, os.pardir, os.pardir)
sympy_path = os.path.abspath(path)
prefix = os.path.split(sympy_path)[0] + os.sep
re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE)
modules = {}
for root, dirs, files in os.walk(sympy_path):
module = root.replace(prefix, "").replace(os.sep, ".")
for file in files:
if file.startswith(("_", "test_", "bench_")):
continue
if not file.endswith(".py"):
continue
with io.open(os.path.join(root, file), "r", encoding='utf-8') as f:
text = f.read()
submodule = module + '.' + file[:-3]
names = re_cls.findall(text)
if not names:
continue
try:
mod = __import__(submodule, fromlist=names)
except ImportError:
continue
def is_Basic(name):
cls = getattr(mod, name)
if hasattr(cls, '_sympy_deprecated_func'):
cls = cls._sympy_deprecated_func
return issubclass(cls, Basic)
names = list(filter(is_Basic, names))
if names:
modules[submodule] = names
ns = globals()
failed = []
for module, names in modules.items():
mod = module.replace('.', '__')
for name in names:
test = 'test_' + mod + '__' + name
if test not in ns:
failed.append(module + '.' + name)
assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed)
def _test_args(obj):
return all(isinstance(arg, Basic) for arg in obj.args)
def test_sympy__assumptions__assume__AppliedPredicate():
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy import Q
assert _test_args(AppliedPredicate(Predicate("test"), 2))
assert _test_args(Q.is_true(True))
def test_sympy__assumptions__assume__Predicate():
from sympy.assumptions.assume import Predicate
assert _test_args(Predicate("test"))
def test_sympy__assumptions__sathandlers__UnevaluatedOnFree():
from sympy.assumptions.sathandlers import UnevaluatedOnFree
from sympy import Q
assert _test_args(UnevaluatedOnFree(Q.positive))
assert _test_args(UnevaluatedOnFree(Q.positive(x)))
assert _test_args(UnevaluatedOnFree(Q.positive(x * y)))
def test_sympy__assumptions__sathandlers__AllArgs():
from sympy.assumptions.sathandlers import AllArgs
from sympy import Q
assert _test_args(AllArgs(Q.positive))
assert _test_args(AllArgs(Q.positive(x)))
assert _test_args(AllArgs(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__AnyArgs():
from sympy.assumptions.sathandlers import AnyArgs
from sympy import Q
assert _test_args(AnyArgs(Q.positive))
assert _test_args(AnyArgs(Q.positive(x)))
assert _test_args(AnyArgs(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__ExactlyOneArg():
from sympy.assumptions.sathandlers import ExactlyOneArg
from sympy import Q
assert _test_args(ExactlyOneArg(Q.positive))
assert _test_args(ExactlyOneArg(Q.positive(x)))
assert _test_args(ExactlyOneArg(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__CheckOldAssump():
from sympy.assumptions.sathandlers import CheckOldAssump
from sympy import Q
assert _test_args(CheckOldAssump(Q.positive))
assert _test_args(CheckOldAssump(Q.positive(x)))
assert _test_args(CheckOldAssump(Q.positive(x*y)))
def test_sympy__assumptions__sathandlers__CheckIsPrime():
from sympy.assumptions.sathandlers import CheckIsPrime
from sympy import Q
# Input must be a number
assert _test_args(CheckIsPrime(Q.positive))
assert _test_args(CheckIsPrime(Q.positive(5)))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AssignmentBase():
from sympy.codegen.ast import AssignmentBase
assert _test_args(AssignmentBase(x, 1))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AugmentedAssignment():
from sympy.codegen.ast import AugmentedAssignment
assert _test_args(AugmentedAssignment(x, 1))
def test_sympy__codegen__ast__AddAugmentedAssignment():
from sympy.codegen.ast import AddAugmentedAssignment
assert _test_args(AddAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__SubAugmentedAssignment():
from sympy.codegen.ast import SubAugmentedAssignment
assert _test_args(SubAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__MulAugmentedAssignment():
from sympy.codegen.ast import MulAugmentedAssignment
assert _test_args(MulAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__DivAugmentedAssignment():
from sympy.codegen.ast import DivAugmentedAssignment
assert _test_args(DivAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__ModAugmentedAssignment():
from sympy.codegen.ast import ModAugmentedAssignment
assert _test_args(ModAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__CodeBlock():
from sympy.codegen.ast import CodeBlock, Assignment
assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2)))
def test_sympy__codegen__ast__For():
from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment
from sympy import Range
assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1))))
def test_sympy__codegen__ast__Token():
from sympy.codegen.ast import Token
assert _test_args(Token())
def test_sympy__codegen__ast__ContinueToken():
from sympy.codegen.ast import ContinueToken
assert _test_args(ContinueToken())
def test_sympy__codegen__ast__BreakToken():
from sympy.codegen.ast import BreakToken
assert _test_args(BreakToken())
def test_sympy__codegen__ast__NoneToken():
from sympy.codegen.ast import NoneToken
assert _test_args(NoneToken())
def test_sympy__codegen__ast__String():
from sympy.codegen.ast import String
assert _test_args(String('foobar'))
def test_sympy__codegen__ast__QuotedString():
from sympy.codegen.ast import QuotedString
assert _test_args(QuotedString('foobar'))
def test_sympy__codegen__ast__Comment():
from sympy.codegen.ast import Comment
assert _test_args(Comment('this is a comment'))
def test_sympy__codegen__ast__Node():
from sympy.codegen.ast import Node
assert _test_args(Node())
assert _test_args(Node(attrs={1, 2, 3}))
def test_sympy__codegen__ast__Type():
from sympy.codegen.ast import Type
assert _test_args(Type('float128'))
def test_sympy__codegen__ast__IntBaseType():
from sympy.codegen.ast import IntBaseType
assert _test_args(IntBaseType('bigint'))
def test_sympy__codegen__ast___SizedIntType():
from sympy.codegen.ast import _SizedIntType
assert _test_args(_SizedIntType('int128', 128))
def test_sympy__codegen__ast__SignedIntType():
from sympy.codegen.ast import SignedIntType
assert _test_args(SignedIntType('int128_with_sign', 128))
def test_sympy__codegen__ast__UnsignedIntType():
from sympy.codegen.ast import UnsignedIntType
assert _test_args(UnsignedIntType('unt128', 128))
def test_sympy__codegen__ast__FloatBaseType():
from sympy.codegen.ast import FloatBaseType
assert _test_args(FloatBaseType('positive_real'))
def test_sympy__codegen__ast__FloatType():
from sympy.codegen.ast import FloatType
assert _test_args(FloatType('float242', 242, nmant=142, nexp=99))
def test_sympy__codegen__ast__ComplexBaseType():
from sympy.codegen.ast import ComplexBaseType
assert _test_args(ComplexBaseType('positive_cmplx'))
def test_sympy__codegen__ast__ComplexType():
from sympy.codegen.ast import ComplexType
assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5))
def test_sympy__codegen__ast__Attribute():
from sympy.codegen.ast import Attribute
assert _test_args(Attribute('noexcept'))
def test_sympy__codegen__ast__Variable():
from sympy.codegen.ast import Variable, Type, value_const
assert _test_args(Variable(x))
assert _test_args(Variable(y, Type('float32'), {value_const}))
assert _test_args(Variable(z, type=Type('float64')))
def test_sympy__codegen__ast__Pointer():
from sympy.codegen.ast import Pointer, Type, pointer_const
assert _test_args(Pointer(x))
assert _test_args(Pointer(y, type=Type('float32')))
assert _test_args(Pointer(z, Type('float64'), {pointer_const}))
def test_sympy__codegen__ast__Declaration():
from sympy.codegen.ast import Declaration, Variable, Type
vx = Variable(x, type=Type('float'))
assert _test_args(Declaration(vx))
def test_sympy__codegen__ast__While():
from sympy.codegen.ast import While, AddAugmentedAssignment
assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Scope():
from sympy.codegen.ast import Scope, AddAugmentedAssignment
assert _test_args(Scope([AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Stream():
from sympy.codegen.ast import Stream
assert _test_args(Stream('stdin'))
def test_sympy__codegen__ast__Print():
from sympy.codegen.ast import Print
assert _test_args(Print([x, y]))
assert _test_args(Print([x, y], "%d %d"))
def test_sympy__codegen__ast__FunctionPrototype():
from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionPrototype(real, 'pwer', [inp_x]))
def test_sympy__codegen__ast__FunctionDefinition():
from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)]))
def test_sympy__codegen__ast__Return():
from sympy.codegen.ast import Return
assert _test_args(Return(x))
def test_sympy__codegen__ast__FunctionCall():
from sympy.codegen.ast import FunctionCall
assert _test_args(FunctionCall('pwer', [x]))
def test_sympy__codegen__ast__Element():
from sympy.codegen.ast import Element
assert _test_args(Element('x', range(3)))
def test_sympy__codegen__cnodes__CommaOperator():
from sympy.codegen.cnodes import CommaOperator
assert _test_args(CommaOperator(1, 2))
def test_sympy__codegen__cnodes__goto():
from sympy.codegen.cnodes import goto
assert _test_args(goto('early_exit'))
def test_sympy__codegen__cnodes__Label():
from sympy.codegen.cnodes import Label
assert _test_args(Label('early_exit'))
def test_sympy__codegen__cnodes__PreDecrement():
from sympy.codegen.cnodes import PreDecrement
assert _test_args(PreDecrement(x))
def test_sympy__codegen__cnodes__PostDecrement():
from sympy.codegen.cnodes import PostDecrement
assert _test_args(PostDecrement(x))
def test_sympy__codegen__cnodes__PreIncrement():
from sympy.codegen.cnodes import PreIncrement
assert _test_args(PreIncrement(x))
def test_sympy__codegen__cnodes__PostIncrement():
from sympy.codegen.cnodes import PostIncrement
assert _test_args(PostIncrement(x))
def test_sympy__codegen__cnodes__struct():
from sympy.codegen.ast import real, Variable
from sympy.codegen.cnodes import struct
assert _test_args(struct(declarations=[
Variable(x, type=real),
Variable(y, type=real)
]))
def test_sympy__codegen__cnodes__union():
from sympy.codegen.ast import float32, int32, Variable
from sympy.codegen.cnodes import union
assert _test_args(union(declarations=[
Variable(x, type=float32),
Variable(y, type=int32)
]))
def test_sympy__codegen__cxxnodes__using():
from sympy.codegen.cxxnodes import using
assert _test_args(using('std::vector'))
assert _test_args(using('std::vector', 'vec'))
def test_sympy__codegen__fnodes__Program():
from sympy.codegen.fnodes import Program
assert _test_args(Program('foobar', []))
def test_sympy__codegen__fnodes__Module():
from sympy.codegen.fnodes import Module
assert _test_args(Module('foobar', [], []))
def test_sympy__codegen__fnodes__Subroutine():
from sympy.codegen.fnodes import Subroutine
x = symbols('x', real=True)
assert _test_args(Subroutine('foo', [x], []))
def test_sympy__codegen__fnodes__GoTo():
from sympy.codegen.fnodes import GoTo
assert _test_args(GoTo([10]))
assert _test_args(GoTo([10, 20], x > 1))
def test_sympy__codegen__fnodes__FortranReturn():
from sympy.codegen.fnodes import FortranReturn
assert _test_args(FortranReturn(10))
def test_sympy__codegen__fnodes__Extent():
from sympy.codegen.fnodes import Extent
assert _test_args(Extent())
assert _test_args(Extent(None))
assert _test_args(Extent(':'))
assert _test_args(Extent(-3, 4))
assert _test_args(Extent(x, y))
def test_sympy__codegen__fnodes__use_rename():
from sympy.codegen.fnodes import use_rename
assert _test_args(use_rename('loc', 'glob'))
def test_sympy__codegen__fnodes__use():
from sympy.codegen.fnodes import use
assert _test_args(use('modfoo', only='bar'))
def test_sympy__codegen__fnodes__SubroutineCall():
from sympy.codegen.fnodes import SubroutineCall
assert _test_args(SubroutineCall('foo', ['bar', 'baz']))
def test_sympy__codegen__fnodes__Do():
from sympy.codegen.fnodes import Do
assert _test_args(Do([], 'i', 1, 42))
def test_sympy__codegen__fnodes__ImpliedDoLoop():
from sympy.codegen.fnodes import ImpliedDoLoop
assert _test_args(ImpliedDoLoop('i', 'i', 1, 42))
def test_sympy__codegen__fnodes__ArrayConstructor():
from sympy.codegen.fnodes import ArrayConstructor
assert _test_args(ArrayConstructor([1, 2, 3]))
from sympy.codegen.fnodes import ImpliedDoLoop
idl = ImpliedDoLoop('i', 'i', 1, 42)
assert _test_args(ArrayConstructor([1, idl, 3]))
def test_sympy__codegen__fnodes__sum_():
from sympy.codegen.fnodes import sum_
assert _test_args(sum_('arr'))
def test_sympy__codegen__fnodes__product_():
from sympy.codegen.fnodes import product_
assert _test_args(product_('arr'))
@XFAIL
def test_sympy__combinatorics__graycode__GrayCode():
from sympy.combinatorics.graycode import GrayCode
# an integer is given and returned from GrayCode as the arg
assert _test_args(GrayCode(3, start='100'))
assert _test_args(GrayCode(3, rank=1))
def test_sympy__combinatorics__subsets__Subset():
from sympy.combinatorics.subsets import Subset
assert _test_args(Subset([0, 1], [0, 1, 2, 3]))
assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd']))
@XFAIL
def test_sympy__combinatorics__permutations__Permutation():
from sympy.combinatorics.permutations import Permutation
assert _test_args(Permutation([0, 1, 2, 3]))
def test_sympy__combinatorics__perm_groups__PermutationGroup():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
assert _test_args(PermutationGroup([Permutation([0, 1])]))
def test_sympy__combinatorics__polyhedron__Polyhedron():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import Polyhedron
from sympy.abc import w, x, y, z
pgroup = [Permutation([[0, 1, 2], [3]]),
Permutation([[0, 1, 3], [2]]),
Permutation([[0, 2, 3], [1]]),
Permutation([[1, 2, 3], [0]]),
Permutation([[0, 1], [2, 3]]),
Permutation([[0, 2], [1, 3]]),
Permutation([[0, 3], [1, 2]]),
Permutation([[0, 1, 2, 3]])]
corners = [w, x, y, z]
faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)]
assert _test_args(Polyhedron(corners, faces, pgroup))
@XFAIL
def test_sympy__combinatorics__prufer__Prufer():
from sympy.combinatorics.prufer import Prufer
assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4))
def test_sympy__combinatorics__partitions__Partition():
from sympy.combinatorics.partitions import Partition
assert _test_args(Partition([1]))
@XFAIL
def test_sympy__combinatorics__partitions__IntegerPartition():
from sympy.combinatorics.partitions import IntegerPartition
assert _test_args(IntegerPartition([1]))
def test_sympy__concrete__products__Product():
from sympy.concrete.products import Product
assert _test_args(Product(x, (x, 0, 10)))
assert _test_args(Product(x, (x, 0, y), (y, 0, 10)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__ExprWithLimits():
from sympy.concrete.expr_with_limits import ExprWithLimits
assert _test_args(ExprWithLimits(x, (x, 0, 10)))
assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__AddWithLimits():
from sympy.concrete.expr_with_limits import AddWithLimits
assert _test_args(AddWithLimits(x, (x, 0, 10)))
assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits():
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
assert _test_args(ExprWithIntLimits(x, (x, 0, 10)))
assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3)))
def test_sympy__concrete__summations__Sum():
from sympy.concrete.summations import Sum
assert _test_args(Sum(x, (x, 0, 10)))
assert _test_args(Sum(x, (x, 0, y), (y, 0, 10)))
def test_sympy__core__add__Add():
from sympy.core.add import Add
assert _test_args(Add(x, y, z, 2))
def test_sympy__core__basic__Atom():
from sympy.core.basic import Atom
assert _test_args(Atom())
def test_sympy__core__basic__Basic():
from sympy.core.basic import Basic
assert _test_args(Basic())
def test_sympy__core__containers__Dict():
from sympy.core.containers import Dict
assert _test_args(Dict({x: y, y: z}))
def test_sympy__core__containers__Tuple():
from sympy.core.containers import Tuple
assert _test_args(Tuple(x, y, z, 2))
def test_sympy__core__expr__AtomicExpr():
from sympy.core.expr import AtomicExpr
assert _test_args(AtomicExpr())
def test_sympy__core__expr__Expr():
from sympy.core.expr import Expr
assert _test_args(Expr())
def test_sympy__core__expr__UnevaluatedExpr():
from sympy.core.expr import UnevaluatedExpr
from sympy.abc import x
assert _test_args(UnevaluatedExpr(x))
def test_sympy__core__function__Application():
from sympy.core.function import Application
assert _test_args(Application(1, 2, 3))
def test_sympy__core__function__AppliedUndef():
from sympy.core.function import AppliedUndef
assert _test_args(AppliedUndef(1, 2, 3))
def test_sympy__core__function__Derivative():
from sympy.core.function import Derivative
assert _test_args(Derivative(2, x, y, 3))
@SKIP("abstract class")
def test_sympy__core__function__Function():
pass
def test_sympy__core__function__Lambda():
assert _test_args(Lambda((x, y), x + y + z))
def test_sympy__core__function__Subs():
from sympy.core.function import Subs
assert _test_args(Subs(x + y, x, 2))
def test_sympy__core__function__WildFunction():
from sympy.core.function import WildFunction
assert _test_args(WildFunction('f'))
def test_sympy__core__mod__Mod():
from sympy.core.mod import Mod
assert _test_args(Mod(x, 2))
def test_sympy__core__mul__Mul():
from sympy.core.mul import Mul
assert _test_args(Mul(2, x, y, z))
def test_sympy__core__numbers__Catalan():
from sympy.core.numbers import Catalan
assert _test_args(Catalan())
def test_sympy__core__numbers__ComplexInfinity():
from sympy.core.numbers import ComplexInfinity
assert _test_args(ComplexInfinity())
def test_sympy__core__numbers__EulerGamma():
from sympy.core.numbers import EulerGamma
assert _test_args(EulerGamma())
def test_sympy__core__numbers__Exp1():
from sympy.core.numbers import Exp1
assert _test_args(Exp1())
def test_sympy__core__numbers__Float():
from sympy.core.numbers import Float
assert _test_args(Float(1.23))
def test_sympy__core__numbers__GoldenRatio():
from sympy.core.numbers import GoldenRatio
assert _test_args(GoldenRatio())
def test_sympy__core__numbers__TribonacciConstant():
from sympy.core.numbers import TribonacciConstant
assert _test_args(TribonacciConstant())
def test_sympy__core__numbers__Half():
from sympy.core.numbers import Half
assert _test_args(Half())
def test_sympy__core__numbers__ImaginaryUnit():
from sympy.core.numbers import ImaginaryUnit
assert _test_args(ImaginaryUnit())
def test_sympy__core__numbers__Infinity():
from sympy.core.numbers import Infinity
assert _test_args(Infinity())
def test_sympy__core__numbers__Integer():
from sympy.core.numbers import Integer
assert _test_args(Integer(7))
@SKIP("abstract class")
def test_sympy__core__numbers__IntegerConstant():
pass
def test_sympy__core__numbers__NaN():
from sympy.core.numbers import NaN
assert _test_args(NaN())
def test_sympy__core__numbers__NegativeInfinity():
from sympy.core.numbers import NegativeInfinity
assert _test_args(NegativeInfinity())
def test_sympy__core__numbers__NegativeOne():
from sympy.core.numbers import NegativeOne
assert _test_args(NegativeOne())
def test_sympy__core__numbers__Number():
from sympy.core.numbers import Number
assert _test_args(Number(1, 7))
def test_sympy__core__numbers__NumberSymbol():
from sympy.core.numbers import NumberSymbol
assert _test_args(NumberSymbol())
def test_sympy__core__numbers__One():
from sympy.core.numbers import One
assert _test_args(One())
def test_sympy__core__numbers__Pi():
from sympy.core.numbers import Pi
assert _test_args(Pi())
def test_sympy__core__numbers__Rational():
from sympy.core.numbers import Rational
assert _test_args(Rational(1, 7))
@SKIP("abstract class")
def test_sympy__core__numbers__RationalConstant():
pass
def test_sympy__core__numbers__Zero():
from sympy.core.numbers import Zero
assert _test_args(Zero())
@SKIP("abstract class")
def test_sympy__core__operations__AssocOp():
pass
@SKIP("abstract class")
def test_sympy__core__operations__LatticeOp():
pass
def test_sympy__core__power__Pow():
from sympy.core.power import Pow
assert _test_args(Pow(x, 2))
def test_sympy__algebras__quaternion__Quaternion():
from sympy.algebras.quaternion import Quaternion
assert _test_args(Quaternion(x, 1, 2, 3))
def test_sympy__core__relational__Equality():
from sympy.core.relational import Equality
assert _test_args(Equality(x, 2))
def test_sympy__core__relational__GreaterThan():
from sympy.core.relational import GreaterThan
assert _test_args(GreaterThan(x, 2))
def test_sympy__core__relational__LessThan():
from sympy.core.relational import LessThan
assert _test_args(LessThan(x, 2))
@SKIP("abstract class")
def test_sympy__core__relational__Relational():
pass
def test_sympy__core__relational__StrictGreaterThan():
from sympy.core.relational import StrictGreaterThan
assert _test_args(StrictGreaterThan(x, 2))
def test_sympy__core__relational__StrictLessThan():
from sympy.core.relational import StrictLessThan
assert _test_args(StrictLessThan(x, 2))
def test_sympy__core__relational__Unequality():
from sympy.core.relational import Unequality
assert _test_args(Unequality(x, 2))
def test_sympy__sandbox__indexed_integrals__IndexedIntegral():
from sympy.tensor import IndexedBase, Idx
from sympy.sandbox.indexed_integrals import IndexedIntegral
A = IndexedBase('A')
i, j = symbols('i j', integer=True)
a1, a2 = symbols('a1:3', cls=Idx)
assert _test_args(IndexedIntegral(A[a1], A[a2]))
assert _test_args(IndexedIntegral(A[i], A[j]))
def test_sympy__calculus__util__AccumulationBounds():
from sympy.calculus.util import AccumulationBounds
assert _test_args(AccumulationBounds(0, 1))
def test_sympy__sets__ordinals__OmegaPower():
from sympy.sets.ordinals import OmegaPower
assert _test_args(OmegaPower(1, 1))
def test_sympy__sets__ordinals__Ordinal():
from sympy.sets.ordinals import Ordinal, OmegaPower
assert _test_args(Ordinal(OmegaPower(2, 1)))
def test_sympy__sets__ordinals__OrdinalOmega():
from sympy.sets.ordinals import OrdinalOmega
assert _test_args(OrdinalOmega())
def test_sympy__sets__ordinals__OrdinalZero():
from sympy.sets.ordinals import OrdinalZero
assert _test_args(OrdinalZero())
def test_sympy__sets__sets__EmptySet():
from sympy.sets.sets import EmptySet
assert _test_args(EmptySet())
def test_sympy__sets__sets__UniversalSet():
from sympy.sets.sets import UniversalSet
assert _test_args(UniversalSet())
def test_sympy__sets__sets__FiniteSet():
from sympy.sets.sets import FiniteSet
assert _test_args(FiniteSet(x, y, z))
def test_sympy__sets__sets__Interval():
from sympy.sets.sets import Interval
assert _test_args(Interval(0, 1))
def test_sympy__sets__sets__ProductSet():
from sympy.sets.sets import ProductSet, Interval
assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1)))
@SKIP("does it make sense to test this?")
def test_sympy__sets__sets__Set():
from sympy.sets.sets import Set
assert _test_args(Set())
def test_sympy__sets__sets__Intersection():
from sympy.sets.sets import Intersection, Interval
assert _test_args(Intersection(Interval(0, 3), Interval(2, 4),
evaluate=False))
def test_sympy__sets__sets__Union():
from sympy.sets.sets import Union, Interval
assert _test_args(Union(Interval(0, 1), Interval(2, 3)))
def test_sympy__sets__sets__Complement():
from sympy.sets.sets import Complement
assert _test_args(Complement(Interval(0, 2), Interval(0, 1)))
def test_sympy__sets__sets__SymmetricDifference():
from sympy.sets.sets import FiniteSet, SymmetricDifference
assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__core__trace__Tr():
from sympy.core.trace import Tr
a, b = symbols('a b')
assert _test_args(Tr(a + b))
def test_sympy__sets__setexpr__SetExpr():
from sympy.sets.setexpr import SetExpr
assert _test_args(SetExpr(Interval(0, 1)))
def test_sympy__sets__fancysets__Naturals():
from sympy.sets.fancysets import Naturals
assert _test_args(Naturals())
def test_sympy__sets__fancysets__Naturals0():
from sympy.sets.fancysets import Naturals0
assert _test_args(Naturals0())
def test_sympy__sets__fancysets__Integers():
from sympy.sets.fancysets import Integers
assert _test_args(Integers())
def test_sympy__sets__fancysets__Reals():
from sympy.sets.fancysets import Reals
assert _test_args(Reals())
def test_sympy__sets__fancysets__Complexes():
from sympy.sets.fancysets import Complexes
assert _test_args(Complexes())
def test_sympy__sets__fancysets__ComplexRegion():
from sympy.sets.fancysets import ComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
theta = Interval(0, 2*S.Pi)
assert _test_args(ComplexRegion(a*b))
assert _test_args(ComplexRegion(a*theta, polar=True))
def test_sympy__sets__fancysets__ImageSet():
from sympy.sets.fancysets import ImageSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals))
def test_sympy__sets__fancysets__Range():
from sympy.sets.fancysets import Range
assert _test_args(Range(1, 5, 1))
def test_sympy__sets__conditionset__ConditionSet():
from sympy.sets.conditionset import ConditionSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals))
def test_sympy__sets__contains__Contains():
from sympy.sets.fancysets import Range
from sympy.sets.contains import Contains
assert _test_args(Contains(x, Range(0, 10, 2)))
# STATS
from sympy.stats.crv_types import NormalDistribution
nd = NormalDistribution(0, 1)
from sympy.stats.frv_types import DieDistribution
die = DieDistribution(6)
def test_sympy__stats__crv__ContinuousDomain():
from sympy.stats.crv import ContinuousDomain
assert _test_args(ContinuousDomain({x}, Interval(-oo, oo)))
def test_sympy__stats__crv__SingleContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain
assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo)))
def test_sympy__stats__crv__ProductContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
E = SingleContinuousDomain(y, Interval(0, oo))
assert _test_args(ProductContinuousDomain(D, E))
def test_sympy__stats__crv__ConditionalContinuousDomain():
from sympy.stats.crv import (SingleContinuousDomain,
ConditionalContinuousDomain)
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ConditionalContinuousDomain(D, x > 0))
def test_sympy__stats__crv__ContinuousPSpace():
from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ContinuousPSpace(D, nd))
def test_sympy__stats__crv__SingleContinuousPSpace():
from sympy.stats.crv import SingleContinuousPSpace
assert _test_args(SingleContinuousPSpace(x, nd))
@SKIP("abstract class")
def test_sympy__stats__crv__SingleContinuousDistribution():
pass
def test_sympy__stats__drv__SingleDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain
assert _test_args(SingleDiscreteDomain(x, S.Naturals))
def test_sympy__stats__drv__ProductDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals)
Y = SingleDiscreteDomain(y, S.Integers)
assert _test_args(ProductDiscreteDomain(X, Y))
def test_sympy__stats__drv__SingleDiscretePSpace():
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1)))
def test_sympy__stats__drv__DiscretePSpace():
from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain
density = Lambda(x, 2**(-x))
domain = SingleDiscreteDomain(x, S.Naturals)
assert _test_args(DiscretePSpace(domain, density))
def test_sympy__stats__drv__ConditionalDiscreteDomain():
from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals0)
assert _test_args(ConditionalDiscreteDomain(X, x > 2))
def test_sympy__stats__joint_rv__JointPSpace():
from sympy.stats.joint_rv import JointPSpace, JointDistribution
assert _test_args(JointPSpace('X', JointDistribution(1)))
def test_sympy__stats__joint_rv__JointRandomSymbol():
from sympy.stats.joint_rv import JointRandomSymbol
assert _test_args(JointRandomSymbol(x))
def test_sympy__stats__joint_rv__JointDistributionHandmade():
from sympy import Indexed
from sympy.stats.joint_rv import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2))
def test_sympy__stats__joint_rv__MarginalDistribution():
from sympy.stats.rv import RandomSymbol
from sympy.stats.joint_rv import MarginalDistribution
r = RandomSymbol(S('r'))
assert _test_args(MarginalDistribution(r, (r,)))
def test_sympy__stats__joint_rv__CompoundDistribution():
from sympy.stats.joint_rv import CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution
r = PoissonDistribution(x)
assert _test_args(CompoundDistribution(PoissonDistribution(r)))
@SKIP("abstract class")
def test_sympy__stats__drv__SingleDiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDomain():
pass
def test_sympy__stats__rv__RandomDomain():
from sympy.stats.rv import RandomDomain
from sympy.sets.sets import FiniteSet
assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__SingleDomain():
from sympy.stats.rv import SingleDomain
from sympy.sets.sets import FiniteSet
assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__ConditionalDomain():
from sympy.stats.rv import ConditionalDomain, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2))
assert _test_args(ConditionalDomain(D, x > 1))
def test_sympy__stats__rv__PSpace():
from sympy.stats.rv import PSpace, RandomDomain
from sympy import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6))
assert _test_args(PSpace(D, die))
@SKIP("abstract Class")
def test_sympy__stats__rv__SinglePSpace():
pass
def test_sympy__stats__rv__RandomSymbol():
from sympy.stats.rv import RandomSymbol
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
assert _test_args(RandomSymbol(x, A))
@SKIP("abstract Class")
def test_sympy__stats__rv__ProductPSpace():
pass
def test_sympy__stats__rv__IndependentProductPSpace():
from sympy.stats.rv import IndependentProductPSpace
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
B = SingleContinuousPSpace(y, nd)
assert _test_args(IndependentProductPSpace(A, B))
def test_sympy__stats__rv__ProductDomain():
from sympy.stats.rv import ProductDomain, SingleDomain
D = SingleDomain(x, Interval(-oo, oo))
E = SingleDomain(y, Interval(0, oo))
assert _test_args(ProductDomain(D, E))
def test_sympy__stats__symbolic_probability__Probability():
from sympy.stats.symbolic_probability import Probability
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Probability(X > 0))
def test_sympy__stats__symbolic_probability__Expectation():
from sympy.stats.symbolic_probability import Expectation
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Expectation(X > 0))
def test_sympy__stats__symbolic_probability__Covariance():
from sympy.stats.symbolic_probability import Covariance
from sympy.stats import Normal
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 3)
assert _test_args(Covariance(X, Y))
def test_sympy__stats__symbolic_probability__Variance():
from sympy.stats.symbolic_probability import Variance
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Variance(X))
def test_sympy__stats__frv_types__DiscreteUniformDistribution():
from sympy.stats.frv_types import DiscreteUniformDistribution
from sympy.core.containers import Tuple
assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6)))))
def test_sympy__stats__frv_types__DieDistribution():
assert _test_args(die)
def test_sympy__stats__frv_types__BernoulliDistribution():
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(BernoulliDistribution(S.Half, 0, 1))
def test_sympy__stats__frv_types__BinomialDistribution():
from sympy.stats.frv_types import BinomialDistribution
assert _test_args(BinomialDistribution(5, S.Half, 1, 0))
def test_sympy__stats__frv_types__HypergeometricDistribution():
from sympy.stats.frv_types import HypergeometricDistribution
assert _test_args(HypergeometricDistribution(10, 5, 3))
def test_sympy__stats__frv_types__RademacherDistribution():
from sympy.stats.frv_types import RademacherDistribution
assert _test_args(RademacherDistribution())
def test_sympy__stats__frv__FiniteDomain():
from sympy.stats.frv import FiniteDomain
assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2
def test_sympy__stats__frv__SingleFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain
assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2
def test_sympy__stats__frv__ProductFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
yd = SingleFiniteDomain(y, {1, 2})
assert _test_args(ProductFiniteDomain(xd, yd))
def test_sympy__stats__frv__ConditionalFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(ConditionalFiniteDomain(xd, x > 1))
def test_sympy__stats__frv__FinitePSpace():
from sympy.stats.frv import FinitePSpace, SingleFiniteDomain
xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6})
p = 1.0/6
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
def test_sympy__stats__frv__SingleFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace
from sympy import Symbol
assert _test_args(SingleFinitePSpace(Symbol('x'), die))
def test_sympy__stats__frv__ProductFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace
from sympy import Symbol
xp = SingleFinitePSpace(Symbol('x'), die)
yp = SingleFinitePSpace(Symbol('y'), die)
assert _test_args(ProductFinitePSpace(xp, yp))
@SKIP("abstract class")
def test_sympy__stats__frv__SingleFiniteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__ContinuousDistribution():
pass
def test_sympy__stats__frv_types__FiniteDistributionHandmade():
from sympy.stats.frv_types import FiniteDistributionHandmade
assert _test_args(FiniteDistributionHandmade({1: 1}))
def test_sympy__stats__crv__ContinuousDistributionHandmade():
from sympy.stats.crv import ContinuousDistributionHandmade
from sympy import Symbol, Interval
assert _test_args(ContinuousDistributionHandmade(Symbol('x'),
Interval(0, 2)))
def test_sympy__stats__drv__DiscreteDistributionHandmade():
from sympy.stats.drv import DiscreteDistributionHandmade
assert _test_args(DiscreteDistributionHandmade(x, S.Naturals))
def test_sympy__stats__rv__Density():
from sympy.stats.rv import Density
from sympy.stats.crv_types import Normal
assert _test_args(Density(Normal('x', 0, 1)))
def test_sympy__stats__crv_types__ArcsinDistribution():
from sympy.stats.crv_types import ArcsinDistribution
assert _test_args(ArcsinDistribution(0, 1))
def test_sympy__stats__crv_types__BeniniDistribution():
from sympy.stats.crv_types import BeniniDistribution
assert _test_args(BeniniDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaDistribution():
from sympy.stats.crv_types import BetaDistribution
assert _test_args(BetaDistribution(1, 1))
def test_sympy__stats__crv_types__BetaPrimeDistribution():
from sympy.stats.crv_types import BetaPrimeDistribution
assert _test_args(BetaPrimeDistribution(1, 1))
def test_sympy__stats__crv_types__CauchyDistribution():
from sympy.stats.crv_types import CauchyDistribution
assert _test_args(CauchyDistribution(0, 1))
def test_sympy__stats__crv_types__ChiDistribution():
from sympy.stats.crv_types import ChiDistribution
assert _test_args(ChiDistribution(1))
def test_sympy__stats__crv_types__ChiNoncentralDistribution():
from sympy.stats.crv_types import ChiNoncentralDistribution
assert _test_args(ChiNoncentralDistribution(1,1))
def test_sympy__stats__crv_types__ChiSquaredDistribution():
from sympy.stats.crv_types import ChiSquaredDistribution
assert _test_args(ChiSquaredDistribution(1))
def test_sympy__stats__crv_types__DagumDistribution():
from sympy.stats.crv_types import DagumDistribution
assert _test_args(DagumDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExponentialDistribution():
from sympy.stats.crv_types import ExponentialDistribution
assert _test_args(ExponentialDistribution(1))
def test_sympy__stats__crv_types__FDistributionDistribution():
from sympy.stats.crv_types import FDistributionDistribution
assert _test_args(FDistributionDistribution(1, 1))
def test_sympy__stats__crv_types__FisherZDistribution():
from sympy.stats.crv_types import FisherZDistribution
assert _test_args(FisherZDistribution(1, 1))
def test_sympy__stats__crv_types__FrechetDistribution():
from sympy.stats.crv_types import FrechetDistribution
assert _test_args(FrechetDistribution(1, 1, 1))
def test_sympy__stats__crv_types__GammaInverseDistribution():
from sympy.stats.crv_types import GammaInverseDistribution
assert _test_args(GammaInverseDistribution(1, 1))
def test_sympy__stats__crv_types__GammaDistribution():
from sympy.stats.crv_types import GammaDistribution
assert _test_args(GammaDistribution(1, 1))
def test_sympy__stats__crv_types__GumbelDistribution():
from sympy.stats.crv_types import GumbelDistribution
assert _test_args(GumbelDistribution(1, 1))
def test_sympy__stats__crv_types__GompertzDistribution():
from sympy.stats.crv_types import GompertzDistribution
assert _test_args(GompertzDistribution(1, 1))
def test_sympy__stats__crv_types__KumaraswamyDistribution():
from sympy.stats.crv_types import KumaraswamyDistribution
assert _test_args(KumaraswamyDistribution(1, 1))
def test_sympy__stats__crv_types__LaplaceDistribution():
from sympy.stats.crv_types import LaplaceDistribution
assert _test_args(LaplaceDistribution(0, 1))
def test_sympy__stats__crv_types__LogisticDistribution():
from sympy.stats.crv_types import LogisticDistribution
assert _test_args(LogisticDistribution(0, 1))
def test_sympy__stats__crv_types__LogNormalDistribution():
from sympy.stats.crv_types import LogNormalDistribution
assert _test_args(LogNormalDistribution(0, 1))
def test_sympy__stats__crv_types__MaxwellDistribution():
from sympy.stats.crv_types import MaxwellDistribution
assert _test_args(MaxwellDistribution(1))
def test_sympy__stats__crv_types__NakagamiDistribution():
from sympy.stats.crv_types import NakagamiDistribution
assert _test_args(NakagamiDistribution(1, 1))
def test_sympy__stats__crv_types__NormalDistribution():
from sympy.stats.crv_types import NormalDistribution
assert _test_args(NormalDistribution(0, 1))
def test_sympy__stats__crv_types__ParetoDistribution():
from sympy.stats.crv_types import ParetoDistribution
assert _test_args(ParetoDistribution(1, 1))
def test_sympy__stats__crv_types__QuadraticUDistribution():
from sympy.stats.crv_types import QuadraticUDistribution
assert _test_args(QuadraticUDistribution(1, 2))
def test_sympy__stats__crv_types__RaisedCosineDistribution():
from sympy.stats.crv_types import RaisedCosineDistribution
assert _test_args(RaisedCosineDistribution(1, 1))
def test_sympy__stats__crv_types__RayleighDistribution():
from sympy.stats.crv_types import RayleighDistribution
assert _test_args(RayleighDistribution(1))
def test_sympy__stats__crv_types__ShiftedGompertzDistribution():
from sympy.stats.crv_types import ShiftedGompertzDistribution
assert _test_args(ShiftedGompertzDistribution(1, 1))
def test_sympy__stats__crv_types__StudentTDistribution():
from sympy.stats.crv_types import StudentTDistribution
assert _test_args(StudentTDistribution(1))
def test_sympy__stats__crv_types__TrapezoidalDistribution():
from sympy.stats.crv_types import TrapezoidalDistribution
assert _test_args(TrapezoidalDistribution(1, 2, 3, 4))
def test_sympy__stats__crv_types__TriangularDistribution():
from sympy.stats.crv_types import TriangularDistribution
assert _test_args(TriangularDistribution(-1, 0, 1))
def test_sympy__stats__crv_types__UniformDistribution():
from sympy.stats.crv_types import UniformDistribution
assert _test_args(UniformDistribution(0, 1))
def test_sympy__stats__crv_types__UniformSumDistribution():
from sympy.stats.crv_types import UniformSumDistribution
assert _test_args(UniformSumDistribution(1))
def test_sympy__stats__crv_types__VonMisesDistribution():
from sympy.stats.crv_types import VonMisesDistribution
assert _test_args(VonMisesDistribution(1, 1))
def test_sympy__stats__crv_types__WeibullDistribution():
from sympy.stats.crv_types import WeibullDistribution
assert _test_args(WeibullDistribution(1, 1))
def test_sympy__stats__crv_types__WignerSemicircleDistribution():
from sympy.stats.crv_types import WignerSemicircleDistribution
assert _test_args(WignerSemicircleDistribution(1))
def test_sympy__stats__drv_types__GeometricDistribution():
from sympy.stats.drv_types import GeometricDistribution
assert _test_args(GeometricDistribution(.5))
def test_sympy__stats__drv_types__LogarithmicDistribution():
from sympy.stats.drv_types import LogarithmicDistribution
assert _test_args(LogarithmicDistribution(.5))
def test_sympy__stats__drv_types__NegativeBinomialDistribution():
from sympy.stats.drv_types import NegativeBinomialDistribution
assert _test_args(NegativeBinomialDistribution(.5, .5))
def test_sympy__stats__drv_types__PoissonDistribution():
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(PoissonDistribution(1))
def test_sympy__stats__drv_types__YuleSimonDistribution():
from sympy.stats.drv_types import YuleSimonDistribution
assert _test_args(YuleSimonDistribution(.5))
def test_sympy__stats__drv_types__ZetaDistribution():
from sympy.stats.drv_types import ZetaDistribution
assert _test_args(ZetaDistribution(1.5))
def test_sympy__stats__joint_rv__JointDistribution():
from sympy.stats.joint_rv import JointDistribution
assert _test_args(JointDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution():
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
assert _test_args(
MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution():
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateTDistribution():
from sympy.stats.joint_rv_types import MultivariateTDistribution
assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1))
def test_sympy__stats__joint_rv_types__NormalGammaDistribution():
from sympy.stats.joint_rv_types import NormalGammaDistribution
assert _test_args(NormalGammaDistribution(1, 2, 3, 4))
def test_sympy__core__symbol__Dummy():
from sympy.core.symbol import Dummy
assert _test_args(Dummy('t'))
def test_sympy__core__symbol__Symbol():
from sympy.core.symbol import Symbol
assert _test_args(Symbol('t'))
def test_sympy__core__symbol__Wild():
from sympy.core.symbol import Wild
assert _test_args(Wild('x', exclude=[x]))
@SKIP("abstract class")
def test_sympy__functions__combinatorial__factorials__CombinatorialFunction():
pass
def test_sympy__functions__combinatorial__factorials__FallingFactorial():
from sympy.functions.combinatorial.factorials import FallingFactorial
assert _test_args(FallingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__MultiFactorial():
from sympy.functions.combinatorial.factorials import MultiFactorial
assert _test_args(MultiFactorial(x))
def test_sympy__functions__combinatorial__factorials__RisingFactorial():
from sympy.functions.combinatorial.factorials import RisingFactorial
assert _test_args(RisingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__binomial():
from sympy.functions.combinatorial.factorials import binomial
assert _test_args(binomial(2, x))
def test_sympy__functions__combinatorial__factorials__subfactorial():
from sympy.functions.combinatorial.factorials import subfactorial
assert _test_args(subfactorial(1))
def test_sympy__functions__combinatorial__factorials__factorial():
from sympy.functions.combinatorial.factorials import factorial
assert _test_args(factorial(x))
def test_sympy__functions__combinatorial__factorials__factorial2():
from sympy.functions.combinatorial.factorials import factorial2
assert _test_args(factorial2(x))
def test_sympy__functions__combinatorial__numbers__bell():
from sympy.functions.combinatorial.numbers import bell
assert _test_args(bell(x, y))
def test_sympy__functions__combinatorial__numbers__bernoulli():
from sympy.functions.combinatorial.numbers import bernoulli
assert _test_args(bernoulli(x))
def test_sympy__functions__combinatorial__numbers__catalan():
from sympy.functions.combinatorial.numbers import catalan
assert _test_args(catalan(x))
def test_sympy__functions__combinatorial__numbers__genocchi():
from sympy.functions.combinatorial.numbers import genocchi
assert _test_args(genocchi(x))
def test_sympy__functions__combinatorial__numbers__euler():
from sympy.functions.combinatorial.numbers import euler
assert _test_args(euler(x))
def test_sympy__functions__combinatorial__numbers__carmichael():
from sympy.functions.combinatorial.numbers import carmichael
assert _test_args(carmichael(x))
def test_sympy__functions__combinatorial__numbers__fibonacci():
from sympy.functions.combinatorial.numbers import fibonacci
assert _test_args(fibonacci(x))
def test_sympy__functions__combinatorial__numbers__tribonacci():
from sympy.functions.combinatorial.numbers import tribonacci
assert _test_args(tribonacci(x))
def test_sympy__functions__combinatorial__numbers__harmonic():
from sympy.functions.combinatorial.numbers import harmonic
assert _test_args(harmonic(x, 2))
def test_sympy__functions__combinatorial__numbers__lucas():
from sympy.functions.combinatorial.numbers import lucas
assert _test_args(lucas(x))
def test_sympy__functions__combinatorial__numbers__partition():
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.numbers import partition
assert _test_args(partition(Symbol('a', integer=True)))
def test_sympy__functions__elementary__complexes__Abs():
from sympy.functions.elementary.complexes import Abs
assert _test_args(Abs(x))
def test_sympy__functions__elementary__complexes__adjoint():
from sympy.functions.elementary.complexes import adjoint
assert _test_args(adjoint(x))
def test_sympy__functions__elementary__complexes__arg():
from sympy.functions.elementary.complexes import arg
assert _test_args(arg(x))
def test_sympy__functions__elementary__complexes__conjugate():
from sympy.functions.elementary.complexes import conjugate
assert _test_args(conjugate(x))
def test_sympy__functions__elementary__complexes__im():
from sympy.functions.elementary.complexes import im
assert _test_args(im(x))
def test_sympy__functions__elementary__complexes__re():
from sympy.functions.elementary.complexes import re
assert _test_args(re(x))
def test_sympy__functions__elementary__complexes__sign():
from sympy.functions.elementary.complexes import sign
assert _test_args(sign(x))
def test_sympy__functions__elementary__complexes__polar_lift():
from sympy.functions.elementary.complexes import polar_lift
assert _test_args(polar_lift(x))
def test_sympy__functions__elementary__complexes__periodic_argument():
from sympy.functions.elementary.complexes import periodic_argument
assert _test_args(periodic_argument(x, y))
def test_sympy__functions__elementary__complexes__principal_branch():
from sympy.functions.elementary.complexes import principal_branch
assert _test_args(principal_branch(x, y))
def test_sympy__functions__elementary__complexes__transpose():
from sympy.functions.elementary.complexes import transpose
assert _test_args(transpose(x))
def test_sympy__functions__elementary__exponential__LambertW():
from sympy.functions.elementary.exponential import LambertW
assert _test_args(LambertW(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__exponential__ExpBase():
pass
def test_sympy__functions__elementary__exponential__exp():
from sympy.functions.elementary.exponential import exp
assert _test_args(exp(2))
def test_sympy__functions__elementary__exponential__exp_polar():
from sympy.functions.elementary.exponential import exp_polar
assert _test_args(exp_polar(2))
def test_sympy__functions__elementary__exponential__log():
from sympy.functions.elementary.exponential import log
assert _test_args(log(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction():
pass
def test_sympy__functions__elementary__hyperbolic__acosh():
from sympy.functions.elementary.hyperbolic import acosh
assert _test_args(acosh(2))
def test_sympy__functions__elementary__hyperbolic__acoth():
from sympy.functions.elementary.hyperbolic import acoth
assert _test_args(acoth(2))
def test_sympy__functions__elementary__hyperbolic__asinh():
from sympy.functions.elementary.hyperbolic import asinh
assert _test_args(asinh(2))
def test_sympy__functions__elementary__hyperbolic__atanh():
from sympy.functions.elementary.hyperbolic import atanh
assert _test_args(atanh(2))
def test_sympy__functions__elementary__hyperbolic__asech():
from sympy.functions.elementary.hyperbolic import asech
assert _test_args(asech(2))
def test_sympy__functions__elementary__hyperbolic__acsch():
from sympy.functions.elementary.hyperbolic import acsch
assert _test_args(acsch(2))
def test_sympy__functions__elementary__hyperbolic__cosh():
from sympy.functions.elementary.hyperbolic import cosh
assert _test_args(cosh(2))
def test_sympy__functions__elementary__hyperbolic__coth():
from sympy.functions.elementary.hyperbolic import coth
assert _test_args(coth(2))
def test_sympy__functions__elementary__hyperbolic__csch():
from sympy.functions.elementary.hyperbolic import csch
assert _test_args(csch(2))
def test_sympy__functions__elementary__hyperbolic__sech():
from sympy.functions.elementary.hyperbolic import sech
assert _test_args(sech(2))
def test_sympy__functions__elementary__hyperbolic__sinh():
from sympy.functions.elementary.hyperbolic import sinh
assert _test_args(sinh(2))
def test_sympy__functions__elementary__hyperbolic__tanh():
from sympy.functions.elementary.hyperbolic import tanh
assert _test_args(tanh(2))
@SKIP("does this work at all?")
def test_sympy__functions__elementary__integers__RoundFunction():
from sympy.functions.elementary.integers import RoundFunction
assert _test_args(RoundFunction())
def test_sympy__functions__elementary__integers__ceiling():
from sympy.functions.elementary.integers import ceiling
assert _test_args(ceiling(x))
def test_sympy__functions__elementary__integers__floor():
from sympy.functions.elementary.integers import floor
assert _test_args(floor(x))
def test_sympy__functions__elementary__integers__frac():
from sympy.functions.elementary.integers import frac
assert _test_args(frac(x))
def test_sympy__functions__elementary__miscellaneous__IdentityFunction():
from sympy.functions.elementary.miscellaneous import IdentityFunction
assert _test_args(IdentityFunction())
def test_sympy__functions__elementary__miscellaneous__Max():
from sympy.functions.elementary.miscellaneous import Max
assert _test_args(Max(x, 2))
def test_sympy__functions__elementary__miscellaneous__Min():
from sympy.functions.elementary.miscellaneous import Min
assert _test_args(Min(x, 2))
@SKIP("abstract class")
def test_sympy__functions__elementary__miscellaneous__MinMaxBase():
pass
def test_sympy__functions__elementary__piecewise__ExprCondPair():
from sympy.functions.elementary.piecewise import ExprCondPair
assert _test_args(ExprCondPair(1, True))
def test_sympy__functions__elementary__piecewise__Piecewise():
from sympy.functions.elementary.piecewise import Piecewise
assert _test_args(Piecewise((1, x >= 0), (0, True)))
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__TrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction():
pass
def test_sympy__functions__elementary__trigonometric__acos():
from sympy.functions.elementary.trigonometric import acos
assert _test_args(acos(2))
def test_sympy__functions__elementary__trigonometric__acot():
from sympy.functions.elementary.trigonometric import acot
assert _test_args(acot(2))
def test_sympy__functions__elementary__trigonometric__asin():
from sympy.functions.elementary.trigonometric import asin
assert _test_args(asin(2))
def test_sympy__functions__elementary__trigonometric__asec():
from sympy.functions.elementary.trigonometric import asec
assert _test_args(asec(2))
def test_sympy__functions__elementary__trigonometric__acsc():
from sympy.functions.elementary.trigonometric import acsc
assert _test_args(acsc(2))
def test_sympy__functions__elementary__trigonometric__atan():
from sympy.functions.elementary.trigonometric import atan
assert _test_args(atan(2))
def test_sympy__functions__elementary__trigonometric__atan2():
from sympy.functions.elementary.trigonometric import atan2
assert _test_args(atan2(2, 3))
def test_sympy__functions__elementary__trigonometric__cos():
from sympy.functions.elementary.trigonometric import cos
assert _test_args(cos(2))
def test_sympy__functions__elementary__trigonometric__csc():
from sympy.functions.elementary.trigonometric import csc
assert _test_args(csc(2))
def test_sympy__functions__elementary__trigonometric__cot():
from sympy.functions.elementary.trigonometric import cot
assert _test_args(cot(2))
def test_sympy__functions__elementary__trigonometric__sin():
assert _test_args(sin(2))
def test_sympy__functions__elementary__trigonometric__sinc():
from sympy.functions.elementary.trigonometric import sinc
assert _test_args(sinc(2))
def test_sympy__functions__elementary__trigonometric__sec():
from sympy.functions.elementary.trigonometric import sec
assert _test_args(sec(2))
def test_sympy__functions__elementary__trigonometric__tan():
from sympy.functions.elementary.trigonometric import tan
assert _test_args(tan(2))
@SKIP("abstract class")
def test_sympy__functions__special__bessel__BesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalBesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalHankelBase():
pass
def test_sympy__functions__special__bessel__besseli():
from sympy.functions.special.bessel import besseli
assert _test_args(besseli(x, 1))
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))
def test_sympy__functions__special__bessel__besselk():
from sympy.functions.special.bessel import besselk
assert _test_args(besselk(x, 1))
def test_sympy__functions__special__bessel__bessely():
from sympy.functions.special.bessel import bessely
assert _test_args(bessely(x, 1))
def test_sympy__functions__special__bessel__hankel1():
from sympy.functions.special.bessel import hankel1
assert _test_args(hankel1(x, 1))
def test_sympy__functions__special__bessel__hankel2():
from sympy.functions.special.bessel import hankel2
assert _test_args(hankel2(x, 1))
def test_sympy__functions__special__bessel__jn():
from sympy.functions.special.bessel import jn
assert _test_args(jn(0, x))
def test_sympy__functions__special__bessel__yn():
from sympy.functions.special.bessel import yn
assert _test_args(yn(0, x))
def test_sympy__functions__special__bessel__hn1():
from sympy.functions.special.bessel import hn1
assert _test_args(hn1(0, x))
def test_sympy__functions__special__bessel__hn2():
from sympy.functions.special.bessel import hn2
assert _test_args(hn2(0, x))
def test_sympy__functions__special__bessel__AiryBase():
pass
def test_sympy__functions__special__bessel__airyai():
from sympy.functions.special.bessel import airyai
assert _test_args(airyai(2))
def test_sympy__functions__special__bessel__airybi():
from sympy.functions.special.bessel import airybi
assert _test_args(airybi(2))
def test_sympy__functions__special__bessel__airyaiprime():
from sympy.functions.special.bessel import airyaiprime
assert _test_args(airyaiprime(2))
def test_sympy__functions__special__bessel__airybiprime():
from sympy.functions.special.bessel import airybiprime
assert _test_args(airybiprime(2))
def test_sympy__functions__special__elliptic_integrals__elliptic_k():
from sympy.functions.special.elliptic_integrals import elliptic_k as K
assert _test_args(K(x))
def test_sympy__functions__special__elliptic_integrals__elliptic_f():
from sympy.functions.special.elliptic_integrals import elliptic_f as F
assert _test_args(F(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_e():
from sympy.functions.special.elliptic_integrals import elliptic_e as E
assert _test_args(E(x))
assert _test_args(E(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_pi():
from sympy.functions.special.elliptic_integrals import elliptic_pi as P
assert _test_args(P(x, y))
assert _test_args(P(x, y, z))
def test_sympy__functions__special__delta_functions__DiracDelta():
from sympy.functions.special.delta_functions import DiracDelta
assert _test_args(DiracDelta(x, 1))
def test_sympy__functions__special__singularity_functions__SingularityFunction():
from sympy.functions.special.singularity_functions import SingularityFunction
assert _test_args(SingularityFunction(x, y, z))
def test_sympy__functions__special__delta_functions__Heaviside():
from sympy.functions.special.delta_functions import Heaviside
assert _test_args(Heaviside(x))
def test_sympy__functions__special__error_functions__erf():
from sympy.functions.special.error_functions import erf
assert _test_args(erf(2))
def test_sympy__functions__special__error_functions__erfc():
from sympy.functions.special.error_functions import erfc
assert _test_args(erfc(2))
def test_sympy__functions__special__error_functions__erfi():
from sympy.functions.special.error_functions import erfi
assert _test_args(erfi(2))
def test_sympy__functions__special__error_functions__erf2():
from sympy.functions.special.error_functions import erf2
assert _test_args(erf2(2, 3))
def test_sympy__functions__special__error_functions__erfinv():
from sympy.functions.special.error_functions import erfinv
assert _test_args(erfinv(2))
def test_sympy__functions__special__error_functions__erfcinv():
from sympy.functions.special.error_functions import erfcinv
assert _test_args(erfcinv(2))
def test_sympy__functions__special__error_functions__erf2inv():
from sympy.functions.special.error_functions import erf2inv
assert _test_args(erf2inv(2, 3))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__FresnelIntegral():
pass
def test_sympy__functions__special__error_functions__fresnels():
from sympy.functions.special.error_functions import fresnels
assert _test_args(fresnels(2))
def test_sympy__functions__special__error_functions__fresnelc():
from sympy.functions.special.error_functions import fresnelc
assert _test_args(fresnelc(2))
def test_sympy__functions__special__error_functions__erfs():
from sympy.functions.special.error_functions import _erfs
assert _test_args(_erfs(2))
def test_sympy__functions__special__error_functions__Ei():
from sympy.functions.special.error_functions import Ei
assert _test_args(Ei(2))
def test_sympy__functions__special__error_functions__li():
from sympy.functions.special.error_functions import li
assert _test_args(li(2))
def test_sympy__functions__special__error_functions__Li():
from sympy.functions.special.error_functions import Li
assert _test_args(Li(2))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__TrigonometricIntegral():
pass
def test_sympy__functions__special__error_functions__Si():
from sympy.functions.special.error_functions import Si
assert _test_args(Si(2))
def test_sympy__functions__special__error_functions__Ci():
from sympy.functions.special.error_functions import Ci
assert _test_args(Ci(2))
def test_sympy__functions__special__error_functions__Shi():
from sympy.functions.special.error_functions import Shi
assert _test_args(Shi(2))
def test_sympy__functions__special__error_functions__Chi():
from sympy.functions.special.error_functions import Chi
assert _test_args(Chi(2))
def test_sympy__functions__special__error_functions__expint():
from sympy.functions.special.error_functions import expint
assert _test_args(expint(y, x))
def test_sympy__functions__special__gamma_functions__gamma():
from sympy.functions.special.gamma_functions import gamma
assert _test_args(gamma(x))
def test_sympy__functions__special__gamma_functions__loggamma():
from sympy.functions.special.gamma_functions import loggamma
assert _test_args(loggamma(2))
def test_sympy__functions__special__gamma_functions__lowergamma():
from sympy.functions.special.gamma_functions import lowergamma
assert _test_args(lowergamma(x, 2))
def test_sympy__functions__special__gamma_functions__polygamma():
from sympy.functions.special.gamma_functions import polygamma
assert _test_args(polygamma(x, 2))
def test_sympy__functions__special__gamma_functions__uppergamma():
from sympy.functions.special.gamma_functions import uppergamma
assert _test_args(uppergamma(x, 2))
def test_sympy__functions__special__beta_functions__beta():
from sympy.functions.special.beta_functions import beta
assert _test_args(beta(x, x))
def test_sympy__functions__special__mathieu_functions__MathieuBase():
pass
def test_sympy__functions__special__mathieu_functions__mathieus():
from sympy.functions.special.mathieu_functions import mathieus
assert _test_args(mathieus(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieuc():
from sympy.functions.special.mathieu_functions import mathieuc
assert _test_args(mathieuc(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieusprime():
from sympy.functions.special.mathieu_functions import mathieusprime
assert _test_args(mathieusprime(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieucprime():
from sympy.functions.special.mathieu_functions import mathieucprime
assert _test_args(mathieucprime(1, 1, 1))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleParametersBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleArg():
pass
def test_sympy__functions__special__hyper__hyper():
from sympy.functions.special.hyper import hyper
assert _test_args(hyper([1, 2, 3], [4, 5], x))
def test_sympy__functions__special__hyper__meijerg():
from sympy.functions.special.hyper import meijerg
assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__HyperRep():
pass
def test_sympy__functions__special__hyper__HyperRep_power1():
from sympy.functions.special.hyper import HyperRep_power1
assert _test_args(HyperRep_power1(x, y))
def test_sympy__functions__special__hyper__HyperRep_power2():
from sympy.functions.special.hyper import HyperRep_power2
assert _test_args(HyperRep_power2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log1():
from sympy.functions.special.hyper import HyperRep_log1
assert _test_args(HyperRep_log1(x))
def test_sympy__functions__special__hyper__HyperRep_atanh():
from sympy.functions.special.hyper import HyperRep_atanh
assert _test_args(HyperRep_atanh(x))
def test_sympy__functions__special__hyper__HyperRep_asin1():
from sympy.functions.special.hyper import HyperRep_asin1
assert _test_args(HyperRep_asin1(x))
def test_sympy__functions__special__hyper__HyperRep_asin2():
from sympy.functions.special.hyper import HyperRep_asin2
assert _test_args(HyperRep_asin2(x))
def test_sympy__functions__special__hyper__HyperRep_sqrts1():
from sympy.functions.special.hyper import HyperRep_sqrts1
assert _test_args(HyperRep_sqrts1(x, y))
def test_sympy__functions__special__hyper__HyperRep_sqrts2():
from sympy.functions.special.hyper import HyperRep_sqrts2
assert _test_args(HyperRep_sqrts2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log2():
from sympy.functions.special.hyper import HyperRep_log2
assert _test_args(HyperRep_log2(x))
def test_sympy__functions__special__hyper__HyperRep_cosasin():
from sympy.functions.special.hyper import HyperRep_cosasin
assert _test_args(HyperRep_cosasin(x, y))
def test_sympy__functions__special__hyper__HyperRep_sinasin():
from sympy.functions.special.hyper import HyperRep_sinasin
assert _test_args(HyperRep_sinasin(x, y))
def test_sympy__functions__special__hyper__appellf1():
from sympy.functions.special.hyper import appellf1
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert _test_args(appellf1(a, b1, b2, c, x, y))
@SKIP("abstract class")
def test_sympy__functions__special__polynomials__OrthogonalPolynomial():
pass
def test_sympy__functions__special__polynomials__jacobi():
from sympy.functions.special.polynomials import jacobi
assert _test_args(jacobi(x, 2, 2, 2))
def test_sympy__functions__special__polynomials__gegenbauer():
from sympy.functions.special.polynomials import gegenbauer
assert _test_args(gegenbauer(x, 2, 2))
def test_sympy__functions__special__polynomials__chebyshevt():
from sympy.functions.special.polynomials import chebyshevt
assert _test_args(chebyshevt(x, 2))
def test_sympy__functions__special__polynomials__chebyshevt_root():
from sympy.functions.special.polynomials import chebyshevt_root
assert _test_args(chebyshevt_root(3, 2))
def test_sympy__functions__special__polynomials__chebyshevu():
from sympy.functions.special.polynomials import chebyshevu
assert _test_args(chebyshevu(x, 2))
def test_sympy__functions__special__polynomials__chebyshevu_root():
from sympy.functions.special.polynomials import chebyshevu_root
assert _test_args(chebyshevu_root(3, 2))
def test_sympy__functions__special__polynomials__hermite():
from sympy.functions.special.polynomials import hermite
assert _test_args(hermite(x, 2))
def test_sympy__functions__special__polynomials__legendre():
from sympy.functions.special.polynomials import legendre
assert _test_args(legendre(x, 2))
def test_sympy__functions__special__polynomials__assoc_legendre():
from sympy.functions.special.polynomials import assoc_legendre
assert _test_args(assoc_legendre(x, 0, y))
def test_sympy__functions__special__polynomials__laguerre():
from sympy.functions.special.polynomials import laguerre
assert _test_args(laguerre(x, 2))
def test_sympy__functions__special__polynomials__assoc_laguerre():
from sympy.functions.special.polynomials import assoc_laguerre
assert _test_args(assoc_laguerre(x, 0, y))
def test_sympy__functions__special__spherical_harmonics__Ynm():
from sympy.functions.special.spherical_harmonics import Ynm
assert _test_args(Ynm(1, 1, x, y))
def test_sympy__functions__special__spherical_harmonics__Znm():
from sympy.functions.special.spherical_harmonics import Znm
assert _test_args(Znm(1, 1, x, y))
def test_sympy__functions__special__tensor_functions__LeviCivita():
from sympy.functions.special.tensor_functions import LeviCivita
assert _test_args(LeviCivita(x, y, 2))
def test_sympy__functions__special__tensor_functions__KroneckerDelta():
from sympy.functions.special.tensor_functions import KroneckerDelta
assert _test_args(KroneckerDelta(x, y))
def test_sympy__functions__special__zeta_functions__dirichlet_eta():
from sympy.functions.special.zeta_functions import dirichlet_eta
assert _test_args(dirichlet_eta(x))
def test_sympy__functions__special__zeta_functions__zeta():
from sympy.functions.special.zeta_functions import zeta
assert _test_args(zeta(101))
def test_sympy__functions__special__zeta_functions__lerchphi():
from sympy.functions.special.zeta_functions import lerchphi
assert _test_args(lerchphi(x, y, z))
def test_sympy__functions__special__zeta_functions__polylog():
from sympy.functions.special.zeta_functions import polylog
assert _test_args(polylog(x, y))
def test_sympy__functions__special__zeta_functions__stieltjes():
from sympy.functions.special.zeta_functions import stieltjes
assert _test_args(stieltjes(x, y))
def test_sympy__integrals__integrals__Integral():
from sympy.integrals.integrals import Integral
assert _test_args(Integral(2, (x, 0, 1)))
def test_sympy__integrals__risch__NonElementaryIntegral():
from sympy.integrals.risch import NonElementaryIntegral
assert _test_args(NonElementaryIntegral(exp(-x**2), x))
@SKIP("abstract class")
def test_sympy__integrals__transforms__IntegralTransform():
pass
def test_sympy__integrals__transforms__MellinTransform():
from sympy.integrals.transforms import MellinTransform
assert _test_args(MellinTransform(2, x, y))
def test_sympy__integrals__transforms__InverseMellinTransform():
from sympy.integrals.transforms import InverseMellinTransform
assert _test_args(InverseMellinTransform(2, x, y, 0, 1))
def test_sympy__integrals__transforms__LaplaceTransform():
from sympy.integrals.transforms import LaplaceTransform
assert _test_args(LaplaceTransform(2, x, y))
def test_sympy__integrals__transforms__InverseLaplaceTransform():
from sympy.integrals.transforms import InverseLaplaceTransform
assert _test_args(InverseLaplaceTransform(2, x, y, 0))
@SKIP("abstract class")
def test_sympy__integrals__transforms__FourierTypeTransform():
pass
def test_sympy__integrals__transforms__InverseFourierTransform():
from sympy.integrals.transforms import InverseFourierTransform
assert _test_args(InverseFourierTransform(2, x, y))
def test_sympy__integrals__transforms__FourierTransform():
from sympy.integrals.transforms import FourierTransform
assert _test_args(FourierTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__SineCosineTypeTransform():
pass
def test_sympy__integrals__transforms__InverseSineTransform():
from sympy.integrals.transforms import InverseSineTransform
assert _test_args(InverseSineTransform(2, x, y))
def test_sympy__integrals__transforms__SineTransform():
from sympy.integrals.transforms import SineTransform
assert _test_args(SineTransform(2, x, y))
def test_sympy__integrals__transforms__InverseCosineTransform():
from sympy.integrals.transforms import InverseCosineTransform
assert _test_args(InverseCosineTransform(2, x, y))
def test_sympy__integrals__transforms__CosineTransform():
from sympy.integrals.transforms import CosineTransform
assert _test_args(CosineTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__HankelTypeTransform():
pass
def test_sympy__integrals__transforms__InverseHankelTransform():
from sympy.integrals.transforms import InverseHankelTransform
assert _test_args(InverseHankelTransform(2, x, y, 0))
def test_sympy__integrals__transforms__HankelTransform():
from sympy.integrals.transforms import HankelTransform
assert _test_args(HankelTransform(2, x, y, 0))
@XFAIL
def test_sympy__liealgebras__cartan_type__CartanType_generator():
from sympy.liealgebras.cartan_type import CartanType_generator
assert _test_args(CartanType_generator("A2"))
@XFAIL
def test_sympy__liealgebras__cartan_type__Standard_Cartan():
from sympy.liealgebras.cartan_type import Standard_Cartan
assert _test_args(Standard_Cartan("A", 2))
@XFAIL
def test_sympy__liealgebras__weyl_group__WeylGroup():
from sympy.liealgebras.weyl_group import WeylGroup
assert _test_args(WeylGroup("B4"))
@XFAIL
def test_sympy__liealgebras__root_system__RootSystem():
from sympy.liealgebras.root_system import RootSystem
assert _test_args(RootSystem("A2"))
@XFAIL
def test_sympy__liealgebras__type_a__TypeA():
from sympy.liealgebras.type_a import TypeA
assert _test_args(TypeA(2))
@XFAIL
def test_sympy__liealgebras__type_b__TypeB():
from sympy.liealgebras.type_b import TypeB
assert _test_args(TypeB(4))
@XFAIL
def test_sympy__liealgebras__type_c__TypeC():
from sympy.liealgebras.type_c import TypeC
assert _test_args(TypeC(4))
@XFAIL
def test_sympy__liealgebras__type_d__TypeD():
from sympy.liealgebras.type_d import TypeD
assert _test_args(TypeD(4))
@XFAIL
def test_sympy__liealgebras__type_e__TypeE():
from sympy.liealgebras.type_e import TypeE
assert _test_args(TypeE(6))
@XFAIL
def test_sympy__liealgebras__type_f__TypeF():
from sympy.liealgebras.type_f import TypeF
assert _test_args(TypeF(4))
@XFAIL
def test_sympy__liealgebras__type_g__TypeG():
from sympy.liealgebras.type_g import TypeG
assert _test_args(TypeG(2))
def test_sympy__logic__boolalg__And():
from sympy.logic.boolalg import And
assert _test_args(And(x, y, 1))
@SKIP("abstract class")
def test_sympy__logic__boolalg__Boolean():
pass
def test_sympy__logic__boolalg__BooleanFunction():
from sympy.logic.boolalg import BooleanFunction
assert _test_args(BooleanFunction(1, 2, 3))
@SKIP("abstract class")
def test_sympy__logic__boolalg__BooleanAtom():
pass
def test_sympy__logic__boolalg__BooleanTrue():
from sympy.logic.boolalg import true
assert _test_args(true)
def test_sympy__logic__boolalg__BooleanFalse():
from sympy.logic.boolalg import false
assert _test_args(false)
def test_sympy__logic__boolalg__Equivalent():
from sympy.logic.boolalg import Equivalent
assert _test_args(Equivalent(x, 2))
def test_sympy__logic__boolalg__ITE():
from sympy.logic.boolalg import ITE
assert _test_args(ITE(x, y, 1))
def test_sympy__logic__boolalg__Implies():
from sympy.logic.boolalg import Implies
assert _test_args(Implies(x, y))
def test_sympy__logic__boolalg__Nand():
from sympy.logic.boolalg import Nand
assert _test_args(Nand(x, y, 1))
def test_sympy__logic__boolalg__Nor():
from sympy.logic.boolalg import Nor
assert _test_args(Nor(x, y))
def test_sympy__logic__boolalg__Not():
from sympy.logic.boolalg import Not
assert _test_args(Not(x))
def test_sympy__logic__boolalg__Or():
from sympy.logic.boolalg import Or
assert _test_args(Or(x, y))
def test_sympy__logic__boolalg__Xor():
from sympy.logic.boolalg import Xor
assert _test_args(Xor(x, y, 2))
def test_sympy__logic__boolalg__Xnor():
from sympy.logic.boolalg import Xnor
assert _test_args(Xnor(x, y, 2))
def test_sympy__matrices__matrices__DeferredVector():
from sympy.matrices.matrices import DeferredVector
assert _test_args(DeferredVector("X"))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixBase():
pass
def test_sympy__matrices__immutable__ImmutableDenseMatrix():
from sympy.matrices.immutable import ImmutableDenseMatrix
m = ImmutableDenseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__immutable__ImmutableSparseMatrix():
from sympy.matrices.immutable import ImmutableSparseMatrix
m = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, {(0, 0): 1})
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__expressions__slice__MatrixSlice():
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 4, 4)
assert _test_args(MatrixSlice(X, (0, 2), (0, 2)))
def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction():
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol("X", x, x)
func = Lambda(x, x**2)
assert _test_args(ElementwiseApplyFunction(func, X))
def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix():
from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
assert _test_args(BlockDiagMatrix(X, Y))
def test_sympy__matrices__expressions__blockmatrix__BlockMatrix():
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
Z = MatrixSymbol('Z', x, y)
O = ZeroMatrix(y, x)
assert _test_args(BlockMatrix([[X, Z], [O, Y]]))
def test_sympy__matrices__expressions__inverse__Inverse():
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Inverse(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__matadd__MatAdd():
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(MatAdd(X, Y))
def test_sympy__matrices__expressions__matexpr__Identity():
from sympy.matrices.expressions.matexpr import Identity
assert _test_args(Identity(3))
def test_sympy__matrices__expressions__matexpr__GenericIdentity():
from sympy.matrices.expressions.matexpr import GenericIdentity
assert _test_args(GenericIdentity())
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixExpr():
pass
def test_sympy__matrices__expressions__matexpr__MatrixElement():
from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement
from sympy import S
assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3)))
def test_sympy__matrices__expressions__matexpr__MatrixSymbol():
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(MatrixSymbol('A', 3, 5))
def test_sympy__matrices__expressions__matexpr__ZeroMatrix():
from sympy.matrices.expressions.matexpr import ZeroMatrix
assert _test_args(ZeroMatrix(3, 5))
def test_sympy__matrices__expressions__matexpr__OneMatrix():
from sympy.matrices.expressions.matexpr import OneMatrix
assert _test_args(OneMatrix(3, 5))
def test_sympy__matrices__expressions__matexpr__GenericZeroMatrix():
from sympy.matrices.expressions.matexpr import GenericZeroMatrix
assert _test_args(GenericZeroMatrix())
def test_sympy__matrices__expressions__matmul__MatMul():
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', y, x)
assert _test_args(MatMul(X, Y))
def test_sympy__matrices__expressions__dotproduct__DotProduct():
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, 1)
Y = MatrixSymbol('Y', x, 1)
assert _test_args(DotProduct(X, Y))
def test_sympy__matrices__expressions__diagonal__DiagonalMatrix():
from sympy.matrices.expressions.diagonal import DiagonalMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalMatrix(x))
def test_sympy__matrices__expressions__diagonal__DiagonalOf():
from sympy.matrices.expressions.diagonal import DiagonalOf
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('x', 10, 10)
assert _test_args(DiagonalOf(X))
def test_sympy__matrices__expressions__diagonal__DiagonalizeVector():
from sympy.matrices.expressions.diagonal import DiagonalizeVector
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalizeVector(x))
def test_sympy__matrices__expressions__hadamard__HadamardProduct():
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(HadamardProduct(X, Y))
def test_sympy__matrices__expressions__hadamard__HadamardPower():
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions import MatrixSymbol
from sympy import Symbol
X = MatrixSymbol('X', x, y)
n = Symbol("n")
assert _test_args(HadamardPower(X, n))
def test_sympy__matrices__expressions__kronecker__KroneckerProduct():
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(KroneckerProduct(X, Y))
def test_sympy__matrices__expressions__matpow__MatPow():
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
assert _test_args(MatPow(X, 2))
def test_sympy__matrices__expressions__transpose__Transpose():
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Transpose(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__adjoint__Adjoint():
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Adjoint(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__trace__Trace():
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Trace(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Determinant():
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Determinant(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix():
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy import symbols
i, j = symbols('i,j')
assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) ))
def test_sympy__matrices__expressions__fourier__DFT():
from sympy.matrices.expressions.fourier import DFT
from sympy import S
assert _test_args(DFT(S(2)))
def test_sympy__matrices__expressions__fourier__IDFT():
from sympy.matrices.expressions.fourier import IDFT
from sympy import S
assert _test_args(IDFT(S(2)))
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 10, 10)
def test_sympy__matrices__expressions__factorizations__LofLU():
from sympy.matrices.expressions.factorizations import LofLU
assert _test_args(LofLU(X))
def test_sympy__matrices__expressions__factorizations__UofLU():
from sympy.matrices.expressions.factorizations import UofLU
assert _test_args(UofLU(X))
def test_sympy__matrices__expressions__factorizations__QofQR():
from sympy.matrices.expressions.factorizations import QofQR
assert _test_args(QofQR(X))
def test_sympy__matrices__expressions__factorizations__RofQR():
from sympy.matrices.expressions.factorizations import RofQR
assert _test_args(RofQR(X))
def test_sympy__matrices__expressions__factorizations__LofCholesky():
from sympy.matrices.expressions.factorizations import LofCholesky
assert _test_args(LofCholesky(X))
def test_sympy__matrices__expressions__factorizations__UofCholesky():
from sympy.matrices.expressions.factorizations import UofCholesky
assert _test_args(UofCholesky(X))
def test_sympy__matrices__expressions__factorizations__EigenVectors():
from sympy.matrices.expressions.factorizations import EigenVectors
assert _test_args(EigenVectors(X))
def test_sympy__matrices__expressions__factorizations__EigenValues():
from sympy.matrices.expressions.factorizations import EigenValues
assert _test_args(EigenValues(X))
def test_sympy__matrices__expressions__factorizations__UofSVD():
from sympy.matrices.expressions.factorizations import UofSVD
assert _test_args(UofSVD(X))
def test_sympy__matrices__expressions__factorizations__VofSVD():
from sympy.matrices.expressions.factorizations import VofSVD
assert _test_args(VofSVD(X))
def test_sympy__matrices__expressions__factorizations__SofSVD():
from sympy.matrices.expressions.factorizations import SofSVD
assert _test_args(SofSVD(X))
@SKIP("abstract class")
def test_sympy__matrices__expressions__factorizations__Factorization():
pass
def test_sympy__physics__vector__frame__CoordinateSym():
from sympy.physics.vector import CoordinateSym
from sympy.physics.vector import ReferenceFrame
assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0))
def test_sympy__physics__paulialgebra__Pauli():
from sympy.physics.paulialgebra import Pauli
assert _test_args(Pauli(1))
def test_sympy__physics__quantum__anticommutator__AntiCommutator():
from sympy.physics.quantum.anticommutator import AntiCommutator
assert _test_args(AntiCommutator(x, y))
def test_sympy__physics__quantum__cartesian__PositionBra3D():
from sympy.physics.quantum.cartesian import PositionBra3D
assert _test_args(PositionBra3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionKet3D():
from sympy.physics.quantum.cartesian import PositionKet3D
assert _test_args(PositionKet3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionState3D():
from sympy.physics.quantum.cartesian import PositionState3D
assert _test_args(PositionState3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PxBra():
from sympy.physics.quantum.cartesian import PxBra
assert _test_args(PxBra(x, y, z))
def test_sympy__physics__quantum__cartesian__PxKet():
from sympy.physics.quantum.cartesian import PxKet
assert _test_args(PxKet(x, y, z))
def test_sympy__physics__quantum__cartesian__PxOp():
from sympy.physics.quantum.cartesian import PxOp
assert _test_args(PxOp(x, y, z))
def test_sympy__physics__quantum__cartesian__XBra():
from sympy.physics.quantum.cartesian import XBra
assert _test_args(XBra(x))
def test_sympy__physics__quantum__cartesian__XKet():
from sympy.physics.quantum.cartesian import XKet
assert _test_args(XKet(x))
def test_sympy__physics__quantum__cartesian__XOp():
from sympy.physics.quantum.cartesian import XOp
assert _test_args(XOp(x))
def test_sympy__physics__quantum__cartesian__YOp():
from sympy.physics.quantum.cartesian import YOp
assert _test_args(YOp(x))
def test_sympy__physics__quantum__cartesian__ZOp():
from sympy.physics.quantum.cartesian import ZOp
assert _test_args(ZOp(x))
def test_sympy__physics__quantum__cg__CG():
from sympy.physics.quantum.cg import CG
from sympy import S
assert _test_args(CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1))
def test_sympy__physics__quantum__cg__Wigner3j():
from sympy.physics.quantum.cg import Wigner3j
assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
def test_sympy__physics__quantum__cg__Wigner6j():
from sympy.physics.quantum.cg import Wigner6j
assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2))
def test_sympy__physics__quantum__cg__Wigner9j():
from sympy.physics.quantum.cg import Wigner9j
assert _test_args(Wigner9j(2, 1, 1, S(3)/2, S(1)/2, 1, S(1)/2, S(1)/2, 0))
def test_sympy__physics__quantum__circuitplot__Mz():
from sympy.physics.quantum.circuitplot import Mz
assert _test_args(Mz(0))
def test_sympy__physics__quantum__circuitplot__Mx():
from sympy.physics.quantum.circuitplot import Mx
assert _test_args(Mx(0))
def test_sympy__physics__quantum__commutator__Commutator():
from sympy.physics.quantum.commutator import Commutator
A, B = symbols('A,B', commutative=False)
assert _test_args(Commutator(A, B))
def test_sympy__physics__quantum__constants__HBar():
from sympy.physics.quantum.constants import HBar
assert _test_args(HBar())
def test_sympy__physics__quantum__dagger__Dagger():
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.state import Ket
assert _test_args(Dagger(Dagger(Ket('psi'))))
def test_sympy__physics__quantum__gate__CGate():
from sympy.physics.quantum.gate import CGate, Gate
assert _test_args(CGate((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CGateS():
from sympy.physics.quantum.gate import CGateS, Gate
assert _test_args(CGateS((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CNotGate():
from sympy.physics.quantum.gate import CNotGate
assert _test_args(CNotGate(0, 1))
def test_sympy__physics__quantum__gate__Gate():
from sympy.physics.quantum.gate import Gate
assert _test_args(Gate(0))
def test_sympy__physics__quantum__gate__HadamardGate():
from sympy.physics.quantum.gate import HadamardGate
assert _test_args(HadamardGate(0))
def test_sympy__physics__quantum__gate__IdentityGate():
from sympy.physics.quantum.gate import IdentityGate
assert _test_args(IdentityGate(0))
def test_sympy__physics__quantum__gate__OneQubitGate():
from sympy.physics.quantum.gate import OneQubitGate
assert _test_args(OneQubitGate(0))
def test_sympy__physics__quantum__gate__PhaseGate():
from sympy.physics.quantum.gate import PhaseGate
assert _test_args(PhaseGate(0))
def test_sympy__physics__quantum__gate__SwapGate():
from sympy.physics.quantum.gate import SwapGate
assert _test_args(SwapGate(0, 1))
def test_sympy__physics__quantum__gate__TGate():
from sympy.physics.quantum.gate import TGate
assert _test_args(TGate(0))
def test_sympy__physics__quantum__gate__TwoQubitGate():
from sympy.physics.quantum.gate import TwoQubitGate
assert _test_args(TwoQubitGate(0))
def test_sympy__physics__quantum__gate__UGate():
from sympy.physics.quantum.gate import UGate
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy import Integer, Tuple
assert _test_args(
UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]])))
def test_sympy__physics__quantum__gate__XGate():
from sympy.physics.quantum.gate import XGate
assert _test_args(XGate(0))
def test_sympy__physics__quantum__gate__YGate():
from sympy.physics.quantum.gate import YGate
assert _test_args(YGate(0))
def test_sympy__physics__quantum__gate__ZGate():
from sympy.physics.quantum.gate import ZGate
assert _test_args(ZGate(0))
@SKIP("TODO: sympy.physics")
def test_sympy__physics__quantum__grover__OracleGate():
from sympy.physics.quantum.grover import OracleGate
assert _test_args(OracleGate())
def test_sympy__physics__quantum__grover__WGate():
from sympy.physics.quantum.grover import WGate
assert _test_args(WGate(1))
def test_sympy__physics__quantum__hilbert__ComplexSpace():
from sympy.physics.quantum.hilbert import ComplexSpace
assert _test_args(ComplexSpace(x))
def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace():
from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(DirectSumHilbertSpace(c, f))
def test_sympy__physics__quantum__hilbert__FockSpace():
from sympy.physics.quantum.hilbert import FockSpace
assert _test_args(FockSpace())
def test_sympy__physics__quantum__hilbert__HilbertSpace():
from sympy.physics.quantum.hilbert import HilbertSpace
assert _test_args(HilbertSpace())
def test_sympy__physics__quantum__hilbert__L2():
from sympy.physics.quantum.hilbert import L2
from sympy import oo, Interval
assert _test_args(L2(Interval(0, oo)))
def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace():
from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace
f = FockSpace()
assert _test_args(TensorPowerHilbertSpace(f, 2))
def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace():
from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(TensorProductHilbertSpace(f, c))
def test_sympy__physics__quantum__innerproduct__InnerProduct():
from sympy.physics.quantum import Bra, Ket, InnerProduct
b = Bra('b')
k = Ket('k')
assert _test_args(InnerProduct(b, k))
def test_sympy__physics__quantum__operator__DifferentialOperator():
from sympy.physics.quantum.operator import DifferentialOperator
from sympy import Derivative, Function
f = Function('f')
assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x)))
def test_sympy__physics__quantum__operator__HermitianOperator():
from sympy.physics.quantum.operator import HermitianOperator
assert _test_args(HermitianOperator('H'))
def test_sympy__physics__quantum__operator__IdentityOperator():
from sympy.physics.quantum.operator import IdentityOperator
assert _test_args(IdentityOperator(5))
def test_sympy__physics__quantum__operator__Operator():
from sympy.physics.quantum.operator import Operator
assert _test_args(Operator('A'))
def test_sympy__physics__quantum__operator__OuterProduct():
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum import Ket, Bra
b = Bra('b')
k = Ket('k')
assert _test_args(OuterProduct(k, b))
def test_sympy__physics__quantum__operator__UnitaryOperator():
from sympy.physics.quantum.operator import UnitaryOperator
assert _test_args(UnitaryOperator('U'))
def test_sympy__physics__quantum__piab__PIABBra():
from sympy.physics.quantum.piab import PIABBra
assert _test_args(PIABBra('B'))
def test_sympy__physics__quantum__boson__BosonOp():
from sympy.physics.quantum.boson import BosonOp
assert _test_args(BosonOp('a'))
assert _test_args(BosonOp('a', False))
def test_sympy__physics__quantum__boson__BosonFockKet():
from sympy.physics.quantum.boson import BosonFockKet
assert _test_args(BosonFockKet(1))
def test_sympy__physics__quantum__boson__BosonFockBra():
from sympy.physics.quantum.boson import BosonFockBra
assert _test_args(BosonFockBra(1))
def test_sympy__physics__quantum__boson__BosonCoherentKet():
from sympy.physics.quantum.boson import BosonCoherentKet
assert _test_args(BosonCoherentKet(1))
def test_sympy__physics__quantum__boson__BosonCoherentBra():
from sympy.physics.quantum.boson import BosonCoherentBra
assert _test_args(BosonCoherentBra(1))
def test_sympy__physics__quantum__fermion__FermionOp():
from sympy.physics.quantum.fermion import FermionOp
assert _test_args(FermionOp('c'))
assert _test_args(FermionOp('c', False))
def test_sympy__physics__quantum__fermion__FermionFockKet():
from sympy.physics.quantum.fermion import FermionFockKet
assert _test_args(FermionFockKet(1))
def test_sympy__physics__quantum__fermion__FermionFockBra():
from sympy.physics.quantum.fermion import FermionFockBra
assert _test_args(FermionFockBra(1))
def test_sympy__physics__quantum__pauli__SigmaOpBase():
from sympy.physics.quantum.pauli import SigmaOpBase
assert _test_args(SigmaOpBase())
def test_sympy__physics__quantum__pauli__SigmaX():
from sympy.physics.quantum.pauli import SigmaX
assert _test_args(SigmaX())
def test_sympy__physics__quantum__pauli__SigmaY():
from sympy.physics.quantum.pauli import SigmaY
assert _test_args(SigmaY())
def test_sympy__physics__quantum__pauli__SigmaZ():
from sympy.physics.quantum.pauli import SigmaZ
assert _test_args(SigmaZ())
def test_sympy__physics__quantum__pauli__SigmaMinus():
from sympy.physics.quantum.pauli import SigmaMinus
assert _test_args(SigmaMinus())
def test_sympy__physics__quantum__pauli__SigmaPlus():
from sympy.physics.quantum.pauli import SigmaPlus
assert _test_args(SigmaPlus())
def test_sympy__physics__quantum__pauli__SigmaZKet():
from sympy.physics.quantum.pauli import SigmaZKet
assert _test_args(SigmaZKet(0))
def test_sympy__physics__quantum__pauli__SigmaZBra():
from sympy.physics.quantum.pauli import SigmaZBra
assert _test_args(SigmaZBra(0))
def test_sympy__physics__quantum__piab__PIABHamiltonian():
from sympy.physics.quantum.piab import PIABHamiltonian
assert _test_args(PIABHamiltonian('P'))
def test_sympy__physics__quantum__piab__PIABKet():
from sympy.physics.quantum.piab import PIABKet
assert _test_args(PIABKet('K'))
def test_sympy__physics__quantum__qexpr__QExpr():
from sympy.physics.quantum.qexpr import QExpr
assert _test_args(QExpr(0))
def test_sympy__physics__quantum__qft__Fourier():
from sympy.physics.quantum.qft import Fourier
assert _test_args(Fourier(0, 1))
def test_sympy__physics__quantum__qft__IQFT():
from sympy.physics.quantum.qft import IQFT
assert _test_args(IQFT(0, 1))
def test_sympy__physics__quantum__qft__QFT():
from sympy.physics.quantum.qft import QFT
assert _test_args(QFT(0, 1))
def test_sympy__physics__quantum__qft__RkGate():
from sympy.physics.quantum.qft import RkGate
assert _test_args(RkGate(0, 1))
def test_sympy__physics__quantum__qubit__IntQubit():
from sympy.physics.quantum.qubit import IntQubit
assert _test_args(IntQubit(0))
def test_sympy__physics__quantum__qubit__IntQubitBra():
from sympy.physics.quantum.qubit import IntQubitBra
assert _test_args(IntQubitBra(0))
def test_sympy__physics__quantum__qubit__IntQubitState():
from sympy.physics.quantum.qubit import IntQubitState, QubitState
assert _test_args(IntQubitState(QubitState(0, 1)))
def test_sympy__physics__quantum__qubit__Qubit():
from sympy.physics.quantum.qubit import Qubit
assert _test_args(Qubit(0, 0, 0))
def test_sympy__physics__quantum__qubit__QubitBra():
from sympy.physics.quantum.qubit import QubitBra
assert _test_args(QubitBra('1', 0))
def test_sympy__physics__quantum__qubit__QubitState():
from sympy.physics.quantum.qubit import QubitState
assert _test_args(QubitState(0, 1))
def test_sympy__physics__quantum__density__Density():
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.state import Ket
assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5]))
@SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented")
def test_sympy__physics__quantum__shor__CMod():
from sympy.physics.quantum.shor import CMod
assert _test_args(CMod())
def test_sympy__physics__quantum__spin__CoupledSpinState():
from sympy.physics.quantum.spin import CoupledSpinState
assert _test_args(CoupledSpinState(1, 0, (1, 1)))
assert _test_args(CoupledSpinState(1, 0, (1, S(1)/2, S(1)/2)))
assert _test_args(CoupledSpinState(
1, 0, (1, S(1)/2, S(1)/2), ((2, 3, S(1)/2), (1, 2, 1)) ))
j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x')
assert CoupledSpinState(
j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3))
assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \
CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) )
def test_sympy__physics__quantum__spin__J2Op():
from sympy.physics.quantum.spin import J2Op
assert _test_args(J2Op('J'))
def test_sympy__physics__quantum__spin__JminusOp():
from sympy.physics.quantum.spin import JminusOp
assert _test_args(JminusOp('J'))
def test_sympy__physics__quantum__spin__JplusOp():
from sympy.physics.quantum.spin import JplusOp
assert _test_args(JplusOp('J'))
def test_sympy__physics__quantum__spin__JxBra():
from sympy.physics.quantum.spin import JxBra
assert _test_args(JxBra(1, 0))
def test_sympy__physics__quantum__spin__JxBraCoupled():
from sympy.physics.quantum.spin import JxBraCoupled
assert _test_args(JxBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxKet():
from sympy.physics.quantum.spin import JxKet
assert _test_args(JxKet(1, 0))
def test_sympy__physics__quantum__spin__JxKetCoupled():
from sympy.physics.quantum.spin import JxKetCoupled
assert _test_args(JxKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxOp():
from sympy.physics.quantum.spin import JxOp
assert _test_args(JxOp('J'))
def test_sympy__physics__quantum__spin__JyBra():
from sympy.physics.quantum.spin import JyBra
assert _test_args(JyBra(1, 0))
def test_sympy__physics__quantum__spin__JyBraCoupled():
from sympy.physics.quantum.spin import JyBraCoupled
assert _test_args(JyBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyKet():
from sympy.physics.quantum.spin import JyKet
assert _test_args(JyKet(1, 0))
def test_sympy__physics__quantum__spin__JyKetCoupled():
from sympy.physics.quantum.spin import JyKetCoupled
assert _test_args(JyKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyOp():
from sympy.physics.quantum.spin import JyOp
assert _test_args(JyOp('J'))
def test_sympy__physics__quantum__spin__JzBra():
from sympy.physics.quantum.spin import JzBra
assert _test_args(JzBra(1, 0))
def test_sympy__physics__quantum__spin__JzBraCoupled():
from sympy.physics.quantum.spin import JzBraCoupled
assert _test_args(JzBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzKet():
from sympy.physics.quantum.spin import JzKet
assert _test_args(JzKet(1, 0))
def test_sympy__physics__quantum__spin__JzKetCoupled():
from sympy.physics.quantum.spin import JzKetCoupled
assert _test_args(JzKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzOp():
from sympy.physics.quantum.spin import JzOp
assert _test_args(JzOp('J'))
def test_sympy__physics__quantum__spin__Rotation():
from sympy.physics.quantum.spin import Rotation
assert _test_args(Rotation(pi, 0, pi/2))
def test_sympy__physics__quantum__spin__SpinState():
from sympy.physics.quantum.spin import SpinState
assert _test_args(SpinState(1, 0))
def test_sympy__physics__quantum__spin__WignerD():
from sympy.physics.quantum.spin import WignerD
assert _test_args(WignerD(0, 1, 2, 3, 4, 5))
def test_sympy__physics__quantum__state__Bra():
from sympy.physics.quantum.state import Bra
assert _test_args(Bra(0))
def test_sympy__physics__quantum__state__BraBase():
from sympy.physics.quantum.state import BraBase
assert _test_args(BraBase(0))
def test_sympy__physics__quantum__state__Ket():
from sympy.physics.quantum.state import Ket
assert _test_args(Ket(0))
def test_sympy__physics__quantum__state__KetBase():
from sympy.physics.quantum.state import KetBase
assert _test_args(KetBase(0))
def test_sympy__physics__quantum__state__State():
from sympy.physics.quantum.state import State
assert _test_args(State(0))
def test_sympy__physics__quantum__state__StateBase():
from sympy.physics.quantum.state import StateBase
assert _test_args(StateBase(0))
def test_sympy__physics__quantum__state__TimeDepBra():
from sympy.physics.quantum.state import TimeDepBra
assert _test_args(TimeDepBra('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepKet():
from sympy.physics.quantum.state import TimeDepKet
assert _test_args(TimeDepKet('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepState():
from sympy.physics.quantum.state import TimeDepState
assert _test_args(TimeDepState('psi', 't'))
def test_sympy__physics__quantum__state__Wavefunction():
from sympy.physics.quantum.state import Wavefunction
from sympy.functions import sin
from sympy import Piecewise
n = 1
L = 1
g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
assert _test_args(Wavefunction(g, x))
def test_sympy__physics__quantum__tensorproduct__TensorProduct():
from sympy.physics.quantum.tensorproduct import TensorProduct
assert _test_args(TensorProduct(x, y))
def test_sympy__physics__quantum__identitysearch__GateIdentity():
from sympy.physics.quantum.gate import X
from sympy.physics.quantum.identitysearch import GateIdentity
assert _test_args(GateIdentity(X(0), X(0)))
def test_sympy__physics__quantum__sho1d__SHOOp():
from sympy.physics.quantum.sho1d import SHOOp
assert _test_args(SHOOp('a'))
def test_sympy__physics__quantum__sho1d__RaisingOp():
from sympy.physics.quantum.sho1d import RaisingOp
assert _test_args(RaisingOp('a'))
def test_sympy__physics__quantum__sho1d__LoweringOp():
from sympy.physics.quantum.sho1d import LoweringOp
assert _test_args(LoweringOp('a'))
def test_sympy__physics__quantum__sho1d__NumberOp():
from sympy.physics.quantum.sho1d import NumberOp
assert _test_args(NumberOp('N'))
def test_sympy__physics__quantum__sho1d__Hamiltonian():
from sympy.physics.quantum.sho1d import Hamiltonian
assert _test_args(Hamiltonian('H'))
def test_sympy__physics__quantum__sho1d__SHOState():
from sympy.physics.quantum.sho1d import SHOState
assert _test_args(SHOState(0))
def test_sympy__physics__quantum__sho1d__SHOKet():
from sympy.physics.quantum.sho1d import SHOKet
assert _test_args(SHOKet(0))
def test_sympy__physics__quantum__sho1d__SHOBra():
from sympy.physics.quantum.sho1d import SHOBra
assert _test_args(SHOBra(0))
def test_sympy__physics__secondquant__AnnihilateBoson():
from sympy.physics.secondquant import AnnihilateBoson
assert _test_args(AnnihilateBoson(0))
def test_sympy__physics__secondquant__AnnihilateFermion():
from sympy.physics.secondquant import AnnihilateFermion
assert _test_args(AnnihilateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Annihilator():
pass
def test_sympy__physics__secondquant__AntiSymmetricTensor():
from sympy.physics.secondquant import AntiSymmetricTensor
i, j = symbols('i j', below_fermi=True)
a, b = symbols('a b', above_fermi=True)
assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j)))
def test_sympy__physics__secondquant__BosonState():
from sympy.physics.secondquant import BosonState
assert _test_args(BosonState((0, 1)))
@SKIP("abstract class")
def test_sympy__physics__secondquant__BosonicOperator():
pass
def test_sympy__physics__secondquant__Commutator():
from sympy.physics.secondquant import Commutator
assert _test_args(Commutator(x, y))
def test_sympy__physics__secondquant__CreateBoson():
from sympy.physics.secondquant import CreateBoson
assert _test_args(CreateBoson(0))
def test_sympy__physics__secondquant__CreateFermion():
from sympy.physics.secondquant import CreateFermion
assert _test_args(CreateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Creator():
pass
def test_sympy__physics__secondquant__Dagger():
from sympy.physics.secondquant import Dagger
from sympy import I
assert _test_args(Dagger(2*I))
def test_sympy__physics__secondquant__FermionState():
from sympy.physics.secondquant import FermionState
assert _test_args(FermionState((0, 1)))
def test_sympy__physics__secondquant__FermionicOperator():
from sympy.physics.secondquant import FermionicOperator
assert _test_args(FermionicOperator(0))
def test_sympy__physics__secondquant__FockState():
from sympy.physics.secondquant import FockState
assert _test_args(FockState((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonBra():
from sympy.physics.secondquant import FockStateBosonBra
assert _test_args(FockStateBosonBra((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonKet():
from sympy.physics.secondquant import FockStateBosonKet
assert _test_args(FockStateBosonKet((0, 1)))
def test_sympy__physics__secondquant__FockStateBra():
from sympy.physics.secondquant import FockStateBra
assert _test_args(FockStateBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionBra():
from sympy.physics.secondquant import FockStateFermionBra
assert _test_args(FockStateFermionBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionKet():
from sympy.physics.secondquant import FockStateFermionKet
assert _test_args(FockStateFermionKet((0, 1)))
def test_sympy__physics__secondquant__FockStateKet():
from sympy.physics.secondquant import FockStateKet
assert _test_args(FockStateKet((0, 1)))
def test_sympy__physics__secondquant__InnerProduct():
from sympy.physics.secondquant import InnerProduct
from sympy.physics.secondquant import FockStateKet, FockStateBra
assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1))))
def test_sympy__physics__secondquant__NO():
from sympy.physics.secondquant import NO, F, Fd
assert _test_args(NO(Fd(x)*F(y)))
def test_sympy__physics__secondquant__PermutationOperator():
from sympy.physics.secondquant import PermutationOperator
assert _test_args(PermutationOperator(0, 1))
def test_sympy__physics__secondquant__SqOperator():
from sympy.physics.secondquant import SqOperator
assert _test_args(SqOperator(0))
def test_sympy__physics__secondquant__TensorSymbol():
from sympy.physics.secondquant import TensorSymbol
assert _test_args(TensorSymbol(x))
def test_sympy__physics__units__dimensions__Dimension():
from sympy.physics.units.dimensions import Dimension
assert _test_args(Dimension("length", "L"))
def test_sympy__physics__units__dimensions__DimensionSystem():
from sympy.physics.units.dimensions import DimensionSystem
from sympy.physics.units.dimensions import length, time, velocity
assert _test_args(DimensionSystem((length, time), (velocity,)))
def test_sympy__physics__units__quantities__Quantity():
from sympy.physics.units.quantities import Quantity
from sympy.physics.units import length
assert _test_args(Quantity("dam"))
def test_sympy__physics__units__prefixes__Prefix():
from sympy.physics.units.prefixes import Prefix
assert _test_args(Prefix('kilo', 'k', 3))
def test_sympy__core__numbers__AlgebraicNumber():
from sympy.core.numbers import AlgebraicNumber
assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3]))
def test_sympy__polys__polytools__GroebnerBasis():
from sympy.polys.polytools import GroebnerBasis
assert _test_args(GroebnerBasis([x, y, z], x, y, z))
def test_sympy__polys__polytools__Poly():
from sympy.polys.polytools import Poly
assert _test_args(Poly(2, x, y))
def test_sympy__polys__polytools__PurePoly():
from sympy.polys.polytools import PurePoly
assert _test_args(PurePoly(2, x, y))
@SKIP('abstract class')
def test_sympy__polys__rootoftools__RootOf():
pass
def test_sympy__polys__rootoftools__ComplexRootOf():
from sympy.polys.rootoftools import ComplexRootOf
assert _test_args(ComplexRootOf(x**3 + x + 1, 0))
def test_sympy__polys__rootoftools__RootSum():
from sympy.polys.rootoftools import RootSum
assert _test_args(RootSum(x**3 + x + 1, sin))
def test_sympy__series__limits__Limit():
from sympy.series.limits import Limit
assert _test_args(Limit(x, x, 0, dir='-'))
def test_sympy__series__order__Order():
from sympy.series.order import Order
assert _test_args(Order(1, x, y))
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqBase():
pass
def test_sympy__series__sequences__EmptySequence():
from sympy.series.sequences import EmptySequence
assert _test_args(EmptySequence())
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqExpr():
pass
def test_sympy__series__sequences__SeqPer():
from sympy.series.sequences import SeqPer
assert _test_args(SeqPer((1, 2, 3), (0, 10)))
def test_sympy__series__sequences__SeqFormula():
from sympy.series.sequences import SeqFormula
assert _test_args(SeqFormula(x**2, (0, 10)))
def test_sympy__series__sequences__RecursiveSeq():
from sympy.series.sequences import RecursiveSeq
y = Function("y")
n = symbols("n")
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n, (0, 1)))
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n))
def test_sympy__series__sequences__SeqExprOp():
from sympy.series.sequences import SeqExprOp, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqExprOp(s1, s2))
def test_sympy__series__sequences__SeqAdd():
from sympy.series.sequences import SeqAdd, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqAdd(s1, s2))
def test_sympy__series__sequences__SeqMul():
from sympy.series.sequences import SeqMul, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqMul(s1, s2))
@SKIP('Abstract Class')
def test_sympy__series__series_class__SeriesBase():
pass
def test_sympy__series__fourier__FourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(x, (x, -pi, pi)))
def test_sympy__series__fourier__FiniteFourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(sin(pi*x), (x, -1, 1)))
def test_sympy__series__formal__FormalPowerSeries():
from sympy.series.formal import fps
assert _test_args(fps(log(1 + x), x))
def test_sympy__simplify__hyperexpand__Hyper_Function():
from sympy.simplify.hyperexpand import Hyper_Function
assert _test_args(Hyper_Function([2], [1]))
def test_sympy__simplify__hyperexpand__G_Function():
from sympy.simplify.hyperexpand import G_Function
assert _test_args(G_Function([2], [1], [], []))
@SKIP("abstract class")
def test_sympy__tensor__array__ndim_array__ImmutableNDimArray():
pass
def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray():
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(densarr)
def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray():
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(sparr)
def test_sympy__tensor__functions__TensorProduct():
from sympy.tensor.functions import TensorProduct
tp = TensorProduct(3, 4, evaluate=False)
assert _test_args(tp)
def test_sympy__tensor__indexed__Idx():
from sympy.tensor.indexed import Idx
assert _test_args(Idx('test'))
assert _test_args(Idx(1, (0, 10)))
def test_sympy__tensor__indexed__Indexed():
from sympy.tensor.indexed import Indexed, Idx
assert _test_args(Indexed('A', Idx('i'), Idx('j')))
def test_sympy__tensor__indexed__IndexedBase():
from sympy.tensor.indexed import IndexedBase
assert _test_args(IndexedBase('A', shape=(x, y)))
assert _test_args(IndexedBase('A', 1))
assert _test_args(IndexedBase('A')[0, 1])
def test_sympy__tensor__tensor__TensorIndexType():
from sympy.tensor.tensor import TensorIndexType
assert _test_args(TensorIndexType('Lorentz', metric=False))
def test_sympy__tensor__tensor__TensorSymmetry():
from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2)))
def test_sympy__tensor__tensor__TensorType():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorType
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
assert _test_args(TensorType([Lorentz], sym))
def test_sympy__tensor__tensor__TensorHead():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
assert _test_args(TensorHead('p', S1, 0))
def test_sympy__tensor__tensor__TensorIndex():
from sympy.tensor.tensor import TensorIndexType, TensorIndex
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
assert _test_args(TensorIndex('i', Lorentz))
@SKIP("abstract class")
def test_sympy__tensor__tensor__TensExpr():
pass
def test_sympy__tensor__tensor__TensAdd():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensAdd
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p, q = S1('p,q')
t1 = p(a)
t2 = q(a)
assert _test_args(TensAdd(t1, t2))
def test_sympy__tensor__tensor__Tensor():
from sympy.core import S
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p = S1('p')
assert _test_args(p(a))
def test_sympy__tensor__tensor__TensMul():
from sympy.core import S
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
S1 = TensorType([Lorentz], sym)
p = S1('p')
q = S1('q')
assert _test_args(3*p(a)*q(b))
def test_sympy__tensor__tensor__TensorElement():
from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorElement
L = TensorIndexType("L")
A = tensorhead("A", [L, L], [[1], [1]])
telem = TensorElement(A(x, y), {x: 1})
assert _test_args(telem)
def test_sympy__tensor__toperators__PartialDerivative():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
from sympy.tensor.toperators import PartialDerivative
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b = tensor_indices('a,b', Lorentz)
A = tensorhead("A", [Lorentz], [[1]])
assert _test_args(PartialDerivative(A(a), A(b)))
def test_as_coeff_add():
assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add()
def test_sympy__geometry__curve__Curve():
from sympy.geometry.curve import Curve
assert _test_args(Curve((x, 1), (x, 0, 1)))
def test_sympy__geometry__point__Point():
from sympy.geometry.point import Point
assert _test_args(Point(0, 1))
def test_sympy__geometry__point__Point2D():
from sympy.geometry.point import Point2D
assert _test_args(Point2D(0, 1))
def test_sympy__geometry__point__Point3D():
from sympy.geometry.point import Point3D
assert _test_args(Point3D(0, 1, 2))
def test_sympy__geometry__ellipse__Ellipse():
from sympy.geometry.ellipse import Ellipse
assert _test_args(Ellipse((0, 1), 2, 3))
def test_sympy__geometry__ellipse__Circle():
from sympy.geometry.ellipse import Circle
assert _test_args(Circle((0, 1), 2))
def test_sympy__geometry__parabola__Parabola():
from sympy.geometry.parabola import Parabola
from sympy.geometry.line import Line
assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3))))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity():
pass
def test_sympy__geometry__line__Line():
from sympy.geometry.line import Line
assert _test_args(Line((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray():
from sympy.geometry.line import Ray
assert _test_args(Ray((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment():
from sympy.geometry.line import Segment
assert _test_args(Segment((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity2D():
pass
def test_sympy__geometry__line__Line2D():
from sympy.geometry.line import Line2D
assert _test_args(Line2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray2D():
from sympy.geometry.line import Ray2D
assert _test_args(Ray2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment2D():
from sympy.geometry.line import Segment2D
assert _test_args(Segment2D((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity3D():
pass
def test_sympy__geometry__line__Line3D():
from sympy.geometry.line import Line3D
assert _test_args(Line3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Segment3D():
from sympy.geometry.line import Segment3D
assert _test_args(Segment3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Ray3D():
from sympy.geometry.line import Ray3D
assert _test_args(Ray3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__plane__Plane():
from sympy.geometry.plane import Plane
assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3)))
def test_sympy__geometry__polygon__Polygon():
from sympy.geometry.polygon import Polygon
assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7)))
def test_sympy__geometry__polygon__RegularPolygon():
from sympy.geometry.polygon import RegularPolygon
assert _test_args(RegularPolygon((0, 1), 2, 3, 4))
def test_sympy__geometry__polygon__Triangle():
from sympy.geometry.polygon import Triangle
assert _test_args(Triangle((0, 1), (2, 3), (4, 5)))
def test_sympy__geometry__entity__GeometryEntity():
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2]))
@SKIP("abstract class")
def test_sympy__geometry__entity__GeometrySet():
pass
def test_sympy__diffgeom__diffgeom__Manifold():
from sympy.diffgeom import Manifold
assert _test_args(Manifold('name', 3))
def test_sympy__diffgeom__diffgeom__Patch():
from sympy.diffgeom import Manifold, Patch
assert _test_args(Patch('name', Manifold('name', 3)))
def test_sympy__diffgeom__diffgeom__CoordSystem():
from sympy.diffgeom import Manifold, Patch, CoordSystem
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3))))
@XFAIL
def test_sympy__diffgeom__diffgeom__Point():
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
assert _test_args(Point(
CoordSystem('name', Patch('name', Manifold('name', 3))), [x, y]))
def test_sympy__diffgeom__diffgeom__BaseScalarField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseScalarField(cs, 0))
def test_sympy__diffgeom__diffgeom__BaseVectorField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseVectorField(cs, 0))
def test_sympy__diffgeom__diffgeom__Differential():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(Differential(BaseScalarField(cs, 0)))
def test_sympy__diffgeom__diffgeom__Commutator():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)))
v = BaseVectorField(cs, 0)
v1 = BaseVectorField(cs1, 0)
assert _test_args(Commutator(v, v1))
def test_sympy__diffgeom__diffgeom__TensorProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
assert _test_args(TensorProduct(d, d))
def test_sympy__diffgeom__diffgeom__WedgeProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
d1 = Differential(BaseScalarField(cs, 1))
assert _test_args(WedgeProduct(d, d1))
def test_sympy__diffgeom__diffgeom__LieDerivative():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
d = Differential(BaseScalarField(cs, 0))
v = BaseVectorField(cs, 0)
assert _test_args(LieDerivative(v, d))
@XFAIL
def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3))
def test_sympy__diffgeom__diffgeom__CovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)))
v = BaseVectorField(cs, 0)
_test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3))
def test_sympy__categories__baseclasses__Class():
from sympy.categories.baseclasses import Class
assert _test_args(Class())
def test_sympy__categories__baseclasses__Object():
from sympy.categories import Object
assert _test_args(Object("A"))
@XFAIL
def test_sympy__categories__baseclasses__Morphism():
from sympy.categories import Object, Morphism
assert _test_args(Morphism(Object("A"), Object("B")))
def test_sympy__categories__baseclasses__IdentityMorphism():
from sympy.categories import Object, IdentityMorphism
assert _test_args(IdentityMorphism(Object("A")))
def test_sympy__categories__baseclasses__NamedMorphism():
from sympy.categories import Object, NamedMorphism
assert _test_args(NamedMorphism(Object("A"), Object("B"), "f"))
def test_sympy__categories__baseclasses__CompositeMorphism():
from sympy.categories import Object, NamedMorphism, CompositeMorphism
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
assert _test_args(CompositeMorphism(f, g))
def test_sympy__categories__baseclasses__Diagram():
from sympy.categories import Object, NamedMorphism, Diagram
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
d = Diagram([f])
assert _test_args(d)
def test_sympy__categories__baseclasses__Category():
from sympy.categories import Object, NamedMorphism, Diagram, Category
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d1 = Diagram([f, g])
d2 = Diagram([f])
K = Category("K", commutative_diagrams=[d1, d2])
assert _test_args(K)
def test_sympy__ntheory__factor___totient():
from sympy.ntheory.factor_ import totient
k = symbols('k', integer=True)
t = totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___reduced_totient():
from sympy.ntheory.factor_ import reduced_totient
k = symbols('k', integer=True)
t = reduced_totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___divisor_sigma():
from sympy.ntheory.factor_ import divisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = divisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___udivisor_sigma():
from sympy.ntheory.factor_ import udivisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = udivisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___primenu():
from sympy.ntheory.factor_ import primenu
n = symbols('n', integer=True)
t = primenu(n)
assert _test_args(t)
def test_sympy__ntheory__factor___primeomega():
from sympy.ntheory.factor_ import primeomega
n = symbols('n', integer=True)
t = primeomega(n)
assert _test_args(t)
def test_sympy__ntheory__residue_ntheory__mobius():
from sympy.ntheory import mobius
assert _test_args(mobius(2))
def test_sympy__ntheory__generate__primepi():
from sympy.ntheory import primepi
n = symbols('n')
t = primepi(n)
assert _test_args(t)
def test_sympy__physics__optics__waves__TWave():
from sympy.physics.optics import TWave
A, f, phi = symbols('A, f, phi')
assert _test_args(TWave(A, f, phi))
def test_sympy__physics__optics__gaussopt__BeamParameter():
from sympy.physics.optics import BeamParameter
assert _test_args(BeamParameter(530e-9, 1, w=1e-3))
def test_sympy__physics__optics__medium__Medium():
from sympy.physics.optics import Medium
assert _test_args(Medium('m'))
def test_sympy__codegen__array_utils__CodegenArrayContraction():
from sympy.codegen.array_utils import CodegenArrayContraction
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayContraction(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayDiagonal():
from sympy.codegen.array_utils import CodegenArrayDiagonal
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayDiagonal(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayTensorProduct():
from sympy.codegen.array_utils import CodegenArrayTensorProduct
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayTensorProduct(A, B))
def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd():
from sympy.codegen.array_utils import CodegenArrayElementwiseAdd
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayElementwiseAdd(A, B))
def test_sympy__codegen__array_utils__CodegenArrayPermuteDims():
from sympy.codegen.array_utils import CodegenArrayPermuteDims
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayPermuteDims(A, (1, 0)))
def test_sympy__codegen__ast__Assignment():
from sympy.codegen.ast import Assignment
assert _test_args(Assignment(x, y))
def test_sympy__codegen__cfunctions__expm1():
from sympy.codegen.cfunctions import expm1
assert _test_args(expm1(x))
def test_sympy__codegen__cfunctions__log1p():
from sympy.codegen.cfunctions import log1p
assert _test_args(log1p(x))
def test_sympy__codegen__cfunctions__exp2():
from sympy.codegen.cfunctions import exp2
assert _test_args(exp2(x))
def test_sympy__codegen__cfunctions__log2():
from sympy.codegen.cfunctions import log2
assert _test_args(log2(x))
def test_sympy__codegen__cfunctions__fma():
from sympy.codegen.cfunctions import fma
assert _test_args(fma(x, y, z))
def test_sympy__codegen__cfunctions__log10():
from sympy.codegen.cfunctions import log10
assert _test_args(log10(x))
def test_sympy__codegen__cfunctions__Sqrt():
from sympy.codegen.cfunctions import Sqrt
assert _test_args(Sqrt(x))
def test_sympy__codegen__cfunctions__Cbrt():
from sympy.codegen.cfunctions import Cbrt
assert _test_args(Cbrt(x))
def test_sympy__codegen__cfunctions__hypot():
from sympy.codegen.cfunctions import hypot
assert _test_args(hypot(x, y))
def test_sympy__codegen__fnodes__FFunction():
from sympy.codegen.fnodes import FFunction
assert _test_args(FFunction('f'))
def test_sympy__codegen__fnodes__F95Function():
from sympy.codegen.fnodes import F95Function
assert _test_args(F95Function('f'))
def test_sympy__codegen__fnodes__isign():
from sympy.codegen.fnodes import isign
assert _test_args(isign(1, x))
def test_sympy__codegen__fnodes__dsign():
from sympy.codegen.fnodes import dsign
assert _test_args(dsign(1, x))
def test_sympy__codegen__fnodes__cmplx():
from sympy.codegen.fnodes import cmplx
assert _test_args(cmplx(x, y))
def test_sympy__codegen__fnodes__kind():
from sympy.codegen.fnodes import kind
assert _test_args(kind(x))
def test_sympy__codegen__fnodes__merge():
from sympy.codegen.fnodes import merge
assert _test_args(merge(1, 2, Eq(x, 0)))
def test_sympy__codegen__fnodes___literal():
from sympy.codegen.fnodes import _literal
assert _test_args(_literal(1))
def test_sympy__codegen__fnodes__literal_sp():
from sympy.codegen.fnodes import literal_sp
assert _test_args(literal_sp(1))
def test_sympy__codegen__fnodes__literal_dp():
from sympy.codegen.fnodes import literal_dp
assert _test_args(literal_dp(1))
def test_sympy__vector__coordsysrect__CoordSys3D():
from sympy.vector.coordsysrect import CoordSys3D
assert _test_args(CoordSys3D('C'))
def test_sympy__vector__point__Point():
from sympy.vector.point import Point
assert _test_args(Point('P'))
def test_sympy__vector__basisdependent__BasisDependent():
from sympy.vector.basisdependent import BasisDependent
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentMul():
from sympy.vector.basisdependent import BasisDependentMul
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentAdd():
from sympy.vector.basisdependent import BasisDependentAdd
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__basisdependent__BasisDependentZero():
from sympy.vector.basisdependent import BasisDependentZero
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
def test_sympy__vector__vector__BaseVector():
from sympy.vector.vector import BaseVector
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseVector(0, C, ' ', ' '))
def test_sympy__vector__vector__VectorAdd():
from sympy.vector.vector import VectorAdd, VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a, b, c, x, y, z
v1 = a*C.i + b*C.j + c*C.k
v2 = x*C.i + y*C.j + z*C.k
assert _test_args(VectorAdd(v1, v2))
assert _test_args(VectorMul(x, v1))
def test_sympy__vector__vector__VectorMul():
from sympy.vector.vector import VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a
assert _test_args(VectorMul(a, C.i))
def test_sympy__vector__vector__VectorZero():
from sympy.vector.vector import VectorZero
assert _test_args(VectorZero())
def test_sympy__vector__vector__Vector():
from sympy.vector.vector import Vector
#Vector is never to be initialized using args
pass
def test_sympy__vector__vector__Cross():
from sympy.vector.vector import Cross
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Cross(C.i, C.j))
def test_sympy__vector__vector__Dot():
from sympy.vector.vector import Dot
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Dot(C.i, C.j))
def test_sympy__vector__dyadic__Dyadic():
from sympy.vector.dyadic import Dyadic
#Dyadic is never to be initialized using args
pass
def test_sympy__vector__dyadic__BaseDyadic():
from sympy.vector.dyadic import BaseDyadic
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseDyadic(C.i, C.j))
def test_sympy__vector__dyadic__DyadicMul():
from sympy.vector.dyadic import BaseDyadic, DyadicMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicAdd():
from sympy.vector.dyadic import BaseDyadic, DyadicAdd
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i),
BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicZero():
from sympy.vector.dyadic import DyadicZero
assert _test_args(DyadicZero())
def test_sympy__vector__deloperator__Del():
from sympy.vector.deloperator import Del
assert _test_args(Del())
def test_sympy__vector__operators__Curl():
from sympy.vector.operators import Curl
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Curl(C.i))
def test_sympy__vector__operators__Laplacian():
from sympy.vector.operators import Laplacian
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Laplacian(C.i))
def test_sympy__vector__operators__Divergence():
from sympy.vector.operators import Divergence
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Divergence(C.i))
def test_sympy__vector__operators__Gradient():
from sympy.vector.operators import Gradient
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Gradient(C.x))
def test_sympy__vector__orienters__Orienter():
from sympy.vector.orienters import Orienter
#Not to be initialized
def test_sympy__vector__orienters__ThreeAngleOrienter():
from sympy.vector.orienters import ThreeAngleOrienter
#Not to be initialized
def test_sympy__vector__orienters__AxisOrienter():
from sympy.vector.orienters import AxisOrienter
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(AxisOrienter(x, C.i))
def test_sympy__vector__orienters__BodyOrienter():
from sympy.vector.orienters import BodyOrienter
assert _test_args(BodyOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__SpaceOrienter():
from sympy.vector.orienters import SpaceOrienter
assert _test_args(SpaceOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__QuaternionOrienter():
from sympy.vector.orienters import QuaternionOrienter
a, b, c, d = symbols('a b c d')
assert _test_args(QuaternionOrienter(a, b, c, d))
def test_sympy__vector__scalar__BaseScalar():
from sympy.vector.scalar import BaseScalar
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseScalar(0, C, ' ', ' '))
def test_sympy__physics__wigner__Wigner3j():
from sympy.physics.wigner import Wigner3j
assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0))
def test_sympy__integrals__rubi__symbol__matchpyWC():
from sympy.integrals.rubi.symbol import matchpyWC
assert _test_args(matchpyWC(1, True, 'a'))
def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr():
from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr
a = symbols('a')
assert _test_args(rubi_unevaluated_expr(a))
def test_sympy__integrals__rubi__utility_function__rubi_exp():
from sympy.integrals.rubi.utility_function import rubi_exp
assert _test_args(rubi_exp(5))
def test_sympy__integrals__rubi__utility_function__rubi_log():
from sympy.integrals.rubi.utility_function import rubi_log
assert _test_args(rubi_log(5))
def test_sympy__integrals__rubi__utility_function__Int():
from sympy.integrals.rubi.utility_function import Int
assert _test_args(Int(5, x))
def test_sympy__integrals__rubi__utility_function__Util_Coefficient():
from sympy.integrals.rubi.utility_function import Util_Coefficient
a, x = symbols('a x')
assert _test_args(Util_Coefficient(a, x))
def test_sympy__integrals__rubi__utility_function__Gamma():
from sympy.integrals.rubi.utility_function import Gamma
assert _test_args(Gamma(5))
def test_sympy__integrals__rubi__utility_function__Util_Part():
from sympy.integrals.rubi.utility_function import Util_Part
a, b = symbols('a b')
assert _test_args(Util_Part(a + b, 0))
def test_sympy__integrals__rubi__utility_function__PolyGamma():
from sympy.integrals.rubi.utility_function import PolyGamma
assert _test_args(PolyGamma(1, 1))
def test_sympy__integrals__rubi__utility_function__ProductLog():
from sympy.integrals.rubi.utility_function import ProductLog
assert _test_args(ProductLog(1))
|
6ae4beffdd3dcf659f57fadb82f2d67ceef66ccc981580f78991acff048a6b1d | import decimal
from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E,
Integer, S, factorial, Catalan, EulerGamma, GoldenRatio,
TribonacciConstant, cos, exp,
Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le,
AlgebraicNumber, simplify, sin, fibonacci, RealField,
sympify, srepr)
from sympy.core.compatibility import long
from sympy.core.power import integer_nthroot, isqrt, integer_log
from sympy.core.logic import fuzzy_not
from sympy.core.numbers import (igcd, ilcm, igcdex, seterr,
igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse)
from sympy.core.mod import Mod
from sympy.polys.domains.groundtypes import PythonRational
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.utilities.iterables import permutations
from sympy.utilities.pytest import XFAIL, raises
from mpmath import mpf
from mpmath.rational import mpq
import mpmath
t = Symbol('t', real=False)
_ninf = float(-oo)
_inf = float(oo)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_seterr():
seterr(divide=True)
raises(ValueError, lambda: S.Zero/S.Zero)
seterr(divide=False)
assert S.Zero / S.Zero == S.NaN
def test_mod():
x = Rational(1, 2)
y = Rational(3, 4)
z = Rational(5, 18043)
assert x % x == 0
assert x % y == 1/S(2)
assert x % z == 3/S(36086)
assert y % x == 1/S(4)
assert y % y == 0
assert y % z == 9/S(72172)
assert z % x == 5/S(18043)
assert z % y == 5/S(18043)
assert z % z == 0
a = Float(2.6)
assert (a % .2) == 0
assert (a % 2).round(15) == 0.6
assert (a % 0.5).round(15) == 0.1
p = Symbol('p', infinite=True)
assert oo % oo == nan
assert zoo % oo == nan
assert 5 % oo == nan
assert p % 5 == nan
# In these two tests, if the precision of m does
# not match the precision of the ans, then it is
# likely that the change made now gives an answer
# with degraded accuracy.
r = Rational(500, 41)
f = Float('.36', 3)
m = r % f
ans = Float(r % Rational(f), 3)
assert m == ans and m._prec == ans._prec
f = Float('8.36', 3)
m = f % r
ans = Float(Rational(f) % r, 3)
assert m == ans and m._prec == ans._prec
s = S.Zero
assert s % float(1) == S.Zero
# No rounding required since these numbers can be represented
# exactly.
assert Rational(3, 4) % Float(1.1) == 0.75
assert Float(1.5) % Rational(5, 4) == 0.25
assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25
assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25')
assert 2.75 % Float('1.5') == Float('1.25')
a = Integer(7)
b = Integer(4)
assert type(a % b) == Integer
assert a % b == Integer(3)
assert Integer(1) % Rational(2, 3) == Rational(1, 3)
assert Rational(7, 5) % Integer(1) == Rational(2, 5)
assert Integer(2) % 1.5 == 0.5
assert Integer(3).__rmod__(Integer(10)) == Integer(1)
assert Integer(10) % 4 == Integer(2)
assert 15 % Integer(4) == Integer(3)
def test_divmod():
assert divmod(S(12), S(8)) == Tuple(1, 4)
assert divmod(-S(12), S(8)) == Tuple(-2, 4)
assert divmod(S(0), S(1)) == Tuple(0, 0)
raises(ZeroDivisionError, lambda: divmod(S(0), S(0)))
raises(ZeroDivisionError, lambda: divmod(S(1), S(0)))
assert divmod(S(12), 8) == Tuple(1, 4)
assert divmod(12, S(8)) == Tuple(1, 4)
assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2"))
assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2"))
assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5"))
assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("2"), S("0.1")) == Tuple(S("20"), S("0"))
assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("2"), 2) == Tuple(S("1"), S("0"))
assert divmod(2, S("2")) == Tuple(S("1"), S("0"))
assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5"))
assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2"))
assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5"))
assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), Float("1/6"))
assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3/2"), S("0.1")) == Tuple(S("15"), S("0"))
assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2"))
assert divmod(2, S("3/2")) == Tuple(S("1"), S("0.5"))
assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0"))
assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0"))
assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0"))
assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0"))
assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5"))
assert divmod(2, S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5"))
assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1"))
assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3"))
assert divmod(2, S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3"))
assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1"))
assert divmod(2, S("0.1")) == Tuple(S("20"), S("0"))
assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1"))
assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0"))
assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1"))
assert str(divmod(S("2"), 0.3)) == '(6, 0.2)'
assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)'
assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)'
assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)'
assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)'
assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)'
assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)'
assert divmod(-3, S(2)) == (-2, 1)
assert divmod(S(-3), S(2)) == (-2, 1)
assert divmod(S(-3), 2) == (-2, 1)
assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2)
assert divmod(S(4), S(-2.1)) == divmod(4, -2.1)
assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5)
def test_igcd():
assert igcd(0, 0) == 0
assert igcd(0, 1) == 1
assert igcd(1, 0) == 1
assert igcd(0, 7) == 7
assert igcd(7, 0) == 7
assert igcd(7, 1) == 1
assert igcd(1, 7) == 1
assert igcd(-1, 0) == 1
assert igcd(0, -1) == 1
assert igcd(-1, -1) == 1
assert igcd(-1, 7) == 1
assert igcd(7, -1) == 1
assert igcd(8, 2) == 2
assert igcd(4, 8) == 4
assert igcd(8, 16) == 8
assert igcd(7, -3) == 1
assert igcd(-7, 3) == 1
assert igcd(-7, -3) == 1
assert igcd(*[10, 20, 30]) == 10
raises(TypeError, lambda: igcd())
raises(TypeError, lambda: igcd(2))
raises(ValueError, lambda: igcd(0, None))
raises(ValueError, lambda: igcd(1, 2.2))
for args in permutations((45.1, 1, 30)):
raises(ValueError, lambda: igcd(*args))
for args in permutations((1, 2, None)):
raises(ValueError, lambda: igcd(*args))
def test_igcd_lehmer():
a, b = fibonacci(10001), fibonacci(10000)
# len(str(a)) == 2090
# small divisors, long Euclidean sequence
assert igcd_lehmer(a, b) == 1
c = fibonacci(100)
assert igcd_lehmer(a*c, b*c) == c
# big divisor
assert igcd_lehmer(a, 10**1000) == 1
# swapping argmument
assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1)
def test_igcd2():
# short loop
assert igcd2(2**100 - 1, 2**99 - 1) == 1
# Lehmer's algorithm
a, b = int(fibonacci(10001)), int(fibonacci(10000))
assert igcd2(a, b) == 1
def test_ilcm():
assert ilcm(0, 0) == 0
assert ilcm(1, 0) == 0
assert ilcm(0, 1) == 0
assert ilcm(1, 1) == 1
assert ilcm(2, 1) == 2
assert ilcm(8, 2) == 8
assert ilcm(8, 6) == 24
assert ilcm(8, 7) == 56
assert ilcm(*[10, 20, 30]) == 60
raises(ValueError, lambda: ilcm(8.1, 7))
raises(ValueError, lambda: ilcm(8, 7.1))
raises(TypeError, lambda: ilcm(8))
def test_igcdex():
assert igcdex(2, 3) == (-1, 1, 1)
assert igcdex(10, 12) == (-1, 1, 2)
assert igcdex(100, 2004) == (-20, 1, 4)
assert igcdex(0, 0) == (0, 1, 0)
assert igcdex(1, 0) == (1, 0, 1)
def _strictly_equal(a, b):
return (a.p, a.q, type(a.p), type(a.q)) == \
(b.p, b.q, type(b.p), type(b.q))
def _test_rational_new(cls):
"""
Tests that are common between Integer and Rational.
"""
assert cls(0) is S.Zero
assert cls(1) is S.One
assert cls(-1) is S.NegativeOne
# These look odd, but are similar to int():
assert cls('1') is S.One
assert cls(u'-1') is S.NegativeOne
i = Integer(10)
assert _strictly_equal(i, cls('10'))
assert _strictly_equal(i, cls(u'10'))
assert _strictly_equal(i, cls(long(10)))
assert _strictly_equal(i, cls(i))
raises(TypeError, lambda: cls(Symbol('x')))
def test_Integer_new():
"""
Test for Integer constructor
"""
_test_rational_new(Integer)
assert _strictly_equal(Integer(0.9), S.Zero)
assert _strictly_equal(Integer(10.5), Integer(10))
raises(ValueError, lambda: Integer("10.5"))
assert Integer(Rational('1.' + '9'*20)) == 1
def test_Rational_new():
""""
Test for Rational constructor
"""
_test_rational_new(Rational)
n1 = Rational(1, 2)
assert n1 == Rational(Integer(1), 2)
assert n1 == Rational(Integer(1), Integer(2))
assert n1 == Rational(1, Integer(2))
assert n1 == Rational(Rational(1, 2))
assert 1 == Rational(n1, n1)
assert Rational(3, 2) == Rational(Rational(1, 2), Rational(1, 3))
assert Rational(3, 1) == Rational(1, Rational(1, 3))
n3_4 = Rational(3, 4)
assert Rational('3/4') == n3_4
assert -Rational('-3/4') == n3_4
assert Rational('.76').limit_denominator(4) == n3_4
assert Rational(19, 25).limit_denominator(4) == n3_4
assert Rational('19/25').limit_denominator(4) == n3_4
assert Rational(1.0, 3) == Rational(1, 3)
assert Rational(1, 3.0) == Rational(1, 3)
assert Rational(Float(0.5)) == Rational(1, 2)
assert Rational('1e2/1e-2') == Rational(10000)
assert Rational('1 234') == Rational(1234)
assert Rational('1/1 234') == Rational(1, 1234)
assert Rational(-1, 0) == S.ComplexInfinity
assert Rational(1, 0) == S.ComplexInfinity
# Make sure Rational doesn't lose precision on Floats
assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100)
raises(TypeError, lambda: Rational('3**3'))
raises(TypeError, lambda: Rational('1/2 + 2/3'))
# handle fractions.Fraction instances
try:
import fractions
assert Rational(fractions.Fraction(1, 2)) == Rational(1, 2)
except ImportError:
pass
assert Rational(mpq(2, 6)) == Rational(1, 3)
assert Rational(PythonRational(2, 6)) == Rational(1, 3)
def test_Number_new():
""""
Test for Number constructor
"""
# Expected behavior on numbers and strings
assert Number(1) is S.One
assert Number(2).__class__ is Integer
assert Number(-622).__class__ is Integer
assert Number(5, 3).__class__ is Rational
assert Number(5.3).__class__ is Float
assert Number('1') is S.One
assert Number('2').__class__ is Integer
assert Number('-622').__class__ is Integer
assert Number('5/3').__class__ is Rational
assert Number('5.3').__class__ is Float
raises(ValueError, lambda: Number('cos'))
raises(TypeError, lambda: Number(cos))
a = Rational(3, 5)
assert Number(a) is a # Check idempotence on Numbers
def test_Number_cmp():
n1 = Number(1)
n2 = Number(2)
n3 = Number(-3)
assert n1 < n2
assert n1 <= n2
assert n3 < n1
assert n2 > n3
assert n2 >= n3
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Rational_cmp():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n6 = Rational(1)
n7 = Rational(3)
n8 = Rational(-3)
assert n8 < n5
assert n5 < n6
assert n6 < n7
assert n8 < n7
assert n7 > n8
assert (n1 + 1)**n2 < 2
assert ((n1 + n6)/n7) < 1
assert n4 < n3
assert n2 < n3
assert n1 < n2
assert n3 > n1
assert not n3 < n1
assert not (Rational(-1) > 0)
assert Rational(-1) < 0
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Float():
def eq(a, b):
t = Float("1.0E-15")
return (-t < a - b < t)
a = Float(2) ** Float(3)
assert eq(a.evalf(), Float(8))
assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
a = Float(2) ** Float(4)
assert eq(a.evalf(), Float(16))
assert (S(.3) == S(.5)) is False
x_str = Float((0, '13333333333333', -52, 53))
x2_str = Float((0, '26666666666666', -53, 53))
x_hex = Float((0, long(0x13333333333333), -52, 53))
x_dec = Float((0, 5404319552844595, -52, 53))
assert x_str == x_hex == x_dec == Float(1.2)
# This looses a binary digit of precision, so it isn't equal to the above,
# but check that it normalizes correctly
x2_hex = Float((0, long(0x13333333333333)*2, -53, 53))
assert x2_hex._mpf_ == (0, 5404319552844595, -52, 52)
# XXX: Should this test also hold?
# assert x2_hex._prec == 52
# x2_str and 1.2 are superficially the same
assert str(x2_str) == str(Float(1.2))
# but are different at the mpf level
assert Float(1.2)._mpf_ == (0, long(5404319552844595), -52, 53)
assert x2_str._mpf_ == (0, long(10808639105689190), -53, 53)
assert Float((0, long(0), -123, -1)) is S.NaN
assert Float((0, long(0), -456, -2)) is S.Infinity
assert Float((1, long(0), -789, -3)) is S.NegativeInfinity
assert Float(oo) is Float('+_inf') is S.Infinity
assert Float(-oo) is Float('-_inf') is S.NegativeInfinity
raises(ValueError, lambda: Float((0, 7, 1, 3), ''))
assert Float('0.0').is_finite is True
assert Float('0.0').is_negative is False
assert Float('0.0').is_positive is False
assert Float('0.0').is_infinite is False
assert Float('0.0').is_zero is True
# rationality properties
assert Float(1).is_rational is None
assert Float(1).is_irrational is None
assert sqrt(2).n(15).is_rational is None
assert sqrt(2).n(15).is_irrational is None
# do not automatically evalf
def teq(a):
assert (a.evalf() == a) is False
assert (a.evalf() != a) is True
assert (a == a.evalf()) is False
assert (a != a.evalf()) is True
teq(pi)
teq(2*pi)
teq(cos(0.1, evaluate=False))
# long integer
i = 12345678901234567890
assert same_and_same_prec(Float(12, ''), Float('12', ''))
assert same_and_same_prec(Float(Integer(i), ''), Float(i, ''))
assert same_and_same_prec(Float(i, ''), Float(str(i), 20))
assert same_and_same_prec(Float(str(i)), Float(i, ''))
assert same_and_same_prec(Float(i), Float(i, ''))
# inexact floats (repeating binary = denom not multiple of 2)
# cannot have precision greater than 15
assert Float(.125, 22) == .125
assert Float(2.0, 22) == 2
assert float(Float('.12500000000000001', '')) == .125
raises(ValueError, lambda: Float(.12500000000000001, ''))
# allow spaces
Float('123 456.123 456') == Float('123456.123456')
Integer('123 456') == Integer('123456')
Rational('123 456.123 456') == Rational('123456.123456')
assert Float(' .3e2') == Float('0.3e2')
# allow underscore
assert Float('1_23.4_56') == Float('123.456')
assert Float('1_23.4_5_6', 12) == Float('123.456', 12)
# ...but not in all cases (per Py 3.6)
raises(ValueError, lambda: Float('_1'))
raises(ValueError, lambda: Float('1_'))
raises(ValueError, lambda: Float('1_.'))
raises(ValueError, lambda: Float('1._'))
raises(ValueError, lambda: Float('1__2'))
# allow auto precision detection
assert Float('.1', '') == Float(.1, 1)
assert Float('.125', '') == Float(.125, 3)
assert Float('.100', '') == Float(.1, 3)
assert Float('2.0', '') == Float('2', 2)
raises(ValueError, lambda: Float("12.3d-4", ""))
raises(ValueError, lambda: Float(12.3, ""))
raises(ValueError, lambda: Float('.'))
raises(ValueError, lambda: Float('-.'))
zero = Float('0.0')
assert Float('-0') == zero
assert Float('.0') == zero
assert Float('-.0') == zero
assert Float('-0.0') == zero
assert Float(0.0) == zero
assert Float(0) == zero
assert Float(0, '') == Float('0', '')
assert Float(1) == Float(1.0)
assert Float(S.Zero) == zero
assert Float(S.One) == Float(1.0)
assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)
assert Float(decimal.Decimal('nan')) == S.NaN
assert Float(decimal.Decimal('Infinity')) == S.Infinity
assert Float(decimal.Decimal('-Infinity')) == S.NegativeInfinity
assert '{0:.3f}'.format(Float(4.236622)) == '4.237'
assert '{0:.35f}'.format(Float(pi.n(40), 40)) == \
'3.14159265358979323846264338327950288'
# unicode
assert Float(u'0.73908513321516064100000000') == \
Float('0.73908513321516064100000000')
assert Float(u'0.73908513321516064100000000', 28) == \
Float('0.73908513321516064100000000', 28)
# binary precision
# Decimal value 0.1 cannot be expressed precisely as a base 2 fraction
a = Float(S(1)/10, dps=15)
b = Float(S(1)/10, dps=16)
p = Float(S(1)/10, precision=53)
q = Float(S(1)/10, precision=54)
assert a._mpf_ == p._mpf_
assert not a._mpf_ == q._mpf_
assert not b._mpf_ == q._mpf_
# Precision specifying errors
raises(ValueError, lambda: Float("1.23", dps=3, precision=10))
raises(ValueError, lambda: Float("1.23", dps="", precision=10))
raises(ValueError, lambda: Float("1.23", dps=3, precision=""))
raises(ValueError, lambda: Float("1.23", dps="", precision=""))
# from NumberSymbol
assert same_and_same_prec(Float(pi, 32), pi.evalf(32))
assert same_and_same_prec(Float(Catalan), Catalan.evalf())
@conserve_mpmath_dps
def test_float_mpf():
import mpmath
mpmath.mp.dps = 100
mp_pi = mpmath.pi()
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
mpmath.mp.dps = 15
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
def test_Float_RealElement():
repi = RealField(dps=100)(pi.evalf(100))
# We still have to pass the precision because Float doesn't know what
# RealElement is, but make sure it keeps full precision from the result.
assert Float(repi, 100) == pi.evalf(100)
def test_Float_default_to_highprec_from_str():
s = str(pi.evalf(128))
assert same_and_same_prec(Float(s), Float(s, ''))
def test_Float_eval():
a = Float(3.2)
assert (a**2).is_Float
def test_Float_issue_2107():
a = Float(0.1, 10)
b = Float("0.1", 10)
assert a - a == 0
assert a + (-a) == 0
assert S.Zero + a - a == 0
assert S.Zero + a + (-a) == 0
assert b - b == 0
assert b + (-b) == 0
assert S.Zero + b - b == 0
assert S.Zero + b + (-b) == 0
def test_issue_14289():
from sympy.polys.numberfields import to_number_field
a = 1 - sqrt(2)
b = to_number_field(a)
assert b.as_expr() == a
assert b.minpoly(a).expand() == 0
def test_Float_from_tuple():
a = Float((0, '1L', 0, 1))
b = Float((0, '1', 0, 1))
assert a == b
def test_Infinity():
assert oo != 1
assert 1*oo == oo
assert 1 != oo
assert oo != -oo
assert oo != Symbol("x")**3
assert oo + 1 == oo
assert 2 + oo == oo
assert 3*oo + 2 == oo
assert S.Half**oo == 0
assert S.Half**(-oo) == oo
assert -oo*3 == -oo
assert oo + oo == oo
assert -oo + oo*(-5) == -oo
assert 1/oo == 0
assert 1/(-oo) == 0
assert 8/oo == 0
assert oo % 2 == nan
assert 2 % oo == nan
assert oo/oo == nan
assert oo/-oo == nan
assert -oo/oo == nan
assert -oo/-oo == nan
assert oo - oo == nan
assert oo - -oo == oo
assert -oo - oo == -oo
assert -oo - -oo == nan
assert oo + -oo == nan
assert -oo + oo == nan
assert oo + oo == oo
assert -oo + oo == nan
assert oo + -oo == nan
assert -oo + -oo == -oo
assert oo*oo == oo
assert -oo*oo == -oo
assert oo*-oo == -oo
assert -oo*-oo == oo
assert oo/0 == oo
assert -oo/0 == -oo
assert 0/oo == 0
assert 0/-oo == 0
assert oo*0 == nan
assert -oo*0 == nan
assert 0*oo == nan
assert 0*-oo == nan
assert oo + 0 == oo
assert -oo + 0 == -oo
assert 0 + oo == oo
assert 0 + -oo == -oo
assert oo - 0 == oo
assert -oo - 0 == -oo
assert 0 - oo == -oo
assert 0 - -oo == oo
assert oo/2 == oo
assert -oo/2 == -oo
assert oo/-2 == -oo
assert -oo/-2 == oo
assert oo*2 == oo
assert -oo*2 == -oo
assert oo*-2 == -oo
assert 2/oo == 0
assert 2/-oo == 0
assert -2/oo == 0
assert -2/-oo == 0
assert 2*oo == oo
assert 2*-oo == -oo
assert -2*oo == -oo
assert -2*-oo == oo
assert 2 + oo == oo
assert 2 - oo == -oo
assert -2 + oo == oo
assert -2 - oo == -oo
assert 2 + -oo == -oo
assert 2 - -oo == oo
assert -2 + -oo == -oo
assert -2 - -oo == oo
assert S(2) + oo == oo
assert S(2) - oo == -oo
assert oo/I == -oo*I
assert -oo/I == oo*I
assert oo*float(1) == _inf and (oo*float(1)) is oo
assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo
assert oo/float(1) == _inf and (oo/float(1)) is oo
assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo
assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo
assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo
assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo
assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo
assert oo + float(1) == _inf and (oo + float(1)) is oo
assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo
assert oo - float(1) == _inf and (oo - float(1)) is oo
assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo
assert float(1)*oo == _inf and (float(1)*oo) is oo
assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo
assert float(1)/oo == 0
assert float(1)/-oo == 0
assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo
assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo
assert float(-1)/oo == 0
assert float(-1)/-oo == 0
assert float(1) + oo is oo
assert float(1) + -oo is -oo
assert float(1) - oo is -oo
assert float(1) - -oo is oo
assert oo == float(oo)
assert (oo != float(oo)) is False
assert type(float(oo)) is float
assert -oo == float(-oo)
assert (-oo != float(-oo)) is False
assert type(float(-oo)) is float
assert Float('nan') == nan
assert nan*1.0 == nan
assert -1.0*nan == nan
assert nan*oo == nan
assert nan*-oo == nan
assert nan/oo == nan
assert nan/-oo == nan
assert nan + oo == nan
assert nan + -oo == nan
assert nan - oo == nan
assert nan - -oo == nan
assert -oo * S.Zero == nan
assert oo*nan == nan
assert -oo*nan == nan
assert oo/nan == nan
assert -oo/nan == nan
assert oo + nan == nan
assert -oo + nan == nan
assert oo - nan == nan
assert -oo - nan == nan
assert S.Zero * oo == nan
assert oo.is_Rational is False
assert isinstance(oo, Rational) is False
assert S.One/oo == 0
assert -S.One/oo == 0
assert S.One/-oo == 0
assert -S.One/-oo == 0
assert S.One*oo == oo
assert -S.One*oo == -oo
assert S.One*-oo == -oo
assert -S.One*-oo == oo
assert S.One/nan == nan
assert S.One - -oo == oo
assert S.One + nan == nan
assert S.One - nan == nan
assert nan - S.One == nan
assert nan/S.One == nan
assert -oo - S.One == -oo
def test_Infinity_2():
x = Symbol('x')
assert oo*x != oo
assert oo*(pi - 1) == oo
assert oo*(1 - pi) == -oo
assert (-oo)*x != -oo
assert (-oo)*(pi - 1) == -oo
assert (-oo)*(1 - pi) == oo
assert (-1)**S.NaN is S.NaN
assert oo - _inf is S.NaN
assert oo + _ninf is S.NaN
assert oo*0 is S.NaN
assert oo/_inf is S.NaN
assert oo/_ninf is S.NaN
assert oo**S.NaN is S.NaN
assert -oo + _inf is S.NaN
assert -oo - _ninf is S.NaN
assert -oo*S.NaN is S.NaN
assert -oo*0 is S.NaN
assert -oo/_inf is S.NaN
assert -oo/_ninf is S.NaN
assert -oo/S.NaN is S.NaN
assert abs(-oo) == oo
assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN))
assert (-oo)**3 == -oo
assert (-oo)**2 == oo
assert abs(S.ComplexInfinity) == oo
def test_Mul_Infinity_Zero():
assert Float(0)*_inf == nan
assert Float(0)*_ninf == nan
assert Float(0)*_inf == nan
assert Float(0)*_ninf == nan
assert _inf*Float(0) == nan
assert _ninf*Float(0) == nan
assert _inf*Float(0) == nan
assert _ninf*Float(0) == nan
def test_Div_By_Zero():
assert 1/S(0) == zoo
assert 1/Float(0) == _inf
assert 0/S(0) == nan
assert 0/Float(0) == nan
assert S(0)/0 == nan
assert Float(0)/0 == nan
assert -1/S(0) == zoo
assert -1/Float(0) == _ninf
def test_Infinity_inequations():
assert oo > pi
assert not (oo < pi)
assert exp(-3) < oo
assert _inf > pi
assert not (_inf < pi)
assert exp(-3) < _inf
raises(TypeError, lambda: oo < I)
raises(TypeError, lambda: oo <= I)
raises(TypeError, lambda: oo > I)
raises(TypeError, lambda: oo >= I)
raises(TypeError, lambda: -oo < I)
raises(TypeError, lambda: -oo <= I)
raises(TypeError, lambda: -oo > I)
raises(TypeError, lambda: -oo >= I)
raises(TypeError, lambda: I < oo)
raises(TypeError, lambda: I <= oo)
raises(TypeError, lambda: I > oo)
raises(TypeError, lambda: I >= oo)
raises(TypeError, lambda: I < -oo)
raises(TypeError, lambda: I <= -oo)
raises(TypeError, lambda: I > -oo)
raises(TypeError, lambda: I >= -oo)
assert oo > -oo and oo >= -oo
assert (oo < -oo) == False and (oo <= -oo) == False
assert -oo < oo and -oo <= oo
assert (-oo > oo) == False and (-oo >= oo) == False
assert (oo < oo) == False # issue 7775
assert (oo > oo) == False
assert (-oo > -oo) == False and (-oo < -oo) == False
assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo
assert (-oo < -_inf) == False
assert (oo > _inf) == False
assert -oo >= -_inf
assert oo <= _inf
x = Symbol('x')
b = Symbol('b', finite=True, real=True)
assert (x < oo) == Lt(x, oo) # issue 7775
assert b < oo and b > -oo and b <= oo and b >= -oo
assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False
assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b
assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x)
assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x)
assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x)
assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x)
def test_NaN():
assert nan is nan
assert nan != 1
assert 1*nan is nan
assert 1 != nan
assert -nan is nan
assert oo != Symbol("x")**3
assert 2 + nan is nan
assert 3*nan + 2 is nan
assert -nan*3 is nan
assert nan + nan is nan
assert -nan + nan*(-5) is nan
assert 8/nan is nan
raises(TypeError, lambda: nan > 0)
raises(TypeError, lambda: nan < 0)
raises(TypeError, lambda: nan >= 0)
raises(TypeError, lambda: nan <= 0)
raises(TypeError, lambda: 0 < nan)
raises(TypeError, lambda: 0 > nan)
raises(TypeError, lambda: 0 <= nan)
raises(TypeError, lambda: 0 >= nan)
assert nan**0 == 1 # as per IEEE 754
assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work
# test Pow._eval_power's handling of NaN
assert Pow(nan, 0, evaluate=False)**2 == 1
for n in (1, 1., S.One, S.NegativeOne, Float(1)):
assert n + nan is nan
assert n - nan is nan
assert nan + n is nan
assert nan - n is nan
assert n/nan is nan
assert nan/n is nan
def test_special_numbers():
assert isinstance(S.NaN, Number) is True
assert isinstance(S.Infinity, Number) is True
assert isinstance(S.NegativeInfinity, Number) is True
assert S.NaN.is_number is True
assert S.Infinity.is_number is True
assert S.NegativeInfinity.is_number is True
assert S.ComplexInfinity.is_number is True
assert isinstance(S.NaN, Rational) is False
assert isinstance(S.Infinity, Rational) is False
assert isinstance(S.NegativeInfinity, Rational) is False
assert S.NaN.is_rational is not True
assert S.Infinity.is_rational is not True
assert S.NegativeInfinity.is_rational is not True
def test_powers():
assert integer_nthroot(1, 2) == (1, True)
assert integer_nthroot(1, 5) == (1, True)
assert integer_nthroot(2, 1) == (2, True)
assert integer_nthroot(2, 2) == (1, False)
assert integer_nthroot(2, 5) == (1, False)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(123**25, 25) == (123, True)
assert integer_nthroot(123**25 + 1, 25) == (123, False)
assert integer_nthroot(123**25 - 1, 25) == (122, False)
assert integer_nthroot(1, 1) == (1, True)
assert integer_nthroot(0, 1) == (0, True)
assert integer_nthroot(0, 3) == (0, True)
assert integer_nthroot(10000, 1) == (10000, True)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(16, 2) == (4, True)
assert integer_nthroot(26, 2) == (5, False)
assert integer_nthroot(1234567**7, 7) == (1234567, True)
assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False)
assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False)
b = 25**1000
assert integer_nthroot(b, 1000) == (25, True)
assert integer_nthroot(b + 1, 1000) == (25, False)
assert integer_nthroot(b - 1, 1000) == (24, False)
c = 10**400
c2 = c**2
assert integer_nthroot(c2, 2) == (c, True)
assert integer_nthroot(c2 + 1, 2) == (c, False)
assert integer_nthroot(c2 - 1, 2) == (c - 1, False)
assert integer_nthroot(2, 10**10) == (1, False)
p, r = integer_nthroot(int(factorial(10000)), 100)
assert p % (10**10) == 5322420655
assert not r
# Test that this is fast
assert integer_nthroot(2, 10**10) == (1, False)
# output should be int if possible
assert type(integer_nthroot(2**61, 2)[0]) is int
def test_integer_nthroot_overflow():
assert integer_nthroot(10**(50*50), 50) == (10**50, True)
assert integer_nthroot(10**100000, 10000) == (10**10, True)
def test_integer_log():
raises(ValueError, lambda: integer_log(2, 1))
raises(ValueError, lambda: integer_log(0, 2))
raises(ValueError, lambda: integer_log(1.1, 2))
raises(ValueError, lambda: integer_log(1, 2.2))
assert integer_log(1, 2) == (0, True)
assert integer_log(1, 3) == (0, True)
assert integer_log(2, 3) == (0, False)
assert integer_log(3, 3) == (1, True)
assert integer_log(3*2, 3) == (1, False)
assert integer_log(3**2, 3) == (2, True)
assert integer_log(3*4, 3) == (2, False)
assert integer_log(3**3, 3) == (3, True)
assert integer_log(27, 5) == (2, False)
assert integer_log(2, 3) == (0, False)
assert integer_log(-4, -2) == (2, False)
assert integer_log(27, -3) == (3, False)
assert integer_log(-49, 7) == (0, False)
assert integer_log(-49, -7) == (2, False)
def test_isqrt():
from math import sqrt as _sqrt
limit = 17984395633462800708566937239551
assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0]
assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0]
def test_powers_Integer():
"""Test Integer._eval_power"""
# check infinity
assert S(1) ** S.Infinity == S.NaN
assert S(-1)** S.Infinity == S.NaN
assert S(2) ** S.Infinity == S.Infinity
assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit
assert S(0) ** S.Infinity == 0
# check Nan
assert S(1) ** S.NaN == S.NaN
assert S(-1) ** S.NaN == S.NaN
# check for exact roots
assert S(-1) ** Rational(6, 5) == - (-1)**(S(1)/5)
assert sqrt(S(4)) == 2
assert sqrt(S(-4)) == I * 2
assert S(16) ** Rational(1, 4) == 2
assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4)
assert S(9) ** Rational(3, 2) == 27
assert S(-9) ** Rational(3, 2) == -27*I
assert S(27) ** Rational(2, 3) == 9
assert S(-27) ** Rational(2, 3) == 9 * (S(-1) ** Rational(2, 3))
assert (-2) ** Rational(-2, 1) == Rational(1, 4)
# not exact roots
assert sqrt(-3) == I*sqrt(3)
assert (3) ** (S(3)/2) == 3 * sqrt(3)
assert (-3) ** (S(3)/2) == - 3 * sqrt(-3)
assert (-3) ** (S(5)/2) == 9 * I * sqrt(3)
assert (-3) ** (S(7)/2) == - I * 27 * sqrt(3)
assert (2) ** (S(3)/2) == 2 * sqrt(2)
assert (2) ** (S(-3)/2) == sqrt(2) / 4
assert (81) ** (S(2)/3) == 9 * (S(3) ** (S(2)/3))
assert (-81) ** (S(2)/3) == 9 * (S(-3) ** (S(2)/3))
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
# join roots
assert sqrt(6) + sqrt(24) == 3*sqrt(6)
assert sqrt(2) * sqrt(3) == sqrt(6)
# separate symbols & constansts
x = Symbol("x")
assert sqrt(49 * x) == 7 * sqrt(x)
assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi)
# check that it is fast for big numbers
assert (2**64 + 1) ** Rational(4, 3)
assert (2**64 + 1) ** Rational(17, 25)
# negative rational power and negative base
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
assert (-2) ** Rational(-10, 3) == \
(-1)**Rational(2, 3)*2**Rational(2, 3)/16
assert abs(Pow(-2, Rational(-10, 3)).n() -
Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16
# negative base and rational power with some simplification
assert (-8) ** Rational(2, 5) == \
2*(-1)**Rational(2, 5)*2**Rational(1, 5)
assert (-4) ** Rational(9, 5) == \
-8*(-1)**Rational(4, 5)*2**Rational(3, 5)
assert S(1234).factors() == {617: 1, 2: 1}
assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1}
# test that eval_power factors numbers bigger than
# the current limit in factor_trial_division (2**15)
from sympy import nextprime
n = nextprime(2**15)
assert sqrt(n**2) == n
assert sqrt(n**3) == n*sqrt(n)
assert sqrt(4*n) == 2*sqrt(n)
# check that factors of base with powers sharing gcd with power are removed
assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6)
assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6)
# check that bases sharing a gcd are exptracted
assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \
2**Rational(8, 15)*3**Rational(9, 20)
assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \
4*2**Rational(7, 10)*3**Rational(8, 15)
assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \
4*(-3)**Rational(8, 15)*2**Rational(7, 10)
assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9)
assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3)
assert 2**Rational(2, 3)*6**Rational(8, 9) == \
2*2**Rational(5, 9)*3**Rational(8, 9)
assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3)
assert 3*Pow(3, 2, evaluate=False) == 3**3
assert 3*Pow(3, -1/S(3), evaluate=False) == 3**(2/S(3))
assert (-2)**(1/S(3))*(-3)**(1/S(4))*(-5)**(5/S(6)) == \
-(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \
5**Rational(5, 6)
assert Integer(-2)**Symbol('', even=True) == \
Integer(2)**Symbol('', even=True)
assert (-1)**Float(.5) == 1.0*I
def test_powers_Rational():
"""Test Rational._eval_power"""
# check infinity
assert Rational(1, 2) ** S.Infinity == 0
assert Rational(3, 2) ** S.Infinity == S.Infinity
assert Rational(-1, 2) ** S.Infinity == 0
assert Rational(-3, 2) ** S.Infinity == \
S.Infinity + S.Infinity * S.ImaginaryUnit
# check Nan
assert Rational(3, 4) ** S.NaN == S.NaN
assert Rational(-2, 3) ** S.NaN == S.NaN
# exact roots on numerator
assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3
assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9
assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3
assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9
assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2
assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4)
# exact root on denominator
assert sqrt(Rational(1, 4)) == Rational(1, 2)
assert sqrt(Rational(1, -4)) == I * Rational(1, 2)
assert sqrt(Rational(3, 4)) == sqrt(3) / 2
assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2
assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3
# not exact roots
assert sqrt(Rational(1, 2)) == sqrt(2) / 2
assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7))
assert Rational(-3, 2)**Rational(-7, 3) == \
-4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27
assert Rational(-3, 2)**Rational(-2, 3) == \
-(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3
assert Rational(-3, 2)**Rational(-10, 3) == \
8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81
assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() -
Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16
# negative integer power and negative rational base
assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4)
a = Rational(1, 10)
assert a**Float(a, 2) == Float(a, 2)**Float(a, 2)
assert Rational(-2, 3)**Symbol('', even=True) == \
Rational(2, 3)**Symbol('', even=True)
def test_powers_Float():
assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3))
def test_abs1():
assert Rational(1, 6) != Rational(-1, 6)
assert abs(Rational(1, 6)) == abs(Rational(-1, 6))
def test_accept_int():
assert Float(4) == 4
def test_dont_accept_str():
assert Float("0.2") != "0.2"
assert not (Float("0.2") == "0.2")
def test_int():
a = Rational(5)
assert int(a) == 5
a = Rational(9, 10)
assert int(a) == int(-a) == 0
assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3)
assert int(pi) == 3
assert int(E) == 2
assert int(GoldenRatio) == 1
assert int(TribonacciConstant) == 2
# issue 10368
a = S(32442016954)/78058255275
assert type(int(a)) is type(int(-a)) is int
def test_long():
a = Rational(5)
assert long(a) == 5
a = Rational(9, 10)
assert long(a) == long(-a) == 0
a = Integer(2**100)
assert long(a) == a
assert long(pi) == 3
assert long(E) == 2
assert long(GoldenRatio) == 1
assert long(TribonacciConstant) == 2
def test_real_bug():
x = Symbol("x")
assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"]
assert str(2.1*x*x) != "(2.0*x)*x"
def test_bug_sqrt():
assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1
def test_pi_Pi():
"Test that pi (instance) is imported, but Pi (class) is not"
from sympy import pi
with raises(ImportError):
from sympy import Pi
def test_no_len():
# there should be no len for numbers
raises(TypeError, lambda: len(Rational(2)))
raises(TypeError, lambda: len(Rational(2, 3)))
raises(TypeError, lambda: len(Integer(2)))
def test_issue_3321():
assert sqrt(Rational(1, 5)) == sqrt(Rational(1, 5))
assert 5 * sqrt(Rational(1, 5)) == sqrt(5)
def test_issue_3692():
assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2
assert ((-5)**Rational(1, 6)).expand(complex=True) == \
5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2
assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3)
def test_issue_3423():
x = Symbol("x")
assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half)
assert sqrt(x - 1) != I*sqrt(1 - x)
def test_issue_3449():
x = Symbol("x")
assert sqrt(x - 1).subs(x, 5) == 2
def test_issue_13890():
x = Symbol("x")
e = (-x/4 - S(1)/12)**x - 1
f = simplify(e)
a = S(9)/5
assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15
def test_Integer_factors():
def F(i):
return Integer(i).factors()
assert F(1) == {}
assert F(2) == {2: 1}
assert F(3) == {3: 1}
assert F(4) == {2: 2}
assert F(5) == {5: 1}
assert F(6) == {2: 1, 3: 1}
assert F(7) == {7: 1}
assert F(8) == {2: 3}
assert F(9) == {3: 2}
assert F(10) == {2: 1, 5: 1}
assert F(11) == {11: 1}
assert F(12) == {2: 2, 3: 1}
assert F(13) == {13: 1}
assert F(14) == {2: 1, 7: 1}
assert F(15) == {3: 1, 5: 1}
assert F(16) == {2: 4}
assert F(17) == {17: 1}
assert F(18) == {2: 1, 3: 2}
assert F(19) == {19: 1}
assert F(20) == {2: 2, 5: 1}
assert F(21) == {3: 1, 7: 1}
assert F(22) == {2: 1, 11: 1}
assert F(23) == {23: 1}
assert F(24) == {2: 3, 3: 1}
assert F(25) == {5: 2}
assert F(26) == {2: 1, 13: 1}
assert F(27) == {3: 3}
assert F(28) == {2: 2, 7: 1}
assert F(29) == {29: 1}
assert F(30) == {2: 1, 3: 1, 5: 1}
assert F(31) == {31: 1}
assert F(32) == {2: 5}
assert F(33) == {3: 1, 11: 1}
assert F(34) == {2: 1, 17: 1}
assert F(35) == {5: 1, 7: 1}
assert F(36) == {2: 2, 3: 2}
assert F(37) == {37: 1}
assert F(38) == {2: 1, 19: 1}
assert F(39) == {3: 1, 13: 1}
assert F(40) == {2: 3, 5: 1}
assert F(41) == {41: 1}
assert F(42) == {2: 1, 3: 1, 7: 1}
assert F(43) == {43: 1}
assert F(44) == {2: 2, 11: 1}
assert F(45) == {3: 2, 5: 1}
assert F(46) == {2: 1, 23: 1}
assert F(47) == {47: 1}
assert F(48) == {2: 4, 3: 1}
assert F(49) == {7: 2}
assert F(50) == {2: 1, 5: 2}
assert F(51) == {3: 1, 17: 1}
def test_Rational_factors():
def F(p, q, visual=None):
return Rational(p, q).factors(visual=visual)
assert F(2, 3) == {2: 1, 3: -1}
assert F(2, 9) == {2: 1, 3: -2}
assert F(2, 15) == {2: 1, 3: -1, 5: -1}
assert F(6, 10) == {3: 1, 5: -1}
def test_issue_4107():
assert pi*(E + 10) + pi*(-E - 10) != 0
assert pi*(E + 10**10) + pi*(-E - 10**10) != 0
assert pi*(E + 10**20) + pi*(-E - 10**20) != 0
assert pi*(E + 10**80) + pi*(-E - 10**80) != 0
assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0
assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0
assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0
assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0
def test_IntegerInteger():
a = Integer(4)
b = Integer(a)
assert a == b
def test_Rational_gcd_lcm_cofactors():
assert Integer(4).gcd(2) == Integer(2)
assert Integer(4).lcm(2) == Integer(4)
assert Integer(4).gcd(Integer(2)) == Integer(2)
assert Integer(4).lcm(Integer(2)) == Integer(4)
a, b = 720**99911, 480**12342
assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b)
assert Integer(4).gcd(3) == Integer(1)
assert Integer(4).lcm(3) == Integer(12)
assert Integer(4).gcd(Integer(3)) == Integer(1)
assert Integer(4).lcm(Integer(3)) == Integer(12)
assert Rational(4, 3).gcd(2) == Rational(2, 3)
assert Rational(4, 3).lcm(2) == Integer(4)
assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3)
assert Rational(4, 3).lcm(Integer(2)) == Integer(4)
assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9)
assert Integer(4).lcm(Rational(2, 9)) == Integer(4)
assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9)
assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3)
assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45)
assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4)
assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7))
assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1))
assert Integer(4).cofactors(Integer(2)) == \
(Integer(2), Integer(2), Integer(1))
assert Integer(4).gcd(Float(2.0)) == S.One
assert Integer(4).lcm(Float(2.0)) == Float(8.0)
assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0))
assert Rational(1, 2).gcd(Float(2.0)) == S.One
assert Rational(1, 2).lcm(Float(2.0)) == Float(1.0)
assert Rational(1, 2).cofactors(Float(2.0)) == \
(S.One, Rational(1, 2), Float(2.0))
def test_Float_gcd_lcm_cofactors():
assert Float(2.0).gcd(Integer(4)) == S.One
assert Float(2.0).lcm(Integer(4)) == Float(8.0)
assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4))
assert Float(2.0).gcd(Rational(1, 2)) == S.One
assert Float(2.0).lcm(Rational(1, 2)) == Float(1.0)
assert Float(2.0).cofactors(Rational(1, 2)) == \
(S.One, Float(2.0), Rational(1, 2))
def test_issue_4611():
assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10
x = Symbol("x")
assert (pi + x).evalf() == pi.evalf() + x
assert (E + x).evalf() == E.evalf() + x
assert (Catalan + x).evalf() == Catalan.evalf() + x
assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x
assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x
assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x
@conserve_mpmath_dps
def test_conversion_to_mpmath():
assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1)
assert mpmath.mpmathify(Rational(1, 2)) == mpmath.mpf(0.5)
assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23')
assert mpmath.mpmathify(I) == mpmath.mpc(1j)
assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(Rational(1, 2) + Rational(1, 2)*I) == mpmath.mpc(0.5 + 0.5j)
assert mpmath.mpmathify(2*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(Rational(1, 2)*I) == mpmath.mpc(0.5j)
mpmath.mp.dps = 100
assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j
assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j
def test_relational():
# real
x = S(.1)
assert (x != cos) is True
assert (x == cos) is False
# rational
x = Rational(1, 3)
assert (x != cos) is True
assert (x == cos) is False
# integer defers to rational so these tests are omitted
# number symbol
x = pi
assert (x != cos) is True
assert (x == cos) is False
def test_Integer_as_index():
assert 'hello'[Integer(2):] == 'llo'
def test_Rational_int():
assert int( Rational(7, 5)) == 1
assert int( Rational(1, 2)) == 0
assert int(-Rational(1, 2)) == 0
assert int(-Rational(7, 5)) == -1
def test_zoo():
b = Symbol('b', finite=True)
nz = Symbol('nz', nonzero=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
im = Symbol('i', imaginary=True)
c = Symbol('c', complex=True)
pb = Symbol('pb', positive=True, finite=True)
nb = Symbol('nb', negative=True, finite=True)
imb = Symbol('ib', imaginary=True, finite=True)
for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3),
b, nz, p, n, im, pb, nb, imb, c]:
if i.is_finite and (i.is_real or i.is_imaginary):
assert i + zoo is zoo
assert i - zoo is zoo
assert zoo + i is zoo
assert zoo - i is zoo
elif i.is_finite is not False:
assert (i + zoo).is_Add
assert (i - zoo).is_Add
assert (zoo + i).is_Add
assert (zoo - i).is_Add
else:
assert (i + zoo) is S.NaN
assert (i - zoo) is S.NaN
assert (zoo + i) is S.NaN
assert (zoo - i) is S.NaN
if fuzzy_not(i.is_zero) and (i.is_real or i.is_imaginary):
assert i*zoo is zoo
assert zoo*i is zoo
elif i.is_zero:
assert i*zoo is S.NaN
assert zoo*i is S.NaN
else:
assert (i*zoo).is_Mul
assert (zoo*i).is_Mul
if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary):
assert zoo/i is zoo
elif (1/i).is_zero:
assert zoo/i is S.NaN
elif i.is_zero:
assert zoo/i is zoo
else:
assert (zoo/i).is_Mul
assert (I*oo).is_Mul # allow directed infinity
assert zoo + zoo is S.NaN
assert zoo * zoo is zoo
assert zoo - zoo is S.NaN
assert zoo/zoo is S.NaN
assert zoo**zoo is S.NaN
assert zoo**0 is S.One
assert zoo**2 is zoo
assert 1/zoo is S.Zero
assert Mul.flatten([S(-1), oo, S(0)]) == ([S.NaN], [], None)
def test_issue_4122():
x = Symbol('x', nonpositive=True)
assert (oo + x).is_Add
x = Symbol('x', finite=True)
assert (oo + x).is_Add # x could be imaginary
x = Symbol('x', nonnegative=True)
assert oo + x == oo
x = Symbol('x', finite=True, real=True)
assert oo + x == oo
# similarly for negative infinity
x = Symbol('x', nonnegative=True)
assert (-oo + x).is_Add
x = Symbol('x', finite=True)
assert (-oo + x).is_Add
x = Symbol('x', nonpositive=True)
assert -oo + x == -oo
x = Symbol('x', finite=True, real=True)
assert -oo + x == -oo
def test_GoldenRatio_expand():
assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2
def test_TribonacciConstant_expand():
assert TribonacciConstant.expand(func=True) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_as_content_primitive():
assert S.Zero.as_content_primitive() == (1, 0)
assert S.Half.as_content_primitive() == (S.Half, 1)
assert (-S.Half).as_content_primitive() == (S.Half, -1)
assert S(3).as_content_primitive() == (3, 1)
assert S(3.1).as_content_primitive() == (1, 3.1)
def test_hashing_sympy_integers():
# Test for issue 5072
assert set([Integer(3)]) == set([int(3)])
assert hash(Integer(4)) == hash(int(4))
def test_rounding_issue_4172():
assert int((E**100).round()) == \
26881171418161354484126255515800135873611119
assert int((pi**100).round()) == \
51878483143196131920862615246303013562686760680406
assert int((Rational(1)/EulerGamma**100).round()) == \
734833795660954410469466
@XFAIL
def test_mpmath_issues():
from mpmath.libmp.libmpf import _normalize
import mpmath.libmp as mlib
rnd = mlib.round_nearest
mpf = (0, long(0), -123, -1, 53, rnd) # nan
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
mpf = (0, long(0), -456, -2, 53, rnd) # +inf
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
mpf = (1, long(0), -789, -3, 53, rnd) # -inf
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
from mpmath.libmp.libmpf import fnan
assert mlib.mpf_eq(fnan, fnan)
def test_Catalan_EulerGamma_prec():
n = GoldenRatio
f = Float(n.n(), 5)
assert f._mpf_ == (0, long(212079), -17, 18)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
n = EulerGamma
f = Float(n.n(), 5)
assert f._mpf_ == (0, long(302627), -19, 19)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
def test_Float_eq():
assert Float(.12, 3) != Float(.12, 4)
assert Float(.12, 3) == .12
assert 0.12 == Float(.12, 3)
assert Float('.12', 22) != .12
def test_int_NumberSymbols():
assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \
[3, 0, 2, 1, 0]
def test_issue_6640():
from mpmath.libmp.libmpf import finf, fninf
# fnan is not included because Float no longer returns fnan,
# but otherwise, the same sort of test could apply
assert Float(finf).is_zero is False
assert Float(fninf).is_zero is False
assert bool(Float(0)) is False
def test_issue_6349():
assert Float('23.e3', '')._prec == 10
assert Float('23e3', '')._prec == 20
assert Float('23000', '')._prec == 20
assert Float('-23000', '')._prec == 20
def test_mpf_norm():
assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
def test_latex():
assert latex(pi) == r"\pi"
assert latex(E) == r"e"
assert latex(GoldenRatio) == r"\phi"
assert latex(TribonacciConstant) == r"\text{TribonacciConstant}"
assert latex(EulerGamma) == r"\gamma"
assert latex(oo) == r"\infty"
assert latex(-oo) == r"-\infty"
assert latex(zoo) == r"\tilde{\infty}"
assert latex(nan) == r"\text{NaN}"
assert latex(I) == r"i"
def test_issue_7742():
assert -oo % 1 == nan
def test_simplify_AlgebraicNumber():
A = AlgebraicNumber
e = 3**(S(1)/6)*(3 + (135 + 78*sqrt(3))**(S(2)/3))/(45 + 26*sqrt(3))**(S(1)/3)
assert simplify(A(e)) == A(12) # wester test_C20
e = (41 + 29*sqrt(2))**(S(1)/5)
assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21
e = (3 + 4*I)**(Rational(3, 2))
assert simplify(A(e)) == A(2 + 11*I) # issue 4401
def test_Float_idempotence():
x = Float('1.23', '')
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
x = Float(10**20)
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
def test_comp():
# sqrt(2) = 1.414213 5623730950...
a = sqrt(2).n(7)
assert comp(a, 1.41421346) is False
assert comp(a, 1.41421347)
assert comp(a, 1.41421366)
assert comp(a, 1.41421367) is False
assert comp(sqrt(2).n(2), '1.4')
assert comp(sqrt(2).n(2), Float(1.4, 2), '')
raises(ValueError, lambda: comp(sqrt(2).n(2), 1.4, ''))
assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False
def test_issue_9491():
assert oo**zoo == nan
def test_issue_10063():
assert 2**Float(3) == Float(8)
def test_issue_10020():
assert oo**I is S.NaN
assert oo**(1 + I) is S.ComplexInfinity
assert oo**(-1 + I) is S.Zero
assert (-oo)**I is S.NaN
assert (-oo)**(-1 + I) is S.Zero
assert oo**t == Pow(oo, t, evaluate=False)
assert (-oo)**t == Pow(-oo, t, evaluate=False)
def test_invert_numbers():
assert S(2).invert(5) == 3
assert S(2).invert(S(5)/2) == S.Half
assert S(2).invert(5.) == 0.5
assert S(2).invert(S(5)) == 3
assert S(2.).invert(5) == 0.5
assert S(sqrt(2)).invert(5) == 1/sqrt(2)
assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2)
def test_mod_inverse():
assert mod_inverse(3, 11) == 4
assert mod_inverse(5, 11) == 9
assert mod_inverse(21124921, 521512) == 7713
assert mod_inverse(124215421, 5125) == 2981
assert mod_inverse(214, 12515) == 1579
assert mod_inverse(5823991, 3299) == 1442
assert mod_inverse(123, 44) == 39
assert mod_inverse(2, 5) == 3
assert mod_inverse(-2, 5) == 2
assert mod_inverse(2, -5) == -2
assert mod_inverse(-2, -5) == -3
assert mod_inverse(-3, -7) == -5
x = Symbol('x')
assert S(2).invert(x) == S.Half
raises(TypeError, lambda: mod_inverse(2, x))
raises(ValueError, lambda: mod_inverse(2, S.Half))
raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2))
def test_golden_ratio_rewrite_as_sqrt():
assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half
def test_tribonacci_constant_rewrite_as_sqrt():
assert TribonacciConstant.rewrite(sqrt) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_comparisons_with_unknown_type():
class Foo(object):
"""
Class that is unaware of Basic, and relies on both classes returning
the NotImplemented singleton for equivalence to evaluate to False.
"""
ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3)
foo = Foo()
for n in ni, nf, nr, oo, -oo, zoo, nan:
assert n != foo
assert foo != n
assert not n == foo
assert not foo == n
raises(TypeError, lambda: n < foo)
raises(TypeError, lambda: foo > n)
raises(TypeError, lambda: n > foo)
raises(TypeError, lambda: foo < n)
raises(TypeError, lambda: n <= foo)
raises(TypeError, lambda: foo >= n)
raises(TypeError, lambda: n >= foo)
raises(TypeError, lambda: foo <= n)
class Bar(object):
"""
Class that considers itself equal to any instance of Number except
infinities and nans, and relies on sympy types returning the
NotImplemented singleton for symmetric equality relations.
"""
def __eq__(self, other):
if other in (oo, -oo, zoo, nan):
return False
if isinstance(other, Number):
return True
return NotImplemented
def __ne__(self, other):
return not self == other
bar = Bar()
for n in ni, nf, nr:
assert n == bar
assert bar == n
assert not n != bar
assert not bar != n
for n in oo, -oo, zoo, nan:
assert n != bar
assert bar != n
assert not n == bar
assert not bar == n
for n in ni, nf, nr, oo, -oo, zoo, nan:
raises(TypeError, lambda: n < bar)
raises(TypeError, lambda: bar > n)
raises(TypeError, lambda: n > bar)
raises(TypeError, lambda: bar < n)
raises(TypeError, lambda: n <= bar)
raises(TypeError, lambda: bar >= n)
raises(TypeError, lambda: n >= bar)
raises(TypeError, lambda: bar <= n)
def test_NumberSymbol_comparison():
rpi = Rational('905502432259640373/288230376151711744')
fpi = Float(float(pi))
assert (rpi == pi) == (pi == rpi)
assert (rpi != pi) == (pi != rpi)
assert (rpi < pi) == (pi > rpi)
assert (rpi <= pi) == (pi >= rpi)
assert (rpi > pi) == (pi < rpi)
assert (rpi >= pi) == (pi <= rpi)
assert (fpi == pi) == (pi == fpi)
assert (fpi != pi) == (pi != fpi)
assert (fpi < pi) == (pi > fpi)
assert (fpi <= pi) == (pi >= fpi)
assert (fpi > pi) == (pi < fpi)
assert (fpi >= pi) == (pi <= fpi)
def test_Integer_precision():
# Make sure Integer inputs for keyword args work
assert Float('1.0', dps=Integer(15))._prec == 53
assert Float('1.0', precision=Integer(15))._prec == 15
assert type(Float('1.0', precision=Integer(15))._prec) == int
assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15)
def test_numpy_to_float():
from sympy.utilities.pytest import skip
from sympy.external import import_module
np = import_module('numpy')
if not np:
skip('numpy not installed. Abort numpy tests.')
def check_prec_and_relerr(npval, ratval):
prec = np.finfo(npval).nmant + 1
x = Float(npval)
assert x._prec == prec
y = Float(ratval, precision=prec)
assert abs((x - y)/y) < 2**(-(prec + 1))
check_prec_and_relerr(np.float16(2.0/3), S(2)/3)
check_prec_and_relerr(np.float32(2.0/3), S(2)/3)
check_prec_and_relerr(np.float64(2.0/3), S(2)/3)
# extended precision, on some arch/compilers:
x = np.longdouble(2)/3
check_prec_and_relerr(x, S(2)/3)
y = Float(x, precision=10)
assert same_and_same_prec(y, Float(S(2)/3, precision=10))
raises(TypeError, lambda: Float(np.complex64(1+2j)))
raises(TypeError, lambda: Float(np.complex128(1+2j)))
def test_Integer_ceiling_floor():
a = Integer(4)
assert(a.floor() == a)
assert(a.ceiling() == a)
def test_ComplexInfinity():
assert((zoo).floor() == zoo)
assert((zoo).ceiling() == zoo)
assert(zoo**zoo == S.NaN)
def test_Infinity_floor_ceiling_power():
assert((oo).floor() == oo)
assert((oo).ceiling() == oo)
assert((oo)**S.NaN == S.NaN)
assert((oo)**zoo == S.NaN)
def test_One_power():
assert((S.One)**12 == S.One)
assert((S.NegativeOne)**S.NaN == S.NaN)
def test_NegativeInfinity():
assert((-oo).floor() == -oo)
assert((-oo).ceiling() == -oo)
assert((-oo)**11 == -oo)
assert((-oo)**12 == oo)
def test_issue_6133():
raises(TypeError, lambda: (-oo < None))
raises(TypeError, lambda: (S(-2) < None))
raises(TypeError, lambda: (oo < None))
raises(TypeError, lambda: (oo > None))
raises(TypeError, lambda: (S(2) < None))
|
7eb269300021ae29950a434d2ab064fd8166e34a1ac74cb95fc7d3fa6866751b | from sympy import Integer, S, symbols, Mul
from sympy.core.operations import AssocOp, LatticeOp
from sympy.utilities.pytest import raises
from sympy.core.sympify import SympifyError
from sympy.core.add import Add
# create the simplest possible Lattice class
class join(LatticeOp):
zero = Integer(0)
identity = Integer(1)
def test_lattice_simple():
assert join(join(2, 3), 4) == join(2, join(3, 4))
assert join(2, 3) == join(3, 2)
assert join(0, 2) == 0
assert join(1, 2) == 2
assert join(2, 2) == 2
assert join(join(2, 3), 4) == join(2, 3, 4)
assert join() == 1
assert join(4) == 4
assert join(1, 4, 2, 3, 1, 3, 2) == join(2, 3, 4)
def test_lattice_shortcircuit():
raises(SympifyError, lambda: join(object))
assert join(0, object) == 0
def test_lattice_print():
assert str(join(5, 4, 3, 2)) == 'join(2, 3, 4, 5)'
def test_lattice_make_args():
assert join.make_args(join(2, 3, 4)) == {S(2), S(3), S(4)}
assert join.make_args(0) == {0}
assert list(join.make_args(0))[0] is S.Zero
assert Add.make_args(0)[0] is S.Zero
def test_issue_14025():
a, b, c, d = symbols('a,b,c,d', commutative=False)
assert Mul(a, b, c).has(c*b) == False
assert Mul(a, b, c).has(b*c) == True
assert Mul(a, b, c, d).has(b*c*d) == True
def test_AssocOp_flatten():
a, b, c, d = symbols('a,b,c,d')
class MyAssoc(AssocOp):
identity = S(1)
assert MyAssoc(a, MyAssoc(b, c)).args == \
MyAssoc(MyAssoc(a, b), c).args == \
MyAssoc(MyAssoc(a, b, c)).args == \
MyAssoc(a, b, c).args == \
(a, b, c)
u = MyAssoc(b, c)
v = MyAssoc(u, d, evaluate=False)
assert v.args == (u, d)
# like Add, any unevaluated outer call will flatten inner args
assert MyAssoc(a, v).args == (a, b, c, d)
|
5cfbbaa4ad5e5adc76bb3a42ac5f63c8301834a1671b19a4c52aafc4845b5c0c | """Tests for tools for manipulating of large commutative expressions. """
from sympy import (S, Add, sin, Mul, Symbol, oo, Integral, sqrt, Tuple, I, Function,
Interval, O, symbols, simplify, collect, Sum, Basic, Dict,
root, exp, cos, sin, oo, Dummy, log)
from sympy.core.exprtools import (decompose_power, Factors, Term, _gcd_terms,
gcd_terms, factor_terms, factor_nc, _mask_nc,
_monotonic_sign)
from sympy.core.mul import _keep_coeff as _keep_coeff
from sympy.simplify.cse_opts import sub_pre
from sympy.utilities.pytest import raises
from sympy.abc import a, b, t, x, y, z
def test_decompose_power():
assert decompose_power(x) == (x, 1)
assert decompose_power(x**2) == (x, 2)
assert decompose_power(x**(2*y)) == (x**y, 2)
assert decompose_power(x**(2*y/3)) == (x**(y/3), 2)
def test_Factors():
assert Factors() == Factors({}) == Factors(S(1))
assert Factors().as_expr() == S.One
assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4
assert Factors(S.Infinity) == Factors({oo: 1})
assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1})
a = Factors({x: 5, y: 3, z: 7})
b = Factors({ y: 4, z: 3, t: 10})
assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10})
assert a.div(b) == divmod(a, b) == \
(Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
assert a.quo(b) == a/b == Factors({x: 5, z: 4})
assert a.rem(b) == a % b == Factors({y: 1, t: 10})
assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})
assert a.gcd(b) == Factors({y: 3, z: 3})
assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})
a = Factors({x: 4, y: 7, t: 7})
b = Factors({z: 1, t: 3})
assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x
assert Factors(-I)*I == Factors()
assert Factors({S(-1): S(3)})*Factors({S(-1): S(1), I: S(5)}) == \
Factors(I)
assert Factors(S(2)**x).div(S(3)**x) == \
(Factors({S(2): x}), Factors({S(3): x}))
assert Factors(2**(2*x + 2)).div(S(8)) == \
(Factors({S(2): 2*x + 2}), Factors({S(8): S(1)}))
# coverage
# /!\ things break if this is not True
assert Factors({S(-1): S(3)/2}) == Factors({I: S.One, S(-1): S.One})
assert Factors({I: S(1), S(-1): S(1)/3}).as_expr() == I*(-1)**(S(1)/3)
assert Factors(-1.) == Factors({S(-1): S(1), S(1.): 1})
assert Factors(-2.) == Factors({S(-1): S(1), S(2.): 1})
assert Factors((-2.)**x) == Factors({S(-2.): x})
assert Factors(S(-2)) == Factors({S(-1): S(1), S(2): 1})
assert Factors(S.Half) == Factors({S(2): -S.One})
assert Factors(S(3)/2) == Factors({S(3): S.One, S(2): S(-1)})
assert Factors({I: S(1)}) == Factors(I)
assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1})
assert Factors({S.NegativeOne: -S(3)/2}).as_expr() == I
A = symbols('A', commutative=False)
assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1})
assert Factors(I) == Factors({I: S.One})
assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2)))
assert Factors(x).normal(S(0)) == (Factors(), Factors(S(0)))
raises(ZeroDivisionError, lambda: Factors(x).div(S(0)))
assert Factors(x).mul(S(2)) == Factors(2*x)
assert Factors(x).mul(S(0)).is_zero
assert Factors(x).mul(1/x).is_one
assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2))
assert Factors(x)**Factors(S(2)) == Factors(x**2)
assert Factors(x).gcd(S(0)) == Factors(x)
assert Factors(x).lcm(S(0)).is_zero
assert Factors(S(0)).div(x) == (Factors(S(0)), Factors())
assert Factors(x).div(x) == (Factors(), Factors())
assert Factors({x: .2})/Factors({x: .2}) == Factors()
assert Factors(x) != Factors()
assert Factors(S(0)).normal(x) == (Factors(S(0)), Factors())
n, d = x**(2 + y), x**2
f = Factors(n)
assert f.div(d) == f.normal(d) == (Factors(x**y), Factors())
assert f.gcd(d) == Factors()
d = x**y
assert f.div(d) == f.normal(d) == (Factors(x**2), Factors())
assert f.gcd(d) == Factors(d)
n = d = 2**x
f = Factors(n)
assert f.div(d) == f.normal(d) == (Factors(), Factors())
assert f.gcd(d) == Factors(d)
n, d = 2**x, 2**y
f = Factors(n)
assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y}))
assert f.gcd(d) == Factors()
# extraction of constant only
n = x**(x + 3)
assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({}))
assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({}))
assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1}))
assert Factors(n).normal(x**(y - 3)) == \
(Factors({x: x + 6}), Factors({x: y}))
assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
assert Factors(n).normal(x**(y + 4)) == \
(Factors({x: x}), Factors({x: y + 1}))
assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({}))
assert Factors(n).div(x**3) == (Factors({x: x}), Factors({}))
assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1}))
assert Factors(n).div(x**(y - 3)) == \
(Factors({x: x + 6}), Factors({x: y}))
assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
assert Factors(n).div(x**(y + 4)) == \
(Factors({x: x}), Factors({x: y + 1}))
assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1})
assert Factors(x * x / y) == Factors({x: 2, y: -1})
assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9})
def test_Term():
a = Term(4*x*y**2/z/t**3)
b = Term(2*x**3*y**5/t**3)
assert a == Term(4, Factors({x: 1, y: 2}), Factors({z: 1, t: 3}))
assert b == Term(2, Factors({x: 3, y: 5}), Factors({t: 3}))
assert a.as_expr() == 4*x*y**2/z/t**3
assert b.as_expr() == 2*x**3*y**5/t**3
assert a.inv() == \
Term(S(1)/4, Factors({z: 1, t: 3}), Factors({x: 1, y: 2}))
assert b.inv() == Term(S(1)/2, Factors({t: 3}), Factors({x: 3, y: 5}))
assert a.mul(b) == a*b == \
Term(8, Factors({x: 4, y: 7}), Factors({z: 1, t: 6}))
assert a.quo(b) == a/b == Term(2, Factors({}), Factors({x: 2, y: 3, z: 1}))
assert a.pow(3) == a**3 == \
Term(64, Factors({x: 3, y: 6}), Factors({z: 3, t: 9}))
assert b.pow(3) == b**3 == Term(8, Factors({x: 9, y: 15}), Factors({t: 9}))
assert a.pow(-3) == a**(-3) == \
Term(S(1)/64, Factors({z: 3, t: 9}), Factors({x: 3, y: 6}))
assert b.pow(-3) == b**(-3) == \
Term(S(1)/8, Factors({t: 9}), Factors({x: 9, y: 15}))
assert a.gcd(b) == Term(2, Factors({x: 1, y: 2}), Factors({t: 3}))
assert a.lcm(b) == Term(4, Factors({x: 3, y: 5}), Factors({z: 1, t: 3}))
a = Term(4*x*y**2/z/t**3)
b = Term(2*x**3*y**5*t**7)
assert a.mul(b) == Term(8, Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
assert Term((2*x + 2)**3) == Term(8, Factors({x + 1: 3}), Factors({}))
assert Term((2*x + 2)*(3*x + 6)**2) == \
Term(18, Factors({x + 1: 1, x + 2: 2}), Factors({}))
def test_gcd_terms():
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
(2*x + 2)*(x + 6)/(5*x**2 + 5)
assert _gcd_terms(f) == ((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
assert _gcd_terms(Add.make_args(f)) == \
((S(6)/5)*((1 + x)/(1 + x**2)), 5 + x, 1)
newf = (S(6)/5)*((1 + x)*(5 + x)/(1 + x**2))
assert gcd_terms(f) == newf
args = Add.make_args(f)
# non-Basic sequences of terms treated as terms of Add
assert gcd_terms(list(args)) == newf
assert gcd_terms(tuple(args)) == newf
assert gcd_terms(set(args)) == newf
# but a Basic sequence is treated as a container
assert gcd_terms(Tuple(*args)) != newf
assert gcd_terms(Basic(Tuple(1, 3*y + 3*x*y), Tuple(1, 3))) == \
Basic((1, 3*y*(x + 1)), (1, 3))
# but we shouldn't change keys of a dictionary or some may be lost
assert gcd_terms(Dict((x*(1 + y), 2), (x + x*y, y + x*y))) == \
Dict({x*(y + 1): 2, x + x*y: y*(1 + x)})
assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
assert gcd_terms(0) == 0
assert gcd_terms(1) == 1
assert gcd_terms(x) == x
assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
arg = x*(2*x + 4*y)
garg = 2*x*(x + 2*y)
assert gcd_terms(arg) == garg
assert gcd_terms(sin(arg)) == sin(garg)
# issue 6139-like
alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3)
s = (a/(x - alpha)).subs(*rep).series(x, 0, 1)
assert simplify(collect(s, x)) == -sqrt(5)/2 - S(3)/2 + O(x)
# issue 5917
assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)
eq = x/(x + 1/x)
assert gcd_terms(eq, fraction=False) == eq
eq = x/2/y + 1/x/y
assert gcd_terms(eq, fraction=True, clear=True) == \
(x**2 + 2)/(2*x*y)
assert gcd_terms(eq, fraction=True, clear=False) == \
(x**2/2 + 1)/(x*y)
assert gcd_terms(eq, fraction=False, clear=True) == \
(x + 2/x)/(2*y)
assert gcd_terms(eq, fraction=False, clear=False) == \
(x/2 + 1/x)/y
def test_factor_terms():
A = Symbol('A', commutative=False)
assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
9*x*y + 9*x + _keep_coeff(S(3), x + 1)**_keep_coeff(S(2), x + 1) + 9
assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
_keep_coeff(S(9), 3**(2*x) + x*y + x + 1)
assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
9*3**(2*x)*(a + 1)
assert factor_terms(x + x*A) == \
x*(1 + A)
assert factor_terms(sin(x + x*A)) == \
sin(x*(1 + A))
assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
_keep_coeff(S(3), x + 1)**_keep_coeff(S(2)/3, x + 1)
assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
x + (x*(y + 1))**_keep_coeff(S(3), x + 1)
assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
x*(a + 2*b)*(y + 1)
i = Integral(x, (x, 0, oo))
assert factor_terms(i) == i
assert factor_terms(x/2 + y) == x/2 + y
# fraction doesn't apply to integer denominators
assert factor_terms(x/2 + y, fraction=True) == x/2 + y
# clear *does* apply to the integer denominators
assert factor_terms(x/2 + y, clear=True) == Mul(S.Half, x + 2*y, evaluate=False)
# check radical extraction
eq = sqrt(2) + sqrt(10)
assert factor_terms(eq) == eq
assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
eq = root(-6, 3) + root(6, 3)
assert factor_terms(eq, radical=True) == 6**(S(1)/3)*(1 + (-1)**(S(1)/3))
eq = [x + x*y]
ans = [x*(y + 1)]
for c in [list, tuple, set]:
assert factor_terms(c(eq)) == c(ans)
assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
assert factor_terms(Interval(0, 1)) == Interval(0, 1)
e = 1/sqrt(a/2 + 1)
assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)
eq = x/(x + 1/x) + 1/(x**2 + 1)
assert factor_terms(eq, fraction=False) == eq
assert factor_terms(eq, fraction=True) == 1
assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
y*(2 + 1/(x + 1))/x**2
# if not True, then processesing for this in factor_terms is not necessary
assert gcd_terms(-x - y) == -x - y
assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)
# if not True, then "special" processesing in factor_terms is not necessary
assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
e = exp(-x - 2) + x
assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
assert factor_terms(e, sign=False) == e
assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
# sum/integral tests
for F in (Sum, Integral):
assert factor_terms(F(x, (y, 1, 10))) == x * F(1, (y, 1, 10))
assert factor_terms(F(x, (y, 1, 10)) + x) == x * (1 + F(1, (y, 1, 10)))
assert factor_terms(F(x*y + x*y**2, (y, 1, 10))) == x*F(y*(y + 1), (y, 1, 10))
def test_xreplace():
e = Mul(2, 1 + x, evaluate=False)
assert e.xreplace({}) == e
assert e.xreplace({y: x}) == e
def test_factor_nc():
x, y = symbols('x,y')
k = symbols('k', integer=True)
n, m, o = symbols('n,m,o', commutative=False)
# mul and multinomial expansion is needed
from sympy.core.function import _mexpand
e = x*(1 + y)**2
assert _mexpand(e) == x + x*2*y + x*y**2
def factor_nc_test(e):
ex = _mexpand(e)
assert ex.is_Add
f = factor_nc(ex)
assert not f.is_Add and _mexpand(f) == ex
factor_nc_test(x*(1 + y))
factor_nc_test(n*(x + 1))
factor_nc_test(n*(x + m))
factor_nc_test((x + m)*n)
factor_nc_test(n*m*(x*o + n*o*m)*n)
s = Sum(x, (x, 1, 2))
factor_nc_test(x*(1 + s))
factor_nc_test(x*(1 + s)*s)
factor_nc_test(x*(1 + sin(s)))
factor_nc_test((1 + n)**2)
factor_nc_test((x + n)*(x + m)*(x + y))
factor_nc_test(x*(n*m + 1))
factor_nc_test(x*(n*m + x))
factor_nc_test(x*(x*n*m + 1))
factor_nc_test(x*n*(x*m + 1))
factor_nc_test(x*(m*n + x*n*m))
factor_nc_test(n*(1 - m)*n**2)
factor_nc_test((n + m)**2)
factor_nc_test((n - m)*(n + m)**2)
factor_nc_test((n + m)**2*(n - m))
factor_nc_test((m - n)*(n + m)**2*(n - m))
assert factor_nc(n*(n + n*m)) == n**2*(1 + m)
assert factor_nc(m*(m*n + n*m*n**2)) == m*(m + n*m*n)*n
eq = m*sin(n) - sin(n)*m
assert factor_nc(eq) == eq
# for coverage:
from sympy.physics.secondquant import Commutator
from sympy import factor
eq = 1 + x*Commutator(m, n)
assert factor_nc(eq) == eq
eq = x*Commutator(m, n) + x*Commutator(m, o)*Commutator(m, n)
assert factor(eq) == x*(1 + Commutator(m, o))*Commutator(m, n)
# issue 6534
assert (2*n + 2*m).factor() == 2*(n + m)
# issue 6701
assert factor_nc(n**k + n**(k + 1)) == n**k*(1 + n)
assert factor_nc((m*n)**k + (m*n)**(k + 1)) == (1 + m*n)*(m*n)**k
# issue 6918
assert factor_nc(-n*(2*x**2 + 2*x)) == -2*n*x*(x + 1)
def test_issue_6360():
a, b = symbols("a b")
apb = a + b
eq = apb + apb**2*(-2*a - 2*b)
assert factor_terms(sub_pre(eq)) == a + b - 2*(a + b)**3
def test_issue_7903():
a = symbols(r'a', real=True)
t = exp(I*cos(a)) + exp(-I*sin(a))
assert t.simplify()
def test_issue_8263():
F, G = symbols('F, G', commutative=False, cls=Function)
x, y = symbols('x, y')
expr, dummies, _ = _mask_nc(F(x)*G(y) - G(y)*F(x))
for v in dummies.values():
assert not v.is_commutative
assert not expr.is_zero
def test_monotonic_sign():
F = _monotonic_sign
x = symbols('x')
assert F(x) is None
assert F(-x) is None
assert F(Dummy(prime=True)) == 2
assert F(Dummy(prime=True, odd=True)) == 3
assert F(Dummy(composite=True)) == 4
assert F(Dummy(composite=True, odd=True)) == 9
assert F(Dummy(positive=True, integer=True)) == 1
assert F(Dummy(positive=True, even=True)) == 2
assert F(Dummy(positive=True, even=True, prime=False)) == 4
assert F(Dummy(negative=True, integer=True)) == -1
assert F(Dummy(negative=True, even=True)) == -2
assert F(Dummy(zero=True)) == 0
assert F(Dummy(nonnegative=True)) == 0
assert F(Dummy(nonpositive=True)) == 0
assert F(Dummy(positive=True) + 1).is_positive
assert F(Dummy(positive=True, integer=True) - 1).is_nonnegative
assert F(Dummy(positive=True) - 1) is None
assert F(Dummy(negative=True) + 1) is None
assert F(Dummy(negative=True, integer=True) - 1).is_nonpositive
assert F(Dummy(negative=True) - 1).is_negative
assert F(-Dummy(positive=True) + 1) is None
assert F(-Dummy(positive=True, integer=True) - 1).is_negative
assert F(-Dummy(positive=True) - 1).is_negative
assert F(-Dummy(negative=True) + 1).is_positive
assert F(-Dummy(negative=True, integer=True) - 1).is_nonnegative
assert F(-Dummy(negative=True) - 1) is None
x = Dummy(negative=True)
assert F(x**3).is_nonpositive
assert F(x**3 + log(2)*x - 1).is_negative
x = Dummy(positive=True)
assert F(-x**3).is_nonpositive
p = Dummy(positive=True)
assert F(1/p).is_positive
assert F(p/(p + 1)).is_positive
p = Dummy(nonnegative=True)
assert F(p/(p + 1)).is_nonnegative
p = Dummy(positive=True)
assert F(-1/p).is_negative
p = Dummy(nonpositive=True)
assert F(p/(-p + 1)).is_nonpositive
p = Dummy(positive=True, integer=True)
q = Dummy(positive=True, integer=True)
assert F(-2/p/q).is_negative
assert F(-2/(p - 1)/q) is None
assert F((p - 1)*q + 1).is_positive
assert F(-(p - 1)*q - 1).is_negative
|
214d53162f6aba0f590715b61514049482d7070eccdfc72bba5314e75a564204 | from sympy import I, sqrt, log, exp, sin, asin, factorial, Mod, pi
from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow
from sympy.core.facts import InconsistentAssumptions
from sympy import simplify
from sympy.core.compatibility import range
from sympy.utilities.pytest import raises, XFAIL
def test_symbol_unset():
x = Symbol('x', real=True, integer=True)
assert x.is_real is True
assert x.is_integer is True
assert x.is_imaginary is False
assert x.is_noninteger is False
assert x.is_number is False
def test_zero():
z = Integer(0)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is False
assert z.is_negative is False
assert z.is_nonpositive is True
assert z.is_nonnegative is True
assert z.is_even is True
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
assert z.is_number is True
def test_one():
z = Integer(1)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is True
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_number is True
assert z.is_composite is False # issue 8807
def test_negativeone():
z = Integer(-1)
assert z.is_commutative is True
assert z.is_integer is True
assert z.is_rational is True
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is False
assert z.is_positive is False
assert z.is_negative is True
assert z.is_nonpositive is True
assert z.is_nonnegative is False
assert z.is_even is False
assert z.is_odd is True
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
assert z.is_number is True
def test_infinity():
oo = S.Infinity
assert oo.is_commutative is True
assert oo.is_integer is False
assert oo.is_rational is False
assert oo.is_algebraic is False
assert oo.is_transcendental is False
assert oo.is_real is True
assert oo.is_complex is True
assert oo.is_noninteger is True
assert oo.is_irrational is False
assert oo.is_imaginary is False
assert oo.is_positive is True
assert oo.is_negative is False
assert oo.is_nonpositive is False
assert oo.is_nonnegative is True
assert oo.is_even is False
assert oo.is_odd is False
assert oo.is_finite is False
assert oo.is_infinite is True
assert oo.is_comparable is True
assert oo.is_prime is False
assert oo.is_composite is False
assert oo.is_number is True
def test_neg_infinity():
mm = S.NegativeInfinity
assert mm.is_commutative is True
assert mm.is_integer is False
assert mm.is_rational is False
assert mm.is_algebraic is False
assert mm.is_transcendental is False
assert mm.is_real is True
assert mm.is_complex is True
assert mm.is_noninteger is True
assert mm.is_irrational is False
assert mm.is_imaginary is False
assert mm.is_positive is False
assert mm.is_negative is True
assert mm.is_nonpositive is True
assert mm.is_nonnegative is False
assert mm.is_even is False
assert mm.is_odd is False
assert mm.is_finite is False
assert mm.is_infinite is True
assert mm.is_comparable is True
assert mm.is_prime is False
assert mm.is_composite is False
assert mm.is_number is True
def test_zoo():
zoo = S.ComplexInfinity
assert zoo.is_complex
assert zoo.is_real is False
assert zoo.is_prime is False
def test_nan():
nan = S.NaN
assert nan.is_commutative is True
assert nan.is_integer is None
assert nan.is_rational is None
assert nan.is_algebraic is None
assert nan.is_transcendental is None
assert nan.is_real is None
assert nan.is_complex is None
assert nan.is_noninteger is None
assert nan.is_irrational is None
assert nan.is_imaginary is None
assert nan.is_positive is None
assert nan.is_negative is None
assert nan.is_nonpositive is None
assert nan.is_nonnegative is None
assert nan.is_even is None
assert nan.is_odd is None
assert nan.is_finite is None
assert nan.is_infinite is None
assert nan.is_comparable is False
assert nan.is_prime is None
assert nan.is_composite is None
assert nan.is_number is True
def test_pos_rational():
r = Rational(3, 4)
assert r.is_commutative is True
assert r.is_integer is False
assert r.is_rational is True
assert r.is_algebraic is True
assert r.is_transcendental is False
assert r.is_real is True
assert r.is_complex is True
assert r.is_noninteger is True
assert r.is_irrational is False
assert r.is_imaginary is False
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonpositive is False
assert r.is_nonnegative is True
assert r.is_even is False
assert r.is_odd is False
assert r.is_finite is True
assert r.is_infinite is False
assert r.is_comparable is True
assert r.is_prime is False
assert r.is_composite is False
r = Rational(1, 4)
assert r.is_nonpositive is False
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonnegative is True
r = Rational(5, 4)
assert r.is_negative is False
assert r.is_positive is True
assert r.is_nonpositive is False
assert r.is_nonnegative is True
r = Rational(5, 3)
assert r.is_nonnegative is True
assert r.is_positive is True
assert r.is_negative is False
assert r.is_nonpositive is False
def test_neg_rational():
r = Rational(-3, 4)
assert r.is_positive is False
assert r.is_nonpositive is True
assert r.is_negative is True
assert r.is_nonnegative is False
r = Rational(-1, 4)
assert r.is_nonpositive is True
assert r.is_positive is False
assert r.is_negative is True
assert r.is_nonnegative is False
r = Rational(-5, 4)
assert r.is_negative is True
assert r.is_positive is False
assert r.is_nonpositive is True
assert r.is_nonnegative is False
r = Rational(-5, 3)
assert r.is_nonnegative is False
assert r.is_positive is False
assert r.is_negative is True
assert r.is_nonpositive is True
def test_pi():
z = S.Pi
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is False
assert z.is_transcendental is True
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is True
assert z.is_irrational is True
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
def test_E():
z = S.Exp1
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is False
assert z.is_transcendental is True
assert z.is_real is True
assert z.is_complex is True
assert z.is_noninteger is True
assert z.is_irrational is True
assert z.is_imaginary is False
assert z.is_positive is True
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is True
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is True
assert z.is_prime is False
assert z.is_composite is False
def test_I():
z = S.ImaginaryUnit
assert z.is_commutative is True
assert z.is_integer is False
assert z.is_rational is False
assert z.is_algebraic is True
assert z.is_transcendental is False
assert z.is_real is False
assert z.is_complex is True
assert z.is_noninteger is False
assert z.is_irrational is False
assert z.is_imaginary is True
assert z.is_positive is False
assert z.is_negative is False
assert z.is_nonpositive is False
assert z.is_nonnegative is False
assert z.is_even is False
assert z.is_odd is False
assert z.is_finite is True
assert z.is_infinite is False
assert z.is_comparable is False
assert z.is_prime is False
assert z.is_composite is False
def test_symbol_real():
# issue 3848
a = Symbol('a', real=False)
assert a.is_real is False
assert a.is_integer is False
assert a.is_negative is False
assert a.is_positive is False
assert a.is_nonnegative is False
assert a.is_nonpositive is False
assert a.is_zero is False
def test_symbol_imaginary():
a = Symbol('a', imaginary=True)
assert a.is_real is False
assert a.is_integer is False
assert a.is_negative is False
assert a.is_positive is False
assert a.is_nonnegative is False
assert a.is_nonpositive is False
assert a.is_zero is False
assert a.is_nonzero is False # since nonzero -> real
def test_symbol_zero():
x = Symbol('x', zero=True)
assert x.is_positive is False
assert x.is_nonpositive
assert x.is_negative is False
assert x.is_nonnegative
assert x.is_zero is True
# TODO Change to x.is_nonzero is None
# See https://github.com/sympy/sympy/pull/9583
assert x.is_nonzero is False
assert x.is_finite is True
def test_symbol_positive():
x = Symbol('x', positive=True)
assert x.is_positive is True
assert x.is_nonpositive is False
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is False
assert x.is_nonzero is True
def test_neg_symbol_positive():
x = -Symbol('x', positive=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is True
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is True
def test_symbol_nonpositive():
x = Symbol('x', nonpositive=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_nonpositive():
x = -Symbol('x', nonpositive=True)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive():
x = Symbol('x', positive=False)
assert x.is_positive is False
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive_mul():
# To test pull request 9379
# Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive
x = 2*Symbol('x', positive=False)
assert x.is_positive is False # This was None before
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_falsepositive():
x = -Symbol('x', positive=False)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_falsenegative():
# To test pull request 9379
# Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive
x = -Symbol('x', negative=False)
assert x.is_positive is False # This was None before
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsepositive_real():
x = Symbol('x', positive=False, real=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is None
assert x.is_nonnegative is None
assert x.is_zero is None
assert x.is_nonzero is None
def test_neg_symbol_falsepositive_real():
x = -Symbol('x', positive=False, real=True)
assert x.is_positive is None
assert x.is_nonpositive is None
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is None
assert x.is_nonzero is None
def test_symbol_falsenonnegative():
x = Symbol('x', nonnegative=False)
assert x.is_positive is False
assert x.is_nonpositive is None
assert x.is_negative is None
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is None
@XFAIL
def test_neg_symbol_falsenonnegative():
x = -Symbol('x', nonnegative=False)
assert x.is_positive is None
assert x.is_nonpositive is False # this currently returns None
assert x.is_negative is False # this currently returns None
assert x.is_nonnegative is None
assert x.is_zero is False # this currently returns None
assert x.is_nonzero is True # this currently returns None
def test_symbol_falsenonnegative_real():
x = Symbol('x', nonnegative=False, real=True)
assert x.is_positive is False
assert x.is_nonpositive is True
assert x.is_negative is True
assert x.is_nonnegative is False
assert x.is_zero is False
assert x.is_nonzero is True
def test_neg_symbol_falsenonnegative_real():
x = -Symbol('x', nonnegative=False, real=True)
assert x.is_positive is True
assert x.is_nonpositive is False
assert x.is_negative is False
assert x.is_nonnegative is True
assert x.is_zero is False
assert x.is_nonzero is True
def test_prime():
assert S(-1).is_prime is False
assert S(-2).is_prime is False
assert S(-4).is_prime is False
assert S(0).is_prime is False
assert S(1).is_prime is False
assert S(2).is_prime is True
assert S(17).is_prime is True
assert S(4).is_prime is False
def test_composite():
assert S(-1).is_composite is False
assert S(-2).is_composite is False
assert S(-4).is_composite is False
assert S(0).is_composite is False
assert S(2).is_composite is False
assert S(17).is_composite is False
assert S(4).is_composite is True
x = Dummy(integer=True, positive=True, prime=False)
assert x.is_composite is None # x could be 1
assert (x + 1).is_composite is None
x = Dummy(positive=True, even=True, prime=False)
assert x.is_integer is True
assert x.is_composite is True
def test_prime_symbol():
x = Symbol('x', prime=True)
assert x.is_prime is True
assert x.is_integer is True
assert x.is_positive is True
assert x.is_negative is False
assert x.is_nonpositive is False
assert x.is_nonnegative is True
x = Symbol('x', prime=False)
assert x.is_prime is False
assert x.is_integer is None
assert x.is_positive is None
assert x.is_negative is None
assert x.is_nonpositive is None
assert x.is_nonnegative is None
def test_symbol_noncommutative():
x = Symbol('x', commutative=True)
assert x.is_complex is None
x = Symbol('x', commutative=False)
assert x.is_integer is False
assert x.is_rational is False
assert x.is_algebraic is False
assert x.is_irrational is False
assert x.is_real is False
assert x.is_complex is False
def test_other_symbol():
x = Symbol('x', integer=True)
assert x.is_integer is True
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', integer=True, nonnegative=True)
assert x.is_integer is True
assert x.is_nonnegative is True
assert x.is_negative is False
assert x.is_positive is None
assert x.is_finite is True
x = Symbol('x', integer=True, nonpositive=True)
assert x.is_integer is True
assert x.is_nonpositive is True
assert x.is_positive is False
assert x.is_negative is None
assert x.is_finite is True
x = Symbol('x', odd=True)
assert x.is_odd is True
assert x.is_even is False
assert x.is_integer is True
assert x.is_finite is True
x = Symbol('x', odd=False)
assert x.is_odd is False
assert x.is_even is None
assert x.is_integer is None
assert x.is_finite is None
x = Symbol('x', even=True)
assert x.is_even is True
assert x.is_odd is False
assert x.is_integer is True
assert x.is_finite is True
x = Symbol('x', even=False)
assert x.is_even is False
assert x.is_odd is None
assert x.is_integer is None
assert x.is_finite is None
x = Symbol('x', integer=True, nonnegative=True)
assert x.is_integer is True
assert x.is_nonnegative is True
assert x.is_finite is True
x = Symbol('x', integer=True, nonpositive=True)
assert x.is_integer is True
assert x.is_nonpositive is True
assert x.is_finite is True
x = Symbol('x', rational=True)
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', rational=False)
assert x.is_real is None
assert x.is_finite is None
x = Symbol('x', irrational=True)
assert x.is_real is True
assert x.is_finite is True
x = Symbol('x', irrational=False)
assert x.is_real is None
assert x.is_finite is None
with raises(AttributeError):
x.is_real = False
x = Symbol('x', algebraic=True)
assert x.is_transcendental is False
x = Symbol('x', transcendental=True)
assert x.is_algebraic is False
assert x.is_rational is False
assert x.is_integer is False
def test_issue_3825():
"""catch: hash instability"""
x = Symbol("x")
y = Symbol("y")
a1 = x + y
a2 = y + x
a2.is_comparable
h1 = hash(a1)
h2 = hash(a2)
assert h1 == h2
def test_issue_4822():
z = (-1)**Rational(1, 3)*(1 - I*sqrt(3))
assert z.is_real in [True, None]
def test_hash_vs_typeinfo():
"""seemingly different typeinfo, but in fact equal"""
# the following two are semantically equal
x1 = Symbol('x', even=True)
x2 = Symbol('x', integer=True, odd=False)
assert hash(x1) == hash(x2)
assert x1 == x2
def test_hash_vs_typeinfo_2():
"""different typeinfo should mean !eq"""
# the following two are semantically different
x = Symbol('x')
x1 = Symbol('x', even=True)
assert x != x1
assert hash(x) != hash(x1) # This might fail with very low probability
def test_hash_vs_eq():
"""catch: different hash for equal objects"""
a = 1 + S.Pi # important: do not fold it into a Number instance
ha = hash(a) # it should be Add/Mul/... to trigger the bug
a.is_positive # this uses .evalf() and deduces it is positive
assert a.is_positive is True
# be sure that hash stayed the same
assert ha == hash(a)
# now b should be the same expression
b = a.expand(trig=True)
hb = hash(b)
assert a == b
assert ha == hb
def test_Add_is_pos_neg():
# these cover lines not covered by the rest of tests in core
n = Symbol('n', negative=True, infinite=True)
nn = Symbol('n', nonnegative=True, infinite=True)
np = Symbol('n', nonpositive=True, infinite=True)
p = Symbol('p', positive=True, infinite=True)
r = Dummy(real=True, finite=False)
x = Symbol('x')
xf = Symbol('xb', finite=True)
assert (n + p).is_positive is None
assert (n + x).is_positive is None
assert (p + x).is_positive is None
assert (n + p).is_negative is None
assert (n + x).is_negative is None
assert (p + x).is_negative is None
assert (n + xf).is_positive is False
assert (p + xf).is_positive is True
assert (n + xf).is_negative is True
assert (p + xf).is_negative is False
assert (x - S.Infinity).is_negative is None # issue 7798
# issue 8046, 16.2
assert (p + nn).is_positive
assert (n + np).is_negative
assert (p + r).is_positive is None
def test_Add_is_imaginary():
nn = Dummy(nonnegative=True)
assert (I*nn + I).is_imaginary # issue 8046, 17
def test_Add_is_algebraic():
a = Symbol('a', algebraic=True)
b = Symbol('a', algebraic=True)
na = Symbol('na', algebraic=False)
nb = Symbol('nb', algebraic=False)
x = Symbol('x')
assert (a + b).is_algebraic
assert (na + nb).is_algebraic is None
assert (a + na).is_algebraic is False
assert (a + x).is_algebraic is None
assert (na + x).is_algebraic is None
def test_Mul_is_algebraic():
a = Symbol('a', algebraic=True)
b = Symbol('a', algebraic=True)
na = Symbol('na', algebraic=False)
an = Symbol('an', algebraic=True, nonzero=True)
nb = Symbol('nb', algebraic=False)
x = Symbol('x')
assert (a*b).is_algebraic
assert (na*nb).is_algebraic is None
assert (a*na).is_algebraic is None
assert (an*na).is_algebraic is False
assert (a*x).is_algebraic is None
assert (na*x).is_algebraic is None
def test_Pow_is_algebraic():
e = Symbol('e', algebraic=True)
assert Pow(1, e, evaluate=False).is_algebraic
assert Pow(0, e, evaluate=False).is_algebraic
a = Symbol('a', algebraic=True)
na = Symbol('na', algebraic=False)
ia = Symbol('ia', algebraic=True, irrational=True)
ib = Symbol('ib', algebraic=True, irrational=True)
r = Symbol('r', rational=True)
x = Symbol('x')
assert (a**r).is_algebraic
assert (a**x).is_algebraic is None
assert (na**r).is_algebraic is None
assert (ia**r).is_algebraic
assert (ia**ib).is_algebraic is False
assert (a**e).is_algebraic is None
# Gelfond-Schneider constant:
assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False
assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False
# issue 8649
t = Symbol('t', real=True, transcendental=True)
n = Symbol('n', integer=True)
assert (t**n).is_algebraic is None
assert (t**n).is_integer is None
assert (pi**3).is_algebraic is False
r = Symbol('r', zero=True)
assert (pi**r).is_algebraic is True
def test_Mul_is_prime_composite():
from sympy import Mul
x = Symbol('x', positive=True, integer=True)
y = Symbol('y', positive=True, integer=True)
assert (x*y).is_prime is None
assert ( (x+1)*(y+1) ).is_prime is False
assert ( (x+1)*(y+1) ).is_composite is True
x = Symbol('x', positive=True)
assert ( (x+1)*(y+1) ).is_prime is None
assert ( (x+1)*(y+1) ).is_composite is None
def test_Pow_is_pos_neg():
z = Symbol('z', real=True)
w = Symbol('w', nonpositive=True)
assert (S(-1)**S(2)).is_positive is True
assert (S(1)**z).is_positive is True
assert (S(-1)**S(3)).is_positive is False
assert (S(0)**S(0)).is_positive is True # 0**0 is 1
assert (w**S(3)).is_positive is False
assert (w**S(2)).is_positive is None
assert (I**2).is_positive is False
assert (I**4).is_positive is True
# tests emerging from #16332 issue
p = Symbol('p', zero=True)
q = Symbol('q', zero=False, real=True)
j = Symbol('j', zero=False, even=True)
x = Symbol('x', zero=True)
y = Symbol('y', zero=True)
assert (p**q).is_positive is False
assert (p**q).is_negative is False
assert (p**j).is_positive is False
assert (x**y).is_positive is True # 0**0
assert (x**y).is_negative is False
def test_Pow_is_prime_composite():
from sympy import Pow
x = Symbol('x', positive=True, integer=True)
y = Symbol('y', positive=True, integer=True)
assert (x**y).is_prime is None
assert ( x**(y+1) ).is_prime is False
assert ( x**(y+1) ).is_composite is None
assert ( (x+1)**(y+1) ).is_composite is True
assert ( (-x-1)**(2*y) ).is_composite is True
x = Symbol('x', positive=True)
assert (x**y).is_prime is None
def test_Mul_is_infinite():
x = Symbol('x')
f = Symbol('f', finite=True)
i = Symbol('i', infinite=True)
z = Dummy(zero=True)
nzf = Dummy(finite=True, zero=False)
from sympy import Mul
assert (x*f).is_finite is None
assert (x*i).is_finite is None
assert (f*i).is_finite is False
assert (x*f*i).is_finite is None
assert (z*i).is_finite is False
assert (nzf*i).is_finite is False
assert (z*f).is_finite is True
assert Mul(0, f, evaluate=False).is_finite is True
assert Mul(0, i, evaluate=False).is_finite is False
assert (x*f).is_infinite is None
assert (x*i).is_infinite is None
assert (f*i).is_infinite is None
assert (x*f*i).is_infinite is None
assert (z*i).is_infinite is S.NaN.is_infinite
assert (nzf*i).is_infinite is True
assert (z*f).is_infinite is False
assert Mul(0, f, evaluate=False).is_infinite is False
assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite
def test_special_is_rational():
i = Symbol('i', integer=True)
i2 = Symbol('i2', integer=True)
ni = Symbol('ni', integer=True, nonzero=True)
r = Symbol('r', rational=True)
rn = Symbol('r', rational=True, nonzero=True)
nr = Symbol('nr', irrational=True)
x = Symbol('x')
assert sqrt(3).is_rational is False
assert (3 + sqrt(3)).is_rational is False
assert (3*sqrt(3)).is_rational is False
assert exp(3).is_rational is False
assert exp(ni).is_rational is False
assert exp(rn).is_rational is False
assert exp(x).is_rational is None
assert exp(log(3), evaluate=False).is_rational is True
assert log(exp(3), evaluate=False).is_rational is True
assert log(3).is_rational is False
assert log(ni + 1).is_rational is False
assert log(rn + 1).is_rational is False
assert log(x).is_rational is None
assert (sqrt(3) + sqrt(5)).is_rational is None
assert (sqrt(3) + S.Pi).is_rational is False
assert (x**i).is_rational is None
assert (i**i).is_rational is True
assert (i**i2).is_rational is None
assert (r**i).is_rational is None
assert (r**r).is_rational is None
assert (r**x).is_rational is None
assert (nr**i).is_rational is None # issue 8598
assert (nr**Symbol('z', zero=True)).is_rational
assert sin(1).is_rational is False
assert sin(ni).is_rational is False
assert sin(rn).is_rational is False
assert sin(x).is_rational is None
assert asin(r).is_rational is False
assert sin(asin(3), evaluate=False).is_rational is True
@XFAIL
def test_issue_6275():
x = Symbol('x')
# both zero or both Muls...but neither "change would be very appreciated.
# This is similar to x/x => 1 even though if x = 0, it is really nan.
assert isinstance(x*0, type(0*S.Infinity))
if 0*S.Infinity is S.NaN:
b = Symbol('b', finite=None)
assert (b*0).is_zero is None
def test_sanitize_assumptions():
# issue 6666
for cls in (Symbol, Dummy, Wild):
x = cls('x', real=1, positive=0)
assert x.is_real is True
assert x.is_positive is False
assert cls('', real=True, positive=None).is_positive is None
raises(ValueError, lambda: cls('', commutative=None))
raises(ValueError, lambda: Symbol._sanitize(dict(commutative=None)))
def test_special_assumptions():
e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2
assert simplify(e < 0) is S.false
assert simplify(e > 0) is S.false
assert (e == 0) is False # it's not a literal 0
assert e.equals(0) is True
def test_inconsistent():
# cf. issues 5795 and 5545
raises(InconsistentAssumptions, lambda: Symbol('x', real=True,
commutative=False))
def test_issue_6631():
assert ((-1)**(I)).is_real is True
assert ((-1)**(I*2)).is_real is True
assert ((-1)**(I/2)).is_real is True
assert ((-1)**(I*S.Pi)).is_real is True
assert (I**(I + 2)).is_real is True
def test_issue_2730():
assert (1/(1 + I)).is_real is False
def test_issue_4149():
assert (3 + I).is_complex
assert (3 + I).is_imaginary is False
assert (3*I + S.Pi*I).is_imaginary
# as Zero.is_imaginary is False, see issue 7649
y = Symbol('y', real=True)
assert (3*I + S.Pi*I + y*I).is_imaginary is None
p = Symbol('p', positive=True)
assert (3*I + S.Pi*I + p*I).is_imaginary
n = Symbol('n', negative=True)
assert (-3*I - S.Pi*I + n*I).is_imaginary
i = Symbol('i', imaginary=True)
assert ([(i**a).is_imaginary for a in range(4)] ==
[False, True, False, True])
# tests from the PR #7887:
e = S("-sqrt(3)*I/2 + 0.866025403784439*I")
assert e.is_real is False
assert e.is_imaginary
def test_issue_2920():
n = Symbol('n', negative=True)
assert sqrt(n).is_imaginary
def test_issue_7899():
x = Symbol('x', real=True)
assert (I*x).is_real is None
assert ((x - I)*(x - 1)).is_zero is None
assert ((x - I)*(x - 1)).is_real is None
@XFAIL
def test_issue_7993():
x = Dummy(integer=True)
y = Dummy(noninteger=True)
assert (x - y).is_zero is False
def test_issue_8075():
raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False))
raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True))
def test_issue_8642():
x = Symbol('x', real=True, integer=False)
assert (x*2).is_integer is None
def test_issues_8632_8633_8638_8675_8992():
p = Dummy(integer=True, positive=True)
nn = Dummy(integer=True, nonnegative=True)
assert (p - S.Half).is_positive
assert (p - 1).is_nonnegative
assert (nn + 1).is_positive
assert (-p + 1).is_nonpositive
assert (-nn - 1).is_negative
prime = Dummy(prime=True)
assert (prime - 2).is_nonnegative
assert (prime - 3).is_nonnegative is None
even = Dummy(positive=True, even=True)
assert (even - 2).is_nonnegative
p = Dummy(positive=True)
assert (p/(p + 1) - 1).is_negative
assert ((p + 2)**3 - S.Half).is_positive
n = Dummy(negative=True)
assert (n - 3).is_nonpositive
def test_issue_9115_9150():
n = Dummy('n', integer=True, nonnegative=True)
assert (factorial(n) >= 1) == True
assert (factorial(n) < 1) == False
assert factorial(n + 1).is_even is None
assert factorial(n + 2).is_even is True
assert factorial(n + 2) >= 2
def test_issue_9165():
z = Symbol('z', zero=True)
f = Symbol('f', finite=False)
assert 0/z == S.NaN
assert 0*(1/z) == S.NaN
assert 0*f == S.NaN
def test_issue_10024():
x = Dummy('x')
assert Mod(x, 2*pi).is_zero is None
def test_issue_10302():
x = Symbol('x')
r = Symbol('r', real=True)
u = -(3*2**pi)**(1/pi) + 2*3**(1/pi)
i = u + u*I
assert i.is_real is None # w/o simplification this should fail
assert (u + i).is_zero is None
assert (1 + i).is_zero is False
a = Dummy('a', zero=True)
assert (a + I).is_zero is False
assert (a + r*I).is_zero is None
assert (a + I).is_imaginary
assert (a + x + I).is_imaginary is None
assert (a + r*I + I).is_imaginary is None
def test_complex_reciprocal_imaginary():
assert (1 / (4 + 3*I)).is_imaginary is False
def test_issue_16313():
x = Symbol('x', real=False)
k = Symbol('k', real=True)
l = Symbol('l', real=True, zero=False)
assert (-x).is_real is False
assert (k*x).is_real is None # k can be zero also
assert (l*x).is_real is False
assert (l*x*x).is_real is None # since x*x can be a real number
assert (-x).is_positive is False
def test_issue_16579():
# complex -> finite | infinite
# with work on PR 16603 it may be changed in future to complex -> finite
x = Symbol('x', complex=True, finite=False)
y = Symbol('x', real=True, infinite=False)
assert x.is_infinite
assert y.is_finite
|
704160ceb670e090a9a3baf2203a20866e1b69c608f5da47db4d2988286df49b | from sympy import (Basic, Symbol, sin, cos, exp, sqrt, Rational, Float, re, pi,
sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols, oo, zoo, Integer,
sign, im, nan, Dummy, factorial, comp, refine
)
from sympy.core.compatibility import long, range
from sympy.core.expr import unchanged
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import XFAIL, raises
from sympy.utilities.randtest import verify_numerically
a, c, x, y, z = symbols('a,c,x,y,z')
b = Symbol("b", positive=True)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_bug1():
assert re(x) != x
x.series(x, 0, 1)
assert re(x) != x
def test_Symbol():
e = a*b
assert e == a*b
assert a*b*b == a*b**2
assert a*b*b + c == c + a*b**2
assert a*b*b - c == -c + a*b**2
x = Symbol('x', complex=True, real=False)
assert x.is_imaginary is None # could be I or 1 + I
x = Symbol('x', complex=True, imaginary=False)
assert x.is_real is None # could be 1 or 1 + I
x = Symbol('x', real=True)
assert x.is_complex
x = Symbol('x', imaginary=True)
assert x.is_complex
x = Symbol('x', real=False, imaginary=False)
assert x.is_complex is None # might be a non-number
def test_arit0():
p = Rational(5)
e = a*b
assert e == a*b
e = a*b + b*a
assert e == 2*a*b
e = a*b + b*a + a*b + p*b*a
assert e == 8*a*b
e = a*b + b*a + a*b + p*b*a + a
assert e == a + 8*a*b
e = a + a
assert e == 2*a
e = a + b + a
assert e == b + 2*a
e = a + b*b + a + b*b
assert e == 2*a + 2*b**2
e = a + Rational(2) + b*b + a + b*b + p
assert e == 7 + 2*a + 2*b**2
e = (a + b*b + a + b*b)*p
assert e == 5*(2*a + 2*b**2)
e = (a*b*c + c*b*a + b*a*c)*p
assert e == 15*a*b*c
e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c
assert e == Rational(0)
e = Rational(50)*(a - a)
assert e == Rational(0)
e = b*a - b - a*b + b
assert e == Rational(0)
e = a*b + c**p
assert e == a*b + c**5
e = a/b
assert e == a*b**(-1)
e = a*2*2
assert e == 4*a
e = 2 + a*2/2
assert e == 2 + a
e = 2 - a - 2
assert e == -a
e = 2*a*2
assert e == 4*a
e = 2/a/2
assert e == a**(-1)
e = 2**a**2
assert e == 2**(a**2)
e = -(1 + a)
assert e == -1 - a
e = Rational(1, 2)*(1 + a)
assert e == Rational(1, 2) + a/2
def test_div():
e = a/b
assert e == a*b**(-1)
e = a/b + c/2
assert e == a*b**(-1) + Rational(1)/2*c
e = (1 - b)/(b - 1)
assert e == (1 + -b)*((-1) + b)**(-1)
def test_pow():
n1 = Rational(1)
n2 = Rational(2)
n5 = Rational(5)
e = a*a
assert e == a**2
e = a*a*a
assert e == a**3
e = a*a*a*a**Rational(6)
assert e == a**9
e = a*a*a*a**Rational(6) - a**Rational(9)
assert e == Rational(0)
e = a**(b - b)
assert e == Rational(1)
e = (a + Rational(1) - a)**b
assert e == Rational(1)
e = (a + b + c)**n2
assert e == (a + b + c)**2
assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2
e = (a + b)**n2
assert e == (a + b)**2
assert e.expand() == 2*a*b + a**2 + b**2
e = (a + b)**(n1/n2)
assert e == sqrt(a + b)
assert e.expand() == sqrt(a + b)
n = n5**(n1/n2)
assert n == sqrt(5)
e = n*a*b - n*b*a
assert e == Rational(0)
e = n*a*b + n*b*a
assert e == 2*a*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
e = a/b**2
assert e == a*b**(-2)
assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**Rational(1, 2)))**Rational(1, 2)
x = Symbol('x')
y = Symbol('y')
assert ((x*y)**3).expand() == y**3 * x**3
assert ((x*y)**-3).expand() == y**-3 * x**-3
assert (x**5*(3*x)**(3)).expand() == 27 * x**8
assert (x**5*(-3*x)**(3)).expand() == -27 * x**8
assert (x**5*(3*x)**(-3)).expand() == Rational(1, 27) * x**2
assert (x**5*(-3*x)**(-3)).expand() == -Rational(1, 27) * x**2
# expand_power_exp
assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \
x**z*x**(y**(x + exp(x + y)))
assert (x**(y**(x + exp(x + y)) + z)).expand() == \
x**z*x**(y**x*y**(exp(x)*exp(y)))
n = Symbol('n', even=False)
k = Symbol('k', even=True)
o = Symbol('o', odd=True)
assert (-1)**x == (-1)**x
assert (-1)**n == (-1)**n
assert (-2)**k == 2**k
assert (-1)**k == 1
def test_pow2():
# x**(2*y) is always (x**y)**2 but is only (x**2)**y if
# x.is_positive or y.is_integer
# let x = 1 to see why the following are not true.
assert (-x)**Rational(2, 3) != x**Rational(2, 3)
assert (-x)**Rational(5, 7) != -x**Rational(5, 7)
assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2
assert sqrt(x**2) != x
def test_pow3():
assert sqrt(2)**3 == 2 * sqrt(2)
assert sqrt(2)**3 == sqrt(8)
def test_mod_pow():
for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365),
(3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]:
assert pow(S(s), t, u) == v
assert pow(S(s), S(t), u) == v
assert pow(S(s), t, S(u)) == v
assert pow(S(s), S(t), S(u)) == v
assert pow(S(2), S(10000000000), S(3)) == 1
assert pow(x, y, z) == x**y%z
raises(TypeError, lambda: pow(S(4), "13", 497))
raises(TypeError, lambda: pow(S(4), 13, "497"))
def test_pow_E():
assert 2**(y/log(2)) == S.Exp1**y
assert 2**(y/log(2)/3) == S.Exp1**(y/3)
assert 3**(1/log(-3)) != S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
# every time tests are run they will affirm with a different random
# value that this identity holds
while 1:
b = x._random()
r, i = b.as_real_imag()
if i:
break
assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
def test_pow_issue_3516():
assert 4**Rational(1, 4) == sqrt(2)
def test_pow_im():
for m in (-2, -1, 2):
for d in (3, 4, 5):
b = m*I
for i in range(1, 4*d + 1):
e = Rational(i, d)
assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
e = Rational(7, 3)
assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
im = symbols('im', imaginary=True)
assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
args = [I, I, I, I, 2]
e = Rational(1, 3)
ans = 2**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, I, 2]
e = Rational(1, 3)
ans = 2**e*(-I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, 2]
e = Rational(1, 3)
ans = (-2)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I
def test_real_mul():
assert Float(0) * pi * x == Float(0)
assert set((Float(1) * pi * x).args) == {Float(1), pi, x}
def test_ncmul():
A = Symbol("A", commutative=False)
B = Symbol("B", commutative=False)
C = Symbol("C", commutative=False)
assert A*B != B*A
assert A*B*C != C*B*A
assert A*b*B*3*C == 3*b*A*B*C
assert A*b*B*3*C != 3*b*B*A*C
assert A*b*B*3*C == 3*A*B*C*b
assert A + B == B + A
assert (A + B)*C != C*(A + B)
assert C*(A + B)*C != C*C*(A + B)
assert A*A == A**2
assert (A + B)*(A + B) == (A + B)**2
assert A**-1 * A == 1
assert A/A == 1
assert A/(A**2) == 1/A
assert A/(1 + A) == A/(1 + A)
assert set((A + B + 2*(A + B)).args) == \
{A, B, 2*(A + B)}
def test_ncpow():
x = Symbol('x', commutative=False)
y = Symbol('y', commutative=False)
z = Symbol('z', commutative=False)
a = Symbol('a')
b = Symbol('b')
c = Symbol('c')
assert (x**2)*(y**2) != (y**2)*(x**2)
assert (x**-2)*y != y*(x**2)
assert 2**x*2**y != 2**(x + y)
assert 2**x*2**y*2**z != 2**(x + y + z)
assert 2**x*2**(2*x) == 2**(3*x)
assert 2**x*2**(2*x)*2**x == 2**(4*x)
assert exp(x)*exp(y) != exp(y)*exp(x)
assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z)
assert exp(x)*exp(y)*exp(z) != exp(x + y + z)
assert x**a*x**b != x**(a + b)
assert x**a*x**b*x**c != x**(a + b + c)
assert x**3*x**4 == x**7
assert x**3*x**4*x**2 == x**9
assert x**a*x**(4*a) == x**(5*a)
assert x**a*x**(4*a)*x**a == x**(6*a)
def test_powerbug():
x = Symbol("x")
assert x**1 != (-x)**1
assert x**2 == (-x)**2
assert x**3 != (-x)**3
assert x**4 == (-x)**4
assert x**5 != (-x)**5
assert x**6 == (-x)**6
assert x**128 == (-x)**128
assert x**129 != (-x)**129
assert (2*x)**2 == (-2*x)**2
def test_Mul_doesnt_expand_exp():
x = Symbol('x')
y = Symbol('y')
assert unchanged(Mul, exp(x), exp(y))
assert unchanged(Mul, 2**x, 2**y)
assert x**2*x**3 == x**5
assert 2**x*3**x == 6**x
assert x**(y)*x**(2*y) == x**(3*y)
assert sqrt(2)*sqrt(2) == 2
assert 2**x*2**(2*x) == 2**(3*x)
assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4)
assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1)
def test_Add_Mul_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True)
assert (2*k).is_integer is True
assert (-k).is_integer is True
assert (k/3).is_integer is None
assert (x*k*n).is_integer is None
assert (k + n).is_integer is True
assert (k + x).is_integer is None
assert (k + n*x).is_integer is None
assert (k + n/3).is_integer is None
assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
def test_Add_Mul_is_finite():
x = Symbol('x', real=True, finite=False)
assert sin(x).is_finite is True
assert (x*sin(x)).is_finite is False
assert (1024*sin(x)).is_finite is True
assert (sin(x)*exp(x)).is_finite is not True
assert (sin(x)*cos(x)).is_finite is True
assert (x*sin(x)*exp(x)).is_finite is not True
assert (sin(x) - 67).is_finite is True
assert (sin(x) + exp(x)).is_finite is not True
assert (1 + x).is_finite is False
assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None
assert (sqrt(2)*(1 + x)).is_finite is False
assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False
def test_Mul_is_even_odd():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (2*x).is_even is True
assert (2*x).is_odd is False
assert (3*x).is_even is None
assert (3*x).is_odd is None
assert (k/3).is_integer is None
assert (k/3).is_even is None
assert (k/3).is_odd is None
assert (2*n).is_even is True
assert (2*n).is_odd is False
assert (2*m).is_even is True
assert (2*m).is_odd is False
assert (-n).is_even is False
assert (-n).is_odd is True
assert (k*n).is_even is False
assert (k*n).is_odd is True
assert (k*m).is_even is True
assert (k*m).is_odd is False
assert (k*n*m).is_even is True
assert (k*n*m).is_odd is False
assert (k*m*x).is_even is True
assert (k*m*x).is_odd is False
# issue 6791:
assert (x/2).is_integer is None
assert (k/2).is_integer is False
assert (m/2).is_integer is True
assert (x*y).is_even is None
assert (x*x).is_even is None
assert (x*(x + k)).is_even is True
assert (x*(x + m)).is_even is None
assert (x*y).is_odd is None
assert (x*x).is_odd is None
assert (x*(x + k)).is_odd is False
assert (x*(x + m)).is_odd is None
@XFAIL
def test_evenness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_even is True
assert (y*x*(x + k)).is_even is True
def test_evenness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_even is None
@XFAIL
def test_oddness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_odd is False
assert (y*x*(x + k)).is_odd is False
def test_oddness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_odd is None
def test_Mul_is_rational():
x = Symbol('x')
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, nonzero=True)
assert (n/m).is_rational is True
assert (x/pi).is_rational is None
assert (x/n).is_rational is None
assert (m/pi).is_rational is False
r = Symbol('r', rational=True)
assert (pi*r).is_rational is None
# issue 8008
z = Symbol('z', zero=True)
i = Symbol('i', imaginary=True)
assert (z*i).is_rational is None
bi = Symbol('i', imaginary=True, finite=True)
assert (z*bi).is_zero is True
def test_Add_is_rational():
x = Symbol('x')
n = Symbol('n', rational=True)
m = Symbol('m', rational=True)
assert (n + m).is_rational is True
assert (x + pi).is_rational is None
assert (x + n).is_rational is None
assert (n + pi).is_rational is False
def test_Add_is_even_odd():
x = Symbol('x', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (k + 7).is_even is True
assert (k + 7).is_odd is False
assert (-k + 7).is_even is True
assert (-k + 7).is_odd is False
assert (k - 12).is_even is False
assert (k - 12).is_odd is True
assert (-k - 12).is_even is False
assert (-k - 12).is_odd is True
assert (k + n).is_even is True
assert (k + n).is_odd is False
assert (k + m).is_even is False
assert (k + m).is_odd is True
assert (k + n + m).is_even is True
assert (k + n + m).is_odd is False
assert (k + n + x + m).is_even is None
assert (k + n + x + m).is_odd is None
def test_Mul_is_negative_positive():
x = Symbol('x', real=True)
y = Symbol('y', real=False, complex=True)
z = Symbol('z', zero=True)
e = 2*z
assert e.is_Mul and e.is_positive is False and e.is_negative is False
neg = Symbol('neg', negative=True)
pos = Symbol('pos', positive=True)
nneg = Symbol('nneg', nonnegative=True)
npos = Symbol('npos', nonpositive=True)
assert neg.is_negative is True
assert (-neg).is_negative is False
assert (2*neg).is_negative is True
assert (2*pos)._eval_is_negative() is False
assert (2*pos).is_negative is False
assert pos.is_negative is False
assert (-pos).is_negative is True
assert (2*pos).is_negative is False
assert (pos*neg).is_negative is True
assert (2*pos*neg).is_negative is True
assert (-pos*neg).is_negative is False
assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg
assert nneg.is_negative is False
assert (-nneg).is_negative is None
assert (2*nneg).is_negative is False
assert npos.is_negative is None
assert (-npos).is_negative is False
assert (2*npos).is_negative is None
assert (nneg*npos).is_negative is None
assert (neg*nneg).is_negative is None
assert (neg*npos).is_negative is False
assert (pos*nneg).is_negative is False
assert (pos*npos).is_negative is None
assert (npos*neg*nneg).is_negative is False
assert (npos*pos*nneg).is_negative is None
assert (-npos*neg*nneg).is_negative is None
assert (-npos*pos*nneg).is_negative is False
assert (17*npos*neg*nneg).is_negative is False
assert (17*npos*pos*nneg).is_negative is None
assert (neg*npos*pos*nneg).is_negative is False
assert (x*neg).is_negative is None
assert (nneg*npos*pos*x*neg).is_negative is None
assert neg.is_positive is False
assert (-neg).is_positive is True
assert (2*neg).is_positive is False
assert pos.is_positive is True
assert (-pos).is_positive is False
assert (2*pos).is_positive is True
assert (pos*neg).is_positive is False
assert (2*pos*neg).is_positive is False
assert (-pos*neg).is_positive is True
assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg
assert nneg.is_positive is None
assert (-nneg).is_positive is False
assert (2*nneg).is_positive is None
assert npos.is_positive is False
assert (-npos).is_positive is None
assert (2*npos).is_positive is False
assert (nneg*npos).is_positive is False
assert (neg*nneg).is_positive is False
assert (neg*npos).is_positive is None
assert (pos*nneg).is_positive is None
assert (pos*npos).is_positive is False
assert (npos*neg*nneg).is_positive is None
assert (npos*pos*nneg).is_positive is False
assert (-npos*neg*nneg).is_positive is False
assert (-npos*pos*nneg).is_positive is None
assert (17*npos*neg*nneg).is_positive is None
assert (17*npos*pos*nneg).is_positive is False
assert (neg*npos*pos*nneg).is_positive is None
assert (x*neg).is_positive is None
assert (nneg*npos*pos*x*neg).is_positive is None
def test_Mul_is_negative_positive_2():
a = Symbol('a', nonnegative=True)
b = Symbol('b', nonnegative=True)
c = Symbol('c', nonpositive=True)
d = Symbol('d', nonpositive=True)
assert (a*b).is_nonnegative is True
assert (a*b).is_negative is False
assert (a*b).is_zero is None
assert (a*b).is_positive is None
assert (c*d).is_nonnegative is True
assert (c*d).is_negative is False
assert (c*d).is_zero is None
assert (c*d).is_positive is None
assert (a*c).is_nonpositive is True
assert (a*c).is_positive is False
assert (a*c).is_zero is None
assert (a*c).is_negative is None
def test_Mul_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert k.is_nonpositive is True
assert (-k).is_nonpositive is False
assert (2*k).is_nonpositive is True
assert n.is_nonpositive is False
assert (-n).is_nonpositive is True
assert (2*n).is_nonpositive is False
assert (n*k).is_nonpositive is True
assert (2*n*k).is_nonpositive is True
assert (-n*k).is_nonpositive is False
assert u.is_nonpositive is None
assert (-u).is_nonpositive is True
assert (2*u).is_nonpositive is None
assert v.is_nonpositive is True
assert (-v).is_nonpositive is None
assert (2*v).is_nonpositive is True
assert (u*v).is_nonpositive is True
assert (k*u).is_nonpositive is True
assert (k*v).is_nonpositive is None
assert (n*u).is_nonpositive is None
assert (n*v).is_nonpositive is True
assert (v*k*u).is_nonpositive is None
assert (v*n*u).is_nonpositive is True
assert (-v*k*u).is_nonpositive is True
assert (-v*n*u).is_nonpositive is None
assert (17*v*k*u).is_nonpositive is None
assert (17*v*n*u).is_nonpositive is True
assert (k*v*n*u).is_nonpositive is None
assert (x*k).is_nonpositive is None
assert (u*v*n*x*k).is_nonpositive is None
assert k.is_nonnegative is False
assert (-k).is_nonnegative is True
assert (2*k).is_nonnegative is False
assert n.is_nonnegative is True
assert (-n).is_nonnegative is False
assert (2*n).is_nonnegative is True
assert (n*k).is_nonnegative is False
assert (2*n*k).is_nonnegative is False
assert (-n*k).is_nonnegative is True
assert u.is_nonnegative is True
assert (-u).is_nonnegative is None
assert (2*u).is_nonnegative is True
assert v.is_nonnegative is None
assert (-v).is_nonnegative is True
assert (2*v).is_nonnegative is None
assert (u*v).is_nonnegative is None
assert (k*u).is_nonnegative is None
assert (k*v).is_nonnegative is True
assert (n*u).is_nonnegative is True
assert (n*v).is_nonnegative is None
assert (v*k*u).is_nonnegative is True
assert (v*n*u).is_nonnegative is None
assert (-v*k*u).is_nonnegative is None
assert (-v*n*u).is_nonnegative is True
assert (17*v*k*u).is_nonnegative is True
assert (17*v*n*u).is_nonnegative is None
assert (k*v*n*u).is_nonnegative is True
assert (x*k).is_nonnegative is None
assert (u*v*n*x*k).is_nonnegative is None
def test_Add_is_negative_positive():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (k - 2).is_negative is True
assert (k + 17).is_negative is None
assert (-k - 5).is_negative is None
assert (-k + 123).is_negative is False
assert (k - n).is_negative is True
assert (k + n).is_negative is None
assert (-k - n).is_negative is None
assert (-k + n).is_negative is False
assert (k - n - 2).is_negative is True
assert (k + n + 17).is_negative is None
assert (-k - n - 5).is_negative is None
assert (-k + n + 123).is_negative is False
assert (-2*k + 123*n + 17).is_negative is False
assert (k + u).is_negative is None
assert (k + v).is_negative is True
assert (n + u).is_negative is False
assert (n + v).is_negative is None
assert (u - v).is_negative is False
assert (u + v).is_negative is None
assert (-u - v).is_negative is None
assert (-u + v).is_negative is None
assert (u - v + n + 2).is_negative is False
assert (u + v + n + 2).is_negative is None
assert (-u - v + n + 2).is_negative is None
assert (-u + v + n + 2).is_negative is None
assert (k + x).is_negative is None
assert (k + x - n).is_negative is None
assert (k - 2).is_positive is False
assert (k + 17).is_positive is None
assert (-k - 5).is_positive is None
assert (-k + 123).is_positive is True
assert (k - n).is_positive is False
assert (k + n).is_positive is None
assert (-k - n).is_positive is None
assert (-k + n).is_positive is True
assert (k - n - 2).is_positive is False
assert (k + n + 17).is_positive is None
assert (-k - n - 5).is_positive is None
assert (-k + n + 123).is_positive is True
assert (-2*k + 123*n + 17).is_positive is True
assert (k + u).is_positive is None
assert (k + v).is_positive is False
assert (n + u).is_positive is True
assert (n + v).is_positive is None
assert (u - v).is_positive is None
assert (u + v).is_positive is None
assert (-u - v).is_positive is None
assert (-u + v).is_positive is False
assert (u - v - n - 2).is_positive is None
assert (u + v - n - 2).is_positive is None
assert (-u - v - n - 2).is_positive is None
assert (-u + v - n - 2).is_positive is False
assert (n + x).is_positive is None
assert (n + x - k).is_positive is None
z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2)
assert z.is_zero
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_zero
def test_Add_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (u - 2).is_nonpositive is None
assert (u + 17).is_nonpositive is False
assert (-u - 5).is_nonpositive is True
assert (-u + 123).is_nonpositive is None
assert (u - v).is_nonpositive is None
assert (u + v).is_nonpositive is None
assert (-u - v).is_nonpositive is None
assert (-u + v).is_nonpositive is True
assert (u - v - 2).is_nonpositive is None
assert (u + v + 17).is_nonpositive is None
assert (-u - v - 5).is_nonpositive is None
assert (-u + v - 123).is_nonpositive is True
assert (-2*u + 123*v - 17).is_nonpositive is True
assert (k + u).is_nonpositive is None
assert (k + v).is_nonpositive is True
assert (n + u).is_nonpositive is False
assert (n + v).is_nonpositive is None
assert (k - n).is_nonpositive is True
assert (k + n).is_nonpositive is None
assert (-k - n).is_nonpositive is None
assert (-k + n).is_nonpositive is False
assert (k - n + u + 2).is_nonpositive is None
assert (k + n + u + 2).is_nonpositive is None
assert (-k - n + u + 2).is_nonpositive is None
assert (-k + n + u + 2).is_nonpositive is False
assert (u + x).is_nonpositive is None
assert (v - x - n).is_nonpositive is None
assert (u - 2).is_nonnegative is None
assert (u + 17).is_nonnegative is True
assert (-u - 5).is_nonnegative is False
assert (-u + 123).is_nonnegative is None
assert (u - v).is_nonnegative is True
assert (u + v).is_nonnegative is None
assert (-u - v).is_nonnegative is None
assert (-u + v).is_nonnegative is None
assert (u - v + 2).is_nonnegative is True
assert (u + v + 17).is_nonnegative is None
assert (-u - v - 5).is_nonnegative is None
assert (-u + v - 123).is_nonnegative is False
assert (2*u - 123*v + 17).is_nonnegative is True
assert (k + u).is_nonnegative is None
assert (k + v).is_nonnegative is False
assert (n + u).is_nonnegative is True
assert (n + v).is_nonnegative is None
assert (k - n).is_nonnegative is False
assert (k + n).is_nonnegative is None
assert (-k - n).is_nonnegative is None
assert (-k + n).is_nonnegative is True
assert (k - n - u - 2).is_nonnegative is False
assert (k + n - u - 2).is_nonnegative is None
assert (-k - n - u - 2).is_nonnegative is None
assert (-k + n - u - 2).is_nonnegative is None
assert (u - x).is_nonnegative is None
assert (v + x + n).is_nonnegative is None
def test_Pow_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True, nonnegative=True)
m = Symbol('m', integer=True, positive=True)
assert (k**2).is_integer is True
assert (k**(-2)).is_integer is None
assert ((m + 1)**(-2)).is_integer is False
assert (m**(-1)).is_integer is None # issue 8580
assert (2**k).is_integer is None
assert (2**(-k)).is_integer is None
assert (2**n).is_integer is True
assert (2**(-n)).is_integer is None
assert (2**m).is_integer is True
assert (2**(-m)).is_integer is False
assert (x**2).is_integer is None
assert (2**x).is_integer is None
assert (k**n).is_integer is True
assert (k**(-n)).is_integer is None
assert (k**x).is_integer is None
assert (x**k).is_integer is None
assert (k**(n*m)).is_integer is True
assert (k**(-n*m)).is_integer is None
assert sqrt(3).is_integer is False
assert sqrt(.3).is_integer is False
assert Pow(3, 2, evaluate=False).is_integer is True
assert Pow(3, 0, evaluate=False).is_integer is True
assert Pow(3, -2, evaluate=False).is_integer is False
assert Pow(S.Half, 3, evaluate=False).is_integer is False
# decided by re-evaluating
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(4, S.Half, evaluate=False).is_integer is True
assert Pow(S.Half, -2, evaluate=False).is_integer is True
assert ((-1)**k).is_integer
x = Symbol('x', real=True, integer=False)
assert (x**2).is_integer is None # issue 8641
def test_Pow_is_real():
x = Symbol('x', real=True)
y = Symbol('y', real=True, positive=True)
assert (x**2).is_real is True
assert (x**3).is_real is True
assert (x**x).is_real is None
assert (y**x).is_real is True
assert (x**Rational(1, 3)).is_real is None
assert (y**Rational(1, 3)).is_real is True
assert sqrt(-1 - sqrt(2)).is_real is False
i = Symbol('i', imaginary=True)
assert (i**i).is_real is None
assert (I**i).is_real is True
assert ((-I)**i).is_real is True
assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not
assert (2**I).is_real is False
assert (2**-I).is_real is False
assert (i**2).is_real is True
assert (i**3).is_real is False
assert (i**x).is_real is None # could be (-I)**(2/3)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
k = Symbol('k', integer=True)
assert (i**e).is_real is True
assert (i**o).is_real is False
assert (i**k).is_real is None
assert (i**(4*k)).is_real is True
x = Symbol("x", nonnegative=True)
y = Symbol("y", nonnegative=True)
assert im(x**y).expand(complex=True) is S.Zero
assert (x**y).is_real is True
i = Symbol('i', imaginary=True)
assert (exp(i)**I).is_real is True
assert log(exp(i)).is_imaginary is None # i could be 2*pi*I
c = Symbol('c', complex=True)
assert log(c).is_real is None # c could be 0 or 2, too
assert log(exp(c)).is_real is None # log(0), log(E), ...
n = Symbol('n', negative=False)
assert log(n).is_real is None
n = Symbol('n', nonnegative=True)
assert log(n).is_real is None
assert sqrt(-I).is_real is False # issue 7843
def test_real_Pow():
k = Symbol('k', integer=True, nonzero=True)
assert (k**(I*pi/log(k))).is_real
def test_Pow_is_finite():
x = Symbol('x', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
assert (x**2).is_finite is None # x could be oo
assert (x**x).is_finite is None # ditto
assert (p**x).is_finite is None # ditto
assert (n**x).is_finite is None # ditto
assert (1/S.Pi).is_finite
assert (sin(x)**2).is_finite is True
assert (sin(x)**x).is_finite is None
assert (sin(x)**exp(x)).is_finite is None
assert (1/sin(x)).is_finite is None # if zero, no, otherwise yes
assert (1/exp(x)).is_finite is None # x could be -oo
def test_Pow_is_even_odd():
x = Symbol('x')
k = Symbol('k', even=True)
n = Symbol('n', odd=True)
m = Symbol('m', integer=True, nonnegative=True)
p = Symbol('p', integer=True, positive=True)
assert ((-1)**n).is_odd
assert ((-1)**k).is_odd
assert ((-1)**(m - p)).is_odd
assert (k**2).is_even is True
assert (n**2).is_even is False
assert (2**k).is_even is None
assert (x**2).is_even is None
assert (k**m).is_even is None
assert (n**m).is_even is False
assert (k**p).is_even is True
assert (n**p).is_even is False
assert (m**k).is_even is None
assert (p**k).is_even is None
assert (m**n).is_even is None
assert (p**n).is_even is None
assert (k**x).is_even is None
assert (n**x).is_even is None
assert (k**2).is_odd is False
assert (n**2).is_odd is True
assert (3**k).is_odd is None
assert (k**m).is_odd is None
assert (n**m).is_odd is True
assert (k**p).is_odd is False
assert (n**p).is_odd is True
assert (m**k).is_odd is None
assert (p**k).is_odd is None
assert (m**n).is_odd is None
assert (p**n).is_odd is None
assert (k**x).is_odd is None
assert (n**x).is_odd is None
def test_Pow_is_negative_positive():
r = Symbol('r', real=True)
k = Symbol('k', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
x = Symbol('x')
assert (2**r).is_positive is True
assert ((-2)**r).is_positive is None
assert ((-2)**n).is_positive is True
assert ((-2)**m).is_positive is False
assert (k**2).is_positive is True
assert (k**(-2)).is_positive is True
assert (k**r).is_positive is True
assert ((-k)**r).is_positive is None
assert ((-k)**n).is_positive is True
assert ((-k)**m).is_positive is False
assert (2**r).is_negative is False
assert ((-2)**r).is_negative is None
assert ((-2)**n).is_negative is False
assert ((-2)**m).is_negative is True
assert (k**2).is_negative is False
assert (k**(-2)).is_negative is False
assert (k**r).is_negative is False
assert ((-k)**r).is_negative is None
assert ((-k)**n).is_negative is False
assert ((-k)**m).is_negative is True
assert (2**x).is_positive is None
assert (2**x).is_negative is None
def test_Pow_is_zero():
z = Symbol('z', zero=True)
e = z**2
assert e.is_zero
assert e.is_positive is False
assert e.is_negative is False
assert Pow(0, 0, evaluate=False).is_zero is False
assert Pow(0, 3, evaluate=False).is_zero
assert Pow(0, oo, evaluate=False).is_zero
assert Pow(0, -3, evaluate=False).is_zero is False
assert Pow(0, -oo, evaluate=False).is_zero is False
assert Pow(2, 2, evaluate=False).is_zero is False
a = Symbol('a', zero=False)
assert Pow(a, 3).is_zero is False # issue 7965
assert Pow(2, oo, evaluate=False).is_zero is False
assert Pow(2, -oo, evaluate=False).is_zero
assert Pow(S.Half, oo, evaluate=False).is_zero
assert Pow(S.Half, -oo, evaluate=False).is_zero is False
def test_Pow_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', integer=True, nonnegative=True)
l = Symbol('l', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
assert (x**(4*k)).is_nonnegative is True
assert (2**x).is_nonnegative is True
assert ((-2)**x).is_nonnegative is None
assert ((-2)**n).is_nonnegative is True
assert ((-2)**m).is_nonnegative is False
assert (k**2).is_nonnegative is True
assert (k**(-2)).is_nonnegative is None
assert (k**k).is_nonnegative is True
assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U
assert (l**x).is_nonnegative is True
assert (l**x).is_positive is True
assert ((-k)**x).is_nonnegative is None
assert ((-k)**m).is_nonnegative is None
assert (2**x).is_nonpositive is False
assert ((-2)**x).is_nonpositive is None
assert ((-2)**n).is_nonpositive is False
assert ((-2)**m).is_nonpositive is True
assert (k**2).is_nonpositive is None
assert (k**(-2)).is_nonpositive is None
assert (k**x).is_nonpositive is None
assert ((-k)**x).is_nonpositive is None
assert ((-k)**n).is_nonpositive is None
assert (x**2).is_nonnegative is True
i = symbols('i', imaginary=True)
assert (i**2).is_nonpositive is True
assert (i**4).is_nonpositive is False
assert (i**3).is_nonpositive is False
assert (I**i).is_nonnegative is True
assert (exp(I)**i).is_nonnegative is True
assert ((-k)**n).is_nonnegative is True
assert ((-k)**m).is_nonpositive is True
def test_Mul_is_imaginary_real():
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i = Symbol('i', imaginary=True)
ii = Symbol('ii', imaginary=True)
x = Symbol('x')
assert I.is_imaginary is True
assert I.is_real is False
assert (-I).is_imaginary is True
assert (-I).is_real is False
assert (3*I).is_imaginary is True
assert (3*I).is_real is False
assert (I*I).is_imaginary is False
assert (I*I).is_real is True
e = (p + p*I)
j = Symbol('j', integer=True, zero=False)
assert (e**j).is_real is None
assert (e**(2*j)).is_real is None
assert (e**j).is_imaginary is None
assert (e**(2*j)).is_imaginary is None
assert (e**-1).is_imaginary is False
assert (e**2).is_imaginary
assert (e**3).is_imaginary is False
assert (e**4).is_imaginary is False
assert (e**5).is_imaginary is False
assert (e**-1).is_real is False
assert (e**2).is_real is False
assert (e**3).is_real is False
assert (e**4).is_real
assert (e**5).is_real is False
assert (e**3).is_complex
assert (r*i).is_imaginary is None
assert (r*i).is_real is None
assert (x*i).is_imaginary is None
assert (x*i).is_real is None
assert (i*ii).is_imaginary is False
assert (i*ii).is_real is True
assert (r*i*ii).is_imaginary is False
assert (r*i*ii).is_real is True
# Github's issue 5874:
nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i*nr).is_real is None
assert (a*nr).is_real is False
assert (b*nr).is_real is None
ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i*ni).is_real is False
assert (a*ni).is_real is None
assert (b*ni).is_real is None
def test_Mul_hermitian_antihermitian():
a = Symbol('a', hermitian=True, zero=False)
b = Symbol('b', hermitian=True)
c = Symbol('c', hermitian=False)
d = Symbol('d', antihermitian=True)
e1 = Mul(a, b, c, evaluate=False)
e2 = Mul(b, a, c, evaluate=False)
e3 = Mul(a, b, c, d, evaluate=False)
e4 = Mul(b, a, c, d, evaluate=False)
e5 = Mul(a, c, evaluate=False)
e6 = Mul(a, c, d, evaluate=False)
assert e1.is_hermitian is None
assert e2.is_hermitian is None
assert e1.is_antihermitian is None
assert e2.is_antihermitian is None
assert e3.is_antihermitian is None
assert e4.is_antihermitian is None
assert e5.is_antihermitian is None
assert e6.is_antihermitian is None
def test_Add_is_comparable():
assert (x + y).is_comparable is False
assert (x + 1).is_comparable is False
assert (Rational(1, 3) - sqrt(8)).is_comparable is True
def test_Mul_is_comparable():
assert (x*y).is_comparable is False
assert (x*2).is_comparable is False
assert (sqrt(2)*Rational(1, 3)).is_comparable is True
def test_Pow_is_comparable():
assert (x**y).is_comparable is False
assert (x**2).is_comparable is False
assert (sqrt(Rational(1, 3))).is_comparable is True
def test_Add_is_positive_2():
e = Rational(1, 3) - sqrt(8)
assert e.is_positive is False
assert e.is_negative is True
e = pi - 1
assert e.is_positive is True
assert e.is_negative is False
def test_Add_is_irrational():
i = Symbol('i', irrational=True)
assert i.is_irrational is True
assert i.is_rational is False
assert (i + 1).is_irrational is True
assert (i + 1).is_rational is False
@XFAIL
def test_issue_3531():
class MightyNumeric(tuple):
def __rdiv__(self, other):
return "something"
def __rtruediv__(self, other):
return "something"
assert sympify(1)/MightyNumeric((1, 2)) == "something"
def test_issue_3531b():
class Foo:
def __init__(self):
self.field = 1.0
def __mul__(self, other):
self.field = self.field * other
def __rmul__(self, other):
self.field = other * self.field
f = Foo()
x = Symbol("x")
assert f*x == x*f
def test_bug3():
a = Symbol("a")
b = Symbol("b", positive=True)
e = 2*a + b
f = b + 2*a
assert e == f
def test_suppressed_evaluation():
a = Add(0, 3, 2, evaluate=False)
b = Mul(1, 3, 2, evaluate=False)
c = Pow(3, 2, evaluate=False)
assert a != 6
assert a.func is Add
assert a.args == (3, 2)
assert b != 6
assert b.func is Mul
assert b.args == (3, 2)
assert c != 9
assert c.func is Pow
assert c.args == (3, 2)
def test_Add_as_coeff_mul():
# issue 5524. These should all be (1, self)
assert (x + 1).as_coeff_mul() == (1, (x + 1,))
assert (x + 2).as_coeff_mul() == (1, (x + 2,))
assert (x + 3).as_coeff_mul() == (1, (x + 3,))
assert (x - 1).as_coeff_mul() == (1, (x - 1,))
assert (x - 2).as_coeff_mul() == (1, (x - 2,))
assert (x - 3).as_coeff_mul() == (1, (x - 3,))
n = Symbol('n', integer=True)
assert (n + 1).as_coeff_mul() == (1, (n + 1,))
assert (n + 2).as_coeff_mul() == (1, (n + 2,))
assert (n + 3).as_coeff_mul() == (1, (n + 3,))
assert (n - 1).as_coeff_mul() == (1, (n - 1,))
assert (n - 2).as_coeff_mul() == (1, (n - 2,))
assert (n - 3).as_coeff_mul() == (1, (n - 3,))
def test_Pow_as_coeff_mul_doesnt_expand():
assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),))
assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y))
def test_issue_3514():
assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2
assert S(1)/2*sqrt(6)*sqrt(2) == sqrt(3)
assert sqrt(6)/2*sqrt(2) == sqrt(3)
assert sqrt(6)*sqrt(2)/2 == sqrt(3)
def test_make_args():
assert Add.make_args(x) == (x,)
assert Mul.make_args(x) == (x,)
assert Add.make_args(x*y*z) == (x*y*z,)
assert Mul.make_args(x*y*z) == (x*y*z).args
assert Add.make_args(x + y + z) == (x + y + z).args
assert Mul.make_args(x + y + z) == (x + y + z,)
assert Add.make_args((x + y)**z) == ((x + y)**z,)
assert Mul.make_args((x + y)**z) == ((x + y)**z,)
def test_issue_5126():
assert (-2)**x*(-3)**x != 6**x
i = Symbol('i', integer=1)
assert (-2)**i*(-3)**i == 6**i
def test_Rational_as_content_primitive():
c, p = S(1), S(0)
assert (c*p).as_content_primitive() == (c, p)
c, p = S(1)/2, S(1)
assert (c*p).as_content_primitive() == (c, p)
def test_Add_as_content_primitive():
assert (x + 2).as_content_primitive() == (1, x + 2)
assert (3*x + 2).as_content_primitive() == (1, 3*x + 2)
assert (3*x + 3).as_content_primitive() == (3, x + 1)
assert (3*x + 6).as_content_primitive() == (3, x + 2)
assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y)
assert (3*x + 3*y).as_content_primitive() == (3, x + y)
assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y)
assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2)
assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2)
assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2)
assert (2*x/3 + 4*y/9).as_content_primitive() == \
(Rational(2, 9), 3*x + 2*y)
assert (2*x/3 + 2.5*y).as_content_primitive() == \
(Rational(1, 3), 2*x + 7.5*y)
# the coefficient may sort to a position other than 0
p = 3 + x + y
assert (2*p).expand().as_content_primitive() == (2, p)
assert (2.0*p).expand().as_content_primitive() == (1, 2.*p)
p *= -1
assert (2*p).expand().as_content_primitive() == (2, p)
def test_Mul_as_content_primitive():
assert (2*x).as_content_primitive() == (2, x)
assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x))
assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \
(18, x*(1 + y)*(x + 1)**2)
assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \
(S.Half, 24*(x + 1)**2*(2*x + 1) + 1)
def test_Pow_as_content_primitive():
assert (x**y).as_content_primitive() == (1, x**y)
assert ((2*x + 2)**y).as_content_primitive() == \
(1, (Mul(2, (x + 1), evaluate=False))**y)
assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3)
def test_issue_5460():
u = Mul(2, (1 + x), evaluate=False)
assert (2 + u).args == (2, u)
def test_product_irrational():
from sympy import I, pi
assert (I*pi).is_irrational is False
# The following used to be deduced from the above bug:
assert (I*pi).is_positive is False
def test_issue_5919():
assert (x/(y*(1 + y))).expand() == x/(y**2 + y)
def test_Mod():
assert Mod(x, 1).func is Mod
assert pi % pi == S.Zero
assert Mod(5, 3) == 2
assert Mod(-5, 3) == 1
assert Mod(5, -3) == -1
assert Mod(-5, -3) == -2
assert type(Mod(3.2, 2, evaluate=False)) == Mod
assert 5 % x == Mod(5, x)
assert x % 5 == Mod(x, 5)
assert x % y == Mod(x, y)
assert (x % y).subs({x: 5, y: 3}) == 2
assert Mod(nan, 1) == nan
assert Mod(1, nan) == nan
assert Mod(nan, nan) == nan
Mod(0, x) == 0
with raises(ZeroDivisionError):
Mod(x, 0)
k = Symbol('k', integer=True)
m = Symbol('m', integer=True, positive=True)
assert (x**m % x).func is Mod
assert (k**(-m) % k).func is Mod
assert k**m % k == 0
assert (-2*k)**m % k == 0
# Float handling
point3 = Float(3.3) % 1
assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
assert Mod(-3.3, 1) == 1 - point3
assert Mod(0.7, 1) == Float(0.7)
e = Mod(1.3, 1)
assert comp(e, .3) and e.is_Float
e = Mod(1.3, .7)
assert comp(e, .6) and e.is_Float
e = Mod(1.3, Rational(7, 10))
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), 0.7)
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), Rational(7, 10))
assert comp(e, .6) and e.is_Rational
# check that sign is right
r2 = sqrt(2)
r3 = sqrt(3)
for i in [-r3, -r2, r2, r3]:
for j in [-r3, -r2, r2, r3]:
assert verify_numerically(i % j, i.n() % j.n())
for _x in range(4):
for _y in range(9):
reps = [(x, _x), (y, _y)]
assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9
# denesting
t = Symbol('t', real=True)
assert Mod(Mod(x, t), t) == Mod(x, t)
assert Mod(-Mod(x, t), t) == Mod(-x, t)
assert Mod(Mod(x, 2*t), t) == Mod(x, t)
assert Mod(-Mod(x, 2*t), t) == Mod(-x, t)
assert Mod(Mod(x, t), 2*t) == Mod(x, t)
assert Mod(-Mod(x, t), -2*t) == -Mod(x, t)
for i in [-4, -2, 2, 4]:
for j in [-4, -2, 2, 4]:
for k in range(4):
assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j
assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j
# known difference
assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
p = symbols('p', positive=True)
assert Mod(2, p + 3) == 2
assert Mod(-2, p + 3) == p + 1
assert Mod(2, -p - 3) == -p - 1
assert Mod(-2, -p - 3) == -2
assert Mod(p + 5, p + 3) == 2
assert Mod(-p - 5, p + 3) == p + 1
assert Mod(p + 5, -p - 3) == -p - 1
assert Mod(-p - 5, -p - 3) == -2
assert Mod(p + 1, p - 1).func is Mod
# handling sums
assert (x + 3) % 1 == Mod(x, 1)
assert (x + 3.0) % 1 == Mod(1.*x, 1)
assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
a = Mod(.6*x + y, .3*y)
b = Mod(0.1*y + 0.6*x, 0.3*y)
# Test that a, b are equal, with 1e-14 accuracy in coefficients
eps = 1e-14
assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps
assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps
assert (x + 1) % x == 1 % x
assert (x + y) % x == y % x
assert (x + y + 2) % x == (y + 2) % x
assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)
# gcd extraction
assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x)
assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
assert (12*x) % (2*y) == 2*Mod(6*x, y)
assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
assert (-2*pi) % (3*pi) == pi
assert (2*x + 2) % (x + 1) == 0
assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
i = Symbol('i', integer=True)
assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
assert Mod(4*i, 4) == 0
# issue 8677
n = Symbol('n', integer=True, positive=True)
assert factorial(n) % n == 0
assert factorial(n + 2) % n == 0
assert (factorial(n + 4) % (n + 5)).func is Mod
# modular exponentiation
assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497)
assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1
assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == pow(32131231232,9**10**6,10**12)
assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == pow(33284959323,123**999,11**13)
assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == pow(78789849597,333**555,12**9)
# Wilson's theorem
factorial(18042, evaluate=False) % 18043 == 18042
p = Symbol('n', prime=True)
factorial(p - 1) % p == p - 1
factorial(p - 1) % -p == -1
(factorial(3, evaluate=False) % 4).doit() == 2
n = Symbol('n', composite=True, odd=True)
factorial(n - 1) % n == 0
# symbolic with known parity
n = Symbol('n', even=True)
assert Mod(n, 2) == 0
n = Symbol('n', odd=True)
assert Mod(n, 2) == 1
# issue 10963
assert (x**6000%400).args[1] == 400
#issue 13543
assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2)
assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4)
assert Mod(Mod(x + 2, 4)*4, 4) == 0
# issue 15493
i, j = symbols('i j', integer=True, positive=True)
assert Mod(3*i, 2) == Mod(i, 2)
assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1)
assert Mod(8*i, 4) == 0
def test_Mod_is_integer():
p = Symbol('p', integer=True)
q1 = Symbol('q1', integer=True)
q2 = Symbol('q2', integer=True, nonzero=True)
assert Mod(x, y).is_integer is None
assert Mod(p, q1).is_integer is None
assert Mod(x, q2).is_integer is None
assert Mod(p, q2).is_integer
def test_Mod_is_nonposneg():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, positive=True)
assert (n%3).is_nonnegative
assert Mod(n, -3).is_nonpositive
assert Mod(n, k).is_nonnegative
assert Mod(n, -k).is_nonpositive
assert Mod(k, n).is_nonnegative is None
def test_issue_6001():
A = Symbol("A", commutative=False)
eq = A + A**2
# it doesn't matter whether it's True or False; they should
# just all be the same
assert (
eq.is_commutative ==
(eq + 1).is_commutative ==
(A + 1).is_commutative)
B = Symbol("B", commutative=False)
# Although commutative terms could cancel we return True
# meaning "there are non-commutative symbols; aftersubstitution
# that definition can change, e.g. (A*B).subs(B,A**-1) -> 1
assert (sqrt(2)*A).is_commutative is False
assert (sqrt(2)*A*B).is_commutative is False
def test_polar():
from sympy import polar_lift
p = Symbol('p', polar=True)
x = Symbol('x')
assert p.is_polar
assert x.is_polar is None
assert S(1).is_polar is None
assert (p**x).is_polar is True
assert (x**p).is_polar is None
assert ((2*p)**x).is_polar is True
assert (2*p).is_polar is True
assert (-2*p).is_polar is not True
assert (polar_lift(-2)*p).is_polar is True
q = Symbol('q', polar=True)
assert (p*q)**2 == p**2 * q**2
assert (2*q)**2 == 4 * q**2
assert ((p*q)**x).expand() == p**x * q**x
def test_issue_6040():
a, b = Pow(1, 2, evaluate=False), S.One
assert a != b
assert b != a
assert not (a == b)
assert not (b == a)
def test_issue_6082():
# Comparison is symmetric
assert Basic.compare(Max(x, 1), Max(x, 2)) == \
- Basic.compare(Max(x, 2), Max(x, 1))
# Equal expressions compare equal
assert Basic.compare(Max(x, 1), Max(x, 1)) == 0
# Basic subtypes (such as Max) compare different than standard types
assert Basic.compare(Max(1, x), frozenset((1, x))) != 0
def test_issue_6077():
assert x**2.0/x == x**1.0
assert x/x**2.0 == x**-1.0
assert x*x**2.0 == x**3.0
assert x**1.5*x**2.5 == x**4.0
assert 2**(2.0*x)/2**x == 2**(1.0*x)
assert 2**x/2**(2.0*x) == 2**(-1.0*x)
assert 2**x*2**(2.0*x) == 2**(3.0*x)
assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x)
def test_mul_flatten_oo():
p = symbols('p', positive=True)
n, m = symbols('n,m', negative=True)
x_im = symbols('x_im', imaginary=True)
assert n*oo == -oo
assert n*m*oo == oo
assert p*oo == oo
assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo
def test_add_flatten():
# see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524
a = oo + I*oo
b = oo - I*oo
assert a + b == nan
assert a - b == nan
assert (1/a).simplify() == (1/b).simplify() == 0
a = Pow(2, 3, evaluate=False)
assert a + a == 16
def test_issue_5160_6087_6089_6090():
# issue 6087
assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2)
# issue 6089
A, B, C = symbols('A,B,C', commutative=False)
assert (2.*B*C)**3 == 8.0*(B*C)**3
assert (-2.*B*C)**3 == -8.0*(B*C)**3
assert (-2*B*C)**2 == 4*(B*C)**2
# issue 5160
assert sqrt(-1.0*x) == 1.0*sqrt(-x)
assert sqrt(1.0*x) == 1.0*sqrt(x)
# issue 6090
assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2
def test_float_int_round():
assert int(float(sqrt(10))) == int(sqrt(10))
assert int(pi**1000) % 10 == 2
assert int(Float('1.123456789012345678901234567890e20', '')) == \
long(112345678901234567890)
assert int(Float('1.123456789012345678901234567890e25', '')) == \
long(11234567890123456789012345)
# decimal forces float so it's not an exact integer ending in 000000
assert int(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert int(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
112345678901234567890
assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
11234567890123456789012345
# decimal forces float so it's not an exact integer ending in 000000
assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert Integer(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', ''))
assert same_and_same_prec(Float('123000e2',''), Float('12300000', ''))
assert int(1 + Rational('.9999999999999999999999999')) == 1
assert int(pi/1e20) == 0
assert int(1 + pi/1e20) == 1
assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
raises(TypeError, lambda: float(x))
raises(TypeError, lambda: float(sqrt(-1)))
assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
12345678901234567891
def test_issue_6611a():
assert Mul.flatten([3**Rational(1, 3),
Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \
([Rational(1, 3), (-1)**Rational(2, 3)], [], None)
def test_denest_add_mul():
# when working with evaluated expressions make sure they denest
eq = x + 1
eq = Add(eq, 2, evaluate=False)
eq = Add(eq, 2, evaluate=False)
assert Add(*eq.args) == x + 5
eq = x*2
eq = Mul(eq, 2, evaluate=False)
eq = Mul(eq, 2, evaluate=False)
assert Mul(*eq.args) == 8*x
# but don't let them denest unecessarily
eq = Mul(-2, x - 2, evaluate=False)
assert 2*eq == Mul(-4, x - 2, evaluate=False)
assert -eq == Mul(2, x - 2, evaluate=False)
def test_mul_coeff():
# It is important that all Numbers be removed from the seq;
# This can be tricky when powers combine to produce those numbers
p = exp(I*pi/3)
assert p**2*x*p*y*p*x*p**2 == x**2*y
def test_mul_zero_detection():
nz = Dummy(real=True, zero=False, finite=True)
r = Dummy(real=True)
c = Dummy(real=False, complex=True, finite=True)
c2 = Dummy(real=False, complex=True, finite=True)
i = Dummy(imaginary=True, finite=True)
e = nz*r*c
assert e.is_imaginary is None
assert e.is_real is None
e = nz*c
assert e.is_imaginary is None
assert e.is_real is False
e = nz*i*c
assert e.is_imaginary is False
assert e.is_real is None
# check for more than one complex; it is important to use
# uniquely named Symbols to ensure that two factors appear
# e.g. if the symbols have the same name they just become
# a single factor, a power.
e = nz*i*c*c2
assert e.is_imaginary is None
assert e.is_real is None
# _eval_is_real and _eval_is_zero both employ trapping of the
# zero value so args should be tested in both directions and
# TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED
# real is unknonwn
def test(z, b, e):
if z.is_zero and b.is_finite:
assert e.is_real and e.is_zero
else:
assert e.is_real is None
if b.is_finite:
if z.is_zero:
assert e.is_zero
else:
assert e.is_zero is None
elif b.is_finite is False:
if z.is_zero is None:
assert e.is_zero is None
else:
assert e.is_zero is False
for iz, ib in cartes(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('nz', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(b, z, evaluate=False)
test(z, b, e)
# real is True
def test(z, b, e):
if z.is_zero and not b.is_finite:
assert e.is_real is None
else:
assert e.is_real
for iz, ib in cartes(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz, real=True)
b = Dummy('b', finite=ib, real=True)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('z', nonzero=iz, real=True)
b = Dummy('b', finite=ib, real=True)
e = Mul(b, z, evaluate=False)
test(z, b, e)
def test_Mul_with_zero_infinite():
zer = Dummy(zero=True)
inf = Dummy(finite=False)
e = Mul(zer, inf, evaluate=False)
assert e.is_positive is None
assert e.is_hermitian is None
e = Mul(inf, zer, evaluate=False)
assert e.is_positive is None
assert e.is_hermitian is None
def test_Mul_does_not_cancel_infinities():
a, b = symbols('a b')
assert ((zoo + 3*a)/(3*a + zoo)) is nan
assert ((b - oo)/(b - oo)) is nan
# issue 13904
expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b))
assert expr.subs(b, a) is nan
def test_Mul_does_not_distribute_infinity():
a, b = symbols('a b')
assert ((1 + I)*oo).is_Mul
assert ((a + b)*(-oo)).is_Mul
assert ((a + 1)*zoo).is_Mul
assert ((1 + I)*oo).is_finite is False
z = (1 + I)*oo
assert ((1 - I)*z).expand() is oo
def test_issue_8247_8354():
from sympy import tan
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_positive is False # it's 0
z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
assert z.is_positive is False # it's 0
z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
assert z.is_positive is not True # it's zero and it shouldn't hang
z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
2) - 2*2**(1/3))**2''')
assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough)
def test_Add_is_zero():
x, y = symbols('x y', zero=True)
assert (x + y).is_zero
# Issue 15873
e = -2*I + (1 + I)**2
assert e.is_zero is None
def test_issue_14392():
assert (sin(zoo)**2).as_real_imag() == (nan, nan)
def test_divmod():
assert divmod(x, y) == (x//y, x % y)
assert divmod(x, 3) == (x//3, x % 3)
assert divmod(3, x) == (3//x, 3 % x)
|
4247d572ba4a187132fdc784a7b3a2c588c7b0a4c81dbd5524ba3dd3e34bbedf | """Implementation of :class:`FractionField` class. """
from __future__ import print_function, division
from sympy.polys.domains.compositedomain import CompositeDomain
from sympy.polys.domains.field import Field
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError
from sympy.utilities import public
@public
class FractionField(Field, CompositeDomain):
"""A class for representing multivariate rational function fields. """
is_FractionField = is_Frac = True
has_assoc_Ring = True
has_assoc_Field = True
def __init__(self, domain_or_field, symbols=None, order=None):
from sympy.polys.fields import FracField
if isinstance(domain_or_field, FracField) and symbols is None and order is None:
field = domain_or_field
else:
field = FracField(symbols, domain_or_field, order)
self.field = field
self.dtype = field.dtype
self.gens = field.gens
self.ngens = field.ngens
self.symbols = field.symbols
self.domain = field.domain
# TODO: remove this
self.dom = self.domain
def new(self, element):
return self.field.field_new(element)
@property
def zero(self):
return self.field.zero
@property
def one(self):
return self.field.one
@property
def order(self):
return self.field.order
@property
def is_Exact(self):
return self.domain.is_Exact
def get_exact(self):
return FractionField(self.domain.get_exact(), self.symbols)
def __str__(self):
return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')'
def __hash__(self):
return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols))
def __eq__(self, other):
"""Returns `True` if two domains are equivalent. """
return isinstance(other, FractionField) and \
(self.dtype.field, self.domain, self.symbols) ==\
(other.dtype.field, other.domain, other.symbols)
def to_sympy(self, a):
"""Convert `a` to a SymPy object. """
return a.as_expr()
def from_sympy(self, a):
"""Convert SymPy's expression to `dtype`. """
return self.field.from_expr(a)
def from_ZZ_python(K1, a, K0):
"""Convert a Python `int` object to `dtype`. """
return K1(K1.domain.convert(a, K0))
def from_QQ_python(K1, a, K0):
"""Convert a Python `Fraction` object to `dtype`. """
return K1(K1.domain.convert(a, K0))
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY `mpz` object to `dtype`. """
return K1(K1.domain.convert(a, K0))
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY `mpq` object to `dtype`. """
return K1(K1.domain.convert(a, K0))
def from_RealField(K1, a, K0):
"""Convert a mpmath `mpf` object to `dtype`. """
return K1(K1.domain.convert(a, K0))
def from_AlgebraicField(K1, a, K0):
"""Convert an algebraic number to ``dtype``. """
if K1.domain == K0:
return K1.new(a)
def from_PolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
try:
return K1.new(a)
except (CoercionFailed, GeneratorsError):
return None
def from_FractionField(K1, a, K0):
"""Convert a rational function to ``dtype``. """
try:
return a.set_field(K1.field)
except (CoercionFailed, GeneratorsError):
return None
def get_ring(self):
"""Returns a field associated with `self`. """
return self.field.to_ring().to_domain()
def is_positive(self, a):
"""Returns True if `LC(a)` is positive. """
return self.domain.is_positive(a.numer.LC)
def is_negative(self, a):
"""Returns True if `LC(a)` is negative. """
return self.domain.is_negative(a.numer.LC)
def is_nonpositive(self, a):
"""Returns True if `LC(a)` is non-positive. """
return self.domain.is_nonpositive(a.numer.LC)
def is_nonnegative(self, a):
"""Returns True if `LC(a)` is non-negative. """
return self.domain.is_nonnegative(a.numer.LC)
def numer(self, a):
"""Returns numerator of ``a``. """
return a.numer
def denom(self, a):
"""Returns denominator of ``a``. """
return a.denom
def factorial(self, a):
"""Returns factorial of `a`. """
return self.dtype(self.domain.factorial(a))
|
7c26c92ea35d592b903076b3a22884b4f34ecc7195ba0fd9b55190fe755ec125 | """Implementation of :class:`Domain` class. """
from __future__ import print_function, division
from sympy.core import Basic, sympify
from sympy.core.compatibility import HAS_GMPY, integer_types, is_sequence
from sympy.core.decorators import deprecated
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
from sympy.polys.polyutils import _unify_gens, _not_a_coeff
from sympy.utilities import default_sort_key, public
@public
class Domain(object):
"""Represents an abstract domain. """
dtype = None
zero = None
one = None
is_Ring = False
is_Field = False
has_assoc_Ring = False
has_assoc_Field = False
is_FiniteField = is_FF = False
is_IntegerRing = is_ZZ = False
is_RationalField = is_QQ = False
is_RealField = is_RR = False
is_ComplexField = is_CC = False
is_AlgebraicField = is_Algebraic = False
is_PolynomialRing = is_Poly = False
is_FractionField = is_Frac = False
is_SymbolicDomain = is_EX = False
is_Exact = True
is_Numerical = False
is_Simple = False
is_Composite = False
is_PID = False
has_CharacteristicZero = False
rep = None
alias = None
@property
@deprecated(useinstead="is_Field", issue=12723, deprecated_since_version="1.1")
def has_Field(self):
return self.is_Field
@property
@deprecated(useinstead="is_Ring", issue=12723, deprecated_since_version="1.1")
def has_Ring(self):
return self.is_Ring
def __init__(self):
raise NotImplementedError
def __str__(self):
return self.rep
def __repr__(self):
return str(self)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype))
def new(self, *args):
return self.dtype(*args)
@property
def tp(self):
return self.dtype
def __call__(self, *args):
"""Construct an element of ``self`` domain from ``args``. """
return self.new(*args)
def normal(self, *args):
return self.dtype(*args)
def convert_from(self, element, base):
"""Convert ``element`` to ``self.dtype`` given the base domain. """
if base.alias is not None:
method = "from_" + base.alias
else:
method = "from_" + base.__class__.__name__
_convert = getattr(self, method)
if _convert is not None:
result = _convert(element, base)
if result is not None:
return result
raise CoercionFailed("can't convert %s of type %s from %s to %s" % (element, type(element), base, self))
def convert(self, element, base=None):
"""Convert ``element`` to ``self.dtype``. """
if _not_a_coeff(element):
raise CoercionFailed('%s is not in any domain' % element)
if base is not None:
return self.convert_from(element, base)
if self.of_type(element):
return element
from sympy.polys.domains import PythonIntegerRing, GMPYIntegerRing, GMPYRationalField, RealField, ComplexField
if isinstance(element, integer_types):
return self.convert_from(element, PythonIntegerRing())
if HAS_GMPY:
integers = GMPYIntegerRing()
if isinstance(element, integers.tp):
return self.convert_from(element, integers)
rationals = GMPYRationalField()
if isinstance(element, rationals.tp):
return self.convert_from(element, rationals)
if isinstance(element, float):
parent = RealField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, complex):
parent = ComplexField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, DomainElement):
return self.convert_from(element, element.parent())
# TODO: implement this in from_ methods
if self.is_Numerical and getattr(element, 'is_ground', False):
return self.convert(element.LC())
if isinstance(element, Basic):
try:
return self.from_sympy(element)
except (TypeError, ValueError):
pass
else: # TODO: remove this branch
if not is_sequence(element):
try:
element = sympify(element)
if isinstance(element, Basic):
return self.from_sympy(element)
except (TypeError, ValueError):
pass
raise CoercionFailed("can't convert %s of type %s to %s" % (element, type(element), self))
def of_type(self, element):
"""Check if ``a`` is of type ``dtype``. """
return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
def __contains__(self, a):
"""Check if ``a`` belongs to this domain. """
try:
if _not_a_coeff(a):
raise CoercionFailed
self.convert(a) # this might raise, too
except CoercionFailed:
return False
return True
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
raise NotImplementedError
def from_sympy(self, a):
"""Convert a SymPy object to ``dtype``. """
raise NotImplementedError
def from_FF_python(K1, a, K0):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return None
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return None
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return None
def from_FF_gmpy(K1, a, K0):
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
return None
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return None
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return None
def from_RealField(K1, a, K0):
"""Convert a real element object to ``dtype``. """
return None
def from_ComplexField(K1, a, K0):
"""Convert a complex element to ``dtype``. """
return None
def from_AlgebraicField(K1, a, K0):
"""Convert an algebraic number to ``dtype``. """
return None
def from_PolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.is_ground:
return K1.convert(a.LC, K0.dom)
def from_FractionField(K1, a, K0):
"""Convert a rational function to ``dtype``. """
return None
def from_ExpressionDomain(K1, a, K0):
"""Convert a ``EX`` object to ``dtype``. """
return K1.from_sympy(a.ex)
def from_GlobalPolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.degree() <= 0:
return K1.convert(a.LC(), K0.dom)
def from_GeneralizedPolynomialRing(K1, a, K0):
return K1.from_FractionField(a, K0)
def unify_with_symbols(K0, K1, symbols):
if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
raise UnificationFailed("can't unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
return K0.unify(K1)
def unify(K0, K1, symbols=None):
"""
Construct a minimal domain that contains elements of ``K0`` and ``K1``.
Known domains (from smallest to largest):
- ``GF(p)``
- ``ZZ``
- ``QQ``
- ``RR(prec, tol)``
- ``CC(prec, tol)``
- ``ALG(a, b, c)``
- ``K[x, y, z]``
- ``K(x, y, z)``
- ``EX``
"""
if symbols is not None:
return K0.unify_with_symbols(K1, symbols)
if K0 == K1:
return K0
if K0.is_EX:
return K0
if K1.is_EX:
return K1
if K0.is_Composite or K1.is_Composite:
K0_ground = K0.dom if K0.is_Composite else K0
K1_ground = K1.dom if K1.is_Composite else K1
K0_symbols = K0.symbols if K0.is_Composite else ()
K1_symbols = K1.symbols if K1.is_Composite else ()
domain = K0_ground.unify(K1_ground)
symbols = _unify_gens(K0_symbols, K1_symbols)
order = K0.order if K0.is_Composite else K1.order
if ((K0.is_FractionField and K1.is_PolynomialRing or
K1.is_FractionField and K0.is_PolynomialRing) and
(not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field):
domain = domain.get_ring()
if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
cls = K0.__class__
else:
cls = K1.__class__
from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
if cls == GlobalPolynomialRing:
return cls(domain, symbols)
return cls(domain, symbols, order)
def mkinexact(cls, K0, K1):
prec = max(K0.precision, K1.precision)
tol = max(K0.tolerance, K1.tolerance)
return cls(prec=prec, tol=tol)
if K0.is_ComplexField and K1.is_ComplexField:
return mkinexact(K0.__class__, K0, K1)
if K0.is_ComplexField and K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
if K0.is_RealField and K1.is_ComplexField:
return mkinexact(K1.__class__, K1, K0)
if K0.is_RealField and K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
if K0.is_ComplexField or K0.is_RealField:
return K0
if K1.is_ComplexField or K1.is_RealField:
return K1
if K0.is_AlgebraicField and K1.is_AlgebraicField:
return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
elif K0.is_AlgebraicField:
return K0
elif K1.is_AlgebraicField:
return K1
if K0.is_RationalField:
return K0
if K1.is_RationalField:
return K1
if K0.is_IntegerRing:
return K0
if K1.is_IntegerRing:
return K1
if K0.is_FiniteField and K1.is_FiniteField:
return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key))
from sympy.polys.domains import EX
return EX
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, Domain) and self.dtype == other.dtype
def __ne__(self, other):
"""Returns ``False`` if two domains are equivalent. """
return not self == other
def map(self, seq):
"""Rersively apply ``self`` to all elements of ``seq``. """
result = []
for elt in seq:
if isinstance(elt, list):
result.append(self.map(elt))
else:
result.append(self(elt))
return result
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError('there is no ring associated with %s' % self)
def get_field(self):
"""Returns a field associated with ``self``. """
raise DomainError('there is no field associated with %s' % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
return self
def __getitem__(self, symbols):
"""The mathematical way to make a polynomial ring. """
if hasattr(symbols, '__iter__'):
return self.poly_ring(*symbols)
else:
return self.poly_ring(symbols)
def poly_ring(self, *symbols, **kwargs):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.polynomialring import PolynomialRing
return PolynomialRing(self, symbols, kwargs.get("order", lex))
def frac_field(self, *symbols, **kwargs):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.fractionfield import FractionField
return FractionField(self, symbols, kwargs.get("order", lex))
def old_poly_ring(self, *symbols, **kwargs):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.old_polynomialring import PolynomialRing
return PolynomialRing(self, *symbols, **kwargs)
def old_frac_field(self, *symbols, **kwargs):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.old_fractionfield import FractionField
return FractionField(self, *symbols, **kwargs)
def algebraic_field(self, *extension):
r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
raise DomainError("can't create algebraic field over %s" % self)
def inject(self, *symbols):
"""Inject generators into this domain. """
raise NotImplementedError
def is_zero(self, a):
"""Returns True if ``a`` is zero. """
return not a
def is_one(self, a):
"""Returns True if ``a`` is one. """
return a == self.one
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return a > 0
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return a < 0
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return a <= 0
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return a >= 0
def abs(self, a):
"""Absolute value of ``a``, implies ``__abs__``. """
return abs(a)
def neg(self, a):
"""Returns ``a`` negated, implies ``__neg__``. """
return -a
def pos(self, a):
"""Returns ``a`` positive, implies ``__pos__``. """
return +a
def add(self, a, b):
"""Sum of ``a`` and ``b``, implies ``__add__``. """
return a + b
def sub(self, a, b):
"""Difference of ``a`` and ``b``, implies ``__sub__``. """
return a - b
def mul(self, a, b):
"""Product of ``a`` and ``b``, implies ``__mul__``. """
return a * b
def pow(self, a, b):
"""Raise ``a`` to power ``b``, implies ``__pow__``. """
return a ** b
def exquo(self, a, b):
"""Exact quotient of ``a`` and ``b``, implies something. """
raise NotImplementedError
def quo(self, a, b):
"""Quotient of ``a`` and ``b``, implies something. """
raise NotImplementedError
def rem(self, a, b):
"""Remainder of ``a`` and ``b``, implies ``__mod__``. """
raise NotImplementedError
def div(self, a, b):
"""Division of ``a`` and ``b``, implies something. """
raise NotImplementedError
def invert(self, a, b):
"""Returns inversion of ``a mod b``, implies something. """
raise NotImplementedError
def revert(self, a):
"""Returns ``a**(-1)`` if possible. """
raise NotImplementedError
def numer(self, a):
"""Returns numerator of ``a``. """
raise NotImplementedError
def denom(self, a):
"""Returns denominator of ``a``. """
raise NotImplementedError
def half_gcdex(self, a, b):
"""Half extended GCD of ``a`` and ``b``. """
s, t, h = self.gcdex(a, b)
return s, h
def gcdex(self, a, b):
"""Extended GCD of ``a`` and ``b``. """
raise NotImplementedError
def cofactors(self, a, b):
"""Returns GCD and cofactors of ``a`` and ``b``. """
gcd = self.gcd(a, b)
cfa = self.quo(a, gcd)
cfb = self.quo(b, gcd)
return gcd, cfa, cfb
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
raise NotImplementedError
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
raise NotImplementedError
def log(self, a, b):
"""Returns b-base logarithm of ``a``. """
raise NotImplementedError
def sqrt(self, a):
"""Returns square root of ``a``. """
raise NotImplementedError
def evalf(self, a, prec=None, **options):
"""Returns numerical approximation of ``a``. """
return self.to_sympy(a).evalf(prec, **options)
n = evalf
def real(self, a):
return a
def imag(self, a):
return self.zero
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return a == b
def characteristic(self):
"""Return the characteristic of this domain. """
raise NotImplementedError('characteristic()')
|
4923f805c81661eea4130db21c4c1d707406a43007f74c5466f6c062633f4bfc | """Tests for tools and arithmetics for monomials of distributed polynomials. """
from sympy.polys.monomials import (
itermonomials, monomial_count,
monomial_mul, monomial_div,
monomial_gcd, monomial_lcm,
monomial_max, monomial_min,
monomial_divides, monomial_pow,
Monomial,
)
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.abc import a, b, c, x, y, z
from sympy.core import S, symbols
from sympy.utilities.pytest import raises
def test_monomials():
assert itermonomials([], -1) == set()
assert itermonomials([], 0) == {S(1)}
assert itermonomials([], 1) == {S(1)}
assert itermonomials([], 2) == {S(1)}
assert itermonomials([], 3) == {S(1)}
assert itermonomials([x], -1) == set()
assert itermonomials([x], 0) == {S(1)}
assert itermonomials([x], 1) == {S(1), x}
assert itermonomials([x], 2) == {S(1), x, x**2}
assert itermonomials([x], 3) == {S(1), x, x**2, x**3}
assert itermonomials([x, y], 0) == {S(1)}
assert itermonomials([x, y], 1) == {S(1), x, y}
assert itermonomials([x, y], 2) == {S(1), x, y, x**2, y**2, x*y}
assert itermonomials([x, y], 3) == \
{S(1), x, y, x**2, x**3, y**2, y**3, x*y, x*y**2, y*x**2}
i, j, k = symbols('i j k', commutative=False)
assert itermonomials([i, j, k], 0) == {S(1)}
assert itermonomials([i, j, k], 1) == {S(1), i, j, k}
assert itermonomials([i, j, k], 2) == \
{S(1), i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j}
assert itermonomials([i, j, k], 3) == \
{S(1), i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j,
i**3, j**3, k**3,
i**2 * j, i**2 * k, j * i**2, k * i**2,
j**2 * i, j**2 * k, i * j**2, k * j**2,
k**2 * i, k**2 * j, i * k**2, j * k**2,
i*j*i, i*k*i, j*i*j, j*k*j, k*i*k, k*j*k,
i*j*k, i*k*j, j*i*k, j*k*i, k*i*j, k*j*i,
}
assert itermonomials([x, i, j], 0) == {S(1)}
assert itermonomials([x, i, j], 1) == {S(1), x, i, j}
assert itermonomials([x, i, j], 2) == {S(1), x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2}
assert itermonomials([x, i, j], 3) == \
{S(1), x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2,
x**3, i**3, j**3,
x**2 * i, x**2 * j,
x * i**2, j * i**2, i**2 * j, i*j*i,
x * j**2, i * j**2, j**2 * i, j*i*j,
x * i * j, x * j * i,
}
assert itermonomials([x, y], 3, 0) == {1, x, x**2, x**2*y, x**3, x*y, x*y**2, y, y**2, y**3}
assert itermonomials([x, y], 3, 1) == {x, x**2, x**2*y, x**3, x*y, x*y**2, y, y**2, y**3}
assert itermonomials([x, y], 3, 2) == {x**2, x**2*y, x**3, x*y**2, y**2, y**3, x*y}
assert itermonomials([x, y], 3, 3) == {x**3, y**3, x**2*y, x*y**2}
def test_monomial_count():
assert monomial_count(2, 2) == 6
assert monomial_count(2, 3) == 10
def test_monomial_mul():
assert monomial_mul((3, 4, 1), (1, 2, 0)) == (4, 6, 1)
def test_monomial_div():
assert monomial_div((3, 4, 1), (1, 2, 0)) == (2, 2, 1)
def test_monomial_gcd():
assert monomial_gcd((3, 4, 1), (1, 2, 0)) == (1, 2, 0)
def test_monomial_lcm():
assert monomial_lcm((3, 4, 1), (1, 2, 0)) == (3, 4, 1)
def test_monomial_max():
assert monomial_max((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (6, 5, 9)
def test_monomial_pow():
assert monomial_pow((1, 2, 3), 3) == (3, 6, 9)
def test_monomial_min():
assert monomial_min((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (0, 3, 1)
def test_monomial_divides():
assert monomial_divides((1, 2, 3), (4, 5, 6)) is True
assert monomial_divides((1, 2, 3), (0, 5, 6)) is False
def test_Monomial():
m = Monomial((3, 4, 1), (x, y, z))
n = Monomial((1, 2, 0), (x, y, z))
assert m.as_expr() == x**3*y**4*z
assert n.as_expr() == x**1*y**2
assert m.as_expr(a, b, c) == a**3*b**4*c
assert n.as_expr(a, b, c) == a**1*b**2
assert m.exponents == (3, 4, 1)
assert m.gens == (x, y, z)
assert n.exponents == (1, 2, 0)
assert n.gens == (x, y, z)
assert m == (3, 4, 1)
assert n != (3, 4, 1)
assert m != (1, 2, 0)
assert n == (1, 2, 0)
assert (m == 1) is False
assert m[0] == m[-3] == 3
assert m[1] == m[-2] == 4
assert m[2] == m[-1] == 1
assert n[0] == n[-3] == 1
assert n[1] == n[-2] == 2
assert n[2] == n[-1] == 0
assert m[:2] == (3, 4)
assert n[:2] == (1, 2)
assert m*n == Monomial((4, 6, 1))
assert m/n == Monomial((2, 2, 1))
assert m*(1, 2, 0) == Monomial((4, 6, 1))
assert m/(1, 2, 0) == Monomial((2, 2, 1))
assert m.gcd(n) == Monomial((1, 2, 0))
assert m.lcm(n) == Monomial((3, 4, 1))
assert m.gcd((1, 2, 0)) == Monomial((1, 2, 0))
assert m.lcm((1, 2, 0)) == Monomial((3, 4, 1))
assert m**0 == Monomial((0, 0, 0))
assert m**1 == m
assert m**2 == Monomial((6, 8, 2))
assert m**3 == Monomial((9, 12, 3))
raises(ExactQuotientFailed, lambda: m/Monomial((5, 2, 0)))
mm = Monomial((1, 2, 3))
raises(ValueError, lambda: mm.as_expr())
assert str(mm) == 'Monomial((1, 2, 3))'
assert str(m) == 'x**3*y**4*z**1'
raises(NotImplementedError, lambda: m*1)
raises(NotImplementedError, lambda: m/1)
raises(ValueError, lambda: m**-1)
raises(TypeError, lambda: m.gcd(3))
raises(TypeError, lambda: m.lcm(3))
|
9fa5bda1ae9ae544986c80b8c05b9d03a6170c4053dd5f16dd6080ef56db24d7 | """Tests for user-friendly public interface to polynomial functions. """
from sympy.polys.polytools import (
Poly, PurePoly, poly,
parallel_poly_from_expr,
degree, degree_list,
total_degree,
LC, LM, LT,
pdiv, prem, pquo, pexquo,
div, rem, quo, exquo,
half_gcdex, gcdex, invert,
subresultants,
resultant, discriminant,
terms_gcd, cofactors,
gcd, gcd_list,
lcm, lcm_list,
trunc,
monic, content, primitive,
compose, decompose,
sturm,
gff_list, gff,
sqf_norm, sqf_part, sqf_list, sqf,
factor_list, factor,
intervals, refine_root, count_roots,
real_roots, nroots, ground_roots,
nth_power_roots_poly,
cancel, reduced, groebner,
GroebnerBasis, is_zero_dimensional,
_torational_factor_list,
to_rational_coeffs)
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
ExactQuotientFailed,
PolificationFailed,
ComputationFailed,
UnificationFailed,
RefinementFailed,
GeneratorsNeeded,
GeneratorsError,
PolynomialError,
CoercionFailed,
DomainError,
OptionError,
FlagError)
from sympy.polys.polyclasses import DMP
from sympy.polys.fields import field
from sympy.polys.domains import FF, ZZ, QQ, RR, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.orderings import lex, grlex, grevlex
from sympy import (
S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative,
exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff)
from sympy.core.basic import _aresame
from sympy.core.compatibility import iterable, PY3
from sympy.core.mul import _keep_coeff
from sympy.utilities.pytest import raises, XFAIL
from sympy.simplify import simplify
from sympy.abc import a, b, c, d, p, q, t, w, x, y, z
from sympy import MatrixSymbol
def _epsilon_eq(a, b):
for x, y in zip(a, b):
if abs(x - y) > 1e-10:
return False
return True
def _strict_eq(a, b):
if type(a) == type(b):
if iterable(a):
if len(a) == len(b):
return all(_strict_eq(c, d) for c, d in zip(a, b))
else:
return False
else:
return isinstance(a, Poly) and a.eq(b, strict=True)
else:
return False
def test_Poly_from_dict():
K = FF(3)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict(
{(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=(
x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K)
assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_dict(
{(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \
Poly(sin(y)*x, x, domain='EX')
assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \
Poly(y*x, x, domain='EX')
assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \
Poly(x*y, x, y, domain='ZZ')
assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \
Poly(y*x, x, z, domain='EX')
def test_Poly_from_list():
K = FF(3)
assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)
assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)
assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR)
assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR)
raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y)))
def test_Poly_from_poly():
f = Poly(x + 7, x, domain=ZZ)
g = Poly(x + 2, x, modulus=3)
h = Poly(x + y, x, y, domain=ZZ)
K = FF(3)
assert Poly.from_poly(f) == f
assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K)
assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ)
assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ)
assert Poly.from_poly(f, gens=x) == f
assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K)
assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ)
assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ)
assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]')
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K))
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ))
raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ))
assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ')
assert Poly.from_poly(
f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ')
assert Poly.from_poly(
f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ')
assert Poly.from_poly(
f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)')
K = FF(2)
assert Poly.from_poly(g) == g
assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ)
raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ))
assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K)
assert Poly.from_poly(g, gens=x) == g
assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ)
raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ))
assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K)
K = FF(3)
assert Poly.from_poly(h) == h
assert Poly.from_poly(
h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ))
assert Poly.from_poly(
h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ))
assert Poly.from_poly(
h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3))
assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ))
assert Poly.from_poly(
h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ))
assert Poly.from_poly(
h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x])
raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3))
assert Poly.from_poly(h, gens=(x, y)) == h
assert Poly.from_poly(
h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(
h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
assert Poly.from_poly(
h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)
assert Poly.from_poly(
h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
assert Poly.from_poly(
h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
def test_Poly_from_expr():
raises(GeneratorsNeeded, lambda: Poly.from_expr(S(0)))
raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7)))
F3 = FF(3)
assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3)
assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)
assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)
assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ)
assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ)
assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ)
def test_Poly__new__():
raises(GeneratorsError, lambda: Poly(x + 1, x, x))
raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x]))
raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y]))
raises(OptionError, lambda: Poly(x, x, symmetric=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)]))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)]))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True))
raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True))
raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False))
raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False))
raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex'))
raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex'))
raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1}))
raises(GeneratorsNeeded, lambda: Poly([2, 1]))
raises(GeneratorsNeeded, lambda: Poly((2, 1)))
raises(GeneratorsNeeded, lambda: Poly(1))
f = a*x**2 + b*x + c
assert Poly({2: a, 1: b, 0: c}, x) == f
assert Poly(iter([a, b, c]), x) == f
assert Poly([a, b, c], x) == f
assert Poly((a, b, c), x) == f
f = Poly({}, x, y, z)
assert f.gens == (x, y, z) and f.as_expr() == 0
assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x)
assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]
raises(CoercionFailed, lambda: Poly(3*x**2/5 + 2*x/5 + 1, domain='ZZ'))
assert Poly(
3*x**2/5 + 2*x/5 + 1, domain='QQ').all_coeffs() == [S(3)/5, S(2)/5, 1]
assert _epsilon_eq(
Poly(3*x**2/5 + 2*x/5 + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0])
assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
assert Poly(
3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]
raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ'))
assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [S(31)/10, S(21)/10, 1]
assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0]
assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \
Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y)
assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I)
f = 3*x**5 - x**4 + x**3 - x** 2 + 65538
assert Poly(f, x, modulus=65537, symmetric=True) == \
Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537,
symmetric=True)
assert Poly(f, x, modulus=65537, symmetric=False) == \
Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x,
modulus=65537, symmetric=False)
assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField)
def test_Poly__args():
assert Poly(x**2 + 1).args == (x**2 + 1,)
def test_Poly__gens():
assert Poly((x - p)*(x - q), x).gens == (x,)
assert Poly((x - p)*(x - q), p).gens == (p,)
assert Poly((x - p)*(x - q), q).gens == (q,)
assert Poly((x - p)*(x - q), x, p).gens == (x, p)
assert Poly((x - p)*(x - q), x, q).gens == (x, q)
assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q)
assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q)
assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x)
assert Poly((x - p)*(x - q)).gens == (x, p, q)
assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q)
assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q)
assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x)
assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q)
assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p)
assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q)
assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p)
assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q)
assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x)
assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x)
def test_Poly_zero():
assert Poly(x).zero == Poly(0, x, domain=ZZ)
assert Poly(x/2).zero == Poly(0, x, domain=QQ)
def test_Poly_one():
assert Poly(x).one == Poly(1, x, domain=ZZ)
assert Poly(x/2).one == Poly(1, x, domain=QQ)
def test_Poly__unify():
raises(UnificationFailed, lambda: Poly(x)._unify(y))
F3 = FF(3)
F5 = FF(5)
assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == (
DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))
assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == (
DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5))
assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3))
assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))
assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
F, A, B = field("a,b", ZZ)
assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
(DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))
assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
(DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))
raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)'))
f = Poly(t**2 + t/3 + x, t, domain='QQ(x)')
g = Poly(t**2 + t/3 + x, t, domain='QQ[x]')
assert f._unify(g)[2:] == (f.rep, f.rep)
def test_Poly_free_symbols():
assert Poly(x**2 + 1).free_symbols == {x}
assert Poly(x**2 + y*z).free_symbols == {x, y, z}
assert Poly(x**2 + y*z, x).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z}
assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z}
assert Poly(1 + x + x**2, x, y, z).free_symbols == {x}
assert Poly(x + sin(y), z).free_symbols == {x, y}
def test_PurePoly_free_symbols():
assert PurePoly(x**2 + 1).free_symbols == set([])
assert PurePoly(x**2 + y*z).free_symbols == set([])
assert PurePoly(x**2 + y*z, x).free_symbols == {y, z}
assert PurePoly(x**2 + sin(y*z)).free_symbols == set([])
assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z}
assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z}
def test_Poly__eq__():
assert (Poly(x, x) == Poly(x, x)) is True
assert (Poly(x, x, domain=QQ) == Poly(x, x)) is True
assert (Poly(x, x) == Poly(x, x, domain=QQ)) is True
assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is True
assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is True
assert (Poly(x*y, x, y) == Poly(x, x)) is False
assert (Poly(x, x, y) == Poly(x, x)) is False
assert (Poly(x, x) == Poly(x, x, y)) is False
assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False
assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False
f = Poly(x, x, domain=ZZ)
g = Poly(x, x, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
t0 = Symbol('t0')
f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]')
g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)')
assert (f == g) is True
def test_PurePoly__eq__():
assert (PurePoly(x, x) == PurePoly(x, x)) is True
assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True
assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True
assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True
assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True
assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False
assert (PurePoly(x, x, y) == PurePoly(x, x)) is False
assert (PurePoly(x, x) == PurePoly(x, x, y)) is False
assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True
assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True
f = PurePoly(x, x, domain=ZZ)
g = PurePoly(x, x, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
f = PurePoly(x, x, domain=ZZ)
g = PurePoly(y, y, domain=QQ)
assert f.eq(g) is True
assert f.ne(g) is False
assert f.eq(g, strict=True) is False
assert f.ne(g, strict=True) is True
def test_PurePoly_Poly():
assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True
assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True
def test_Poly_get_domain():
assert Poly(2*x).get_domain() == ZZ
assert Poly(2*x, domain='ZZ').get_domain() == ZZ
assert Poly(2*x, domain='QQ').get_domain() == QQ
assert Poly(x/2).get_domain() == QQ
raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ'))
assert Poly(x/2, domain='QQ').get_domain() == QQ
assert isinstance(Poly(0.2*x).get_domain(), RealField)
def test_Poly_set_domain():
assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1)
assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1)
assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ')
assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ')
assert Poly(S(2)/10*x + S(1)/10).set_domain('RR') == Poly(0.2*x + 0.1)
assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(S(2)/10*x + S(1)/10)
raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ))
raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ))
raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y]))
def test_Poly_get_modulus():
assert Poly(x**2 + 1, modulus=2).get_modulus() == 2
raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus())
def test_Poly_set_modulus():
assert Poly(
x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7)
assert Poly(
x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2)
assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2)
raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2))
def test_Poly_add_ground():
assert Poly(x + 1).add_ground(2) == Poly(x + 3)
def test_Poly_sub_ground():
assert Poly(x + 1).sub_ground(2) == Poly(x - 1)
def test_Poly_mul_ground():
assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2)
def test_Poly_quo_ground():
assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2)
assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1)
def test_Poly_exquo_ground():
assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2)
raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2))
def test_Poly_abs():
assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x)
def test_Poly_neg():
assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x)
def test_Poly_add():
assert Poly(0, x).add(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) + Poly(0, x) == Poly(0, x)
assert Poly(1, x).add(Poly(0, x)) == Poly(1, x)
assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y)
assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y)
assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y)
assert Poly(1, x) + x == Poly(x + 1, x)
assert Poly(1, x) + sin(x) == 1 + sin(x)
assert Poly(x, x) + 1 == Poly(x + 1, x)
assert 1 + Poly(x, x) == Poly(x + 1, x)
def test_Poly_sub():
assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) - Poly(0, x) == Poly(0, x)
assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x)
assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y)
assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y)
assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y)
assert Poly(1, x) - x == Poly(1 - x, x)
assert Poly(1, x) - sin(x) == 1 - sin(x)
assert Poly(x, x) - 1 == Poly(x - 1, x)
assert 1 - Poly(x, x) == Poly(1 - x, x)
def test_Poly_mul():
assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x)
assert Poly(0, x) * Poly(0, x) == Poly(0, x)
assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x)
assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y)
assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y)
assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y)
assert Poly(1, x) * x == Poly(x, x)
assert Poly(1, x) * sin(x) == sin(x)
assert Poly(x, x) * 2 == Poly(2*x, x)
assert 2 * Poly(x, x) == Poly(2*x, x)
def test_issue_13079():
assert Poly(x)*x == Poly(x**2, x, domain='ZZ')
assert x*Poly(x) == Poly(x**2, x, domain='ZZ')
assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ')
assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ')
assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ')
def test_Poly_sqr():
assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y)
def test_Poly_pow():
assert Poly(x, x).pow(10) == Poly(x**10, x)
assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x)
assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y)
assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y)
assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y)
assert Poly(x*y + 1, x, y)**(-1) == (x*y + 1)**(-1)
assert Poly(x*y + 1, x, y)**x == (x*y + 1)**x
def test_Poly_divmod():
f, g = Poly(x**2), Poly(x)
q, r = g, Poly(0, x)
assert divmod(f, g) == (q, r)
assert f // g == q
assert f % g == r
assert divmod(f, x) == (q, r)
assert f // x == q
assert f % x == r
q, r = Poly(0, x), Poly(2, x)
assert divmod(2, g) == (q, r)
assert 2 // g == q
assert 2 % g == r
assert Poly(x)/Poly(x) == 1
assert Poly(x**2)/Poly(x) == x
assert Poly(x)/Poly(x**2) == 1/x
def test_Poly_eq_ne():
assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True
assert (Poly(x + y, x) == Poly(x + y, x, y)) is False
assert (Poly(x + y, x, y) == Poly(x + y, x)) is False
assert (Poly(x + y, x) == Poly(x + y, x)) is True
assert (Poly(x + y, y) == Poly(x + y, y)) is True
assert (Poly(x + y, x, y) == x + y) is True
assert (Poly(x + y, x) == x + y) is True
assert (Poly(x + y, x, y) == x + y) is True
assert (Poly(x + y, x) == x + y) is True
assert (Poly(x + y, y) == x + y) is True
assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False
assert (Poly(x + y, x) != Poly(x + y, x, y)) is True
assert (Poly(x + y, x, y) != Poly(x + y, x)) is True
assert (Poly(x + y, x) != Poly(x + y, x)) is False
assert (Poly(x + y, y) != Poly(x + y, y)) is False
assert (Poly(x + y, x, y) != x + y) is False
assert (Poly(x + y, x) != x + y) is False
assert (Poly(x + y, x, y) != x + y) is False
assert (Poly(x + y, x) != x + y) is False
assert (Poly(x + y, y) != x + y) is False
assert (Poly(x, x) == sin(x)) is False
assert (Poly(x, x) != sin(x)) is True
def test_Poly_nonzero():
assert not bool(Poly(0, x)) is True
assert not bool(Poly(1, x)) is False
def test_Poly_properties():
assert Poly(0, x).is_zero is True
assert Poly(1, x).is_zero is False
assert Poly(1, x).is_one is True
assert Poly(2, x).is_one is False
assert Poly(x - 1, x).is_sqf is True
assert Poly((x - 1)**2, x).is_sqf is False
assert Poly(x - 1, x).is_monic is True
assert Poly(2*x - 1, x).is_monic is False
assert Poly(3*x + 2, x).is_primitive is True
assert Poly(4*x + 2, x).is_primitive is False
assert Poly(1, x).is_ground is True
assert Poly(x, x).is_ground is False
assert Poly(x + y + z + 1).is_linear is True
assert Poly(x*y*z + 1).is_linear is False
assert Poly(x*y + z + 1).is_quadratic is True
assert Poly(x*y*z + 1).is_quadratic is False
assert Poly(x*y).is_monomial is True
assert Poly(x*y + 1).is_monomial is False
assert Poly(x**2 + x*y).is_homogeneous is True
assert Poly(x**3 + x*y).is_homogeneous is False
assert Poly(x).is_univariate is True
assert Poly(x*y).is_univariate is False
assert Poly(x*y).is_multivariate is True
assert Poly(x).is_multivariate is False
assert Poly(
x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False
assert Poly(
x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True
def test_Poly_is_irreducible():
assert Poly(x**2 + x + 1).is_irreducible is True
assert Poly(x**2 + 2*x + 1).is_irreducible is False
assert Poly(7*x + 3, modulus=11).is_irreducible is True
assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False
def test_Poly_subs():
assert Poly(x + 1).subs(x, 0) == 1
assert Poly(x + 1).subs(x, x) == Poly(x + 1)
assert Poly(x + 1).subs(x, y) == Poly(y + 1)
assert Poly(x*y, x).subs(y, x) == x**2
assert Poly(x*y, x).subs(x, y) == y**2
def test_Poly_replace():
assert Poly(x + 1).replace(x) == Poly(x + 1)
assert Poly(x + 1).replace(y) == Poly(y + 1)
raises(PolynomialError, lambda: Poly(x + y).replace(z))
assert Poly(x + 1).replace(x, x) == Poly(x + 1)
assert Poly(x + 1).replace(x, y) == Poly(y + 1)
assert Poly(x + y).replace(x, x) == Poly(x + y)
assert Poly(x + y).replace(x, z) == Poly(z + y, z, y)
assert Poly(x + y).replace(y, y) == Poly(x + y)
assert Poly(x + y).replace(y, z) == Poly(x + z, x, z)
assert Poly(x + y).replace(z, t) == Poly(x + y)
raises(PolynomialError, lambda: Poly(x + y).replace(x, y))
assert Poly(x + y, x).replace(x, z) == Poly(z + y, z)
assert Poly(x + y, y).replace(y, z) == Poly(x + z, z)
raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y))
raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x))
def test_Poly_reorder():
raises(PolynomialError, lambda: Poly(x + y).reorder(x, z))
assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y)
assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x)
assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y)
assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x)
assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y)
assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x)
def test_Poly_ltrim():
f = Poly(y**2 + y*z**2, x, y, z).ltrim(y)
assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z)
assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y)
raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y))
raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1))
def test_Poly_has_only_gens():
assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True
assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False
raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t))
def test_Poly_to_ring():
assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ')
assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ')
raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring())
raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring())
def test_Poly_to_field():
assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ')
assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ')
assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ')
assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3)
assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0)
def test_Poly_to_exact():
assert Poly(2*x).to_exact() == Poly(2*x)
assert Poly(x/2).to_exact() == Poly(x/2)
assert Poly(0.1*x).to_exact() == Poly(x/10)
def test_Poly_retract():
f = Poly(x**2 + 1, x, domain=QQ[y])
assert f.retract() == Poly(x**2 + 1, x, domain='ZZ')
assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ')
assert Poly(0, x, y).retract() == Poly(0, x, y)
def test_Poly_slice():
f = Poly(x**3 + 2*x**2 + 3*x + 4)
assert f.slice(0, 0) == Poly(0, x)
assert f.slice(0, 1) == Poly(4, x)
assert f.slice(0, 2) == Poly(3*x + 4, x)
assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x)
assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)
assert f.slice(x, 0, 0) == Poly(0, x)
assert f.slice(x, 0, 1) == Poly(4, x)
assert f.slice(x, 0, 2) == Poly(3*x + 4, x)
assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x)
assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)
def test_Poly_coeffs():
assert Poly(0, x).coeffs() == [0]
assert Poly(1, x).coeffs() == [1]
assert Poly(2*x + 1, x).coeffs() == [2, 1]
assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1]
assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1]
assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1]
assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2]
def test_Poly_monoms():
assert Poly(0, x).monoms() == [(0,)]
assert Poly(1, x).monoms() == [(0,)]
assert Poly(2*x + 1, x).monoms() == [(1,), (0,)]
assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)]
assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)]
assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)]
assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)]
def test_Poly_terms():
assert Poly(0, x).terms() == [((0,), 0)]
assert Poly(1, x).terms() == [((0,), 1)]
assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)]
assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)]
assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)]
assert Poly(
x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)]
assert Poly(
x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
def test_Poly_all_coeffs():
assert Poly(0, x).all_coeffs() == [0]
assert Poly(1, x).all_coeffs() == [1]
assert Poly(2*x + 1, x).all_coeffs() == [2, 1]
assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1]
assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1]
def test_Poly_all_monoms():
assert Poly(0, x).all_monoms() == [(0,)]
assert Poly(1, x).all_monoms() == [(0,)]
assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)]
assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)]
assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)]
def test_Poly_all_terms():
assert Poly(0, x).all_terms() == [((0,), 0)]
assert Poly(1, x).all_terms() == [((0,), 1)]
assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)]
assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \
[((2,), 7), ((1,), 2), ((0,), 1)]
assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \
[((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)]
def test_Poly_termwise():
f = Poly(x**2 + 20*x + 400)
g = Poly(x**2 + 2*x + 4)
def func(monom, coeff):
(k,) = monom
return coeff//10**(2 - k)
assert f.termwise(func) == g
def func(monom, coeff):
(k,) = monom
return (k,), coeff//10**(2 - k)
assert f.termwise(func) == g
def test_Poly_length():
assert Poly(0, x).length() == 0
assert Poly(1, x).length() == 1
assert Poly(x, x).length() == 1
assert Poly(x + 1, x).length() == 2
assert Poly(x**2 + 1, x).length() == 2
assert Poly(x**2 + x + 1, x).length() == 3
def test_Poly_as_dict():
assert Poly(0, x).as_dict() == {}
assert Poly(0, x, y, z).as_dict() == {}
assert Poly(1, x).as_dict() == {(0,): 1}
assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1}
assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3}
assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3}
assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3,
(1, 1, 0): 4, (1, 0, 1): 5}
def test_Poly_as_expr():
assert Poly(0, x).as_expr() == 0
assert Poly(0, x, y, z).as_expr() == 0
assert Poly(1, x).as_expr() == 1
assert Poly(1, x, y, z).as_expr() == 1
assert Poly(x**2 + 3, x).as_expr() == x**2 + 3
assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3
assert Poly(
3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z
f = Poly(x**2 + 2*x*y**2 - y, x, y)
assert f.as_expr() == -y + x**2 + 2*x*y**2
assert f.as_expr({x: 5}) == 25 - y + 10*y**2
assert f.as_expr({y: 6}) == -6 + 72*x + x**2
assert f.as_expr({x: 5, y: 6}) == 379
assert f.as_expr(5, 6) == 379
raises(GeneratorsError, lambda: f.as_expr({z: 7}))
def test_Poly_lift():
assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \
Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521,
x, domain='QQ')
def test_Poly_deflate():
assert Poly(0, x).deflate() == ((1,), Poly(0, x))
assert Poly(1, x).deflate() == ((1,), Poly(1, x))
assert Poly(x, x).deflate() == ((1,), Poly(x, x))
assert Poly(x**2, x).deflate() == ((2,), Poly(x, x))
assert Poly(x**17, x).deflate() == ((17,), Poly(x, x))
assert Poly(
x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z))
def test_Poly_inject():
f = Poly(x**2*y + x*y**3 + x*y + 1, x)
assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y)
assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x)
def test_Poly_eject():
f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
ex = x + y + z + t + w
g = Poly(ex, x, y, z, t, w)
assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]')
assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]')
assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]')
assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]')
assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[w, t]')
assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[w, t, z]')
raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y))
raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y))
def test_Poly_exclude():
assert Poly(x, x, y).exclude() == Poly(x, x)
assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y)
assert Poly(1, x, y).exclude() == Poly(1, x, y)
def test_Poly__gen_to_level():
assert Poly(1, x, y)._gen_to_level(-2) == 0
assert Poly(1, x, y)._gen_to_level(-1) == 1
assert Poly(1, x, y)._gen_to_level( 0) == 0
assert Poly(1, x, y)._gen_to_level( 1) == 1
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3))
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2))
assert Poly(1, x, y)._gen_to_level(x) == 0
assert Poly(1, x, y)._gen_to_level(y) == 1
assert Poly(1, x, y)._gen_to_level('x') == 0
assert Poly(1, x, y)._gen_to_level('y') == 1
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z))
raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z'))
def test_Poly_degree():
assert Poly(0, x).degree() == -oo
assert Poly(1, x).degree() == 0
assert Poly(x, x).degree() == 1
assert Poly(0, x).degree(gen=0) == -oo
assert Poly(1, x).degree(gen=0) == 0
assert Poly(x, x).degree(gen=0) == 1
assert Poly(0, x).degree(gen=x) == -oo
assert Poly(1, x).degree(gen=x) == 0
assert Poly(x, x).degree(gen=x) == 1
assert Poly(0, x).degree(gen='x') == -oo
assert Poly(1, x).degree(gen='x') == 0
assert Poly(x, x).degree(gen='x') == 1
raises(PolynomialError, lambda: Poly(1, x).degree(gen=1))
raises(PolynomialError, lambda: Poly(1, x).degree(gen=y))
raises(PolynomialError, lambda: Poly(1, x).degree(gen='y'))
assert Poly(1, x, y).degree() == 0
assert Poly(2*y, x, y).degree() == 0
assert Poly(x*y, x, y).degree() == 1
assert Poly(1, x, y).degree(gen=x) == 0
assert Poly(2*y, x, y).degree(gen=x) == 0
assert Poly(x*y, x, y).degree(gen=x) == 1
assert Poly(1, x, y).degree(gen=y) == 0
assert Poly(2*y, x, y).degree(gen=y) == 1
assert Poly(x*y, x, y).degree(gen=y) == 1
assert degree(0, x) == -oo
assert degree(1, x) == 0
assert degree(x, x) == 1
assert degree(x*y**2, x) == 1
assert degree(x*y**2, y) == 2
assert degree(x*y**2, z) == 0
assert degree(pi) == 1
raises(TypeError, lambda: degree(y**2 + x**3))
raises(TypeError, lambda: degree(y**2 + x**3, 1))
raises(PolynomialError, lambda: degree(x, 1.1))
raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x))
assert degree(Poly(0,x),z) == -oo
assert degree(Poly(1,x),z) == 0
assert degree(Poly(x**2+y**3,y)) == 3
assert degree(Poly(y**2 + x**3, y, x), 1) == 3
assert degree(Poly(y**2 + x**3, x), z) == 0
assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4
def test_Poly_degree_list():
assert Poly(0, x).degree_list() == (-oo,)
assert Poly(0, x, y).degree_list() == (-oo, -oo)
assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo)
assert Poly(1, x).degree_list() == (0,)
assert Poly(1, x, y).degree_list() == (0, 0)
assert Poly(1, x, y, z).degree_list() == (0, 0, 0)
assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2)
assert degree_list(1, x) == (0,)
assert degree_list(x, x) == (1,)
assert degree_list(x*y**2) == (1, 2)
raises(ComputationFailed, lambda: degree_list(1))
def test_Poly_total_degree():
assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5
assert Poly(x**2 + z**3).total_degree() == 3
assert Poly(x*y*z + z**4).total_degree() == 4
assert Poly(x**3 + x + 1).total_degree() == 3
assert total_degree(x*y + z**3) == 3
assert total_degree(x*y + z**3, x, y) == 2
assert total_degree(1) == 0
assert total_degree(Poly(y**2 + x**3 + z**4)) == 4
assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3
assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4
assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7
def test_Poly_homogenize():
assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z)
assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z)
assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2)
def test_Poly_homogeneous_order():
assert Poly(0, x, y).homogeneous_order() == -oo
assert Poly(1, x, y).homogeneous_order() == 0
assert Poly(x, x, y).homogeneous_order() == 1
assert Poly(x*y, x, y).homogeneous_order() == 2
assert Poly(x + 1, x, y).homogeneous_order() is None
assert Poly(x*y + x, x, y).homogeneous_order() is None
assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5
assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None
def test_Poly_LC():
assert Poly(0, x).LC() == 0
assert Poly(1, x).LC() == 1
assert Poly(2*x**2 + x, x).LC() == 2
assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2
assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1
assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2
assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1
def test_Poly_TC():
assert Poly(0, x).TC() == 0
assert Poly(1, x).TC() == 1
assert Poly(2*x**2 + x, x).TC() == 0
def test_Poly_EC():
assert Poly(0, x).EC() == 0
assert Poly(1, x).EC() == 1
assert Poly(2*x**2 + x, x).EC() == 1
assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1
assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2
def test_Poly_coeff():
assert Poly(0, x).coeff_monomial(1) == 0
assert Poly(0, x).coeff_monomial(x) == 0
assert Poly(1, x).coeff_monomial(1) == 1
assert Poly(1, x).coeff_monomial(x) == 0
assert Poly(x**8, x).coeff_monomial(1) == 0
assert Poly(x**8, x).coeff_monomial(x**7) == 0
assert Poly(x**8, x).coeff_monomial(x**8) == 1
assert Poly(x**8, x).coeff_monomial(x**9) == 0
assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1
assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3
p = Poly(24*x*y*exp(8) + 23*x, x, y)
assert p.coeff_monomial(x) == 23
assert p.coeff_monomial(y) == 0
assert p.coeff_monomial(x*y) == 24*exp(8)
assert p.as_expr().coeff(x) == 24*y*exp(8) + 23
raises(NotImplementedError, lambda: p.coeff(x))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x))
raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y))
def test_Poly_nth():
assert Poly(0, x).nth(0) == 0
assert Poly(0, x).nth(1) == 0
assert Poly(1, x).nth(0) == 1
assert Poly(1, x).nth(1) == 0
assert Poly(x**8, x).nth(0) == 0
assert Poly(x**8, x).nth(7) == 0
assert Poly(x**8, x).nth(8) == 1
assert Poly(x**8, x).nth(9) == 0
assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1
assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3
raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1))
def test_Poly_LM():
assert Poly(0, x).LM() == (0,)
assert Poly(1, x).LM() == (0,)
assert Poly(2*x**2 + x, x).LM() == (2,)
assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3)
assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7)
assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3
assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7
def test_Poly_LM_custom_order():
f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1)
rev_lex = lambda monom: tuple(reversed(monom))
assert f.LM(order='lex') == (2, 3, 1)
assert f.LM(order=rev_lex) == (2, 1, 3)
def test_Poly_EM():
assert Poly(0, x).EM() == (0,)
assert Poly(1, x).EM() == (0,)
assert Poly(2*x**2 + x, x).EM() == (1,)
assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7)
assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3)
def test_Poly_LT():
assert Poly(0, x).LT() == ((0,), 0)
assert Poly(1, x).LT() == ((0,), 1)
assert Poly(2*x**2 + x, x).LT() == ((2,), 2)
assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2)
assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1)
assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3
assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7
def test_Poly_ET():
assert Poly(0, x).ET() == ((0,), 0)
assert Poly(1, x).ET() == ((0,), 1)
assert Poly(2*x**2 + x, x).ET() == ((1,), 1)
assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1)
assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2)
def test_Poly_max_norm():
assert Poly(-1, x).max_norm() == 1
assert Poly( 0, x).max_norm() == 0
assert Poly( 1, x).max_norm() == 1
def test_Poly_l1_norm():
assert Poly(-1, x).l1_norm() == 1
assert Poly( 0, x).l1_norm() == 0
assert Poly( 1, x).l1_norm() == 1
def test_Poly_clear_denoms():
coeff, poly = Poly(x + 2, x).clear_denoms()
assert coeff == 1 and poly == Poly(
x + 2, x, domain='ZZ') and poly.get_domain() == ZZ
coeff, poly = Poly(x/2 + 1, x).clear_denoms()
assert coeff == 2 and poly == Poly(
x + 2, x, domain='QQ') and poly.get_domain() == QQ
coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True)
assert coeff == 2 and poly == Poly(
x + 2, x, domain='ZZ') and poly.get_domain() == ZZ
coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True)
assert coeff == y and poly == Poly(
x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y]
coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms()
assert coeff == 3 and poly == Poly(
x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX
coeff, poly = Poly(
x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True)
assert coeff == 3 and poly == Poly(
x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX
def test_Poly_rat_clear_denoms():
f = Poly(x**2/y + 1, x)
g = Poly(x**3 + y, x)
assert f.rat_clear_denoms(g) == \
(Poly(x**2 + y, x), Poly(y*x**3 + y**2, x))
f = f.set_domain(EX)
g = g.set_domain(EX)
assert f.rat_clear_denoms(g) == (f, g)
def test_Poly_integrate():
assert Poly(x + 1).integrate() == Poly(x**2/2 + x)
assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x)
assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x)
assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x)
assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y)
assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2)
assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2)
assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2)
assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2)
assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y)
assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y)
def test_Poly_diff():
assert Poly(x**2 + x).diff() == Poly(2*x + 1)
assert Poly(x**2 + x).diff(x) == Poly(2*x + 1)
assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1)
assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y)
assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x)
assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y)
assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y)
assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y)
assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y)
assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1)
assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1)
def test_issue_9585():
assert diff(Poly(x**2 + x)) == Poly(2*x + 1)
assert diff(Poly(x**2 + x), x, evaluate=False) == \
Derivative(Poly(x**2 + x), x)
assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1)
def test_Poly_eval():
assert Poly(0, x).eval(7) == 0
assert Poly(1, x).eval(7) == 1
assert Poly(x, x).eval(7) == 7
assert Poly(0, x).eval(0, 7) == 0
assert Poly(1, x).eval(0, 7) == 1
assert Poly(x, x).eval(0, 7) == 7
assert Poly(0, x).eval(x, 7) == 0
assert Poly(1, x).eval(x, 7) == 1
assert Poly(x, x).eval(x, 7) == 7
assert Poly(0, x).eval('x', 7) == 0
assert Poly(1, x).eval('x', 7) == 1
assert Poly(x, x).eval('x', 7) == 7
raises(PolynomialError, lambda: Poly(1, x).eval(1, 7))
raises(PolynomialError, lambda: Poly(1, x).eval(y, 7))
raises(PolynomialError, lambda: Poly(1, x).eval('y', 7))
assert Poly(123, x, y).eval(7) == Poly(123, y)
assert Poly(2*y, x, y).eval(7) == Poly(2*y, y)
assert Poly(x*y, x, y).eval(7) == Poly(7*y, y)
assert Poly(123, x, y).eval(x, 7) == Poly(123, y)
assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y)
assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y)
assert Poly(123, x, y).eval(y, 7) == Poly(123, x)
assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x)
assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x)
assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y)
assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x)
assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49
assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48
assert Poly(x*y + y, x, y).eval((6, 7)) == 49
assert Poly(x*y + y, x, y).eval([6, 7]) == 49
assert Poly(x + 1, domain='ZZ').eval(S(1)/2) == S(3)/2
assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1
raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8)))
raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S(1)/2, auto=False))
# issue 6344
alpha = Symbol('alpha')
result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1)
f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]')
assert f.eval((z + 1)/(z - 1)) == result
g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]')
assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)')
def test_Poly___call__():
f = Poly(2*x*y + 3*x + y + 2*z)
assert f(2) == Poly(5*y + 2*z + 6)
assert f(2, 5) == Poly(2*z + 31)
assert f(2, 5, 7) == 45
def test_parallel_poly_from_expr():
assert parallel_poly_from_expr(
[x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr([Poly(
x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([Poly(
x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([x - 1, Poly(
x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr([Poly(x - 1, x), Poly(
x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
assert parallel_poly_from_expr(
[x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
assert parallel_poly_from_expr(
[x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr(
[Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \
[Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')]
raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1]))
def test_pdiv():
f, g = x**2 - y**2, x - y
q, r = x + y, 0
F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]
assert F.pdiv(G) == (Q, R)
assert F.prem(G) == R
assert F.pquo(G) == Q
assert F.pexquo(G) == Q
assert pdiv(f, g) == (q, r)
assert prem(f, g) == r
assert pquo(f, g) == q
assert pexquo(f, g) == q
assert pdiv(f, g, x, y) == (q, r)
assert prem(f, g, x, y) == r
assert pquo(f, g, x, y) == q
assert pexquo(f, g, x, y) == q
assert pdiv(f, g, (x, y)) == (q, r)
assert prem(f, g, (x, y)) == r
assert pquo(f, g, (x, y)) == q
assert pexquo(f, g, (x, y)) == q
assert pdiv(F, G) == (Q, R)
assert prem(F, G) == R
assert pquo(F, G) == Q
assert pexquo(F, G) == Q
assert pdiv(f, g, polys=True) == (Q, R)
assert prem(f, g, polys=True) == R
assert pquo(f, g, polys=True) == Q
assert pexquo(f, g, polys=True) == Q
assert pdiv(F, G, polys=False) == (q, r)
assert prem(F, G, polys=False) == r
assert pquo(F, G, polys=False) == q
assert pexquo(F, G, polys=False) == q
raises(ComputationFailed, lambda: pdiv(4, 2))
raises(ComputationFailed, lambda: prem(4, 2))
raises(ComputationFailed, lambda: pquo(4, 2))
raises(ComputationFailed, lambda: pexquo(4, 2))
def test_div():
f, g = x**2 - y**2, x - y
q, r = x + y, 0
F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]
assert F.div(G) == (Q, R)
assert F.rem(G) == R
assert F.quo(G) == Q
assert F.exquo(G) == Q
assert div(f, g) == (q, r)
assert rem(f, g) == r
assert quo(f, g) == q
assert exquo(f, g) == q
assert div(f, g, x, y) == (q, r)
assert rem(f, g, x, y) == r
assert quo(f, g, x, y) == q
assert exquo(f, g, x, y) == q
assert div(f, g, (x, y)) == (q, r)
assert rem(f, g, (x, y)) == r
assert quo(f, g, (x, y)) == q
assert exquo(f, g, (x, y)) == q
assert div(F, G) == (Q, R)
assert rem(F, G) == R
assert quo(F, G) == Q
assert exquo(F, G) == Q
assert div(f, g, polys=True) == (Q, R)
assert rem(f, g, polys=True) == R
assert quo(f, g, polys=True) == Q
assert exquo(f, g, polys=True) == Q
assert div(F, G, polys=False) == (q, r)
assert rem(F, G, polys=False) == r
assert quo(F, G, polys=False) == q
assert exquo(F, G, polys=False) == q
raises(ComputationFailed, lambda: div(4, 2))
raises(ComputationFailed, lambda: rem(4, 2))
raises(ComputationFailed, lambda: quo(4, 2))
raises(ComputationFailed, lambda: exquo(4, 2))
f, g = x**2 + 1, 2*x - 4
qz, rz = 0, x**2 + 1
qq, rq = x/2 + 1, 5
assert div(f, g) == (qq, rq)
assert div(f, g, auto=True) == (qq, rq)
assert div(f, g, auto=False) == (qz, rz)
assert div(f, g, domain=ZZ) == (qz, rz)
assert div(f, g, domain=QQ) == (qq, rq)
assert div(f, g, domain=ZZ, auto=True) == (qq, rq)
assert div(f, g, domain=ZZ, auto=False) == (qz, rz)
assert div(f, g, domain=QQ, auto=True) == (qq, rq)
assert div(f, g, domain=QQ, auto=False) == (qq, rq)
assert rem(f, g) == rq
assert rem(f, g, auto=True) == rq
assert rem(f, g, auto=False) == rz
assert rem(f, g, domain=ZZ) == rz
assert rem(f, g, domain=QQ) == rq
assert rem(f, g, domain=ZZ, auto=True) == rq
assert rem(f, g, domain=ZZ, auto=False) == rz
assert rem(f, g, domain=QQ, auto=True) == rq
assert rem(f, g, domain=QQ, auto=False) == rq
assert quo(f, g) == qq
assert quo(f, g, auto=True) == qq
assert quo(f, g, auto=False) == qz
assert quo(f, g, domain=ZZ) == qz
assert quo(f, g, domain=QQ) == qq
assert quo(f, g, domain=ZZ, auto=True) == qq
assert quo(f, g, domain=ZZ, auto=False) == qz
assert quo(f, g, domain=QQ, auto=True) == qq
assert quo(f, g, domain=QQ, auto=False) == qq
f, g, q = x**2, 2*x, x/2
assert exquo(f, g) == q
assert exquo(f, g, auto=True) == q
raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False))
raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ))
assert exquo(f, g, domain=QQ) == q
assert exquo(f, g, domain=ZZ, auto=True) == q
raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False))
assert exquo(f, g, domain=QQ, auto=True) == q
assert exquo(f, g, domain=QQ, auto=False) == q
f, g = Poly(x**2), Poly(x)
q, r = f.div(g)
assert q.get_domain().is_ZZ and r.get_domain().is_ZZ
r = f.rem(g)
assert r.get_domain().is_ZZ
q = f.quo(g)
assert q.get_domain().is_ZZ
q = f.exquo(g)
assert q.get_domain().is_ZZ
f, g = Poly(x+y, x), Poly(2*x+y, x)
q, r = f.div(g)
assert q.get_domain().is_Frac and r.get_domain().is_Frac
def test_issue_7864():
q, r = div(a, .408248290463863*a)
assert abs(q - 2.44948974278318) < 1e-14
assert r == 0
def test_gcdex():
f, g = 2*x, x**2 - 16
s, t, h = x/32, -Rational(1, 16), 1
F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ]
assert F.half_gcdex(G) == (S, H)
assert F.gcdex(G) == (S, T, H)
assert F.invert(G) == S
assert half_gcdex(f, g) == (s, h)
assert gcdex(f, g) == (s, t, h)
assert invert(f, g) == s
assert half_gcdex(f, g, x) == (s, h)
assert gcdex(f, g, x) == (s, t, h)
assert invert(f, g, x) == s
assert half_gcdex(f, g, (x,)) == (s, h)
assert gcdex(f, g, (x,)) == (s, t, h)
assert invert(f, g, (x,)) == s
assert half_gcdex(F, G) == (S, H)
assert gcdex(F, G) == (S, T, H)
assert invert(F, G) == S
assert half_gcdex(f, g, polys=True) == (S, H)
assert gcdex(f, g, polys=True) == (S, T, H)
assert invert(f, g, polys=True) == S
assert half_gcdex(F, G, polys=False) == (s, h)
assert gcdex(F, G, polys=False) == (s, t, h)
assert invert(F, G, polys=False) == s
assert half_gcdex(100, 2004) == (-20, 4)
assert gcdex(100, 2004) == (-20, 1, 4)
assert invert(3, 7) == 5
raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False))
raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False))
raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False))
def test_revert():
f = Poly(1 - x**2/2 + x**4/24 - x**6/720)
g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1)
assert f.revert(8) == g
def test_subresultants():
f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2
F, G, H = Poly(f), Poly(g), Poly(h)
assert F.subresultants(G) == [F, G, H]
assert subresultants(f, g) == [f, g, h]
assert subresultants(f, g, x) == [f, g, h]
assert subresultants(f, g, (x,)) == [f, g, h]
assert subresultants(F, G) == [F, G, H]
assert subresultants(f, g, polys=True) == [F, G, H]
assert subresultants(F, G, polys=False) == [f, g, h]
raises(ComputationFailed, lambda: subresultants(4, 2))
def test_resultant():
f, g, h = x**2 - 2*x + 1, x**2 - 1, 0
F, G = Poly(f), Poly(g)
assert F.resultant(G) == h
assert resultant(f, g) == h
assert resultant(f, g, x) == h
assert resultant(f, g, (x,)) == h
assert resultant(F, G) == h
assert resultant(f, g, polys=True) == h
assert resultant(F, G, polys=False) == h
assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2])
f, g, h = x - a, x - b, a - b
F, G, H = Poly(f), Poly(g), Poly(h)
assert F.resultant(G) == H
assert resultant(f, g) == h
assert resultant(f, g, x) == h
assert resultant(f, g, (x,)) == h
assert resultant(F, G) == H
assert resultant(f, g, polys=True) == H
assert resultant(F, G, polys=False) == h
raises(ComputationFailed, lambda: resultant(4, 2))
def test_discriminant():
f, g = x**3 + 3*x**2 + 9*x - 13, -11664
F = Poly(f)
assert F.discriminant() == g
assert discriminant(f) == g
assert discriminant(f, x) == g
assert discriminant(f, (x,)) == g
assert discriminant(F) == g
assert discriminant(f, polys=True) == g
assert discriminant(F, polys=False) == g
f, g = a*x**2 + b*x + c, b**2 - 4*a*c
F, G = Poly(f), Poly(g)
assert F.discriminant() == G
assert discriminant(f) == g
assert discriminant(f, x, a, b, c) == g
assert discriminant(f, (x, a, b, c)) == g
assert discriminant(F) == G
assert discriminant(f, polys=True) == G
assert discriminant(F, polys=False) == g
raises(ComputationFailed, lambda: discriminant(4))
def test_dispersion():
# We test only the API here. For more mathematical
# tests see the dedicated test file.
fp = poly((x + 1)*(x + 2), x)
assert sorted(fp.dispersionset()) == [0, 1]
assert fp.dispersion() == 1
fp = poly(x**4 - 3*x**2 + 1, x)
gp = fp.shift(-3)
assert sorted(fp.dispersionset(gp)) == [2, 3, 4]
assert fp.dispersion(gp) == 4
def test_gcd_list():
F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]
assert gcd_list(F) == x - 1
assert gcd_list(F, polys=True) == Poly(x - 1)
assert gcd_list([]) == 0
assert gcd_list([1, 2]) == 1
assert gcd_list([4, 6, 8]) == 2
assert gcd_list([x*(y + 42) - x*y - x*42]) == 0
gcd = gcd_list([], x)
assert gcd.is_Number and gcd is S.Zero
gcd = gcd_list([], x, polys=True)
assert gcd.is_Poly and gcd.is_zero
raises(ComputationFailed, lambda: gcd_list([], polys=True))
def test_lcm_list():
F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]
assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2
assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2)
assert lcm_list([]) == 1
assert lcm_list([1, 2]) == 2
assert lcm_list([4, 6, 8]) == 24
assert lcm_list([x*(y + 42) - x*y - x*42]) == 0
lcm = lcm_list([], x)
assert lcm.is_Number and lcm is S.One
lcm = lcm_list([], x, polys=True)
assert lcm.is_Poly and lcm.is_one
raises(ComputationFailed, lambda: lcm_list([], polys=True))
def test_gcd():
f, g = x**3 - 1, x**2 - 1
s, t = x**2 + x + 1, x + 1
h, r = x - 1, x**4 + x**3 - x - 1
F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ]
assert F.cofactors(G) == (H, S, T)
assert F.gcd(G) == H
assert F.lcm(G) == R
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == r
assert cofactors(f, g, x) == (h, s, t)
assert gcd(f, g, x) == h
assert lcm(f, g, x) == r
assert cofactors(f, g, (x,)) == (h, s, t)
assert gcd(f, g, (x,)) == h
assert lcm(f, g, (x,)) == r
assert cofactors(F, G) == (H, S, T)
assert gcd(F, G) == H
assert lcm(F, G) == R
assert cofactors(f, g, polys=True) == (H, S, T)
assert gcd(f, g, polys=True) == H
assert lcm(f, g, polys=True) == R
assert cofactors(F, G, polys=False) == (h, s, t)
assert gcd(F, G, polys=False) == h
assert lcm(F, G, polys=False) == r
f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
h, s, t = g, 1.0*x + 1.0, 1.0
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == f
f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
h, s, t = g, 1.0*x + 1.0, 1.0
assert cofactors(f, g) == (h, s, t)
assert gcd(f, g) == h
assert lcm(f, g) == f
assert cofactors(8, 6) == (2, 4, 3)
assert gcd(8, 6) == 2
assert lcm(8, 6) == 24
f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4
l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4
h, s, t = x - 4, x + 1, x**2 + 1
assert cofactors(f, g, modulus=11) == (h, s, t)
assert gcd(f, g, modulus=11) == h
assert lcm(f, g, modulus=11) == l
f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7
l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7
h, s, t = x + 7, x + 1, x**2 + 1
assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t)
assert gcd(f, g, modulus=11, symmetric=False) == h
assert lcm(f, g, modulus=11, symmetric=False) == l
raises(TypeError, lambda: gcd(x))
raises(TypeError, lambda: lcm(x))
def test_gcd_numbers_vs_polys():
assert isinstance(gcd(3, 9), Integer)
assert isinstance(gcd(3*x, 9), Integer)
assert gcd(3, 9) == 3
assert gcd(3*x, 9) == 3
assert isinstance(gcd(S(3)/2, S(9)/4), Rational)
assert isinstance(gcd(S(3)/2*x, S(9)/4), Rational)
assert gcd(S(3)/2, S(9)/4) == S(3)/4
assert gcd(S(3)/2*x, S(9)/4) == 1
assert isinstance(gcd(3.0, 9.0), Float)
assert isinstance(gcd(3.0*x, 9.0), Float)
assert gcd(3.0, 9.0) == 1.0
assert gcd(3.0*x, 9.0) == 1.0
def test_terms_gcd():
assert terms_gcd(1) == 1
assert terms_gcd(1, x) == 1
assert terms_gcd(x - 1) == x - 1
assert terms_gcd(-x - 1) == -x - 1
assert terms_gcd(2*x + 3) == 2*x + 3
assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False)
assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2)
assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2)
assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2)
assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2)
assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2)
assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == 2*x*y/15*(5*x**2 + 6*y**2)
assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2)
assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3)
assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \
(3*x + 3)*(x*y + x)
assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \
3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1)
assert terms_gcd(sin(x + x*y), deep=True) == \
sin(x*(y + 1))
eq = Eq(2*x, 2*y + 2*z*y)
assert terms_gcd(eq) == eq
assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1))
def test_trunc():
f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x
F, G = Poly(f), Poly(g)
assert F.trunc(3) == G
assert trunc(f, 3) == g
assert trunc(f, 3, x) == g
assert trunc(f, 3, (x,)) == g
assert trunc(F, 3) == G
assert trunc(f, 3, polys=True) == G
assert trunc(F, 3, polys=False) == g
f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1
F, G = Poly(f), Poly(g)
assert F.trunc(3) == G
assert trunc(f, 3) == g
assert trunc(f, 3, x) == g
assert trunc(f, 3, (x,)) == g
assert trunc(F, 3) == G
assert trunc(f, 3, polys=True) == G
assert trunc(F, 3, polys=False) == g
f = Poly(x**2 + 2*x + 3, modulus=5)
assert f.trunc(2) == Poly(x**2 + 1, modulus=5)
def test_monic():
f, g = 2*x - 1, x - S(1)/2
F, G = Poly(f, domain='QQ'), Poly(g)
assert F.monic() == G
assert monic(f) == g
assert monic(f, x) == g
assert monic(f, (x,)) == g
assert monic(F) == G
assert monic(f, polys=True) == G
assert monic(F, polys=False) == g
raises(ComputationFailed, lambda: monic(4))
assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2
raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False))
assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0
assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2
def test_content():
f, F = 4*x + 2, Poly(4*x + 2)
assert F.content() == 2
assert content(f) == 2
raises(ComputationFailed, lambda: content(4))
f = Poly(2*x, modulus=3)
assert f.content() == 1
def test_primitive():
f, g = 4*x + 2, 2*x + 1
F, G = Poly(f), Poly(g)
assert F.primitive() == (2, G)
assert primitive(f) == (2, g)
assert primitive(f, x) == (2, g)
assert primitive(f, (x,)) == (2, g)
assert primitive(F) == (2, G)
assert primitive(f, polys=True) == (2, G)
assert primitive(F, polys=False) == (2, g)
raises(ComputationFailed, lambda: primitive(4))
f = Poly(2*x, modulus=3)
g = Poly(2.0*x, domain=RR)
assert f.primitive() == (1, f)
assert g.primitive() == (1.0, g)
assert primitive(S('-3*x/4 + y + 11/8')) == \
S('(1/8, -6*x + 8*y + 11)')
def test_compose():
f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9
g = x**4 - 2*x + 9
h = x**3 + 5*x
F, G, H = map(Poly, (f, g, h))
assert G.compose(H) == F
assert compose(g, h) == f
assert compose(g, h, x) == f
assert compose(g, h, (x,)) == f
assert compose(G, H) == F
assert compose(g, h, polys=True) == F
assert compose(G, H, polys=False) == f
assert F.decompose() == [G, H]
assert decompose(f) == [g, h]
assert decompose(f, x) == [g, h]
assert decompose(f, (x,)) == [g, h]
assert decompose(F) == [G, H]
assert decompose(f, polys=True) == [G, H]
assert decompose(F, polys=False) == [g, h]
raises(ComputationFailed, lambda: compose(4, 2))
raises(ComputationFailed, lambda: decompose(4))
assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y
assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y
def test_shift():
assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x)
def test_transform():
# Also test that 3-way unification is done correctly
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
Poly(4, x) == \
cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1)))
assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
Poly(3*x**2/2 + S(5)/2, x) == \
cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1)))
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S(1)/2), Poly(x - 1)) == \
Poly(S(9)/4, x) == \
cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S(1)/2)/(x - 1)))
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S(1)/2)) == \
Poly(S(9)/4, x) == \
cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S(1)/2)))
# Unify ZZ, QQ, and RR
assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S(1)/2)) == \
Poly(S(9)/4, x) == \
cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S(1)/2)))
raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1)))
raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1)))
def test_sturm():
f, F = x, Poly(x, domain='QQ')
g, G = 1, Poly(1, x, domain='QQ')
assert F.sturm() == [F, G]
assert sturm(f) == [f, g]
assert sturm(f, x) == [f, g]
assert sturm(f, (x,)) == [f, g]
assert sturm(F) == [F, G]
assert sturm(f, polys=True) == [F, G]
assert sturm(F, polys=False) == [f, g]
raises(ComputationFailed, lambda: sturm(4))
raises(DomainError, lambda: sturm(f, auto=False))
f = Poly(S(1024)/(15625*pi**8)*x**5
- S(4096)/(625*pi**8)*x**4
+ S(32)/(15625*pi**4)*x**3
- S(128)/(625*pi**4)*x**2
+ S(1)/62500*x
- S(1)/625, x, domain='ZZ(pi)')
assert sturm(f) == \
[Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'),
Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'),
Poly((S(20000)/9 - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'),
Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')]
def test_gff():
f = x**5 + 2*x**4 - x**3 - 2*x**2
assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)]
assert gff_list(f) == [(x, 1), (x + 2, 4)]
raises(NotImplementedError, lambda: gff(f))
f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5)
assert Poly(f).gff_list() == [(
Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)]
assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]
raises(NotImplementedError, lambda: gff(f))
def test_norm():
a, b = sqrt(2), sqrt(3)
f = Poly(a*x + b*y, x, y, extension=(a, b))
assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ')
def test_sqf_norm():
assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \
(1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1)
assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \
(1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1)
assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \
(1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)),
Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))
assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \
(1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)),
Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))
def test_sqf():
f = x**5 - x**3 - x**2 + 1
g = x**3 + 2*x**2 + 2*x + 1
h = x - 1
p = x**4 + x**3 - x - 1
F, G, H, P = map(Poly, (f, g, h, p))
assert F.sqf_part() == P
assert sqf_part(f) == p
assert sqf_part(f, x) == p
assert sqf_part(f, (x,)) == p
assert sqf_part(F) == P
assert sqf_part(f, polys=True) == P
assert sqf_part(F, polys=False) == p
assert F.sqf_list() == (1, [(G, 1), (H, 2)])
assert sqf_list(f) == (1, [(g, 1), (h, 2)])
assert sqf_list(f, x) == (1, [(g, 1), (h, 2)])
assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)])
assert sqf_list(F) == (1, [(G, 1), (H, 2)])
assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)])
assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)])
assert F.sqf_list_include() == [(G, 1), (H, 2)]
raises(ComputationFailed, lambda: sqf_part(4))
assert sqf(1) == 1
assert sqf_list(1) == (1, [])
assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7
assert sqf(f) == g*h**2
assert sqf(f, x) == g*h**2
assert sqf(f, (x,)) == g*h**2
d = x**2 + y**2
assert sqf(f/d) == (g*h**2)/d
assert sqf(f/d, x) == (g*h**2)/d
assert sqf(f/d, (x,)) == (g*h**2)/d
assert sqf(x - 1) == x - 1
assert sqf(-x - 1) == -x - 1
assert sqf(x - 1) == x - 1
assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert sqf((6*x - 10)/(3*x - 6)) == S(2)/3*((3*x - 5)/(x - 2))
assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2
f = 3 + x - x*(1 + x) + x**2
assert sqf(f) == 3
f = (x**2 + 2*x + 1)**20000000000
assert sqf(f) == (x + 1)**40000000000
assert sqf_list(f) == (1, [(x + 1, 40000000000)])
def test_factor():
f = x**5 - x**3 - x**2 + 1
u = x + 1
v = x - 1
w = x**2 + x + 1
F, U, V, W = map(Poly, (f, u, v, w))
assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)])
assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)])
assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)])
assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)]
assert factor_list(1) == (1, [])
assert factor_list(6) == (6, [])
assert factor_list(sqrt(3), x) == (sqrt(3), [])
assert factor_list((-1)**x, x) == (1, [(-1, x)])
assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)])
assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)])
assert factor(6) == 6 and factor(6).is_Integer
assert factor_list(3*x) == (3, [(x, 1)])
assert factor_list(3*x**2) == (3, [(x, 2)])
assert factor(3*x) == 3*x
assert factor(3*x**2) == 3*x**2
assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7
assert factor(f) == u*v**2*w
assert factor(f, x) == u*v**2*w
assert factor(f, (x,)) == u*v**2*w
g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1
assert factor(f/g) == (u*v**2*w)/(p*q)
assert factor(f/g, x) == (u*v**2*w)/(p*q)
assert factor(f/g, (x,)) == (u*v**2*w)/(p*q)
p = Symbol('p', positive=True)
i = Symbol('i', integer=True)
r = Symbol('r', real=True)
assert factor(sqrt(x*y)).is_Pow is True
assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1))
assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1)
assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i
assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i
assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t
assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t
f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3))
g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1)
assert factor(f) == g
assert factor(g) == g
g = (x - 1)**5*(r**2 + 1)
f = sqrt(expand(g))
assert factor(f) == sqrt(g)
f = Poly(sin(1)*x + 1, x, domain=EX)
assert f.factor_list() == (1, [(f, 1)])
f = x**4 + 1
assert factor(f) == f
assert factor(f, extension=I) == (x**2 - I)*(x**2 + I)
assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I)
assert factor(
f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1)
f = x**2 + 2*sqrt(2)*x + 2
assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2
assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6
assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \
(x + sqrt(2)*y)*(x - sqrt(2)*y)
assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \
2*((x + sqrt(2)*y)*(x - sqrt(2)*y))
assert factor(x - 1) == x - 1
assert factor(-x - 1) == -x - 1
assert factor(x - 1) == x - 1
assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \
(x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1)
assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \
(x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 +
x**3 + 65536*x** 2 + 1)
f = x/pi + x*sin(x)/pi
g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1)
assert factor(f) == x*(sin(x) + 1)/pi
assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2
assert factor(Eq(
x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1))
f = (x**2 - 1)/(x**2 + 4*x + 4)
assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2
assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2
f = 3 + x - x*(1 + x) + x**2
assert factor(f) == 3
assert factor(f, x) == 3
assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 +
x**3)/(1 + 2*x**2 + x**3))
assert factor(f, expand=False) == f
raises(PolynomialError, lambda: factor(f, x, expand=False))
raises(FlagError, lambda: factor(x**2 - 1, polys=True))
assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \
[x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))]
assert not isinstance(
Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True
assert isinstance(
PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True
assert factor(sqrt(-x)) == sqrt(-x)
# issue 5917
e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x -
1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) +
x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)))
assert factor(e) == 0
# deep option
assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x
assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x
assert factor(sqrt(x**2)) == sqrt(x**2)
# issue 13149
assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0,
0.5*y + 1.0, evaluate = False)
assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2
eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360
assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12)
# fraction option
f = 5*x + 3*exp(2 - 7*x)
assert factor(f, deep=True) == factor(f, deep=True, fraction=True)
assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x)
def test_factor_large():
f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567
g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + (
x**2 + 2*x + 1)**3000)
assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134
assert factor(g) == (x + 1)**6000*(y + 1)**2
assert factor_list(
f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)])
assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)])
f = (x**2 - y**2)**200000*(x**7 + 1)
g = (x**2 + y**2)**200000*(x**7 + 1)
assert factor(f) == \
(x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 +
x**4 - x**3 + x**2 - x + 1)
assert factor(g, gaussian=True) == \
(x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 +
x**4 - x**3 + x**2 - x + 1)
assert factor_list(f) == \
(1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 -
x**5 + x**4 - x**3 + x**2 - x + 1, 1)])
assert factor_list(g, gaussian=True) == \
(1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), (
x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)])
def test_factor_noeval():
assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
assert factor((6*x - 10)/(3*x - 6)) == Mul(S(2)/3, 3*x - 5, 1/(x - 2))
def test_intervals():
assert intervals(0) == []
assert intervals(1) == []
assert intervals(x, sqf=True) == [(0, 0)]
assert intervals(x) == [((0, 0), 1)]
assert intervals(x**128) == [((0, 0), 128)]
assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})]
f = Poly((2*x/5 - S(17)/3)*(4*x + S(1)/257))
assert f.intervals(sqf=True) == [(-1, 0), (14, 15)]
assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)]
assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)]
assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)]
assert f.intervals(eps=S(1)/10) == f.intervals(eps=0.1) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/100) == f.intervals(eps=0.01) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/1000) == f.intervals(eps=0.001) == \
[((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert f.intervals(eps=S(1)/10000) == f.intervals(eps=0.0001) == \
[((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)]
f = (2*x/5 - S(17)/3)*(4*x + S(1)/257)
assert intervals(f, sqf=True) == [(-1, 0), (14, 15)]
assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)]
assert intervals(f, eps=S(1)/10) == intervals(f, eps=0.1) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/100) == intervals(f, eps=0.01) == \
[((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/1000) == intervals(f, eps=0.001) == \
[((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)]
assert intervals(f, eps=S(1)/10000) == intervals(f, eps=0.0001) == \
[((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)]
f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3)
assert f.intervals() == \
[((-2, -S(3)/2), 7), ((-S(3)/2, -1), 1),
((-1, -1), 1), ((-1, 0), 3),
((1, S(3)/2), 1), ((S(3)/2, 2), 7)]
assert intervals([x**5 - 200, x**5 - 201]) == \
[((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})]
assert intervals([x**5 - 200, x**5 - 201], fast=True) == \
[((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})]
assert intervals([x**2 - 200, x**2 - 201]) == \
[((-S(71)/5, -S(85)/6), {1: 1}), ((-S(85)/6, -14), {0: 1}),
((14, S(85)/6), {0: 1}), ((S(85)/6, S(71)/5), {1: 1})]
assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \
[((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2:
1, 5: 1, 6: 1}), ((2, 2), {7: 2})]
f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1
assert intervals(f, inf=S(7)/4, sqf=True) == []
assert intervals(f, inf=S(7)/5, sqf=True) == [(S(7)/5, S(3)/2)]
assert intervals(f, sup=S(7)/4, sqf=True) == [(-2, -1), (1, S(3)/2)]
assert intervals(f, sup=S(7)/5, sqf=True) == [(-2, -1)]
assert intervals(g, inf=S(7)/4) == []
assert intervals(g, inf=S(7)/5) == [((S(7)/5, S(3)/2), 2)]
assert intervals(g, sup=S(7)/4) == [((-2, -1), 2), ((1, S(3)/2), 2)]
assert intervals(g, sup=S(7)/5) == [((-2, -1), 2)]
assert intervals([g, h], inf=S(7)/4) == []
assert intervals([g, h], inf=S(7)/5) == [((S(7)/5, S(3)/2), {0: 2})]
assert intervals([g, h], sup=S(
7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, S(3)/2), {0: 2})]
assert intervals(
[g, h], sup=S(7)/5) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})]
assert intervals([x + 2, x**2 - 2]) == \
[((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})]
assert intervals([x + 2, x**2 - 2], strict=True) == \
[((-2, -2), {0: 1}), ((-S(3)/2, -1), {1: 1}), ((1, 2), {1: 1})]
f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20
assert intervals(f) == []
real_part, complex_part = intervals(f, all=True, sqf=True)
assert real_part == []
assert all(re(a) < re(r) < re(b) and im(
a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))
assert complex_part == [(-S(40)/7 - 40*I/7, 0), (-S(40)/7, 40*I/7),
(-40*I/7, S(40)/7), (0, S(40)/7 + 40*I/7)]
real_part, complex_part = intervals(f, all=True, sqf=True, eps=S(1)/10)
assert real_part == []
assert all(re(a) < re(r) < re(b) and im(
a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))
raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000))
raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000))
raises(
ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000))
def test_refine_root():
f = Poly(x**2 - 2)
assert f.refine_root(1, 2, steps=0) == (1, 2)
assert f.refine_root(-2, -1, steps=0) == (-2, -1)
assert f.refine_root(1, 2, steps=None) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=None) == (-S(3)/2, -1)
assert f.refine_root(1, 2, steps=1) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=1) == (-S(3)/2, -1)
assert f.refine_root(1, 2, steps=1, fast=True) == (1, S(3)/2)
assert f.refine_root(-2, -1, steps=1, fast=True) == (-S(3)/2, -1)
assert f.refine_root(1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12)
assert f.refine_root(1, 2, eps=1e-2) == (S(24)/17, S(17)/12)
raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True))
raises(RefinementFailed, lambda: (f**2).refine_root(1, 2))
raises(RefinementFailed, lambda: (f**2).refine_root(2, 3))
f = x**2 - 2
assert refine_root(f, 1, 2, steps=1) == (1, S(3)/2)
assert refine_root(f, -2, -1, steps=1) == (-S(3)/2, -1)
assert refine_root(f, 1, 2, steps=1, fast=True) == (1, S(3)/2)
assert refine_root(f, -2, -1, steps=1, fast=True) == (-S(3)/2, -1)
assert refine_root(f, 1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12)
assert refine_root(f, 1, 2, eps=1e-2) == (S(24)/17, S(17)/12)
raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=S(1)/100))
raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000))
raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000))
def test_count_roots():
assert count_roots(x**2 - 2) == 2
assert count_roots(x**2 - 2, inf=-oo) == 2
assert count_roots(x**2 - 2, sup=+oo) == 2
assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2
assert count_roots(x**2 - 2, inf=-2) == 2
assert count_roots(x**2 - 2, inf=-1) == 1
assert count_roots(x**2 - 2, sup=1) == 1
assert count_roots(x**2 - 2, sup=2) == 2
assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
assert count_roots(x**2 - 2, inf=-2, sup=2) == 2
assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
assert count_roots(x**2 - 2, inf=-2, sup=2) == 2
assert count_roots(x**2 + 2) == 0
assert count_roots(x**2 + 2, inf=-2*I) == 2
assert count_roots(x**2 + 2, sup=+2*I) == 2
assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2
assert count_roots(x**2 + 2, inf=0) == 0
assert count_roots(x**2 + 2, sup=0) == 0
assert count_roots(x**2 + 2, inf=-I) == 1
assert count_roots(x**2 + 2, sup=+I) == 1
assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0
assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0
raises(PolynomialError, lambda: count_roots(1))
def test_Poly_root():
f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
assert f.root(0) == -S(1)/2
assert f.root(1) == 2
assert f.root(2) == 2
raises(IndexError, lambda: f.root(3))
assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0)
def test_real_roots():
assert real_roots(x) == [0]
assert real_roots(x, multiple=False) == [(0, 1)]
assert real_roots(x**3) == [0, 0, 0]
assert real_roots(x**3, multiple=False) == [(0, 3)]
assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0]
assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof(
x**3 + x + 3, 0), 1), (0, 1)]
assert real_roots(
x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0]
assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof(
x**3 + x + 3, 0), 1), (0, 3)]
f = 2*x**3 - 7*x**2 + 4*x + 4
g = x**3 + x + 1
assert Poly(f).real_roots() == [-S(1)/2, 2, 2]
assert Poly(g).real_roots() == [rootof(g, 0)]
def test_all_roots():
f = 2*x**3 - 7*x**2 + 4*x + 4
g = x**3 + x + 1
assert Poly(f).all_roots() == [-S(1)/2, 2, 2]
assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)]
def test_nroots():
assert Poly(0, x).nroots() == []
assert Poly(1, x).nroots() == []
assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0]
assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I]
roots = Poly(x**2 - 1, x).nroots()
assert roots == [-1.0, 1.0]
roots = Poly(x**2 + 1, x).nroots()
assert roots == [-1.0*I, 1.0*I]
roots = Poly(x**2/3 - S(1)/3, x).nroots()
assert roots == [-1.0, 1.0]
roots = Poly(x**2/3 + S(1)/3, x).nroots()
assert roots == [-1.0*I, 1.0*I]
assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]
assert Poly(
x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]
assert Poly(0.2*x + 0.1).nroots() == [-0.5]
roots = nroots(x**5 + x + 1, n=5)
eps = Float("1e-5")
assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true
assert im(roots[0]) == 0.0
assert re(roots[1]) == -0.5
assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true
assert re(roots[2]) == -0.5
assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true
assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true
assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true
assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true
assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true
eps = Float("1e-6")
assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false
assert im(roots[0]) == 0.0
assert re(roots[1]) == -0.5
assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false
assert re(roots[2]) == -0.5
assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false
assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false
assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false
assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false
assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false
raises(DomainError, lambda: Poly(x + y, x).nroots())
raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots())
assert nroots(x**2 - 1) == [-1.0, 1.0]
roots = nroots(x**2 - 1)
assert roots == [-1.0, 1.0]
assert nroots(x + I) == [-1.0*I]
assert nroots(x + 2*I) == [-2.0*I]
raises(PolynomialError, lambda: nroots(0))
# issue 8296
f = Poly(x**4 - 1)
assert f.nroots(2) == [w.n(2) for w in f.all_roots()]
assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 +
39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 +
877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 '
'- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, '
'2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, '
'1.7 + 2.5*I]')
def test_ground_roots():
f = x**6 - 4*x**4 + 4*x**3 - x**2
assert Poly(f).ground_roots() == {S(1): 2, S(0): 2}
assert ground_roots(f) == {S(1): 2, S(0): 2}
def test_nth_power_roots_poly():
f = x**4 - x**2 + 1
f_2 = (x**2 - x + 1)**2
f_3 = (x**2 + 1)**2
f_4 = (x**2 + x + 1)**2
f_12 = (x - 1)**4
assert nth_power_roots_poly(f, 1) == f
raises(ValueError, lambda: nth_power_roots_poly(f, 0))
raises(ValueError, lambda: nth_power_roots_poly(f, x))
assert factor(nth_power_roots_poly(f, 2)) == f_2
assert factor(nth_power_roots_poly(f, 3)) == f_3
assert factor(nth_power_roots_poly(f, 4)) == f_4
assert factor(nth_power_roots_poly(f, 12)) == f_12
raises(MultivariatePolynomialError, lambda: nth_power_roots_poly(
x + y, 2, x, y))
def test_torational_factor_list():
p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
assert _torational_factor_list(p, x) == (-2, [
(-x*(1 + sqrt(2))/2 + 1, 1),
(-x*(1 + sqrt(2)) - 1, 1),
(-x*(1 + sqrt(2)) + 1, 1)])
p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))}))
assert _torational_factor_list(p, x) is None
def test_cancel():
assert cancel(0) == 0
assert cancel(7) == 7
assert cancel(x) == x
assert cancel(oo) == oo
assert cancel((2, 3)) == (1, 2, 3)
assert cancel((1, 0), x) == (1, 1, 0)
assert cancel((0, 1), x) == (1, 0, 1)
f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1
F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ]
assert F.cancel(G) == (1, P, Q)
assert cancel((f, g)) == (1, p, q)
assert cancel((f, g), x) == (1, p, q)
assert cancel((f, g), (x,)) == (1, p, q)
assert cancel((F, G)) == (1, P, Q)
assert cancel((f, g), polys=True) == (1, P, Q)
assert cancel((F, G), polys=False) == (1, p, q)
f = (x**2 - 2)/(x + sqrt(2))
assert cancel(f) == f
assert cancel(f, greedy=False) == x - sqrt(2)
f = (x**2 - 2)/(x - sqrt(2))
assert cancel(f) == f
assert cancel(f, greedy=False) == x + sqrt(2)
assert cancel((x**2/4 - 1, x/2 - 1)) == (S(1)/2, x + 2, 1)
assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y)
assert cancel((x**2 - y**2)/(x - y), x) == x + y
assert cancel((x**2 - y**2)/(x - y), y) == x + y
assert cancel((x**2 - y**2)/(x - y)) == x + y
assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1)
assert cancel((x**3/2 - S(1)/2)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2)
assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1
f = Poly(x**2 - a**2, x)
g = Poly(x - a, x)
F = Poly(x + a, x)
G = Poly(1, x)
assert cancel((f, g)) == (1, F, G)
f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2)
g = x**2 - 2
assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2))
f = Poly(-2*x + 3, x)
g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x)
assert cancel((f, g)) == (1, -f, -g)
f = Poly(y, y, domain='ZZ(x)')
g = Poly(1, y, domain='ZZ[x]')
assert f.cancel(
g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))
assert f.cancel(g, include=True) == (
Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))
f = Poly(5*x*y + x, y, domain='ZZ(x)')
g = Poly(2*x**2*y, y, domain='ZZ(x)')
assert f.cancel(g, include=True) == (
Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)'))
f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2))
assert cancel(f).is_Mul == True
P = tanh(x - 3.0)
Q = tanh(x + 3.0)
f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \
+ (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**(S(3)/2))
assert cancel(f).is_Mul == True
# issue 7022
A = Symbol('A', commutative=False)
p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
p2 = Piecewise((A*(x - 1), x > 1), (1/x, True))
assert cancel(p1) == p2
assert cancel(2*p1) == 2*p2
assert cancel(1 + p1) == 1 + p2
assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2
assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2
p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
p4 = Piecewise(((x - 1), x > 1), (1/x, True))
assert cancel(p3) == p4
assert cancel(2*p3) == 2*p4
assert cancel(1 + p3) == 1 + p4
assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4
assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4
# issue 9363
M = MatrixSymbol('M', 5, 5)
assert cancel(M[0,0] + 7) == M[0,0] + 7
expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z
assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z
def test_reduced():
f = 2*x**4 + y**2 - x**2 + y**3
G = [x**3 - x, y**3 - y]
Q = [2*x, 1]
r = x**2 + y**2 + y
assert reduced(f, G) == (Q, r)
assert reduced(f, G, x, y) == (Q, r)
H = groebner(G)
assert H.reduce(f) == (Q, r)
Q = [Poly(2*x, x, y), Poly(1, x, y)]
r = Poly(x**2 + y**2 + y, x, y)
assert _strict_eq(reduced(f, G, polys=True), (Q, r))
assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r))
H = groebner(G, polys=True)
assert _strict_eq(H.reduce(f), (Q, r))
f = 2*x**3 + y**3 + 3*y
G = groebner([x**2 + y**2 - 1, x*y - 2])
Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + 3*y/4]
r = 0
assert reduced(f, G) == (Q, r)
assert G.reduce(f) == (Q, r)
assert reduced(f, G, auto=False)[1] != 0
assert G.reduce(f, auto=False)[1] != 0
assert G.contains(f) is True
assert G.contains(f + 1) is False
assert reduced(1, [1], x) == ([1], 0)
raises(ComputationFailed, lambda: reduced(1, [1]))
def test_groebner():
assert groebner([], x, y, z) == []
assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4]
assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2]
assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \
[Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)]
assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \
[Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)]
assert groebner([x**3 - 1, x**2 - 1]) == [x - 1]
assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1]
F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2]
f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5
G = groebner(F, x, y, z, modulus=7, symmetric=False)
assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5,
1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6,
1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6,
6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7]
Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True)
assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7)
F = [x*y - 2*y, 2*y**2 - x**2]
assert groebner(F, x, y, order='grevlex') == \
[y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
assert groebner(F, y, x, order='grevlex') == \
[x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y]
assert groebner(F, order='grevlex', field=True) == \
[y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
assert groebner([1], x) == [1]
assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y]
raises(ComputationFailed, lambda: groebner([1]))
assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1]
assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1]
raises(ValueError, lambda: groebner([x, y], method='unknown'))
def test_fglm():
F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1]
G = groebner(F, a, b, c, d, order=grlex)
B = [
4*a + 3*d**9 - 4*d**5 - 3*d,
4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d,
d**12 - d**8 - d**4 + 1,
]
assert groebner(F, a, b, c, d, order=lex) == B
assert G.fglm(lex) == B
F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
-72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \
108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96]
G = groebner(F, t, x, order=grlex)
B = [
203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \
10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \
20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194,
9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
]
assert groebner(F, t, x, order=lex) == B
assert G.fglm(lex) == B
F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1]
G = groebner(F, x, y, order=lex)
B = [
x**2 - x - 3*y + 1,
y**2 - 2*x + y - 1,
]
assert groebner(F, x, y, order=grlex) == B
assert G.fglm(grlex) == B
def test_is_zero_dimensional():
assert is_zero_dimensional([x, y], x, y) is True
assert is_zero_dimensional([x**3 + y**2], x, y) is False
assert is_zero_dimensional([x, y, z], x, y, z) is True
assert is_zero_dimensional([x, y, z], x, y, z, t) is False
F = [x*y - z, y*z - x, x*y - y]
assert is_zero_dimensional(F, x, y, z) is True
F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2]
assert is_zero_dimensional(F, x, y, z) is True
def test_GroebnerBasis():
F = [x*y - 2*y, 2*y**2 - x**2]
G = groebner(F, x, y, order='grevlex')
H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
P = [ Poly(h, x, y) for h in H ]
assert groebner(F + [0], x, y, order='grevlex') == G
assert isinstance(G, GroebnerBasis) is True
assert len(G) == 3
assert G[0] == H[0] and not G[0].is_Poly
assert G[1] == H[1] and not G[1].is_Poly
assert G[2] == H[2] and not G[2].is_Poly
assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:])
assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:])
assert G.exprs == H
assert G.polys == P
assert G.gens == (x, y)
assert G.domain == ZZ
assert G.order == grevlex
assert G == H
assert G == tuple(H)
assert G == P
assert G == tuple(P)
assert G != []
G = groebner(F, x, y, order='grevlex', polys=True)
assert G[0] == P[0] and G[0].is_Poly
assert G[1] == P[1] and G[1].is_Poly
assert G[2] == P[2] and G[2].is_Poly
assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:])
assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:])
def test_poly():
assert poly(x) == Poly(x, x)
assert poly(y) == Poly(y, y)
assert poly(x + y) == Poly(x + y, x, y)
assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x))
assert poly(x + y, wrt=y) == Poly(x + y, y, x)
assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x)
assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z)
assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z)
assert poly(
x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z)
assert poly(2*x*(
y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z)
assert poly(2*(
y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z)
assert poly(x*(
y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z)
assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*
x*z**2 - x - 1, x, y, z)
assert poly(x*y + (x + y)**2 + (x + z)**2) == \
Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z)
assert poly(x*y*(x + y)*(x + z)**2) == \
Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2*
y**2 + 2*y*z*x**3 + y*x**4, x, y, z)
assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z)
assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y])
assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x])
assert poly(1, x) == Poly(1, x)
raises(GeneratorsNeeded, lambda: poly(1))
# issue 6184
assert poly(x + y, x, y) == Poly(x + y, x, y)
assert poly(x + y, y, x) == Poly(x + y, y, x)
def test_keep_coeff():
u = Mul(2, x + 1, evaluate=False)
assert _keep_coeff(S(1), x) == x
assert _keep_coeff(S(-1), x) == -x
assert _keep_coeff(S(1.0), x) == 1.0*x
assert _keep_coeff(S(-1.0), x) == -1.0*x
assert _keep_coeff(S(1), 2*x) == 2*x
assert _keep_coeff(S(2), x/2) == x
assert _keep_coeff(S(2), sin(x)) == 2*sin(x)
assert _keep_coeff(S(2), x + 1) == u
assert _keep_coeff(x, 1/x) == 1
assert _keep_coeff(x + 1, S(2)) == u
# @XFAIL
# Seems to pass on Python 3.X, but not on Python 2.7
def test_poly_matching_consistency():
# Test for this issue:
# https://github.com/sympy/sympy/issues/5514
assert I * Poly(x, x) == Poly(I*x, x)
assert Poly(x, x) * I == Poly(I*x, x)
if not PY3:
test_poly_matching_consistency = XFAIL(test_poly_matching_consistency)
@XFAIL
def test_issue_5786():
assert expand(factor(expand(
(x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z
def test_noncommutative():
class foo(Expr):
is_commutative=False
e = x/(x + x*y)
c = 1/( 1 + y)
assert cancel(foo(e)) == foo(c)
assert cancel(e + foo(e)) == c + foo(c)
assert cancel(e*foo(c)) == c*foo(c)
def test_to_rational_coeffs():
assert to_rational_coeffs(
Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None
def test_factor_terms():
# issue 7067
assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)])
assert sqf_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)])
def test_as_list():
# issue 14496
assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2]
assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]]
assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \
[[[1]], [[]], [[1], [1]]]
def test_issue_11198():
assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)])
assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)])
def test_Poly_precision():
# Make sure Poly doesn't lose precision
p = Poly(pi.evalf(100)*x)
assert p.as_expr() == pi.evalf(100)*x
def test_issue_12400():
# Correction of check for negative exponents
assert poly(1/(1+sqrt(2)), x) == \
Poly(1/(1+sqrt(2)), x , domain='EX')
def test_issue_14364():
assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == S(3)/10 * (1 + sqrt(3))
assert gcd(sqrt(5)*S(4)/7, sqrt(5)*S(2)/3) == sqrt(5)*S(2)/21
assert lcm(S(2)/3*sqrt(3), S(5)/6*sqrt(3)) == S(10)*sqrt(3)/3
assert lcm(3*sqrt(3), S(4)/sqrt(3)) == 12*sqrt(3)
assert lcm(S(5)*(1 + 2**(S(1)/3))/6, S(3)*(1 + 2**(S(1)/3))/8) == S(15)/2 * (1 + 2**(S(1)/3))
assert gcd(S(2)/3*sqrt(3), S(5)/6/sqrt(3)) == sqrt(3)/18
assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14
# gcd_list and lcm_list
assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == S(2)*sqrt(47)/35
assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == S(2)/455 * (1 + sqrt(7))
assert lcm((S(7)/sqrt(15)/2, S(5)/sqrt(15)/6, S(5)/sqrt(15)/8)) == S(35)/(2*sqrt(15))
assert lcm([S(5)*(2 + 2**(S(5)/7))/6, S(7)*(2 + 2**(S(5)/7))/2, S(13)*(2 + 2**(S(5)/7))/4]) == S(455)/2 * (2 + 2**(S(5)/7))
def test_issue_15669():
x = Symbol("x", positive=True)
expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 -
2*2**(S(4)/5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**(S(3)/5) + 10*x)
assert factor(expr, deep=True) == x*(x**2 + 2)
|
b15e274775c9237e1d8abc424796c02d622b05ff301b13726693a30ea0c15637 | """Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """
from sympy import S, sqrt, sin, oo, Poly, Float
from sympy.abc import x, y, z
from sympy.polys.domains import ZZ, QQ, RR, CC, FF, GF, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.rings import ring
from sympy.polys.fields import field
from sympy.polys.polyerrors import (
UnificationFailed,
GeneratorsError,
CoercionFailed,
NotInvertible,
DomainError)
from sympy.polys.polyutils import illegal
from sympy.utilities.pytest import raises
ALG = QQ.algebraic_field(sqrt(2), sqrt(3))
def unify(K0, K1):
return K0.unify(K1)
def test_Domain_unify():
F3 = GF(3)
assert unify(F3, F3) == F3
assert unify(F3, ZZ) == ZZ
assert unify(F3, QQ) == QQ
assert unify(F3, ALG) == ALG
assert unify(F3, RR) == RR
assert unify(F3, CC) == CC
assert unify(F3, ZZ[x]) == ZZ[x]
assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(F3, EX) == EX
assert unify(ZZ, F3) == ZZ
assert unify(ZZ, ZZ) == ZZ
assert unify(ZZ, QQ) == QQ
assert unify(ZZ, ALG) == ALG
assert unify(ZZ, RR) == RR
assert unify(ZZ, CC) == CC
assert unify(ZZ, ZZ[x]) == ZZ[x]
assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ, EX) == EX
assert unify(QQ, F3) == QQ
assert unify(QQ, ZZ) == QQ
assert unify(QQ, QQ) == QQ
assert unify(QQ, ALG) == ALG
assert unify(QQ, RR) == RR
assert unify(QQ, CC) == CC
assert unify(QQ, ZZ[x]) == QQ[x]
assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
assert unify(QQ, EX) == EX
assert unify(RR, F3) == RR
assert unify(RR, ZZ) == RR
assert unify(RR, QQ) == RR
assert unify(RR, ALG) == RR
assert unify(RR, RR) == RR
assert unify(RR, CC) == CC
assert unify(RR, ZZ[x]) == RR[x]
assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
assert unify(RR, EX) == EX
assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)
assert unify(CC, F3) == CC
assert unify(CC, ZZ) == CC
assert unify(CC, QQ) == CC
assert unify(CC, ALG) == CC
assert unify(CC, RR) == CC
assert unify(CC, CC) == CC
assert unify(CC, ZZ[x]) == CC[x]
assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
assert unify(CC, EX) == EX
assert unify(ZZ[x], F3) == ZZ[x]
assert unify(ZZ[x], ZZ) == ZZ[x]
assert unify(ZZ[x], QQ) == QQ[x]
assert unify(ZZ[x], ALG) == ALG[x]
assert unify(ZZ[x], RR) == RR[x]
assert unify(ZZ[x], CC) == CC[x]
assert unify(ZZ[x], ZZ[x]) == ZZ[x]
assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ[x], EX) == EX
assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), EX) == EX
assert unify(EX, F3) == EX
assert unify(EX, ZZ) == EX
assert unify(EX, QQ) == EX
assert unify(EX, ALG) == EX
assert unify(EX, RR) == EX
assert unify(EX, CC) == EX
assert unify(EX, ZZ[x]) == EX
assert unify(EX, ZZ.frac_field(x)) == EX
assert unify(EX, EX) == EX
def test_Domain_unify_composite():
assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)
assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)
assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)
assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)
assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)
assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)
assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)
assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
def test_Domain_unify_algebraic():
sqrt5 = QQ.algebraic_field(sqrt(5))
sqrt7 = QQ.algebraic_field(sqrt(7))
sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7))
assert sqrt5.unify(sqrt7) == sqrt57
assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y]
assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y]
assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y)
assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y)
assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y]
assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y]
assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y)
assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y)
def test_Domain_unify_with_symbols():
raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z)))
raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z)))
def test_Domain__contains__():
assert (0 in EX) is True
assert (0 in ZZ) is True
assert (0 in QQ) is True
assert (0 in RR) is True
assert (0 in CC) is True
assert (0 in ALG) is True
assert (0 in ZZ[x, y]) is True
assert (0 in QQ[x, y]) is True
assert (0 in RR[x, y]) is True
assert (-7 in EX) is True
assert (-7 in ZZ) is True
assert (-7 in QQ) is True
assert (-7 in RR) is True
assert (-7 in CC) is True
assert (-7 in ALG) is True
assert (-7 in ZZ[x, y]) is True
assert (-7 in QQ[x, y]) is True
assert (-7 in RR[x, y]) is True
assert (17 in EX) is True
assert (17 in ZZ) is True
assert (17 in QQ) is True
assert (17 in RR) is True
assert (17 in CC) is True
assert (17 in ALG) is True
assert (17 in ZZ[x, y]) is True
assert (17 in QQ[x, y]) is True
assert (17 in RR[x, y]) is True
assert (-S(1)/7 in EX) is True
assert (-S(1)/7 in ZZ) is False
assert (-S(1)/7 in QQ) is True
assert (-S(1)/7 in RR) is True
assert (-S(1)/7 in CC) is True
assert (-S(1)/7 in ALG) is True
assert (-S(1)/7 in ZZ[x, y]) is False
assert (-S(1)/7 in QQ[x, y]) is True
assert (-S(1)/7 in RR[x, y]) is True
assert (S(3)/5 in EX) is True
assert (S(3)/5 in ZZ) is False
assert (S(3)/5 in QQ) is True
assert (S(3)/5 in RR) is True
assert (S(3)/5 in CC) is True
assert (S(3)/5 in ALG) is True
assert (S(3)/5 in ZZ[x, y]) is False
assert (S(3)/5 in QQ[x, y]) is True
assert (S(3)/5 in RR[x, y]) is True
assert (3.0 in EX) is True
assert (3.0 in ZZ) is True
assert (3.0 in QQ) is True
assert (3.0 in RR) is True
assert (3.0 in CC) is True
assert (3.0 in ALG) is True
assert (3.0 in ZZ[x, y]) is True
assert (3.0 in QQ[x, y]) is True
assert (3.0 in RR[x, y]) is True
assert (3.14 in EX) is True
assert (3.14 in ZZ) is False
assert (3.14 in QQ) is True
assert (3.14 in RR) is True
assert (3.14 in CC) is True
assert (3.14 in ALG) is True
assert (3.14 in ZZ[x, y]) is False
assert (3.14 in QQ[x, y]) is True
assert (3.14 in RR[x, y]) is True
assert (oo in ALG) is False
assert (oo in ZZ[x, y]) is False
assert (oo in QQ[x, y]) is False
assert (-oo in ZZ) is False
assert (-oo in QQ) is False
assert (-oo in ALG) is False
assert (-oo in ZZ[x, y]) is False
assert (-oo in QQ[x, y]) is False
assert (sqrt(7) in EX) is True
assert (sqrt(7) in ZZ) is False
assert (sqrt(7) in QQ) is False
assert (sqrt(7) in RR) is True
assert (sqrt(7) in CC) is True
assert (sqrt(7) in ALG) is False
assert (sqrt(7) in ZZ[x, y]) is False
assert (sqrt(7) in QQ[x, y]) is False
assert (sqrt(7) in RR[x, y]) is True
assert (2*sqrt(3) + 1 in EX) is True
assert (2*sqrt(3) + 1 in ZZ) is False
assert (2*sqrt(3) + 1 in QQ) is False
assert (2*sqrt(3) + 1 in RR) is True
assert (2*sqrt(3) + 1 in CC) is True
assert (2*sqrt(3) + 1 in ALG) is True
assert (2*sqrt(3) + 1 in ZZ[x, y]) is False
assert (2*sqrt(3) + 1 in QQ[x, y]) is False
assert (2*sqrt(3) + 1 in RR[x, y]) is True
assert (sin(1) in EX) is True
assert (sin(1) in ZZ) is False
assert (sin(1) in QQ) is False
assert (sin(1) in RR) is True
assert (sin(1) in CC) is True
assert (sin(1) in ALG) is False
assert (sin(1) in ZZ[x, y]) is False
assert (sin(1) in QQ[x, y]) is False
assert (sin(1) in RR[x, y]) is True
assert (x**2 + 1 in EX) is True
assert (x**2 + 1 in ZZ) is False
assert (x**2 + 1 in QQ) is False
assert (x**2 + 1 in RR) is False
assert (x**2 + 1 in CC) is False
assert (x**2 + 1 in ALG) is False
assert (x**2 + 1 in ZZ[x]) is True
assert (x**2 + 1 in QQ[x]) is True
assert (x**2 + 1 in RR[x]) is True
assert (x**2 + 1 in ZZ[x, y]) is True
assert (x**2 + 1 in QQ[x, y]) is True
assert (x**2 + 1 in RR[x, y]) is True
assert (x**2 + y**2 in EX) is True
assert (x**2 + y**2 in ZZ) is False
assert (x**2 + y**2 in QQ) is False
assert (x**2 + y**2 in RR) is False
assert (x**2 + y**2 in CC) is False
assert (x**2 + y**2 in ALG) is False
assert (x**2 + y**2 in ZZ[x]) is False
assert (x**2 + y**2 in QQ[x]) is False
assert (x**2 + y**2 in RR[x]) is False
assert (x**2 + y**2 in ZZ[x, y]) is True
assert (x**2 + y**2 in QQ[x, y]) is True
assert (x**2 + y**2 in RR[x, y]) is True
assert (S(3)/2*x/(y + 1) - z in QQ[x, y, z]) is False
def test_Domain_get_ring():
assert ZZ.has_assoc_Ring is True
assert QQ.has_assoc_Ring is True
assert ZZ[x].has_assoc_Ring is True
assert QQ[x].has_assoc_Ring is True
assert ZZ[x, y].has_assoc_Ring is True
assert QQ[x, y].has_assoc_Ring is True
assert ZZ.frac_field(x).has_assoc_Ring is True
assert QQ.frac_field(x).has_assoc_Ring is True
assert ZZ.frac_field(x, y).has_assoc_Ring is True
assert QQ.frac_field(x, y).has_assoc_Ring is True
assert EX.has_assoc_Ring is False
assert RR.has_assoc_Ring is False
assert ALG.has_assoc_Ring is False
assert ZZ.get_ring() == ZZ
assert QQ.get_ring() == ZZ
assert ZZ[x].get_ring() == ZZ[x]
assert QQ[x].get_ring() == QQ[x]
assert ZZ[x, y].get_ring() == ZZ[x, y]
assert QQ[x, y].get_ring() == QQ[x, y]
assert ZZ.frac_field(x).get_ring() == ZZ[x]
assert QQ.frac_field(x).get_ring() == QQ[x]
assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
assert QQ.frac_field(x, y).get_ring() == QQ[x, y]
assert EX.get_ring() == EX
assert RR.get_ring() == RR
# XXX: This should also be like RR
raises(DomainError, lambda: ALG.get_ring())
def test_Domain_get_field():
assert EX.has_assoc_Field is True
assert ZZ.has_assoc_Field is True
assert QQ.has_assoc_Field is True
assert RR.has_assoc_Field is True
assert ALG.has_assoc_Field is True
assert ZZ[x].has_assoc_Field is True
assert QQ[x].has_assoc_Field is True
assert ZZ[x, y].has_assoc_Field is True
assert QQ[x, y].has_assoc_Field is True
assert EX.get_field() == EX
assert ZZ.get_field() == QQ
assert QQ.get_field() == QQ
assert RR.get_field() == RR
assert ALG.get_field() == ALG
assert ZZ[x].get_field() == ZZ.frac_field(x)
assert QQ[x].get_field() == QQ.frac_field(x)
assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
assert QQ[x, y].get_field() == QQ.frac_field(x, y)
def test_Domain_get_exact():
assert EX.get_exact() == EX
assert ZZ.get_exact() == ZZ
assert QQ.get_exact() == QQ
assert RR.get_exact() == QQ
assert ALG.get_exact() == ALG
assert ZZ[x].get_exact() == ZZ[x]
assert QQ[x].get_exact() == QQ[x]
assert ZZ[x, y].get_exact() == ZZ[x, y]
assert QQ[x, y].get_exact() == QQ[x, y]
assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
def test_Domain_convert():
assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)
R, x = ring("x", ZZ)
assert ZZ.convert(x - x) == 0
assert ZZ.convert(x - x, R.to_domain()) == 0
def test_PolynomialRing__init():
R, = ring("", ZZ)
assert ZZ.poly_ring() == R.to_domain()
def test_FractionField__init():
F, = field("", ZZ)
assert ZZ.frac_field() == F.to_domain()
def test_inject():
assert ZZ.inject(x, y, z) == ZZ[x, y, z]
assert ZZ[x].inject(y, z) == ZZ[x, y, z]
assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z)
raises(GeneratorsError, lambda: ZZ[x].inject(x))
def test_Domain_map():
seq = ZZ.map([1, 2, 3, 4])
assert all(ZZ.of_type(elt) for elt in seq)
seq = ZZ.map([[1, 2, 3, 4]])
assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1
def test_Domain___eq__():
assert (ZZ[x, y] == ZZ[x, y]) is True
assert (QQ[x, y] == QQ[x, y]) is True
assert (ZZ[x, y] == QQ[x, y]) is False
assert (QQ[x, y] == ZZ[x, y]) is False
assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True
assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False
assert RealField()[x] == RR[x]
def test_Domain__algebraic_field():
alg = ZZ.algebraic_field(sqrt(2))
assert alg.ext.minpoly == Poly(x**2 - 2)
assert alg.dom == QQ
alg = QQ.algebraic_field(sqrt(2))
assert alg.ext.minpoly == Poly(x**2 - 2)
assert alg.dom == QQ
alg = alg.algebraic_field(sqrt(3))
assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1)
assert alg.dom == QQ
def test_PolynomialRing_from_FractionField():
F, x,y = field("x,y", ZZ)
R, X,Y = ring("x,y", ZZ)
f = (x**2 + y**2)/(x + 1)
g = (x**2 + y**2)/4
h = x**2 + y**2
assert R.to_domain().from_FractionField(f, F.to_domain()) is None
assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
F, x,y = field("x,y", QQ)
R, X,Y = ring("x,y", QQ)
f = (x**2 + y**2)/(x + 1)
g = (x**2 + y**2)/4
h = x**2 + y**2
assert R.to_domain().from_FractionField(f, F.to_domain()) is None
assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
def test_FractionField_from_PolynomialRing():
R, x,y = ring("x,y", QQ)
F, X,Y = field("x,y", ZZ)
f = 3*x**2 + 5*y**2
g = x**2/3 + y**2/5
assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2
assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15
def test_FF_of_type():
assert FF(3).of_type(FF(3)(1)) is True
assert FF(5).of_type(FF(5)(3)) is True
assert FF(5).of_type(FF(7)(3)) is False
def test___eq__():
assert not QQ[x] == ZZ[x]
assert not QQ.frac_field(x) == ZZ.frac_field(x)
def test_RealField_from_sympy():
assert RR.convert(S(0)) == RR.dtype(0)
assert RR.convert(S(0.0)) == RR.dtype(0.0)
assert RR.convert(S(1)) == RR.dtype(1)
assert RR.convert(S(1.0)) == RR.dtype(1.0)
assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
def test_not_in_any_domain():
check = illegal + [x] + [
float(i) for i in illegal if i != S.ComplexInfinity]
for dom in (ZZ, QQ, RR, CC, EX):
for i in check:
if i == x and dom == EX:
continue
assert i not in dom, (i, dom)
raises(CoercionFailed, lambda: dom.convert(i))
def test_ModularInteger():
F3 = FF(3)
a = F3(0)
assert isinstance(a, F3.dtype) and a == 0
a = F3(1)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)
assert isinstance(a, F3.dtype) and a == 2
a = F3(3)
assert isinstance(a, F3.dtype) and a == 0
a = F3(4)
assert isinstance(a, F3.dtype) and a == 1
a = F3(F3(0))
assert isinstance(a, F3.dtype) and a == 0
a = F3(F3(1))
assert isinstance(a, F3.dtype) and a == 1
a = F3(F3(2))
assert isinstance(a, F3.dtype) and a == 2
a = F3(F3(3))
assert isinstance(a, F3.dtype) and a == 0
a = F3(F3(4))
assert isinstance(a, F3.dtype) and a == 1
a = -F3(1)
assert isinstance(a, F3.dtype) and a == 2
a = -F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = 2 + F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2) + 2
assert isinstance(a, F3.dtype) and a == 1
a = F3(2) + F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2) + F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = 3 - F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(3) - 2
assert isinstance(a, F3.dtype) and a == 1
a = F3(3) - F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(3) - F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = 2*F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)*2
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)*F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)*F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = 2/F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)/2
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)/F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)/F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = 1 % F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(1) % 2
assert isinstance(a, F3.dtype) and a == 1
a = F3(1) % F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(1) % F3(2)
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)**0
assert isinstance(a, F3.dtype) and a == 1
a = F3(2)**1
assert isinstance(a, F3.dtype) and a == 2
a = F3(2)**2
assert isinstance(a, F3.dtype) and a == 1
F7 = FF(7)
a = F7(3)**100000000000
assert isinstance(a, F7.dtype) and a == 4
a = F7(3)**-100000000000
assert isinstance(a, F7.dtype) and a == 2
a = F7(3)**S(2)
assert isinstance(a, F7.dtype) and a == 2
assert bool(F3(3)) is False
assert bool(F3(4)) is True
F5 = FF(5)
a = F5(1)**(-1)
assert isinstance(a, F5.dtype) and a == 1
a = F5(2)**(-1)
assert isinstance(a, F5.dtype) and a == 3
a = F5(3)**(-1)
assert isinstance(a, F5.dtype) and a == 2
a = F5(4)**(-1)
assert isinstance(a, F5.dtype) and a == 4
assert (F5(1) < F5(2)) is True
assert (F5(1) <= F5(2)) is True
assert (F5(1) > F5(2)) is False
assert (F5(1) >= F5(2)) is False
assert (F5(3) < F5(2)) is False
assert (F5(3) <= F5(2)) is False
assert (F5(3) > F5(2)) is True
assert (F5(3) >= F5(2)) is True
assert (F5(1) < F5(7)) is True
assert (F5(1) <= F5(7)) is True
assert (F5(1) > F5(7)) is False
assert (F5(1) >= F5(7)) is False
assert (F5(3) < F5(7)) is False
assert (F5(3) <= F5(7)) is False
assert (F5(3) > F5(7)) is True
assert (F5(3) >= F5(7)) is True
assert (F5(1) < 2) is True
assert (F5(1) <= 2) is True
assert (F5(1) > 2) is False
assert (F5(1) >= 2) is False
assert (F5(3) < 2) is False
assert (F5(3) <= 2) is False
assert (F5(3) > 2) is True
assert (F5(3) >= 2) is True
assert (F5(1) < 7) is True
assert (F5(1) <= 7) is True
assert (F5(1) > 7) is False
assert (F5(1) >= 7) is False
assert (F5(3) < 7) is False
assert (F5(3) <= 7) is False
assert (F5(3) > 7) is True
assert (F5(3) >= 7) is True
raises(NotInvertible, lambda: F5(0)**(-1))
raises(NotInvertible, lambda: F5(5)**(-1))
raises(ValueError, lambda: FF(0))
raises(ValueError, lambda: FF(2.1))
def test_QQ_int():
assert int(QQ(2**2000, 3**1250)) == 455431
assert int(QQ(2**100, 3)) == 422550200076076467165567735125
def test_RR_double():
assert RR(3.14) > 1e-50
assert RR(1e-13) > 1e-50
assert RR(1e-14) > 1e-50
assert RR(1e-15) > 1e-50
assert RR(1e-20) > 1e-50
assert RR(1e-40) > 1e-50
def test_RR_Float():
f1 = Float("1.01")
f2 = Float("1.0000000000000000000001")
assert f1._prec == 53
assert f2._prec == 80
assert RR(f1)-1 > 1e-50
assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's
RR2 = RealField(prec=f2._prec)
assert RR2(f1)-1 > 1e-50
assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's
def test_CC_double():
assert CC(3.14).real > 1e-50
assert CC(1e-13).real > 1e-50
assert CC(1e-14).real > 1e-50
assert CC(1e-15).real > 1e-50
assert CC(1e-20).real > 1e-50
assert CC(1e-40).real > 1e-50
assert CC(3.14j).imag > 1e-50
assert CC(1e-13j).imag > 1e-50
assert CC(1e-14j).imag > 1e-50
assert CC(1e-15j).imag > 1e-50
assert CC(1e-20j).imag > 1e-50
assert CC(1e-40j).imag > 1e-50
|
a1a3411915f00806d61be725b3fdfb28235d61661b351462f32197e649fee5ab | from sympy import Dummy, S, symbols, pi, sqrt, asin, sin, cos
from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane
from sympy.geometry.util import are_coplanar
from sympy.utilities.pytest import raises
def test_plane():
x, y, z, u, v = symbols('x y z u v', real=True)
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(1, 2, 3)
pl3 = Plane(p1, p2, p3)
pl4 = Plane(p1, normal_vector=(1, 1, 1))
pl4b = Plane(p1, p2)
pl5 = Plane(p3, normal_vector=(1, 2, 3))
pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
pl8 = Plane(p1, normal_vector=(0, 0, 1))
pl9 = Plane(p1, normal_vector=(0, 12, 0))
pl10 = Plane(p1, normal_vector=(-2, 0, 0))
pl11 = Plane(p2, normal_vector=(0, 0, 1))
l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
assert pl3 != pl4
assert pl4 == pl4b
assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
assert pl3.equation(x, y, z) == x - 2*y + z
assert pl3.p1 == p1
assert pl4.p1 == p1
assert pl5.p1 == p3
assert pl4.normal_vector == (1, 1, 1)
assert pl5.normal_vector == (1, 2, 3)
assert p1 in pl3
assert p1 in pl4
assert p3 in pl5
assert pl3.projection(Point(0, 0)) == p1
p = pl3.projection(Point3D(1, 1, 0))
assert p == Point3D(S(7)/6, S(2)/3, S(1)/6)
assert p in pl3
l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
assert l == Line3D(Point3D(0, 0, 0), Point3D(S(7)/6, S(2)/3, S(1)/6))
assert l in pl3
# get a segment that does not intersect the plane which is also
# parallel to pl3's normal veector
t = Dummy()
r = pl3.random_point()
a = pl3.perpendicular_line(r).arbitrary_point(t)
s = Segment3D(a.subs(t, 1), a.subs(t, 2))
assert s.p1 not in pl3 and s.p2 not in pl3
assert pl3.projection_line(s).equals(r)
assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
Segment3D(Point3D(S(5)/6, S(1)/3, -S(1)/6), Point3D(S(7)/6, S(2)/3, S(1)/6))
assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
Ray3D(Point3D(S(14)/3, S(11)/3, S(11)/3), Point3D(S(13)/3, S(13)/3, S(10)/3))
assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
assert pl3.is_parallel(pl6) is False
assert pl4.is_parallel(pl6)
assert pl6.is_parallel(l1) is False
assert pl3.is_perpendicular(pl6)
assert pl4.is_perpendicular(pl7)
assert pl6.is_perpendicular(pl7)
assert pl6.is_perpendicular(l1) is False
assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
assert pl6.distance(pl6.arbitrary_point(t)) == 0
assert pl7.distance(pl7.arbitrary_point(t)) == 0
assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
assert pl6.distance(pl6.p1) == 0
assert pl7.distance(pl6) == 0
assert pl7.distance(l1) == 0
assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
assert pl6.angle_between(pl3) == pi/2
assert pl6.angle_between(pl6) == 0
assert pl6.angle_between(pl4) == 0
assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
-asin(sqrt(3)/6)
assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
asin(sqrt(7)/3)
assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
asin(7*sqrt(246)/246)
assert are_coplanar(l1, l2, l3) is False
assert are_coplanar(l1) is False
assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
Point3D(1, 1, 2), Point3D(1, 2, 2))
assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
assert Plane.are_concurrent(pl3, pl4, pl5) is False
assert Plane.are_concurrent(pl6) is False
raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
normal_vector=(1, -2, 1))
# perpendicular_plane
p = Plane((0, 0, 0), (1, 0, 0))
# default
assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
# 1 pt
assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
Plane(Point3D(1, 0, 1), (0, 1, 0))
# pts as tuples
assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
Plane(Point3D(1, 0, 1), (0, 0, -1))
a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
Z = (0, 0, 1)
p = Plane(a, normal_vector=Z)
# case 4
assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
n = Point3D(*Z)
# case 1
assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
# case 2
assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
Plane(Point3D(0, 0, 0), (1, 0, 0))
# case 1&3
assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
Plane(Point3D(0, 1, 0), (-1, 0, 0))
# case 2&3
assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
Plane(Point3D(0, 0, 1), (1, 0, 0))
assert pl6.intersection(pl6) == [pl6]
assert pl4.intersection(pl4.p1) == [pl4.p1]
assert pl3.intersection(pl6) == [
Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
Point3D(2, S(8)/3, S(10)/3)]
assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
Point3D(-1, 3, 10)]
assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
Point3D(S(13)/2, S(3)/4, 0)]
r = Ray(Point(2, 3), Point(4, 2))
assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
Ray3D(Point(2, 3), Point(4, 2))]
assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
assert pl11.intersection(pl8) == []
assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
assert pl3.random_point() in pl3
# test geometrical entity using equals
assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
Line3D(p1, direction_ratio=(0, -11, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
Line3D(p1, direction_ratio=(0, 11, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
Line3D(p1, direction_ratio=(1, -1, 0)))
assert pl3.random_point() in pl3
assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) is 0
# check if two plane are equals
assert pl6.intersection(pl6)[0].equals(pl6)
assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
assert pl8.equals(pl8)
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
# issue 8570
l2 = Line3D(Point3D(S(50000004459633)/5000000000000,
-S(891926590718643)/1000000000000000,
S(231800966893633)/100000000000000),
Point3D(S(50000004459633)/50000000000000,
-S(222981647679771)/250000000000000,
S(231800966893633)/100000000000000))
p2 = Plane(Point3D(S(402775636372767)/100000000000000,
-S(97224357654973)/100000000000000,
S(216793600814789)/100000000000000),
(-S('9.00000087501922'), -S('4.81170658872543e-13'),
S('0.0')))
assert str([i.n(2) for i in p2.intersection(l2)]) == \
'[Point3D(4.0, -0.89, 2.3)]'
def test_dimension_normalization():
A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
b = Point(1, 1)
assert A.projection(b) == Point(S(5)/3, S(5)/3, S(2)/3)
a, b = Point(0, 0), Point3D(0, 1)
Z = (0, 0, 1)
p = Plane(a, normal_vector=Z)
assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
).intersection((2, 1)) == [Point(2, 1, 0)]
def test_parameter_value():
t, u, v = symbols("t, u v")
p = Plane((0, 0, 0), (0, 0, 1), (0, 1, 0))
assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
|
1710e267e96e060f54658fd0d9af3a46c306122ca8a98c54535bc1e40752227d | from sympy import (Rational, Float, S, Symbol, cos, oo, pi, simplify,
sin, sqrt, symbols, acos)
from sympy.core.compatibility import range
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
Point2D, Line2D)
from sympy.geometry.line import Undecidable
from sympy.geometry.polygon import _asa as asa
from sympy.utilities.iterables import cartes
from sympy.utilities.pytest import raises, slow, warns
import traceback
import sys
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
k = Symbol('k', real=True)
x1 = Symbol('x1', real=True)
y1 = Symbol('y1', real=True)
t = Symbol('t', real=True)
a, b = symbols('a,b', real=True)
m = symbols('m', real=True)
def test_object_from_equation():
from sympy.abc import x, y, a, b
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, -S(1)/5), Point2D(1, -S(4)/5))
assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21))
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
raises(ValueError, lambda: Line(x))
raises(ValueError, lambda: Line(y))
raises(ValueError, lambda: Line(x/y))
raises(ValueError, lambda: Line(a/b, x='a', y='b'))
raises(ValueError, lambda: Line(y/x))
raises(ValueError, lambda: Line(b/a, x='a', y='b'))
raises(ValueError, lambda: Line((x + 1)**2 + y))
def feq(a, b):
"""Test if two floating point values are 'equal'."""
t_float = Float("1.0E-10")
return -t_float < a - b < t_float
def test_angle_between():
a = Point(1, 2, 3, 4)
b = a.orthogonal_direction
o = a.origin
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
def test_closing_angle():
a = Ray((0, 0), angle=0)
b = Ray((1, 2), angle=pi/2)
assert a.closing_angle(b) == -pi/2
assert b.closing_angle(a) == pi/2
assert a.closing_angle(a) == 0
def test_arbitrary_point():
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
l2 = Line(Point(x1, x1), Point(y1, y1))
assert l2.arbitrary_point() in l2
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
Point(t + 1, t + 1)
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
def test_are_concurrent_2d():
l1 = Line(Point(0, 0), Point(1, 1))
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.are_concurrent(l1) is False
assert Line.are_concurrent(l1, l2)
assert Line.are_concurrent(l1, l1, l1, l2)
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(-Rational(3, 5), x1)))
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
def test_are_concurrent_3d():
p1 = Point3D(0, 0, 0)
l1 = Line(p1, Point3D(1, 1, 1))
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
assert Line3D.are_concurrent(l1) is False
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
def test_arguments():
"""Functions accepting `Point` objects in `geometry`
should also accept tuples, lists, and generators and
automatically convert them to points."""
from sympy import subsets
singles2d = ((1, 2), [1, 3], Point(1, 5))
doubles2d = subsets(singles2d, 2)
l2d = Line(Point2D(1, 2), Point2D(2, 3))
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
doubles3d = subsets(singles3d, 2)
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
doubles4d = subsets(singles4d, 2)
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
# test 2D
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
'projection', 'intersection']
for p in doubles2d:
Line2D(*p)
for func in test_single:
for p in singles2d:
getattr(l2d, func)(p)
# test 3D
for p in doubles3d:
Line3D(*p)
for func in test_single:
for p in singles3d:
getattr(l3d, func)(p)
# test 4D
for p in doubles4d:
Line(*p)
for func in test_single:
for p in singles4d:
getattr(l4d, func)(p)
def test_basic_properties_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p10 = Point(2000, 2000)
p_r3 = Ray(p1, p2).random_point()
p_r4 = Ray(p2, p1).random_point()
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
l4 = Line(p1, Point(1, 0))
r1 = Ray(p1, Point(0, 1))
r2 = Ray(Point(0, 1), p1)
s1 = Segment(p1, p10)
p_s1 = s1.random_point()
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
assert Line(p1, p2) == Line(p1, p2)
assert Line(p1, p2) != Line(p2, p1)
assert l1 != Line(Point(x1, x1), Point(y1, y1))
assert l1 != l3
assert Line(p1, p10) != Line(p10, p1)
assert Line(p1, p10) != p1
assert p1 in l1 # is p1 on the line l1?
assert p1 not in l3
assert s1 in Line(p1, p10)
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
assert (r1 in s1) is False
assert Segment(p1, p2) in s1
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2))
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
assert l1.slope == 1
assert l3.slope == oo
assert l4.slope == 0
assert Line(p1, Point(0, 1)).slope == oo
assert Line(r1.source, r1.random_point()).slope == r1.slope
assert Line(r2.source, r2.random_point()).slope == r2.slope
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
assert l4.coefficients == (0, 1, 0)
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
# issue 7963
r = Ray((0, 0), angle=x)
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
for ind in range(0, 5):
assert l3.random_point() in l3
assert p_r3.x >= p1.x and p_r3.y >= p1.y
assert p_r4.x <= p2.x and p_r4.y <= p2.y
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
assert hash(s1) != hash(Segment(p10, p1))
assert s1.plot_interval() == [t, 0, 1]
assert Line(p1, p10).plot_interval() == [t, -5, 5]
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_basic_properties_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
p5 = Point3D(x1, 1 + x1, 1)
l1 = Line3D(p1, p2)
l3 = Line3D(p3, p5)
r1 = Ray3D(p1, Point3D(-1, 5, 0))
r3 = Ray3D(p1, p2)
s1 = Segment3D(p1, p2)
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
assert Line3D(p1, p2) != Line3D(p2, p1)
assert l1 != l3
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
assert r3 != r1
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
assert p1 in l1
assert p1 not in l3
assert l1.direction_ratio == [1, 1, 1]
assert s1.midpoint == Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
# Test zdirection
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection == S.NegativeInfinity
def test_contains():
p1 = Point(0, 0)
r = Ray(p1, Point(4, 4))
r1 = Ray3D(p1, Point3D(0, 0, -1))
r2 = Ray3D(p1, Point3D(0, 1, 0))
r3 = Ray3D(p1, Point3D(0, 0, 1))
l = Line(Point(0, 1), Point(3, 4))
# Segment contains
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
# Line contains
assert l.contains(Point(0, 1)) is True
assert l.contains((0, 1)) is True
assert l.contains((0, 0)) is False
# Ray contains
assert r.contains(p1) is True
assert r.contains((1, 1)) is True
assert r.contains((1, 3)) is False
assert r.contains(Segment((1, 1), (2, 2))) is True
assert r.contains(Segment((1, 2), (2, 5))) is False
assert r.contains(Ray((2, 2), (3, 3))) is True
assert r.contains(Ray((2, 2), (3, 5))) is False
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
assert r2.contains(Point3D(0, 0, 0)) is True
assert r3.contains(Point3D(0, 0, 0)) is True
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
with warns(UserWarning):
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
with warns(UserWarning):
assert r3.contains(Point(1.0, 1.0)) is False
def test_contains_nonreal_symbols():
u, v, w, z = symbols('u, v, w, z')
l = Segment(Point(u, w), Point(v, z))
p = Point(2*u/3 + v/3, 2*w/3 + z/3)
assert l.contains(p)
def test_distance_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
half = Rational(1, 2)
s1 = Segment(Point(0, 0), Point(1, 1))
s2 = Segment(Point(half, half), Point(1, 0))
r = Ray(p1, p2)
assert s1.distance(Point(0, 0)) == 0
assert s1.distance((0, 0)) == 0
assert s2.distance(Point(0, 0)) == 2 ** half / 2
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
assert Line(p1, p2).distance(Point(2, 2)) == 0
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
assert Line((0, 0), (0, 1)).distance(p1) == 0
assert Line((0, 0), (0, 1)).distance(p2) == 1
assert Line((0, 0), (1, 0)).distance(p1) == 0
assert Line((0, 0), (1, 0)).distance(p2) == 1
assert r.distance(Point(-1, -1)) == sqrt(2)
assert r.distance(Point(1, 1)) == 0
assert r.distance(Point(-1, 1)) == sqrt(2)
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
assert r.distance((1, 1)) == 0
def test_dimension_normalization():
with warns(UserWarning):
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
def test_distance_3d():
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
s2 = Segment3D(Point3D(S(1) / 2, S(1) / 2, S(1) / 2), Point3D(1, 0, 1))
r = Ray3D(p1, p2)
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
assert s1.distance(p1) == 0
assert s2.distance(p1) == sqrt(3) / 2
assert s2.distance(p3) == 2 * sqrt(6) / 3
assert s1.distance((0, 0, 0)) == 0
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
# Line to point
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
# Ray to point
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
assert r.distance(Point3D(1, 1, 1)) == 0
assert r.distance((-1, -1, -1)) == sqrt(3)
assert r.distance((1, 1, 1)) == 0
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
def test_equals():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line((0, 5), slope=m)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
Line3D(Point3D(0, 1, 0), Point3D(S(1) / 2, S(1) / 2, 0)))
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S(1) / 2, S(1) / 2)))
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_equation():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert simplify(l1.equation()) in (x - y, y - x)
assert simplify(l3.equation()) in (x - x1, x1 - x)
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
assert Line(p1, Point(0, 1)).equation() == x
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
assert Line(p2, Point(2, 1)).equation() == y - 1
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
).equation() == (-x + y, -x + z)
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
).equation() == (-x + y - 1, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
).equation() == (x - 1, -y + z - 1)
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
).equation() == (y - 2, -x + z - 2)
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
).equation() == (-x + y - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
).equation() == (x - 1, y - 2)
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
).equation() == (x - 1, z - 3)
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
).equation() == (y - 2, z - 3)
def test_intersection_2d():
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(x1, x1)
p4 = Point(y1, y1)
l1 = Line(p1, p2)
l3 = Line(Point(0, 0), Point(3, 4))
r1 = Ray(Point(1, 1), Point(2, 2))
r2 = Ray(Point(0, 0), Point(3, 4))
r4 = Ray(p1, p2)
r6 = Ray(Point(0, 1), Point(1, 2))
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
s1 = Segment(p1, p2)
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
s3 = Segment(Point(0, 0), Point(3, 4))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point(x1, 1 + x1)) == []
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
assert intersection(l3, l3) == [l3]
assert intersection(l3, r2) == [r2]
assert intersection(l3, s3) == [s3]
assert intersection(s3, l3) == [s3]
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
assert intersection(r2, l3) == [r2]
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
assert r4.intersection(s2) == [s2]
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert r4.intersection(Ray(p2, p1)) == [s1]
assert Ray(p2, p1).intersection(r6) == []
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
[Segment(Point(0, 0), Point(0, 1))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((1, 0), (2, 0)).intersection(
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
assert Segment3D((0, 0), (3, 0)).intersection(
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
assert s1.intersection(s2) == [s2]
assert s2.intersection(s1) == [s2]
assert asa(120, 8, 52) == \
Triangle(
Point(0, 0),
Point(8, 0),
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
# 16628 - this should be fast
p0 = Point2D(S(249)/5, S(497999)/10000)
p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
/(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
+ 1991998000*sqrt(630547164901) + 1622561172902000),
(-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
90004251917891999 +
496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
+ 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
8112805864510000))
p2 = Point2D(S(497)/10, -S(497)/10)
p3 = Point2D(-S(497)/10, -S(497)/10)
l = Line(p0, p1)
s = Segment(p2, p3)
n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
9803028531*sqrt(630547164901) +
33200*sqrt(255775022850776494562626))
d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
630547164901) + sqrt(255775022850776494562626)
assert intersection(l, s) == [
Point2D(n/d*S(3)/2000, -S(497)/10)]
@slow
def test_line_intersection():
x0 = tan(13*pi/45)
x1 = sqrt(3)
x2 = x0**2
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
def test_intersection_3d():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
l1 = Line3D(p1, p2)
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
assert intersection(l1, p1) == [p1]
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
assert intersection(l2, r2) == [r2]
assert intersection(l2, s1) == [s1]
assert intersection(r2, l2) == [r2]
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
== [Point3D(0, 0, 0)]
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
assert intersection(s1, r2) == [s1]
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
[Point3D(2, 2, 1)]
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
[Point3D(t, t)]
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
def test_is_parallel():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(x1, x1, x1)
l2 = Line(Point(x1, x1), Point(y1, y1))
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(p1, p2).parallel_line(p3.args) == \
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_is_perpendicular():
p1 = Point(0, 0)
p2 = Point(1, 1)
l1 = Line(p1, p2)
l2 = Line(Point(x1, x1), Point(y1, y1))
l1_1 = Line(p1, Point(-x1, x1))
# 2D
assert Line.is_perpendicular(l1, l1_1)
assert Line.is_perpendicular(l1, l2) is False
p = l1.random_point()
assert l1.perpendicular_segment(p) == p
# 3D
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_is_similar():
p1 = Point(2000, 2000)
p2 = p1.scale(2, 2)
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
r2 = Ray(Point(0, 0), Point(0, 1))
s1 = Segment(Point(0, 0), p1)
assert s1.is_similar(Segment(p1, p2))
assert s1.is_similar(r2) is False
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
def test_length():
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
assert Line(Point(0, 0), Point(1, 1)).length == oo
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo
def test_projection():
p1 = Point(0, 0)
p2 = Point3D(0, 0, 0)
p3 = Point(-x1, x1)
l1 = Line(p1, Point(1, 1))
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
l3 = Line3D(p2, Point3D(1, 1, 1))
r1 = Ray(Point(1, 1), Point(2, 2))
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
assert l1.projection(p3) == p1
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(S(4)/3, S(4)/3, S(4)/3))
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(S(1)/3, S(1)/3, S(1)/3))
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_perpendicular_bisector():
s1 = Segment(Point(0, 0), Point(1, 1))
aline = Line(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2))
on_line = Segment(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2)).midpoint
assert s1.perpendicular_bisector().equals(aline)
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
def test_raises():
d, e = symbols('a,b', real=True)
s = Segment((d, 0), (e, 0))
raises(TypeError, lambda: Line((1, 1), 1))
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
raises(Undecidable, lambda: Point(2 * d, 0) in s)
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
raises(TypeError, lambda: Line3D((1, 1), 1))
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
raises(TypeError, lambda: Ray((1, 1), 1))
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
.projection(Circle(Point(0, 0), 1)))
def test_ray_generation():
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
Point(2, 1 + tan(4.02 * pi)))
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
def test_symbolic_intersect():
# Issue 7814.
circle = Circle(Point(x, 0), y)
line = Line(Point(k, z), slope=0)
assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
def test_issue_2941():
def _check():
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
l1 = f(a, b)
l2 = g(c, d)
assert l1.intersection(l2) == l2.intersection(l1)
# intersect at end point
c, d = (-2, -2), (-2, 0)
a, b = (0, 0), (1, 1)
_check()
# midline intersection
c, d = (-2, -3), (-2, 0)
_check()
def test_parameter_value():
t = Symbol('t')
p1, p2 = Point(0, 1), Point(5, 6)
l = Line(p1, p2)
assert l.parameter_value((5, 6), t) == {t: 1}
raises(ValueError, lambda: l.parameter_value((0, 0), t))
|
ff5b10cb12265483d42c74ad767a1ec30e7cd8efc8205374ca2011490816dce3 | from sympy import Rational, S, Symbol, symbols, pi, sqrt, oo, Point2D, Segment2D, I
from sympy.core.compatibility import range
from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point, Polygon, Ray, RegularPolygon, Segment,
Triangle, intersection)
from sympy.utilities.pytest import raises, slow
from sympy import integrate
from sympy.functions.special.elliptic_integrals import elliptic_e
from sympy.functions.elementary.miscellaneous import Max
def test_ellipse_equation_using_slope():
from sympy.abc import x, y
e1 = Ellipse(Point(1, 0), 3, 2)
assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
e2 = Ellipse(Point(0, 0), 4, 1)
assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
e3 = Ellipse(Point(1, 5), 6, 2)
assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
def test_object_from_equation():
from sympy.abc import x, y, a, b
assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2),
sqrt(57) / 2)
assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(-S(1)/2, -S(2)/3), 5*sqrt(37)/6)
raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
@slow
def test_ellipse_geom():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
t = Symbol('t', real=True)
y1 = Symbol('y1', real=True)
half = Rational(1, 2)
p1 = Point(0, 0)
p2 = Point(1, 1)
p4 = Point(0, 1)
e1 = Ellipse(p1, 1, 1)
e2 = Ellipse(p2, half, 1)
e3 = Ellipse(p1, y1, y1)
c1 = Circle(p1, 1)
c2 = Circle(p2, 1)
c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
l1 = Line(p1, p2)
# Test creation with three points
cen, rad = Point(3*half, 2), 5*half
assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
raises(ValueError, lambda: Ellipse(None, None, None, 1))
raises(GeometryError, lambda: Circle(Point(0, 0)))
# Basic Stuff
assert Ellipse(None, 1, 1).center == Point(0, 0)
assert e1 == c1
assert e1 != e2
assert e1 != l1
assert p4 in e1
assert p2 not in e2
assert e1.area == pi
assert e2.area == pi/2
assert e3.area == pi*y1*abs(y1)
assert c1.area == e1.area
assert c1.circumference == e1.circumference
assert e3.circumference == 2*pi*y1
assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
assert c1.minor == 1
assert c1.major == 1
assert c1.hradius == 1
assert c1.vradius == 1
assert Ellipse((1, 1), 0, 0) == Point(1, 1)
assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
# Private Functions
assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
assert c1 in e1
assert (Line(p1, p2) in e1) is False
assert e1.__cmp__(e1) == 0
assert e1.__cmp__(Point(0, 0)) > 0
# Encloses
assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
assert e1.encloses(Line(p1, p2)) is False
assert e1.encloses(Ray(p1, p2)) is False
assert e1.encloses(e1) is False
assert e1.encloses(
Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
assert e2.arbitrary_point() in e2
# Foci
f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
ef = Ellipse(Point(0, 0), 4, 2)
assert ef.foci in [(f1, f2), (f2, f1)]
# Tangents
v = sqrt(2) / 2
p1_1 = Point(v, v)
p1_2 = p2 + Point(half, 0)
p1_3 = p2 + Point(0, 1)
assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))]
assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))]
assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
assert c1.tangent_lines(p1) == []
assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
assert c1.is_tangent(e1) is True
assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
assert c1.is_tangent(
Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
assert c1.is_tangent(
Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
[Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
[Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
[Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
[Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
# for numerical calculations, we shouldn't demand exact equality,
# so only test up to the desired precision
def lines_close(l1, l2, prec):
""" tests whether l1 and 12 are within 10**(-prec)
of each other """
return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
def line_list_close(ll1, ll2, prec):
return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
e = Ellipse(Point(0, 0), 2, 1)
assert e.normal_lines(Point(0, 0)) == \
[Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
assert e.normal_lines(Point(1, 0)) == \
[Line(Point(0, 0), Point(1, 0))]
assert e.normal_lines((0, 1)) == \
[Line(Point(0, 0), Point(0, 1))]
assert line_list_close(e.normal_lines(Point(1, 1), 2), [
Line(Point(-S(51)/26, -S(1)/5), Point(-S(25)/26, S(17)/83)),
Line(Point(S(28)/29, -S(7)/8), Point(S(57)/29, -S(9)/2))], 2)
# test the failure of Poly.intervals and checks a point on the boundary
p = Point(sqrt(3), S.Half)
assert p in e
assert line_list_close(e.normal_lines(p, 2), [
Line(Point(-S(341)/171, -S(1)/13), Point(-S(170)/171, S(5)/64)),
Line(Point(S(26)/15, -S(1)/2), Point(S(41)/15, -S(43)/26))], 2)
# be sure to use the slope that isn't undefined on boundary
e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
assert line_list_close(e.normal_lines((1, 1), 2), [
Line(Point(-S(64)/33, -S(20)/71), Point(-S(31)/33, S(2)/13)),
Line(Point(1, -1), Point(2, -4))], 2)
# general ellipse fails except under certain conditions
e = Ellipse((0, 0), x, 1)
assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
# Properties
major = 3
minor = 1
e4 = Ellipse(p2, minor, major)
assert e4.focus_distance == sqrt(major**2 - minor**2)
ecc = e4.focus_distance / major
assert e4.eccentricity == ecc
assert e4.periapsis == major*(1 - ecc)
assert e4.apoapsis == major*(1 + ecc)
assert e4.semilatus_rectum == major*(1 - ecc ** 2)
# independent of orientation
e4 = Ellipse(p2, major, minor)
assert e4.focus_distance == sqrt(major**2 - minor**2)
ecc = e4.focus_distance / major
assert e4.eccentricity == ecc
assert e4.periapsis == major*(1 - ecc)
assert e4.apoapsis == major*(1 + ecc)
# Intersection
l1 = Line(Point(1, -5), Point(1, 5))
l2 = Line(Point(-5, -1), Point(5, -1))
l3 = Line(Point(-1, -1), Point(1, 1))
l4 = Line(Point(-10, 0), Point(0, 10))
pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
assert intersection(e2, l4) == []
assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
assert intersection(c1, l1) == [Point(1, 0)]
assert intersection(c1, l2) == [Point(0, -1)]
assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
assert e1.intersection(l1) == [Point(1, 0)]
assert e2.intersection(l4) == []
assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
assert e1.intersection(Circle(Point(5, 0), 1)) == []
assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
assert e1.intersection(Point(2, 0)) == []
assert e1.intersection(e1) == e1
assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
assert Circle((0, 0), S(1)/2).intersection(
Triangle((-1, 0), (1, 0), (0, 1))) == [
Point(-S(1)/2, 0), Point(S(1)/2, 0)]
raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
raises(TypeError, lambda: intersection(e2, Rational(12)))
# some special case intersections
csmall = Circle(p1, 3)
cbig = Circle(p1, 5)
cout = Circle(Point(5, 5), 1)
# one circle inside of another
assert csmall.intersection(cbig) == []
# separate circles
assert csmall.intersection(cout) == []
# coincident circles
assert csmall.intersection(csmall) == csmall
v = sqrt(2)
t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
points = intersection(t1, c1)
assert len(points) == 4
assert Point(0, 1) in points
assert Point(0, -1) in points
assert Point(v/2, v/2) in points
assert Point(v/2, -v/2) in points
circ = Circle(Point(0, 0), 5)
elip = Ellipse(Point(0, 0), 5, 20)
assert intersection(circ, elip) in \
[[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
assert elip.tangent_lines(Point(0, 0)) == []
elip = Ellipse(Point(0, 0), 3, 2)
assert elip.tangent_lines(Point(3, 0)) == \
[Line(Point(3, 0), Point(3, -12))]
e1 = Ellipse(Point(0, 0), 5, 10)
e2 = Ellipse(Point(2, 1), 4, 8)
a = S(53)/17
c = 2*sqrt(3991)/17
ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
assert e1.intersection(e2) == ans
e2 = Ellipse(Point(x, y), 4, 8)
c = sqrt(3991)
ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)]
assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
# Combinations of above
assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
e = Ellipse((1, 2), 3, 2)
assert e.tangent_lines(Point(10, 0)) == \
[Line(Point(10, 0), Point(1, 0)),
Line(Point(10, 0), Point(S(14)/5, S(18)/5))]
# encloses_point
e = Ellipse((0, 0), 1, 2)
assert e.encloses_point(e.center)
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
assert e.encloses_point(
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
e = Ellipse((0, 0), 2, 1)
assert e.encloses_point(e.center)
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
assert e.encloses_point(
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
assert c1.encloses_point(Point(1, 0)) is False
assert c1.encloses_point(Point(0.3, 0.4)) is True
assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
assert e.rotate(pi) == e
assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
raises(NotImplementedError, lambda: e.rotate(pi/3))
# Circle rotation tests (Issue #11743)
# Link - https://github.com/sympy/sympy/issues/11743
cir = Circle(Point(1, 0), 1)
assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
assert cir.rotate(pi/3) == Circle(Point(S(1)/2, sqrt(3)/2), 1)
assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S(1)/2 + sqrt(3)/2, S(1)/2 + sqrt(3)/2), 1)
def test_construction():
e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
assert e1.eccentricity == sqrt(3)/2
e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
assert e2.vradius == 1
e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
assert e3.hradius == 2
# filter(None, iterator) filters out anything falsey, including 0
# eccentricity would be filtered out in this case and the constructor would throw an error
e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
assert e4.vradius == 1
def test_ellipse_random_point():
y1 = Symbol('y1', real=True)
e3 = Ellipse(Point(0, 0), y1, y1)
rx, ry = Symbol('rx'), Symbol('ry')
for ind in range(0, 5):
r = e3.random_point()
# substitution should give zero*y1**2
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
def test_repr():
assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
def test_transform():
c = Circle((1, 1), 2)
assert c.scale(-1) == Circle((-1, 1), 2)
assert c.scale(y=-1) == Circle((1, -1), 2)
assert c.scale(2) == Ellipse((2, 1), 4, 2)
assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
Ellipse(Point(-4, -10), 4, 9)
assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
Ellipse(Point(-4, -10), 4, 6)
assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
Ellipse(Point(-8, -10), 6, 9)
assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
Circle(Point(-8, -10), 6)
assert Circle(Point(-8, -10), 6).scale(S(1)/3, S(1)/3, (4, 5)) == \
Circle((0, 0), 2)
assert Circle((0, 0), 2).translate(4, 5) == \
Circle((4, 5), 2)
assert Circle((0, 0), 2).scale(3, 3) == \
Circle((0, 0), 6)
def test_bounds():
e1 = Ellipse(Point(0, 0), 3, 5)
e2 = Ellipse(Point(2, -2), 7, 7)
c1 = Circle(Point(2, -2), 7)
c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
assert e1.bounds == (-3, -5, 3, 5)
assert e2.bounds == (-5, -9, 9, 5)
assert c1.bounds == (-5, -9, 9, 5)
assert c2.bounds == (-2, -2, 2, 2)
def test_reflect():
b = Symbol('b')
m = Symbol('m')
l = Line((0, b), slope=m)
t1 = Triangle((0, 0), (1, 0), (2, 3))
assert t1.area == -t1.reflect(l).area
e = Ellipse((1, 0), 1, 2)
assert e.area == -e.reflect(Line((1, 0), slope=0)).area
assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
def test_is_tangent():
e1 = Ellipse(Point(0, 0), 3, 5)
c1 = Circle(Point(2, -2), 7)
assert e1.is_tangent(Point(0, 0)) is False
assert e1.is_tangent(Point(3, 0)) is False
assert e1.is_tangent(e1) is True
assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
assert c1.is_tangent(Circle((11, -2), 2)) is True
assert c1.is_tangent(Circle((7, -2), 2)) is True
assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
assert e1.is_tangent(Line((0, 0), (1, 1))) is False
assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
raises(TypeError, lambda: e1.is_tangent(Rational(5)))
def test_parameter_value():
t = Symbol('t')
e = Ellipse(Point(0, 0), 3, 5)
assert e.parameter_value((3, 0), t) == {t: 0}
raises(ValueError, lambda: e.parameter_value((4, 0), t))
@slow
def test_second_moment_of_area():
x, y = symbols('x, y')
e = Ellipse(Point(0, 0), 5, 4)
I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
Y = 3*sqrt(1 - x**2/5**2)
I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
assert I_yy == e.second_moment_of_area()[1]
assert I_xx == e.second_moment_of_area()[0]
assert I_xy == e.second_moment_of_area()[2]
def test_circumference():
M = Symbol('M')
m = Symbol('m')
assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
# degenerate ellipse
assert Ellipse(None, 1, None, 1).length == 2
# circle
assert Ellipse(None, 1, None, 0).circumference == 2*pi
# test numerically
assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
def test_issue_15259():
assert Circle((1, 2), 0) == Point(1, 2)
def test_issue_15797():
Ri = 0.024127189424130748
Ci = (0.0864931002830291, 0.0819863295239654)
A = Point(0, 0.0578591400998346)
c = Circle(Ci, Ri) # evaluated
assert c.is_tangent(c.tangent_lines(A)[0]) == True
assert c.center.x.is_Rational
assert c.center.y.is_Rational
assert c.radius.is_Rational
u = Circle(Ci, Ri, evaluate=False) # unevaluated
assert u.center.x.is_Float
assert u.center.y.is_Float
assert u.radius.is_Float
def test_auxiliary_circle():
x, y, a, b = symbols('x y a b')
e = Ellipse((x, y), a, b)
# the general result
assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
# a special case where Ellipse is a Circle
assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
def test_director_circle():
x, y, a, b = symbols('x y a b')
e = Ellipse((x, y), a, b)
# the general result
assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
# a special case where Ellipse is a Circle
assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
|
fbe694467361cd7af2e8069c82839c422f79debf72c6765440ea101b923534e8 | # -*- coding: utf-8 -*-
import sys
from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq
from sympy.core.compatibility import PY3
from sympy.functions import exp, factorial, factorial2, sin
from sympy.logic import And
from sympy.series import Limit
from sympy.utilities.pytest import raises, skip
from sympy.parsing.sympy_parser import (
parse_expr, standard_transformations, rationalize, TokenError,
split_symbols, implicit_multiplication, convert_equals_signs,
convert_xor, function_exponentiation,
implicit_multiplication_application,
)
def test_sympy_parser():
x = Symbol('x')
inputs = {
'2*x': 2 * x,
'3.00': Float(3),
'22/7': Rational(22, 7),
'2+3j': 2 + 3*I,
'exp(x)': exp(x),
'x!': factorial(x),
'x!!': factorial2(x),
'(x + 1)! - 1': factorial(x + 1) - 1,
'3.[3]': Rational(10, 3),
'.0[3]': Rational(1, 30),
'3.2[3]': Rational(97, 30),
'1.3[12]': Rational(433, 330),
'1 + 3.[3]': Rational(13, 3),
'1 + .0[3]': Rational(31, 30),
'1 + 3.2[3]': Rational(127, 30),
'.[0011]': Rational(1, 909),
'0.1[00102] + 1': Rational(366697, 333330),
'1.[0191]': Rational(10190, 9999),
'10!': 3628800,
'-(2)': -Integer(2),
'[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)],
'Symbol("x").free_symbols': x.free_symbols,
"S('S(3).n(n=3)')": 3.00,
'factorint(12, visual=True)': Mul(
Pow(2, 2, evaluate=False),
Pow(3, 1, evaluate=False),
evaluate=False),
'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'),
}
for text, result in inputs.items():
assert parse_expr(text) == result
raises(TypeError, lambda:
parse_expr('x', standard_transformations))
raises(TypeError, lambda:
parse_expr('x', transformations=lambda x,y: 1))
raises(TypeError, lambda:
parse_expr('x', transformations=(lambda x,y: 1,)))
raises(TypeError, lambda: parse_expr('x', transformations=((),)))
raises(TypeError, lambda: parse_expr('x', {}, [], []))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
def test_rationalize():
inputs = {
'0.123': Rational(123, 1000)
}
transformations = standard_transformations + (rationalize,)
for text, result in inputs.items():
assert parse_expr(text, transformations=transformations) == result
def test_factorial_fail():
inputs = ['x!!!', 'x!!!!', '(!)']
for text in inputs:
try:
parse_expr(text)
assert False
except TokenError:
assert True
def test_repeated_fail():
inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]',
'0.1[[1]]', '0x1.1[1]']
# All are valid Python, so only raise TypeError for invalid indexing
for text in inputs:
raises(TypeError, lambda: parse_expr(text))
inputs = ['0.1[', '0.1[1', '0.1[]']
for text in inputs:
raises((TokenError, SyntaxError), lambda: parse_expr(text))
def test_repeated_dot_only():
assert parse_expr('.[1]') == Rational(1, 9)
assert parse_expr('1 + .[1]') == Rational(10, 9)
def test_local_dict():
local_dict = {
'my_function': lambda x: x + 2
}
inputs = {
'my_function(2)': Integer(4)
}
for text, result in inputs.items():
assert parse_expr(text, local_dict=local_dict) == result
def test_local_dict_split_implmult():
t = standard_transformations + (split_symbols, implicit_multiplication,)
w = Symbol('w', real=True)
y = Symbol('y')
assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w
def test_local_dict_symbol_to_fcn():
x = Symbol('x')
d = {'foo': Function('bar')}
assert parse_expr('foo(x)', local_dict=d) == d['foo'](x)
# XXX: bit odd, but would be error if parser left the Symbol
d = {'foo': Symbol('baz')}
assert parse_expr('foo(x)', local_dict=d) == Function('baz')(x)
def test_global_dict():
global_dict = {
'Symbol': Symbol
}
inputs = {
'Q & S': And(Symbol('Q'), Symbol('S'))
}
for text, result in inputs.items():
assert parse_expr(text, global_dict=global_dict) == result
def test_issue_2515():
raises(TokenError, lambda: parse_expr('(()'))
raises(TokenError, lambda: parse_expr('"""'))
def test_issue_7663():
x = Symbol('x')
e = '2*(x+1)'
assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False)
def test_issue_10560():
inputs = {
'4*-3' : '(-3)*4',
'-4*3' : '(-4)*3',
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_issue_10773():
inputs = {
'-10/5': '(-10)/5',
'-10/-5' : '(-10)/(-5)',
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_split_symbols():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
xy = Symbol('xy')
assert parse_expr("xy") == xy
assert parse_expr("xy", transformations=transformations) == x*y
def test_split_symbols_function():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
f = Function('f')
assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1)
assert parse_expr("af(x+1)", transformations=transformations,
local_dict={'f':f}) == a*f(x+1)
def test_functional_exponent():
t = standard_transformations + (convert_xor, function_exponentiation)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
yfcn = Function('y')
assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2
assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y
assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y
assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x))
assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x))
def test_match_parentheses_implicit_multiplication():
transformations = standard_transformations + \
(implicit_multiplication,)
raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations))
def test_convert_equals_signs():
transformations = standard_transformations + \
(convert_equals_signs, )
x = Symbol('x')
y = Symbol('y')
assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x)
assert parse_expr("y = x", transformations=transformations) == Eq(y, x)
assert parse_expr("(2*y = x) = False",
transformations=transformations) == Eq(Eq(2*y, x), False)
def test_parse_function_issue_3539():
x = Symbol('x')
f = Function('f')
assert parse_expr('f(x)') == f(x)
def test_split_symbols_numeric():
transformations = (
standard_transformations +
(implicit_multiplication_application,))
n = Symbol('n')
expr1 = parse_expr('2**n * 3**n')
expr2 = parse_expr('2**n3**n', transformations=transformations)
assert expr1 == expr2 == 2**n*3**n
expr1 = parse_expr('n12n34', transformations=transformations)
assert expr1 == n*12*n*34
def test_unicode_names():
if not PY3:
skip("test_unicode_names can only pass in Python 3")
assert parse_expr(u'α') == Symbol(u'α')
def test_python3_features():
# Make sure the tokenizer can handle Python 3-only features
if sys.version_info < (3, 6):
skip("test_python3_features requires Python 3.6 or newer")
assert parse_expr("123_456") == 123456
assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495)
assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333)
assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99)
assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990)
assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000)
|
70d2c3412ac1ed730a8ee2649b7930dc58cad94b294ca333811c161614dcf4f6 | from sympy import Rational, pi, sqrt, S
from sympy.physics.units.quantities import Quantity
from sympy.physics.units.dimensions import (dimsys_default, Dimension,
acceleration, action, amount_of_substance, capacitance, charge,
conductance, current, energy, force, frequency, information, impedance,
inductance, length, luminous_intensity, magnetic_density, magnetic_flux,
mass, power, pressure, temperature, time, velocity, voltage)
from sympy.physics.units.prefixes import (
centi, deci, kilo, micro, milli, nano, pico,
kibi, mebi, gibi, tebi, pebi, exbi)
One = S.One
#### UNITS ####
# Dimensionless:
percent = percents = Quantity("percent", latex_repr=r"\%")
percent.set_dimension(One)
percent.set_scale_factor(Rational(1, 100))
permille = Quantity("permille")
permille.set_dimension(One)
permille.set_scale_factor(Rational(1, 1000))
# Angular units (dimensionless)
rad = radian = radians = Quantity("radian", abbrev="rad")
radian.set_dimension(One)
radian.set_scale_factor(One)
deg = degree = degrees = Quantity("degree", abbrev="deg", latex_repr=r"^\circ")
degree.set_dimension(One)
degree.set_scale_factor(pi/180)
sr = steradian = steradians = Quantity("steradian", abbrev="sr")
steradian.set_dimension(One)
steradian.set_scale_factor(One)
mil = angular_mil = angular_mils = Quantity("angular_mil", abbrev="mil")
angular_mil.set_dimension(One)
angular_mil.set_scale_factor(2*pi/6400)
# Base units:
m = meter = meters = Quantity("meter", abbrev="m")
meter.set_dimension(length)
meter.set_scale_factor(One)
# gram; used to define its prefixed units
g = gram = grams = Quantity("gram", abbrev="g")
gram.set_dimension(mass)
gram.set_scale_factor(One)
# NOTE: the `kilogram` has scale factor 1000. In SI, kg is a base unit, but
# nonetheless we are trying to be compatible with the `kilo` prefix. In a
# similar manner, people using CGS or gaussian units could argue that the
# `centimeter` rather than `meter` is the fundamental unit for length, but the
# scale factor of `centimeter` will be kept as 1/100 to be compatible with the
# `centi` prefix. The current state of the code assumes SI unit dimensions, in
# the future this module will be modified in order to be unit system-neutral
# (that is, support all kinds of unit systems).
kg = kilogram = kilograms = Quantity("kilogram", abbrev="kg")
kilogram.set_dimension(mass)
kilogram.set_scale_factor(kilo*gram)
s = second = seconds = Quantity("second", abbrev="s")
second.set_dimension(time)
second.set_scale_factor(One)
A = ampere = amperes = Quantity("ampere", abbrev='A')
ampere.set_dimension(current)
ampere.set_scale_factor(One)
K = kelvin = kelvins = Quantity("kelvin", abbrev='K')
kelvin.set_dimension(temperature)
kelvin.set_scale_factor(One)
mol = mole = moles = Quantity("mole", abbrev="mol")
mole.set_dimension(amount_of_substance)
mole.set_scale_factor(One)
cd = candela = candelas = Quantity("candela", abbrev="cd")
candela.set_dimension(luminous_intensity)
candela.set_scale_factor(One)
mg = milligram = milligrams = Quantity("milligram", abbrev="mg")
milligram.set_dimension(mass)
milligram.set_scale_factor(milli*gram)
ug = microgram = micrograms = Quantity("microgram", abbrev="ug", latex_repr=r"\mu\text{g}")
microgram.set_dimension(mass)
microgram.set_scale_factor(micro*gram)
# derived units
newton = newtons = N = Quantity("newton", abbrev="N")
newton.set_dimension(force)
newton.set_scale_factor(kilogram*meter/second**2)
joule = joules = J = Quantity("joule", abbrev="J")
joule.set_dimension(energy)
joule.set_scale_factor(newton*meter)
watt = watts = W = Quantity("watt", abbrev="W")
watt.set_dimension(power)
watt.set_scale_factor(joule/second)
pascal = pascals = Pa = pa = Quantity("pascal", abbrev="Pa")
pascal.set_dimension(pressure)
pascal.set_scale_factor(newton/meter**2)
hertz = hz = Hz = Quantity("hertz", abbrev="Hz")
hertz.set_dimension(frequency)
hertz.set_scale_factor(One)
# MKSA extension to MKS: derived units
coulomb = coulombs = C = Quantity("coulomb", abbrev='C')
coulomb.set_dimension(charge)
coulomb.set_scale_factor(One)
volt = volts = v = V = Quantity("volt", abbrev='V')
volt.set_dimension(voltage)
volt.set_scale_factor(joule/coulomb)
ohm = ohms = Quantity("ohm", abbrev='ohm', latex_repr=r"\Omega")
ohm.set_dimension(impedance)
ohm.set_scale_factor(volt/ampere)
siemens = S = mho = mhos = Quantity("siemens", abbrev='S')
siemens.set_dimension(conductance)
siemens.set_scale_factor(ampere/volt)
farad = farads = F = Quantity("farad", abbrev='F')
farad.set_dimension(capacitance)
farad.set_scale_factor(coulomb/volt)
henry = henrys = H = Quantity("henry", abbrev='H')
henry.set_dimension(inductance)
henry.set_scale_factor(volt*second/ampere)
tesla = teslas = T = Quantity("tesla", abbrev='T')
tesla.set_dimension(magnetic_density)
tesla.set_scale_factor(volt*second/meter**2)
weber = webers = Wb = wb = Quantity("weber", abbrev='Wb')
weber.set_dimension(magnetic_flux)
weber.set_scale_factor(joule/ampere)
# Other derived units:
optical_power = dioptre = diopter = D = Quantity("dioptre")
dioptre.set_dimension(1/length)
dioptre.set_scale_factor(1/meter)
lux = lx = Quantity("lux", abbrev="lx")
lux.set_dimension(luminous_intensity/length**2)
lux.set_scale_factor(steradian*candela/meter**2)
# katal is the SI unit of catalytic activity
katal = kat = Quantity("katal", abbrev="kat")
katal.set_dimension(amount_of_substance/time)
katal.set_scale_factor(mol/second)
# gray is the SI unit of absorbed dose
gray = Gy = Quantity("gray")
gray.set_dimension(energy/mass)
gray.set_scale_factor(meter**2/second**2)
# becquerel is the SI unit of radioactivity
becquerel = Bq = Quantity("becquerel", abbrev="Bq")
becquerel.set_dimension(1/time)
becquerel.set_scale_factor(1/second)
# Common length units
km = kilometer = kilometers = Quantity("kilometer", abbrev="km")
kilometer.set_dimension(length)
kilometer.set_scale_factor(kilo*meter)
dm = decimeter = decimeters = Quantity("decimeter", abbrev="dm")
decimeter.set_dimension(length)
decimeter.set_scale_factor(deci*meter)
cm = centimeter = centimeters = Quantity("centimeter", abbrev="cm")
centimeter.set_dimension(length)
centimeter.set_scale_factor(centi*meter)
mm = millimeter = millimeters = Quantity("millimeter", abbrev="mm")
millimeter.set_dimension(length)
millimeter.set_scale_factor(milli*meter)
um = micrometer = micrometers = micron = microns = \
Quantity("micrometer", abbrev="um", latex_repr=r'\mu\text{m}')
micrometer.set_dimension(length)
micrometer.set_scale_factor(micro*meter)
nm = nanometer = nanometers = Quantity("nanometer", abbrev="nm")
nanometer.set_dimension(length)
nanometer.set_scale_factor(nano*meter)
pm = picometer = picometers = Quantity("picometer", abbrev="pm")
picometer.set_dimension(length)
picometer.set_scale_factor(pico*meter)
ft = foot = feet = Quantity("foot", abbrev="ft")
foot.set_dimension(length)
foot.set_scale_factor(Rational(3048, 10000)*meter)
inch = inches = Quantity("inch")
inch.set_dimension(length)
inch.set_scale_factor(foot/12)
yd = yard = yards = Quantity("yard", abbrev="yd")
yard.set_dimension(length)
yard.set_scale_factor(3*feet)
mi = mile = miles = Quantity("mile")
mile.set_dimension(length)
mile.set_scale_factor(5280*feet)
nmi = nautical_mile = nautical_miles = Quantity("nautical_mile")
nautical_mile.set_dimension(length)
nautical_mile.set_scale_factor(6076*feet)
# Common volume and area units
l = liter = liters = Quantity("liter")
liter.set_dimension(length**3)
liter.set_scale_factor(meter**3 / 1000)
dl = deciliter = deciliters = Quantity("deciliter")
deciliter.set_dimension(length**3)
deciliter.set_scale_factor(liter / 10)
cl = centiliter = centiliters = Quantity("centiliter")
centiliter.set_dimension(length**3)
centiliter.set_scale_factor(liter / 100)
ml = milliliter = milliliters = Quantity("milliliter")
milliliter.set_dimension(length**3)
milliliter.set_scale_factor(liter / 1000)
# Common time units
ms = millisecond = milliseconds = Quantity("millisecond", abbrev="ms")
millisecond.set_dimension(time)
millisecond.set_scale_factor(milli*second)
us = microsecond = microseconds = Quantity("microsecond", abbrev="us", latex_repr=r'\mu\text{s}')
microsecond.set_dimension(time)
microsecond.set_scale_factor(micro*second)
ns = nanosecond = nanoseconds = Quantity("nanosecond", abbrev="ns")
nanosecond.set_dimension(time)
nanosecond.set_scale_factor(nano*second)
ps = picosecond = picoseconds = Quantity("picosecond", abbrev="ps")
picosecond.set_dimension(time)
picosecond.set_scale_factor(pico*second)
minute = minutes = Quantity("minute")
minute.set_dimension(time)
minute.set_scale_factor(60*second)
h = hour = hours = Quantity("hour")
hour.set_dimension(time)
hour.set_scale_factor(60*minute)
day = days = Quantity("day")
day.set_dimension(time)
day.set_scale_factor(24*hour)
anomalistic_year = anomalistic_years = Quantity("anomalistic_year")
anomalistic_year.set_dimension(time)
anomalistic_year.set_scale_factor(365.259636*day)
sidereal_year = sidereal_years = Quantity("sidereal_year")
sidereal_year.set_dimension(time)
sidereal_year.set_scale_factor(31558149.540)
tropical_year = tropical_years = Quantity("tropical_year")
tropical_year.set_dimension(time)
tropical_year.set_scale_factor(365.24219*day)
common_year = common_years = Quantity("common_year")
common_year.set_dimension(time)
common_year.set_scale_factor(365*day)
julian_year = julian_years = Quantity("julian_year")
julian_year.set_dimension(time)
julian_year.set_scale_factor((365 + One/4)*day)
draconic_year = draconic_years = Quantity("draconic_year")
draconic_year.set_dimension(time)
draconic_year.set_scale_factor(346.62*day)
gaussian_year = gaussian_years = Quantity("gaussian_year")
gaussian_year.set_dimension(time)
gaussian_year.set_scale_factor(365.2568983*day)
full_moon_cycle = full_moon_cycles = Quantity("full_moon_cycle")
full_moon_cycle.set_dimension(time)
full_moon_cycle.set_scale_factor(411.78443029*day)
year = years = tropical_year
#### CONSTANTS ####
# Newton constant
G = gravitational_constant = Quantity("gravitational_constant", abbrev="G")
gravitational_constant.set_dimension(length**3*mass**-1*time**-2)
gravitational_constant.set_scale_factor(6.67408e-11*m**3/(kg*s**2))
# speed of light
c = speed_of_light = Quantity("speed_of_light", abbrev="c")
speed_of_light.set_dimension(velocity)
speed_of_light.set_scale_factor(299792458*meter/second)
# Reduced Planck constant
hbar = Quantity("hbar", abbrev="hbar")
hbar.set_dimension(action)
hbar.set_scale_factor(1.05457266e-34*joule*second)
# Planck constant
planck = Quantity("planck", abbrev="h")
planck.set_dimension(action)
planck.set_scale_factor(2*pi*hbar)
# Electronvolt
eV = electronvolt = electronvolts = Quantity("electronvolt", abbrev="eV")
electronvolt.set_dimension(energy)
electronvolt.set_scale_factor(1.60219e-19*joule)
# Avogadro number
avogadro_number = Quantity("avogadro_number")
avogadro_number.set_dimension(One)
avogadro_number.set_scale_factor(6.022140857e23)
# Avogadro constant
avogadro = avogadro_constant = Quantity("avogadro_constant")
avogadro_constant.set_dimension(amount_of_substance**-1)
avogadro_constant.set_scale_factor(avogadro_number / mol)
# Boltzmann constant
boltzmann = boltzmann_constant = Quantity("boltzmann_constant")
boltzmann_constant.set_dimension(energy/temperature)
boltzmann_constant.set_scale_factor(1.38064852e-23*joule/kelvin)
# Stefan-Boltzmann constant
stefan = stefan_boltzmann_constant = Quantity("stefan_boltzmann_constant")
stefan_boltzmann_constant.set_dimension(energy*time**-1*length**-2*temperature**-4)
stefan_boltzmann_constant.set_scale_factor(5.670367e-8*joule/(s*m**2*kelvin**4))
# Atomic mass
amu = amus = atomic_mass_unit = atomic_mass_constant = Quantity("atomic_mass_constant")
atomic_mass_constant.set_dimension(mass)
atomic_mass_constant.set_scale_factor(1.660539040e-24*gram)
# Molar gas constant
R = molar_gas_constant = Quantity("molar_gas_constant", abbrev="R")
molar_gas_constant.set_dimension(energy/(temperature * amount_of_substance))
molar_gas_constant.set_scale_factor(8.3144598*joule/kelvin/mol)
# Faraday constant
faraday_constant = Quantity("faraday_constant")
faraday_constant.set_dimension(charge/amount_of_substance)
faraday_constant.set_scale_factor(96485.33289*C/mol)
# Josephson constant
josephson_constant = Quantity("josephson_constant", abbrev="K_j")
josephson_constant.set_dimension(frequency/voltage)
josephson_constant.set_scale_factor(483597.8525e9*hertz/V)
# Von Klitzing constant
von_klitzing_constant = Quantity("von_klitzing_constant", abbrev="R_k")
von_klitzing_constant.set_dimension(voltage/current)
von_klitzing_constant.set_scale_factor(25812.8074555*ohm)
# Acceleration due to gravity (on the Earth surface)
gee = gees = acceleration_due_to_gravity = Quantity("acceleration_due_to_gravity", abbrev="g")
acceleration_due_to_gravity.set_dimension(acceleration)
acceleration_due_to_gravity.set_scale_factor(9.80665*meter/second**2)
# magnetic constant:
u0 = magnetic_constant = vacuum_permeability = Quantity("magnetic_constant")
magnetic_constant.set_dimension(force/current**2)
magnetic_constant.set_scale_factor(4*pi/10**7 * newton/ampere**2)
# electric constat:
e0 = electric_constant = vacuum_permittivity = Quantity("vacuum_permittivity")
vacuum_permittivity.set_dimension(capacitance/length)
vacuum_permittivity.set_scale_factor(1/(u0 * c**2))
# vacuum impedance:
Z0 = vacuum_impedance = Quantity("vacuum_impedance", abbrev='Z_0', latex_repr=r'Z_{0}')
vacuum_impedance.set_dimension(impedance)
vacuum_impedance.set_scale_factor(u0 * c)
# Coulomb's constant:
coulomb_constant = coulombs_constant = electric_force_constant = \
Quantity("coulomb_constant", abbrev="k_e")
coulomb_constant.set_dimension(force*length**2/charge**2)
coulomb_constant.set_scale_factor(1/(4*pi*vacuum_permittivity))
atmosphere = atmospheres = atm = Quantity("atmosphere", abbrev="atm")
atmosphere.set_dimension(pressure)
atmosphere.set_scale_factor(101325 * pascal)
kPa = kilopascal = Quantity("kilopascal", abbrev="kPa")
kilopascal.set_dimension(pressure)
kilopascal.set_scale_factor(kilo*Pa)
bar = bars = Quantity("bar", abbrev="bar")
bar.set_dimension(pressure)
bar.set_scale_factor(100*kPa)
pound = pounds = Quantity("pound") # exact
pound.set_dimension(mass)
pound.set_scale_factor(Rational(45359237, 100000000) * kg)
psi = Quantity("psi")
psi.set_dimension(pressure)
psi.set_scale_factor(pound * gee / inch ** 2)
dHg0 = 13.5951 # approx value at 0 C
mmHg = torr = Quantity("mmHg")
mmHg.set_dimension(pressure)
mmHg.set_scale_factor(dHg0 * acceleration_due_to_gravity * kilogram / meter**2)
mmu = mmus = milli_mass_unit = Quantity("milli_mass_unit")
milli_mass_unit.set_dimension(mass)
milli_mass_unit.set_scale_factor(atomic_mass_unit/1000)
quart = quarts = Quantity("quart")
quart.set_dimension(length**3)
quart.set_scale_factor(Rational(231, 4) * inch**3)
# Other convenient units and magnitudes
ly = lightyear = lightyears = Quantity("lightyear", abbrev="ly")
lightyear.set_dimension(length)
lightyear.set_scale_factor(speed_of_light*julian_year)
au = astronomical_unit = astronomical_units = Quantity("astronomical_unit", abbrev="AU")
astronomical_unit.set_dimension(length)
astronomical_unit.set_scale_factor(149597870691*meter)
# Fundamental Planck units:
planck_mass = Quantity("planck_mass", abbrev="m_P", latex_repr=r'm_\text{P}')
planck_mass.set_dimension(mass)
planck_mass.set_scale_factor(sqrt(hbar*speed_of_light/G))
planck_time = Quantity("planck_time", abbrev="t_P", latex_repr=r't_\text{P}')
planck_time.set_dimension(time)
planck_time.set_scale_factor(sqrt(hbar*G/speed_of_light**5))
planck_temperature = Quantity("planck_temperature", abbrev="T_P",
latex_repr=r'T_\text{P}')
planck_temperature.set_dimension(temperature)
planck_temperature.set_scale_factor(sqrt(hbar*speed_of_light**5/G/boltzmann**2))
planck_length = Quantity("planck_length", abbrev="l_P", latex_repr=r'l_\text{P}')
planck_length.set_dimension(length)
planck_length.set_scale_factor(sqrt(hbar*G/speed_of_light**3))
planck_charge = Quantity("planck_charge", abbrev="q_P", latex_repr=r'q_\text{P}')
planck_charge.set_dimension(charge)
planck_charge.set_scale_factor(sqrt(4*pi*electric_constant*hbar*speed_of_light))
# Derived Planck units:
planck_area = Quantity("planck_area")
planck_area.set_dimension(length**2)
planck_area.set_scale_factor(planck_length**2)
planck_volume = Quantity("planck_volume")
planck_volume.set_dimension(length**3)
planck_volume.set_scale_factor(planck_length**3)
planck_momentum = Quantity("planck_momentum")
planck_momentum.set_dimension(mass*velocity)
planck_momentum.set_scale_factor(planck_mass * speed_of_light)
planck_energy = Quantity("planck_energy", abbrev="E_P", latex_repr=r'E_\text{P}')
planck_energy.set_dimension(energy)
planck_energy.set_scale_factor(planck_mass * speed_of_light**2)
planck_force = Quantity("planck_force", abbrev="F_P", latex_repr=r'F_\text{P}')
planck_force.set_dimension(force)
planck_force.set_scale_factor(planck_energy / planck_length)
planck_power = Quantity("planck_power", abbrev="P_P", latex_repr=r'P_\text{P}')
planck_power.set_dimension(power)
planck_power.set_scale_factor(planck_energy / planck_time)
planck_density = Quantity("planck_density", abbrev="rho_P", latex_repr=r'\rho_\text{P}')
planck_density.set_dimension(mass/length**3)
planck_density.set_scale_factor(planck_mass / planck_length**3)
planck_energy_density = Quantity("planck_energy_density", abbrev="rho^E_P")
planck_energy_density.set_dimension(energy / length**3)
planck_energy_density.set_scale_factor(planck_energy / planck_length**3)
planck_intensity = Quantity("planck_intensity", abbrev="I_P", latex_repr=r'I_\text{P}')
planck_intensity.set_dimension(mass * time**(-3))
planck_intensity.set_scale_factor(planck_energy_density * speed_of_light)
planck_angular_frequency = Quantity("planck_angular_frequency", abbrev="omega_P",
latex_repr=r'\omega_\text{P}')
planck_angular_frequency.set_dimension(1 / time)
planck_angular_frequency.set_scale_factor(1 / planck_time)
planck_pressure = Quantity("planck_pressure", abbrev="p_P", latex_repr=r'p_\text{P}')
planck_pressure.set_dimension(pressure)
planck_pressure.set_scale_factor(planck_force / planck_length**2)
planck_current = Quantity("planck_current", abbrev="I_P", latex_repr=r'I_\text{P}')
planck_current.set_dimension(current)
planck_current.set_scale_factor(planck_charge / planck_time)
planck_voltage = Quantity("planck_voltage", abbrev="V_P", latex_repr=r'V_\text{P}')
planck_voltage.set_dimension(voltage)
planck_voltage.set_scale_factor(planck_energy / planck_charge)
planck_impedance = Quantity("planck_impedance", abbrev="Z_P", latex_repr=r'Z_\text{P}')
planck_impedance.set_dimension(impedance)
planck_impedance.set_scale_factor(planck_voltage / planck_current)
planck_acceleration = Quantity("planck_acceleration", abbrev="a_P",
latex_repr=r'a_\text{P}')
planck_acceleration.set_dimension(acceleration)
planck_acceleration.set_scale_factor(speed_of_light / planck_time)
# Information theory units:
bit = bits = Quantity("bit")
bit.set_dimension(information)
bit.set_scale_factor(One)
byte = bytes = Quantity("byte")
byte.set_dimension(information)
byte.set_scale_factor(8*bit)
kibibyte = kibibytes = Quantity("kibibyte")
kibibyte.set_dimension(information)
kibibyte.set_scale_factor(kibi*byte)
mebibyte = mebibytes = Quantity("mebibyte")
mebibyte.set_dimension(information)
mebibyte.set_scale_factor(mebi*byte)
gibibyte = gibibytes = Quantity("gibibyte")
gibibyte.set_dimension(information)
gibibyte.set_scale_factor(gibi*byte)
tebibyte = tebibytes = Quantity("tebibyte")
tebibyte.set_dimension(information)
tebibyte.set_scale_factor(tebi*byte)
pebibyte = pebibytes = Quantity("pebibyte")
pebibyte.set_dimension(information)
pebibyte.set_scale_factor(pebi*byte)
exbibyte = exbibytes = Quantity("exbibyte")
exbibyte.set_dimension(information)
exbibyte.set_scale_factor(exbi*byte)
# Older units for radioactivity
curie = Ci = Quantity("curie", abbrev="Ci")
curie.set_dimension(1/time)
curie.set_scale_factor(37000000000*becquerel)
rutherford = Rd = Quantity("rutherford", abbrev="Rd")
rutherford.set_dimension(1/time)
rutherford.set_scale_factor(1000000*becquerel)
# check that scale factors are the right SI dimensions:
for _scale_factor, _dimension in zip(
Quantity.SI_quantity_scale_factors.values(),
Quantity.SI_quantity_dimension_map.values()):
dimex = Quantity.get_dimensional_expr(_scale_factor)
if dimex != 1:
if not dimsys_default.equivalent_dims(_dimension, Dimension(dimex)):
raise ValueError("quantity value and dimension mismatch")
del _scale_factor, _dimension
|
36a81138f2fb7d63545e84d35f8494187843703ebf4be02a8d656da79c887c29 | """
Physical quantities.
"""
from __future__ import division
from sympy import (Abs, Add, AtomicExpr, Derivative, Function, Mul,
Pow, S, Symbol, sympify)
from sympy.core.compatibility import string_types
from sympy.physics.units import Dimension, dimensions
from sympy.physics.units.prefixes import Prefix
from sympy.utilities.exceptions import SymPyDeprecationWarning
class Quantity(AtomicExpr):
"""
Physical quantity: can be a unit of measure, a constant or a generic quantity.
"""
is_commutative = True
is_real = True
is_number = False
is_nonzero = True
_diff_wrt = True
def __new__(cls, name, abbrev=None, dimension=None, scale_factor=None,
latex_repr=None, pretty_unicode_repr=None,
pretty_ascii_repr=None, mathml_presentation_repr=None,
**assumptions):
if not isinstance(name, Symbol):
name = Symbol(name)
# For Quantity(name, dim, scale, abbrev) to work like in the
# old version of Sympy:
if not isinstance(abbrev, string_types) and not \
isinstance(abbrev, Symbol):
dimension, scale_factor, abbrev = abbrev, dimension, scale_factor
if dimension is not None:
SymPyDeprecationWarning(
deprecated_since_version="1.3",
issue=14319,
feature="Quantity arguments",
useinstead="SI_quantity_dimension_map",
).warn()
if scale_factor is not None:
SymPyDeprecationWarning(
deprecated_since_version="1.3",
issue=14319,
feature="Quantity arguments",
useinstead="SI_quantity_scale_factors",
).warn()
if abbrev is None:
abbrev = name
elif isinstance(abbrev, string_types):
abbrev = Symbol(abbrev)
obj = AtomicExpr.__new__(cls, name, abbrev)
obj._name = name
obj._abbrev = abbrev
obj._latex_repr = latex_repr
obj._unicode_repr = pretty_unicode_repr
obj._ascii_repr = pretty_ascii_repr
obj._mathml_repr = mathml_presentation_repr
if dimension is not None:
# TODO: remove after deprecation:
obj.set_dimension(dimension)
if scale_factor is not None:
# TODO: remove after deprecation:
obj.set_scale_factor(scale_factor)
return obj
### Currently only SI is supported: ###
# Dimensional representations for the SI units:
SI_quantity_dimension_map = {}
# Scale factors in SI units:
SI_quantity_scale_factors = {}
def set_dimension(self, dimension, unit_system="SI"):
from sympy.physics.units.dimensions import dimsys_default, DimensionSystem
if unit_system != "SI":
# TODO: add support for more units and dimension systems:
raise NotImplementedError("Currently only SI is supported")
dim_sys = dimsys_default
if not isinstance(dimension, dimensions.Dimension):
if dimension == 1:
dimension = Dimension(1)
else:
raise ValueError("expected dimension or 1")
else:
for dim_sym in dimension.name.atoms(Dimension):
if dim_sym not in [i.name for i in dim_sys._dimensional_dependencies]:
raise ValueError("Dimension %s is not registered in the "
"dimensional dependency tree." % dim_sym)
Quantity.SI_quantity_dimension_map[self] = dimension
def set_scale_factor(self, scale_factor, unit_system="SI"):
if unit_system != "SI":
# TODO: add support for more units and dimension systems:
raise NotImplementedError("Currently only SI is supported")
scale_factor = sympify(scale_factor)
# replace all prefixes by their ratio to canonical units:
scale_factor = scale_factor.replace(lambda x: isinstance(x, Prefix), lambda x: x.scale_factor)
# replace all quantities by their ratio to canonical units:
scale_factor = scale_factor.replace(lambda x: isinstance(x, Quantity), lambda x: x.scale_factor)
Quantity.SI_quantity_scale_factors[self] = scale_factor
@property
def name(self):
return self._name
@property
def dimension(self):
# TODO: add support for units other than SI:
return Quantity.SI_quantity_dimension_map[self]
@property
def abbrev(self):
"""
Symbol representing the unit name.
Prepend the abbreviation with the prefix symbol if it is defines.
"""
return self._abbrev
@property
def scale_factor(self):
"""
Overall magnitude of the quantity as compared to the canonical units.
"""
return Quantity.SI_quantity_scale_factors.get(self, S.One)
def _eval_is_positive(self):
return self.scale_factor.is_positive
def _eval_is_constant(self):
return self.scale_factor.is_constant()
def _eval_Abs(self):
scale_factor = Abs(self.scale_factor)
if scale_factor == self.scale_factor:
return self
return None
q = self.func(self.name, self.abbrev)
def _eval_subs(self, old, new):
if isinstance(new, Quantity) and self != old:
return self
@staticmethod
def get_dimensional_expr(expr):
if isinstance(expr, Mul):
return Mul(*[Quantity.get_dimensional_expr(i) for i in expr.args])
elif isinstance(expr, Pow):
return Quantity.get_dimensional_expr(expr.base) ** expr.exp
elif isinstance(expr, Add):
return Quantity.get_dimensional_expr(expr.args[0])
elif isinstance(expr, Derivative):
dim = Quantity.get_dimensional_expr(expr.expr)
for independent, count in expr.variable_count:
dim /= Quantity.get_dimensional_expr(independent)**count
return dim
elif isinstance(expr, Function):
args = [Quantity.get_dimensional_expr(arg) for arg in expr.args]
if all(i == 1 for i in args):
return S.One
return expr.func(*args)
elif isinstance(expr, Quantity):
return expr.dimension.name
return S.One
@staticmethod
def _collect_factor_and_dimension(expr):
"""Return tuple with factor expression and dimension expression."""
if isinstance(expr, Quantity):
return expr.scale_factor, expr.dimension
elif isinstance(expr, Mul):
factor = 1
dimension = Dimension(1)
for arg in expr.args:
arg_factor, arg_dim = Quantity._collect_factor_and_dimension(arg)
factor *= arg_factor
dimension *= arg_dim
return factor, dimension
elif isinstance(expr, Pow):
factor, dim = Quantity._collect_factor_and_dimension(expr.base)
exp_factor, exp_dim = Quantity._collect_factor_and_dimension(expr.exp)
if exp_dim.is_dimensionless:
exp_dim = 1
return factor ** exp_factor, dim ** (exp_factor * exp_dim)
elif isinstance(expr, Add):
factor, dim = Quantity._collect_factor_and_dimension(expr.args[0])
for addend in expr.args[1:]:
addend_factor, addend_dim = \
Quantity._collect_factor_and_dimension(addend)
if dim != addend_dim:
raise ValueError(
'Dimension of "{0}" is {1}, '
'but it should be {2}'.format(
addend, addend_dim, dim))
factor += addend_factor
return factor, dim
elif isinstance(expr, Derivative):
factor, dim = Quantity._collect_factor_and_dimension(expr.args[0])
for independent, count in expr.variable_count:
ifactor, idim = Quantity._collect_factor_and_dimension(independent)
factor /= ifactor**count
dim /= idim**count
return factor, dim
elif isinstance(expr, Function):
fds = [Quantity._collect_factor_and_dimension(
arg) for arg in expr.args]
return (expr.func(*(f[0] for f in fds)),
expr.func(*(d[1] for d in fds)))
elif isinstance(expr, Dimension):
return 1, expr
else:
return expr, Dimension(1)
def _latex(self, printer):
if self._latex_repr:
return self._latex_repr
else:
return r'\text{{{}}}'.format(self.args[1] \
if len(self.args) >= 2 else self.args[0])
def convert_to(self, other):
"""
Convert the quantity to another quantity of same dimensions.
Examples
========
>>> from sympy.physics.units import speed_of_light, meter, second
>>> speed_of_light
speed_of_light
>>> speed_of_light.convert_to(meter/second)
299792458*meter/second
>>> from sympy.physics.units import liter
>>> liter.convert_to(meter**3)
meter**3/1000
"""
from .util import convert_to
return convert_to(self, other)
@property
def free_symbols(self):
"""Return free symbols from quantity."""
return self.scale_factor.free_symbols
|
740025633b2c7d4da5bf83f162c6aea3731cbd6e151dfd6d3264ef71f1a971d1 | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from __future__ import print_function, division
from sympy.core import S, Symbol, diff, symbols
from sympy.solvers import linsolve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.core import sympify
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
class Beam(object):
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention.
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
-3*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 2, 1) - 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
-3*SingularityFunction(x, 0, 1) + 3*SingularityFunction(x, 2, 2) - 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2
+ Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I)
"""
def __init__(self, length, elastic_modulus, second_moment, variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable
A SymPy expression representing the Beam's Second moment of area.
It is a geometrical property of an area which reflects how its
points are distributed with respect to its neutral axis. It can
also be a continuous function of position along the beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self._applied_loads = []
self._reaction_loads = {}
self._composite_type = None
self._hinge_position = None
def __str__(self):
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(self._second_moment))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._second_moment = sympify(i)
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three kewwords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains loaction and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/I - 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
+ 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
- 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
if end:
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value * x**order
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i) / factorial(i))
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# TODO : This is essentially duplicate code wrt to apply_load,
# would be better to move it to one location and both methods use
# it.
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value * x**order
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i) / factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l ,E,I)
>>> b2=Beam(2*l ,E,I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S(1)/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S(1)/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S(1)/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S(1)/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, linsolve, limit
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
-8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(shear_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(shear_curve, x, singularity[i-1], '+'), limit(shear_curve, x, s, '-')])
val = list(map(abs, val))
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
-8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
from sympy import solve, Mul, Interval
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(bending_curve.subs(x, point))
points.extend([singularity[i-1], s])
val.extend([limit(bending_curve, x, singularity[i-1], '+'), limit(bending_curve, x, s, '-')])
val = list(map(abs, val))
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = integrate(S(1)/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S(1)/(E*I)*integrate(integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S(1)/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its coresponding deflection value
in a Beam object.
"""
from sympy import solve, Piecewise
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: -13750*SingularityFunction(x, 0, 0) + 5000*SingularityFunction(x, 2, 0)
+ 10000*SingularityFunction(x, 4, 1) - 31250*SingularityFunction(x, 8, 0)
- 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: -13750*SingularityFunction(x, 0, 1) + 5000*SingularityFunction(x, 2, 1)
+ 5000*SingularityFunction(x, 4, 2) - 31250*SingularityFunction(x, 8, 1)
- 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> from sympy.plotting import PlotGrid
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
While solving a beam bending problem, a user should choose its
own sign convention and should stick to it. The results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> b.slope()
[0, 0, l*x*(-l*q + 3*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) + 3*m)/(6*E*I)
+ x**2*(-3*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) - 3*m + q*x)/(6*E*I)]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*A*E*G*I*l**3*q - 24*A*E*G*I*l**2*m + 144*E**2*I**2*l*q +
... x**3*(A**2*G**2*l**2*q + 12*A*E*G*I*q) +
... x**2*(-2*A**2*G**2*l**3*q - 24*A*E*G*I*l*q - 48*A*E*G*I*m) +
... x*(A**2*G**2*l**4*q + 72*A*E*G*I*l*m - 144*E**2*I**2*q)
... )/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane prependicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super(Beam3D, self).__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self.area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains loaction and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type == "pin" or type == "roller":
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated rection exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_slope_deflection(self):
from sympy import dsolve, Function, Derivative, Eq
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self.area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
|
01926b8d24cb30a71f9b981062a13faa5a184e14c27e5ab389f8a1bb5e206bf8 | """
**Contains**
* refraction_angle
* fresnel_coefficients
* deviation
* brewster_angle
* critical_angle
* lens_makers_formula
* mirror_formula
* lens_formula
* hyperfocal_distance
* transverse_magnification
"""
from __future__ import division
__all__ = ['refraction_angle',
'deviation',
'fresnel_coefficients',
'brewster_angle',
'critical_angle',
'lens_makers_formula',
'mirror_formula',
'lens_formula',
'hyperfocal_distance',
'transverse_magnification'
]
from sympy import Symbol, sympify, sqrt, Matrix, acos, oo, Limit, atan2, asin,\
cos, sin, tan, I, cancel, pi, Float
from sympy.core.compatibility import is_sequence
from sympy.geometry.line import Ray3D, Point3D
from sympy.geometry.util import intersection
from sympy.geometry.plane import Plane
from .medium import Medium
def refractive_index_of_medium(medium):
"""
Helper function that returns refractive index, given a medium
"""
if isinstance(medium, Medium):
n = medium.refractive_index
else:
n = sympify(medium)
return n
def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
"""
This function calculates transmitted vector after refraction at planar
surface. `medium1` and `medium2` can be `Medium` or any sympifiable object.
If `incident` is a number then treated as angle of incidence (in radians)
in which case refraction angle is returned.
If `incident` is an object of `Ray3D`, `normal` also has to be an instance
of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
plane of separation is not provided and normal is an instance of `Ray3D`,
normal will be assumed to be intersecting incident ray at the plane of
separation. This will not be the case when `normal` is a `Matrix` or
any other sequence.
If `incident` is an instance of `Ray3D` and `plane` has not been provided
and `normal` is not `Ray3D`, output will be a `Matrix`.
Parameters
==========
incident : Matrix, Ray3D, sequence or a number
Incident vector or angle of incidence
medium1 : sympy.physics.optics.medium.Medium or sympifiable
Medium 1 or its refractive index
medium2 : sympy.physics.optics.medium.Medium or sympifiable
Medium 2 or its refractive index
normal : Matrix, Ray3D, or sequence
Normal vector
plane : Plane
Plane of separation of the two media.
Returns an angle of refraction or a refracted ray depending on inputs.
Examples
========
>>> from sympy.physics.optics import refraction_angle
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols, pi
>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
>>> refraction_angle(r1, 1, 1, n)
Matrix([
[ 1],
[ 1],
[-1]])
>>> refraction_angle(r1, 1, 1, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
With different index of refraction of the two media
>>> n1, n2 = symbols('n1, n2')
>>> refraction_angle(r1, n1, n2, n)
Matrix([
[ n1/n2],
[ n1/n2],
[-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
>>> refraction_angle(r1, n1, n2, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
>>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
0.41152
"""
n1 = refractive_index_of_medium(medium1)
n2 = refractive_index_of_medium(medium2)
# check if an incidence angle was supplied instead of a ray
try:
angle_of_incidence = float(incident)
except TypeError as e:
angle_of_incidence = None
try:
critical_angle_ = critical_angle(medium1, medium2)
except (ValueError, TypeError) as e:
critical_angle_ = None
if angle_of_incidence is not None:
if normal is not None or plane is not None:
raise ValueError('Normal/plane not allowed if incident is an angle')
if not 0.0 <= angle_of_incidence < pi*0.5:
raise ValueError('Angle of incidence not in range [0:pi/2)')
if critical_angle_ and angle_of_incidence > critical_angle_:
raise ValueError('Ray undergoes total internal reflection')
return asin(n1*sin(angle_of_incidence)/n2)
if angle_of_incidence and not 0 <= angle_of_incidence < pi*0.5:
raise ValueError
# Treat the incident as ray below
# A flag to check whether to return Ray3D or not
return_ray = False
if plane is not None and normal is not None:
raise ValueError("Either plane or normal is acceptable.")
if not isinstance(incident, Matrix):
if is_sequence(incident):
_incident = Matrix(incident)
elif isinstance(incident, Ray3D):
_incident = Matrix(incident.direction_ratio)
else:
raise TypeError(
"incident should be a Matrix, Ray3D, or sequence")
else:
_incident = incident
# If plane is provided, get direction ratios of the normal
# to the plane from the plane else go with `normal` param.
if plane is not None:
if not isinstance(plane, Plane):
raise TypeError("plane should be an instance of geometry.plane.Plane")
# If we have the plane, we can get the intersection
# point of incident ray and the plane and thus return
# an instance of Ray3D.
if isinstance(incident, Ray3D):
return_ray = True
intersection_pt = plane.intersection(incident)[0]
_normal = Matrix(plane.normal_vector)
else:
if not isinstance(normal, Matrix):
if is_sequence(normal):
_normal = Matrix(normal)
elif isinstance(normal, Ray3D):
_normal = Matrix(normal.direction_ratio)
if isinstance(incident, Ray3D):
intersection_pt = intersection(incident, normal)
if len(intersection_pt) == 0:
raise ValueError(
"Normal isn't concurrent with the incident ray.")
else:
return_ray = True
intersection_pt = intersection_pt[0]
else:
raise TypeError(
"Normal should be a Matrix, Ray3D, or sequence")
else:
_normal = normal
eta = n1/n2 # Relative index of refraction
# Calculating magnitude of the vectors
mag_incident = sqrt(sum([i**2 for i in _incident]))
mag_normal = sqrt(sum([i**2 for i in _normal]))
# Converting vectors to unit vectors by dividing
# them with their magnitudes
_incident /= mag_incident
_normal /= mag_normal
c1 = -_incident.dot(_normal) # cos(angle_of_incidence)
cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2
if cs2.is_negative: # This is the case of total internal reflection(TIR).
return 0
drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
# Multiplying unit vector by its magnitude
drs = drs*mag_incident
if not return_ray:
return drs
else:
return Ray3D(intersection_pt, direction_ratio=drs)
def fresnel_coefficients(angle_of_incidence, medium1, medium2):
"""
This function uses Fresnel equations to calculate reflection and
transmission coefficients. Those are obtained for both polarisations
when the electric field vector is in the plane of incidence (labelled 'p')
and when the electric field vector is perpendicular to the plane of
incidence (labelled 's'). There are four real coefficients unless the
incident ray reflects in total internal in which case there are two complex
ones. Angle of incidence is the angle between the incident ray and the
surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any
sympifiable object.
Parameters
==========
angle_of_incidence : sympifiable
medium1 : Medium or sympifiable
Medium 1 or its refractive index
medium2 : Medium or sympifiable
Medium 2 or its refractive index
Returns a list with four real Fresnel coefficients:
[reflection p (TM), reflection s (TE),
transmission p (TM), transmission s (TE)]
If the ray is undergoes total internal reflection then returns a
list of two complex Fresnel coefficients:
[reflection p (TM), reflection s (TE)]
Examples
========
>>> from sympy.physics.optics import fresnel_coefficients
>>> fresnel_coefficients(0.3, 1, 2)
[0.317843553417859, -0.348645229818821,
0.658921776708929, 0.651354770181179]
>>> fresnel_coefficients(0.6, 2, 1)
[-0.235625382192159 - 0.971843958291041*I,
0.816477005968898 - 0.577377951366403*I]
References
==========
https://en.wikipedia.org/wiki/Fresnel_equations
"""
if not 0 <= 2*angle_of_incidence < pi:
raise ValueError('Angle of incidence not in range [0:pi/2)')
n1 = refractive_index_of_medium(medium1)
n2 = refractive_index_of_medium(medium2)
angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2)
try:
angle_of_total_internal_reflection_onset = critical_angle(n1, n2)
except ValueError:
angle_of_total_internal_reflection_onset = None
if angle_of_total_internal_reflection_onset == None or\
angle_of_total_internal_reflection_onset > angle_of_incidence:
R_s = -sin(angle_of_incidence - angle_of_refraction)\
/sin(angle_of_incidence + angle_of_refraction)
R_p = tan(angle_of_incidence - angle_of_refraction)\
/tan(angle_of_incidence + angle_of_refraction)
T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
/sin(angle_of_incidence + angle_of_refraction)
T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
/(sin(angle_of_incidence + angle_of_refraction)\
*cos(angle_of_incidence - angle_of_refraction))
return [R_p, R_s, T_p, T_s]
else:
n = n2/n1
R_s = cancel((cos(angle_of_incidence)-\
I*sqrt(sin(angle_of_incidence)**2 - n**2))\
/(cos(angle_of_incidence)+\
I*sqrt(sin(angle_of_incidence)**2 - n**2)))
R_p = cancel((n**2*cos(angle_of_incidence)-\
I*sqrt(sin(angle_of_incidence)**2 - n**2))\
/(n**2*cos(angle_of_incidence)+\
I*sqrt(sin(angle_of_incidence)**2 - n**2)))
return [R_p, R_s]
def deviation(incident, medium1, medium2, normal=None, plane=None):
"""
This function calculates the angle of deviation of a ray
due to refraction at planar surface.
Parameters
==========
incident : Matrix, Ray3D, sequence or float
Incident vector or angle of incidence
medium1 : sympy.physics.optics.medium.Medium or sympifiable
Medium 1 or its refractive index
medium2 : sympy.physics.optics.medium.Medium or sympifiable
Medium 2 or its refractive index
normal : Matrix, Ray3D, or sequence
Normal vector
plane : Plane
Plane of separation of the two media.
Returns angular deviation between incident and refracted rays
Examples
========
>>> from sympy.physics.optics import deviation
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols
>>> n1, n2 = symbols('n1, n2')
>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
>>> deviation(r1, 1, 1, n)
0
>>> deviation(r1, n1, n2, plane=P)
-acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)
>>> round(deviation(0.1, 1.2, 1.5), 5)
-0.02005
"""
refracted = refraction_angle(incident,
medium1,
medium2,
normal=normal,
plane=plane)
try:
angle_of_incidence = Float(incident)
except TypeError as e:
angle_of_incidence = None
if angle_of_incidence is not None:
return float(refracted) - angle_of_incidence
if refracted != 0:
if isinstance(refracted, Ray3D):
refracted = Matrix(refracted.direction_ratio)
if not isinstance(incident, Matrix):
if is_sequence(incident):
_incident = Matrix(incident)
elif isinstance(incident, Ray3D):
_incident = Matrix(incident.direction_ratio)
else:
raise TypeError(
"incident should be a Matrix, Ray3D, or sequence")
else:
_incident = incident
if plane is None:
if not isinstance(normal, Matrix):
if is_sequence(normal):
_normal = Matrix(normal)
elif isinstance(normal, Ray3D):
_normal = Matrix(normal.direction_ratio)
else:
raise TypeError(
"normal should be a Matrix, Ray3D, or sequence")
else:
_normal = normal
else:
_normal = Matrix(plane.normal_vector)
mag_incident = sqrt(sum([i**2 for i in _incident]))
mag_normal = sqrt(sum([i**2 for i in _normal]))
mag_refracted = sqrt(sum([i**2 for i in refracted]))
_incident /= mag_incident
_normal /= mag_normal
refracted /= mag_refracted
i = acos(_incident.dot(_normal))
r = acos(refracted.dot(_normal))
return i - r
def brewster_angle(medium1, medium2):
"""
This function calculates the Brewster's angle of incidence to Medium 2 from
Medium 1 in radians.
Parameters
==========
medium 1 : Medium or sympifiable
Refractive index of Medium 1
medium 2 : Medium or sympifiable
Refractive index of Medium 1
Examples
========
>>> from sympy.physics.optics import brewster_angle
>>> brewster_angle(1, 1.33)
0.926093295503462
"""
n1 = refractive_index_of_medium(medium1)
n2 = refractive_index_of_medium(medium2)
return atan2(n2, n1)
def critical_angle(medium1, medium2):
"""
This function calculates the critical angle of incidence (marking the onset
of total internal) to Medium 2 from Medium 1 in radians.
Parameters
==========
medium 1 : Medium or sympifiable
Refractive index of Medium 1
medium 2 : Medium or sympifiable
Refractive index of Medium 1
Examples
========
>>> from sympy.physics.optics import critical_angle
>>> critical_angle(1.33, 1)
0.850908514477849
"""
n1 = refractive_index_of_medium(medium1)
n2 = refractive_index_of_medium(medium2)
if n2 > n1:
raise ValueError('Total internal reflection impossible for n1 < n2')
else:
return asin(n2/n1)
def lens_makers_formula(n_lens, n_surr, r1, r2):
"""
This function calculates focal length of a thin lens.
It follows cartesian sign convention.
Parameters
==========
n_lens : Medium or sympifiable
Index of refraction of lens.
n_surr : Medium or sympifiable
Index of reflection of surrounding.
r1 : sympifiable
Radius of curvature of first surface.
r2 : sympifiable
Radius of curvature of second surface.
Examples
========
>>> from sympy.physics.optics import lens_makers_formula
>>> lens_makers_formula(1.33, 1, 10, -10)
15.1515151515151
"""
if isinstance(n_lens, Medium):
n_lens = n_lens.refractive_index
else:
n_lens = sympify(n_lens)
if isinstance(n_surr, Medium):
n_surr = n_surr.refractive_index
else:
n_surr = sympify(n_surr)
r1 = sympify(r1)
r2 = sympify(r2)
return 1/((n_lens - n_surr)/n_surr*(1/r1 - 1/r2))
def mirror_formula(focal_length=None, u=None, v=None):
"""
This function provides one of the three parameters
when two of them are supplied.
This is valid only for paraxial rays.
Parameters
==========
focal_length : sympifiable
Focal length of the mirror.
u : sympifiable
Distance of object from the pole on
the principal axis.
v : sympifiable
Distance of the image from the pole
on the principal axis.
Examples
========
>>> from sympy.physics.optics import mirror_formula
>>> from sympy.abc import f, u, v
>>> mirror_formula(focal_length=f, u=u)
f*u/(-f + u)
>>> mirror_formula(focal_length=f, v=v)
f*v/(-f + v)
>>> mirror_formula(u=u, v=v)
u*v/(u + v)
"""
if focal_length and u and v:
raise ValueError("Please provide only two parameters")
focal_length = sympify(focal_length)
u = sympify(u)
v = sympify(v)
if u == oo:
_u = Symbol('u')
if v == oo:
_v = Symbol('v')
if focal_length == oo:
_f = Symbol('f')
if focal_length is None:
if u == oo and v == oo:
return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit()
if u == oo:
return Limit(v*_u/(v + _u), _u, oo).doit()
if v == oo:
return Limit(_v*u/(_v + u), _v, oo).doit()
return v*u/(v + u)
if u is None:
if v == oo and focal_length == oo:
return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit()
if v == oo:
return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit()
if focal_length == oo:
return Limit(v*_f/(v - _f), _f, oo).doit()
return v*focal_length/(v - focal_length)
if v is None:
if u == oo and focal_length == oo:
return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit()
if u == oo:
return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit()
if focal_length == oo:
return Limit(u*_f/(u - _f), _f, oo).doit()
return u*focal_length/(u - focal_length)
def lens_formula(focal_length=None, u=None, v=None):
"""
This function provides one of the three parameters
when two of them are supplied.
This is valid only for paraxial rays.
Parameters
==========
focal_length : sympifiable
Focal length of the mirror.
u : sympifiable
Distance of object from the optical center on
the principal axis.
v : sympifiable
Distance of the image from the optical center
on the principal axis.
Examples
========
>>> from sympy.physics.optics import lens_formula
>>> from sympy.abc import f, u, v
>>> lens_formula(focal_length=f, u=u)
f*u/(f + u)
>>> lens_formula(focal_length=f, v=v)
f*v/(f - v)
>>> lens_formula(u=u, v=v)
u*v/(u - v)
"""
if focal_length and u and v:
raise ValueError("Please provide only two parameters")
focal_length = sympify(focal_length)
u = sympify(u)
v = sympify(v)
if u == oo:
_u = Symbol('u')
if v == oo:
_v = Symbol('v')
if focal_length == oo:
_f = Symbol('f')
if focal_length is None:
if u == oo and v == oo:
return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit()
if u == oo:
return Limit(v*_u/(_u - v), _u, oo).doit()
if v == oo:
return Limit(_v*u/(u - _v), _v, oo).doit()
return v*u/(u - v)
if u is None:
if v == oo and focal_length == oo:
return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit()
if v == oo:
return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit()
if focal_length == oo:
return Limit(v*_f/(_f - v), _f, oo).doit()
return v*focal_length/(focal_length - v)
if v is None:
if u == oo and focal_length == oo:
return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit()
if u == oo:
return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit()
if focal_length == oo:
return Limit(u*_f/(u + _f), _f, oo).doit()
return u*focal_length/(u + focal_length)
def hyperfocal_distance(f, N, c):
"""
Parameters
==========
f: sympifiable
Focal length of a given lens
N: sympifiable
F-number of a given lens
c: sympifiable
Circle of Confusion (CoC) of a given image format
Example
=======
>>> from sympy.physics.optics import hyperfocal_distance
>>> from sympy.abc import f, N, c
>>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
9.47
"""
f = sympify(f)
N = sympify(N)
c = sympify(c)
return (1/(N * c))*(f**2)
def transverse_magnification(si, so):
"""
Calculates the transverse magnification, which is the ratio of the
image size to the object size.
Parameters
==========
so: sympifiable
Lens-object distance
si: sympifiable
Lens-image distance
Example
=======
>>> from sympy.physics.optics import transverse_magnification
>>> transverse_magnification(30, 15)
-2
"""
si = sympify(si)
so = sympify(so)
return (-(si/so))
|
f9567b1ec18c84d772fa5297b88896f368640056a217d3513b453939a4ca5950 | from sympy import (Abs, Add, Basic, Function, Number, Rational, S, Symbol,
diff, exp, integrate, log, sin, sqrt, symbols)
from sympy.physics.units import (amount_of_substance, convert_to, find_unit,
volume)
from sympy.physics.units.definitions import (amu, au, centimeter, coulomb,
day, energy, foot, grams, hour, inch, kg, km, m, meter, mile, millimeter,
minute, pressure, quart, s, second, speed_of_light, temperature, bit,
byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte,
kilogram, gravitational_constant)
from sympy.physics.units.dimensions import Dimension, charge, length, time, dimsys_default
from sympy.physics.units.prefixes import PREFIXES, kilo
from sympy.physics.units.quantities import Quantity
from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy
k = PREFIXES["k"]
def test_str_repr():
assert str(kg) == "kilogram"
def test_eq():
# simple test
assert 10*m == 10*m
assert 10*m != 10*s
def test_convert_to():
q = Quantity("q1")
q.set_dimension(length)
q.set_scale_factor(S(5000))
assert q.convert_to(m) == 5000*m
assert speed_of_light.convert_to(m / s) == 299792458 * m / s
# TODO: eventually support this kind of conversion:
# assert (2*speed_of_light).convert_to(m / s) == 2 * 299792458 * m / s
assert day.convert_to(s) == 86400*s
# Wrong dimension to convert:
assert q.convert_to(s) == q
assert speed_of_light.convert_to(m) == speed_of_light
def test_Quantity_definition():
q = Quantity("s10", abbrev="sabbr")
q.set_dimension(time)
q.set_scale_factor(10)
u = Quantity("u", abbrev="dam")
u.set_dimension(length)
u.set_scale_factor(10)
km = Quantity("km")
km.set_dimension(length)
km.set_scale_factor(kilo)
v = Quantity("u")
v.set_dimension(length)
v.set_scale_factor(5*kilo)
assert q.scale_factor == 10
assert q.dimension == time
assert q.abbrev == Symbol("sabbr")
assert u.dimension == length
assert u.scale_factor == 10
assert u.abbrev == Symbol("dam")
assert km.scale_factor == 1000
assert km.func(*km.args) == km
assert km.func(*km.args).args == km.args
assert v.dimension == length
assert v.scale_factor == 5000
with warns_deprecated_sympy():
Quantity('invalid', 'dimension', 1)
with warns_deprecated_sympy():
Quantity('mismatch', dimension=length, scale_factor=kg)
def test_abbrev():
u = Quantity("u")
u.set_dimension(length)
u.set_scale_factor(S.One)
assert u.name == Symbol("u")
assert u.abbrev == Symbol("u")
u = Quantity("u", abbrev="om")
u.set_dimension(length)
u.set_scale_factor(S(2))
assert u.name == Symbol("u")
assert u.abbrev == Symbol("om")
assert u.scale_factor == 2
assert isinstance(u.scale_factor, Number)
u = Quantity("u", abbrev="ikm")
u.set_dimension(length)
u.set_scale_factor(3*kilo)
assert u.abbrev == Symbol("ikm")
assert u.scale_factor == 3000
def test_print():
u = Quantity("unitname", abbrev="dam")
assert repr(u) == "unitname"
assert str(u) == "unitname"
def test_Quantity_eq():
u = Quantity("u", abbrev="dam")
v = Quantity("v1")
assert u != v
v = Quantity("v2", abbrev="ds")
assert u != v
v = Quantity("v3", abbrev="dm")
assert u != v
def test_add_sub():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_dimension(length)
v.set_dimension(length)
w.set_dimension(time)
u.set_scale_factor(S(10))
v.set_scale_factor(S(5))
w.set_scale_factor(S(2))
assert isinstance(u + v, Add)
assert (u + v.convert_to(u)) == (1 + S.Half)*u
# TODO: eventually add this:
# assert (u + v).convert_to(u) == (1 + S.Half)*u
assert isinstance(u - v, Add)
assert (u - v.convert_to(u)) == S.Half*u
# TODO: eventually add this:
# assert (u - v).convert_to(u) == S.Half*u
def test_quantity_abs():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w3 = Quantity('v_w3')
v_w1.set_dimension(length/time)
v_w2.set_dimension(length/time)
v_w3.set_dimension(length/time)
v_w1.set_scale_factor(meter/second)
v_w2.set_scale_factor(meter/second)
v_w3.set_scale_factor(meter/second)
expr = v_w3 - Abs(v_w1 - v_w2)
Dq = Dimension(Quantity.get_dimensional_expr(expr))
assert dimsys_default.get_dimensional_dependencies(Dq) == {
'length': 1,
'time': -1,
}
assert meter == sqrt(meter**2)
def test_check_unit_consistency():
u = Quantity("u")
v = Quantity("v")
w = Quantity("w")
u.set_dimension(length)
v.set_dimension(length)
w.set_dimension(time)
u.set_scale_factor(S(10))
v.set_scale_factor(S(5))
w.set_scale_factor(S(2))
def check_unit_consistency(expr):
Quantity._collect_factor_and_dimension(expr)
raises(ValueError, lambda: check_unit_consistency(u + w))
raises(ValueError, lambda: check_unit_consistency(u - w))
raises(ValueError, lambda: check_unit_consistency(u + 1))
raises(ValueError, lambda: check_unit_consistency(u - 1))
raises(ValueError, lambda: check_unit_consistency(1 - exp(u / w)))
def test_mul_div():
u = Quantity("u")
v = Quantity("v")
t = Quantity("t")
ut = Quantity("ut")
v2 = Quantity("v")
u.set_dimension(length)
v.set_dimension(length)
t.set_dimension(time)
ut.set_dimension(length*time)
v2.set_dimension(length/time)
u.set_scale_factor(S(10))
v.set_scale_factor(S(5))
t.set_scale_factor(S(2))
ut.set_scale_factor(S(20))
v2.set_scale_factor(S(5))
assert 1 / u == u**(-1)
assert u / 1 == u
v1 = u / t
v2 = v
# Pow only supports structural equality:
assert v1 != v2
assert v1 == v2.convert_to(v1)
# TODO: decide whether to allow such expression in the future
# (requires somehow manipulating the core).
# assert u / Quantity('l2', dimension=length, scale_factor=2) == 5
assert u * 1 == u
ut1 = u * t
ut2 = ut
# Mul only supports structural equality:
assert ut1 != ut2
assert ut1 == ut2.convert_to(ut1)
# Mul only supports structural equality:
lp1 = Quantity("lp1")
lp1.set_dimension(length**-1)
lp1.set_scale_factor(S(2))
assert u * lp1 != 20
assert u**0 == 1
assert u**1 == u
# TODO: Pow only support structural equality:
u2 = Quantity("u2")
u3 = Quantity("u3")
u2.set_dimension(length**2)
u3.set_dimension(length**-1)
u2.set_scale_factor(S(100))
u3.set_scale_factor(S(1)/10)
assert u ** 2 != u2
assert u ** -1 != u3
assert u ** 2 == u2.convert_to(u)
assert u ** -1 == u3.convert_to(u)
def test_units():
assert convert_to((5*m/s * day) / km, 1) == 432
assert convert_to(foot / meter, meter) == Rational(3048, 10000)
# amu is a pure mass so mass/mass gives a number, not an amount (mol)
# TODO: need better simplification routine:
assert str(convert_to(grams/amu, grams).n(2)) == '6.0e+23'
# Light from the sun needs about 8.3 minutes to reach earth
t = (1*au / speed_of_light) / minute
# TODO: need a better way to simplify expressions containing units:
t = convert_to(convert_to(t, meter / minute), meter)
assert t == S(49865956897)/5995849160
# TODO: fix this, it should give `m` without `Abs`
assert sqrt(m**2) == Abs(m)
assert (sqrt(m))**2 == m
t = Symbol('t')
assert integrate(t*m/s, (t, 1*s, 5*s)) == 12*m*s
assert (t * m/s).integrate((t, 1*s, 5*s)) == 12*m*s
def test_issue_quart():
assert convert_to(4 * quart / inch ** 3, meter) == 231
assert convert_to(4 * quart / inch ** 3, millimeter) == 231
def test_issue_5565():
assert (m < s).is_Relational
def test_find_unit():
assert find_unit('coulomb') == ['coulomb', 'coulombs', 'coulomb_constant']
assert find_unit(coulomb) == ['C', 'coulomb', 'coulombs', 'planck_charge']
assert find_unit(charge) == ['C', 'coulomb', 'coulombs', 'planck_charge']
assert find_unit(inch) == [
'm', 'au', 'cm', 'dm', 'ft', 'km', 'ly', 'mi', 'mm', 'nm', 'pm', 'um',
'yd', 'nmi', 'feet', 'foot', 'inch', 'mile', 'yard', 'meter', 'miles',
'yards', 'inches', 'meters', 'micron', 'microns', 'decimeter',
'kilometer', 'lightyear', 'nanometer', 'picometer', 'centimeter',
'decimeters', 'kilometers', 'lightyears', 'micrometer', 'millimeter',
'nanometers', 'picometers', 'centimeters', 'micrometers',
'millimeters', 'nautical_mile', 'planck_length', 'nautical_miles', 'astronomical_unit',
'astronomical_units']
assert find_unit(inch**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(length**-1) == ['D', 'dioptre', 'optical_power']
assert find_unit(inch ** 3) == [
'l', 'cl', 'dl', 'ml', 'liter', 'quart', 'liters', 'quarts',
'deciliter', 'centiliter', 'deciliters', 'milliliter',
'centiliters', 'milliliters', 'planck_volume']
assert find_unit('voltage') == ['V', 'v', 'volt', 'volts', 'planck_voltage']
def test_Quantity_derivative():
x = symbols("x")
assert diff(x*meter, x) == meter
assert diff(x**3*meter**2, x) == 3*x**2*meter**2
assert diff(meter, meter) == 1
assert diff(meter**2, meter) == 2*meter
def test_quantity_postprocessing():
q1 = Quantity('q1')
q2 = Quantity('q2')
q1.set_dimension(length*pressure**2*temperature/time)
q2.set_dimension(energy*pressure*temperature/(length**2*time))
assert q1 + q2
q = q1 + q2
Dq = Dimension(Quantity.get_dimensional_expr(q))
assert dimsys_default.get_dimensional_dependencies(Dq) == {
'length': -1,
'mass': 2,
'temperature': 1,
'time': -5,
}
def test_factor_and_dimension():
assert (3000, Dimension(1)) == Quantity._collect_factor_and_dimension(3000)
assert (1001, length) == Quantity._collect_factor_and_dimension(meter + km)
assert (2, length/time) == Quantity._collect_factor_and_dimension(
meter/second + 36*km/(10*hour))
x, y = symbols('x y')
assert (x + y/100, length) == Quantity._collect_factor_and_dimension(
x*m + y*centimeter)
cH = Quantity('cH')
cH.set_dimension(amount_of_substance/volume)
pH = -log(cH)
assert (1, volume/amount_of_substance) == Quantity._collect_factor_and_dimension(
exp(pH))
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_dimension(length/time)
v_w2.set_dimension(length/time)
v_w1.set_scale_factor(S(3)/2*meter/second)
v_w2.set_scale_factor(2*meter/second)
expr = Abs(v_w1/2 - v_w2)
assert (S(5)/4, length/time) == \
Quantity._collect_factor_and_dimension(expr)
expr = S(5)/2*second/meter*v_w1 - 3000
assert (-(2996 + S(1)/4), Dimension(1)) == \
Quantity._collect_factor_and_dimension(expr)
expr = v_w1**(v_w2/v_w1)
assert ((S(3)/2)**(S(4)/3), (length/time)**(S(4)/3)) == \
Quantity._collect_factor_and_dimension(expr)
@XFAIL
def test_factor_and_dimension_with_Abs():
with warns_deprecated_sympy():
v_w1 = Quantity('v_w1', length/time, S(3)/2*meter/second)
v_w1.set_dimension(length/time)
v_w1.set_scale_factor(S(3)/2*meter/second)
expr = v_w1 - Abs(v_w1)
assert (0, length/time) == Quantity._collect_factor_and_dimension(expr)
def test_dimensional_expr_of_derivative():
l = Quantity('l')
t = Quantity('t')
t1 = Quantity('t1')
l.set_dimension(length)
t.set_dimension(time)
t1.set_dimension(time)
l.set_scale_factor(36*km)
t.set_scale_factor(hour)
t1.set_scale_factor(second)
x = Symbol('x')
y = Symbol('y')
f = Function('f')
dfdx = f(x, y).diff(x, y)
dl_dt = dfdx.subs({f(x, y): l, x: t, y: t1})
assert Quantity.get_dimensional_expr(dl_dt) ==\
Quantity.get_dimensional_expr(l / t / t1) ==\
Symbol("length")/Symbol("time")**2
assert Quantity._collect_factor_and_dimension(dl_dt) ==\
Quantity._collect_factor_and_dimension(l / t / t1) ==\
(10, length/time**2)
def test_get_dimensional_expr_with_function():
v_w1 = Quantity('v_w1')
v_w2 = Quantity('v_w2')
v_w1.set_dimension(length/time)
v_w2.set_dimension(length/time)
v_w1.set_scale_factor(meter/second)
v_w2.set_scale_factor(meter/second)
assert Quantity.get_dimensional_expr(sin(v_w1)) == \
sin(Quantity.get_dimensional_expr(v_w1))
assert Quantity.get_dimensional_expr(sin(v_w1/v_w2)) == 1
def test_binary_information():
assert convert_to(kibibyte, byte) == 1024*byte
assert convert_to(mebibyte, byte) == 1024**2*byte
assert convert_to(gibibyte, byte) == 1024**3*byte
assert convert_to(tebibyte, byte) == 1024**4*byte
assert convert_to(pebibyte, byte) == 1024**5*byte
assert convert_to(exbibyte, byte) == 1024**6*byte
assert kibibyte.convert_to(bit) == 8*1024*bit
assert byte.convert_to(bit) == 8*bit
a = 10*kibibyte*hour
assert convert_to(a, byte) == 10240*byte*hour
assert convert_to(a, minute) == 600*kibibyte*minute
assert convert_to(a, [byte, minute]) == 614400*byte*minute
def test_eval_subs():
energy, mass, force = symbols('energy mass force')
expr1 = energy/mass
units = {energy: kilogram*meter**2/second**2, mass: kilogram}
assert expr1.subs(units) == meter**2/second**2
expr2 = force/mass
units = {force:gravitational_constant*kilogram**2/meter**2, mass:kilogram}
assert expr2.subs(units) == gravitational_constant*kilogram/meter**2
def test_issue_14932():
assert (log(inch) - log(2)).simplify() == log(inch/2)
assert (log(inch) - log(foot)).simplify() == -log(12)
p = symbols('p', positive=True)
assert (log(inch) - log(p)).simplify() == log(inch/p)
def test_issue_14547():
# the root issue is that an argument with dimensions should
# not raise an error when the the `arg - 1` calculation is
# performed in the assumptions system
from sympy.physics.units import foot, inch
from sympy import Eq
assert log(foot).is_zero is None
assert log(foot).is_positive is None
assert log(foot).is_nonnegative is None
assert log(foot).is_negative is None
assert log(foot).is_algebraic is None
assert log(foot).is_rational is None
# doesn't raise error
assert Eq(log(foot), log(inch)) is not None # might be False or unevaluated
x = Symbol('x')
e = foot + x
assert e.is_Add and set(e.args) == {foot, x}
e = foot + 1
assert e.is_Add and set(e.args) == {foot, 1}
|
38351793b1da2ba895344683a21c2767929680daab746640aba592537d8c8b1a | from sympy.utilities.pytest import warns_deprecated_sympy
from sympy import Rational, S
from sympy.physics.units.definitions import c, kg, m, s
from sympy.physics.units.dimensions import (
Dimension, DimensionSystem, action, current, length, mass, time, velocity)
from sympy.physics.units.quantities import Quantity
from sympy.physics.units.unitsystem import UnitSystem
from sympy.utilities.pytest import raises
def test_definition():
# want to test if the system can have several units of the same dimension
dm = Quantity("dm")
dm.set_dimension(length)
dm.set_scale_factor(Rational(1, 10))
base = (m, s)
base_dim = (m.dimension, s.dimension)
ms = UnitSystem(base, (c, dm), "MS", "MS system")
assert set(ms._base_units) == set(base)
assert set(ms._units) == set((m, s, c, dm))
#assert ms._units == DimensionSystem._sort_dims(base + (velocity,))
assert ms.name == "MS"
assert ms.descr == "MS system"
assert ms._system.base_dims == base_dim
assert ms._system.derived_dims == (velocity,)
def test_error_definition():
raises(ValueError, lambda: UnitSystem((m, s, c)))
def test_str_repr():
assert str(UnitSystem((m, s), name="MS")) == "MS"
assert str(UnitSystem((m, s))) == "UnitSystem((meter, second))"
assert repr(UnitSystem((m, s))) == "<UnitSystem: (%s, %s)>" % (m, s)
def test_print_unit_base():
A = Quantity("A")
A.set_dimension(current)
A.set_scale_factor(S.One)
Js = Quantity("Js")
Js.set_dimension(action)
Js.set_scale_factor(S.One)
mksa = UnitSystem((m, kg, s, A), (Js,))
with warns_deprecated_sympy():
assert mksa.print_unit_base(Js) == m**2*kg*s**-1/1000
def test_extend():
ms = UnitSystem((m, s), (c,))
Js = Quantity("Js")
Js.set_dimension(action)
Js.set_scale_factor(1)
mks = ms.extend((kg,), (Js,))
res = UnitSystem((m, s, kg), (c, Js))
assert set(mks._base_units) == set(res._base_units)
assert set(mks._units) == set(res._units)
def test_dim():
dimsys = UnitSystem((m, kg, s), (c,))
assert dimsys.dim == 3
def test_is_consistent():
assert UnitSystem((m, s)).is_consistent is True
|
049502408c8302a40609cd09570f9013f170815d73dc49caddc8d0a27a9e1446 | from sympy import Symbol, symbols, S, simplify, Interval
from sympy.physics.continuum_mechanics.beam import Beam
from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log
from sympy.utilities.pytest import raises, slow
from sympy.physics.units import meter, newton, kilo, giga, milli
from sympy.physics.continuum_mechanics.beam import Beam3D
x = Symbol('x')
y = Symbol('y')
R1, R2 = symbols('R1, R2')
def test_Beam():
E = Symbol('E')
E_1 = Symbol('E_1')
I = Symbol('I')
I_1 = Symbol('I_1')
b = Beam(1, E, I)
assert b.length == 1
assert b.elastic_modulus == E
assert b.second_moment == I
assert b.variable == x
# Test the length setter
b.length = 4
assert b.length == 4
# Test the E setter
b.elastic_modulus = E_1
assert b.elastic_modulus == E_1
# Test the I setter
b.second_moment = I_1
assert b.second_moment is I_1
# Test the variable setter
b.variable = y
assert b.variable is y
# Test for all boundary conditions.
b.bc_deflection = [(0, 2)]
b.bc_slope = [(0, 1)]
assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
# Test for slope boundary condition method
b.bc_slope.extend([(4, 3), (5, 0)])
s_bcs = b.bc_slope
assert s_bcs == [(0, 1), (4, 3), (5, 0)]
# Test for deflection boundary condition method
b.bc_deflection.extend([(4, 3), (5, 0)])
d_bcs = b.bc_deflection
assert d_bcs == [(0, 2), (4, 3), (5, 0)]
# Test for updated boundary conditions
bcs_new = b.boundary_conditions
assert bcs_new == {
'deflection': [(0, 2), (4, 3), (5, 0)],
'slope': [(0, 1), (4, 3), (5, 0)]}
b1 = Beam(30, E, I)
b1.apply_load(-8, 0, -1)
b1.apply_load(R1, 10, -1)
b1.apply_load(R2, 30, -1)
b1.apply_load(120, 30, -2)
b1.bc_deflection = [(10, 0), (30, 0)]
b1.solve_for_reaction_loads(R1, R2)
# Test for finding reaction forces
p = b1.reaction_loads
q = {R1: 6, R2: 2}
assert p == q
# Test for load distribution function.
p = b1.load
q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
assert p == q
# Test for shear force distribution function
p = b1.shear_force()
q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
assert p == q
# Test for bending moment distribution function
p = b1.bending_moment()
q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
assert p == q
# Test for slope distribution function
p = b1.slope()
q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3
assert p == q/(E*I)
# Test for deflection distribution function
p = b1.deflection()
q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000
assert p == q/(E*I)
# Test using symbols
l = Symbol('l')
w0 = Symbol('w0')
w2 = Symbol('w2')
a1 = Symbol('a1')
c = Symbol('c')
c1 = Symbol('c1')
d = Symbol('d')
e = Symbol('e')
f = Symbol('f')
b2 = Beam(l, E, I)
b2.apply_load(w0, a1, 1)
b2.apply_load(w2, c1, -1)
b2.bc_deflection = [(c, d)]
b2.bc_slope = [(e, f)]
# Test for load distribution function.
p = b2.load
q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
assert p == q
# Test for shear force distribution function
p = b2.shear_force()
q = w0*SingularityFunction(x, a1, 2)/2 + w2*SingularityFunction(x, c1, 0)
assert p == q
# Test for bending moment distribution function
p = b2.bending_moment()
q = w0*SingularityFunction(x, a1, 3)/6 + w2*SingularityFunction(x, c1, 1)
assert p == q
# Test for slope distribution function
p = b2.slope()
q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
assert p == q
# Test for deflection distribution function
p = b2.deflection()
q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) + (w0*SingularityFunction(x, a1, 5)/120 + w2*SingularityFunction(x, c1, 3)/6)/(E*I) + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 + c*w2*SingularityFunction(e, c1, 2)/2 - w0*SingularityFunction(c, a1, 5)/120 - w2*SingularityFunction(c, c1, 3)/6)/(E*I)
assert p == q
b3 = Beam(9, E, I)
b3.apply_load(value=-2, start=2, order=2, end=3)
b3.bc_slope.append((0, 2))
C3 = symbols('C3')
C4 = symbols('C4')
p = b3.load
q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
assert p == q
p = b3.slope()
q = 2 + (-SingularityFunction(x, 2, 5)/30 + SingularityFunction(x, 3, 3)/3 + SingularityFunction(x, 3, 4)/6 + SingularityFunction(x, 3, 5)/30)/(E*I)
assert p == q
p = b3.deflection()
q = 2*x + (-SingularityFunction(x, 2, 6)/180 + SingularityFunction(x, 3, 4)/12 + SingularityFunction(x, 3, 5)/30 + SingularityFunction(x, 3, 6)/180)/(E*I)
assert p == q + C4
b4 = Beam(4, E, I)
b4.apply_load(-3, 0, 0, end=3)
p = b4.load
q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
assert p == q
p = b4.slope()
q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
assert p == q/(E*I) + C3
p = b4.deflection()
q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
assert p == q/(E*I) + C3*x + C4
# can't use end with point loads
raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
with raises(TypeError):
b4.variable = 1
def test_insufficient_bconditions():
# Test cases when required number of boundary conditions
# are not provided to solve the integration constants.
L = symbols('L', positive=True)
E, I, P, a3, a4 = symbols('E I P a3 a4')
b = Beam(L, E, I, base_char='a')
b.apply_load(R2, L, -1)
b.apply_load(R1, 0, -1)
b.apply_load(-P, L/2, -1)
b.solve_for_reaction_loads(R1, R2)
p = b.slope()
q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
assert p == q/(E*I) + a3
p = b.deflection()
q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
assert p == q/(E*I) + a3*x + a4
b.bc_deflection = [(0, 0)]
p = b.deflection()
q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
assert p == q/(E*I)
b.bc_deflection = [(0, 0), (L, 0)]
p = b.deflection()
q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
assert p == q/(E*I)
def test_statically_indeterminate():
E = Symbol('E')
I = Symbol('I')
M1, M2 = symbols('M1, M2')
F = Symbol('F')
l = Symbol('l', positive=True)
b5 = Beam(l, E, I)
b5.bc_deflection = [(0, 0),(l, 0)]
b5.bc_slope = [(0, 0),(l, 0)]
b5.apply_load(R1, 0, -1)
b5.apply_load(M1, 0, -2)
b5.apply_load(R2, l, -1)
b5.apply_load(M2, l, -2)
b5.apply_load(-F, l/2, -1)
b5.solve_for_reaction_loads(R1, R2, M1, M2)
p = b5.reaction_loads
q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8}
assert p == q
def test_beam_units():
E = Symbol('E')
I = Symbol('I')
R1, R2 = symbols('R1, R2')
b = Beam(8*meter, 200*giga*newton/meter**2, 400*1000000*(milli*meter)**4)
b.apply_load(5*kilo*newton, 2*meter, -1)
b.apply_load(R1, 0*meter, -1)
b.apply_load(R2, 8*meter, -1)
b.apply_load(10*kilo*newton/meter, 4*meter, 0, end=8*meter)
b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
b.solve_for_reaction_loads(R1, R2)
assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}
b = Beam(3*meter, E*newton/meter**2, I*meter**4)
b.apply_load(8*kilo*newton, 1*meter, -1)
b.apply_load(R1, 0*meter, -1)
b.apply_load(R2, 3*meter, -1)
b.apply_load(12*kilo*newton*meter, 2*meter, -2)
b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
b.solve_for_reaction_loads(R1, R2)
assert b.reaction_loads == {R1: -28000*newton/3, R2: 4000*newton/3}
assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
def test_variable_moment():
E = Symbol('E')
I = Symbol('I')
b = Beam(4, E, 2*(4 - x))
b.apply_load(20, 4, -1)
R, M = symbols('R, M')
b.apply_load(R, 0, -1)
b.apply_load(M, 0, -2)
b.bc_deflection = [(0, 0)]
b.bc_slope = [(0, 0)]
b.solve_for_reaction_loads(R, M)
assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
- 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
- 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
+ 40*SingularityFunction(x, 4, 1))/E).expand()
b = Beam(4, E - x, I)
b.apply_load(20, 4, -1)
R, M = symbols('R, M')
b.apply_load(R, 0, -1)
b.apply_load(M, 0, -2)
b.bc_deflection = [(0, 0)]
b.bc_slope = [(0, 0)]
b.solve_for_reaction_loads(R, M)
assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
+ 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
+ E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
+ x - 4)*SingularityFunction(x, 4, 0))/I).expand()
def test_composite_beam():
E = Symbol('E')
I = Symbol('I')
b1 = Beam(2, E, 1.5*I)
b2 = Beam(2, E, I)
b = b1.join(b2, "fixed")
b.apply_load(-20, 0, -1)
b.apply_load(80, 0, -2)
b.apply_load(20, 4, -1)
b.bc_slope = [(0, 0)]
b.bc_deflection = [(0, 0)]
assert b.length == 4
assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4))
assert b.slope().subs(x, 4) == 120.0/(E*I)
assert b.slope().subs(x, 2) == 80.0/(E*I)
assert int(b.deflection().subs(x, 4).args[0]) == 302 # Coefficient of 1/(E*I)
l = symbols('l', positive=True)
R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
b1 = Beam(2*l, E, I)
b2 = Beam(2*l, E, I)
b = b1.join(b2,"hinge")
b.apply_load(M1, 0, -2)
b.apply_load(R1, 0, -1)
b.apply_load(R2, l, -1)
b.apply_load(R3, 4*l, -1)
b.apply_load(P, 3*l, -1)
b.bc_slope = [(0, 0)]
b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
b.solve_for_reaction_loads(M1, R1, R2, R3)
assert b.reaction_loads == {R3: -P/2, R2: -5*P/4, M1: -P*l/4, R1: 3*P/4}
assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I)
assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I)
assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I)
# When beams having same second moment are joined.
b1 = Beam(2, 500, 10)
b2 = Beam(2, 500, 10)
b = b1.join(b2, "fixed")
b.apply_load(M1, 0, -2)
b.apply_load(R1, 0, -1)
b.apply_load(R2, 1, -1)
b.apply_load(R3, 4, -1)
b.apply_load(10, 3, -1)
b.bc_slope = [(0, 0)]
b.bc_deflection = [(0, 0), (1, 0), (4, 0)]
b.solve_for_reaction_loads(M1, R1, R2, R3)
assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\
- 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\
- 37*SingularityFunction(x, 4, 2)/67500
assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\
- 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\
- 37*SingularityFunction(x, 4, 3)/202500
def test_point_cflexure():
E = Symbol('E')
I = Symbol('I')
b = Beam(10, E, I)
b.apply_load(-4, 0, -1)
b.apply_load(-46, 6, -1)
b.apply_load(10, 2, -1)
b.apply_load(20, 4, -1)
b.apply_load(3, 6, 0)
assert b.point_cflexure() == [S(10)/3]
def test_remove_load():
E = Symbol('E')
I = Symbol('I')
b = Beam(4, E, I)
try:
b.remove_load(2, 1, -1)
# As no load is applied on beam, ValueError should be returned.
except ValueError:
assert True
else:
assert False
b.apply_load(-3, 0, -2)
b.apply_load(4, 2, -1)
b.apply_load(-2, 2, 2, end = 3)
b.remove_load(-2, 2, 2, end = 3)
assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)]
try:
b.remove_load(1, 2, -1)
# As load of this magnitude was never applied at
# this position, method should return a ValueError.
except ValueError:
assert True
else:
assert False
b.remove_load(-3, 0, -2)
b.remove_load(4, 2, -1)
assert b.load == 0
assert b.applied_loads == []
def test_apply_support():
E = Symbol('E')
I = Symbol('I')
b = Beam(4, E, I)
b.apply_support(0, "cantilever")
b.apply_load(20, 4, -1)
M_0, R_0 = symbols('M_0, R_0')
b.solve_for_reaction_loads(R_0, M_0)
assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
+ 10*SingularityFunction(x, 4, 2))/(E*I)
assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
+ 10*SingularityFunction(x, 4, 3)/3)/(E*I)
b = Beam(30, E, I)
b.apply_support(10, "pin")
b.apply_support(30, "roller")
b.apply_load(-8, 0, -1)
b.apply_load(120, 30, -2)
R_10, R_30 = symbols('R_10, R_30')
b.solve_for_reaction_loads(R_10, R_30)
assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3)/(E*I)
assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
P = Symbol('P', positive=True)
L = Symbol('L', positive=True)
b = Beam(L, E, I)
b.apply_support(0, type='fixed')
b.apply_support(L, type='fixed')
b.apply_load(-P, L/2, -1)
R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
def test_max_shear_force():
E = Symbol('E')
I = Symbol('I')
b = Beam(3, E, I)
R, M = symbols('R, M')
b.apply_load(R, 0, -1)
b.apply_load(M, 0, -2)
b.apply_load(2, 3, -1)
b.apply_load(4, 2, -1)
b.apply_load(2, 2, 0, end=3)
b.solve_for_reaction_loads(R, M)
assert b.max_shear_force() == (Interval(0, 2), 8)
l = symbols('l', positive=True)
P = Symbol('P')
b = Beam(l, E, I)
R1, R2 = symbols('R1, R2')
b.apply_load(R1, 0, -1)
b.apply_load(R2, l, -1)
b.apply_load(P, 0, 0, end=l)
b.solve_for_reaction_loads(R1, R2)
assert b.max_shear_force() == (0, l*Abs(P)/2)
def test_max_bmoment():
E = Symbol('E')
I = Symbol('I')
l, P = symbols('l, P', positive=True)
b = Beam(l, E, I)
R1, R2 = symbols('R1, R2')
b.apply_load(R1, 0, -1)
b.apply_load(R2, l, -1)
b.apply_load(P, l/2, -1)
b.solve_for_reaction_loads(R1, R2)
b.reaction_loads
assert b.max_bmoment() == (l/2, P*l/4)
b = Beam(l, E, I)
R1, R2 = symbols('R1, R2')
b.apply_load(R1, 0, -1)
b.apply_load(R2, l, -1)
b.apply_load(P, 0, 0, end=l)
b.solve_for_reaction_loads(R1, R2)
assert b.max_bmoment() == (l/2, P*l**2/8)
def test_max_deflection():
E, I, l, F = symbols('E, I, l, F', positive=True)
b = Beam(l, E, I)
b.bc_deflection = [(0, 0),(l, 0)]
b.bc_slope = [(0, 0),(l, 0)]
b.apply_load(F/2, 0, -1)
b.apply_load(-F*l/8, 0, -2)
b.apply_load(F/2, l, -1)
b.apply_load(F*l/8, l, -2)
b.apply_load(-F, l/2, -1)
assert b.max_deflection() == (l/2, F*l**3/(192*E*I))
def test_Beam3D():
l, E, G, I, A = symbols('l, E, G, I, A')
R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
b = Beam3D(l, E, G, I, A)
m, q = symbols('m, q')
b.apply_load(q, 0, 0, dir="y")
b.apply_moment_load(m, 0, 0, dir="z")
b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
b.solve_slope_deflection()
assert b.shear_force() == [0, -q*x, 0]
assert b.bending_moment() == [0, 0, -m*x + q*x**2/2]
expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) +
12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) +
12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 +
3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 +
3*A*G*l*m/2 - 3*E*I*q))/(6*A*E*G*I))
dx, dy, dz = b.deflection()
assert dx == dz == 0
assert dy == expected_deflection
b2 = Beam3D(30, E, G, I, A, x)
b2.apply_load(50, start=0, order=0, dir="y")
b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
b2.apply_load(R1, start=0, order=-1, dir="y")
b2.apply_load(R2, start=30, order=-1, dir="y")
b2.solve_for_reaction_loads(R1, R2)
assert b2.reaction_loads == {R1: -750, R2: -750}
b2.solve_slope_deflection()
assert b2.slope() == [0, 0, x**2*(50*x - 2250)/(6*E*I) + 3750*x/(E*I)]
expected_deflection = (x*(25*A*G*x**3/2 - 750*A*G*x**2 + 4500*E*I +
15*x*(750*A*G - 10*E*I))/(6*A*E*G*I))
dx, dy, dz = b2.deflection()
assert dx == dz == 0
assert dy == expected_deflection
# Test for solve_for_reaction_loads
b3 = Beam3D(30, E, G, I, A, x)
b3.apply_load(8, start=0, order=0, dir="y")
b3.apply_load(9*x, start=0, order=0, dir="z")
b3.apply_load(R1, start=0, order=-1, dir="y")
b3.apply_load(R2, start=30, order=-1, dir="y")
b3.apply_load(R3, start=0, order=-1, dir="z")
b3.apply_load(R4, start=30, order=-1, dir="z")
b3.solve_for_reaction_loads(R1, R2, R3, R4)
assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700}
def test_parabolic_loads():
E, I, L = symbols('E, I, L', positive=True, real=True)
R, M, P = symbols('R, M, P', real=True)
# cantilever beam fixed at x=0 and parabolic distributed loading across
# length of beam
beam = Beam(L, E, I)
beam.bc_deflection.append((0, 0))
beam.bc_slope.append((0, 0))
beam.apply_load(R, 0, -1)
beam.apply_load(M, 0, -2)
# parabolic load
beam.apply_load(1, 0, 2)
beam.solve_for_reaction_loads(R, M)
assert beam.reaction_loads[R] == -L**3 / 3
# cantilever beam fixed at x=0 and parabolic distributed loading across
# first half of beam
beam = Beam(2 * L, E, I)
beam.bc_deflection.append((0, 0))
beam.bc_slope.append((0, 0))
beam.apply_load(R, 0, -1)
beam.apply_load(M, 0, -2)
# parabolic load from x=0 to x=L
beam.apply_load(1, 0, 2, end=L)
beam.solve_for_reaction_loads(R, M)
# result should be the same as the prior example
assert beam.reaction_loads[R] == -L**3 / 3
# check constant load
beam = Beam(2 * L, E, I)
beam.apply_load(P, 0, 0, end=L)
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
assert loading.xreplace({x: 5}) == 40
assert loading.xreplace({x: 15}) == 0
# check ramp load
beam = Beam(2 * L, E, I)
beam.apply_load(P, 0, 1, end=L)
assert beam.load == (P*SingularityFunction(x, 0, 1) -
P*SingularityFunction(x, L, 1) -
P*L*SingularityFunction(x, L, 0))
# check higher order load: x**8 load from x=0 to x=L
beam = Beam(2 * L, E, I)
beam.apply_load(P, 0, 8, end=L)
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
assert loading.xreplace({x: 5}) == 40 * 5**8
assert loading.xreplace({x: 15}) == 0
|
583649e0200d1f624523e672bd95cbda46c4c3616ada9e0c365afa5244f9e6eb | from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
deviation, brewster_angle, critical_angle, lens_makers_formula,
mirror_formula, lens_formula, hyperfocal_distance,
transverse_magnification)
from sympy.physics.optics.medium import Medium
from sympy.physics.units import e0
from sympy import symbols, sqrt, Matrix, oo
from sympy.geometry.point import Point3D
from sympy.geometry.line import Ray3D
from sympy.geometry.plane import Plane
from sympy.core import S
from sympy.utilities.pytest import raises
def test_refraction_angle():
n1, n2 = symbols('n1, n2')
m1 = Medium('m1')
m2 = Medium('m2')
r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
i = Matrix([1, 1, 1])
n = Matrix([0, 0, 1])
normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
assert refraction_angle(r1, 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, plane=P) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(r1, 1, 1, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
assert refraction_angle(r1, m1, 1.33, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(S(100)/133, S(100)/133, -789378201649271*sqrt(3)/1000000000000000))
assert refraction_angle(r1, 1, m2, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
assert refraction_angle(r1, n1, n2, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
assert refraction_angle(r1, 1, 1, normal_ray) == \
Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
assert round(refraction_angle(0.5, 1, 2), 5) == 0.24207
assert round(refraction_angle(0.5, 2, 1), 5) == 1.28293
raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
def test_fresnel_coefficients():
assert list(round(i, 5) for i in fresnel_coefficients(0.5, 1, 1.33)) == \
[0.11163, -0.17138, 0.83581, 0.82862]
assert list(round(i, 5) for i in fresnel_coefficients(0.5, 1.33, 1)) == \
[-0.07726, 0.20482, 1.22724, 1.20482]
m1 = Medium('m1')
m2 = Medium('m2', n=2)
assert list(round(i, 5) for i in fresnel_coefficients(0.3, m1, m2)) == \
[0.31784, -0.34865, 0.65892, 0.65135]
assert list(list(round(j, 5) for j in i.as_real_imag()) for i in \
fresnel_coefficients(0.6, m2, m1)) == \
[[-0.23563, -0.97184], [0.81648, -0.57738]]
def test_deviation():
n1, n2 = symbols('n1, n2')
r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
n = Matrix([0, 0, 1])
i = Matrix([-1, -1, -1])
normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
assert deviation(r1, 1, 1, normal=n) == 0
assert deviation(r1, 1, 1, plane=P) == 0
assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
assert deviation(r1, 1.33, 1, plane=P) is None # TIR
assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
assert round(deviation(0.5, 1, 2), 5) == -0.25793
assert round(deviation(0.5, 2, 1), 5) == 0.78293
def test_brewster_angle():
m1 = Medium('m1', n=1)
m2 = Medium('m2', n=1.33)
assert round(brewster_angle(m1, m2), 2) == 0.93
m1 = Medium('m1', permittivity=e0, n=1)
m2 = Medium('m2', permittivity=e0, n=1.33)
assert round(brewster_angle(m1, m2), 2) == 0.93
assert round(brewster_angle(1, 1.33), 2) == 0.93
def test_critical_angle():
m1 = Medium('m1', n=1)
m2 = Medium('m2', n=1.33)
assert round(critical_angle(m2, m1), 2) == 0.85
def test_lens_makers_formula():
n1, n2 = symbols('n1, n2')
m1 = Medium('m1', permittivity=e0, n=1)
m2 = Medium('m2', permittivity=e0, n=1.33)
assert lens_makers_formula(n1, n2, 10, -10) == 5*n2/(n1 - n2)
assert round(lens_makers_formula(m1, m2, 10, -10), 2) == -20.15
assert round(lens_makers_formula(1.33, 1, 10, -10), 2) == 15.15
def test_mirror_formula():
u, v, f = symbols('u, v, f')
assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
assert mirror_formula(u=u, v=v) == u*v/(u + v)
assert mirror_formula(u=oo, v=v) == v
assert mirror_formula(u=oo, v=oo) == oo
assert mirror_formula(focal_length=oo, u=u) == -u
assert mirror_formula(u=u, v=oo) == u
assert mirror_formula(focal_length=oo, v=oo) == oo
assert mirror_formula(focal_length=f, v=oo) == f
assert mirror_formula(focal_length=oo, v=v) == -v
assert mirror_formula(focal_length=oo, u=oo) == oo
assert mirror_formula(focal_length=f, u=oo) == f
assert mirror_formula(focal_length=oo, u=u) == -u
raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))
def test_lens_formula():
u, v, f = symbols('u, v, f')
assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
assert lens_formula(u=u, v=v) == u*v/(u - v)
assert lens_formula(u=oo, v=v) == v
assert lens_formula(u=oo, v=oo) == oo
assert lens_formula(focal_length=oo, u=u) == u
assert lens_formula(u=u, v=oo) == -u
assert lens_formula(focal_length=oo, v=oo) == -oo
assert lens_formula(focal_length=oo, v=v) == v
assert lens_formula(focal_length=f, v=oo) == -f
assert lens_formula(focal_length=oo, u=oo) == oo
assert lens_formula(focal_length=oo, u=u) == u
assert lens_formula(focal_length=f, u=oo) == f
raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))
def test_hyperfocal_distance():
f, N, c = symbols('f, N, c')
assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
assert round(hyperfocal_distance(f=0.5, N=8, c=0.0033), 2) == 9.47
def test_transverse_magnification():
si, so = symbols('si, so')
assert transverse_magnification(si, so) == -si/so
assert transverse_magnification(30, 15) == -2
|
a0ef6fcaa9f8c76b86ff3e023af02929828eab5e8dba37215361eb0f47cdd1c7 | from __future__ import print_function, division
from sympy import Basic
from sympy.core.expr import Expr
from sympy.core.numbers import Integer
from sympy.core.sympify import sympify
from sympy.core.compatibility import SYMPY_INTS, Iterable
import itertools
class NDimArray(object):
"""
Examples
========
Create an N-dim array of zeros:
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3, 4)
>>> a
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
Create an N-dim array from a list;
>>> a = MutableDenseNDimArray([[2, 3], [4, 5]])
>>> a
[[2, 3], [4, 5]]
>>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]])
>>> b
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]
Create an N-dim array from a flat list with dimension shape:
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
>>> a
[[1, 2, 3], [4, 5, 6]]
Create an N-dim array from a matrix:
>>> from sympy import Matrix
>>> a = Matrix([[1,2],[3,4]])
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> b = MutableDenseNDimArray(a)
>>> b
[[1, 2], [3, 4]]
Arithmetic operations on N-dim arrays
>>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2))
>>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2))
>>> c = a + b
>>> c
[[5, 5], [5, 5]]
>>> a - b
[[-3, -3], [-3, -3]]
"""
_diff_wrt = True
def __new__(cls, iterable, shape=None, **kwargs):
from sympy.tensor.array import ImmutableDenseNDimArray
return ImmutableDenseNDimArray(iterable, shape, **kwargs)
def _parse_index(self, index):
if isinstance(index, (SYMPY_INTS, Integer)):
if index >= self._loop_size:
raise ValueError("index out of range")
return index
if len(index) != self._rank:
raise ValueError('Wrong number of array axes')
real_index = 0
# check if input index can exist in current indexing
for i in range(self._rank):
if index[i] >= self.shape[i]:
raise ValueError('Index ' + str(index) + ' out of border')
real_index = real_index*self.shape[i] + index[i]
return real_index
def _get_tuple_index(self, integer_index):
index = []
for i, sh in enumerate(reversed(self.shape)):
index.append(integer_index % sh)
integer_index //= sh
index.reverse()
return tuple(index)
def _check_symbolic_index(self, index):
# Check if any index is symbolic:
tuple_index = (index if isinstance(index, tuple) else (index,))
if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]):
for i, nth_dim in zip(tuple_index, self.shape):
if ((i < 0) == True) or ((i >= nth_dim) == True):
raise ValueError("index out of range")
from sympy.tensor import Indexed
return Indexed(self, *tuple_index)
return None
def _setter_iterable_check(self, value):
from sympy.matrices.matrices import MatrixBase
if isinstance(value, (Iterable, MatrixBase, NDimArray)):
raise NotImplementedError
@classmethod
def _scan_iterable_shape(cls, iterable):
def f(pointer):
if not isinstance(pointer, Iterable):
return [pointer], ()
result = []
elems, shapes = zip(*[f(i) for i in pointer])
if len(set(shapes)) != 1:
raise ValueError("could not determine shape unambiguously")
for i in elems:
result.extend(i)
return result, (len(shapes),)+shapes[0]
return f(iterable)
@classmethod
def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs):
from sympy.matrices.matrices import MatrixBase
if shape is None and iterable is None:
shape = ()
iterable = ()
# Construction from another `NDimArray`:
elif shape is None and isinstance(iterable, NDimArray):
shape = iterable.shape
iterable = list(iterable)
# Construct N-dim array from an iterable (numpy arrays included):
elif shape is None and isinstance(iterable, Iterable):
iterable, shape = cls._scan_iterable_shape(iterable)
# Construct N-dim array from a Matrix:
elif shape is None and isinstance(iterable, MatrixBase):
shape = iterable.shape
# Construct N-dim array from another N-dim array:
elif shape is None and isinstance(iterable, NDimArray):
shape = iterable.shape
# Construct NDimArray(iterable, shape)
elif shape is not None:
pass
else:
shape = ()
iterable = (iterable,)
if isinstance(shape, (SYMPY_INTS, Integer)):
shape = (shape,)
if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]):
raise TypeError("Shape should contain integers only.")
return tuple(shape), iterable
def __len__(self):
"""Overload common function len(). Returns number of elements in array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> len(a)
9
"""
return self._loop_size
@property
def shape(self):
"""
Returns array shape (dimension).
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3, 3)
>>> a.shape
(3, 3)
"""
return self._shape
def rank(self):
"""
Returns rank of array.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(3,4,5,6,3)
>>> a.rank()
5
"""
return self._rank
def diff(self, *args, **kwargs):
"""
Calculate the derivative of each element in the array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> from sympy.abc import x, y
>>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]])
>>> M.diff(x)
[[1, 0], [0, y]]
"""
from sympy import Derivative
kwargs.setdefault('evaluate', True)
return Derivative(self.as_immutable(), *args, **kwargs)
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _visit_eval_derivative_scalar(self, base):
# Types are (base: scalar, self: array)
return self.applyfunc(lambda x: base.diff(x))
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: array)
from sympy import derive_by_array
return derive_by_array(base, self)
def _eval_derivative_n_times(self, s, n):
return Basic._eval_derivative_n_times(self, s, n)
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def _eval_derivative_array(self, arg):
from sympy import derive_by_array
from sympy import Tuple
from sympy.matrices.common import MatrixCommon
if isinstance(arg, (Iterable, Tuple, MatrixCommon, NDimArray)):
return derive_by_array(self, arg)
else:
return self.applyfunc(lambda x: x.diff(arg))
def applyfunc(self, f):
"""Apply a function to each element of the N-dim array.
Examples
========
>>> from sympy import ImmutableDenseNDimArray
>>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2))
>>> m
[[0, 1], [2, 3]]
>>> m.applyfunc(lambda i: 2*i)
[[0, 2], [4, 6]]
"""
return type(self)(map(f, self), self.shape)
def __str__(self):
"""Returns string, allows to use standard functions print() and str().
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 2)
>>> a
[[0, 0], [0, 0]]
"""
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return "["+", ".join([str(self[e]) for e in range(i, j)])+"]"
sh //= shape_left[0]
return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left)
if self.rank() == 0:
return self[()].__str__()
return f(self._loop_size, self.shape, 0, self._loop_size)
def __repr__(self):
return self.__str__()
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def tolist(self):
"""
Converting MutableDenseNDimArray to one-dim list
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
>>> a
[[1, 2], [3, 4]]
>>> b = a.tolist()
>>> b
[[1, 2], [3, 4]]
"""
def f(sh, shape_left, i, j):
if len(shape_left) == 1:
return [self[e] for e in range(i, j)]
result = []
sh //= shape_left[0]
for e in range(shape_left[0]):
result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh))
return result
return f(self._loop_size, self.shape, 0, self._loop_size)
def __add__(self, other):
if not isinstance(other, NDimArray):
raise TypeError(str(other))
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i+j for i,j in zip(self, other)]
return type(self)(result_list, self.shape)
def __sub__(self, other):
if not isinstance(other, NDimArray):
raise TypeError(str(other))
if self.shape != other.shape:
raise ValueError("array shape mismatch")
result_list = [i-j for i,j in zip(self, other)]
return type(self)(result_list, self.shape)
def __mul__(self, other):
from sympy.matrices.matrices import MatrixBase
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
result_list = [i*other for i in self]
return type(self)(result_list, self.shape)
def __rmul__(self, other):
from sympy.matrices.matrices import MatrixBase
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
other = sympify(other)
result_list = [other*i for i in self]
return type(self)(result_list, self.shape)
def __div__(self, other):
from sympy.matrices.matrices import MatrixBase
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
raise ValueError("scalar expected")
other = sympify(other)
result_list = [i/other for i in self]
return type(self)(result_list, self.shape)
def __rdiv__(self, other):
raise NotImplementedError('unsupported operation on NDimArray')
def __neg__(self):
result_list = [-i for i in self]
return type(self)(result_list, self.shape)
def __eq__(self, other):
"""
NDimArray instances can be compared to each other.
Instances equal if they have same shape and data.
Examples
========
>>> from sympy import MutableDenseNDimArray
>>> a = MutableDenseNDimArray.zeros(2, 3)
>>> b = MutableDenseNDimArray.zeros(2, 3)
>>> a == b
True
>>> c = a.reshape(3, 2)
>>> c == b
False
>>> a[0,0] = 1
>>> b[0,0] = 2
>>> a == b
False
"""
if not isinstance(other, NDimArray):
return False
return (self.shape == other.shape) and (list(self) == list(other))
def __ne__(self, other):
return not self == other
__truediv__ = __div__
__rtruediv__ = __rdiv__
def _eval_transpose(self):
if self.rank() != 2:
raise ValueError("array rank not 2")
from .arrayop import permutedims
return permutedims(self, (1, 0))
def transpose(self):
return self._eval_transpose()
def _eval_conjugate(self):
return self.func([i.conjugate() for i in self], self.shape)
def conjugate(self):
return self._eval_conjugate()
def _eval_adjoint(self):
return self.transpose().conjugate()
def adjoint(self):
return self._eval_adjoint()
def _slice_expand(self, s, dim):
if not isinstance(s, slice):
return (s,)
start, stop, step = s.indices(dim)
return [start + i*step for i in range((stop-start)//step)]
def _get_slice_data_for_array_access(self, index):
sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
eindices = itertools.product(*sl_factors)
return sl_factors, eindices
def _get_slice_data_for_array_assignment(self, index, value):
if not isinstance(value, NDimArray):
value = type(self)(value)
sl_factors, eindices = self._get_slice_data_for_array_access(index)
slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors]
# TODO: add checks for dimensions for `value`?
return value, eindices, slice_offsets
@classmethod
def _check_special_bounds(cls, flat_list, shape):
if shape == () and len(flat_list) != 1:
raise ValueError("arrays without shape need one scalar value")
if shape == (0,) and len(flat_list) > 0:
raise ValueError("if array shape is (0,) there cannot be elements")
class ImmutableNDimArray(NDimArray, Basic):
_op_priority = 11.0
def __hash__(self):
return Basic.__hash__(self)
def as_immutable(self):
return self
def as_mutable(self):
raise NotImplementedError("abstract method")
|
e0798743291931abe9c986b2312d26a233c16fb592b55569b6429b17ca6a7f64 | import collections
import random
from sympy.assumptions import Q
from sympy.core.add import Add
from sympy.core.compatibility import range
from sympy.core.function import (Function, diff)
from sympy.core.numbers import (E, Float, I, Integer, oo, pi)
from sympy.core.relational import (Eq, Lt)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.logic.boolalg import (And, Or)
from sympy.matrices.common import (ShapeError, MatrixError, NonSquareMatrixError,
_MinimalMatrix, MatrixShaping, MatrixProperties, MatrixOperations, MatrixArithmetic,
MatrixSpecial)
from sympy.matrices.matrices import (MatrixDeterminant,
MatrixReductions, MatrixSubspaces, MatrixEigen, MatrixCalculus)
from sympy.matrices import (Matrix, diag, eye,
matrix_multiply_elementwise, ones, zeros, SparseMatrix, banded)
from sympy.polys.polytools import Poly
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.utilities.iterables import flatten
from sympy.utilities.pytest import (raises, XFAIL, slow, skip,
warns_deprecated_sympy)
from sympy.abc import a, b, c, d, x, y, z
# classes to test the basic matrix classes
class ShapingOnlyMatrix(_MinimalMatrix, MatrixShaping):
pass
def eye_Shaping(n):
return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Shaping(n):
return ShapingOnlyMatrix(n, n, lambda i, j: 0)
class PropertiesOnlyMatrix(_MinimalMatrix, MatrixProperties):
pass
def eye_Properties(n):
return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Properties(n):
return PropertiesOnlyMatrix(n, n, lambda i, j: 0)
class OperationsOnlyMatrix(_MinimalMatrix, MatrixOperations):
pass
def eye_Operations(n):
return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Operations(n):
return OperationsOnlyMatrix(n, n, lambda i, j: 0)
class ArithmeticOnlyMatrix(_MinimalMatrix, MatrixArithmetic):
pass
def eye_Arithmetic(n):
return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Arithmetic(n):
return ArithmeticOnlyMatrix(n, n, lambda i, j: 0)
class DeterminantOnlyMatrix(_MinimalMatrix, MatrixDeterminant):
pass
def eye_Determinant(n):
return DeterminantOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Determinant(n):
return DeterminantOnlyMatrix(n, n, lambda i, j: 0)
class ReductionsOnlyMatrix(_MinimalMatrix, MatrixReductions):
pass
def eye_Reductions(n):
return ReductionsOnlyMatrix(n, n, lambda i, j: int(i == j))
def zeros_Reductions(n):
return ReductionsOnlyMatrix(n, n, lambda i, j: 0)
class SpecialOnlyMatrix(_MinimalMatrix, MatrixSpecial):
pass
class SubspaceOnlyMatrix(_MinimalMatrix, MatrixSubspaces):
pass
class EigenOnlyMatrix(_MinimalMatrix, MatrixEigen):
pass
class CalculusOnlyMatrix(_MinimalMatrix, MatrixCalculus):
pass
def test__MinimalMatrix():
x = _MinimalMatrix(2, 3, [1, 2, 3, 4, 5, 6])
assert x.rows == 2
assert x.cols == 3
assert x[2] == 3
assert x[1, 1] == 5
assert list(x) == [1, 2, 3, 4, 5, 6]
assert list(x[1, :]) == [4, 5, 6]
assert list(x[:, 1]) == [2, 5]
assert list(x[:, :]) == list(x)
assert x[:, :] == x
assert _MinimalMatrix(x) == x
assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x
assert _MinimalMatrix(([1, 2, 3], [4, 5, 6])) == x
assert _MinimalMatrix([(1, 2, 3), (4, 5, 6)]) == x
assert _MinimalMatrix(((1, 2, 3), (4, 5, 6))) == x
assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x)
# ShapingOnlyMatrix tests
def test_vec():
m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4])
m_vec = m.vec()
assert m_vec.cols == 1
for i in range(4):
assert m_vec[i] == i + 1
def test_tolist():
lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]]
flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3]
m = ShapingOnlyMatrix(3, 4, flat_lst)
assert m.tolist() == lst
def test_row_col_del():
e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
raises(ValueError, lambda: e.row_del(5))
raises(ValueError, lambda: e.row_del(-5))
raises(ValueError, lambda: e.col_del(5))
raises(ValueError, lambda: e.col_del(-5))
assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]])
assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]])
assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]])
assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]])
def test_get_diag_blocks1():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert a.get_diag_blocks() == [a]
assert b.get_diag_blocks() == [b]
assert c.get_diag_blocks() == [c]
def test_get_diag_blocks2():
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b)
A = ShapingOnlyMatrix(A.rows, A.cols, A)
B = ShapingOnlyMatrix(B.rows, B.cols, B)
C = ShapingOnlyMatrix(C.rows, C.cols, C)
D = ShapingOnlyMatrix(D.rows, D.cols, D)
assert A.get_diag_blocks() == [a, b, b]
assert B.get_diag_blocks() == [a, b, c]
assert C.get_diag_blocks() == [a, c, b]
assert D.get_diag_blocks() == [c, c, b]
def test_shape():
m = ShapingOnlyMatrix(1, 2, [0, 0])
m.shape == (1, 2)
def test_reshape():
m0 = eye_Shaping(3)
assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j)
assert m1.reshape(
4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))
def test_row_col():
m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
assert m.row(0) == Matrix(1, 3, [1, 2, 3])
assert m.col(0) == Matrix(3, 1, [1, 4, 7])
def test_row_join():
assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \
Matrix([[1, 0, 0, 7],
[0, 1, 0, 7],
[0, 0, 1, 7]])
def test_col_join():
assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \
Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[7, 7, 7]])
def test_row_insert():
r4 = Matrix([[4, 4, 4]])
for i in range(-4, 5):
l = [1, 0, 0]
l.insert(i, 4)
assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l
def test_col_insert():
c4 = Matrix([4, 4, 4])
for i in range(-4, 5):
l = [0, 0, 0]
l.insert(i, 4)
assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l
# issue 13643
assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \
Matrix([[1, 0, 0, 2, 2, 0, 0, 0],
[0, 1, 0, 2, 2, 0, 0, 0],
[0, 0, 1, 2, 2, 0, 0, 0],
[0, 0, 0, 2, 2, 1, 0, 0],
[0, 0, 0, 2, 2, 0, 1, 0],
[0, 0, 0, 2, 2, 0, 0, 1]])
def test_extract():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10])
assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11])
assert m.extract(range(4), range(3)) == m
raises(IndexError, lambda: m.extract([4], [0]))
raises(IndexError, lambda: m.extract([0], [3]))
def test_hstack():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
assert m == m.hstack(m)
assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([
[0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5],
[6, 7, 8, 6, 7, 8, 6, 7, 8],
[9, 10, 11, 9, 10, 11, 9, 10, 11]])
raises(ShapeError, lambda: m.hstack(m, m2))
assert Matrix.hstack() == Matrix()
# test regression #12938
M1 = Matrix.zeros(0, 0)
M2 = Matrix.zeros(0, 1)
M3 = Matrix.zeros(0, 2)
M4 = Matrix.zeros(0, 3)
m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4)
assert m.rows == 0 and m.cols == 6
def test_vstack():
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
assert m == m.vstack(m)
assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
raises(ShapeError, lambda: m.vstack(m, m2))
assert Matrix.vstack() == Matrix()
# PropertiesOnlyMatrix tests
def test_atoms():
m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x])
assert m.atoms() == {S(1), S(2), S(-1), x}
assert m.atoms(Symbol) == {x}
def test_free_symbols():
assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x}
def test_has():
A = PropertiesOnlyMatrix(((x, y), (2, 3)))
assert A.has(x)
assert not A.has(z)
assert A.has(Symbol)
A = PropertiesOnlyMatrix(((2, y), (2, 3)))
assert not A.has(x)
def test_is_anti_symmetric():
x = symbols('x')
assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False
m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0])
assert m.is_anti_symmetric() is True
assert m.is_anti_symmetric(simplify=False) is False
assert m.is_anti_symmetric(simplify=lambda x: x) is False
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m])
assert m.is_anti_symmetric(simplify=False) is True
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]])
assert m.is_anti_symmetric() is False
def test_diagonal_symmetrical():
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
assert not m.is_diagonal()
assert m.is_symmetric()
assert m.is_symmetric(simplify=False)
m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1])
assert m.is_diagonal()
m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3))
assert m.is_diagonal()
assert m.is_symmetric()
m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3])
assert m == diag(1, 2, 3)
m = PropertiesOnlyMatrix(2, 3, zeros(2, 3))
assert not m.is_symmetric()
assert m.is_diagonal()
m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0)))
assert m.is_diagonal()
m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0)))
assert m.is_diagonal()
m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
assert m.is_symmetric()
assert not m.is_symmetric(simplify=False)
assert m.expand().is_symmetric(simplify=False)
def test_is_hermitian():
a = PropertiesOnlyMatrix([[1, I], [-I, 1]])
assert a.is_hermitian
a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]])
assert a.is_hermitian is False
a = PropertiesOnlyMatrix([[x, I], [-I, 1]])
assert a.is_hermitian is None
a = PropertiesOnlyMatrix([[x, 1], [-I, 1]])
assert a.is_hermitian is False
def test_is_Identity():
assert eye_Properties(3).is_Identity
assert not PropertiesOnlyMatrix(zeros(3)).is_Identity
assert not PropertiesOnlyMatrix(ones(3)).is_Identity
# issue 6242
assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity
def test_is_symbolic():
a = PropertiesOnlyMatrix([[x, x], [x, x]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]])
assert a.is_symbolic() is False
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, x, 3]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_symbolic() is False
a = PropertiesOnlyMatrix([[1], [x], [3]])
assert a.is_symbolic() is True
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_symbolic() is False
def test_is_upper():
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_upper is True
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_upper is False
def test_is_lower():
a = PropertiesOnlyMatrix([[1, 2, 3]])
assert a.is_lower is False
a = PropertiesOnlyMatrix([[1], [2], [3]])
assert a.is_lower is True
def test_is_square():
m = PropertiesOnlyMatrix([[1], [1]])
m2 = PropertiesOnlyMatrix([[2, 2], [2, 2]])
assert not m.is_square
assert m2.is_square
def test_is_symmetric():
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
assert m.is_symmetric()
m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1])
assert not m.is_symmetric()
def test_is_hessenberg():
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]])
assert A.is_upper_hessenberg
A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2])
assert A.is_lower_hessenberg
A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2])
assert A.is_lower_hessenberg is False
assert A.is_upper_hessenberg is False
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]])
assert not A.is_upper_hessenberg
def test_is_zero():
assert PropertiesOnlyMatrix(0, 0, []).is_zero
assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero
assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero
assert not PropertiesOnlyMatrix(eye(3)).is_zero
assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero == None
assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero == False
a = Symbol('a', nonzero=True)
assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero == False
def test_values():
assert set(PropertiesOnlyMatrix(2, 2, [0, 1, 2, 3]
).values()) == set([1, 2, 3])
x = Symbol('x', real=True)
assert set(PropertiesOnlyMatrix(2, 2, [x, 0, 0, 1]
).values()) == set([x, 1])
# OperationsOnlyMatrix tests
def test_applyfunc():
m0 = OperationsOnlyMatrix(eye(3))
assert m0.applyfunc(lambda x: 2*x) == eye(3)*2
assert m0.applyfunc(lambda x: 0) == zeros(3)
assert m0.applyfunc(lambda x: 1) == ones(3)
def test_adjoint():
dat = [[0, I], [1, 0]]
ans = OperationsOnlyMatrix([[0, 1], [-I, 0]])
assert ans.adjoint() == Matrix(dat)
def test_as_real_imag():
m1 = OperationsOnlyMatrix(2, 2, [1, 2, 3, 4])
m3 = OperationsOnlyMatrix(2, 2,
[1 + S.ImaginaryUnit, 2 + 2*S.ImaginaryUnit,
3 + 3*S.ImaginaryUnit, 4 + 4*S.ImaginaryUnit])
a, b = m3.as_real_imag()
assert a == m1
assert b == m1
def test_conjugate():
M = OperationsOnlyMatrix([[0, I, 5],
[1, 2, 0]])
assert M.T == Matrix([[0, 1],
[I, 2],
[5, 0]])
assert M.C == Matrix([[0, -I, 5],
[1, 2, 0]])
assert M.C == M.conjugate()
assert M.H == M.T.C
assert M.H == Matrix([[ 0, 1],
[-I, 2],
[ 5, 0]])
def test_doit():
a = OperationsOnlyMatrix([[Add(x, x, evaluate=False)]])
assert a[0] != 2*x
assert a.doit() == Matrix([[2*x]])
def test_evalf():
a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6])
assert all(a.evalf()[i] == a[i].evalf() for i in range(2))
assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2))
assert all(a.n(2)[i] == a[i].n(2) for i in range(2))
def test_expand():
m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
# Test if expand() returns a matrix
m1 = m0.expand()
assert m1 == Matrix(
[[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])
a = Symbol('a', real=True)
assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \
Matrix([cos(a) + I*sin(a)])
def test_refine():
m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)],
[sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
m1 = m0.refine(Q.real(x) & Q.real(y))
assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])
m1 = m0.refine(Q.positive(x) & Q.positive(y))
assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])
m1 = m0.refine(Q.negative(x) & Q.negative(y))
assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])
def test_replace():
F, G = symbols('F, G', cls=Function)
K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j))
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
N = M.replace(F, G)
assert N == K
def test_replace_map():
F, G = symbols('F, G', cls=Function)
K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \
: G(1)}), (G(2), {F(2): G(2)})])
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
N = M.replace(F, G, True)
assert N == K
def test_simplify():
n = Symbol('n')
f = Function('f')
M = OperationsOnlyMatrix([[ 1/x + 1/y, (x + x*y) / x ],
[ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
assert M.simplify() == Matrix([[ (x + y)/(x * y), 1 + y ],
[ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
eq = (1 + x)**2
M = OperationsOnlyMatrix([[eq]])
assert M.simplify() == Matrix([[eq]])
assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]])
def test_subs():
assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \
Matrix([[(x - 1)*(y - 1)]])
def test_trace():
M = OperationsOnlyMatrix([[1, 0, 0],
[0, 5, 0],
[0, 0, 8]])
assert M.trace() == 14
def test_xreplace():
assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \
Matrix([[1, 5], [5, 4]])
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \
Matrix([[-1, 2], [-3, 4]])
def test_permute():
a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
raises(IndexError, lambda: a.permute([[0, 5]]))
b = a.permute_rows([[0, 2], [0, 1]])
assert a.permute([[0, 2], [0, 1]]) == b == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
b = a.permute_cols([[0, 2], [0, 1]])
assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\
Matrix([
[ 2, 3, 1, 4],
[ 6, 7, 5, 8],
[10, 11, 9, 12]])
b = a.permute_cols([[0, 2], [0, 1]], direction='backward')
assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\
Matrix([
[ 3, 1, 2, 4],
[ 7, 5, 6, 8],
[11, 9, 10, 12]])
assert a.permute([1, 2, 0, 3]) == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
from sympy.combinatorics import Permutation
assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([
[5, 6, 7, 8],
[9, 10, 11, 12],
[1, 2, 3, 4]])
# ArithmeticOnlyMatrix tests
def test_abs():
m = ArithmeticOnlyMatrix([[1, -2], [x, y]])
assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]])
def test_add():
m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]])
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
raises(ShapeError, lambda: m + n)
def test_multiplication():
a = ArithmeticOnlyMatrix((
(1, 2),
(3, 1),
(0, 6),
))
b = ArithmeticOnlyMatrix((
(1, 2),
(3, 0),
))
raises(ShapeError, lambda: b*a)
raises(TypeError, lambda: a*{})
c = a*b
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
try:
eval('c = a @ b')
except SyntaxError:
pass
else:
assert c[0, 0] == 7
assert c[0, 1] == 2
assert c[1, 0] == 6
assert c[1, 1] == 6
assert c[2, 0] == 18
assert c[2, 1] == 0
h = a.multiply_elementwise(c)
assert h == matrix_multiply_elementwise(a, c)
assert h[0, 0] == 7
assert h[0, 1] == 4
assert h[1, 0] == 18
assert h[1, 1] == 6
assert h[2, 0] == 0
assert h[2, 1] == 0
raises(ShapeError, lambda: a.multiply_elementwise(b))
c = b * Symbol("x")
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == x
assert c[0, 1] == 2*x
assert c[1, 0] == 3*x
assert c[1, 1] == 0
c2 = x * b
assert c == c2
c = 5 * b
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
try:
eval('c = 5 @ b')
except SyntaxError:
pass
else:
assert isinstance(c, ArithmeticOnlyMatrix)
assert c[0, 0] == 5
assert c[0, 1] == 2*5
assert c[1, 0] == 3*5
assert c[1, 1] == 0
def test_matmul():
a = Matrix([[1, 2], [3, 4]])
assert a.__matmul__(2) == NotImplemented
assert a.__rmatmul__(2) == NotImplemented
#This is done this way because @ is only supported in Python 3.5+
#To check 2@a case
try:
eval('2 @ a')
except SyntaxError:
pass
except TypeError: #TypeError is raised in case of NotImplemented is returned
pass
#Check a@2 case
try:
eval('a @ 2')
except SyntaxError:
pass
except TypeError: #TypeError is raised in case of NotImplemented is returned
pass
def test_power():
raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2)
A = ArithmeticOnlyMatrix([[2, 3], [4, 5]])
assert (A**5)[:] == (6140, 8097, 10796, 14237)
A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]])
assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433)
assert A**0 == eye(3)
assert A**1 == A
assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100
assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]])
def test_neg():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2])
def test_sub():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0])
def test_div():
n = ArithmeticOnlyMatrix(1, 2, [1, 2])
assert n/2 == ArithmeticOnlyMatrix(1, 2, [S(1)/2, S(2)/2])
# DeterminantOnlyMatrix tests
def test_det():
a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6])
raises(NonSquareMatrixError, lambda: a.det())
z = zeros_Determinant(2)
ey = eye_Determinant(2)
assert z.det() == 0
assert ey.det() == 1
x = Symbol('x')
a = DeterminantOnlyMatrix(0, 0, [])
b = DeterminantOnlyMatrix(1, 1, [5])
c = DeterminantOnlyMatrix(2, 2, [1, 2, 3, 4])
d = DeterminantOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8])
e = DeterminantOnlyMatrix(4, 4,
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
# the method keyword for `det` doesn't kick in until 4x4 matrices,
# so there is no need to test all methods on smaller ones
assert a.det() == 1
assert b.det() == 5
assert c.det() == -2
assert d.det() == 3
assert e.det() == 4*x - 24
assert e.det(method='bareiss') == 4*x - 24
assert e.det(method='berkowitz') == 4*x - 24
raises(ValueError, lambda: e.det(iszerofunc="test"))
def test_adjugate():
x = Symbol('x')
e = DeterminantOnlyMatrix(4, 4,
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
adj = Matrix([
[ 4, -8, 4, 0],
[ 76, -14*x - 68, 14*x - 8, -4*x + 24],
[-122, 17*x + 142, -21*x + 4, 8*x - 48],
[ 48, -4*x - 72, 8*x, -4*x + 24]])
assert e.adjugate() == adj
assert e.adjugate(method='bareiss') == adj
assert e.adjugate(method='berkowitz') == adj
a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6])
raises(NonSquareMatrixError, lambda: a.adjugate())
def test_cofactor_and_minors():
x = Symbol('x')
e = DeterminantOnlyMatrix(4, 4,
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
m = Matrix([
[ x, 1, 3],
[ 2, 9, 11],
[12, 13, 14]])
cm = Matrix([
[ 4, 76, -122, 48],
[-8, -14*x - 68, 17*x + 142, -4*x - 72],
[ 4, 14*x - 8, -21*x + 4, 8*x],
[ 0, -4*x + 24, 8*x - 48, -4*x + 24]])
sub = Matrix([
[x, 1, 2],
[4, 5, 6],
[2, 9, 10]])
assert e.minor_submatrix(1, 2) == m
assert e.minor_submatrix(-1, -1) == sub
assert e.minor(1, 2) == -17*x - 142
assert e.cofactor(1, 2) == 17*x + 142
assert e.cofactor_matrix() == cm
assert e.cofactor_matrix(method="bareiss") == cm
assert e.cofactor_matrix(method="berkowitz") == cm
raises(ValueError, lambda: e.cofactor(4, 5))
raises(ValueError, lambda: e.minor(4, 5))
raises(ValueError, lambda: e.minor_submatrix(4, 5))
a = DeterminantOnlyMatrix(2, 3, [1, 2, 3, 4, 5, 6])
assert a.minor_submatrix(0, 0) == Matrix([[5, 6]])
raises(ValueError, lambda:
DeterminantOnlyMatrix(0, 0, []).minor_submatrix(0, 0))
raises(NonSquareMatrixError, lambda: a.cofactor(0, 0))
raises(NonSquareMatrixError, lambda: a.minor(0, 0))
raises(NonSquareMatrixError, lambda: a.cofactor_matrix())
def test_charpoly():
x, y = Symbol('x'), Symbol('y')
m = DeterminantOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
assert eye_Determinant(3).charpoly(x) == Poly((x - 1)**3, x)
assert eye_Determinant(3).charpoly(y) == Poly((y - 1)**3, y)
assert m.charpoly() == Poly(x**3 - 15*x**2 - 18*x, x)
raises(NonSquareMatrixError, lambda: Matrix([[1], [2]]).charpoly())
# ReductionsOnlyMatrix tests
def test_row_op():
e = eye_Reductions(3)
raises(ValueError, lambda: e.elementary_row_op("abc"))
raises(ValueError, lambda: e.elementary_row_op())
raises(ValueError, lambda: e.elementary_row_op('n->kn', row=5, k=5))
raises(ValueError, lambda: e.elementary_row_op('n->kn', row=-5, k=5))
raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=5))
raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=5, row2=1))
raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=-5, row2=1))
raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=-5))
raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=5, k=5))
raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=5, row2=1, k=5))
raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=-5, row2=1, k=5))
raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=-5, k=5))
raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=1, k=5))
# test various ways to set arguments
assert e.elementary_row_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]])
assert e.elementary_row_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_row_op("n->kn", row=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_row_op("n->kn", row1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_row_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_row_op("n<->m", row1=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_row_op("n<->m", row=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_row_op("n->n+km", 0, 5, 1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]])
assert e.elementary_row_op("n->n+km", row=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]])
assert e.elementary_row_op("n->n+km", row1=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]])
# make sure the matrix doesn't change size
a = ReductionsOnlyMatrix(2, 3, [0]*6)
assert a.elementary_row_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6)
assert a.elementary_row_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6)
assert a.elementary_row_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6)
def test_col_op():
e = eye_Reductions(3)
raises(ValueError, lambda: e.elementary_col_op("abc"))
raises(ValueError, lambda: e.elementary_col_op())
raises(ValueError, lambda: e.elementary_col_op('n->kn', col=5, k=5))
raises(ValueError, lambda: e.elementary_col_op('n->kn', col=-5, k=5))
raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=5))
raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=5, col2=1))
raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=-5, col2=1))
raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=-5))
raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=5, k=5))
raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=5, col2=1, k=5))
raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=-5, col2=1, k=5))
raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=-5, k=5))
raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=1, k=5))
# test various ways to set arguments
assert e.elementary_col_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]])
assert e.elementary_col_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_col_op("n->kn", col=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_col_op("n->kn", col1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]])
assert e.elementary_col_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_col_op("n<->m", col1=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_col_op("n<->m", col=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
assert e.elementary_col_op("n->n+km", 0, 5, 1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]])
assert e.elementary_col_op("n->n+km", col=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]])
assert e.elementary_col_op("n->n+km", col1=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]])
# make sure the matrix doesn't change size
a = ReductionsOnlyMatrix(2, 3, [0]*6)
assert a.elementary_col_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6)
assert a.elementary_col_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6)
assert a.elementary_col_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6)
def test_is_echelon():
zro = zeros_Reductions(3)
ident = eye_Reductions(3)
assert zro.is_echelon
assert ident.is_echelon
a = ReductionsOnlyMatrix(0, 0, [])
assert a.is_echelon
a = ReductionsOnlyMatrix(2, 3, [3, 2, 1, 0, 0, 6])
assert a.is_echelon
a = ReductionsOnlyMatrix(2, 3, [0, 0, 6, 3, 2, 1])
assert not a.is_echelon
x = Symbol('x')
a = ReductionsOnlyMatrix(3, 1, [x, 0, 0])
assert a.is_echelon
a = ReductionsOnlyMatrix(3, 1, [x, x, 0])
assert not a.is_echelon
a = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0])
assert not a.is_echelon
def test_echelon_form():
# echelon form is not unique, but the result
# must be row-equivalent to the original matrix
# and it must be in echelon form.
a = zeros_Reductions(3)
e = eye_Reductions(3)
# we can assume the zero matrix and the identity matrix shouldn't change
assert a.echelon_form() == a
assert e.echelon_form() == e
a = ReductionsOnlyMatrix(0, 0, [])
assert a.echelon_form() == a
a = ReductionsOnlyMatrix(1, 1, [5])
assert a.echelon_form() == a
# now we get to the real tests
def verify_row_null_space(mat, rows, nulls):
for v in nulls:
assert all(t.is_zero for t in a_echelon*v)
for v in rows:
if not all(t.is_zero for t in v):
assert not all(t.is_zero for t in a_echelon*v.transpose())
a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
nulls = [Matrix([
[ 1],
[-2],
[ 1]])]
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8])
nulls = []
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 2, 1, 3])
nulls = [Matrix([
[-S(1)/2],
[ 1],
[ 0]]),
Matrix([
[-S(3)/2],
[ 0],
[ 1]])]
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
# this one requires a row swap
a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 1, 1, 3])
nulls = [Matrix([
[ 0],
[ -3],
[ 1]])]
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
a = ReductionsOnlyMatrix(3, 3, [0, 3, 3, 0, 2, 2, 0, 1, 1])
nulls = [Matrix([
[1],
[0],
[0]]),
Matrix([
[ 0],
[-1],
[ 1]])]
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
a = ReductionsOnlyMatrix(2, 3, [2, 2, 3, 3, 3, 0])
nulls = [Matrix([
[-1],
[1],
[0]])]
rows = [a[i, :] for i in range(a.rows)]
a_echelon = a.echelon_form()
assert a_echelon.is_echelon
verify_row_null_space(a, rows, nulls)
def test_rref():
e = ReductionsOnlyMatrix(0, 0, [])
assert e.rref(pivots=False) == e
e = ReductionsOnlyMatrix(1, 1, [1])
a = ReductionsOnlyMatrix(1, 1, [5])
assert e.rref(pivots=False) == a.rref(pivots=False) == e
a = ReductionsOnlyMatrix(3, 1, [1, 2, 3])
assert a.rref(pivots=False) == Matrix([[1], [0], [0]])
a = ReductionsOnlyMatrix(1, 3, [1, 2, 3])
assert a.rref(pivots=False) == Matrix([[1, 2, 3]])
a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
assert a.rref(pivots=False) == Matrix([
[1, 0, -1],
[0, 1, 2],
[0, 0, 0]])
a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 1, 2, 3, 1, 2, 3])
b = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 0, 0, 0, 0, 0, 0])
c = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0])
d = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 0, 0, 0, 1, 2, 3])
assert a.rref(pivots=False) == \
b.rref(pivots=False) == \
c.rref(pivots=False) == \
d.rref(pivots=False) == b
e = eye_Reductions(3)
z = zeros_Reductions(3)
assert e.rref(pivots=False) == e
assert z.rref(pivots=False) == z
a = ReductionsOnlyMatrix([
[ 0, 0, 1, 2, 2, -5, 3],
[-1, 5, 2, 2, 1, -7, 5],
[ 0, 0, -2, -3, -3, 8, -5],
[-1, 5, 0, -1, -2, 1, 0]])
mat, pivot_offsets = a.rref()
assert mat == Matrix([
[1, -5, 0, 0, 1, 1, -1],
[0, 0, 1, 0, 0, -1, 1],
[0, 0, 0, 1, 1, -2, 1],
[0, 0, 0, 0, 0, 0, 0]])
assert pivot_offsets == (0, 2, 3)
a = ReductionsOnlyMatrix([[S(1)/19, S(1)/5, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[ 12, 13, 14, 15]])
assert a.rref(pivots=False) == Matrix([
[1, 0, 0, -S(76)/157],
[0, 1, 0, -S(5)/157],
[0, 0, 1, S(238)/157],
[0, 0, 0, 0]])
x = Symbol('x')
a = ReductionsOnlyMatrix(2, 3, [x, 1, 1, sqrt(x), x, 1])
for i, j in zip(a.rref(pivots=False),
[1, 0, sqrt(x)*(-x + 1)/(-x**(S(5)/2) + x),
0, 1, 1/(sqrt(x) + x + 1)]):
assert simplify(i - j).is_zero
# SpecialOnlyMatrix tests
def test_eye():
assert list(SpecialOnlyMatrix.eye(2, 2)) == [1, 0, 0, 1]
assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1]
assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix
def test_ones():
assert list(SpecialOnlyMatrix.ones(2, 2)) == [1, 1, 1, 1]
assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1]
assert SpecialOnlyMatrix.ones(2, 3) == Matrix([[1, 1, 1], [1, 1, 1]])
assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix
def test_zeros():
assert list(SpecialOnlyMatrix.zeros(2, 2)) == [0, 0, 0, 0]
assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0]
assert SpecialOnlyMatrix.zeros(2, 3) == Matrix([[0, 0, 0], [0, 0, 0]])
assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix
assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix
def test_diag_make():
diag = SpecialOnlyMatrix.diag
a = Matrix([[1, 2], [2, 3]])
b = Matrix([[3, x], [y, 3]])
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
assert diag(a, b, b) == Matrix([
[1, 2, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0],
[0, 0, 3, x, 0, 0],
[0, 0, y, 3, 0, 0],
[0, 0, 0, 0, 3, x],
[0, 0, 0, 0, y, 3],
])
assert diag(a, b, c) == Matrix([
[1, 2, 0, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0, 0],
[0, 0, 3, x, 0, 0, 0],
[0, 0, y, 3, 0, 0, 0],
[0, 0, 0, 0, 3, x, 3],
[0, 0, 0, 0, y, 3, z],
[0, 0, 0, 0, x, y, z],
])
assert diag(a, c, b) == Matrix([
[1, 2, 0, 0, 0, 0, 0],
[2, 3, 0, 0, 0, 0, 0],
[0, 0, 3, x, 3, 0, 0],
[0, 0, y, 3, z, 0, 0],
[0, 0, x, y, z, 0, 0],
[0, 0, 0, 0, 0, 3, x],
[0, 0, 0, 0, 0, y, 3],
])
a = Matrix([x, y, z])
b = Matrix([[1, 2], [3, 4]])
c = Matrix([[5, 6]])
# this "wandering diagonal" is what makes this
# a block diagonal where each block is independent
# of the others
assert diag(a, 7, b, c) == Matrix([
[x, 0, 0, 0, 0, 0],
[y, 0, 0, 0, 0, 0],
[z, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 0, 0],
[0, 0, 1, 2, 0, 0],
[0, 0, 3, 4, 0, 0],
[0, 0, 0, 0, 5, 6]])
raises(ValueError, lambda: diag(a, 7, b, c, rows=5))
assert diag(1) == Matrix([[1]])
assert diag(1, rows=2) == Matrix([[1, 0], [0, 0]])
assert diag(1, cols=2) == Matrix([[1, 0], [0, 0]])
assert diag(1, rows=3, cols=2) == Matrix([[1, 0], [0, 0], [0, 0]])
assert diag(*[2, 3]) == Matrix([
[2, 0],
[0, 3]])
assert diag(Matrix([2, 3])) == Matrix([
[2],
[3]])
assert diag([1, [2, 3], 4], unpack=False) == \
diag([[1], [2, 3], [4]], unpack=False) == Matrix([
[1, 0],
[2, 3],
[4, 0]])
assert type(diag(1)) == SpecialOnlyMatrix
assert type(diag(1, cls=Matrix)) == Matrix
assert Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
assert Matrix.diag([1, 2, 3], unpack=False).shape == (3, 1)
assert Matrix.diag([[1, 2, 3]]).shape == (3, 1)
assert Matrix.diag([[1, 2, 3]], unpack=False).shape == (1, 3)
assert Matrix.diag([[[1, 2, 3]]]).shape == (1, 3)
# kerning can be used to move the starting point
assert Matrix.diag(ones(0, 2), 1, 2) == Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
assert Matrix.diag(ones(2, 0), 1, 2) == Matrix([
[0, 0],
[0, 0],
[1, 0],
[0, 2]])
def test_diagonal():
m = Matrix(3, 3, range(9))
d = m.diagonal()
assert d == m.diagonal(0)
assert tuple(d) == (0, 4, 8)
assert tuple(m.diagonal(1)) == (1, 5)
assert tuple(m.diagonal(-1)) == (3, 7)
assert tuple(m.diagonal(2)) == (2,)
assert type(m.diagonal()) == type(m)
s = SparseMatrix(3, 3, {(1, 1): 1})
assert type(s.diagonal()) == type(s)
assert type(m) != type(s)
raises(ValueError, lambda: m.diagonal(3))
raises(ValueError, lambda: m.diagonal(-3))
raises(ValueError, lambda: m.diagonal(pi))
M = ones(2, 3)
assert banded({i: list(M.diagonal(i))
for i in range(1-M.rows, M.cols)}) == M
def test_jordan_block():
assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \
== SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \
== SpecialOnlyMatrix.jordan_block(3, 2, band='upper') \
== SpecialOnlyMatrix.jordan_block(
size=3, eigenval=2, eigenvalue=2) \
== Matrix([
[2, 1, 0],
[0, 2, 1],
[0, 0, 2]])
assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([
[2, 0, 0],
[1, 2, 0],
[0, 1, 2]])
# missing eigenvalue
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2))
# non-integral size
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2))
# size not specified
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(eigenvalue=2))
# inconsistent eigenvalue
raises(ValueError,
lambda: SpecialOnlyMatrix.jordan_block(
eigenvalue=2, eigenval=4))
# Deprecated feature
with warns_deprecated_sympy():
assert (SpecialOnlyMatrix.jordan_block(cols=3, eigenvalue=2) ==
SpecialOnlyMatrix(3, 3, (2, 1, 0, 0, 2, 1, 0, 0, 2)))
with warns_deprecated_sympy():
assert (SpecialOnlyMatrix.jordan_block(rows=3, eigenvalue=2) ==
SpecialOnlyMatrix(3, 3, (2, 1, 0, 0, 2, 1, 0, 0, 2)))
with warns_deprecated_sympy():
assert SpecialOnlyMatrix.jordan_block(3, 2) == \
SpecialOnlyMatrix.jordan_block(cols=3, eigenvalue=2) == \
SpecialOnlyMatrix.jordan_block(rows=3, eigenvalue=2)
with warns_deprecated_sympy():
assert SpecialOnlyMatrix.jordan_block(
rows=4, cols=3, eigenvalue=2) == \
Matrix([
[2, 1, 0],
[0, 2, 1],
[0, 0, 2],
[0, 0, 0]])
# Using alias keyword
assert SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) == \
SpecialOnlyMatrix.jordan_block(size=3, eigenval=2)
# SubspaceOnlyMatrix tests
def test_columnspace():
m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
[-2, -5, 1, -1, -8],
[ 0, -3, 3, 4, 1],
[ 3, 6, 0, -7, 2]])
basis = m.columnspace()
assert basis[0] == Matrix([1, -2, 0, 3])
assert basis[1] == Matrix([2, -5, -3, 6])
assert basis[2] == Matrix([2, -1, 4, -7])
assert len(basis) == 3
assert Matrix.hstack(m, *basis).columnspace() == basis
def test_rowspace():
m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
[-2, -5, 1, -1, -8],
[ 0, -3, 3, 4, 1],
[ 3, 6, 0, -7, 2]])
basis = m.rowspace()
assert basis[0] == Matrix([[1, 2, 0, 2, 5]])
assert basis[1] == Matrix([[0, -1, 1, 3, 2]])
assert basis[2] == Matrix([[0, 0, 0, 5, 5]])
assert len(basis) == 3
def test_nullspace():
m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
[-2, -5, 1, -1, -8],
[ 0, -3, 3, 4, 1],
[ 3, 6, 0, -7, 2]])
basis = m.nullspace()
assert basis[0] == Matrix([-2, 1, 1, 0, 0])
assert basis[1] == Matrix([-1, -1, 0, -1, 1])
# make sure the null space is really gets zeroed
assert all(e.is_zero for e in m*basis[0])
assert all(e.is_zero for e in m*basis[1])
def test_orthogonalize():
m = Matrix([[1, 2], [3, 4]])
assert m.orthogonalize(Matrix([[2], [1]])) == [Matrix([[2], [1]])]
assert m.orthogonalize(Matrix([[2], [1]]), normalize=True) == \
[Matrix([[2*sqrt(5)/5], [sqrt(5)/5]])]
assert m.orthogonalize(Matrix([[1], [2]]), Matrix([[-1], [4]])) == \
[Matrix([[1], [2]]), Matrix([[-S(12)/5], [S(6)/5]])]
assert m.orthogonalize(Matrix([[0], [0]]), Matrix([[-1], [4]])) == \
[Matrix([[-1], [4]])]
assert m.orthogonalize(Matrix([[0], [0]])) == []
n = Matrix([[9, 1, 9], [3, 6, 10], [8, 5, 2]])
vecs = [Matrix([[-5], [1]]), Matrix([[-5], [2]]), Matrix([[-5], [-2]])]
assert n.orthogonalize(*vecs) == \
[Matrix([[-5], [1]]), Matrix([[S(5)/26], [S(25)/26]])]
vecs = [Matrix([0, 0, 0]), Matrix([1, 2, 3]), Matrix([1, 4, 5])]
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))
vecs = [Matrix([1, 2, 3]), Matrix([4, 5, 6]), Matrix([7, 8, 9])]
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))
# EigenOnlyMatrix tests
def test_eigenvals():
M = EigenOnlyMatrix([[0, 1, 1],
[1, 0, 0],
[1, 1, 1]])
assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1}
# if we cannot factor the char poly, we raise an error
m = Matrix([
[3, 0, 0, 0, -3],
[0, -3, -3, 0, 3],
[0, 3, 0, 3, 0],
[0, 0, 3, 0, 3],
[3, 0, 0, 3, 0]])
raises(MatrixError, lambda: m.eigenvals())
def test_eigenvects():
M = EigenOnlyMatrix([[0, 1, 1],
[1, 0, 0],
[1, 1, 1]])
vecs = M.eigenvects()
for val, mult, vec_list in vecs:
assert len(vec_list) == 1
assert M*vec_list[0] == val*vec_list[0]
def test_left_eigenvects():
M = EigenOnlyMatrix([[0, 1, 1],
[1, 0, 0],
[1, 1, 1]])
vecs = M.left_eigenvects()
for val, mult, vec_list in vecs:
assert len(vec_list) == 1
assert vec_list[0]*M == val*vec_list[0]
def test_diagonalize():
m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0])
raises(MatrixError, lambda: m.diagonalize(reals_only=True))
P, D = m.diagonalize()
assert D.is_diagonal()
assert D == Matrix([
[-I, 0],
[ 0, I]])
# make sure we use floats out if floats are passed in
m = EigenOnlyMatrix(2, 2, [0, .5, .5, 0])
P, D = m.diagonalize()
assert all(isinstance(e, Float) for e in D.values())
assert all(isinstance(e, Float) for e in P.values())
_, D2 = m.diagonalize(reals_only=True)
assert D == D2
def test_is_diagonalizable():
a, b, c = symbols('a b c')
m = EigenOnlyMatrix(2, 2, [a, c, c, b])
assert m.is_symmetric()
assert m.is_diagonalizable()
assert not EigenOnlyMatrix(2, 2, [1, 1, 0, 1]).is_diagonalizable()
m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0])
assert m.is_diagonalizable()
assert not m.is_diagonalizable(reals_only=True)
def test_jordan_form():
m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10])
raises(NonSquareMatrixError, lambda: m.jordan_form())
# the next two tests test the cases where the old
# algorithm failed due to the fact that the block structure can
# *NOT* be determined from algebraic and geometric multiplicity alone
# This can be seen most easily when one lets compute the J.c.f. of a matrix that
# is in J.c.f already.
m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0,
0, 2, 1, 0,
0, 0, 2, 0,
0, 0, 0, 2
])
P, J = m.jordan_form()
assert m == J
m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0,
0, 2, 0, 0,
0, 0, 2, 1,
0, 0, 0, 2
])
P, J = m.jordan_form()
assert m == J
A = Matrix([[ 2, 4, 1, 0],
[-4, 2, 0, 1],
[ 0, 0, 2, 4],
[ 0, 0, -4, 2]])
P, J = A.jordan_form()
assert simplify(P*J*P.inv()) == A
assert EigenOnlyMatrix(1, 1, [1]).jordan_form() == (
Matrix([1]), Matrix([1]))
assert EigenOnlyMatrix(1, 1, [1]).jordan_form(
calc_transform=False) == Matrix([1])
# make sure if we cannot factor the characteristic polynomial, we raise an error
m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]])
raises(MatrixError, lambda: m.jordan_form())
# make sure that if the input has floats, the output does too
m = Matrix([
[ 0.6875, 0.125 + 0.1875*sqrt(3)],
[0.125 + 0.1875*sqrt(3), 0.3125]])
P, J = m.jordan_form()
assert all(isinstance(x, Float) or x == 0 for x in P)
assert all(isinstance(x, Float) or x == 0 for x in J)
def test_singular_values():
x = Symbol('x', real=True)
A = EigenOnlyMatrix([[0, 1*I], [2, 0]])
# if singular values can be sorted, they should be in decreasing order
assert A.singular_values() == [2, 1]
A = eye(3)
A[1, 1] = x
A[2, 2] = 5
vals = A.singular_values()
# since Abs(x) cannot be sorted, test set equality
assert set(vals) == set([5, 1, Abs(x)])
A = EigenOnlyMatrix([[sin(x), cos(x)], [-cos(x), sin(x)]])
vals = [sv.trigsimp() for sv in A.singular_values()]
assert vals == [S(1), S(1)]
A = EigenOnlyMatrix([
[2, 4],
[1, 3],
[0, 0],
[0, 0]
])
assert A.singular_values() == \
[sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221))]
assert A.T.singular_values() == \
[sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221)), 0, 0]
# CalculusOnlyMatrix tests
@XFAIL
def test_diff():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [x, y])
# TODO: currently not working as ``_MinimalMatrix`` cannot be sympified:
assert m.diff(x) == Matrix(2, 1, [1, 0])
def test_integrate():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [x, y])
assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x])
def test_jacobian2():
rho, phi = symbols("rho,phi")
X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2])
Y = CalculusOnlyMatrix(2, 1, [rho, phi])
J = Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0],
])
assert X.jacobian(Y) == J
m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4])
m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4])
raises(TypeError, lambda: m.jacobian(Matrix([1, 2])))
raises(TypeError, lambda: m2.jacobian(m))
def test_limit():
x, y = symbols('x y')
m = CalculusOnlyMatrix(2, 1, [1/x, y])
assert m.limit(x, 5) == Matrix(2, 1, [S(1)/5, y])
def test_issue_13774():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
v = [1, 1, 1]
raises(TypeError, lambda: M*v)
raises(TypeError, lambda: v*M)
def test___eq__():
assert (EigenOnlyMatrix(
[[0, 1, 1],
[1, 0, 0],
[1, 1, 1]]) == {}) is False
|
f1274cd2008b0a69b5f4b7a71df9f4b79379be5102a062cd839c7077fc588cf1 | from sympy.matrices.expressions import MatrixExpr
from sympy import MatrixBase, Dummy, Lambda, Function, FunctionClass
class ElementwiseApplyFunction(MatrixExpr):
r"""
Apply function to a matrix elementwise without evaluating.
Examples
========
It can be created by calling ``.applyfunc(<function>)`` on a matrix
expression:
>>> from sympy.matrices.expressions import MatrixSymbol
>>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
>>> from sympy import exp
>>> X = MatrixSymbol("X", 3, 3)
>>> X.applyfunc(exp)
exp(X...)
Otherwise using the class constructor:
>>> from sympy import eye
>>> expr = ElementwiseApplyFunction(exp, eye(3))
>>> expr
exp(Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])...)
>>> expr.doit()
Matrix([
[E, 1, 1],
[1, E, 1],
[1, 1, E]])
Notice the difference with the real mathematical functions:
>>> exp(eye(3))
Matrix([
[E, 0, 0],
[0, E, 0],
[0, 0, E]])
"""
def __new__(cls, function, expr):
obj = MatrixExpr.__new__(cls, expr)
if not isinstance(function, FunctionClass):
d = Dummy("d")
function = Lambda(d, function(d))
obj._function = function
obj._expr = expr
return obj
def _hashable_content(self):
return (self.function, self.expr)
@property
def function(self):
return self._function
@property
def expr(self):
return self._expr
@property
def shape(self):
return self.expr.shape
@property
def func(self):
# This strange construction is required by the assumptions:
# (.func needs to be a class)
class ElementwiseApplyFunction2(ElementwiseApplyFunction):
def __new__(obj, expr):
return ElementwiseApplyFunction(self.function, expr)
return ElementwiseApplyFunction2
def doit(self, **kwargs):
deep = kwargs.get("deep", True)
expr = self.expr
if deep:
expr = expr.doit(**kwargs)
if isinstance(expr, MatrixBase):
return expr.applyfunc(self.function)
else:
return self
def _entry(self, i, j, **kwargs):
return self.function(self.expr._entry(i, j, **kwargs))
def _eval_derivative_matrix_lines(self, x):
from sympy import Identity
from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal
from sympy.core.expr import ExprBuilder
d = Dummy("d")
function = self.function(d)
fdiff = function.diff(d)
if isinstance(fdiff, Function):
fdiff = type(fdiff)
else:
fdiff = Lambda(d, fdiff)
lr = self.expr._eval_derivative_matrix_lines(x)
ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
if 1 in x.shape:
# Vector:
iscolumn = self.shape[1] == 1
for i in lr:
if iscolumn:
ptr1 = i.first_pointer
ptr2 = Identity(self.shape[1])
else:
ptr1 = Identity(self.shape[0])
ptr2 = i.second_pointer
subexpr = ExprBuilder(
CodegenArrayDiagonal,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
ewdiff,
ptr1,
ptr2,
]
),
(0, 2) if iscolumn else (1, 4)
],
validator=CodegenArrayDiagonal._validate
)
i._lines = [subexpr]
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 1
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 2
else:
# Matrix case:
for i in lr:
ptr1 = i.first_pointer
ptr2 = i.second_pointer
newptr1 = Identity(ptr1.shape[1])
newptr2 = Identity(ptr2.shape[1])
subexpr = ExprBuilder(
CodegenArrayContraction,
[
ExprBuilder(
CodegenArrayTensorProduct,
[ptr1, newptr1, ewdiff, ptr2, newptr2]
),
(1, 2, 4),
(5, 7, 8),
],
validator=CodegenArrayContraction._validate
)
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 1
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 4
i._lines = [subexpr]
return lr
|
f365ad1b390b686774a5ad58b48cb6882c4d0f5efe112ae595fd3a88e5f11c31 | """ A module which handles Matrix Expressions """
from .slice import MatrixSlice
from .blockmatrix import BlockMatrix, BlockDiagMatrix, block_collapse, blockcut
from .funcmatrix import FunctionMatrix
from .inverse import Inverse
from .matadd import MatAdd
from .matexpr import (Identity, MatrixExpr, MatrixSymbol, ZeroMatrix, OneMatrix,
matrix_symbols)
from .matmul import MatMul
from .matpow import MatPow
from .trace import Trace, trace
from .determinant import Determinant, det
from .transpose import Transpose
from .adjoint import Adjoint
from .hadamard import hadamard_product, HadamardProduct, hadamard_power, HadamardPower
from .diagonal import DiagonalMatrix, DiagonalOf, DiagonalizeVector, diagonalize_vector
from .dotproduct import DotProduct
from .kronecker import kronecker_product, KroneckerProduct, combine_kronecker
|
b3b02bfe3b3824b9b76e00ece4c3243343e8a9263a608326250542b3ef209c58 | from __future__ import print_function, division
from sympy import Basic
from sympy.functions import adjoint, conjugate
from sympy.matrices.expressions.matexpr import MatrixExpr
class Transpose(MatrixExpr):
"""
The transpose of a matrix expression.
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the transpose, use the ``transpose()``
function, or the ``.T`` attribute of matrices.
Examples
========
>>> from sympy.matrices import MatrixSymbol, Transpose
>>> from sympy.functions import transpose
>>> A = MatrixSymbol('A', 3, 5)
>>> B = MatrixSymbol('B', 5, 3)
>>> Transpose(A)
A.T
>>> A.T == transpose(A) == Transpose(A)
True
>>> Transpose(A*B)
(A*B).T
>>> transpose(A*B)
B.T*A.T
"""
is_Transpose = True
def doit(self, **hints):
arg = self.arg
if hints.get('deep', True) and isinstance(arg, Basic):
arg = arg.doit(**hints)
_eval_transpose = getattr(arg, '_eval_transpose', None)
if _eval_transpose is not None:
result = _eval_transpose()
return result if result is not None else Transpose(arg)
else:
return Transpose(arg)
@property
def arg(self):
return self.args[0]
@property
def shape(self):
return self.arg.shape[::-1]
def _entry(self, i, j, expand=False, **kwargs):
return self.arg._entry(j, i, expand=expand, **kwargs)
def _eval_adjoint(self):
return conjugate(self.arg)
def _eval_conjugate(self):
return adjoint(self.arg)
def _eval_transpose(self):
return self.arg
def _eval_trace(self):
from .trace import Trace
return Trace(self.arg) # Trace(X.T) => Trace(X)
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import det
return det(self.arg)
def _eval_derivative_matrix_lines(self, x):
lines = self.args[0]._eval_derivative_matrix_lines(x)
return [i.transpose() for i in lines]
def transpose(expr):
"""Matrix transpose"""
return Transpose(expr).doit(deep=False)
from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
def refine_Transpose(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> X.T
X.T
>>> with assuming(Q.symmetric(X)):
... print(refine(X.T))
X
"""
if ask(Q.symmetric(expr), assumptions):
return expr.arg
return expr
handlers_dict['Transpose'] = refine_Transpose
|
68e2d77d9c801b8f17649bd13787d22cd96076792410b993526f4ac89dc2edb1 | from __future__ import print_function, division
from sympy import Number
from sympy.core import Mul, Basic, sympify
from sympy.core.compatibility import range
from sympy.functions import adjoint
from sympy.matrices.expressions.transpose import transpose
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
do_one, new)
from sympy.matrices.expressions.matexpr import (MatrixExpr, ShapeError,
Identity, ZeroMatrix, GenericIdentity)
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.matrices import MatrixBase
# XXX: MatMul should perhaps not subclass directly from Mul
class MatMul(MatrixExpr, Mul):
"""
A product of matrix expressions
Examples
========
>>> from sympy import MatMul, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
"""
is_MatMul = True
def __new__(cls, *args, **kwargs):
check = kwargs.get('check', True)
if not args:
return GenericIdentity()
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericIdentity().shape
args = filter(lambda i: GenericIdentity() != i, args)
args = list(map(sympify, args))
obj = Basic.__new__(cls, *args)
factor, matrices = obj.as_coeff_matrices()
if check:
validate(*matrices)
if not matrices:
# Should it be
#
# return Basic.__neq__(cls, factor, GenericIdentity()) ?
return factor
return obj
@property
def shape(self):
matrices = [arg for arg in self.args if arg.is_Matrix]
return (matrices[0].rows, matrices[-1].cols)
def _entry(self, i, j, expand=True, **kwargs):
from sympy import Dummy, Sum, Mul, ImmutableMatrix, Integer
coeff, matrices = self.as_coeff_matrices()
if len(matrices) == 1: # situation like 2*X, matmul is just X
return coeff * matrices[0][i, j]
indices = [None]*(len(matrices) + 1)
ind_ranges = [None]*(len(matrices) - 1)
indices[0] = i
indices[-1] = j
def f():
counter = 1
while True:
yield Dummy("i_%i" % counter)
counter += 1
dummy_generator = kwargs.get("dummy_generator", f())
for i in range(1, len(matrices)):
indices[i] = next(dummy_generator)
for i, arg in enumerate(matrices[:-1]):
ind_ranges[i] = arg.shape[1] - 1
matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
expr_in_sum = Mul.fromiter(matrices)
if any(v.has(ImmutableMatrix) for v in matrices):
expand = True
result = coeff*Sum(
expr_in_sum,
*zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
)
# Don't waste time in result.doit() if the sum bounds are symbolic
if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
expand = False
return result.doit() if expand else result
def as_coeff_matrices(self):
scalars = [x for x in self.args if not x.is_Matrix]
matrices = [x for x in self.args if x.is_Matrix]
coeff = Mul(*scalars)
if coeff.is_commutative is False:
raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
return coeff, matrices
def as_coeff_mmul(self):
coeff, matrices = self.as_coeff_matrices()
return coeff, MatMul(*matrices)
def _eval_transpose(self):
return MatMul(*[transpose(arg) for arg in self.args[::-1]]).doit()
def _eval_adjoint(self):
return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
def _eval_trace(self):
factor, mmul = self.as_coeff_mmul()
if factor != 1:
from .trace import trace
return factor * trace(mmul.doit())
else:
raise NotImplementedError("Can't simplify any further")
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import Determinant
factor, matrices = self.as_coeff_matrices()
square_matrices = only_squares(*matrices)
return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
def _eval_inverse(self):
try:
return MatMul(*[
arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
for arg in self.args[::-1]]).doit()
except ShapeError:
from sympy.matrices.expressions.inverse import Inverse
return Inverse(self)
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
# treat scalar*MatrixSymbol or scalar*MatPow separately
expr = canonicalize(MatMul(*args))
return expr
# Needed for partial compatibility with Mul
def args_cnc(self, **kwargs):
coeff_c = [x for x in self.args if x.is_commutative]
coeff_nc = [x for x in self.args if not x.is_commutative]
return [coeff_c, coeff_nc]
def _eval_derivative_matrix_lines(self, x):
from .transpose import Transpose
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
if right_args:
right_mat = MatMul.fromiter(right_args)
else:
right_mat = Identity(self.shape[1])
if left_args:
left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
else:
left_rev = Identity(self.shape[0])
d = self.args[ind]._eval_derivative_matrix_lines(x)
for i in d:
i.append_first(left_rev)
i.append_second(right_mat)
lines.append(i)
return lines
def validate(*matrices):
""" Checks for valid shapes for args of MatMul """
for i in range(len(matrices)-1):
A, B = matrices[i:i+2]
if A.cols != B.rows:
raise ShapeError("Matrices %s and %s are not aligned"%(A, B))
# Rules
def newmul(*args):
if args[0] == 1:
args = args[1:]
return new(MatMul, *args)
def any_zeros(mul):
if any([arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
for arg in mul.args]):
matrices = [arg for arg in mul.args if arg.is_Matrix]
return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
return mul
def merge_explicit(matmul):
""" Merge explicit MatrixBase arguments
>>> from sympy import MatrixSymbol, eye, Matrix, MatMul, pprint
>>> from sympy.matrices.expressions.matmul import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = Matrix([[1, 1], [1, 1]])
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatMul(A, B, C)
>>> pprint(X)
[1 1] [1 2]
A*[ ]*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[4 6]
A*[ ]
[4 6]
>>> X = MatMul(B, A, C)
>>> pprint(X)
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
"""
if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
return matmul
newargs = []
last = matmul.args[0]
for arg in matmul.args[1:]:
if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
last = last * arg
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
def xxinv(mul):
""" Y * X * X.I -> Y """
from sympy.matrices.expressions.inverse import Inverse
factor, matrices = mul.as_coeff_matrices()
for i, (X, Y) in enumerate(zip(matrices[:-1], matrices[1:])):
try:
if X.is_square and Y.is_square:
_X, x_exp = X, 1
_Y, y_exp = Y, 1
if isinstance(X, MatPow) and not isinstance(X, Inverse):
_X, x_exp = X.args
if isinstance(Y, MatPow) and not isinstance(Y, Inverse):
_Y, y_exp = Y.args
if _X == _Y.inverse():
if x_exp - y_exp > 0:
I = _X**(x_exp-y_exp)
else:
I = _Y**(y_exp-x_exp)
return newmul(factor, *(matrices[:i] + [I] + matrices[i+2:]))
except ValueError: # Y might not be invertible
pass
return mul
def remove_ids(mul):
""" Remove Identities from a MatMul
This is a modified version of sympy.strategies.rm_id.
This is necesssary because MatMul may contain both MatrixExprs and Exprs
as args.
See Also
========
sympy.strategies.rm_id
"""
# Separate Exprs from MatrixExprs in args
factor, mmul = mul.as_coeff_mmul()
# Apply standard rm_id for MatMuls
result = rm_id(lambda x: x.is_Identity is True)(mmul)
if result != mmul:
return newmul(factor, *result.args) # Recombine and return
else:
return mul
def factor_in_front(mul):
factor, matrices = mul.as_coeff_matrices()
if factor != 1:
return newmul(factor, *matrices)
return mul
def combine_powers(mul):
# combine consecutive powers with the same base into one
# e.g. A*A**2 -> A**3
from sympy.matrices.expressions import MatPow
factor, mmul = mul.as_coeff_mmul()
args = []
base = None
exp = 0
for arg in mmul.args:
if isinstance(arg, MatPow):
current_base = arg.args[0]
current_exp = arg.args[1]
else:
current_base = arg
current_exp = 1
if current_base == base:
exp += current_exp
else:
if not base is None:
if exp == 1:
args.append(base)
else:
args.append(base**exp)
exp = current_exp
base = current_base
if exp == 1:
args.append(base)
else:
args.append(base**exp)
return newmul(factor, *args)
rules = (any_zeros, remove_ids, xxinv, unpack, rm_id(lambda x: x == 1),
merge_explicit, factor_in_front, flatten, combine_powers)
canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
def only_squares(*matrices):
"""factor matrices only if they are square"""
if matrices[0].rows != matrices[-1].cols:
raise RuntimeError("Invalid matrices being multiplied")
out = []
start = 0
for i, M in enumerate(matrices):
if M.cols == matrices[start].rows:
out.append(MatMul(*matrices[start:i+1]).doit())
start = i+1
return out
from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
def refine_MatMul(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> expr = X * X.T
>>> print(expr)
X*X.T
>>> with assuming(Q.orthogonal(X)):
... print(refine(expr))
I
"""
newargs = []
exprargs = []
for args in expr.args:
if args.is_Matrix:
exprargs.append(args)
else:
newargs.append(args)
last = exprargs[0]
for arg in exprargs[1:]:
if arg == last.T and ask(Q.orthogonal(arg), assumptions):
last = Identity(arg.shape[0])
elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
last = Identity(arg.shape[0])
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
handlers_dict['MatMul'] = refine_MatMul
|
c9f1922ba76958284ab0e64784608332ca8651a862a06cfc3ee62dce19255d32 | from __future__ import print_function, division
from .matexpr import MatrixExpr, ShapeError, Identity, ZeroMatrix
from sympy.core import S
from sympy.core.compatibility import range
from sympy.core.sympify import _sympify
from sympy.matrices import MatrixBase
class MatPow(MatrixExpr):
def __new__(cls, base, exp):
base = _sympify(base)
if not base.is_Matrix:
raise TypeError("Function parameter should be a matrix")
exp = _sympify(exp)
return super(MatPow, cls).__new__(cls, base, exp)
@property
def base(self):
return self.args[0]
@property
def exp(self):
return self.args[1]
@property
def shape(self):
return self.base.shape
def _entry(self, i, j, **kwargs):
from sympy.matrices.expressions import MatMul
A = self.doit()
if isinstance(A, MatPow):
# We still have a MatPow, make an explicit MatMul out of it.
if not A.base.is_square:
raise ShapeError("Power of non-square matrix %s" % A.base)
elif A.exp.is_Integer and A.exp.is_positive:
A = MatMul(*[A.base for k in range(A.exp)])
#elif A.exp.is_Integer and self.exp.is_negative:
# Note: possible future improvement: in principle we can take
# positive powers of the inverse, but carefully avoid recursion,
# perhaps by adding `_entry` to Inverse (as it is our subclass).
# T = A.base.as_explicit().inverse()
# A = MatMul(*[T for k in range(-A.exp)])
else:
# Leave the expression unevaluated:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
return A._entry(i, j)
def doit(self, **kwargs):
from sympy.matrices.expressions import Inverse
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
base, exp = args
# combine all powers, e.g. (A**2)**3 = A**6
while isinstance(base, MatPow):
exp = exp*base.args[1]
base = base.args[0]
if exp.is_zero and base.is_square:
if isinstance(base, MatrixBase):
return base.func(Identity(base.shape[0]))
return Identity(base.shape[0])
elif isinstance(base, ZeroMatrix) and exp.is_negative:
raise ValueError("Matrix determinant is 0, not invertible.")
elif isinstance(base, (Identity, ZeroMatrix)):
return base
elif isinstance(base, MatrixBase) and exp.is_number:
if exp is S.One:
return base
return base**exp
# Note: just evaluate cases we know, return unevaluated on others.
# E.g., MatrixSymbol('x', n, m) to power 0 is not an error.
elif exp is S(-1) and base.is_square:
return Inverse(base).doit(**kwargs)
elif exp is S.One:
return base
return MatPow(base, exp)
def _eval_transpose(self):
base, exp = self.args
return MatPow(base.T, exp)
def _eval_derivative_matrix_lines(self, x):
from sympy.core.expr import ExprBuilder
from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct
from .matmul import MatMul
from .inverse import Inverse
exp = self.exp
if self.base.shape == (1, 1) and not exp.has(x):
lr = self.base._eval_derivative_matrix_lines(x)
for i in lr:
subexpr = ExprBuilder(
CodegenArrayContraction,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
Identity(1),
i._lines[0],
exp*self.base**(exp-1),
i._lines[1],
Identity(1),
]
),
(0, 3, 4), (5, 7, 8)
],
validator=CodegenArrayContraction._validate
)
i._first_pointer_parent = subexpr.args[0].args
i._first_pointer_index = 0
i._second_pointer_parent = subexpr.args[0].args
i._second_pointer_index = 4
i._lines = [subexpr]
return lr
if (exp > 0) == True:
newexpr = MatMul.fromiter([self.base for i in range(exp)])
elif (exp == -1) == True:
return Inverse(self.base)._eval_derivative_matrix_lines(x)
elif (exp < 0) == True:
newexpr = MatMul.fromiter([Inverse(self.base) for i in range(-exp)])
elif (exp == 0) == True:
return self.doit()._eval_derivative_matrix_lines(x)
else:
raise NotImplementedError("cannot evaluate %s derived by %s" % (self, x))
return newexpr._eval_derivative_matrix_lines(x)
|
4c0ed3e846d7308230a9cc9db4cfbd98be859c0d46bb542f61c06ef781437569 | from __future__ import print_function, division
from sympy.core import Basic
from sympy.functions import adjoint, conjugate
from sympy.matrices.expressions.transpose import transpose
from sympy.matrices.expressions.matexpr import MatrixExpr
class Adjoint(MatrixExpr):
"""
The Hermitian adjoint of a matrix expression.
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the adjoint, use the ``adjoint()``
function.
Examples
========
>>> from sympy.matrices import MatrixSymbol, Adjoint
>>> from sympy.functions import adjoint
>>> A = MatrixSymbol('A', 3, 5)
>>> B = MatrixSymbol('B', 5, 3)
>>> Adjoint(A*B)
Adjoint(A*B)
>>> adjoint(A*B)
Adjoint(B)*Adjoint(A)
>>> adjoint(A*B) == Adjoint(A*B)
False
>>> adjoint(A*B) == Adjoint(A*B).doit()
True
"""
is_Adjoint = True
def doit(self, **hints):
arg = self.arg
if hints.get('deep', True) and isinstance(arg, Basic):
return adjoint(arg.doit(**hints))
else:
return adjoint(self.arg)
@property
def arg(self):
return self.args[0]
@property
def shape(self):
return self.arg.shape[::-1]
def _entry(self, i, j, **kwargs):
return conjugate(self.arg._entry(j, i, **kwargs))
def _eval_adjoint(self):
return self.arg
def _eval_conjugate(self):
return transpose(self.arg)
def _eval_trace(self):
from sympy.matrices.expressions.trace import Trace
return conjugate(Trace(self.arg))
def _eval_transpose(self):
return conjugate(self.arg)
|
4902f38727651a25439e563cf469fb86b9c4df91a0525723f7a36447f8488dfd | from __future__ import print_function, division
from functools import wraps, reduce
import collections
from sympy.core import S, Symbol, Tuple, Integer, Basic, Expr, Eq, Mul, Add
from sympy.core.decorators import call_highest_priority
from sympy.core.compatibility import range, SYMPY_INTS, default_sort_key, string_types
from sympy.core.sympify import SympifyError, _sympify
from sympy.functions import conjugate, adjoint
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices import ShapeError
from sympy.simplify import simplify
from sympy.utilities.misc import filldedent
def _sympifyit(arg, retval=None):
# This version of _sympifyit sympifies MutableMatrix objects
def deco(func):
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
b = _sympify(b)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
return deco
class MatrixExpr(Expr):
"""Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented
within a particular basis.
Examples
========
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
See Also
========
MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
"""
# Should not be considered iterable by the
# sympy.core.compatibility.iterable function. Subclass that actually are
# iterable (i.e., explicit matrices) should set this to True.
_iterable = False
_op_priority = 11.0
is_Matrix = True
is_MatrixExpr = True
is_Identity = None
is_Inverse = False
is_Transpose = False
is_ZeroMatrix = False
is_MatAdd = False
is_MatMul = False
is_commutative = False
is_number = False
is_symbol = False
is_scalar = False
def __new__(cls, *args, **kwargs):
args = map(_sympify, args)
return Basic.__new__(cls, *args, **kwargs)
# The following is adapted from the core Expr object
def __neg__(self):
return MatMul(S.NegativeOne, self).doit()
def __abs__(self):
raise NotImplementedError
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return MatAdd(self, other, check=True).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return MatAdd(other, self, check=True).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return MatAdd(self, -other, check=True).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return MatAdd(other, -self, check=True).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __matmul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmatmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
if not self.is_square:
raise ShapeError("Power of non-square matrix %s" % self)
elif self.is_Identity:
return self
elif other is S.Zero:
return Identity(self.rows)
elif other is S.One:
return self
return MatPow(self, other).doit(deep=False)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
raise NotImplementedError("Matrix Power not defined")
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self * other**S.NegativeOne
@_sympifyit('other', NotImplemented)
@call_highest_priority('__div__')
def __rdiv__(self, other):
raise NotImplementedError()
#return MatMul(other, Pow(self, S.NegativeOne))
__truediv__ = __div__
__rtruediv__ = __rdiv__
@property
def rows(self):
return self.shape[0]
@property
def cols(self):
return self.shape[1]
@property
def is_square(self):
return self.rows == self.cols
def _eval_conjugate(self):
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions.transpose import Transpose
return Adjoint(Transpose(self))
def as_real_imag(self):
from sympy import I
real = (S(1)/2) * (self + self._eval_conjugate())
im = (self - self._eval_conjugate())/(2*I)
return (real, im)
def _eval_inverse(self):
from sympy.matrices.expressions.inverse import Inverse
return Inverse(self)
def _eval_transpose(self):
return Transpose(self)
def _eval_power(self, exp):
return MatPow(self, exp)
def _eval_simplify(self, **kwargs):
if self.is_Atom:
return self
else:
return self.__class__(*[simplify(x, **kwargs) for x in self.args])
def _eval_adjoint(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(self)
def _eval_derivative(self, x):
# x is a scalar:
return ZeroMatrix(self.shape[0], self.shape[1])
def _eval_derivative_array(self, x):
if isinstance(x, MatrixExpr):
return _matrix_derivative(self, x)
else:
return self._eval_derivative(x)
def _eval_derivative_n_times(self, x, n):
return Basic._eval_derivative_n_times(self, x, n)
def _visit_eval_derivative_scalar(self, x):
# `x` is a scalar:
if x.has(self):
return _matrix_derivative(x, self)
else:
return ZeroMatrix(*self.shape)
def _visit_eval_derivative_array(self, x):
if x.has(self):
return _matrix_derivative(x, self)
else:
from sympy import Derivative
return Derivative(x, self)
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _entry(self, i, j, **kwargs):
raise NotImplementedError(
"Indexing not implemented for %s" % self.__class__.__name__)
def adjoint(self):
return adjoint(self)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def conjugate(self):
return conjugate(self)
def transpose(self):
from sympy.matrices.expressions.transpose import transpose
return transpose(self)
T = property(transpose, None, None, 'Matrix transposition.')
def inverse(self):
return self._eval_inverse()
inv = inverse
@property
def I(self):
return self.inverse()
def valid_index(self, i, j):
def is_valid(idx):
return isinstance(idx, (int, Integer, Symbol, Expr))
return (is_valid(i) and is_valid(j) and
(self.rows is None or
(0 <= i) != False and (i < self.rows) != False) and
(0 <= j) != False and (j < self.cols) != False)
def __getitem__(self, key):
if not isinstance(key, tuple) and isinstance(key, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, key, (0, None, 1))
if isinstance(key, tuple) and len(key) == 2:
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, i, j)
i, j = _sympify(i), _sympify(j)
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid indices (%s, %s)" % (i, j))
elif isinstance(key, (SYMPY_INTS, Integer)):
# row-wise decomposition of matrix
rows, cols = self.shape
# allow single indexing if number of columns is known
if not isinstance(cols, Integer):
raise IndexError(filldedent('''
Single indexing is only supported when the number
of columns is known.'''))
key = _sympify(key)
i = key // cols
j = key % cols
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid index %s" % key)
elif isinstance(key, (Symbol, Expr)):
raise IndexError(filldedent('''
Only integers may be used when addressing the matrix
with a single index.'''))
raise IndexError("Invalid index, wanted %s[i,j]" % self)
def as_explicit(self):
"""
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_mutable: returns mutable Matrix type
"""
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix([[ self[i, j]
for j in range(self.cols)]
for i in range(self.rows)])
def as_mutable(self):
"""
Returns a dense, mutable matrix with elements represented explicitly
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_explicit: returns ImmutableDenseMatrix
"""
return self.as_explicit().as_mutable()
def __array__(self):
from numpy import empty
a = empty(self.shape, dtype=object)
for i in range(self.rows):
for j in range(self.cols):
a[i, j] = self[i, j]
return a
def equals(self, other):
"""
Test elementwise equality between matrices, potentially of different
types
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
"""
return self.as_explicit().equals(other)
def canonicalize(self):
return self
def as_coeff_mmul(self):
return 1, MatMul(self)
@staticmethod
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
r"""
Parse expression of matrices with explicitly summed indices into a
matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Optional parameter ``first_index``: specify which free index to use as
the index starting the expression.
Examples
========
>>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
"""
from sympy import Sum, Mul, Add, MatMul, transpose, trace
from sympy.strategies.traverse import bottom_up
def remove_matelement(expr, i1, i2):
def repl_match(pos):
def func(x):
if not isinstance(x, MatrixElement):
return False
if x.args[pos] != i1:
return False
if x.args[3-pos] == 0:
if x.args[0].shape[2-pos] == 1:
return True
else:
return False
return True
return func
expr = expr.replace(repl_match(1),
lambda x: x.args[0])
expr = expr.replace(repl_match(2),
lambda x: transpose(x.args[0]))
# Make sure that all Mul are transformed to MatMul and that they
# are flattened:
rule = bottom_up(lambda x: reduce(lambda a, b: a*b, x.args) if isinstance(x, (Mul, MatMul)) else x)
return rule(expr)
def recurse_expr(expr, index_ranges={}):
if expr.is_Mul:
nonmatargs = []
pos_arg = []
pos_ind = []
dlinks = {}
link_ind = []
counter = 0
args_ind = []
for arg in expr.args:
retvals = recurse_expr(arg, index_ranges)
assert isinstance(retvals, list)
if isinstance(retvals, list):
for i in retvals:
args_ind.append(i)
else:
args_ind.append(retvals)
for arg_symbol, arg_indices in args_ind:
if arg_indices is None:
nonmatargs.append(arg_symbol)
continue
if isinstance(arg_symbol, MatrixElement):
arg_symbol = arg_symbol.args[0]
pos_arg.append(arg_symbol)
pos_ind.append(arg_indices)
link_ind.append([None]*len(arg_indices))
for i, ind in enumerate(arg_indices):
if ind in dlinks:
other_i = dlinks[ind]
link_ind[counter][i] = other_i
link_ind[other_i[0]][other_i[1]] = (counter, i)
dlinks[ind] = (counter, i)
counter += 1
counter2 = 0
lines = {}
while counter2 < len(link_ind):
for i, e in enumerate(link_ind):
if None in e:
line_start_index = (i, e.index(None))
break
cur_ind_pos = line_start_index
cur_line = []
index1 = pos_ind[cur_ind_pos[0]][cur_ind_pos[1]]
while True:
d, r = cur_ind_pos
if pos_arg[d] != 1:
if r % 2 == 1:
cur_line.append(transpose(pos_arg[d]))
else:
cur_line.append(pos_arg[d])
next_ind_pos = link_ind[d][1-r]
counter2 += 1
# Mark as visited, there will be no `None` anymore:
link_ind[d] = (-1, -1)
if next_ind_pos is None:
index2 = pos_ind[d][1-r]
lines[(index1, index2)] = cur_line
break
cur_ind_pos = next_ind_pos
lines = {k: MatMul.fromiter(v) if len(v) != 1 else v[0] for k, v in lines.items()}
return [(Mul.fromiter(nonmatargs), None)] + [
(MatrixElement(a, i, j), (i, j)) for (i, j), a in lines.items()
]
elif expr.is_Add:
res = [recurse_expr(i) for i in expr.args]
d = collections.defaultdict(list)
for res_addend in res:
scalar = 1
for elem, indices in res_addend:
if indices is None:
scalar = elem
continue
indices = tuple(sorted(indices, key=default_sort_key))
d[indices].append(scalar*remove_matelement(elem, *indices))
scalar = 1
return [(MatrixElement(Add.fromiter(v), *k), k) for k, v in d.items()]
elif isinstance(expr, KroneckerDelta):
i1, i2 = expr.args
if dimensions is not None:
identity = Identity(dimensions[0])
else:
identity = S.One
return [(MatrixElement(identity, i1, i2), (i1, i2))]
elif isinstance(expr, MatrixElement):
matrix_symbol, i1, i2 = expr.args
if i1 in index_ranges:
r1, r2 = index_ranges[i1]
if r1 != 0 or matrix_symbol.shape[0] != r2+1:
raise ValueError("index range mismatch: {0} vs. (0, {1})".format(
(r1, r2), matrix_symbol.shape[0]))
if i2 in index_ranges:
r1, r2 = index_ranges[i2]
if r1 != 0 or matrix_symbol.shape[1] != r2+1:
raise ValueError("index range mismatch: {0} vs. (0, {1})".format(
(r1, r2), matrix_symbol.shape[1]))
if (i1 == i2) and (i1 in index_ranges):
return [(trace(matrix_symbol), None)]
return [(MatrixElement(matrix_symbol, i1, i2), (i1, i2))]
elif isinstance(expr, Sum):
return recurse_expr(
expr.args[0],
index_ranges={i[0]: i[1:] for i in expr.args[1:]}
)
else:
return [(expr, None)]
retvals = recurse_expr(expr)
factors, indices = zip(*retvals)
retexpr = Mul.fromiter(factors)
if len(indices) == 0 or list(set(indices)) == [None]:
return retexpr
if first_index is None:
for i in indices:
if i is not None:
ind0 = i
break
return remove_matelement(retexpr, *ind0)
else:
return remove_matelement(retexpr, first_index, last_index)
def applyfunc(self, func):
from .applyfunc import ElementwiseApplyFunction
return ElementwiseApplyFunction(func, self)
def _eval_Eq(self, other):
if not isinstance(other, MatrixExpr):
return False
if self.shape != other.shape:
return False
if (self - other).is_ZeroMatrix:
return True
return Eq(self, other, evaluate=False)
def get_postprocessor(cls):
def _postprocessor(expr):
# To avoid circular imports, we can't have MatMul/MatAdd on the top level
mat_class = {Mul: MatMul, Add: MatAdd}[cls]
nonmatrices = []
matrices = []
for term in expr.args:
if isinstance(term, MatrixExpr):
matrices.append(term)
else:
nonmatrices.append(term)
if not matrices:
return cls._from_args(nonmatrices)
if nonmatrices:
if cls == Mul:
for i in range(len(matrices)):
if not matrices[i].is_MatrixExpr:
# If one of the matrices explicit, absorb the scalar into it
# (doit will combine all explicit matrices into one, so it
# doesn't matter which)
matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
nonmatrices = []
break
else:
# Maintain the ability to create Add(scalar, matrix) without
# raising an exception. That way different algorithms can
# replace matrix expressions with non-commutative symbols to
# manipulate them like non-commutative scalars.
return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
return _postprocessor
Basic._constructor_postprocessor_mapping[MatrixExpr] = {
"Mul": [get_postprocessor(Mul)],
"Add": [get_postprocessor(Add)],
}
def _matrix_derivative(expr, x):
from sympy import Derivative
lines = expr._eval_derivative_matrix_lines(x)
parts = [i.build() for i in lines]
from sympy.codegen.array_utils import recognize_matrix_expression
parts = [[recognize_matrix_expression(j).doit() for j in i] for i in parts]
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (1, 1)
def get_rank(parts):
return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
ranks = [get_rank(i) for i in parts]
rank = ranks[0]
def contract_one_dims(parts):
if len(parts) == 1:
return parts[0]
else:
p1, p2 = parts[:2]
if p2.is_Matrix:
p2 = p2.T
pbase = p1*p2
if len(parts) == 2:
return pbase
else: # len(parts) > 2
if pbase.is_Matrix:
raise ValueError("")
return pbase*Mul.fromiter(parts[2:])
if rank <= 2:
return Add.fromiter([contract_one_dims(i) for i in parts])
return Derivative(expr, x)
class MatrixElement(Expr):
parent = property(lambda self: self.args[0])
i = property(lambda self: self.args[1])
j = property(lambda self: self.args[2])
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, n, m):
n, m = map(_sympify, (n, m))
from sympy import MatrixBase
if isinstance(name, (MatrixBase,)):
if n.is_Integer and m.is_Integer:
return name[n, m]
if isinstance(name, string_types):
name = Symbol(name)
name = _sympify(name)
obj = Expr.__new__(cls, name, n, m)
return obj
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
return args[0][args[1], args[2]]
@property
def indices(self):
return self.args[1:]
def _eval_derivative(self, v):
from sympy import Sum, symbols, Dummy
if not isinstance(v, MatrixElement):
from sympy import MatrixBase
if isinstance(self.parent, MatrixBase):
return self.parent.diff(v)[self.i, self.j]
return S.Zero
M = self.args[0]
if M == v.args[0]:
return KroneckerDelta(self.args[1], v.args[1])*KroneckerDelta(self.args[2], v.args[2])
if isinstance(M, Inverse):
i, j = self.args[1:]
i1, i2 = symbols("z1, z2", cls=Dummy)
Y = M.args[0]
r1, r2 = Y.shape
return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
if self.has(v.args[0]):
return None
return S.Zero
class MatrixSymbol(MatrixExpr):
"""Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
can be included in Matrix Expressions
Examples
========
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
"""
is_commutative = False
is_symbol = True
_diff_wrt = True
def __new__(cls, name, n, m):
n, m = _sympify(n), _sympify(m)
if isinstance(name, string_types):
name = Symbol(name)
obj = Basic.__new__(cls, name, n, m)
return obj
def _hashable_content(self):
return (self.name, self.shape)
@property
def shape(self):
return self.args[1:3]
@property
def name(self):
return self.args[0].name
def _eval_subs(self, old, new):
# only do substitutions in shape
shape = Tuple(*self.shape)._subs(old, new)
return MatrixSymbol(self.name, *shape)
def __call__(self, *args):
raise TypeError("%s object is not callable" % self.__class__)
def _entry(self, i, j, **kwargs):
return MatrixElement(self, i, j)
@property
def free_symbols(self):
return set((self,))
def doit(self, **hints):
if hints.get('deep', True):
return type(self)(self.name, self.args[1].doit(**hints),
self.args[2].doit(**hints))
else:
return self
def _eval_simplify(self, **kwargs):
return self
def _eval_derivative_matrix_lines(self, x):
if self != x:
first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
return [_LeftRightArgs(
[first, second],
)]
else:
first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
return [_LeftRightArgs(
[first, second],
)]
class Identity(MatrixExpr):
"""The Matrix Identity I - multiplicative identity
Examples
========
>>> from sympy.matrices import Identity, MatrixSymbol
>>> A = MatrixSymbol('A', 3, 5)
>>> I = Identity(3)
>>> I*A
A
"""
is_Identity = True
def __new__(cls, n):
return super(Identity, cls).__new__(cls, _sympify(n))
@property
def rows(self):
return self.args[0]
@property
def cols(self):
return self.args[0]
@property
def shape(self):
return (self.args[0], self.args[0])
@property
def is_square(self):
return True
def _eval_transpose(self):
return self
def _eval_trace(self):
return self.rows
def _eval_inverse(self):
return self
def conjugate(self):
return self
def _entry(self, i, j, **kwargs):
eq = Eq(i, j)
if eq is S.true:
return S.One
elif eq is S.false:
return S.Zero
return KroneckerDelta(i, j)
def _eval_determinant(self):
return S.One
class GenericIdentity(Identity):
"""
An identity matrix without a specified shape
This exists primarily so MatMul() with no arguments can return something
meaningful.
"""
def __new__(cls):
# super(Identity, cls) instead of super(GenericIdentity, cls) because
# Identity.__new__ doesn't have the same signature
return super(Identity, cls).__new__(cls)
@property
def rows(self):
raise TypeError("GenericIdentity does not have a specified shape")
@property
def cols(self):
raise TypeError("GenericIdentity does not have a specified shape")
@property
def shape(self):
raise TypeError("GenericIdentity does not have a specified shape")
# Avoid Matrix.__eq__ which might call .shape
def __eq__(self, other):
return isinstance(other, GenericIdentity)
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return super(GenericIdentity, self).__hash__()
class ZeroMatrix(MatrixExpr):
"""The Matrix Zero 0 - additive identity
Examples
========
>>> from sympy import MatrixSymbol, ZeroMatrix
>>> A = MatrixSymbol('A', 3, 5)
>>> Z = ZeroMatrix(3, 5)
>>> A + Z
A
>>> Z*A.T
0
"""
is_ZeroMatrix = True
def __new__(cls, m, n):
return super(ZeroMatrix, cls).__new__(cls, m, n)
@property
def shape(self):
return (self.args[0], self.args[1])
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
if other != 1 and not self.is_square:
raise ShapeError("Power of non-square matrix %s" % self)
if other == 0:
return Identity(self.rows)
if other < 1:
raise ValueError("Matrix det == 0; not invertible.")
return self
def _eval_transpose(self):
return ZeroMatrix(self.cols, self.rows)
def _eval_trace(self):
return S.Zero
def _eval_determinant(self):
return S.Zero
def conjugate(self):
return self
def _entry(self, i, j, **kwargs):
return S.Zero
def __nonzero__(self):
return False
__bool__ = __nonzero__
class GenericZeroMatrix(ZeroMatrix):
"""
A zero matrix without a specified shape
This exists primarily so MatAdd() with no arguments can return something
meaningful.
"""
def __new__(cls):
# super(ZeroMatrix, cls) instead of super(GenericZeroMatrix, cls)
# because ZeroMatrix.__new__ doesn't have the same signature
return super(ZeroMatrix, cls).__new__(cls)
@property
def rows(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
@property
def cols(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
@property
def shape(self):
raise TypeError("GenericZeroMatrix does not have a specified shape")
# Avoid Matrix.__eq__ which might call .shape
def __eq__(self, other):
return isinstance(other, GenericZeroMatrix)
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return super(GenericZeroMatrix, self).__hash__()
class OneMatrix(MatrixExpr):
"""
Matrix whose all entries are ones.
"""
def __new__(cls, m, n):
obj = super(OneMatrix, cls).__new__(cls, m, n)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
from sympy import ImmutableDenseMatrix
return ImmutableDenseMatrix.ones(*self.shape)
def _eval_transpose(self):
return OneMatrix(self.cols, self.rows)
def _eval_trace(self):
return S.One*self.rows
def _eval_determinant(self):
condition = Eq(self.shape[0], 1) & Eq(self.shape[1], 1)
if condition == True:
return S.One
elif condition == False:
return S.Zero
else:
from sympy import Determinant
return Determinant(self)
def conjugate(self):
return self
def _entry(self, i, j, **kwargs):
return S.One
def matrix_symbols(expr):
return [sym for sym in expr.free_symbols if sym.is_Matrix]
class _LeftRightArgs(object):
r"""
Helper class to compute matrix derivatives.
The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
matrix multiplications are created: the one contracted to `m` (first line),
and the one contracted to `n` (second line).
Transposition flips the side by which new matrices are connected to the
lines.
The trace connects the end of the two lines.
"""
def __init__(self, lines, higher=S.One):
self._lines = [i for i in lines]
self._first_pointer_parent = self._lines
self._first_pointer_index = 0
self._first_line_index = 0
self._second_pointer_parent = self._lines
self._second_pointer_index = 1
self._second_line_index = 1
self.higher = higher
@property
def first_pointer(self):
return self._first_pointer_parent[self._first_pointer_index]
@first_pointer.setter
def first_pointer(self, value):
self._first_pointer_parent[self._first_pointer_index] = value
@property
def second_pointer(self):
return self._second_pointer_parent[self._second_pointer_index]
@second_pointer.setter
def second_pointer(self, value):
self._second_pointer_parent[self._second_pointer_index] = value
def __repr__(self):
try:
built = [self._build(i) for i in self._lines]
except Exception:
built = self._lines
return "_LeftRightArgs(lines=%s, higher=%s)" % (
built,
self.higher,
)
def transpose(self):
self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
return self
@staticmethod
def _build(expr):
from sympy.core.expr import ExprBuilder
if isinstance(expr, ExprBuilder):
return expr.build()
if isinstance(expr, list):
if len(expr) == 1:
return expr[0]
else:
return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
else:
return expr
def build(self):
data = [self._build(i) for i in self._lines]
if self.higher != 1:
data += [self._build(self.higher)]
data = [i.doit() for i in data]
return data
def matrix_form(self):
if self.first != 1 and self.higher != 1:
raise ValueError("higher dimensional array cannot be represented")
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (None, None)
if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
# Remove one-dimensional identity matrices:
# (this is needed by `a.diff(a)` where `a` is a vector)
if _get_shape(self.second) == (1, 1):
return self.first*self.second[0, 0]
if _get_shape(self.first) == (1, 1):
return self.first[1, 1]*self.second.T
raise ValueError("incompatible shapes")
if self.first != 1:
return self.first*self.second.T
else:
return self.higher
def rank(self):
"""
Number of dimensions different from trivial (warning: not related to
matrix rank).
"""
rank = 0
if self.first != 1:
rank += sum([i != 1 for i in self.first.shape])
if self.second != 1:
rank += sum([i != 1 for i in self.second.shape])
if self.higher != 1:
rank += 2
return rank
def _multiply_pointer(self, pointer, other):
from sympy.core.expr import ExprBuilder
from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct
subexpr = ExprBuilder(
CodegenArrayContraction,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
pointer,
other
]
),
(1, 2)
],
validator=CodegenArrayContraction._validate
)
return subexpr
def append_first(self, other):
self.first_pointer *= other
def append_second(self, other):
self.second_pointer *= other
def __hash__(self):
return hash((self.first, self.second))
def __eq__(self, other):
if not isinstance(other, _LeftRightArgs):
return False
return (self.first == other.first) and (self.second == other.second)
def _make_matrix(x):
from sympy import ImmutableDenseMatrix
if isinstance(x, MatrixExpr):
return x
return ImmutableDenseMatrix([[x]])
from .matmul import MatMul
from .matadd import MatAdd
from .matpow import MatPow
from .transpose import Transpose
from .inverse import Inverse
|
4baca8981b58f6000f6f06e228f202c1e56452d854a2cfcd0ea4dfd463b1d877 | from __future__ import print_function, division
from sympy.matrices.expressions import MatrixExpr
from sympy import S, I, sqrt, exp
class DFT(MatrixExpr):
""" Discrete Fourier Transform """
n = property(lambda self: self.args[0])
shape = property(lambda self: (self.n, self.n))
def _entry(self, i, j, **kwargs):
w = exp(-2*S.Pi*I/self.n)
return w**(i*j) / sqrt(self.n)
def _eval_inverse(self):
return IDFT(self.n)
class IDFT(DFT):
""" Inverse Discrete Fourier Transform """
def _entry(self, i, j, **kwargs):
w = exp(-2*S.Pi*I/self.n)
return w**(-i*j) / sqrt(self.n)
def _eval_inverse(self):
return DFT(self.n)
|
3db56601033d03febac11b5f12bd9e86dac3a419b625eab2b7d91e54bddbed1a | """Implementation of the Kronecker product"""
from __future__ import division, print_function
from sympy.core import Add, Mul, Pow, prod, sympify
from sympy.core.compatibility import range
from sympy.functions import adjoint
from sympy.matrices.expressions.matexpr import MatrixExpr, ShapeError, Identity
from sympy.matrices.expressions.transpose import transpose
from sympy.matrices.matrices import MatrixBase
from sympy.strategies import (
canon, condition, distribute, do_one, exhaust, flatten, typed, unpack)
from sympy.strategies.traverse import bottom_up
from sympy.utilities import sift
from .matadd import MatAdd
from .matmul import MatMul
from .matpow import MatPow
def kronecker_product(*matrices):
"""
The Kronecker product of two or more arguments.
This computes the explicit Kronecker product for subclasses of
``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic
``KroneckerProduct`` object is returned.
Examples
========
For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned.
Elements of this matrix can be obtained by indexing, or for MatrixSymbols
with known dimension the explicit matrix can be obtained with
``.as_explicit()``
>>> from sympy.matrices import kronecker_product, MatrixSymbol
>>> A = MatrixSymbol('A', 2, 2)
>>> B = MatrixSymbol('B', 2, 2)
>>> kronecker_product(A)
A
>>> kronecker_product(A, B)
KroneckerProduct(A, B)
>>> kronecker_product(A, B)[0, 1]
A[0, 0]*B[0, 1]
>>> kronecker_product(A, B).as_explicit()
Matrix([
[A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]],
[A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]],
[A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]],
[A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]])
For explicit matrices the Kronecker product is returned as a Matrix
>>> from sympy.matrices import Matrix, kronecker_product
>>> sigma_x = Matrix([
... [0, 1],
... [1, 0]])
...
>>> Isigma_y = Matrix([
... [0, 1],
... [-1, 0]])
...
>>> kronecker_product(sigma_x, Isigma_y)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, -1, 0],
[ 0, 1, 0, 0],
[-1, 0, 0, 0]])
See Also
========
KroneckerProduct
"""
if not matrices:
raise TypeError("Empty Kronecker product is undefined")
validate(*matrices)
if len(matrices) == 1:
return matrices[0]
else:
return KroneckerProduct(*matrices).doit()
class KroneckerProduct(MatrixExpr):
"""
The Kronecker product of two or more arguments.
The Kronecker product is a non-commutative product of matrices.
Given two matrices of dimension (m, n) and (s, t) it produces a matrix
of dimension (m s, n t).
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the product, use the function
``kronecker_product()`` or call the the ``.doit()`` or ``.as_explicit()``
methods.
>>> from sympy.matrices import KroneckerProduct, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> isinstance(KroneckerProduct(A, B), KroneckerProduct)
True
"""
is_KroneckerProduct = True
def __new__(cls, *args, **kwargs):
args = list(map(sympify, args))
if all(a.is_Identity for a in args):
ret = Identity(prod(a.rows for a in args))
if all(isinstance(a, MatrixBase) for a in args):
return ret.as_explicit()
else:
return ret
check = kwargs.get('check', True)
if check:
validate(*args)
return super(KroneckerProduct, cls).__new__(cls, *args)
@property
def shape(self):
rows, cols = self.args[0].shape
for mat in self.args[1:]:
rows *= mat.rows
cols *= mat.cols
return (rows, cols)
def _entry(self, i, j, **kwargs):
result = 1
for mat in reversed(self.args):
i, m = divmod(i, mat.rows)
j, n = divmod(j, mat.cols)
result *= mat[m, n]
return result
def _eval_adjoint(self):
return KroneckerProduct(*list(map(adjoint, self.args))).doit()
def _eval_conjugate(self):
return KroneckerProduct(*[a.conjugate() for a in self.args]).doit()
def _eval_transpose(self):
return KroneckerProduct(*list(map(transpose, self.args))).doit()
def _eval_trace(self):
from .trace import trace
return prod(trace(a) for a in self.args)
def _eval_determinant(self):
from .determinant import det, Determinant
if not all(a.is_square for a in self.args):
return Determinant(self)
m = self.rows
return prod(det(a)**(m/a.rows) for a in self.args)
def _eval_inverse(self):
try:
return KroneckerProduct(*[a.inverse() for a in self.args])
except ShapeError:
from sympy.matrices.expressions.inverse import Inverse
return Inverse(self)
def structurally_equal(self, other):
'''Determine whether two matrices have the same Kronecker product structure
Examples
========
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, m)
>>> B = MatrixSymbol('B', n, n)
>>> C = MatrixSymbol('C', m, m)
>>> D = MatrixSymbol('D', n, n)
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D))
True
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C))
False
>>> KroneckerProduct(A, B).structurally_equal(C)
False
'''
# Inspired by BlockMatrix
return (isinstance(other, KroneckerProduct)
and self.shape == other.shape
and len(self.args) == len(other.args)
and all(a.shape == b.shape for (a, b) in zip(self.args, other.args)))
def has_matching_shape(self, other):
'''Determine whether two matrices have the appropriate structure to bring matrix
multiplication inside the KroneckerProdut
Examples
========
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', n, m)
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A))
True
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B))
False
>>> KroneckerProduct(A, B).has_matching_shape(A)
False
'''
return (isinstance(other, KroneckerProduct)
and self.cols == other.rows
and len(self.args) == len(other.args)
and all(a.cols == b.rows for (a, b) in zip(self.args, other.args)))
def _eval_expand_kroneckerproduct(self, **hints):
return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self))
def _kronecker_add(self, other):
if self.structurally_equal(other):
return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)])
else:
return self + other
def _kronecker_mul(self, other):
if self.has_matching_shape(other):
return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)])
else:
return self * other
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
return canonicalize(KroneckerProduct(*args))
def validate(*args):
if not all(arg.is_Matrix for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
# rules
def extract_commutative(kron):
c_part = []
nc_part = []
for arg in kron.args:
c, nc = arg.args_cnc()
c_part.extend(c)
nc_part.append(Mul._from_args(nc))
c_part = Mul(*c_part)
if c_part != 1:
return c_part*KroneckerProduct(*nc_part)
return kron
def matrix_kronecker_product(*matrices):
"""Compute the Kronecker product of a sequence of SymPy Matrices.
This is the standard Kronecker product of matrices [1].
Parameters
==========
matrices : tuple of MatrixBase instances
The matrices to take the Kronecker product of.
Returns
=======
matrix : MatrixBase
The Kronecker product matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.matrices.expressions.kronecker import (
... matrix_kronecker_product)
>>> m1 = Matrix([[1,2],[3,4]])
>>> m2 = Matrix([[1,0],[0,1]])
>>> matrix_kronecker_product(m1, m2)
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2],
[3, 0, 4, 0],
[0, 3, 0, 4]])
>>> matrix_kronecker_product(m2, m1)
Matrix([
[1, 2, 0, 0],
[3, 4, 0, 0],
[0, 0, 1, 2],
[0, 0, 3, 4]])
References
==========
[1] https://en.wikipedia.org/wiki/Kronecker_product
"""
# Make sure we have a sequence of Matrices
if not all(isinstance(m, MatrixBase) for m in matrices):
raise TypeError(
'Sequence of Matrices expected, got: %s' % repr(matrices)
)
# Pull out the first element in the product.
matrix_expansion = matrices[-1]
# Do the kronecker product working from right to left.
for mat in reversed(matrices[:-1]):
rows = mat.rows
cols = mat.cols
# Go through each row appending kronecker product to.
# running matrix_expansion.
for i in range(rows):
start = matrix_expansion*mat[i*cols]
# Go through each column joining each item
for j in range(cols - 1):
start = start.row_join(
matrix_expansion*mat[i*cols + j + 1]
)
# If this is the first element, make it the start of the
# new row.
if i == 0:
next = start
else:
next = next.col_join(start)
matrix_expansion = next
MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__
if isinstance(matrix_expansion, MatrixClass):
return matrix_expansion
else:
return MatrixClass(matrix_expansion)
def explicit_kronecker_product(kron):
# Make sure we have a sequence of Matrices
if not all(isinstance(m, MatrixBase) for m in kron.args):
return kron
return matrix_kronecker_product(*kron.args)
rules = (unpack,
explicit_kronecker_product,
flatten,
extract_commutative)
canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct),
do_one(*rules)))
def _kronecker_dims_key(expr):
if isinstance(expr, KroneckerProduct):
return tuple(a.shape for a in expr.args)
else:
return (0,)
def kronecker_mat_add(expr):
from functools import reduce
args = sift(expr.args, _kronecker_dims_key)
nonkrons = args.pop((0,), None)
if not args:
return expr
krons = [reduce(lambda x, y: x._kronecker_add(y), group)
for group in args.values()]
if not nonkrons:
return MatAdd(*krons)
else:
return MatAdd(*krons) + nonkrons
def kronecker_mat_mul(expr):
# modified from block matrix code
factor, matrices = expr.as_coeff_matrices()
i = 0
while i < len(matrices) - 1:
A, B = matrices[i:i+2]
if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct):
matrices[i] = A._kronecker_mul(B)
matrices.pop(i+1)
else:
i += 1
return factor*MatMul(*matrices)
def kronecker_mat_pow(expr):
if isinstance(expr.base, KroneckerProduct):
return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args])
else:
return expr
def combine_kronecker(expr):
"""Combine KronekeckerProduct with expression.
If possible write operations on KroneckerProducts of compatible shapes
as a single KroneckerProduct.
Examples
========
>>> from sympy.matrices.expressions import MatrixSymbol, KroneckerProduct, combine_kronecker
>>> from sympy import symbols
>>> m, n = symbols(r'm, n', integer=True)
>>> A = MatrixSymbol('A', m, n)
>>> B = MatrixSymbol('B', n, m)
>>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A))
KroneckerProduct(A*B, B*A)
>>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T))
KroneckerProduct(A + B.T, B + A.T)
>>> combine_kronecker(KroneckerProduct(A, B)**m)
KroneckerProduct(A**m, B**m)
"""
def haskron(expr):
return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct)
rule = exhaust(
bottom_up(exhaust(condition(haskron, typed(
{MatAdd: kronecker_mat_add,
MatMul: kronecker_mat_mul,
MatPow: kronecker_mat_pow})))))
result = rule(expr)
doit = getattr(result, 'doit', None)
if doit is not None:
return doit()
else:
return result
|
5f9b9f9d2e0687e8d63dbbcd9a9a16931ba6e7d4d857ddd42d7f8827dae135e7 | from __future__ import print_function, division
from sympy.core.sympify import _sympify
from sympy.matrices.expressions import MatrixExpr
from sympy.core import S, Eq, Ge
from sympy.functions.special.tensor_functions import KroneckerDelta
class DiagonalMatrix(MatrixExpr):
"""DiagonalMatrix(M) will create a matrix expression that
behaves as though all off-diagonal elements,
`M[i, j]` where `i != j`, are zero.
Examples
========
>>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol
>>> n = Symbol('n', integer=True)
>>> m = Symbol('m', integer=True)
>>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3))
>>> D[1, 2]
0
>>> D[1, 1]
x[1, 1]
The length of the diagonal -- the lesser of the two dimensions of `M` --
is accessed through the `diagonal_length` property:
>>> D.diagonal_length
2
>>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length
n
When one of the dimensions is symbolic the other will be treated as
though it is smaller:
>>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3))
>>> tall.diagonal_length
3
>>> tall[10, 1]
0
When the size of the diagonal is not known, a value of None will
be returned:
>>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None
True
"""
arg = property(lambda self: self.args[0])
shape = property(lambda self: self.arg.shape)
@property
def diagonal_length(self):
r, c = self.shape
if r.is_Integer and c.is_Integer:
m = min(r, c)
elif r.is_Integer and not c.is_Integer:
m = r
elif c.is_Integer and not r.is_Integer:
m = c
elif r == c:
m = r
else:
try:
m = min(r, c)
except TypeError:
m = None
return m
def _entry(self, i, j, **kwargs):
if self.diagonal_length is not None:
if Ge(i, self.diagonal_length) is S.true:
return S.Zero
elif Ge(j, self.diagonal_length) is S.true:
return S.Zero
eq = Eq(i, j)
if eq is S.true:
return self.arg[i, i]
elif eq is S.false:
return S.Zero
return self.arg[i, j]*KroneckerDelta(i, j)
class DiagonalOf(MatrixExpr):
"""DiagonalOf(M) will create a matrix expression that
is equivalent to the diagonal of `M`, represented as
a single column matrix.
Examples
========
>>> from sympy import MatrixSymbol, DiagonalOf, Symbol
>>> n = Symbol('n', integer=True)
>>> m = Symbol('m', integer=True)
>>> x = MatrixSymbol('x', 2, 3)
>>> diag = DiagonalOf(x)
>>> diag.shape
(2, 1)
The diagonal can be addressed like a matrix or vector and will
return the corresponding element of the original matrix:
>>> diag[1, 0] == diag[1] == x[1, 1]
True
The length of the diagonal -- the lesser of the two dimensions of `M` --
is accessed through the `diagonal_length` property:
>>> diag.diagonal_length
2
>>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length
n
When only one of the dimensions is symbolic the other will be
treated as though it is smaller:
>>> dtall = DiagonalOf(MatrixSymbol('x', n, 3))
>>> dtall.diagonal_length
3
When the size of the diagonal is not known, a value of None will
be returned:
>>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None
True
"""
arg = property(lambda self: self.args[0])
@property
def shape(self):
r, c = self.arg.shape
if r.is_Integer and c.is_Integer:
m = min(r, c)
elif r.is_Integer and not c.is_Integer:
m = r
elif c.is_Integer and not r.is_Integer:
m = c
elif r == c:
m = r
else:
try:
m = min(r, c)
except TypeError:
m = None
return m, S.One
@property
def diagonal_length(self):
return self.shape[0]
def _entry(self, i, j, **kwargs):
return self.arg._entry(i, i, **kwargs)
class DiagonalizeVector(MatrixExpr):
"""
Turn a vector into a diagonal matrix.
"""
def __new__(cls, vector):
vector = _sympify(vector)
obj = MatrixExpr.__new__(cls, vector)
shape = vector.shape
dim = shape[1] if shape[0] == 1 else shape[0]
if vector.shape[0] != 1:
obj._iscolumn = True
else:
obj._iscolumn = False
obj._shape = (dim, dim)
obj._vector = vector
return obj
@property
def shape(self):
return self._shape
def _entry(self, i, j, **kwargs):
if self._iscolumn:
result = self._vector._entry(i, 0, **kwargs)
else:
result = self._vector._entry(0, j, **kwargs)
if i != j:
result *= KroneckerDelta(i, j)
return result
def _eval_transpose(self):
return self
def as_explicit(self):
from sympy import diag
return diag(*list(self._vector.as_explicit()))
def doit(self, **hints):
from sympy.assumptions import ask, Q
from sympy import Transpose, Mul, MatMul
vector = self._vector
# This accounts for shape (1, 1) and identity matrices, among others:
if ask(Q.diagonal(vector)):
return vector
if vector.is_MatMul:
matrices = [arg for arg in vector.args if arg.is_Matrix]
scalars = [arg for arg in vector.args if arg not in matrices]
if scalars:
return Mul.fromiter(scalars)*DiagonalizeVector(MatMul.fromiter(matrices).doit()).doit()
if isinstance(vector, Transpose):
vector = vector.arg
return DiagonalizeVector(vector)
def diagonalize_vector(vector):
return DiagonalizeVector(vector).doit()
|
87ab15e60d3ce7c1912923d6f798a1d1110a795510dcdf7b29f0a2cc98ec69fd | from __future__ import print_function, division
from sympy import Basic, Expr, sympify, S
from sympy.matrices.matrices import MatrixBase
from .matexpr import ShapeError
class Trace(Expr):
"""Matrix Trace
Represents the trace of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
"""
is_Trace = True
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("input to Trace, %s, is not a matrix" % str(mat))
if not mat.is_square:
raise ShapeError("Trace of a non-square matrix")
return Basic.__new__(cls, mat)
def _eval_transpose(self):
return self
def _eval_derivative(self, v):
from sympy.matrices.expressions.matexpr import _matrix_derivative
return _matrix_derivative(self, v)
def _eval_derivative_matrix_lines(self, x):
from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct
from sympy.core.expr import ExprBuilder
r = self.args[0]._eval_derivative_matrix_lines(x)
for lr in r:
if lr.higher == 1:
lr.higher = ExprBuilder(
CodegenArrayContraction,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
]
),
(1, 3),
],
validator=CodegenArrayContraction._validate
)
else:
# This is not a matrix line:
lr.higher = ExprBuilder(
CodegenArrayContraction,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
lr._lines[0],
lr._lines[1],
lr.higher,
]
),
(1, 3), (0, 2)
]
)
lr._lines = [S.One, S.One]
lr._first_pointer_parent = lr._lines
lr._second_pointer_parent = lr._lines
lr._first_pointer_index = 0
lr._second_pointer_index = 1
return r
@property
def arg(self):
return self.args[0]
def doit(self, **kwargs):
if kwargs.get('deep', True):
arg = self.arg.doit(**kwargs)
try:
return arg._eval_trace()
except (AttributeError, NotImplementedError):
return Trace(arg)
else:
# _eval_trace would go too deep here
if isinstance(self.arg, MatrixBase):
return trace(self.arg)
else:
return Trace(self.arg)
def _eval_rewrite_as_Sum(self, expr, **kwargs):
from sympy import Sum, Dummy
i = Dummy('i')
return Sum(self.arg[i, i], (i, 0, self.arg.rows-1)).doit()
def trace(expr):
"""Trace of a Matrix. Sum of the diagonal elements.
Examples
========
>>> from sympy import trace, Symbol, MatrixSymbol, pprint, eye
>>> n = Symbol('n')
>>> X = MatrixSymbol('X', n, n) # A square matrix
>>> trace(2*X)
2*Trace(X)
>>> trace(eye(3))
3
"""
return Trace(expr).doit()
|
0251f6da78424a6cc4ad900d41bc44d8d76fdf5a263bc5b3dd8a59afb8faacba | from __future__ import print_function, division
from sympy.core import Mul, sympify
from sympy.matrices.expressions.matexpr import MatrixExpr, ShapeError
from sympy.strategies import unpack, flatten, condition, exhaust, do_one
def hadamard_product(*matrices):
"""
Return the elementwise (aka Hadamard) product of matrices.
Examples
========
>>> from sympy.matrices import hadamard_product, MatrixSymbol
>>> A = MatrixSymbol('A', 2, 3)
>>> B = MatrixSymbol('B', 2, 3)
>>> hadamard_product(A)
A
>>> hadamard_product(A, B)
A.*B
>>> hadamard_product(A, B)[0, 1]
A[0, 1]*B[0, 1]
"""
if not matrices:
raise TypeError("Empty Hadamard product is undefined")
validate(*matrices)
if len(matrices) == 1:
return matrices[0]
else:
matrices = [i for i in matrices if not i.is_Identity]
return HadamardProduct(*matrices).doit()
class HadamardProduct(MatrixExpr):
"""
Elementwise product of matrix expressions
This is a symbolic object that simply stores its argument without
evaluating it. To actually compute the product, use the function
``hadamard_product()``.
>>> from sympy.matrices import hadamard_product, HadamardProduct, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> isinstance(hadamard_product(A, B), HadamardProduct)
True
"""
is_HadamardProduct = True
def __new__(cls, *args, **kwargs):
args = list(map(sympify, args))
check = kwargs.get('check', True)
if check:
validate(*args)
return super(HadamardProduct, cls).__new__(cls, *args)
@property
def shape(self):
return self.args[0].shape
def _entry(self, i, j, **kwargs):
return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args])
def _eval_transpose(self):
from sympy.matrices.expressions.transpose import transpose
return HadamardProduct(*list(map(transpose, self.args)))
def doit(self, **ignored):
return canonicalize(self)
def _eval_derivative_matrix_lines(self, x):
from sympy.core.expr import ExprBuilder
from sympy.codegen.array_utils import CodegenArrayDiagonal, CodegenArrayTensorProduct
from sympy.matrices.expressions.matexpr import _make_matrix
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
d = self.args[ind]._eval_derivative_matrix_lines(x)
hadam = hadamard_product(*(right_args + left_args))
diagonal = [(0, 2), (3, 4)]
diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1]
for i in d:
l1 = i._lines[i._first_line_index]
l2 = i._lines[i._second_line_index]
subexpr = ExprBuilder(
CodegenArrayDiagonal,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
ExprBuilder(_make_matrix, [l1]),
hadam,
ExprBuilder(_make_matrix, [l2]),
]
),
] + diagonal, # turn into *diagonal after dropping Python 2.7
)
i._first_pointer_parent = subexpr.args[0].args[0].args
i._first_pointer_index = 0
i._second_pointer_parent = subexpr.args[0].args[2].args
i._second_pointer_index = 0
i._lines = [subexpr]
lines.append(i)
return lines
def validate(*args):
if not all(arg.is_Matrix for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
A = args[0]
for B in args[1:]:
if A.shape != B.shape:
raise ShapeError("Matrices %s and %s are not aligned" % (A, B))
rules = (unpack,
flatten)
canonicalize = exhaust(condition(lambda x: isinstance(x, HadamardProduct),
do_one(*rules)))
def hadamard_power(base, exp):
base = sympify(base)
exp = sympify(exp)
if exp == 1:
return base
if not base.is_Matrix:
return base**exp
if exp.is_Matrix:
raise ValueError("cannot raise expression to a matrix")
return HadamardPower(base, exp)
class HadamardPower(MatrixExpr):
"""
Elementwise power of matrix expressions
"""
def __new__(cls, base, exp):
base = sympify(base)
exp = sympify(exp)
obj = super(HadamardPower, cls).__new__(cls, base, exp)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@property
def shape(self):
return self.base.shape
def _entry(self, i, j, **kwargs):
return self.base._entry(i, j, **kwargs)**self.exp
def _eval_transpose(self):
from sympy.matrices.expressions.transpose import transpose
return HadamardPower(transpose(self.base), self.exp)
def _eval_derivative_matrix_lines(self, x):
from sympy.codegen.array_utils import CodegenArrayTensorProduct
from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayDiagonal
from sympy.core.expr import ExprBuilder
from sympy.matrices.expressions.matexpr import _make_matrix
lr = self.base._eval_derivative_matrix_lines(x)
for i in lr:
diagonal = [(1, 2), (3, 4)]
diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1]
l1 = i._lines[i._first_line_index]
l2 = i._lines[i._second_line_index]
subexpr = ExprBuilder(
CodegenArrayDiagonal,
[
ExprBuilder(
CodegenArrayTensorProduct,
[
ExprBuilder(_make_matrix, [l1]),
self.exp*hadamard_power(self.base, self.exp-1),
ExprBuilder(_make_matrix, [l2]),
]
),
] + diagonal, # turn into *diagonal after dropping Python 2.7
validator=CodegenArrayDiagonal._validate
)
i._first_pointer_parent = subexpr.args[0].args[0].args
i._first_pointer_index = 0
i._first_line_index = 0
i._second_pointer_parent = subexpr.args[0].args[2].args
i._second_pointer_index = 0
i._second_line_index = 0
i._lines = [subexpr]
return lr
|
1d0126953d052f42ac3bf5105bbfaca095a0cadc0482abeeaad729ec648dcf7d | from __future__ import print_function, division
from sympy import ask, Q
from sympy.core import Basic, Add
from sympy.core.compatibility import range
from sympy.strategies import typed, exhaust, condition, do_one, unpack
from sympy.strategies.traverse import bottom_up
from sympy.utilities import sift
from sympy.utilities.misc import filldedent
from sympy.matrices.expressions.matexpr import MatrixExpr, ZeroMatrix, Identity
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.transpose import Transpose, transpose
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.determinant import det, Determinant
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices import Matrix, ShapeError
from sympy.functions.elementary.complexes import re, im
class BlockMatrix(MatrixExpr):
"""A BlockMatrix is a Matrix comprised of other matrices.
The submatrices are stored in a SymPy Matrix object but accessed as part of
a Matrix Expression
>>> from sympy import (MatrixSymbol, BlockMatrix, symbols,
... Identity, ZeroMatrix, block_collapse)
>>> n,m,l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m ,m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
>>> print(B)
Matrix([
[X, Z],
[0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]])
>>> print(C)
Matrix([[I, Z]])
>>> print(block_collapse(C*B))
Matrix([[X, Z + Z*Y]])
Some matrices might be comprised of rows of blocks with
the matrices in each row having the same height and the
rows all having the same total number of columns but
not having the same number of columns for each matrix
in each row. In this case, the matrix is not a block
matrix and should be instantiated by Matrix.
>>> from sympy import ones, Matrix
>>> dat = [
... [ones(3,2), ones(3,3)*2],
... [ones(2,3)*3, ones(2,2)*4]]
...
>>> BlockMatrix(dat)
Traceback (most recent call last):
...
ValueError:
Although this matrix is comprised of blocks, the blocks do not fill
the matrix in a size-symmetric fashion. To create a full matrix from
these arguments, pass them directly to Matrix.
>>> Matrix(dat)
Matrix([
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[3, 3, 3, 4, 4],
[3, 3, 3, 4, 4]])
See Also
========
sympy.matrices.matrices.MatrixBase.irregular
"""
def __new__(cls, *args, **kwargs):
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.matrices import zeros
from sympy.matrices.matrices import MatrixBase
from sympy.utilities.iterables import is_sequence
isMat = lambda i: getattr(i, 'is_Matrix', False)
if len(args) != 1 or \
not is_sequence(args[0]) or \
len(set([isMat(r) for r in args[0]])) != 1:
raise ValueError(filldedent('''
expecting a sequence of 1 or more rows
containing Matrices.'''))
rows = args[0] if args else []
if not isMat(rows):
if rows and isMat(rows[0]):
rows = [rows] # rows is not list of lists or []
# regularity check
# same number of matrices in each row
blocky = ok = len(set([len(r) for r in rows])) == 1
if ok:
# same number of rows for each matrix in a row
for r in rows:
ok = len(set([i.rows for i in r])) == 1
if not ok:
break
blocky = ok
# same number of cols for each matrix in each col
for c in range(len(rows[0])):
ok = len(set([rows[i][c].cols
for i in range(len(rows))])) == 1
if not ok:
break
if not ok:
# same total cols in each row
ok = len(set([
sum([i.cols for i in r]) for r in rows])) == 1
if blocky and ok:
raise ValueError(filldedent('''
Although this matrix is comprised of blocks,
the blocks do not fill the matrix in a
size-symmetric fashion. To create a full matrix
from these arguments, pass them directly to
Matrix.'''))
raise ValueError(filldedent('''
When there are not the same number of rows in each
row's matrices or there are not the same number of
total columns in each row, the matrix is not a
block matrix. If this matrix is known to consist of
blocks fully filling a 2-D space then see
Matrix.irregular.'''))
mat = ImmutableDenseMatrix(rows, evaluate=False)
obj = Basic.__new__(cls, mat)
return obj
@property
def shape(self):
numrows = numcols = 0
M = self.blocks
for i in range(M.shape[0]):
numrows += M[i, 0].shape[0]
for i in range(M.shape[1]):
numcols += M[0, i].shape[1]
return (numrows, numcols)
@property
def blockshape(self):
return self.blocks.shape
@property
def blocks(self):
return self.args[0]
@property
def rowblocksizes(self):
return [self.blocks[i, 0].rows for i in range(self.blockshape[0])]
@property
def colblocksizes(self):
return [self.blocks[0, i].cols for i in range(self.blockshape[1])]
def structurally_equal(self, other):
return (isinstance(other, BlockMatrix)
and self.shape == other.shape
and self.blockshape == other.blockshape
and self.rowblocksizes == other.rowblocksizes
and self.colblocksizes == other.colblocksizes)
def _blockmul(self, other):
if (isinstance(other, BlockMatrix) and
self.colblocksizes == other.rowblocksizes):
return BlockMatrix(self.blocks*other.blocks)
return self * other
def _blockadd(self, other):
if (isinstance(other, BlockMatrix)
and self.structurally_equal(other)):
return BlockMatrix(self.blocks + other.blocks)
return self + other
def _eval_transpose(self):
# Flip all the individual matrices
matrices = [transpose(matrix) for matrix in self.blocks]
# Make a copy
M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
# Transpose the block structure
M = M.transpose()
return BlockMatrix(M)
def _eval_trace(self):
if self.rowblocksizes == self.colblocksizes:
return Add(*[Trace(self.blocks[i, i])
for i in range(self.blockshape[0])])
raise NotImplementedError(
"Can't perform trace of irregular blockshape")
def _eval_determinant(self):
if self.blockshape == (2, 2):
[[A, B],
[C, D]] = self.blocks.tolist()
if ask(Q.invertible(A)):
return det(A)*det(D - C*A.I*B)
elif ask(Q.invertible(D)):
return det(D)*det(A - B*D.I*C)
return Determinant(self)
def as_real_imag(self):
real_matrices = [re(matrix) for matrix in self.blocks]
real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices)
im_matrices = [im(matrix) for matrix in self.blocks]
im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices)
return (real_matrices, im_matrices)
def transpose(self):
"""Return transpose of matrix.
Examples
========
>>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
>>> from sympy.abc import l, m, n
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m ,m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
>>> B.transpose()
Matrix([
[X.T, 0],
[Z.T, Y.T]])
>>> _.transpose()
Matrix([
[X, Z],
[0, Y]])
"""
return self._eval_transpose()
def _entry(self, i, j, **kwargs):
# Find row entry
for row_block, numrows in enumerate(self.rowblocksizes):
if (i < numrows) != False:
break
else:
i -= numrows
for col_block, numcols in enumerate(self.colblocksizes):
if (j < numcols) != False:
break
else:
j -= numcols
return self.blocks[row_block, col_block][i, j]
@property
def is_Identity(self):
if self.blockshape[0] != self.blockshape[1]:
return False
for i in range(self.blockshape[0]):
for j in range(self.blockshape[1]):
if i==j and not self.blocks[i, j].is_Identity:
return False
if i!=j and not self.blocks[i, j].is_ZeroMatrix:
return False
return True
@property
def is_structurally_symmetric(self):
return self.rowblocksizes == self.colblocksizes
def equals(self, other):
if self == other:
return True
if (isinstance(other, BlockMatrix) and self.blocks == other.blocks):
return True
return super(BlockMatrix, self).equals(other)
class BlockDiagMatrix(BlockMatrix):
"""
A BlockDiagMatrix is a BlockMatrix with matrices only along the diagonal
>>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols, Identity
>>> n, m, l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m ,m)
>>> BlockDiagMatrix(X, Y)
Matrix([
[X, 0],
[0, Y]])
See Also
========
sympy.matrices.common.diag
"""
def __new__(cls, *mats):
return Basic.__new__(BlockDiagMatrix, *mats)
@property
def diag(self):
return self.args
@property
def blocks(self):
from sympy.matrices.immutable import ImmutableDenseMatrix
mats = self.args
data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
for j in range(len(mats))]
for i in range(len(mats))]
return ImmutableDenseMatrix(data)
@property
def shape(self):
return (sum(block.rows for block in self.args),
sum(block.cols for block in self.args))
@property
def blockshape(self):
n = len(self.args)
return (n, n)
@property
def rowblocksizes(self):
return [block.rows for block in self.args]
@property
def colblocksizes(self):
return [block.cols for block in self.args]
def _eval_inverse(self, expand='ignored'):
return BlockDiagMatrix(*[mat.inverse() for mat in self.args])
def _blockmul(self, other):
if (isinstance(other, BlockDiagMatrix) and
self.colblocksizes == other.rowblocksizes):
return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)])
else:
return BlockMatrix._blockmul(self, other)
def _blockadd(self, other):
if (isinstance(other, BlockDiagMatrix) and
self.blockshape == other.blockshape and
self.rowblocksizes == other.rowblocksizes and
self.colblocksizes == other.colblocksizes):
return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)])
else:
return BlockMatrix._blockadd(self, other)
def block_collapse(expr):
"""Evaluates a block matrix expression
>>> from sympy import MatrixSymbol, BlockMatrix, symbols, \
Identity, Matrix, ZeroMatrix, block_collapse
>>> n,m,l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m ,m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>>> print(B)
Matrix([
[X, Z],
[0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]])
>>> print(C)
Matrix([[I, Z]])
>>> print(block_collapse(C*B))
Matrix([[X, Z + Z*Y]])
"""
hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix)
rule = exhaust(
bottom_up(exhaust(condition(hasbm, typed(
{MatAdd: do_one(bc_matadd, bc_block_plus_ident),
MatMul: do_one(bc_matmul, bc_dist),
MatPow: bc_matmul,
Transpose: bc_transpose,
Inverse: bc_inverse,
BlockMatrix: do_one(bc_unpack, deblock)})))))
result = rule(expr)
doit = getattr(result, 'doit', None)
if doit is not None:
return doit()
else:
return result
def bc_unpack(expr):
if expr.blockshape == (1, 1):
return expr.blocks[0, 0]
return expr
def bc_matadd(expr):
args = sift(expr.args, lambda M: isinstance(M, BlockMatrix))
blocks = args[True]
if not blocks:
return expr
nonblocks = args[False]
block = blocks[0]
for b in blocks[1:]:
block = block._blockadd(b)
if nonblocks:
return MatAdd(*nonblocks) + block
else:
return block
def bc_block_plus_ident(expr):
idents = [arg for arg in expr.args if arg.is_Identity]
if not idents:
return expr
blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)]
if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks)
and blocks[0].is_structurally_symmetric):
block_id = BlockDiagMatrix(*[Identity(k)
for k in blocks[0].rowblocksizes])
return MatAdd(block_id * len(idents), *blocks).doit()
return expr
def bc_dist(expr):
""" Turn a*[X, Y] into [a*X, a*Y] """
factor, mat = expr.as_coeff_mmul()
if factor != 1 and isinstance(unpack(mat), BlockMatrix):
B = unpack(mat).blocks
return BlockMatrix([[factor * B[i, j] for j in range(B.cols)]
for i in range(B.rows)])
return expr
def bc_matmul(expr):
if isinstance(expr, MatPow):
if expr.args[1].is_Integer:
factor, matrices = (1, [expr.args[0]]*expr.args[1])
else:
return expr
else:
factor, matrices = expr.as_coeff_matrices()
i = 0
while (i+1 < len(matrices)):
A, B = matrices[i:i+2]
if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix):
matrices[i] = A._blockmul(B)
matrices.pop(i+1)
elif isinstance(A, BlockMatrix):
matrices[i] = A._blockmul(BlockMatrix([[B]]))
matrices.pop(i+1)
elif isinstance(B, BlockMatrix):
matrices[i] = BlockMatrix([[A]])._blockmul(B)
matrices.pop(i+1)
else:
i+=1
return MatMul(factor, *matrices).doit()
def bc_transpose(expr):
return BlockMatrix(block_collapse(expr.arg).blocks.applyfunc(transpose).T)
def bc_inverse(expr):
expr2 = blockinverse_1x1(expr)
if expr != expr2:
return expr2
return blockinverse_2x2(Inverse(reblock_2x2(expr.arg)))
def blockinverse_1x1(expr):
if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1):
mat = Matrix([[expr.arg.blocks[0].inverse()]])
return BlockMatrix(mat)
return expr
def blockinverse_2x2(expr):
if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2):
# Cite: The Matrix Cookbook Section 9.1.3
[[A, B],
[C, D]] = expr.arg.blocks.tolist()
return BlockMatrix([[ (A - B*D.I*C).I, (-A).I*B*(D - C*A.I*B).I],
[-(D - C*A.I*B).I*C*A.I, (D - C*A.I*B).I]])
else:
return expr
def deblock(B):
""" Flatten a BlockMatrix of BlockMatrices """
if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix):
return B
wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]])
bb = B.blocks.applyfunc(wrap) # everything is a block
from sympy import Matrix
try:
MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), [])
for row in range(0, bb.shape[0]):
M = Matrix(bb[row, 0].blocks)
for col in range(1, bb.shape[1]):
M = M.row_join(bb[row, col].blocks)
MM = MM.col_join(M)
return BlockMatrix(MM)
except ShapeError:
return B
def reblock_2x2(B):
""" Reblock a BlockMatrix so that it has 2x2 blocks of block matrices """
if not isinstance(B, BlockMatrix) or not all(d > 2 for d in B.blocks.shape):
return B
BM = BlockMatrix # for brevity's sake
return BM([[ B.blocks[0, 0], BM(B.blocks[0, 1:])],
[BM(B.blocks[1:, 0]), BM(B.blocks[1:, 1:])]])
def bounds(sizes):
""" Convert sequence of numbers into pairs of low-high pairs
>>> from sympy.matrices.expressions.blockmatrix import bounds
>>> bounds((1, 10, 50))
[(0, 1), (1, 11), (11, 61)]
"""
low = 0
rv = []
for size in sizes:
rv.append((low, low + size))
low += size
return rv
def blockcut(expr, rowsizes, colsizes):
""" Cut a matrix expression into Blocks
>>> from sympy import ImmutableMatrix, blockcut
>>> M = ImmutableMatrix(4, 4, range(16))
>>> B = blockcut(M, (1, 3), (1, 3))
>>> type(B).__name__
'BlockMatrix'
>>> ImmutableMatrix(B.blocks[0, 1])
Matrix([[1, 2, 3]])
"""
rowbounds = bounds(rowsizes)
colbounds = bounds(colsizes)
return BlockMatrix([[MatrixSlice(expr, rowbound, colbound)
for colbound in colbounds]
for rowbound in rowbounds])
|
ad1b90a5cbdf4b00bc8cd34016f8c87a2623e6aaf3ed770633c76edb45339013 | from __future__ import print_function, division
from .matexpr import MatrixExpr
from sympy import Basic, sympify
from sympy.matrices import Matrix
from sympy.functions.elementary.complexes import re, im
class FunctionMatrix(MatrixExpr):
"""
Represents a Matrix using a function (Lambda)
This class is an alternative to SparseMatrix
>>> from sympy import FunctionMatrix, symbols, Lambda, MatPow, Matrix
>>> i, j = symbols('i,j')
>>> X = FunctionMatrix(3, 3, Lambda((i, j), i + j))
>>> Matrix(X)
Matrix([
[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(Y*Y, MatPow) # this is an expression object
True
>>> (Y**2)[10,10] # So this is evaluated lazily
342923500
"""
def __new__(cls, rows, cols, lamda):
rows, cols = sympify(rows), sympify(cols)
return Basic.__new__(cls, rows, cols, lamda)
@property
def shape(self):
return self.args[0:2]
@property
def lamda(self):
return self.args[2]
def _entry(self, i, j, **kwargs):
return self.lamda(i, j)
def _eval_trace(self):
from sympy.matrices.expressions.trace import Trace
from sympy import Sum
return Trace(self).rewrite(Sum).doit()
def as_real_imag(self):
return (re(Matrix(self)), im(Matrix(self)))
|
9e90c8976c4f82f4e5ef4e833c7c50d0ffc3b3f795ad6ddce591698398f38916 | from __future__ import print_function, division
from sympy.core.compatibility import reduce
from operator import add
from sympy.core import Add, Basic, sympify
from sympy.functions import adjoint
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.expressions.transpose import transpose
from sympy.strategies import (rm_id, unpack, flatten, sort, condition,
exhaust, do_one, glom)
from sympy.matrices.expressions.matexpr import (MatrixExpr, ShapeError,
ZeroMatrix, GenericZeroMatrix)
from sympy.utilities import default_sort_key, sift
# XXX: MatAdd should perhaps not subclass directly from Add
class MatAdd(MatrixExpr, Add):
"""A Sum of Matrix Expressions
MatAdd inherits from and operates like SymPy Add
Examples
========
>>> from sympy import MatAdd, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> C = MatrixSymbol('C', 5, 5)
>>> MatAdd(A, B, C)
A + B + C
"""
is_MatAdd = True
def __new__(cls, *args, **kwargs):
if not args:
return GenericZeroMatrix()
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericZeroMatrix().shape
args = filter(lambda i: GenericZeroMatrix() != i, args)
args = list(map(sympify, args))
check = kwargs.get('check', False)
obj = Basic.__new__(cls, *args)
if check:
if all(not isinstance(i, MatrixExpr) for i in args):
return Add.fromiter(args)
validate(*args)
return obj
@property
def shape(self):
return self.args[0].shape
def _entry(self, i, j, **kwargs):
return Add(*[arg._entry(i, j, **kwargs) for arg in self.args])
def _eval_transpose(self):
return MatAdd(*[transpose(arg) for arg in self.args]).doit()
def _eval_adjoint(self):
return MatAdd(*[adjoint(arg) for arg in self.args]).doit()
def _eval_trace(self):
from .trace import trace
return Add(*[trace(arg) for arg in self.args]).doit()
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
return canonicalize(MatAdd(*args))
def _eval_derivative_matrix_lines(self, x):
add_lines = [arg._eval_derivative_matrix_lines(x) for arg in self.args]
return [j for i in add_lines for j in i]
def validate(*args):
if not all(arg.is_Matrix for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
A = args[0]
for B in args[1:]:
if A.shape != B.shape:
raise ShapeError("Matrices %s and %s are not aligned"%(A, B))
factor_of = lambda arg: arg.as_coeff_mmul()[0]
matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1])
def combine(cnt, mat):
if cnt == 1:
return mat
else:
return cnt * mat
def merge_explicit(matadd):
""" Merge explicit MatrixBase arguments
Examples
========
>>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint
>>> from sympy.matrices.expressions.matadd import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = eye(2)
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatAdd(A, B, C)
>>> pprint(X)
[1 0] [1 2]
A + [ ] + [ ]
[0 1] [3 4]
>>> pprint(merge_explicit(X))
[2 2]
A + [ ]
[3 5]
"""
groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase))
if len(groups[True]) > 1:
return MatAdd(*(groups[False] + [reduce(add, groups[True])]))
else:
return matadd
rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)),
unpack,
flatten,
glom(matrix_of, factor_of, combine),
merge_explicit,
sort(default_sort_key))
canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd),
do_one(*rules)))
|
6f541e2ba0c2b342fedc200ff3de32fc943f052a1a9f5c3cfa92ba82672f62bf | from __future__ import print_function, division
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy import Tuple, Basic
from sympy.functions.elementary.integers import floor
def normalize(i, parentsize):
if isinstance(i, slice):
i = (i.start, i.stop, i.step)
if not isinstance(i, (tuple, list, Tuple)):
if (i < 0) == True:
i += parentsize
i = (i, i+1, 1)
i = list(i)
if len(i) == 2:
i.append(1)
start, stop, step = i
start = start or 0
if stop is None:
stop = parentsize
if (start < 0) == True:
start += parentsize
if (stop < 0) == True:
stop += parentsize
step = step or 1
if ((stop - start) * step < 1) == True:
raise IndexError()
return (start, stop, step)
class MatrixSlice(MatrixExpr):
""" A MatrixSlice of a Matrix Expression
Examples
========
>>> from sympy import MatrixSlice, ImmutableMatrix
>>> M = ImmutableMatrix(4, 4, range(16))
>>> M
Matrix([
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> B = MatrixSlice(M, (0, 2), (2, 4))
>>> ImmutableMatrix(B)
Matrix([
[2, 3],
[6, 7]])
"""
parent = property(lambda self: self.args[0])
rowslice = property(lambda self: self.args[1])
colslice = property(lambda self: self.args[2])
def __new__(cls, parent, rowslice, colslice):
rowslice = normalize(rowslice, parent.shape[0])
colslice = normalize(colslice, parent.shape[1])
if not (len(rowslice) == len(colslice) == 3):
raise IndexError()
if ((0 > rowslice[0]) == True or
(parent.shape[0] < rowslice[1]) == True or
(0 > colslice[0]) == True or
(parent.shape[1] < colslice[1]) == True):
raise IndexError()
if isinstance(parent, MatrixSlice):
return mat_slice_of_slice(parent, rowslice, colslice)
return Basic.__new__(cls, parent, Tuple(*rowslice), Tuple(*colslice))
@property
def shape(self):
rows = self.rowslice[1] - self.rowslice[0]
rows = rows if self.rowslice[2] == 1 else floor(rows/self.rowslice[2])
cols = self.colslice[1] - self.colslice[0]
cols = cols if self.colslice[2] == 1 else floor(cols/self.colslice[2])
return rows, cols
def _entry(self, i, j, **kwargs):
return self.parent._entry(i*self.rowslice[2] + self.rowslice[0],
j*self.colslice[2] + self.colslice[0],
**kwargs)
@property
def on_diag(self):
return self.rowslice == self.colslice
def slice_of_slice(s, t):
start1, stop1, step1 = s
start2, stop2, step2 = t
start = start1 + start2*step1
step = step1 * step2
stop = start1 + step1*stop2
if stop > stop1:
raise IndexError()
return start, stop, step
def mat_slice_of_slice(parent, rowslice, colslice):
""" Collapse nested matrix slices
>>> from sympy import MatrixSymbol
>>> X = MatrixSymbol('X', 10, 10)
>>> X[:, 1:5][5:8, :]
X[5:8, 1:5]
>>> X[1:9:2, 2:6][1:3, 2]
X[3:7:2, 4]
"""
row = slice_of_slice(parent.rowslice, rowslice)
col = slice_of_slice(parent.colslice, colslice)
return MatrixSlice(parent.parent, row, col)
|
7be128860daf5e954ef7601728e84c35e5f4958a9a9575e02cea3cd7ac193db3 | from sympy.core import S, symbols
from sympy.matrices import eye, Matrix, ShapeError
from sympy.matrices.expressions import (
Identity, MatrixExpr, MatrixSymbol, Determinant,
det, ZeroMatrix, Transpose
)
from sympy.matrices.expressions.matexpr import OneMatrix
from sympy.utilities.pytest import raises
from sympy import refine, Q
n = symbols('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', 3, 4)
def test_det():
assert isinstance(Determinant(A), Determinant)
assert not isinstance(Determinant(A), MatrixExpr)
raises(ShapeError, lambda: Determinant(C))
assert det(eye(3)) == 1
assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17
A / det(A) # Make sure this is possible
raises(TypeError, lambda: Determinant(S.One))
assert Determinant(A).arg is A
def test_eval_determinant():
assert det(Identity(n)) == 1
assert det(ZeroMatrix(n, n)) == 0
assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n))
assert det(OneMatrix(1, 1)) == 1
assert det(OneMatrix(2, 2)) == 0
assert det(Transpose(A)) == det(A)
def test_refine():
assert refine(det(A), Q.orthogonal(A)) == 1
assert refine(det(A), Q.singular(A)) == 0
|
0a8dd7e1df01f53bab6a6f0b0fb86c1d5f80869470d3a101d733ad0dd9763b58 | """
Some examples have been taken from:
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
"""
from sympy import (MatrixSymbol, Inverse, symbols, Determinant, Trace,
Derivative, sin, exp, cos, tan, log, Lambda, S, sqrt,
hadamard_product, DiagonalizeVector)
from sympy import MatAdd, Identity, MatMul, ZeroMatrix
from sympy.matrices.expressions import hadamard_power
k = symbols("k")
i, j = symbols("i j")
X = MatrixSymbol("X", k, k)
x = MatrixSymbol("x", k, 1)
y = MatrixSymbol("y", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
# TODO: this is commented because it slows down the tests.
return
expr = expr.xreplace({k: dim})
x = x.xreplace({k: dim})
diffexpr = diffexpr.xreplace({k: dim})
expr = expr.as_explicit()
x = x.as_explicit()
diffexpr = diffexpr.as_explicit()
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
def test_matrix_derivative_by_scalar():
assert A.diff(i) == ZeroMatrix(k, k)
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
assert x.diff(i) == ZeroMatrix(k, 1)
assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
def test_matrix_derivative_non_matrix_result():
# This is a 4-dimensional array:
assert A.diff(A) == Derivative(A, A)
assert A.T.diff(A) == Derivative(A.T, A)
assert (2*A).diff(A) == Derivative(2*A, A)
assert MatAdd(A, A).diff(A) == Derivative(MatAdd(A, A), A)
assert (A + B).diff(A) == Derivative(A + B, A) # TODO: `B` can be removed.
def test_matrix_derivative_trivial_cases():
# Cookbook example 33:
# TODO: find a way to represent a four-dimensional zero-array:
assert X.diff(A) == Derivative(X, A)
def test_matrix_derivative_with_inverse():
# Cookbook example 61:
expr = a.T*Inverse(X)*b
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
# Cookbook example 62:
expr = Determinant(Inverse(X))
# Not implemented yet:
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
# Cookbook example 63:
expr = Trace(A*Inverse(X)*B)
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
# Cookbook example 64:
expr = Trace(Inverse(X + A))
assert expr.diff(X) == -(Inverse(X + A)).T**2
def test_matrix_derivative_vectors_and_scalars():
assert x.diff(x) == Identity(k)
assert x.T.diff(x) == Identity(k)
# Cookbook example 69:
expr = x.T*a
assert expr.diff(x) == a
expr = a.T*x
assert expr.diff(x) == a
# Cookbook example 70:
expr = a.T*X*b
assert expr.diff(X) == a*b.T
# Cookbook example 71:
expr = a.T*X.T*b
assert expr.diff(X) == b*a.T
# Cookbook example 72:
expr = a.T*X*a
assert expr.diff(X) == a*a.T
expr = a.T*X.T*a
assert expr.diff(X) == a*a.T
# Cookbook example 77:
expr = b.T*X.T*X*c
assert expr.diff(X) == X*b*c.T + X*c*b.T
# Cookbook example 78:
expr = (B*x + b).T*C*(D*x + d)
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
# Cookbook example 81:
expr = x.T*B*x
assert expr.diff(x) == B*x + B.T*x
# Cookbook example 82:
expr = b.T*X.T*D*X*c
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
# Cookbook example 83:
expr = (X*b + c).T*D*(X*b + c)
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
def test_matrix_derivatives_of_traces():
expr = Trace(A)*A
assert expr.diff(A) == Derivative(Trace(A)*A, A)
## First order:
# Cookbook example 99:
expr = Trace(X)
assert expr.diff(X) == Identity(k)
# Cookbook example 100:
expr = Trace(X*A)
assert expr.diff(X) == A.T
# Cookbook example 101:
expr = Trace(A*X*B)
assert expr.diff(X) == A.T*B.T
# Cookbook example 102:
expr = Trace(A*X.T*B)
assert expr.diff(X) == B*A
# Cookbook example 103:
expr = Trace(X.T*A)
assert expr.diff(X) == A
# Cookbook example 104:
expr = Trace(A*X.T)
assert expr.diff(X) == A
# Cookbook example 105:
# TODO: TensorProduct is not supported
#expr = Trace(TensorProduct(A, X))
#assert expr.diff(X) == Trace(A)*Identity(k)
## Second order:
# Cookbook example 106:
expr = Trace(X**2)
assert expr.diff(X) == 2*X.T
# Cookbook example 107:
expr = Trace(X**2*B)
assert expr.diff(X) == (X*B + B*X).T
expr = Trace(MatMul(X, X, B))
assert expr.diff(X) == (X*B + B*X).T
# Cookbook example 108:
expr = Trace(X.T*B*X)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 109:
expr = Trace(B*X*X.T)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 110:
expr = Trace(X*X.T*B)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 111:
expr = Trace(X*B*X.T)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 112:
expr = Trace(B*X.T*X)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 113:
expr = Trace(X.T*X*B)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 114:
expr = Trace(A*X*B*X)
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
# Cookbook example 115:
expr = Trace(X.T*X)
assert expr.diff(X) == 2*X
expr = Trace(X*X.T)
assert expr.diff(X) == 2*X
# Cookbook example 116:
expr = Trace(B.T*X.T*C*X*B)
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
# Cookbook example 117:
expr = Trace(X.T*B*X*C)
assert expr.diff(X) == B*X*C + B.T*X*C.T
# Cookbook example 118:
expr = Trace(A*X*B*X.T*C)
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
# Cookbook example 119:
expr = Trace((A*X*B + C)*(A*X*B + C).T)
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
# Cookbook example 120:
# TODO: no support for TensorProduct.
# expr = Trace(TensorProduct(X, X))
# expr = Trace(X)*Trace(X)
# expr.diff(X) == 2*Trace(X)*Identity(k)
# Higher Order
# Cookbook example 121:
expr = Trace(X**k)
#assert expr.diff(X) == k*(X**(k-1)).T
# Cookbook example 122:
expr = Trace(A*X**k)
#assert expr.diff(X) == # Needs indices
# Cookbook example 123:
expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
# Other
# Cookbook example 124:
expr = Trace(A*X**(-1)*B)
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
# Cookbook example 125:
expr = Trace(Inverse(X.T*C*X)*A)
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
# Cookbook example 126:
expr = Trace((X.T*C*X).inv()*(X.T*B*X))
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
# Cookbook example 127:
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
def test_derivatives_of_complicated_matrix_expr():
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + 42*a*b.T*(X + X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + 42*A.T*(X + X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
assert expr.diff(X) == result
def test_mixed_deriv_mixed_expressions():
expr = 3*Trace(A)
assert expr.diff(A) == 3*Identity(k)
expr = k
deriv = expr.diff(A)
assert isinstance(deriv, ZeroMatrix)
assert deriv == ZeroMatrix(k, k)
expr = Trace(A)**2
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(A)*A
# TODO: this is not yet supported:
assert expr.diff(A) == Derivative(expr, A)
expr = Trace(Trace(A)*A)
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(Trace(Trace(A)*A)*A)
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
def test_derivatives_matrix_norms():
expr = x.T*y
assert expr.diff(x) == y
expr = (x.T*y)**S.Half
assert expr.diff(x) == y/(2*sqrt(x.T*y))
expr = (x.T*x)**S.Half
assert expr.diff(x) == x*(x.T*x)**(-S.Half)
expr = (c.T*a*x.T*b)**S.Half
assert expr.diff(x) == b/(2*sqrt(c.T*a*x.T*b))*c.T*a
expr = (c.T*a*x.T*b)**(S.One/3)
assert expr.diff(x) == b*(c.T*a*x.T*b)**(-2*S.One/3)*c.T*a/3
expr = (a.T*X*b)**S.Half
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
assert expr.diff(X) == a*x.T*d/(2*sqrt(a.T*X*b))*y.T*c*b.T
def test_derivatives_elementwise_applyfunc():
from sympy.matrices.expressions.diagonal import DiagonalizeVector
expr = x.applyfunc(tan)
assert expr.diff(x) == DiagonalizeVector(x.applyfunc(lambda x: tan(x)**2 + 1))
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = A*x.applyfunc(exp)
assert expr.diff(x) == DiagonalizeVector(x.applyfunc(exp))*A.T
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.T*A*x + k*y.applyfunc(sin).T*x
assert expr.diff(x) == A.T*x + A*x + k*y.applyfunc(sin)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.applyfunc(sin).T*y
assert expr.diff(x) == DiagonalizeVector(x.applyfunc(cos))*y
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = (a.T * X * b).applyfunc(sin)
assert expr.diff(X) == a*(a.T*X*b).applyfunc(cos)*b.T
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * X.applyfunc(sin) * b
assert expr.diff(X) == DiagonalizeVector(a)*X.applyfunc(cos)*DiagonalizeVector(b)
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*B).applyfunc(sin) * b
assert expr.diff(X) == A.T*DiagonalizeVector(a)*(A*X*B).applyfunc(cos)*DiagonalizeVector(b)*B.T
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*b).applyfunc(sin) * b.T
# TODO: not implemented
#assert expr.diff(X) == ...
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T*A*X.applyfunc(sin)*B*b
assert expr.diff(X) == DiagonalizeVector(A.T*a)*X.applyfunc(cos)*DiagonalizeVector(B*b)
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == A.T*DiagonalizeVector(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagonalizeVector(b)*B.T
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == DiagonalizeVector(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagonalizeVector(b)
def test_derivatives_of_hadamard_expressions():
# Hadamard Product
expr = hadamard_product(a, x, b)
assert expr.diff(x) == DiagonalizeVector(hadamard_product(b, a))
expr = a.T*hadamard_product(A, X, B)*b
assert expr.diff(X) == DiagonalizeVector(a)*hadamard_product(B, A)*DiagonalizeVector(b)
# Hadamard Power
expr = hadamard_power(x, 2)
assert expr.diff(x).doit() == 2*DiagonalizeVector(x)
expr = hadamard_power(x.T, 2)
assert expr.diff(x).doit() == 2*DiagonalizeVector(x)
expr = hadamard_power(x, S.Half)
assert expr.diff(x) == S.Half*DiagonalizeVector(hadamard_power(x, -S.Half))
expr = hadamard_power(a.T*X*b, 2)
assert expr.diff(X) == 2*a*a.T*X*b*b.T
expr = hadamard_power(a.T*X*b, S.Half)
assert expr.diff(X) == a/2*hadamard_power(a.T*X*b, -S.Half)*b.T
|
34d5aba41369773cfabcef8fc024d9f49034040ca33425b5f575a04837e06ecc | from sympy import (KroneckerDelta, diff, Piecewise, Sum, Dummy, factor,
expand, zeros, gcd_terms, Eq)
from sympy.core import S, symbols, Add, Mul, SympifyError
from sympy.core.compatibility import long
from sympy.functions import transpose, sin, cos, sqrt, cbrt, exp
from sympy.simplify import simplify
from sympy.matrices import (Identity, ImmutableMatrix, Inverse, MatAdd, MatMul,
MatPow, Matrix, MatrixExpr, MatrixSymbol, ShapeError, ZeroMatrix,
SparseMatrix, Transpose, Adjoint)
from sympy.matrices.expressions.matexpr import (MatrixElement,
GenericZeroMatrix, GenericIdentity, OneMatrix)
from sympy.utilities.pytest import raises, XFAIL
n, m, l, k, p = symbols('n m l k p', integer=True)
x = symbols('x')
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
w = MatrixSymbol('w', n, 1)
def test_shape():
assert A.shape == (n, m)
assert (A*B).shape == (n, l)
raises(ShapeError, lambda: B*A)
def test_matexpr():
assert (x*A).shape == A.shape
assert (x*A).__class__ == MatMul
assert 2*A - A - A == ZeroMatrix(*A.shape)
assert (A*B).shape == (n, l)
def test_subs():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', m, l)
assert A.subs(n, m).shape == (m, m)
assert (A*B).subs(B, C) == A*C
assert (A*B).subs(l, n).is_square
def test_ZeroMatrix():
A = MatrixSymbol('A', n, m)
Z = ZeroMatrix(n, m)
assert A + Z == A
assert A*Z.T == ZeroMatrix(n, n)
assert Z*A.T == ZeroMatrix(n, n)
assert A - A == ZeroMatrix(*A.shape)
assert not Z
assert transpose(Z) == ZeroMatrix(m, n)
assert Z.conjugate() == Z
assert ZeroMatrix(n, n)**0 == Identity(n)
with raises(ShapeError):
Z**0
with raises(ShapeError):
Z**2
def test_ZeroMatrix_doit():
Znn = ZeroMatrix(Add(n, n, evaluate=False), n)
assert isinstance(Znn.rows, Add)
assert Znn.doit() == ZeroMatrix(2*n, n)
assert isinstance(Znn.doit().rows, Mul)
def test_OneMatrix():
A = MatrixSymbol('A', n, m)
a = MatrixSymbol('a', n, 1)
U = OneMatrix(n, m)
assert U.shape == (n, m)
assert isinstance(A + U, Add)
assert transpose(U) == OneMatrix(m, n)
assert U.conjugate() == U
assert OneMatrix(n, n) ** 0 == Identity(n)
with raises(ShapeError):
U ** 0
with raises(ShapeError):
U ** 2
U = OneMatrix(n, n)
assert U[1, 2] == 1
U = OneMatrix(2, 3)
assert U.as_explicit() == ImmutableMatrix.ones(2, 3)
def test_OneMatrix_doit():
Unn = OneMatrix(Add(n, n, evaluate=False), n)
assert isinstance(Unn.rows, Add)
assert Unn.doit() == OneMatrix(2 * n, n)
assert isinstance(Unn.doit().rows, Mul)
def test_Identity():
A = MatrixSymbol('A', n, m)
i, j = symbols('i j')
In = Identity(n)
Im = Identity(m)
assert A*Im == A
assert In*A == A
assert transpose(In) == In
assert In.inverse() == In
assert In.conjugate() == In
assert In[i, j] != 0
assert Sum(In[i, j], (i, 0, n-1), (j, 0, n-1)).subs(n,3).doit() == 3
assert Sum(Sum(In[i, j], (i, 0, n-1)), (j, 0, n-1)).subs(n,3).doit() == 3
def test_Identity_doit():
Inn = Identity(Add(n, n, evaluate=False))
assert isinstance(Inn.rows, Add)
assert Inn.doit() == Identity(2*n)
assert isinstance(Inn.doit().rows, Mul)
def test_addition():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
assert isinstance(A + B, MatAdd)
assert (A + B).shape == A.shape
assert isinstance(A - A + 2*B, MatMul)
raises(ShapeError, lambda: A + B.T)
raises(TypeError, lambda: A + 1)
raises(TypeError, lambda: 5 + A)
raises(TypeError, lambda: 5 - A)
assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
with raises(TypeError):
ZeroMatrix(n,m) + S(0)
def test_multiplication():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
assert (2*A*B).shape == (n, l)
assert (A*0*B) == ZeroMatrix(n, l)
raises(ShapeError, lambda: B*A)
assert (2*A).shape == A.shape
assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
assert C * Identity(n) * C.I == Identity(n)
assert B/2 == S.Half*B
raises(NotImplementedError, lambda: 2/B)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert Identity(n) * (A + B) == A + B
assert A**2*A == A**3
assert A**2*(A.I)**3 == A.I
assert A**3*(A.I)**2 == A
def test_MatPow():
A = MatrixSymbol('A', n, n)
AA = MatPow(A, 2)
assert AA.exp == 2
assert AA.base == A
assert (A**n).exp == n
assert A**0 == Identity(n)
assert A**1 == A
assert A**2 == AA
assert A**-1 == Inverse(A)
assert (A**-1)**-1 == A
assert (A**2)**3 == A**6
assert A**S.Half == sqrt(A)
assert A**(S(1)/3) == cbrt(A)
raises(ShapeError, lambda: MatrixSymbol('B', 3, 2)**2)
def test_MatrixSymbol():
n, m, t = symbols('n,m,t')
X = MatrixSymbol('X', n, m)
assert X.shape == (n, m)
raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
assert X.doit() == X
def test_dense_conversion():
X = MatrixSymbol('X', 2, 2)
assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
def test_free_symbols():
assert (C*D).free_symbols == set((C, D))
def test_zero_matmul():
assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
def test_matadd_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatAdd(A, ImmutableMatrix([[1]]))
def test_matmul_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatMul(A, ImmutableMatrix([[1]]))
def test_invariants():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
X = MatrixSymbol('X', n, n)
objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
MatPow(X, 0)]
for obj in objs:
assert obj == obj.__class__(*obj.args)
def test_indexing():
A = MatrixSymbol('A', n, m)
A[1, 2]
A[l, k]
A[l+1, k+1]
def test_single_indexing():
A = MatrixSymbol('A', 2, 3)
assert A[1] == A[0, 1]
assert A[long(1)] == A[0, 1]
assert A[3] == A[1, 0]
assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
raises(IndexError, lambda: A[6])
raises(IndexError, lambda: A[n])
B = MatrixSymbol('B', n, m)
raises(IndexError, lambda: B[1])
B = MatrixSymbol('B', n, 3)
assert B[3] == B[1, 0]
def test_MatrixElement_commutative():
assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
def test_MatrixSymbol_determinant():
A = MatrixSymbol('A', 4, 4)
assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
def test_MatrixElement_diff():
assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
def test_MatrixElement_doit():
u = MatrixSymbol('u', 2, 1)
v = ImmutableMatrix([3, 5])
assert u[0, 0].subs(u, v).doit() == v[0, 0]
def test_identity_powers():
M = Identity(n)
assert MatPow(M, 3).doit() == M**3
assert M**n == M
assert MatPow(M, 0).doit() == M**2
assert M**-2 == M
assert MatPow(M, -2).doit() == M**0
N = Identity(3)
assert MatPow(N, 2).doit() == N**n
assert MatPow(N, 3).doit() == N
assert MatPow(N, -2).doit() == N**4
assert MatPow(N, 2).doit() == N**0
def test_Zero_power():
z1 = ZeroMatrix(n, n)
assert z1**4 == z1
raises(ValueError, lambda:z1**-2)
assert z1**0 == Identity(n)
assert MatPow(z1, 2).doit() == z1**2
raises(ValueError, lambda:MatPow(z1, -2).doit())
z2 = ZeroMatrix(3, 3)
assert MatPow(z2, 4).doit() == z2**4
raises(ValueError, lambda:z2**-3)
assert z2**3 == MatPow(z2, 3).doit()
assert z2**0 == Identity(3)
raises(ValueError, lambda:MatPow(z2, -1).doit())
def test_matrixelement_diff():
dexpr = diff((D*w)[k,0], w[p,0])
assert w[k, p].diff(w[k, p]) == 1
assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k)*KroneckerDelta(0, p)
assert str(dexpr) == "Sum(KroneckerDelta(_i_1, p)*D[k, _i_1], (_i_1, 0, n - 1))"
assert str(dexpr.doit()) == 'Piecewise((D[k, p], (p >= 0) & (p <= n - 1)), (0, True))'
# TODO: bug with .dummy_eq( ), the previous 2 lines should be replaced by:
return # stop eval
_i_1 = Dummy("_i_1")
assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p)*D[k, _i_1], (_i_1, 0, n - 1)))
assert dexpr.doit().dummy_eq(Piecewise((D[k, p], (p >= 0) & (p <= n - 1)), (0, True)))
def test_MatrixElement_with_values():
x, y, z, w = symbols("x y z w")
M = Matrix([[x, y], [z, w]])
i, j = symbols("i, j")
Mij = M[i, j]
assert isinstance(Mij, MatrixElement)
Ms = SparseMatrix([[2, 3], [4, 5]])
msij = Ms[i, j]
assert isinstance(msij, MatrixElement)
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
A = MatrixSymbol("A", 2, 2)
assert A[0, 0].subs(A, M) == x
assert A[i, j].subs(A, M) == M[i, j]
assert M[i, j].subs(M, A) == A[i, j]
assert isinstance(M[3*i - 2, j], MatrixElement)
assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
assert isinstance(M[i, 0], MatrixElement)
assert M[i, 0].subs(i, 0) == M[0, 0]
assert M[0, i].subs(i, 1) == M[0, 1]
assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
raises(ValueError, lambda: M[i, 2])
raises(ValueError, lambda: M[i, -1])
raises(ValueError, lambda: M[2, i])
raises(ValueError, lambda: M[-1, i])
def test_inv():
B = MatrixSymbol('B', 3, 3)
assert B.inv() == B**-1
@XFAIL
def test_factor_expand():
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
expr1 = (A + B)*(C + D)
expr2 = A*C + B*C + A*D + B*D
assert expr1 != expr2
assert expand(expr1) == expr2
assert factor(expr2) == expr1
expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
I = Identity(n)
# Ideally we get the first, but we at least don't want a wrong answer
assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
def test_issue_2749():
A = MatrixSymbol("A", 5, 2)
assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
[(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
def test_issue_2750():
x = MatrixSymbol('x', 1, 1)
assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
def test_issue_7842():
A = MatrixSymbol('A', 3, 1)
B = MatrixSymbol('B', 2, 1)
assert Eq(A, B) == False
assert Eq(A[1,0], B[1, 0]).func is Eq
A = ZeroMatrix(2, 3)
B = ZeroMatrix(2, 3)
assert Eq(A, B) == True
def test_generic_zero_matrix():
z = GenericZeroMatrix()
A = MatrixSymbol("A", n, n)
assert z == z
assert z != A
assert A != z
assert z.is_ZeroMatrix
raises(TypeError, lambda: z.shape)
raises(TypeError, lambda: z.rows)
raises(TypeError, lambda: z.cols)
assert MatAdd() == z
assert MatAdd(z, A) == MatAdd(A)
# Make sure it is hashable
hash(z)
def test_generic_identity():
I = GenericIdentity()
A = MatrixSymbol("A", n, n)
assert I == I
assert I != A
assert A != I
assert I.is_Identity
assert I**-1 == I
raises(TypeError, lambda: I.shape)
raises(TypeError, lambda: I.rows)
raises(TypeError, lambda: I.cols)
assert MatMul() == I
assert MatMul(I, A) == MatMul(A)
# Make sure it is hashable
hash(I)
def test_MatMul_postprocessor():
z = zeros(2)
z1 = ZeroMatrix(2, 2)
assert Mul(0, z) == Mul(z, 0) in [z, z1]
M = Matrix([[1, 2], [3, 4]])
Mx = Matrix([[x, 2*x], [3*x, 4*x]])
assert Mul(x, M) == Mul(M, x) == Mx
A = MatrixSymbol("A", 2, 2)
assert Mul(A, M) == MatMul(A, M)
assert Mul(M, A) == MatMul(M, A)
# Scalars should be absorbed into constant matrices
a = Mul(x, M, A)
b = Mul(M, x, A)
c = Mul(M, A, x)
assert a == b == c == MatMul(Mx, A)
a = Mul(x, A, M)
b = Mul(A, x, M)
c = Mul(A, M, x)
assert a == b == c == MatMul(A, Mx)
assert Mul(M, M) == M**2
assert Mul(A, M, M) == MatMul(A, M**2)
assert Mul(M, M, A) == MatMul(M**2, A)
assert Mul(M, A, M) == MatMul(M, A, M)
assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
@XFAIL
def test_MatAdd_postprocessor_xfail():
# This is difficult to get working because of the way that Add processes
# its args.
z = zeros(2)
assert Add(z, S.NaN) == Add(S.NaN, z)
def test_MatAdd_postprocessor():
# Some of these are nonsensical, but we do not raise errors for Add
# because that breaks algorithms that want to replace matrices with dummy
# symbols.
z = zeros(2)
assert Add(0, z) == Add(z, 0) == z
a = Add(S.Infinity, z)
assert a == Add(z, S.Infinity)
assert isinstance(a, Add)
assert a.args == (S.Infinity, z)
a = Add(S.ComplexInfinity, z)
assert a == Add(z, S.ComplexInfinity)
assert isinstance(a, Add)
assert a.args == (S.ComplexInfinity, z)
a = Add(z, S.NaN)
# assert a == Add(S.NaN, z) # See the XFAIL above
assert isinstance(a, Add)
assert a.args == (S.NaN, z)
M = Matrix([[1, 2], [3, 4]])
a = Add(x, M)
assert a == Add(M, x)
assert isinstance(a, Add)
assert a.args == (x, M)
A = MatrixSymbol("A", 2, 2)
assert Add(A, M) == Add(M, A) == A + M
# Scalars should be absorbed into constant matrices (producing an error)
a = Add(x, M, A)
assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
assert isinstance(a, Add)
assert a.args == (x, A + M)
assert Add(M, M) == 2*M
assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
a = Add(A, x, M, M, x)
assert isinstance(a, Add)
assert a.args == (2*x, A + 2*M)
def test_simplify_matrix_expressions():
# Various simplification functions
assert type(gcd_terms(C*D + D*C)) == MatAdd
a = gcd_terms(2*C*D + 4*D*C)
assert type(a) == MatMul
assert a.args == (2, (C*D + 2*D*C))
def test_exp():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
expr1 = exp(A)*exp(B)
expr2 = exp(B)*exp(A)
assert expr1 != expr2
assert expr1 - expr2 != 0
assert not isinstance(expr1, exp)
assert not isinstance(expr2, exp)
def test_invalid_args():
raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
|
9ecbdbb08fdb73fd1ef995cba89bd024910537ff3340479bfb069327711714cf | from sympy import (symbols, MatrixSymbol, MatPow, BlockMatrix, KroneckerDelta,
Identity, ZeroMatrix, ImmutableMatrix, eye, Sum, Dummy, MatMul, trace,
Symbol, Mul)
from sympy.utilities.pytest import raises
from sympy.matrices.expressions.matexpr import MatrixElement, MatrixExpr
k, l, m, n = symbols('k l m n', integer=True)
i, j = symbols('i j', integer=True)
W = MatrixSymbol('W', k, l)
X = MatrixSymbol('X', l, m)
Y = MatrixSymbol('Y', l, m)
Z = MatrixSymbol('Z', m, n)
X1 = MatrixSymbol('X1', m, m)
X2 = MatrixSymbol('X2', m, m)
X3 = MatrixSymbol('X3', m, m)
X4 = MatrixSymbol('X4', m, m)
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
x = MatrixSymbol('x', 1, 2)
y = MatrixSymbol('x', 2, 1)
def test_symbolic_indexing():
x12 = X[1, 2]
assert all(s in str(x12) for s in ['1', '2', X.name])
# We don't care about the exact form of this. We do want to make sure
# that all of these features are present
def test_add_index():
assert (X + Y)[i, j] == X[i, j] + Y[i, j]
def test_mul_index():
assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
X = MatrixSymbol('X', n, m)
Y = MatrixSymbol('Y', m, k)
result = (X*Y)[4,2]
expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
assert result.args[0].dummy_eq(expected.args[0], i)
assert result.args[1][1:] == expected.args[1][1:]
def test_pow_index():
Q = MatPow(A, 2)
assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
n = symbols("n")
Q2 = A**n
assert Q2[0, 0] == MatrixElement(Q2, 0, 0)
def test_transpose_index():
assert X.T[i, j] == X[j, i]
def test_Identity_index():
I = Identity(3)
assert I[0, 0] == I[1, 1] == I[2, 2] == 1
assert I[1, 0] == I[0, 1] == I[2, 1] == 0
raises(IndexError, lambda: I[3, 3])
def test_block_index():
I = Identity(3)
Z = ZeroMatrix(3, 3)
B = BlockMatrix([[I, I], [I, I]])
e3 = ImmutableMatrix(eye(3))
BB = BlockMatrix([[e3, e3], [e3, e3]])
assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
assert B[4, 3] == B[5, 1] == 0
BB = BlockMatrix([[e3, e3], [e3, e3]])
assert B.as_explicit() == BB.as_explicit()
BI = BlockMatrix([[I, Z], [Z, I]])
assert BI.as_explicit().equals(eye(6))
def test_slicing():
A.as_explicit()[0, :] # does not raise an error
def test_errors():
raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])
def test_matrix_expression_to_indices():
i, j = symbols("i, j")
i1, i2, i3 = symbols("i_1:4")
def replace_dummies(expr):
repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
return expr.xreplace(repl)
expr = W*X*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = Z.T*X.T*W.T
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr
expr = W*X*Z + W*Y*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = 2*W*X*Z + 3*W*Y*Z
assert replace_dummies(expr._entry(i, j)) == \
2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = W*(X + Y)*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = A*B**2*A
#assert replace_dummies(expr._entry(i, j)) == \
# Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))
# Check that different dummies are used in sub-multiplications:
expr = (X1*X2 + X2*X1)*X3
assert replace_dummies(expr._entry(i, j)) == \
Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
i1, j], (i1, 0, m - 1))
def test_matrix_expression_from_index_summation():
from sympy.abc import a,b,c,d
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
w1 = MatrixSymbol("w1", k, 1)
i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A + B
expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A**3
expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A**2*B
# Parse the trace of a matrix:
expr = Sum(A[a, a], (a, 0, k-1))
assert MatrixExpr.from_index_summation(expr, None) == trace(A)
expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C
# Check wrong sum ranges (should raise an exception):
## Case 1: 0 to m instead of 0 to m-1
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
## Case 2: 1 to m-1 instead of 0 to m-1
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
# Parse nested sums:
expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A*B*C
# Test Kronecker delta:
expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A*B
expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, m) == A.T*A[j, n]
# Test numbered indices:
expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, i1) == A*w1
expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)
|
3febdb5d7849bf219e5c39a6bde0d0e24d02369e2b000009cf82c9c9ca634883 | from sympy.matrices.expressions import MatrixSymbol
from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf, DiagonalizeVector, diagonalize_vector
from sympy import Symbol, ask, Q, KroneckerDelta, Identity, Matrix, MatMul
from sympy.utilities.pytest import raises
n = Symbol('n')
m = Symbol('m')
def test_DiagonalMatrix():
x = MatrixSymbol('x', n, m)
D = DiagonalMatrix(x)
assert D.diagonal_length is None
assert D.shape == (n, m)
x = MatrixSymbol('x', n, n)
D = DiagonalMatrix(x)
assert D.diagonal_length == n
assert D.shape == (n, n)
assert D[1, 2] == 0
assert D[1, 1] == x[1, 1]
i = Symbol('i')
j = Symbol('j')
x = MatrixSymbol('x', 3, 3)
ij = DiagonalMatrix(x)[i, j]
assert ij != 0
assert ij.subs({i:0, j:0}) == x[0, 0]
assert ij.subs({i:0, j:1}) == 0
assert ij.subs({i:1, j:1}) == x[1, 1]
assert ask(Q.diagonal(D)) # affirm that D is diagonal
x = MatrixSymbol('x', n, 3)
D = DiagonalMatrix(x)
assert D.diagonal_length == 3
assert D.shape == (n, 3)
assert D[2, m] == KroneckerDelta(2, m)*x[2, m]
assert D[3, m] == 0
raises(IndexError, lambda: D[m, 3])
x = MatrixSymbol('x', 3, n)
D = DiagonalMatrix(x)
assert D.diagonal_length == 3
assert D.shape == (3, n)
assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2]
assert D[m, 3] == 0
raises(IndexError, lambda: D[3, m])
x = MatrixSymbol('x', n, m)
D = DiagonalMatrix(x)
assert D.diagonal_length is None
assert D.shape == (n, m)
assert D[m, 4] != 0
x = MatrixSymbol('x', 3, 4)
assert [DiagonalMatrix(x)[i] for i in range(12)] == [
x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]
# shape is retained, issue 12427
assert (
DiagonalMatrix(MatrixSymbol('x', 3, 4))*
DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
def test_DiagonalOf():
x = MatrixSymbol('x', n, n)
d = DiagonalOf(x)
assert d.shape == (n, 1)
assert d.diagonal_length == n
assert d[2, 0] == d[2] == x[2, 2]
x = MatrixSymbol('x', n, m)
d = DiagonalOf(x)
assert d.shape == (None, 1)
assert d.diagonal_length is None
assert d[2, 0] == d[2] == x[2, 2]
d = DiagonalOf(MatrixSymbol('x', 4, 3))
assert d.shape == (3, 1)
d = DiagonalOf(MatrixSymbol('x', n, 3))
assert d.shape == (3, 1)
d = DiagonalOf(MatrixSymbol('x', 3, n))
assert d.shape == (3, 1)
x = MatrixSymbol('x', n, m)
assert [DiagonalOf(x)[i] for i in range(4)] ==[
x[0, 0], x[1, 1], x[2, 2], x[3, 3]]
def test_DiagonalizeVector():
x = MatrixSymbol('x', n, 1)
d = DiagonalizeVector(x)
assert d.shape == (n, n)
assert d[0, 1] == 0
assert d[0, 0] == x[0, 0]
a = MatrixSymbol('a', 1, 1)
d = diagonalize_vector(a)
assert isinstance(d, MatrixSymbol)
assert a == d
assert diagonalize_vector(Identity(3)) == Identity(3)
assert DiagonalizeVector(Identity(3)).doit() == Identity(3)
assert isinstance(DiagonalizeVector(Identity(3)), DiagonalizeVector)
# A diagonal matrix is equal to its transpose:
assert DiagonalizeVector(x).T == DiagonalizeVector(x)
assert diagonalize_vector(x.T) == DiagonalizeVector(x)
dx = DiagonalizeVector(x)
assert dx[0, 0] == x[0, 0]
assert dx[1, 1] == x[1, 0]
assert dx[0, 1] == 0
assert dx[0, m] == x[0, 0]*KroneckerDelta(0, m)
z = MatrixSymbol('z', 1, n)
dz = DiagonalizeVector(z)
assert dz[0, 0] == z[0, 0]
assert dz[1, 1] == z[0, 1]
assert dz[0, 1] == 0
assert dz[0, m] == z[0, m]*KroneckerDelta(0, m)
v = MatrixSymbol('v', 3, 1)
dv = DiagonalizeVector(v)
assert dv.as_explicit() == Matrix([
[v[0, 0], 0, 0],
[0, v[1, 0], 0],
[0, 0, v[2, 0]],
])
v = MatrixSymbol('v', 1, 3)
dv = DiagonalizeVector(v)
assert dv.as_explicit() == Matrix([
[v[0, 0], 0, 0],
[0, v[0, 1], 0],
[0, 0, v[0, 2]],
])
dv = DiagonalizeVector(3*v)
assert dv.args == (3*v,)
assert dv.doit() == 3*DiagonalizeVector(v)
assert isinstance(dv.doit(), MatMul)
|
f4728b0d815789f901309067caa502fce040d6799294b65419266195b5edf525 | from sympy.core import Lambda, S, symbols
from sympy.concrete import Sum
from sympy.functions import adjoint, conjugate, transpose
from sympy.matrices import eye, Matrix, ShapeError, ImmutableMatrix
from sympy.matrices.expressions import (
Adjoint, Identity, FunctionMatrix, MatrixExpr, MatrixSymbol, Trace,
ZeroMatrix, trace, MatPow, MatAdd, MatMul
)
from sympy.matrices.expressions.matexpr import OneMatrix
from sympy.utilities.pytest import raises, XFAIL
n = symbols('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', 3, 4)
def test_Trace():
assert isinstance(Trace(A), Trace)
assert not isinstance(Trace(A), MatrixExpr)
raises(ShapeError, lambda: Trace(C))
assert trace(eye(3)) == 3
assert trace(Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])) == 15
assert adjoint(Trace(A)) == trace(Adjoint(A))
assert conjugate(Trace(A)) == trace(Adjoint(A))
assert transpose(Trace(A)) == Trace(A)
A / Trace(A) # Make sure this is possible
# Some easy simplifications
assert trace(Identity(5)) == 5
assert trace(ZeroMatrix(5, 5)) == 0
assert trace(OneMatrix(1, 1)) == 1
assert trace(OneMatrix(2, 2)) == 2
assert trace(OneMatrix(n, n)) == n
assert trace(2*A*B) == 2*Trace(A*B)
assert trace(A.T) == trace(A)
i, j = symbols('i j')
F = FunctionMatrix(3, 3, Lambda((i, j), i + j))
assert trace(F) == (0 + 0) + (1 + 1) + (2 + 2)
raises(TypeError, lambda: Trace(S.One))
assert Trace(A).arg is A
assert str(trace(A)) == str(Trace(A).doit())
assert Trace(A).is_commutative is True
def test_Trace_A_plus_B():
assert trace(A + B) == Trace(A) + Trace(B)
assert Trace(A + B).arg == MatAdd(A, B)
assert Trace(A + B).doit() == Trace(A) + Trace(B)
def test_Trace_MatAdd_doit():
# See issue #9028
X = ImmutableMatrix([[1, 2, 3]]*3)
Y = MatrixSymbol('Y', 3, 3)
q = MatAdd(X, 2*X, Y, -3*Y)
assert Trace(q).arg == q
assert Trace(q).doit() == 18 - 2*Trace(Y)
def test_Trace_MatPow_doit():
X = Matrix([[1, 2], [3, 4]])
assert Trace(X).doit() == 5
q = MatPow(X, 2)
assert Trace(q).arg == q
assert Trace(q).doit() == 29
def test_Trace_MutableMatrix_plus():
# See issue #9043
X = Matrix([[1, 2], [3, 4]])
assert Trace(X) + Trace(X) == 2*Trace(X)
def test_Trace_doit_deep_False():
X = Matrix([[1, 2], [3, 4]])
q = MatPow(X, 2)
assert Trace(q).doit(deep=False).arg == q
q = MatAdd(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
q = MatMul(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
def test_trace_constant_factor():
# Issue 9052: gave 2*Trace(MatMul(A)) instead of 2*Trace(A)
assert trace(2*A) == 2*Trace(A)
X = ImmutableMatrix([[1, 2], [3, 4]])
assert trace(MatMul(2, X)) == 10
def test_rewrite():
assert isinstance(trace(A).rewrite(Sum), Sum)
|
0337551c9176821068973a4c6d9999fb0c969990a7d1d6bd8bb8ddba50c4b567 | """
Continuous Random Variables - Prebuilt variables
Contains
========
Arcsin
Benini
Beta
BetaPrime
Cauchy
Chi
ChiNoncentral
ChiSquared
Dagum
Erlang
Exponential
FDistribution
FisherZ
Frechet
Gamma
GammaInverse
Gumbel
Gompertz
Kumaraswamy
Laplace
Logistic
LogNormal
Maxwell
Nakagami
Normal
Pareto
QuadraticU
RaisedCosine
Rayleigh
ShiftedGompertz
StudentT
Trapezoidal
Triangular
Uniform
UniformSum
VonMises
Weibull
WignerSemicircle
"""
from __future__ import print_function, division
from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma,
Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs,
Lambda, Basic, lowergamma, erf, erfi, erfinv, I, hyper,
uppergamma, sinh, atan, Ne, expint)
from sympy import beta as beta_fn
from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk
from sympy.external import import_module
from sympy.matrices import MatrixBase
from sympy.stats.crv import (SingleContinuousPSpace, SingleContinuousDistribution,
ContinuousDistributionHandmade)
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.joint_rv_types import multivariate_rv
from sympy.stats.rv import _value_check, RandomSymbol
import random
oo = S.Infinity
__all__ = ['ContinuousRV',
'Arcsin',
'Benini',
'Beta',
'BetaPrime',
'Cauchy',
'Chi',
'ChiNoncentral',
'ChiSquared',
'Dagum',
'Erlang',
'Exponential',
'FDistribution',
'FisherZ',
'Frechet',
'Gamma',
'GammaInverse',
'Gompertz',
'Gumbel',
'Kumaraswamy',
'Laplace',
'Logistic',
'LogNormal',
'Maxwell',
'Nakagami',
'Normal',
'Pareto',
'QuadraticU',
'RaisedCosine',
'Rayleigh',
'StudentT',
'ShiftedGompertz',
'Trapezoidal',
'Triangular',
'Uniform',
'UniformSum',
'VonMises',
'Weibull',
'WignerSemicircle'
]
def ContinuousRV(symbol, density, set=Interval(-oo, oo)):
"""
Create a Continuous Random Variable given the following:
-- a symbol
-- a probability density function
-- set on which the pdf is valid (defaults to entire real line)
Returns a RandomSymbol.
Many common continuous random variable types are already implemented.
This function should be necessary only very rarely.
Examples
========
>>> from sympy import Symbol, sqrt, exp, pi
>>> from sympy.stats import ContinuousRV, P, E
>>> x = Symbol("x")
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
>>> X = ContinuousRV(x, pdf)
>>> E(X)
0
>>> P(X>0)
1/2
"""
pdf = Piecewise((density, set.as_relational(symbol)), (0, True))
pdf = Lambda(symbol, pdf)
dist = ContinuousDistributionHandmade(pdf, set)
return SingleContinuousPSpace(symbol, dist).value
def rv(symbol, cls, args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleContinuousPSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
########################################
# Continuous Probability Distributions #
########################################
#-------------------------------------------------------------------------------
# Arcsin distribution ----------------------------------------------------------
class ArcsinDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
def pdf(self, x):
return 1/(pi*sqrt((x - self.a)*(self.b - x)))
def _cdf(self, x):
from sympy import asin
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < a),
(2*asin(sqrt((x - a)/(b - a)))/pi, x <= b),
(S.One, True))
def Arcsin(name, a=0, b=1):
r"""
Create a Continuous Random Variable with an arcsin distribution.
The density of the arcsin distribution is given by
.. math::
f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}}
with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`.
Parameters
==========
a : Real number, the left interval boundary
b : Real number, the right interval boundary
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Arcsin, density, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = Arcsin("x", a, b)
>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))
>>> cdf(X)(z)
Piecewise((0, a > z),
(2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z),
(1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Arcsine_distribution
"""
return rv(name, ArcsinDistribution, (a, b))
#-------------------------------------------------------------------------------
# Benini distribution ----------------------------------------------------------
class BeniniDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'sigma')
@staticmethod
def check(alpha, beta, sigma):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(sigma > 0, "Scale parameter Sigma must be positive.")
@property
def set(self):
return Interval(self.sigma, oo)
def pdf(self, x):
alpha, beta, sigma = self.alpha, self.beta, self.sigma
return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)
*(alpha/x + 2*beta*log(x/sigma)/x))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of the '
'Benini distribution does not exist.')
def Benini(name, alpha, beta, sigma):
r"""
Create a Continuous Random Variable with a Benini distribution.
The density of the Benini distribution is given by
.. math::
f(x) := e^{-\alpha\log{\frac{x}{\sigma}}
-\beta\log^2\left[{\frac{x}{\sigma}}\right]}
\left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right)
This is a heavy-tailed distrubtion and is also known as the log-Rayleigh
distribution.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
sigma : Real number, `\sigma > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Benini, density, cdf
>>> from sympy import Symbol, simplify, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Benini("x", alpha, beta, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ / z \\ / z \ 2/ z \
| 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----|
|alpha \sigma/| \sigma/ \sigma/
|----- + -----------------|*e
\ z z /
>>> cdf(X)(z)
Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Benini_distribution
.. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html
"""
return rv(name, BeniniDistribution, (alpha, beta, sigma))
#-------------------------------------------------------------------------------
# Beta distribution ------------------------------------------------------------
class BetaDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)
def sample(self):
return random.betavariate(self.alpha, self.beta)
def _characteristic_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), I*t)
def _moment_generating_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), t)
def Beta(name, alpha, beta):
r"""
Create a Continuous Random Variable with a Beta distribution.
The density of the Beta distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Beta, density, E, variance
>>> from sympy import Symbol, simplify, pprint, factor
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Beta("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 beta - 1
z *(1 - z)
--------------------------
B(alpha, beta)
>>> simplify(E(X))
alpha/(alpha + beta)
>>> factor(simplify(variance(X))) #doctest: +SKIP
alpha*beta/((alpha + beta)**2*(alpha + beta + 1))
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_distribution
.. [2] http://mathworld.wolfram.com/BetaDistribution.html
"""
return rv(name, BetaDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Beta prime distribution ------------------------------------------------------
class BetaPrimeDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
set = Interval(0, oo)
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta)
def BetaPrime(name, alpha, beta):
r"""
Create a continuous random variable with a Beta prime distribution.
The density of the Beta prime distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}
with :math:`x > 0`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import BetaPrime, density
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = BetaPrime("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 -alpha - beta
z *(z + 1)
-------------------------------
B(alpha, beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution
.. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html
"""
return rv(name, BetaPrimeDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Cauchy distribution ----------------------------------------------------------
class CauchyDistribution(SingleContinuousDistribution):
_argnames = ('x0', 'gamma')
@staticmethod
def check(x0, gamma):
_value_check(gamma > 0, "Scale parameter Gamma must be positive.")
def pdf(self, x):
return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2))
def _cdf(self, x):
x0, gamma = self.x0, self.gamma
return (1/pi)*atan((x - x0)/gamma) + S.Half
def _characteristic_function(self, t):
return exp(self.x0 * I * t - self.gamma * Abs(t))
def _moment_generating_function(self, t):
raise NotImplementedError("The moment generating function for the "
"Cauchy distribution does not exist.")
def _quantile(self, p):
return self.x0 + self.gamma*tan(pi*(p - S.Half))
def Cauchy(name, x0, gamma):
r"""
Create a continuous random variable with a Cauchy distribution.
The density of the Cauchy distribution is given by
.. math::
f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]}
Parameters
==========
x0 : Real number, the location
gamma : Real number, `\gamma > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Cauchy, density
>>> from sympy import Symbol
>>> x0 = Symbol("x0")
>>> gamma = Symbol("gamma", positive=True)
>>> z = Symbol("z")
>>> X = Cauchy("x", x0, gamma)
>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_distribution
.. [2] http://mathworld.wolfram.com/CauchyDistribution.html
"""
return rv(name, CauchyDistribution, (x0, gamma))
#-------------------------------------------------------------------------------
# Chi distribution -------------------------------------------------------------
class ChiDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2)
def _characteristic_function(self, t):
k = self.k
part_1 = hyper((k/2,), (S(1)/2,), -t**2/2)
part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2)
part_3 = hyper(((k+1)/2,), (S(3)/2,), -t**2/2)
return part_1 + part_2*part_3
def _moment_generating_function(self, t):
k = self.k
part_1 = hyper((k / 2,), (S(1) / 2,), t ** 2 / 2)
part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2)
part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2)
return part_1 + part_2 * part_3
def Chi(name, k):
r"""
Create a continuous random variable with a Chi distribution.
The density of the Chi distribution is given by
.. math::
f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Chi, density, E
>>> from sympy import Symbol, simplify
>>> k = Symbol("k", integer=True)
>>> z = Symbol("z")
>>> X = Chi("x", k)
>>> density(X)(z)
2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2)
>>> simplify(E(X))
sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_distribution
.. [2] http://mathworld.wolfram.com/ChiDistribution.html
"""
return rv(name, ChiDistribution, (k,))
#-------------------------------------------------------------------------------
# Non-central Chi distribution -------------------------------------------------
class ChiNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('k', 'l')
@staticmethod
def check(k, l):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
_value_check(l > 0, "Shift parameter Lambda must be positive.")
set = Interval(0, oo)
def pdf(self, x):
k, l = self.k, self.l
return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x)
def ChiNoncentral(name, k, l):
r"""
Create a continuous random variable with a non-central Chi distribution.
The density of the non-central Chi distribution is given by
.. math::
f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda}
{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)
with `x \geq 0`. Here, `I_\nu (x)` is the
:ref:`modified Bessel function of the first kind <besseli>`.
Parameters
==========
k : A positive Integer, `k > 0`, the number of degrees of freedom
lambda : Real number, `\lambda > 0`, Shift parameter
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ChiNoncentral, density
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True)
>>> l = Symbol("l")
>>> z = Symbol("z")
>>> X = ChiNoncentral("x", k, l)
>>> density(X)(z)
l*z**k*(l*z)**(-k/2)*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution
"""
return rv(name, ChiNoncentralDistribution, (k, l))
#-------------------------------------------------------------------------------
# Chi squared distribution -----------------------------------------------------
class ChiSquaredDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
k = self.k
return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2)
def _cdf(self, x):
k = self.k
return Piecewise(
(S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0),
(0, True)
)
def _characteristic_function(self, t):
return (1 - 2*I*t)**(-self.k/2)
def _moment_generating_function(self, t):
return (1 - 2*t)**(-self.k/2)
def ChiSquared(name, k):
r"""
Create a continuous random variable with a Chi-squared distribution.
The density of the Chi-squared distribution is given by
.. math::
f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}
x^{\frac{k}{2}-1} e^{-\frac{x}{2}}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ChiSquared, density, E, variance, moment
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True, positive=True)
>>> z = Symbol("z")
>>> X = ChiSquared("x", k)
>>> density(X)(z)
2**(-k/2)*z**(k/2 - 1)*exp(-z/2)/gamma(k/2)
>>> E(X)
k
>>> variance(X)
2*k
>>> moment(X, 3)
k**3 + 6*k**2 + 8*k
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution
.. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html
"""
return rv(name, ChiSquaredDistribution, (k, ))
#-------------------------------------------------------------------------------
# Dagum distribution -----------------------------------------------------------
class DagumDistribution(SingleContinuousDistribution):
_argnames = ('p', 'a', 'b')
@staticmethod
def check(p, a, b):
_value_check(p > 0, "Shape parameter p must be positive.")
_value_check(a > 0, "Shape parameter a must be positive.")
_value_check(b > 0, "Scale parameter b must be positive.")
def pdf(self, x):
p, a, b = self.p, self.a, self.b
return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1)))
def _cdf(self, x):
p, a, b = self.p, self.a, self.b
return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0),
(S.Zero, True))
def Dagum(name, p, a, b):
r"""
Create a continuous random variable with a Dagum distribution.
The density of the Dagum distribution is given by
.. math::
f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}}
{\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right)
with :math:`x > 0`.
Parameters
==========
p : Real number, `p > 0`, a shape
a : Real number, `a > 0`, a shape
b : Real number, `b > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Dagum, density, cdf
>>> from sympy import Symbol
>>> p = Symbol("p", positive=True)
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Dagum("x", p, a, b)
>>> density(X)(z)
a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z
>>> cdf(X)(z)
Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dagum_distribution
"""
return rv(name, DagumDistribution, (p, a, b))
#-------------------------------------------------------------------------------
# Erlang distribution ----------------------------------------------------------
def Erlang(name, k, l):
r"""
Create a continuous random variable with an Erlang distribution.
The density of the Erlang distribution is given by
.. math::
f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}
with :math:`x \in [0,\infty]`.
Parameters
==========
k : Positive integer
l : Real number, `\lambda > 0`, the rate
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Erlang, density, cdf, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> k = Symbol("k", integer=True, positive=True)
>>> l = Symbol("l", positive=True)
>>> z = Symbol("z")
>>> X = Erlang("x", k, l)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k k - 1 -l*z
l *z *e
---------------
Gamma(k)
>>> C = cdf(X)(z)
>>> pprint(C, use_unicode=False)
/lowergamma(k, l*z)
|------------------ for z > 0
< Gamma(k)
|
\ 0 otherwise
>>> E(X)
k/l
>>> simplify(variance(X))
k/l**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Erlang_distribution
.. [2] http://mathworld.wolfram.com/ErlangDistribution.html
"""
return rv(name, GammaDistribution, (k, S.One/l))
#-------------------------------------------------------------------------------
# Exponential distribution -----------------------------------------------------
class ExponentialDistribution(SingleContinuousDistribution):
_argnames = ('rate',)
set = Interval(0, oo)
@staticmethod
def check(rate):
_value_check(rate > 0, "Rate must be positive.")
def pdf(self, x):
return self.rate * exp(-self.rate*x)
def sample(self):
return random.expovariate(self.rate)
def _cdf(self, x):
return Piecewise(
(S.One - exp(-self.rate*x), x >= 0),
(0, True),
)
def _characteristic_function(self, t):
rate = self.rate
return rate / (rate - I*t)
def _moment_generating_function(self, t):
rate = self.rate
return rate / (rate - t)
def _quantile(self, p):
return -log(1-p)/self.rate
def Exponential(name, rate):
r"""
Create a continuous random variable with an Exponential distribution.
The density of the exponential distribution is given by
.. math::
f(x) := \lambda \exp(-\lambda x)
with `x > 0`. Note that the expected value is `1/\lambda`.
Parameters
==========
rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean)
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Exponential, density, cdf, E
>>> from sympy.stats import variance, std, skewness, quantile
>>> from sympy import Symbol, symbols
>>> l = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> p = Symbol("p")
>>> X = Exponential("x", l)
>>> density(X)(z)
lambda*exp(-lambda*z)
>>> cdf(X)(z)
Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> E(X)
1/lambda
>>> variance(X)
lambda**(-2)
>>> skewness(X)
2
>>> X = Exponential('x', 10)
>>> density(X)(z)
10*exp(-10*z)
>>> E(X)
1/10
>>> std(X)
1/10
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponential_distribution
.. [2] http://mathworld.wolfram.com/ExponentialDistribution.html
"""
return rv(name, ExponentialDistribution, (rate, ))
#-------------------------------------------------------------------------------
# F distribution ---------------------------------------------------------------
class FDistributionDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(0, oo)
@staticmethod
def check(d1, d2):
_value_check(d1 > 0 and d1.is_integer, \
"Degrees of freedom d1 must be positive integer.")
_value_check(d2 > 0 and d2.is_integer, \
"Degrees of freedom d2 must be positive integer.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2))
/ (x * beta_fn(d1/2, d2/2)))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'F-distribution does not exist.')
def FDistribution(name, d1, d2):
r"""
Create a continuous random variable with a F distribution.
The density of the F distribution is given by
.. math::
f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}
{(d_1 x + d_2)^{d_1 + d_2}}}}
{x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)}
with :math:`x > 0`.
Parameters
==========
d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1)
d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1)
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import FDistribution, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FDistribution("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d2
-- ______________________________
2 / d1 -d1 - d2
d2 *\/ (d1*z) *(d1*z + d2)
--------------------------------------
/d1 d2\
z*B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/F-distribution
.. [2] http://mathworld.wolfram.com/F-Distribution.html
"""
return rv(name, FDistributionDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Fisher Z distribution --------------------------------------------------------
class FisherZDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) *
exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2))
def FisherZ(name, d1, d2):
r"""
Create a Continuous Random Variable with an Fisher's Z distribution.
The density of the Fisher's Z distribution is given by
.. math::
f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)}
\frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}}
.. TODO - What is the difference between these degrees of freedom?
Parameters
==========
d1 : `d_1 > 0`, degree of freedom
d2 : `d_2 > 0`, degree of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import FisherZ, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FisherZ("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d1 d2
d1 d2 - -- - --
-- -- 2 2
2 2 / 2*z \ d1*z
2*d1 *d2 *\d1*e + d2/ *e
-----------------------------------------
/d1 d2\
B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution
.. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html
"""
return rv(name, FisherZDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Frechet distribution ---------------------------------------------------------
class FrechetDistribution(SingleContinuousDistribution):
_argnames = ('a', 's', 'm')
set = Interval(0, oo)
def __new__(cls, a, s=1, m=0):
a, s, m = list(map(sympify, (a, s, m)))
return Basic.__new__(cls, a, s, m)
def pdf(self, x):
a, s, m = self.a, self.s, self.m
return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a))
def _cdf(self, x):
a, s, m = self.a, self.s, self.m
return Piecewise((exp(-((x-m)/s)**(-a)), x >= m),
(S.Zero, True))
def Frechet(name, a, s=1, m=0):
r"""
Create a continuous random variable with a Frechet distribution.
The density of the Frechet distribution is given by
.. math::
f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha}
e^{-(\frac{x-m}{s})^{-\alpha}}
with :math:`x \geq m`.
Parameters
==========
a : Real number, :math:`a \in \left(0, \infty\right)` the shape
s : Real number, :math:`s \in \left(0, \infty\right)` the scale
m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Frechet, density, E, std, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> s = Symbol("s", positive=True)
>>> m = Symbol("m", real=True)
>>> z = Symbol("z")
>>> X = Frechet("x", a, s, m)
>>> density(X)(z)
a*((-m + z)/s)**(-a - 1)*exp(-((-m + z)/s)**(-a))/s
>>> cdf(X)(z)
Piecewise((exp(-((-m + z)/s)**(-a)), m <= z), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
"""
return rv(name, FrechetDistribution, (a, s, m))
#-------------------------------------------------------------------------------
# Gamma distribution -----------------------------------------------------------
class GammaDistribution(SingleContinuousDistribution):
_argnames = ('k', 'theta')
set = Interval(0, oo)
@staticmethod
def check(k, theta):
_value_check(k > 0, "k must be positive")
_value_check(theta > 0, "Theta must be positive")
def pdf(self, x):
k, theta = self.k, self.theta
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def sample(self):
return random.gammavariate(self.k, self.theta)
def _cdf(self, x):
k, theta = self.k, self.theta
return Piecewise(
(lowergamma(k, S(x)/theta)/gamma(k), x > 0),
(S.Zero, True))
def _characteristic_function(self, t):
return (1 - self.theta*I*t)**(-self.k)
def _moment_generating_function(self, t):
return (1- self.theta*t)**(-self.k)
def Gamma(name, k, theta):
r"""
Create a continuous random variable with a Gamma distribution.
The density of the Gamma distribution is given by
.. math::
f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}}
with :math:`x \in [0,1]`.
Parameters
==========
k : Real number, `k > 0`, a shape
theta : Real number, `\theta > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Gamma, density, cdf, E, variance
>>> from sympy import Symbol, pprint, simplify
>>> k = Symbol("k", positive=True)
>>> theta = Symbol("theta", positive=True)
>>> z = Symbol("z")
>>> X = Gamma("x", k, theta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-z
-----
-k k - 1 theta
theta *z *e
---------------------
Gamma(k)
>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
/ / z \
|k*lowergamma|k, -----|
| \ theta/
<---------------------- for z >= 0
| Gamma(k + 1)
|
\ 0 otherwise
>>> E(X)
k*theta
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_distribution
.. [2] http://mathworld.wolfram.com/GammaDistribution.html
"""
return rv(name, GammaDistribution, (k, theta))
#-------------------------------------------------------------------------------
# Inverse Gamma distribution ---------------------------------------------------
class GammaInverseDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "alpha must be positive")
_value_check(b > 0, "beta must be positive")
def pdf(self, x):
a, b = self.a, self.b
return b**a/gamma(a) * x**(-a-1) * exp(-b/x)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0),
(S.Zero, True))
def sample(self):
scipy = import_module('scipy')
if scipy:
from scipy.stats import invgamma
return invgamma.rvs(float(self.a), 0, float(self.b))
else:
raise NotImplementedError('Sampling the inverse Gamma Distribution requires Scipy.')
def _characteristic_function(self, t):
a, b = self.a, self.b
return 2 * (-I*b*t)**(a/2) * besselk(sqrt(-4*I*b*t)) / gamma(a)
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'gamma inverse distribution does not exist.')
def GammaInverse(name, a, b):
r"""
Create a continuous random variable with an inverse Gamma distribution.
The density of the inverse Gamma distribution is given by
.. math::
f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1}
\exp\left(\frac{-\beta}{x}\right)
with :math:`x > 0`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import GammaInverse, density, cdf, E, variance
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = GammaInverse("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
---
a -a - 1 z
b *z *e
---------------
Gamma(a)
>>> cdf(X)(z)
Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution
"""
return rv(name, GammaInverseDistribution, (a, b))
#-------------------------------------------------------------------------------
# Gumbel distribution --------------------------------------------------------
class GumbelDistribution(SingleContinuousDistribution):
_argnames = ('beta', 'mu')
set = Interval(-oo, oo)
def pdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
return (1/beta)*exp(-(z + exp(-z)))
def _cdf(self, x):
beta, mu = self.beta, self.mu
return exp(-exp((mu - x)/beta))
def _characteristic_function(self, t):
return gamma(1 - I*self.beta*t) * exp(I*self.mu*t)
def _moment_generating_function(self, t):
return gamma(1 - self.beta*t) * exp(I*self.mu*t)
def Gumbel(name, beta, mu):
r"""
Create a Continuous Random Variable with Gumbel distribution.
The density of the Gumbel distribution is given by
.. math::
f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta}
- \exp \left( -\dfrac{x - \mu}{\beta} \right) \right)
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu: Real number, 'mu' is a location
beta: Real number, 'beta > 0' is a scale
Returns
==========
A RandomSymbol
Examples
==========
>>> from sympy.stats import Gumbel, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> x = Symbol("x")
>>> mu = Symbol("mu")
>>> beta = Symbol("beta", positive=True)
>>> X = Gumbel("x", beta, mu)
>>> density(X)(x)
exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta
>>> cdf(X)(x)
exp(-exp((mu - x)/beta))
References
==========
.. [1] http://mathworld.wolfram.com/GumbelDistribution.html
.. [2] https://en.wikipedia.org/wiki/Gumbel_distribution
"""
return rv(name, GumbelDistribution, (beta, mu))
#-------------------------------------------------------------------------------
# Gompertz distribution --------------------------------------------------------
class GompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
eta, b = self.eta, self.b
return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x))
def _cdf(self, x):
eta, b = self.eta, self.b
return 1 - exp(eta)*exp(-eta*exp(b*x))
def _moment_generating_function(self, t):
eta, b = self.eta, self.b
return eta * exp(eta) * expint(t/b, eta)
def Gompertz(name, b, eta):
r"""
Create a Continuous Random Variable with Gompertz distribution.
The density of the Gompertz distribution is given by
.. math::
f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right)
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Gompertz, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> z = Symbol("z")
>>> X = Gompertz("x", b, eta)
>>> density(X)(z)
b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z))
References
==========
.. [1] https://en.wikipedia.org/wiki/Gompertz_distribution
"""
return rv(name, GompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# Kumaraswamy distribution -----------------------------------------------------
class KumaraswamyDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "a must be positive")
_value_check(b > 0, "b must be positive")
def pdf(self, x):
a, b = self.a, self.b
return a * b * x**(a-1) * (1-x**a)**(b-1)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < S.Zero),
(1 - (1 - x**a)**b, x <= S.One),
(S.One, True))
def Kumaraswamy(name, a, b):
r"""
Create a Continuous Random Variable with a Kumaraswamy distribution.
The density of the Kumaraswamy distribution is given by
.. math::
f(x) := a b x^{a-1} (1-x^a)^{b-1}
with :math:`x \in [0,1]`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Kumaraswamy, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Kumaraswamy("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
b - 1
a - 1 / a\
a*b*z *\1 - z /
>>> cdf(X)(z)
Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution
"""
return rv(name, KumaraswamyDistribution, (a, b))
#-------------------------------------------------------------------------------
# Laplace distribution ---------------------------------------------------------
class LaplaceDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'b')
def pdf(self, x):
mu, b = self.mu, self.b
return 1/(2*b)*exp(-Abs(x - mu)/b)
def _cdf(self, x):
mu, b = self.mu, self.b
return Piecewise(
(S.Half*exp((x - mu)/b), x < mu),
(S.One - S.Half*exp(-(x - mu)/b), x >= mu)
)
def _characteristic_function(self, t):
return exp(self.mu*I*t) / (1 + self.b**2*t**2)
def _moment_generating_function(self, t):
return exp(self.mu*t) / (1 - self.b**2*t**2)
def Laplace(name, mu, b):
r"""
Create a continuous random variable with a Laplace distribution.
The density of the Laplace distribution is given by
.. math::
f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right)
Parameters
==========
mu : Real number or a list/matrix, the location (mean) or the
location vector
b : Real number or a positive definite matrix, representing a scale
or the covariance matrix.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Laplace, density, cdf
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu")
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Laplace("x", mu, b)
>>> density(X)(z)
exp(-Abs(mu - z)/b)/(2*b)
>>> cdf(X)(z)
Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True))
>>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]])
>>> pprint(density(L)(1, 2), use_unicode=False)
5 / ____\
e *besselk\0, \/ 35 /
---------------------
pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Laplace_distribution
.. [2] http://mathworld.wolfram.com/LaplaceDistribution.html
"""
if isinstance(mu, (list, MatrixBase)) and\
isinstance(b, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
return multivariate_rv(
MultivariateLaplaceDistribution, name, mu, b)
return rv(name, LaplaceDistribution, (mu, b))
#-------------------------------------------------------------------------------
# Logistic distribution --------------------------------------------------------
class LogisticDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
def pdf(self, x):
mu, s = self.mu, self.s
return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2)
def _cdf(self, x):
mu, s = self.mu, self.s
return S.One/(1 + exp(-(x - mu)/s))
def _characteristic_function(self, t):
return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True))
def _moment_generating_function(self, t):
return exp(self.mu*t) * Beta(1 - self.s*t, 1 + self.s*t)
def _quantile(self, p):
return self.mu - self.s*log(-S.One + S.One/p)
def Logistic(name, mu, s):
r"""
Create a continuous random variable with a logistic distribution.
The density of the logistic distribution is given by
.. math::
f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2}
Parameters
==========
mu : Real number, the location (mean)
s : Real number, `s > 0` a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Logistic, density, cdf
>>> from sympy import Symbol
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = Logistic("x", mu, s)
>>> density(X)(z)
exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2)
>>> cdf(X)(z)
1/(exp((mu - z)/s) + 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Logistic_distribution
.. [2] http://mathworld.wolfram.com/LogisticDistribution.html
"""
return rv(name, LogisticDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Log Normal distribution ------------------------------------------------------
class LogNormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
set = Interval(0, oo)
def pdf(self, x):
mean, std = self.mean, self.std
return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std)
def sample(self):
return random.lognormvariate(self.mean, self.std)
def _cdf(self, x):
mean, std = self.mean, self.std
return Piecewise(
(S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0),
(S.Zero, True)
)
def _moment_generating_function(self, t):
raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.')
def LogNormal(name, mean, std):
r"""
Create a continuous random variable with a log-normal distribution.
The density of the log-normal distribution is given by
.. math::
f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}}
e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}
with :math:`x \geq 0`.
Parameters
==========
mu : Real number, the log-scale
sigma : Real number, :math:`\sigma^2 > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import LogNormal, density
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = LogNormal("x", mu, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-(-mu + log(z))
-----------------
2
___ 2*sigma
\/ 2 *e
------------------------
____
2*\/ pi *sigma*z
>>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Lognormal
.. [2] http://mathworld.wolfram.com/LogNormalDistribution.html
"""
return rv(name, LogNormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Maxwell distribution ---------------------------------------------------------
class MaxwellDistribution(SingleContinuousDistribution):
_argnames = ('a',)
set = Interval(0, oo)
def pdf(self, x):
a = self.a
return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
def _cdf(self, x):
a = self.a
return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
def Maxwell(name, a):
r"""
Create a continuous random variable with a Maxwell distribution.
The density of the Maxwell distribution is given by
.. math::
f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}
with :math:`x \geq 0`.
.. TODO - what does the parameter mean?
Parameters
==========
a : Real number, `a > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Maxwell, density, E, variance
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> z = Symbol("z")
>>> X = Maxwell("x", a)
>>> density(X)(z)
sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3)
>>> E(X)
2*sqrt(2)*a/sqrt(pi)
>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Maxwell_distribution
.. [2] http://mathworld.wolfram.com/MaxwellDistribution.html
"""
return rv(name, MaxwellDistribution, (a, ))
#-------------------------------------------------------------------------------
# Nakagami distribution --------------------------------------------------------
class NakagamiDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'omega')
set = Interval(0, oo)
def pdf(self, x):
mu, omega = self.mu, self.omega
return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2)
def _cdf(self, x):
mu, omega = self.mu, self.omega
return Piecewise(
(lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0),
(S.Zero, True))
def Nakagami(name, mu, omega):
r"""
Create a continuous random variable with a Nakagami distribution.
The density of the Nakagami distribution is given by
.. math::
f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1}
\exp\left(-\frac{\mu}{\omega}x^2 \right)
with :math:`x > 0`.
Parameters
==========
mu : Real number, `\mu \geq \frac{1}{2}` a shape
omega : Real number, `\omega > 0`, the spread
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Nakagami, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", positive=True)
>>> omega = Symbol("omega", positive=True)
>>> z = Symbol("z")
>>> X = Nakagami("x", mu, omega)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-mu*z
-------
mu -mu 2*mu - 1 omega
2*mu *omega *z *e
----------------------------------
Gamma(mu)
>>> simplify(E(X))
sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1)
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
omega*Gamma (mu + 1/2)
omega - -----------------------
Gamma(mu)*Gamma(mu + 1)
>>> cdf(X)(z)
Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Nakagami_distribution
"""
return rv(name, NakagamiDistribution, (mu, omega))
#-------------------------------------------------------------------------------
# Normal distribution ----------------------------------------------------------
class NormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
@staticmethod
def check(mean, std):
_value_check(std > 0, "Standard deviation must be positive")
def pdf(self, x):
return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std)
def sample(self):
return random.normalvariate(self.mean, self.std)
def _cdf(self, x):
mean, std = self.mean, self.std
return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half
def _characteristic_function(self, t):
mean, std = self.mean, self.std
return exp(I*mean*t - std**2*t**2/2)
def _moment_generating_function(self, t):
mean, std = self.mean, self.std
return exp(mean*t + std**2*t**2/2)
def _quantile(self, p):
mean, std = self.mean, self.std
return mean + std*sqrt(2)*erfinv(2*p - 1)
def Normal(name, mean, std):
r"""
Create a continuous random variable with a Normal distribution.
The density of the Normal distribution is given by
.. math::
f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }
Parameters
==========
mu : Real number or a list representing the mean or the mean vector
sigma : Real number or a positive definite sqaure matrix,
:math:`\sigma^2 > 0` the variance
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile
>>> from sympy import Symbol, simplify, pprint, factor, together, factor_terms
>>> mu = Symbol("mu")
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> y = Symbol("y")
>>> p = Symbol("p")
>>> X = Normal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)
>>> C = simplify(cdf(X))(z) # it needs a little more help...
>>> pprint(C, use_unicode=False)
/ ___ \
|\/ 2 *(-mu + z)|
erf|---------------|
\ 2*sigma / 1
-------------------- + -
2 2
>>> quantile(X)(p)
mu + sqrt(2)*sigma*erfinv(2*p - 1)
>>> simplify(skewness(X))
0
>>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-z**2/2)/(2*sqrt(pi))
>>> E(2*X + 1)
1
>>> simplify(std(2*X + 1))
2
>>> m = Normal('X', [1, 2], [[2, 1], [1, 2]])
>>> from sympy.stats.joint_rv import marginal_distribution
>>> pprint(density(m)(y, z))
/1 y\ /2*y z\ / z\ / y 2*z \
|- - -|*|--- - -| + |1 - -|*|- - + --- - 1|
___ \2 2/ \ 3 3/ \ 2/ \ 3 3 /
\/ 3 *e
--------------------------------------------------
6*pi
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
References
==========
.. [1] https://en.wikipedia.org/wiki/Normal_distribution
.. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html
"""
if isinstance(mean, (list, MatrixBase)) and\
isinstance(std, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
return multivariate_rv(
MultivariateNormalDistribution, name, mean, std)
return rv(name, NormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Pareto distribution ----------------------------------------------------------
class ParetoDistribution(SingleContinuousDistribution):
_argnames = ('xm', 'alpha')
@property
def set(self):
return Interval(self.xm, oo)
@staticmethod
def check(xm, alpha):
_value_check(xm > 0, "Xm must be positive")
_value_check(alpha > 0, "Alpha must be positive")
def pdf(self, x):
xm, alpha = self.xm, self.alpha
return alpha * xm**alpha / x**(alpha + 1)
def sample(self):
return random.paretovariate(self.alpha)
def _cdf(self, x):
xm, alpha = self.xm, self.alpha
return Piecewise(
(S.One - xm**alpha/x**alpha, x>=xm),
(0, True),
)
def _moment_generating_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t)
def _characteristic_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t)
def Pareto(name, xm, alpha):
r"""
Create a continuous random variable with the Pareto distribution.
The density of the Pareto distribution is given by
.. math::
f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}}
with :math:`x \in [x_m,\infty]`.
Parameters
==========
xm : Real number, `x_m > 0`, a scale
alpha : Real number, `\alpha > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Pareto, density
>>> from sympy import Symbol
>>> xm = Symbol("xm", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Pareto("x", xm, beta)
>>> density(X)(z)
beta*xm**beta*z**(-beta - 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pareto_distribution
.. [2] http://mathworld.wolfram.com/ParetoDistribution.html
"""
return rv(name, ParetoDistribution, (xm, alpha))
#-------------------------------------------------------------------------------
# QuadraticU distribution ------------------------------------------------------
class QuadraticUDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
def pdf(self, x):
a, b = self.a, self.b
alpha = 12 / (b-a)**3
beta = (a+b) / 2
return Piecewise(
(alpha * (x-beta)**2, And(a<=x, x<=b)),
(S.Zero, True))
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) - exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2)
def _characteristic_function(self, t):
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) / ((a-b)**3 * t**2)
def QuadraticU(name, a, b):
r"""
Create a Continuous Random Variable with a U-quadratic distribution.
The density of the U-quadratic distribution is given by
.. math::
f(x) := \alpha (x-\beta)^2
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number
b : Real number, :math:`a < b`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import QuadraticU, density, E, variance
>>> from sympy import Symbol, simplify, factor, pprint
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = QuadraticU("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ 2
| / a b \
|12*|- - - - + z|
| \ 2 2 /
<----------------- for And(b >= z, a <= z)
| 3
| (-a + b)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution
"""
return rv(name, QuadraticUDistribution, (a, b))
#-------------------------------------------------------------------------------
# RaisedCosine distribution ----------------------------------------------------
class RaisedCosineDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
@property
def set(self):
return Interval(self.mu - self.s, self.mu + self.s)
@staticmethod
def check(mu, s):
_value_check(s > 0, "s must be positive")
def pdf(self, x):
mu, s = self.mu, self.s
return Piecewise(
((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)),
(S.Zero, True))
def _characteristic_function(self, t):
mu, s = self.mu, self.s
return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)),
(exp(I*pi*mu/s)/2, Eq(t, pi/s)),
(pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True))
def _moment_generating_function(self, t):
mu, s = self.mu, self.s
return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2))
def RaisedCosine(name, mu, s):
r"""
Create a Continuous Random Variable with a raised cosine distribution.
The density of the raised cosine distribution is given by
.. math::
f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right)
with :math:`x \in [\mu-s,\mu+s]`.
Parameters
==========
mu : Real number
s : Real number, `s > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import RaisedCosine, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = RaisedCosine("x", mu, s)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ /pi*(-mu + z)\
|cos|------------| + 1
| \ s /
<--------------------- for And(z >= mu - s, z <= mu + s)
| 2*s
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution
"""
return rv(name, RaisedCosineDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Rayleigh distribution --------------------------------------------------------
class RayleighDistribution(SingleContinuousDistribution):
_argnames = ('sigma',)
set = Interval(0, oo)
def pdf(self, x):
sigma = self.sigma
return x/sigma**2*exp(-x**2/(2*sigma**2))
def _cdf(self, x):
sigma = self.sigma
return 1 - exp(-(x**2/(2*sigma**2)))
def _characteristic_function(self, t):
sigma = self.sigma
return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I)
def _moment_generating_function(self, t):
sigma = self.sigma
return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1)
def Rayleigh(name, sigma):
r"""
Create a continuous random variable with a Rayleigh distribution.
The density of the Rayleigh distribution is given by
.. math ::
f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}
with :math:`x > 0`.
Parameters
==========
sigma : Real number, `\sigma > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Rayleigh, density, E, variance
>>> from sympy import Symbol, simplify
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Rayleigh("x", sigma)
>>> density(X)(z)
z*exp(-z**2/(2*sigma**2))/sigma**2
>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2
>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution
.. [2] http://mathworld.wolfram.com/RayleighDistribution.html
"""
return rv(name, RayleighDistribution, (sigma, ))
#-------------------------------------------------------------------------------
# Shifted Gompertz distribution ------------------------------------------------
class ShiftedGompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
b, eta = self.b, self.eta
return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x)))
def ShiftedGompertz(name, b, eta):
r"""
Create a continuous random variable with a Shifted Gompertz distribution.
The density of the Shifted Gompertz distribution is given by
.. math::
f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right]
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ShiftedGompertz, density, E, variance
>>> from sympy import Symbol
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> x = Symbol("x")
>>> X = ShiftedGompertz("x", b, eta)
>>> density(X)(x)
b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
References
==========
.. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution
"""
return rv(name, ShiftedGompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# StudentT distribution --------------------------------------------------------
class StudentTDistribution(SingleContinuousDistribution):
_argnames = ('nu',)
def pdf(self, x):
nu = self.nu
return 1/(sqrt(nu)*beta_fn(S(1)/2, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2)
def _cdf(self, x):
nu = self.nu
return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2),
(S(3)/2,), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.')
def StudentT(name, nu):
r"""
Create a continuous random variable with a student's t distribution.
The density of the student's t distribution is given by
.. math::
f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)}
{\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)}
\left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}
Parameters
==========
nu : Real number, `\nu > 0`, the degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import StudentT, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> nu = Symbol("nu", positive=True)
>>> z = Symbol("z")
>>> X = StudentT("x", nu)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
nu 1
- -- - -
2 2
/ 2\
| z |
|1 + --|
\ nu/
-----------------
____ / nu\
\/ nu *B|1/2, --|
\ 2 /
>>> cdf(X)(z)
1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,),
-z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Student_t-distribution
.. [2] http://mathworld.wolfram.com/Studentst-Distribution.html
"""
return rv(name, StudentTDistribution, (nu, ))
#-------------------------------------------------------------------------------
# Trapezoidal distribution ------------------------------------------------------
class TrapezoidalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c', 'd')
def pdf(self, x):
a, b, c, d = self.a, self.b, self.c, self.d
return Piecewise(
(2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)),
(2 / (d+c-a-b), And(b <= x, x < c)),
(2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)),
(S.Zero, True))
def Trapezoidal(name, a, b, c, d):
r"""
Create a continuous random variable with a trapezoidal distribution.
The density of the trapezoidal distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\
\frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\
\frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\
0 & \mathrm{for\ } d < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a < d`
b : Real number, :math:`a <= b < c`
c : Real number, :math:`b < c <= d`
d : Real number
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Trapezoidal, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> d = Symbol("d")
>>> z = Symbol("z")
>>> X = Trapezoidal("x", a,b,c,d)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|------------------------- for And(a <= z, b > z)
|(-a + b)*(-a - b + c + d)
|
| 2
| -------------- for And(b <= z, c > z)
< -a - b + c + d
|
| 2*d - 2*z
|------------------------- for And(d >= z, c <= z)
|(-c + d)*(-a - b + c + d)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution
"""
return rv(name, TrapezoidalDistribution, (a, b, c, d))
#-------------------------------------------------------------------------------
# Triangular distribution ------------------------------------------------------
class TriangularDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c')
def pdf(self, x):
a, b, c = self.a, self.b, self.c
return Piecewise(
(2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)),
(2/(b - a), Eq(x, c)),
(2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)),
(S.Zero, True))
def _characteristic_function(self, t):
a, b, c = self.a, self.b, self.c
return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2)
def _moment_generating_function(self, t):
a, b, c = self.a, self.b, self.c
return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c + a) * exp(b * t)) / (
(b - a) * (c - a) * (b - c) * t ** 2)
def Triangular(name, a, b, c):
r"""
Create a continuous random variable with a triangular distribution.
The density of the triangular distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\
\frac{2}{b-a} & \mathrm{for\ } x = c, \\
\frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\
0 & \mathrm{for\ } b < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a \in \left(-\infty, \infty\right)`
b : Real number, :math:`a < b`
c : Real number, :math:`a \leq c \leq b`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Triangular, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> z = Symbol("z")
>>> X = Triangular("x", a,b,c)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|----------------- for And(a <= z, c > z)
|(-a + b)*(-a + c)
|
| 2
| ------ for c = z
< -a + b
|
| 2*b - 2*z
|---------------- for And(b >= z, c < z)
|(-a + b)*(b - c)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Triangular_distribution
.. [2] http://mathworld.wolfram.com/TriangularDistribution.html
"""
return rv(name, TriangularDistribution, (a, b, c))
#-------------------------------------------------------------------------------
# Uniform distribution ---------------------------------------------------------
class UniformDistribution(SingleContinuousDistribution):
_argnames = ('left', 'right')
def pdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.One/(right - left), And(left <= x, x <= right)),
(S.Zero, True)
)
def _cdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.Zero, x < left),
((x - left)/(right - left), x <= right),
(S.One, True)
)
def _characteristic_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)),
(S.One, True))
def expectation(self, expr, var, **kwargs):
from sympy import Max, Min
kwargs['evaluate'] = True
result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs)
result = result.subs({Max(self.left, self.right): self.right,
Min(self.left, self.right): self.left})
return result
def sample(self):
return random.uniform(self.left, self.right)
def Uniform(name, left, right):
r"""
Create a continuous random variable with a uniform distribution.
The density of the uniform distribution is given by
.. math::
f(x) := \begin{cases}
\frac{1}{b - a} & \text{for } x \in [a,b] \\
0 & \text{otherwise}
\end{cases}
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Uniform, density, cdf, E, variance, skewness
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", negative=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Uniform("x", a, b)
>>> density(X)(z)
Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True))
>>> cdf(X)(z) # doctest: +SKIP
-a/(-a + b) + z/(-a + b)
>>> simplify(E(X))
a/2 + b/2
>>> simplify(variance(X))
a**2/12 - a*b/6 + b**2/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
.. [2] http://mathworld.wolfram.com/UniformDistribution.html
"""
return rv(name, UniformDistribution, (left, right))
#-------------------------------------------------------------------------------
# UniformSum distribution ------------------------------------------------------
class UniformSumDistribution(SingleContinuousDistribution):
_argnames = ('n',)
@property
def set(self):
return Interval(0, self.n)
def pdf(self, x):
n = self.n
k = Dummy("k")
return 1/factorial(
n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x)))
def _cdf(self, x):
n = self.n
k = Dummy("k")
return Piecewise((S.Zero, x < 0),
(1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n),
(k, 0, floor(x))), x <= n),
(S.One, True))
def _characteristic_function(self, t):
return ((exp(I*t) - 1) / (I*t))**self.n
def _moment_generating_function(self, t):
return ((exp(t) - 1) / t)**self.n
def UniformSum(name, n):
r"""
Create a continuous random variable with an Irwin-Hall distribution.
The probability distribution function depends on a single parameter
`n` which is an integer.
The density of the Irwin-Hall distribution is given by
.. math ::
f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k
\binom{n}{k}(x-k)^{n-1}
Parameters
==========
n : A positive Integer, `n > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import UniformSum, density, cdf
>>> from sympy import Symbol, pprint
>>> n = Symbol("n", integer=True)
>>> z = Symbol("z")
>>> X = UniformSum("x", n)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)
___
\ `
\ k n - 1 /n\
) (-1) *(-k + z) *| |
/ \k/
/__,
k = 0
--------------------------------
(n - 1)!
>>> cdf(X)(z)
Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k),
(_k, 0, floor(z)))/factorial(n), n >= z), (1, True))
Compute cdf with specific 'x' and 'n' values as follows :
>>> cdf(UniformSum("x", 5), evaluate=False)(2).doit()
9/40
The argument evaluate=False prevents an attempt at evaluation
of the sum for general n, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution
.. [2] http://mathworld.wolfram.com/UniformSumDistribution.html
"""
return rv(name, UniformSumDistribution, (n, ))
#-------------------------------------------------------------------------------
# VonMises distribution --------------------------------------------------------
class VonMisesDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'k')
set = Interval(0, 2*pi)
@staticmethod
def check(mu, k):
_value_check(k > 0, "k must be positive")
def pdf(self, x):
mu, k = self.mu, self.k
return exp(k*cos(x-mu)) / (2*pi*besseli(0, k))
def VonMises(name, mu, k):
r"""
Create a Continuous Random Variable with a von Mises distribution.
The density of the von Mises distribution is given by
.. math::
f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}
with :math:`x \in [0,2\pi]`.
Parameters
==========
mu : Real number, measure of location
k : Real number, measure of concentration
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import VonMises, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu")
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = VonMises("x", mu, k)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k*cos(mu - z)
e
------------------
2*pi*besseli(0, k)
References
==========
.. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution
.. [2] http://mathworld.wolfram.com/vonMisesDistribution.html
"""
return rv(name, VonMisesDistribution, (mu, k))
#-------------------------------------------------------------------------------
# Weibull distribution ---------------------------------------------------------
class WeibullDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Alpha must be positive")
_value_check(beta > 0, "Beta must be positive")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha
def sample(self):
return random.weibullvariate(self.alpha, self.beta)
def Weibull(name, alpha, beta):
r"""
Create a continuous random variable with a Weibull distribution.
The density of the Weibull distribution is given by
.. math::
f(x) := \begin{cases}
\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}
e^{-(x/\lambda)^{k}} & x\geq0\\
0 & x<0
\end{cases}
Parameters
==========
lambda : Real number, :math:`\lambda > 0` a scale
k : Real number, `k > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Weibull, density, E, variance
>>> from sympy import Symbol, simplify
>>> l = Symbol("lambda", positive=True)
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = Weibull("x", l, k)
>>> density(X)(z)
k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda
>>> simplify(E(X))
lambda*gamma(1 + 1/k)
>>> simplify(variance(X))
lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k))
References
==========
.. [1] https://en.wikipedia.org/wiki/Weibull_distribution
.. [2] http://mathworld.wolfram.com/WeibullDistribution.html
"""
return rv(name, WeibullDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Wigner semicircle distribution -----------------------------------------------
class WignerSemicircleDistribution(SingleContinuousDistribution):
_argnames = ('R',)
@property
def set(self):
return Interval(-self.R, self.R)
def pdf(self, x):
R = self.R
return 2/(pi*R**2)*sqrt(R**2 - x**2)
def _characteristic_function(self, t):
return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def WignerSemicircle(name, R):
r"""
Create a continuous random variable with a Wigner semicircle distribution.
The density of the Wigner semicircle distribution is given by
.. math::
f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2}
with :math:`x \in [-R,R]`.
Parameters
==========
R : Real number, `R > 0`, the radius
Returns
=======
A `RandomSymbol`.
Examples
========
>>> from sympy.stats import WignerSemicircle, density, E
>>> from sympy import Symbol, simplify
>>> R = Symbol("R", positive=True)
>>> z = Symbol("z")
>>> X = WignerSemicircle("x", R)
>>> density(X)(z)
2*sqrt(R**2 - z**2)/(pi*R**2)
>>> E(X)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
.. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html
"""
return rv(name, WignerSemicircleDistribution, (R,))
|
dafb9566480e131d4580f928f1c079bb8733b6ce69d38e556a3e379748935442 | """
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
Hypergeometric
Rademacher
"""
from __future__ import print_function, division
from sympy import (S, sympify, Rational, binomial, cacheit, Integer,
Dict, Basic, KroneckerDelta, Dummy)
from sympy.concrete.summations import Sum
from sympy.core.compatibility import as_int, range
from sympy.core.logic import fuzzy_not, fuzzy_and
from sympy.stats.frv import (SingleFinitePSpace, SingleFiniteDistribution)
__all__ = ['FiniteRV',
'DiscreteUniform',
'Die',
'Bernoulli',
'Coin',
'Binomial',
'Hypergeometric',
'Rademacher'
]
def rv(name, cls, *args):
density = cls(*args)
return SingleFinitePSpace(name, density).value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
def __new__(cls, density):
density = Dict(density)
for k in density.values():
k_sym = sympify(k)
if fuzzy_not(fuzzy_and((k_sym.is_nonnegative, (k_sym - 1).is_nonpositive))):
raise ValueError("Probability at a point must be between 0 and 1.")
sum_sym = sum(density.values())
if sum_sym != 1:
raise ValueError("Total Probability must be equal to 1.")
return Basic.__new__(cls, density)
def FiniteRV(name, density):
"""
Create a Finite Random Variable given a dict representing the density.
Returns a RandomSymbol.
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
"""
return rv(name, FiniteDistributionHandmade, density)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@property
def p(self):
return Rational(1, len(self.args))
@property
@cacheit
def dict(self):
return dict((k, self.p) for k in self.set)
@property
def set(self):
return self.args
def pdf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
def DiscreteUniform(name, items):
"""
Create a Finite Random Variable representing a uniform distribution over
the input set.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols
>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution
.. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html
"""
return rv(name, DiscreteUniformDistribution, *items)
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
def __new__(cls, sides):
sides_sym = sympify(sides)
if fuzzy_not(fuzzy_and((sides_sym.is_integer, sides_sym.is_positive))):
raise ValueError("'sides' must be a positive integer.")
else:
return super(DieDistribution, cls).__new__(cls, sides)
@property
@cacheit
def dict(self):
as_int(self.sides) # Check that self.sides can be converted to an integer
return super(DieDistribution, self).dict
@property
def set(self):
return list(map(Integer, list(range(1, self.sides + 1))))
def pdf(self, x):
x = sympify(x)
if x.is_number:
if x.is_Integer and x >= 1 and x <= self.sides:
return Rational(1, self.sides)
return S.Zero
if x.is_Symbol:
i = Dummy('i', integer=True, positive=True)
return Sum(KroneckerDelta(x, i)/self.sides, (i, 1, self.sides))
raise ValueError("'x' expected as an argument of type 'number' or 'symbol', "
"not %s" % (type(x)))
def Die(name, sides=6):
"""
Create a Finite Random Variable representing a fair die.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Die, density
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
def __new__(cls, *args):
p = args[BernoulliDistribution._argnames.index('p')]
p_sym = sympify(p)
if fuzzy_not(fuzzy_and((p_sym.is_nonnegative, (p_sym - 1).is_nonpositive))):
raise ValueError("p = %s is not in range [0, 1]." % str(p))
else:
return super(BernoulliDistribution, cls).__new__(cls, *args)
@property
@cacheit
def dict(self):
return {self.succ: self.p, self.fail: 1 - self.p}
def Bernoulli(name, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a Bernoulli process.
Returns a RandomSymbol
Examples
========
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution
.. [2] http://mathworld.wolfram.com/BernoulliDistribution.html
"""
return rv(name, BernoulliDistribution, p, succ, fail)
def Coin(name, p=S.Half):
"""
Create a Finite Random Variable representing a Coin toss.
Probability p is the chance of gettings "Heads." Half by default
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
See Also
========
sympy.stats.Binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Coin_flipping
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
def __new__(cls, *args):
n = args[BinomialDistribution._argnames.index('n')]
p = args[BinomialDistribution._argnames.index('p')]
n_sym = sympify(n)
p_sym = sympify(p)
if fuzzy_not(fuzzy_and((n_sym.is_integer, n_sym.is_nonnegative))):
raise ValueError("'n' must be positive integer. n = %s." % str(n))
elif fuzzy_not(fuzzy_and((p_sym.is_nonnegative, (p_sym - 1).is_nonpositive))):
raise ValueError("'p' must be: 0 <= p <= 1 . p = %s" % str(p))
else:
return super(BinomialDistribution, cls).__new__(cls, *args)
@property
@cacheit
def dict(self):
n, p, succ, fail = self.n, self.p, self.succ, self.fail
n = as_int(n)
return dict((k*succ + (n - k)*fail,
binomial(n, k) * p**k * (1 - p)**(n - k)) for k in range(0, n + 1))
def Binomial(name, n, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a binomial distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
References
==========
.. [1] https://en.wikipedia.org/wiki/Binomial_distribution
.. [2] http://mathworld.wolfram.com/BinomialDistribution.html
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@property
@cacheit
def dict(self):
N, m, n = self.N, self.m, self.n
N, m, n = list(map(sympify, (N, m, n)))
density = dict((sympify(k),
Rational(binomial(m, k) * binomial(N - m, n - k),
binomial(N, n)))
for k in range(max(0, n + m - N), min(m, n) + 1))
return density
def Hypergeometric(name, N, m, n):
"""
Create a Finite Random Variable representing a hypergeometric distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> from sympy import S
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
References
==========
.. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution
.. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
@cacheit
def dict(self):
return {-1: S.Half, 1: S.Half}
def Rademacher(name):
"""
Create a Finite Random Variable representing a Rademacher distribution.
Return a RandomSymbol.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] https://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)
|
7d3f3608edf2b5d8c296e94d65b6b50ae1f38b994a016939292b64bca289b84e | """
SymPy statistics module
Introduces a random variable type into the SymPy language.
Random variables may be declared using prebuilt functions such as
Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
Queries on random expressions can be made using the functions
========================= =============================
Expression Meaning
------------------------- -----------------------------
``P(condition)`` Probability
``E(expression)`` Expected value
``H(expression)`` Entropy
``variance(expression)`` Variance
``density(expression)`` Probability Density Function
``sample(expression)`` Produce a realization
``where(condition)`` Where the condition is true
========================= =============================
Examples
========
>>> from sympy.stats import P, E, variance, Die, Normal
>>> from sympy import Eq, simplify
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
>>> P(X>3) # Probability X is greater than 3
1/2
>>> E(X+Y) # Expectation of the sum of two dice
7
>>> variance(X+Y) # Variance of the sum of two dice
35/6
>>> simplify(P(Z>1)) # Probability of Z being greater than 1
1/2 - erf(sqrt(2)/2)/2
"""
__all__ = []
from . import rv_interface
from .rv_interface import (
cdf, characteristic_function, covariance, density, dependent, E, given, independent, P, pspace,
random_symbols, sample, sample_iter, skewness, std, variance, where,
correlation, moment, cmoment, smoment, sampling_density, moment_generating_function, entropy, H,
quantile
)
__all__.extend(rv_interface.__all__)
from . import frv_types
from .frv_types import (
Bernoulli, Binomial, Coin, Die, DiscreteUniform, FiniteRV, Hypergeometric,
Rademacher,
)
__all__.extend(frv_types.__all__)
from . import crv_types
from .crv_types import (
ContinuousRV,
Arcsin, Benini, Beta, BetaPrime, Cauchy, Chi, ChiNoncentral, ChiSquared,
Dagum, Erlang, Exponential, FDistribution, FisherZ, Frechet, Gamma,
GammaInverse, Gumbel, Gompertz, Kumaraswamy, Laplace, Logistic, LogNormal,
Maxwell, Nakagami, Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh,
ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises,
Weibull, WignerSemicircle
)
__all__.extend(crv_types.__all__)
from . import drv_types
from .drv_types import (Geometric, Logarithmic, NegativeBinomial, Poisson, YuleSimon, Zeta)
__all__.extend(drv_types.__all__)
from . import symbolic_probability
from .symbolic_probability import Probability, Expectation, Variance, Covariance
__all__.extend(symbolic_probability.__all__)
|
9eea9fd4777ecbc51b6a3333af716cc983e92af25f204d006f27de6c8a57bc00 | """
Contains
========
Geometric
Poisson
Logarithmic
NegativeBinomial
Poisson
YuleSimon
Zeta
"""
from __future__ import print_function, division
from sympy import (factorial, exp, S, sympify, And, I, zeta, polylog, log, beta,
hyper, binomial, Piecewise, floor)
from sympy.stats import density
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.rv import _value_check, RandomSymbol
import random
__all__ = ['Geometric',
'Logarithmic',
'NegativeBinomial',
'Poisson',
'YuleSimon',
'Zeta'
]
def rv(symbol, cls, *args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleDiscretePSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
#-------------------------------------------------------------------------------
# Geometric distribution ------------------------------------------------------------
class GeometricDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check(And(0 < p, p <= 1), "p must be between 0 and 1")
def pdf(self, k):
return (1 - self.p)**(k - 1) * self.p
def _characteristic_function(self, t):
p = self.p
return p * exp(I*t) / (1 - (1 - p)*exp(I*t))
def _moment_generating_function(self, t):
p = self.p
return p * exp(t) / (1 - (1 - p) * exp(t))
def Geometric(name, p):
r"""
Create a discrete random variable with a Geometric distribution.
The density of the Geometric distribution is given by
.. math::
f(k) := p (1 - p)^{k - 1}
Parameters
==========
p: A probability between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Geometric, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Geometric("x", p)
>>> density(X)(z)
(4/5)**(z - 1)/5
>>> E(X)
5
>>> variance(X)
20
References
==========
.. [1] https://en.wikipedia.org/wiki/Geometric_distribution
.. [2] http://mathworld.wolfram.com/GeometricDistribution.html
"""
return rv(name, GeometricDistribution, p)
#-------------------------------------------------------------------------------
# Logarithmic distribution ------------------------------------------------------------
class LogarithmicDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check(And(p > 0, p < 1), "p should be between 0 and 1")
def pdf(self, k):
p = self.p
return (-1) * p**k / (k * log(1 - p))
def _characteristic_function(self, t):
p = self.p
return log(1 - p * exp(I*t)) / log(1 - p)
def _moment_generating_function(self, t):
p = self.p
return log(1 - p * exp(t)) / log(1 - p)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def Logarithmic(name, p):
r"""
Create a discrete random variable with a Logarithmic distribution.
The density of the Logarithmic distribution is given by
.. math::
f(k) := \frac{-p^k}{k \ln{(1 - p)}}
Parameters
==========
p: A value between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Logarithmic, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Logarithmic("x", p)
>>> density(X)(z)
-5**(-z)/(z*log(4/5))
>>> E(X)
-1/(-4*log(5) + 8*log(2))
>>> variance(X)
-1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution
.. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html
"""
return rv(name, LogarithmicDistribution, p)
#-------------------------------------------------------------------------------
# Negative binomial distribution ------------------------------------------------------------
class NegativeBinomialDistribution(SingleDiscreteDistribution):
_argnames = ('r', 'p')
set = S.Naturals0
@staticmethod
def check(r, p):
_value_check(r > 0, 'r should be positive')
_value_check(And(p > 0, p < 1), 'p should be between 0 and 1')
def pdf(self, k):
r = self.r
p = self.p
return binomial(k + r - 1, k) * (1 - p)**r * p**k
def _characteristic_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(I*t)))**r
def _moment_generating_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(t)))**r
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def NegativeBinomial(name, r, p):
r"""
Create a discrete random variable with a Negative Binomial distribution.
The density of the Negative Binomial distribution is given by
.. math::
f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k
Parameters
==========
r: A positive value
p: A value between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import NegativeBinomial, density, E, variance
>>> from sympy import Symbol, S
>>> r = 5
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = NegativeBinomial("x", r, p)
>>> density(X)(z)
1024*5**(-z)*binomial(z + 4, z)/3125
>>> E(X)
5/4
>>> variance(X)
25/16
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution
.. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html
"""
return rv(name, NegativeBinomialDistribution, r, p)
#-------------------------------------------------------------------------------
# Poisson distribution ------------------------------------------------------------
class PoissonDistribution(SingleDiscreteDistribution):
_argnames = ('lamda',)
set = S.Naturals0
@staticmethod
def check(lamda):
_value_check(lamda > 0, "Lambda must be positive")
def pdf(self, k):
return self.lamda**k / factorial(k) * exp(-self.lamda)
def sample(self):
def search(x, y, u):
while x < y:
mid = (x + y)//2
if u <= self.cdf(mid):
y = mid
else:
x = mid + 1
return x
u = random.uniform(0, 1)
if u <= self.cdf(S.Zero):
return S.Zero
n = S.One
while True:
if u > self.cdf(2*n):
n *= 2
else:
return search(n, 2*n, u)
def _characteristic_function(self, t):
return exp(self.lamda * (exp(I*t) - 1))
def _moment_generating_function(self, t):
return exp(self.lamda * (exp(t) - 1))
def Poisson(name, lamda):
r"""
Create a discrete random variable with a Poisson distribution.
The density of the Poisson distribution is given by
.. math::
f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!}
Parameters
==========
lamda: Positive number, a rate
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Poisson, density, E, variance
>>> from sympy import Symbol, simplify
>>> rate = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> X = Poisson("x", rate)
>>> density(X)(z)
lambda**z*exp(-lambda)/factorial(z)
>>> E(X)
lambda
>>> simplify(variance(X))
lambda
References
==========
.. [1] https://en.wikipedia.org/wiki/Poisson_distribution
.. [2] http://mathworld.wolfram.com/PoissonDistribution.html
"""
return rv(name, PoissonDistribution, lamda)
#-------------------------------------------------------------------------------
# Yule-Simon distribution ------------------------------------------------------------
class YuleSimonDistribution(SingleDiscreteDistribution):
_argnames = ('rho',)
set = S.Naturals
@staticmethod
def check(rho):
_value_check(rho > 0, 'rho should be positive')
def pdf(self, k):
rho = self.rho
return rho * beta(k, rho + 1)
def _cdf(self, x):
return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True))
def _characteristic_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1)
def _moment_generating_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def YuleSimon(name, rho):
r"""
Create a discrete random variable with a Yule-Simon distribution.
The density of the Yule-Simon distribution is given by
.. math::
f(k) := \rho B(k, \rho + 1)
Parameters
==========
rho: A positive value
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import YuleSimon, density, E, variance
>>> from sympy import Symbol, simplify
>>> p = 5
>>> z = Symbol("z")
>>> X = YuleSimon("x", p)
>>> density(X)(z)
5*beta(z, 6)
>>> simplify(E(X))
5/4
>>> simplify(variance(X))
25/48
References
==========
.. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution
"""
return rv(name, YuleSimonDistribution, rho)
#-------------------------------------------------------------------------------
# Zeta distribution ------------------------------------------------------------
class ZetaDistribution(SingleDiscreteDistribution):
_argnames = ('s',)
set = S.Naturals
@staticmethod
def check(s):
_value_check(s > 1, 's should be greater than 1')
def pdf(self, k):
s = self.s
return 1 / (k**s * zeta(s))
def _characteristic_function(self, t):
return polylog(self.s, exp(I*t)) / zeta(self.s)
def _moment_generating_function(self, t):
return polylog(self.s, exp(t)) / zeta(self.s)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def Zeta(name, s):
r"""
Create a discrete random variable with a Zeta distribution.
The density of the Zeta distribution is given by
.. math::
f(k) := \frac{1}{k^s \zeta{(s)}}
Parameters
==========
s: A value greater than 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Zeta, density, E, variance
>>> from sympy import Symbol
>>> s = 5
>>> z = Symbol("z")
>>> X = Zeta("x", s)
>>> density(X)(z)
1/(z**5*zeta(5))
>>> E(X)
pi**4/(90*zeta(5))
>>> variance(X)
-pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Zeta_distribution
"""
return rv(name, ZetaDistribution, s)
|
8a191549c8851be852f4bdd6a5cc86a7f60b06f88cad9b0b69a1947a0ae5f29e | from __future__ import print_function, division
from .rv import (probability, expectation, density, where, given, pspace, cdf,
characteristic_function, sample, sample_iter, random_symbols, independent, dependent,
sampling_density, moment_generating_function, _value_check, quantile)
from sympy import Piecewise, sqrt, solveset, Symbol, S, log, Eq, Lambda, exp
from sympy.solvers.inequalities import reduce_inequalities
__all__ = ['P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf', 'characteristic_function', 'pspace',
'sample_iter', 'variance', 'std', 'skewness', 'covariance',
'dependent', 'independent', 'random_symbols', 'correlation',
'moment', 'cmoment', 'sampling_density', 'moment_generating_function', 'quantile']
def moment(X, n, c=0, condition=None, **kwargs):
"""
Return the nth moment of a random expression about c i.e. E((X-c)**n)
Default value of c is 0.
Examples
========
>>> from sympy.stats import Die, moment, E
>>> X = Die('X', 6)
>>> moment(X, 1, 6)
-5/2
>>> moment(X, 2)
91/6
>>> moment(X, 1) == E(X)
True
"""
return expectation((X - c)**n, condition, **kwargs)
def variance(X, condition=None, **kwargs):
"""
Variance of a random expression
Expectation of (X-E(X))**2
Examples
========
>>> from sympy.stats import Die, E, Bernoulli, variance
>>> from sympy import simplify, Symbol
>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> variance(2*X)
35/3
>>> simplify(variance(B))
p*(1 - p)
"""
return cmoment(X, 2, condition, **kwargs)
def standard_deviation(X, condition=None, **kwargs):
"""
Standard Deviation of a random expression
Square root of the Expectation of (X-E(X))**2
Examples
========
>>> from sympy.stats import Bernoulli, std
>>> from sympy import Symbol, simplify
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
>>> simplify(std(B))
sqrt(p*(1 - p))
"""
return sqrt(variance(X, condition, **kwargs))
std = standard_deviation
def entropy(expr, condition=None, **kwargs):
"""
Calculuates entropy of a probability distribution
Parameters
==========
expression : the random expression whose entropy is to be calculated
condition : optional, to specify conditions on random expression
b: base of the logarithm, optional
By default, it is taken as Euler's number
Retruns
=======
result : Entropy of the expression, a constant
Examples
========
>>> from sympy.stats import Normal, Die, entropy
>>> X = Normal('X', 0, 1)
>>> entropy(X)
log(2)/2 + 1/2 + log(pi)/2
>>> D = Die('D', 4)
>>> entropy(D)
log(4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory)
.. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf
.. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
"""
pdf = density(expr, condition, **kwargs)
base = kwargs.get('b', exp(1))
if isinstance(pdf, dict):
return sum([-prob*log(prob, base) for prob in pdf.values()])
return expectation(-log(pdf(expr), base))
def covariance(X, Y, condition=None, **kwargs):
"""
Covariance of two random expressions
The expectation that the two variables will rise and fall together
Covariance(X,Y) = E( (X-E(X)) * (Y-E(Y)) )
Examples
========
>>> from sympy.stats import Exponential, covariance
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> covariance(X, X)
lambda**(-2)
>>> covariance(X, Y)
0
>>> covariance(X, Y + rate*X)
1/lambda
"""
return expectation(
(X - expectation(X, condition, **kwargs)) *
(Y - expectation(Y, condition, **kwargs)),
condition, **kwargs)
def correlation(X, Y, condition=None, **kwargs):
"""
Correlation of two random expressions, also known as correlation
coefficient or Pearson's correlation
The normalized expectation that the two variables will rise
and fall together
Correlation(X,Y) = E( (X-E(X)) * (Y-E(Y)) / (sigma(X) * sigma(Y)) )
Examples
========
>>> from sympy.stats import Exponential, correlation
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)
>>> correlation(X, X)
1
>>> correlation(X, Y)
0
>>> correlation(X, Y + rate*X)
1/sqrt(1 + lambda**(-2))
"""
return covariance(X, Y, condition, **kwargs)/(std(X, condition, **kwargs)
* std(Y, condition, **kwargs))
def cmoment(X, n, condition=None, **kwargs):
"""
Return the nth central moment of a random expression about its mean
i.e. E((X - E(X))**n)
Examples
========
>>> from sympy.stats import Die, cmoment, variance
>>> X = Die('X', 6)
>>> cmoment(X, 3)
0
>>> cmoment(X, 2)
35/12
>>> cmoment(X, 2) == variance(X)
True
"""
mu = expectation(X, condition, **kwargs)
return moment(X, n, mu, condition, **kwargs)
def smoment(X, n, condition=None, **kwargs):
"""
Return the nth Standardized moment of a random expression i.e.
E( ((X - mu)/sigma(X))**n )
Examples
========
>>> from sympy.stats import skewness, Exponential, smoment
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> smoment(Y, 4)
9
>>> smoment(Y, 4) == smoment(3*Y, 4)
True
>>> smoment(Y, 3) == skewness(Y)
True
"""
sigma = std(X, condition, **kwargs)
return (1/sigma)**n*cmoment(X, n, condition, **kwargs)
def skewness(X, condition=None, **kwargs):
"""
Measure of the asymmetry of the probability distribution
Positive skew indicates that most of the values lie to the right of
the mean
skewness(X) = E( ((X - E(X))/sigma)**3 )
Examples
========
>>> from sympy.stats import skewness, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> skewness(X)
0
>>> rate = Symbol('lambda', positive=True, real=True, finite=True)
>>> Y = Exponential('Y', rate)
>>> skewness(Y)
2
"""
return smoment(X, 3, condition, **kwargs)
P = probability
E = expectation
H = entropy
|
e0e7358e59a4137cf3da5ec98d9f27cd62c788ecd22e3943d282e29f82c0f815 | """
Main Random Variables Module
Defines abstract random variable type.
Contains interfaces for probability space object (PSpace) as well as standard
operators, P, E, sample, density, where, quantile
See Also
========
sympy.stats.crv
sympy.stats.frv
sympy.stats.rv_interface
"""
from __future__ import print_function, division
from sympy import (Basic, S, Expr, Symbol, Tuple, And, Add, Eq, lambdify,
Equality, Lambda, sympify, Dummy, Ne, KroneckerDelta,
DiracDelta, Mul)
from sympy.abc import x
from sympy.core.compatibility import string_types
from sympy.core.relational import Relational
from sympy.logic.boolalg import Boolean
from sympy.sets.sets import FiniteSet, ProductSet, Intersection
from sympy.solvers.solveset import solveset
class RandomDomain(Basic):
"""
Represents a set of variables and the values which they can take
See Also
========
sympy.stats.crv.ContinuousDomain
sympy.stats.frv.FiniteDomain
"""
is_ProductDomain = False
is_Finite = False
is_Continuous = False
is_Discrete = False
def __new__(cls, symbols, *args):
symbols = FiniteSet(*symbols)
return Basic.__new__(cls, symbols, *args)
@property
def symbols(self):
return self.args[0]
@property
def set(self):
return self.args[1]
def __contains__(self, other):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SingleDomain(RandomDomain):
"""
A single variable and its domain
See Also
========
sympy.stats.crv.SingleContinuousDomain
sympy.stats.frv.SingleFiniteDomain
"""
def __new__(cls, symbol, set):
assert symbol.is_Symbol
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
def __contains__(self, other):
if len(other) != 1:
return False
sym, val = tuple(other)[0]
return self.symbol == sym and val in self.set
class ConditionalDomain(RandomDomain):
"""
A RandomDomain with an attached condition
See Also
========
sympy.stats.crv.ConditionalContinuousDomain
sympy.stats.frv.ConditionalFiniteDomain
"""
def __new__(cls, fulldomain, condition):
condition = condition.xreplace(dict((rs, rs.symbol)
for rs in random_symbols(condition)))
return Basic.__new__(cls, fulldomain, condition)
@property
def symbols(self):
return self.fulldomain.symbols
@property
def fulldomain(self):
return self.args[0]
@property
def condition(self):
return self.args[1]
@property
def set(self):
raise NotImplementedError("Set of Conditional Domain not Implemented")
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
class PSpace(Basic):
"""
A Probability Space
Probability Spaces encode processes that equal different values
probabilistically. These underly Random Symbols which occur in SymPy
expressions and contain the mechanics to evaluate statistical statements.
See Also
========
sympy.stats.crv.ContinuousPSpace
sympy.stats.frv.FinitePSpace
"""
is_Finite = None
is_Continuous = None
is_Discrete = None
is_real = None
@property
def domain(self):
return self.args[0]
@property
def density(self):
return self.args[1]
@property
def values(self):
return frozenset(RandomSymbol(sym, self) for sym in self.symbols)
@property
def symbols(self):
return self.domain.symbols
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
def probability(self, condition):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SinglePSpace(PSpace):
"""
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
"""
def __new__(cls, s, distribution):
if isinstance(s, string_types):
s = Symbol(s)
if not isinstance(s, Symbol):
raise TypeError("s should have been string or Symbol")
return Basic.__new__(cls, s, distribution)
@property
def value(self):
return RandomSymbol(self.symbol, self)
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def pdf(self):
return self.distribution.pdf(self.symbol)
class RandomSymbol(Expr):
"""
Random Symbols represent ProbabilitySpaces in SymPy Expressions
In principle they can take on any value that their symbol can take on
within the associated PSpace with probability determined by the PSpace
Density.
Random Symbols contain pspace and symbol properties.
The pspace property points to the represented Probability Space
The symbol is a standard SymPy Symbol that is used in that probability space
for example in defining a density.
You can form normal SymPy expressions using RandomSymbols and operate on
those expressions with the Functions
E - Expectation of a random expression
P - Probability of a condition
density - Probability Density of an expression
given - A new random expression (with new random symbols) given a condition
An object of the RandomSymbol type should almost never be created by the
user. They tend to be created instead by the PSpace class's value method.
Traditionally a user doesn't even do this but instead calls one of the
convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc....
"""
def __new__(cls, symbol, pspace=None):
from sympy.stats.joint_rv import JointRandomSymbol
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
if not isinstance(symbol, Symbol):
raise TypeError("symbol should be of type Symbol")
if not isinstance(pspace, PSpace):
raise TypeError("pspace variable should be of type PSpace")
if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace):
cls = RandomSymbol
return Basic.__new__(cls, symbol, pspace)
is_finite = True
is_symbol = True
is_Atom = True
_diff_wrt = True
pspace = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
name = property(lambda self: self.symbol.name)
def _eval_is_positive(self):
return self.symbol.is_positive
def _eval_is_integer(self):
return self.symbol.is_integer
def _eval_is_real(self):
return self.symbol.is_real or self.pspace.is_real
@property
def is_commutative(self):
return self.symbol.is_commutative
def _hashable_content(self):
return self.pspace, self.symbol
@property
def free_symbols(self):
return {self}
class ProductPSpace(PSpace):
"""
Abstract class for representing probability spaces with multiple random
variables.
See Also
========
sympy.stats.rv.IndependentProductPSpace
sympy.stats.joint_rv.JointPSpace
"""
pass
class IndependentProductPSpace(ProductPSpace):
"""
A probability space resulting from the merger of two independent probability
spaces.
Often created using the function, pspace
"""
def __new__(cls, *spaces):
rs_space_dict = {}
for space in spaces:
for value in space.values:
rs_space_dict[value] = space
symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()])
# Overlapping symbols
from sympy.stats.joint_rv import MarginalDistribution, CompoundDistribution
if len(symbols) < sum(len(space.symbols) for space in spaces if not
isinstance(space.distribution, (
CompoundDistribution, MarginalDistribution))):
raise ValueError("Overlapping Random Variables")
if all(space.is_Finite for space in spaces):
from sympy.stats.frv import ProductFinitePSpace
cls = ProductFinitePSpace
obj = Basic.__new__(cls, *FiniteSet(*spaces))
return obj
@property
def pdf(self):
p = Mul(*[space.pdf for space in self.spaces])
return p.subs(dict((rv, rv.symbol) for rv in self.values))
@property
def rs_space_dict(self):
d = {}
for space in self.spaces:
for value in space.values:
d[value] = space
return d
@property
def symbols(self):
return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()])
@property
def spaces(self):
return FiniteSet(*self.args)
@property
def values(self):
return sumsets(space.values for space in self.spaces)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or self.values
rvs = frozenset(rvs)
for space in self.spaces:
expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs)
if evaluate and hasattr(expr, 'doit'):
return expr.doit(**kwargs)
return expr
@property
def domain(self):
return ProductDomain(*[space.domain for space in self.spaces])
@property
def density(self):
raise NotImplementedError("Density not available for ProductSpaces")
def sample(self):
return {k: v for space in self.spaces
for k, v in space.sample().items()}
def probability(self, condition, **kwargs):
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
expr = condition.lhs - condition.rhs
rvs = random_symbols(expr)
z = Dummy('z', real=True, Finite=True)
dens = self.compute_density(expr)
if any([pspace(rv).is_Continuous for rv in rvs]):
from sympy.stats.crv import (ContinuousDistributionHandmade,
SingleContinuousPSpace)
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.integrate(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
dens = ContinuousDistributionHandmade(dens)
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
else:
from sympy.stats.drv import (DiscreteDistributionHandmade,
SingleDiscretePSpace)
dens = DiscreteDistributionHandmade(dens)
space = SingleDiscretePSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
return result if not cond_inv else S.One - result
def compute_density(self, expr, **kwargs):
z = Dummy('z', real=True, finite=True)
rvs = random_symbols(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
expr = self.compute_expectation(DiracDelta(expr - z),
**kwargs)
else:
expr = self.compute_expectation(KroneckerDelta(expr, z),
**kwargs)
return Lambda(z, expr)
def compute_cdf(self, expr, **kwargs):
raise ValueError("CDF not well defined on multivariate expressions")
def conditional_space(self, condition, normalize=True, **kwargs):
rvs = random_symbols(condition)
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
if any([pspace(rv).is_Continuous for rv in rvs]):
from sympy.stats.crv import (ConditionalContinuousDomain,
ContinuousPSpace)
space = ContinuousPSpace
domain = ConditionalContinuousDomain(self.domain, condition)
elif any([pspace(rv).is_Discrete for rv in rvs]):
from sympy.stats.drv import (ConditionalDiscreteDomain,
DiscretePSpace)
space = DiscretePSpace
domain = ConditionalDiscreteDomain(self.domain, condition)
elif all([pspace(rv).is_Finite for rv in rvs]):
from sympy.stats.frv import FinitePSpace
return FinitePSpace.conditional_space(self, condition)
if normalize:
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
density = Lambda(domain.symbols, pdf)
return space(domain, density)
class ProductDomain(RandomDomain):
"""
A domain resulting from the merger of two independent domains
See Also
========
sympy.stats.crv.ProductContinuousDomain
sympy.stats.frv.ProductFiniteDomain
"""
is_ProductDomain = True
def __new__(cls, *domains):
# Flatten any product of products
domains2 = []
for domain in domains:
if not domain.is_ProductDomain:
domains2.append(domain)
else:
domains2.extend(domain.domains)
domains2 = FiniteSet(*domains2)
if all(domain.is_Finite for domain in domains2):
from sympy.stats.frv import ProductFiniteDomain
cls = ProductFiniteDomain
if all(domain.is_Continuous for domain in domains2):
from sympy.stats.crv import ProductContinuousDomain
cls = ProductContinuousDomain
if all(domain.is_Discrete for domain in domains2):
from sympy.stats.drv import ProductDiscreteDomain
cls = ProductDiscreteDomain
return Basic.__new__(cls, *domains2)
@property
def sym_domain_dict(self):
return dict((symbol, domain) for domain in self.domains
for symbol in domain.symbols)
@property
def symbols(self):
return FiniteSet(*[sym for domain in self.domains
for sym in domain.symbols])
@property
def domains(self):
return self.args
@property
def set(self):
return ProductSet(domain.set for domain in self.domains)
def __contains__(self, other):
# Split event into each subdomain
for domain in self.domains:
# Collect the parts of this event which associate to this domain
elem = frozenset([item for item in other
if sympify(domain.symbols.contains(item[0]))
is S.true])
# Test this sub-event
if elem not in domain:
return False
# All subevents passed
return True
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
def random_symbols(expr):
"""
Returns all RandomSymbols within a SymPy Expression.
"""
atoms = getattr(expr, 'atoms', None)
if atoms is not None:
return list(atoms(RandomSymbol))
else:
return []
def pspace(expr):
"""
Returns the underlying Probability Space of a random expression.
For internal use.
Examples
========
>>> from sympy.stats import pspace, Normal
>>> from sympy.stats.rv import IndependentProductPSpace
>>> X = Normal('X', 0, 1)
>>> pspace(2*X + 1) == X.pspace
True
"""
expr = sympify(expr)
if isinstance(expr, RandomSymbol) and expr.pspace is not None:
return expr.pspace
rvs = random_symbols(expr)
if not rvs:
raise ValueError("Expression containing Random Variable expected, not %s" % (expr))
# If only one space present
if all(rv.pspace == rvs[0].pspace for rv in rvs):
return rvs[0].pspace
# Otherwise make a product space
return IndependentProductPSpace(*[rv.pspace for rv in rvs])
def sumsets(sets):
"""
Union of sets
"""
return frozenset().union(*sets)
def rs_swap(a, b):
"""
Build a dictionary to swap RandomSymbols based on their underlying symbol.
i.e.
if ``X = ('x', pspace1)``
and ``Y = ('x', pspace2)``
then ``X`` and ``Y`` match and the key, value pair
``{X:Y}`` will appear in the result
Inputs: collections a and b of random variables which share common symbols
Output: dict mapping RVs in a to RVs in b
"""
d = {}
for rsa in a:
d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0]
return d
def given(expr, condition=None, **kwargs):
r""" Conditional Random Expression
From a random expression and a condition on that expression creates a new
probability space from the condition and returns the same expression on that
conditional probability space.
Examples
========
>>> from sympy.stats import given, density, Die
>>> X = Die('X', 6)
>>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}
Following convention, if the condition is a random symbol then that symbol
is considered fixed.
>>> from sympy.stats import Normal
>>> from sympy import pprint
>>> from sympy.abc import z
>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
2
-(-Y + z)
-----------
___ 2
\/ 2 *e
------------------
____
2*\/ pi
"""
if not random_symbols(condition) or pspace_independent(expr, condition):
return expr
if isinstance(condition, RandomSymbol):
condition = Eq(condition, condition.symbol)
condsymbols = random_symbols(condition)
if (isinstance(condition, Equality) and len(condsymbols) == 1 and
not isinstance(pspace(expr).domain, ConditionalDomain)):
rv = tuple(condsymbols)[0]
results = solveset(condition, rv)
if isinstance(results, Intersection) and S.Reals in results.args:
results = list(results.args[1])
sums = 0
for res in results:
temp = expr.subs(rv, res)
if temp == True:
return True
if temp != False:
sums += expr.subs(rv, res)
if sums == 0:
return False
return sums
# Get full probability space of both the expression and the condition
fullspace = pspace(Tuple(expr, condition))
# Build new space given the condition
space = fullspace.conditional_space(condition, **kwargs)
# Dictionary to swap out RandomSymbols in expr with new RandomSymbols
# That point to the new conditional space
swapdict = rs_swap(fullspace.values, space.values)
# Swap random variables in the expression
expr = expr.xreplace(swapdict)
return expr
def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs):
"""
Returns the expected value of a random expression
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the expectation value
given : Expr containing RandomSymbols
A conditional expression. E(X, X>0) is expectation of X given X > 0
numsamples : int
Enables sampling and approximates the expectation with this many samples
evalf : Bool (defaults to True)
If sampling return a number rather than a complex expression
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8
>>> E(X, X > 3) # Expectation of X given that it is above 3
5
"""
if not random_symbols(expr): # expr isn't random?
return expr
if numsamples: # Computing by monte carlo sampling?
return sampling_E(expr, condition, numsamples=numsamples)
# Create new expr and recompute E
if condition is not None: # If there is a condition
return expectation(given(expr, condition), evaluate=evaluate)
# A few known statements for efficiency
if expr.is_Add: # We know that E is Linear
return Add(*[expectation(arg, evaluate=evaluate)
for arg in expr.args])
# Otherwise case is simple, pass work off to the ProbabilitySpace
result = pspace(expr).compute_expectation(expr, evaluate=evaluate, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit(**kwargs)
else:
return result
def probability(condition, given_condition=None, numsamples=None,
evaluate=True, **kwargs):
"""
Probability that a condition is true, optionally given a second condition
Parameters
==========
condition : Combination of Relationals containing RandomSymbols
The condition of which you want to compute the probability
given_condition : Combination of Relationals containing RandomSymbols
A conditional expression. P(X > 1, X > 0) is expectation of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the probability with this many samples
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import P, Die
>>> from sympy import Eq
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
1/4
>>> P(X > Y)
5/12
"""
condition = sympify(condition)
given_condition = sympify(given_condition)
if given_condition is not None and \
not isinstance(given_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (given_condition))
if given_condition == False:
return S.Zero
if not isinstance(condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (condition))
if condition is S.true:
return S.One
if condition is S.false:
return S.Zero
if numsamples:
return sampling_P(condition, given_condition, numsamples=numsamples,
**kwargs)
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return probability(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(condition).probability(condition, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
class Density(Basic):
expr = property(lambda self: self.args[0])
@property
def condition(self):
if len(self.args) > 1:
return self.args[1]
else:
return None
def doit(self, evaluate=True, **kwargs):
from sympy.stats.joint_rv import JointPSpace
expr, condition = self.expr, self.condition
if condition is not None:
# Recompute on new conditional expr
expr = given(expr, condition, **kwargs)
if isinstance(expr, RandomSymbol) and \
isinstance(expr.pspace, JointPSpace):
return expr.pspace.distribution
if not random_symbols(expr):
return Lambda(x, DiracDelta(x - expr))
if (isinstance(expr, RandomSymbol) and
hasattr(expr.pspace, 'distribution') and
isinstance(pspace(expr), (SinglePSpace))):
return expr.pspace.distribution
result = pspace(expr).compute_density(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs):
"""
Probability density of a random expression, optionally given a second
condition.
This density will take on different forms for different types of
probability spaces. Discrete variables produce Dicts. Continuous
variables produce Lambdas.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the density value
condition : Relational containing RandomSymbols
A conditional expression. density(X > 1, X > 0) is density of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the density with this many samples
Examples
========
>>> from sympy.stats import density, Die, Normal
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}
>>> density(X)(x)
sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))
"""
if numsamples:
return sampling_density(expr, condition, numsamples=numsamples,
**kwargs)
return Density(expr, condition).doit(evaluate=evaluate, **kwargs)
def cdf(expr, condition=None, evaluate=True, **kwargs):
"""
Cumulative Distribution Function of a random expression.
optionally given a second condition
This density will take on different forms for different types of
probability spaces.
Discrete variables produce Dicts.
Continuous variables produce Lambdas.
Examples
========
>>> from sympy.stats import density, Die, Normal, cdf
>>> D = Die('D', 6)
>>> X = Normal('X', 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> cdf(D)
{1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1}
>>> cdf(3*D, D > 2)
{9: 1/4, 12: 1/2, 15: 3/4, 18: 1}
>>> cdf(X)
Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2)
"""
if condition is not None: # If there is a condition
# Recompute on new conditional expr
return cdf(given(expr, condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(expr).compute_cdf(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def characteristic_function(expr, condition=None, evaluate=True, **kwargs):
"""
Characteristic function of a random expression, optionally given a second condition
Returns a Lambda
Examples
========
>>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function
>>> X = Normal('X', 0, 1)
>>> characteristic_function(X)
Lambda(_t, exp(-_t**2/2))
>>> Y = DiscreteUniform('Y', [1, 2, 7])
>>> characteristic_function(Y)
Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3)
>>> Z = Poisson('Z', 2)
>>> characteristic_function(Z)
Lambda(_t, exp(2*exp(_t*I) - 2))
"""
if condition is not None:
return characteristic_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_characteristic_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def moment_generating_function(expr, condition=None, evaluate=True, **kwargs):
if condition is not None:
return moment_generating_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_moment_generating_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def where(condition, given_condition=None, **kwargs):
"""
Returns the domain where a condition is True.
Examples
========
>>> from sympy.stats import where, Die, Normal
>>> from sympy import symbols, And
>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>>> X = Normal('x', 0, 1)
>>> where(X**2<1)
Domain: (-1 < x) & (x < 1)
>>> where(X**2<1).set
Interval.open(-1, 1)
>>> where(And(D1<=D2 , D2<3))
Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2))
"""
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return where(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
return pspace(condition).where(condition, **kwargs)
def sample(expr, condition=None, **kwargs):
"""
A realization of the random expression
Examples
========
>>> from sympy.stats import Die, sample
>>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
>>> die_roll = sample(X + Y + Z) # A random realization of three dice
"""
return next(sample_iter(expr, condition, numsamples=1))
def sample_iter(expr, condition=None, numsamples=S.Infinity, **kwargs):
"""
Returns an iterator of realizations from the expression given a condition
Parameters
==========
expr: Expr
Random expression to be realized
condition: Expr, optional
A conditional expression
numsamples: integer, optional
Length of the iterator (defaults to infinity)
Examples
========
>>> from sympy.stats import Normal, sample_iter
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3)
>>> list(iterator) # doctest: +SKIP
[12, 4, 7]
See Also
========
sample
sampling_P
sampling_E
sample_iter_lambdify
sample_iter_subs
"""
# lambdify is much faster but not as robust
try:
return sample_iter_lambdify(expr, condition, numsamples, **kwargs)
# use subs when lambdify fails
except TypeError:
return sample_iter_subs(expr, condition, numsamples, **kwargs)
def quantile(expr, evaluate=True, **kwargs):
r"""
Return the :math:`p^{th}` order quantile of a probability distribution.
Quantile is defined as the value at which the probability of the random
variable is less than or equal to the given probability.
..math::
Q(p) = inf{x \in (-\infty, \infty) such that p <= F(x)}
Examples
========
>>> from sympy.stats import quantile, Die, Exponential
>>> from sympy import Symbol, pprint
>>> p = Symbol("p")
>>> l = Symbol("lambda", positive=True)
>>> X = Exponential("x", l)
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> D = Die("d", 6)
>>> pprint(quantile(D)(p), use_unicode=False)
/nan for Or(p > 1, p < 0)
|
| 1 for p <= 1/6
|
| 2 for p <= 1/3
|
< 3 for p <= 1/2
|
| 4 for p <= 2/3
|
| 5 for p <= 5/6
|
\ 6 for p <= 1
"""
result = pspace(expr).compute_quantile(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def sample_iter_lambdify(expr, condition=None, numsamples=S.Infinity, **kwargs):
"""
See sample_iter
Uses lambdify for computation. This is fast but does not always work.
"""
if condition:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
rvs = list(ps.values)
fn = lambdify(rvs, expr, **kwargs)
if condition:
given_fn = lambdify(rvs, condition, **kwargs)
# Check that lambdify can handle the expression
# Some operations like Sum can prove difficult
try:
d = ps.sample() # a dictionary that maps RVs to values
args = [d[rv] for rv in rvs]
fn(*args)
if condition:
given_fn(*args)
except Exception:
raise TypeError("Expr/condition too complex for lambdify")
def return_generator():
count = 0
while count < numsamples:
d = ps.sample() # a dictionary that maps RVs to values
args = [d[rv] for rv in rvs]
if condition: # Check that these values satisfy the condition
gd = given_fn(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield fn(*args)
count += 1
return return_generator()
def sample_iter_subs(expr, condition=None, numsamples=S.Infinity, **kwargs):
"""
See sample_iter
Uses subs for computation. This is slow but almost always works.
"""
if condition is not None:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
count = 0
while count < numsamples:
d = ps.sample() # a dictionary that maps RVs to values
if condition is not None: # Check that these values satisfy the condition
gd = condition.xreplace(d)
if gd != True and gd != False:
raise ValueError("Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield expr.xreplace(d)
count += 1
def sampling_P(condition, given_condition=None, numsamples=1,
evalf=True, **kwargs):
"""
Sampling version of P
See Also
========
P
sampling_E
sampling_density
"""
count_true = 0
count_false = 0
samples = sample_iter(condition, given_condition,
numsamples=numsamples, **kwargs)
for sample in samples:
if sample != True and sample != False:
raise ValueError("Conditions must not contain free symbols")
if sample:
count_true += 1
else:
count_false += 1
result = S(count_true) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_E(expr, given_condition=None, numsamples=1,
evalf=True, **kwargs):
"""
Sampling version of E
See Also
========
P
sampling_P
sampling_density
"""
samples = sample_iter(expr, given_condition,
numsamples=numsamples, **kwargs)
result = Add(*list(samples)) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_density(expr, given_condition=None, numsamples=1, **kwargs):
"""
Sampling version of density
See Also
========
density
sampling_P
sampling_E
"""
results = {}
for result in sample_iter(expr, given_condition,
numsamples=numsamples, **kwargs):
results[result] = results.get(result, 0) + 1
return results
def dependent(a, b):
"""
Dependence of two random expressions
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, dependent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> dependent(X, Y)
False
>>> dependent(2*X + Y, -Y)
True
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> dependent(X, Y)
True
See Also
========
independent
"""
if pspace_independent(a, b):
return False
z = Symbol('z', real=True)
# Dependent if density is unchanged when one is given information about
# the other
return (density(a, Eq(b, z)) != density(a) or
density(b, Eq(a, z)) != density(b))
def independent(a, b):
"""
Independence of two random expressions
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, independent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> independent(X, Y)
True
>>> independent(2*X + Y, -Y)
False
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> independent(X, Y)
False
See Also
========
dependent
"""
return not dependent(a, b)
def pspace_independent(a, b):
"""
Tests for independence between a and b by checking if their PSpaces have
overlapping symbols. This is a sufficient but not necessary condition for
independence and is intended to be used internally.
Notes
=====
pspace_independent(a, b) implies independent(a, b)
independent(a, b) does not imply pspace_independent(a, b)
"""
a_symbols = set(pspace(b).symbols)
b_symbols = set(pspace(a).symbols)
if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0:
return False
if len(a_symbols.intersection(b_symbols)) == 0:
return True
return None
def rv_subs(expr, symbols=None):
"""
Given a random expression replace all random variables with their symbols.
If symbols keyword is given restrict the swap to only the symbols listed.
"""
if symbols is None:
symbols = random_symbols(expr)
if not symbols:
return expr
swapdict = {rv: rv.symbol for rv in symbols}
return expr.xreplace(swapdict)
class NamedArgsMixin(object):
_argnames = ()
def __getattr__(self, attr):
try:
return self.args[self._argnames.index(attr)]
except ValueError:
raise AttributeError("'%s' object has no attribute '%s'" % (
type(self).__name__, attr))
def _value_check(condition, message):
"""
Check a condition on input value.
Raises ValueError with message if condition is not True
"""
if condition == False:
raise ValueError(message)
|
4030fdd95a2fa6ad2d3bb8da2b05f7d5b18ea17e1ed710ceb41c0155a35ff587 | from __future__ import print_function, division
from sympy import (Basic, sympify, symbols, Dummy, Lambda, summation,
Piecewise, S, cacheit, Sum, exp, I, Ne, Eq, poly,
series, factorial, And)
from sympy.polys.polyerrors import PolynomialError
from sympy.solvers.solveset import solveset
from sympy.stats.crv import reduce_rational_inequalities_wrap
from sympy.stats.rv import (NamedArgsMixin, SinglePSpace, SingleDomain,
random_symbols, PSpace, ConditionalDomain, RandomDomain,
ProductDomain)
from sympy.stats.symbolic_probability import Probability
from sympy.functions.elementary.integers import floor
from sympy.sets.fancysets import Range, FiniteSet
from sympy.sets.sets import Union
from sympy.sets.contains import Contains
from sympy.utilities import filldedent
import random
class DiscreteDistribution(Basic):
def __call__(self, *args):
return self.pdf(*args)
class SingleDiscreteDistribution(DiscreteDistribution, NamedArgsMixin):
""" Discrete distribution of a single variable
Serves as superclass for PoissonDistribution etc....
Provides methods for pdf, cdf, and sampling
See Also:
sympy.stats.crv_types.*
"""
set = S.Integers
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def sample(self):
""" A random realization from the distribution """
icdf = self._inverse_cdf_expression()
while True:
sample_ = floor(list(icdf(random.uniform(0, 1)))[0])
if sample_ >= self.set.inf:
return sample_
@cacheit
def _inverse_cdf_expression(self):
""" Inverse of the CDF
Used by sample
"""
x = symbols('x', positive=True,
integer=True, cls=Dummy)
z = symbols('z', positive=True, cls=Dummy)
cdf_temp = self.cdf(x)
# Invert CDF
try:
inverse_cdf = solveset(cdf_temp - z, x, domain=S.Reals)
except NotImplementedError:
inverse_cdf = None
if not inverse_cdf or len(inverse_cdf.free_symbols) != 1:
raise NotImplementedError("Could not invert CDF")
return Lambda(z, inverse_cdf)
@cacheit
def compute_cdf(self, **kwargs):
""" Compute the CDF from the PDF
Returns a Lambda
"""
x, z = symbols('x, z', integer=True, finite=True, cls=Dummy)
left_bound = self.set.inf
# CDF is integral of PDF from left bound to z
pdf = self.pdf(x)
cdf = summation(pdf, (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
def _cdf(self, x):
return None
def cdf(self, x, **kwargs):
""" Cumulative density function """
if not kwargs:
cdf = self._cdf(x)
if cdf is not None:
return cdf
return self.compute_cdf(**kwargs)(x)
@cacheit
def compute_characteristic_function(self, **kwargs):
""" Compute the characteristic function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, finite=True, cls=Dummy)
pdf = self.pdf(x)
cf = summation(exp(I*t*x)*pdf, (x, self.set.inf, self.set.sup))
return Lambda(t, cf)
def _characteristic_function(self, t):
return None
def characteristic_function(self, t, **kwargs):
""" Characteristic function """
if not kwargs:
cf = self._characteristic_function(t)
if cf is not None:
return cf
return self.compute_characteristic_function(**kwargs)(t)
@cacheit
def compute_moment_generating_function(self, **kwargs):
x, t = symbols('x, t', real=True, finite=True, cls=Dummy)
pdf = self.pdf(x)
mgf = summation(exp(t*x)*pdf, (x, self.set.inf, self.set.sup))
return Lambda(t, mgf)
def _moment_generating_function(self, t):
return None
def moment_generating_function(self, t, **kwargs):
if not kwargs:
mgf = self._moment_generating_function(t)
if mgf is not None:
return mgf
return self.compute_moment_generating_function(**kwargs)(t)
@cacheit
def compute_quantile(self, **kwargs):
""" Compute the Quantile from the PDF
Returns a Lambda
"""
x = symbols('x', integer=True, finite=True, cls=Dummy)
p = symbols('p', real=True, finite=True, cls=Dummy)
left_bound = self.set.inf
pdf = self.pdf(x)
cdf = summation(pdf, (x, left_bound, x), **kwargs)
set = ((x, p <= cdf), )
return Lambda(p, Piecewise(*set))
def _quantile(self, x):
return None
def quantile(self, x, **kwargs):
""" Cumulative density function """
if not kwargs:
quantile = self._quantile(x)
if quantile is not None:
return quantile
return self.compute_quantile(**kwargs)(x)
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
# TODO: support discrete sets with non integer stepsizes
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self.moment_generating_function(t)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return summation(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
else:
return Sum(expr * self.pdf(var),
(var, self.set.inf, self.set.sup), **kwargs)
def __call__(self, *args):
return self.pdf(*args)
class DiscreteDistributionHandmade(SingleDiscreteDistribution):
_argnames = ('pdf',)
@property
def set(self):
return self.args[1]
def __new__(cls, pdf, set=S.Integers):
return Basic.__new__(cls, pdf, set)
class DiscreteDomain(RandomDomain):
"""
A domain with discrete support with step size one.
Represented using symbols and Range.
"""
is_Discrete = True
class SingleDiscreteDomain(DiscreteDomain, SingleDomain):
def as_boolean(self):
return Contains(self.symbol, self.set)
class ConditionalDiscreteDomain(DiscreteDomain, ConditionalDomain):
"""
Domain with discrete support of step size one, that is restricted by
some condition.
"""
@property
def set(self):
rv = self.symbols
if len(self.symbols) > 1:
raise NotImplementedError(filldedent('''
Multivariate condtional domains are not yet implemented.'''))
rv = list(rv)[0]
return reduce_rational_inequalities_wrap(self.condition,
rv).intersect(self.fulldomain.set)
class DiscretePSpace(PSpace):
is_real = True
is_Discrete = True
@property
def pdf(self):
return self.density(*self.symbols)
def where(self, condition):
rvs = random_symbols(condition)
assert all(r.symbol in self.symbols for r in rvs)
if len(rvs) > 1:
raise NotImplementedError(filldedent('''Multivariate discrete
random variables are not yet supported.'''))
conditional_domain = reduce_rational_inequalities_wrap(condition,
rvs[0])
conditional_domain = conditional_domain.intersect(self.domain.set)
return SingleDiscreteDomain(rvs[0].symbol, conditional_domain)
def probability(self, condition):
complement = isinstance(condition, Ne)
if complement:
condition = Eq(condition.args[0], condition.args[1])
try:
_domain = self.where(condition).set
if condition == False or _domain is S.EmptySet:
return S.Zero
if condition == True or _domain == self.domain.set:
return S.One
prob = self.eval_prob(_domain)
except NotImplementedError:
from sympy.stats.rv import density
expr = condition.lhs - condition.rhs
dens = density(expr)
if not isinstance(dens, DiscreteDistribution):
dens = DiscreteDistributionHandmade(dens)
z = Dummy('z', real = True)
space = SingleDiscretePSpace(z, dens)
prob = space.probability(condition.__class__(space.value, 0))
if prob is None:
prob = Probability(condition)
return prob if not complement else S.One - prob
def eval_prob(self, _domain):
sym = list(self.symbols)[0]
if isinstance(_domain, Range):
n = symbols('n', integer=True, finite=True)
inf, sup, step = (r for r in _domain.args)
summand = ((self.pdf).replace(
sym, n*step))
rv = summation(summand,
(n, inf/step, (sup)/step - 1)).doit()
return rv
elif isinstance(_domain, FiniteSet):
pdf = Lambda(sym, self.pdf)
rv = sum(pdf(x) for x in _domain)
return rv
elif isinstance(_domain, Union):
rv = sum(self.eval_prob(x) for x in _domain.args)
return rv
def conditional_space(self, condition):
density = Lambda(self.symbols, self.pdf/self.probability(condition))
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
domain = ConditionalDiscreteDomain(self.domain, condition)
return DiscretePSpace(domain, density)
class ProductDiscreteDomain(ProductDomain, DiscreteDomain):
def as_boolean(self):
return And(*[domain.as_boolean for domain in self.domains])
class SingleDiscretePSpace(DiscretePSpace, SinglePSpace):
""" Discrete probability space over a single univariate variable """
is_real = True
@property
def set(self):
return self.distribution.set
@property
def domain(self):
return SingleDiscreteDomain(self.symbol, self.set)
def sample(self):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {self.value: self.distribution.sample()}
def compute_expectation(self, expr, rvs=None, evaluate=True, **kwargs):
rvs = rvs or (self.value,)
if self.value not in rvs:
return expr
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
x = self.value.symbol
try:
return self.distribution.expectation(expr, x, evaluate=evaluate,
**kwargs)
except NotImplementedError:
return Sum(expr * self.pdf, (x, self.set.inf, self.set.sup),
**kwargs)
def compute_cdf(self, expr, **kwargs):
if expr == self.value:
x = symbols("x", real=True, cls=Dummy)
return Lambda(x, self.distribution.cdf(x, **kwargs))
else:
raise NotImplementedError()
def compute_density(self, expr, **kwargs):
if expr == self.value:
return self.distribution
raise NotImplementedError()
def compute_characteristic_function(self, expr, **kwargs):
if expr == self.value:
t = symbols("t", real=True, cls=Dummy)
return Lambda(t, self.distribution.characteristic_function(t, **kwargs))
else:
raise NotImplementedError()
def compute_moment_generating_function(self, expr, **kwargs):
if expr == self.value:
t = symbols("t", real=True, cls=Dummy)
return Lambda(t, self.distribution.moment_generating_function(t, **kwargs))
else:
raise NotImplementedError()
def compute_quantile(self, expr, **kwargs):
if expr == self.value:
p = symbols("p", real=True, finite=True, cls=Dummy)
return Lambda(p, self.distribution.quantile(p, **kwargs))
else:
raise NotImplementedError()
|
1eca81783342df4a4612eba2ccc8553906effa94ebfc5c65e9290b8f115d7f15 | """
Continuous Random Variables Module
See Also
========
sympy.stats.crv_types
sympy.stats.rv
sympy.stats.frv
"""
from __future__ import print_function, division
from sympy import (Interval, Intersection, symbols, sympify, Dummy, nan,
Integral, And, Or, Piecewise, cacheit, integrate, oo, Lambda,
Basic, S, exp, I, FiniteSet, Ne, Eq, Union, poly, series, factorial)
from sympy.functions.special.delta_functions import DiracDelta
from sympy.polys.polyerrors import PolynomialError
from sympy.solvers.solveset import solveset
from sympy.solvers.inequalities import reduce_rational_inequalities
from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain,
ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin)
import random
class ContinuousDomain(RandomDomain):
"""
A domain with continuous support
Represented using symbols and Intervals.
"""
is_Continuous = True
def as_boolean(self):
raise NotImplementedError("Not Implemented for generic Domains")
class SingleContinuousDomain(ContinuousDomain, SingleDomain):
"""
A univariate domain with continuous support
Represented using a single symbol and interval.
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
if not variables:
return expr
if frozenset(variables) != frozenset(self.symbols):
raise ValueError("Values should be equal")
# assumes only intervals
return Integral(expr, (self.symbol, self.set), **kwargs)
def as_boolean(self):
return self.set.as_relational(self.symbol)
class ProductContinuousDomain(ProductDomain, ContinuousDomain):
"""
A collection of independent domains with continuous support
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
for domain in self.domains:
domain_vars = frozenset(variables) & frozenset(domain.symbols)
if domain_vars:
expr = domain.compute_expectation(expr, domain_vars, **kwargs)
return expr
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain):
"""
A domain with continuous support that has been further restricted by a
condition such as x > 3
"""
def compute_expectation(self, expr, variables=None, **kwargs):
if variables is None:
variables = self.symbols
if not variables:
return expr
# Extract the full integral
fullintgrl = self.fulldomain.compute_expectation(expr, variables)
# separate into integrand and limits
integrand, limits = fullintgrl.function, list(fullintgrl.limits)
conditions = [self.condition]
while conditions:
cond = conditions.pop()
if cond.is_Boolean:
if isinstance(cond, And):
conditions.extend(cond.args)
elif isinstance(cond, Or):
raise NotImplementedError("Or not implemented here")
elif cond.is_Relational:
if cond.is_Equality:
# Add the appropriate Delta to the integrand
integrand *= DiracDelta(cond.lhs - cond.rhs)
else:
symbols = cond.free_symbols & set(self.symbols)
if len(symbols) != 1: # Can't handle x > y
raise NotImplementedError(
"Multivariate Inequalities not yet implemented")
# Can handle x > 0
symbol = symbols.pop()
# Find the limit with x, such as (x, -oo, oo)
for i, limit in enumerate(limits):
if limit[0] == symbol:
# Make condition into an Interval like [0, oo]
cintvl = reduce_rational_inequalities_wrap(
cond, symbol)
# Make limit into an Interval like [-oo, oo]
lintvl = Interval(limit[1], limit[2])
# Intersect them to get [0, oo]
intvl = cintvl.intersect(lintvl)
# Put back into limits list
limits[i] = (symbol, intvl.left, intvl.right)
else:
raise TypeError(
"Condition %s is not a relational or Boolean" % cond)
return Integral(integrand, *limits, **kwargs)
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
@property
def set(self):
if len(self.symbols) == 1:
return (self.fulldomain.set & reduce_rational_inequalities_wrap(
self.condition, tuple(self.symbols)[0]))
else:
raise NotImplementedError(
"Set of Conditional Domain not Implemented")
class ContinuousDistribution(Basic):
def __call__(self, *args):
return self.pdf(*args)
class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin):
""" Continuous distribution of a single variable
Serves as superclass for Normal/Exponential/UniformDistribution etc....
Represented by parameters for each of the specific classes. E.g
NormalDistribution is represented by a mean and standard deviation.
Provides methods for pdf, cdf, and sampling
See Also
========
sympy.stats.crv_types.*
"""
set = Interval(-oo, oo)
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def sample(self):
""" A random realization from the distribution """
icdf = self._inverse_cdf_expression()
return icdf(random.uniform(0, 1))
@cacheit
def _inverse_cdf_expression(self):
""" Inverse of the CDF
Used by sample
"""
x, z = symbols('x, z', real=True, positive=True, cls=Dummy)
# Invert CDF
try:
inverse_cdf = solveset(self.cdf(x) - z, x, S.Reals)
if isinstance(inverse_cdf, Intersection) and S.Reals in inverse_cdf.args:
inverse_cdf = list(inverse_cdf.args[1])
except NotImplementedError:
inverse_cdf = None
if not inverse_cdf or len(inverse_cdf) != 1:
raise NotImplementedError("Could not invert CDF")
return Lambda(z, inverse_cdf[0])
@cacheit
def compute_cdf(self, **kwargs):
""" Compute the CDF from the PDF
Returns a Lambda
"""
x, z = symbols('x, z', real=True, finite=True, cls=Dummy)
left_bound = self.set.start
# CDF is integral of PDF from left bound to z
pdf = self.pdf(x)
cdf = integrate(pdf, (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
def _cdf(self, x):
return None
def cdf(self, x, **kwargs):
""" Cumulative density function """
if len(kwargs) == 0:
cdf = self._cdf(x)
if cdf is not None:
return cdf
return self.compute_cdf(**kwargs)(x)
@cacheit
def compute_characteristic_function(self, **kwargs):
""" Compute the characteristic function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, finite=True, cls=Dummy)
pdf = self.pdf(x)
cf = integrate(exp(I*t*x)*pdf, (x, -oo, oo))
return Lambda(t, cf)
def _characteristic_function(self, t):
return None
def characteristic_function(self, t, **kwargs):
""" Characteristic function """
if len(kwargs) == 0:
cf = self._characteristic_function(t)
if cf is not None:
return cf
return self.compute_characteristic_function(**kwargs)(t)
@cacheit
def compute_moment_generating_function(self, **kwargs):
""" Compute the moment generating function from the PDF
Returns a Lambda
"""
x, t = symbols('x, t', real=True, cls=Dummy)
pdf = self.pdf(x)
mgf = integrate(exp(t * x) * pdf, (x, -oo, oo))
return Lambda(t, mgf)
def _moment_generating_function(self, t):
return None
def moment_generating_function(self, t, **kwargs):
""" Moment generating function """
if len(kwargs) == 0:
try:
mgf = self._moment_generating_function(t)
if mgf is not None:
return mgf
except NotImplementedError:
return None
return self.compute_moment_generating_function(**kwargs)(t)
def expectation(self, expr, var, evaluate=True, **kwargs):
""" Expectation of expression over distribution """
if evaluate:
try:
p = poly(expr, var)
t = Dummy('t', real=True)
mgf = self._moment_generating_function(t)
if mgf is None:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
deg = p.degree()
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
result = 0
for k in range(deg+1):
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
return result
except PolynomialError:
return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
else:
return Integral(expr * self.pdf(var), (var, self.set), **kwargs)
@cacheit
def compute_quantile(self, **kwargs):
""" Compute the Quantile from the PDF
Returns a Lambda
"""
x, p = symbols('x, p', real=True, finite=True, cls=Dummy)
left_bound = self.set.start
pdf = self.pdf(x)
cdf = integrate(pdf, (x, left_bound, x), **kwargs)
quantile = solveset(cdf - p, x, S.Reals)
return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True)))
def _quantile(self, x):
return None
def quantile(self, x, **kwargs):
""" Cumulative density function """
if len(kwargs) == 0:
quantile = self._quantile(x)
if quantile is not None:
return quantile
return self.compute_quantile(**kwargs)(x)
class ContinuousDistributionHandmade(SingleContinuousDistribution):
_argnames = ('pdf',)
@property
def set(self):
return self.args[1]
def __new__(cls, pdf, set=Interval(-oo, oo)):
return Basic.__new__(cls, pdf, set)
class ContinuousPSpace(PSpace):
""" Continuous Probability Space
Represents the likelihood of an event space defined over a continuum.
Represented with a ContinuousDomain and a PDF (Lambda-Like)
"""
is_Continuous = True
is_real = True
@property
def pdf(self):
return self.density(*self.domain.symbols)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
if rvs is None:
rvs = self.values
else:
rvs = frozenset(rvs)
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
domain_symbols = frozenset(rv.symbol for rv in rvs)
return self.domain.compute_expectation(self.pdf * expr,
domain_symbols, **kwargs)
def compute_density(self, expr, **kwargs):
# Common case Density(X) where X in self.values
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
z = Dummy('z', real=True, finite=True)
return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs))
@cacheit
def compute_cdf(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise ValueError(
"CDF not well defined on multivariate expressions")
d = self.compute_density(expr, **kwargs)
x, z = symbols('x, z', real=True, finite=True, cls=Dummy)
left_bound = self.domain.set.start
# CDF is integral of PDF from left bound to z
cdf = integrate(d(x), (x, left_bound, z), **kwargs)
# CDF Ensure that CDF left of left_bound is zero
cdf = Piecewise((cdf, z >= left_bound), (0, True))
return Lambda(z, cdf)
@cacheit
def compute_characteristic_function(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise NotImplementedError("Characteristic function of multivariate expressions not implemented")
d = self.compute_density(expr, **kwargs)
x, t = symbols('x, t', real=True, cls=Dummy)
cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs)
return Lambda(t, cf)
@cacheit
def compute_moment_generating_function(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise NotImplementedError("Moment generating function of multivariate expressions not implemented")
d = self.compute_density(expr, **kwargs)
x, t = symbols('x, t', real=True, cls=Dummy)
mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs)
return Lambda(t, mgf)
@cacheit
def compute_quantile(self, expr, **kwargs):
if not self.domain.set.is_Interval:
raise ValueError(
"Quantile not well defined on multivariate expressions")
d = self.compute_cdf(expr, **kwargs)
x = symbols('x', real=True, finite=True, cls=Dummy)
p = symbols('x', real=True, positive=True, finite=True, cls=Dummy)
quantile = solveset(d(x) - p, x, self.set)
return Lambda(p, quantile)
def probability(self, condition, **kwargs):
z = Dummy('z', real=True, finite=True)
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
# Univariate case can be handled by where
try:
domain = self.where(condition)
rv = [rv for rv in self.values if rv.symbol == domain.symbol][0]
# Integrate out all other random variables
pdf = self.compute_density(rv, **kwargs)
# return S.Zero if `domain` is empty set
if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet):
return S.Zero if not cond_inv else S.One
if isinstance(domain.set, Union):
return sum(
Integral(pdf(z), (z, subset), **kwargs) for subset in
domain.set.args if isinstance(subset, Interval))
# Integrate out the last variable over the special domain
return Integral(pdf(z), (z, domain.set), **kwargs)
# Other cases can be turned into univariate case
# by computing a density handled by density computation
except NotImplementedError:
from sympy.stats.rv import density
expr = condition.lhs - condition.rhs
dens = density(expr, **kwargs)
if not isinstance(dens, ContinuousDistribution):
dens = ContinuousDistributionHandmade(dens)
# Turn problem into univariate case
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
return result if not cond_inv else S.One - result
def where(self, condition):
rvs = frozenset(random_symbols(condition))
if not (len(rvs) == 1 and rvs.issubset(self.values)):
raise NotImplementedError(
"Multiple continuous random variables not supported")
rv = tuple(rvs)[0]
interval = reduce_rational_inequalities_wrap(condition, rv)
interval = interval.intersect(self.domain.set)
return SingleContinuousDomain(rv.symbol, interval)
def conditional_space(self, condition, normalize=True, **kwargs):
condition = condition.xreplace(dict((rv, rv.symbol) for rv in self.values))
domain = ConditionalContinuousDomain(self.domain, condition)
if normalize:
# create a clone of the variable to
# make sure that variables in nested integrals are different
# from the variables outside the integral
# this makes sure that they are evaluated separately
# and in the correct order
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
density = Lambda(domain.symbols, pdf)
return ContinuousPSpace(domain, density)
class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace):
"""
A continuous probability space over a single univariate variable
These consist of a Symbol and a SingleContinuousDistribution
This class is normally accessed through the various random variable
functions, Normal, Exponential, Uniform, etc....
"""
@property
def set(self):
return self.distribution.set
@property
def domain(self):
return SingleContinuousDomain(sympify(self.symbol), self.set)
def sample(self):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {self.value: self.distribution.sample()}
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or (self.value,)
if self.value not in rvs:
return expr
expr = expr.xreplace(dict((rv, rv.symbol) for rv in rvs))
x = self.value.symbol
try:
return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs)
except Exception:
return Integral(expr * self.pdf, (x, self.set), **kwargs)
def compute_cdf(self, expr, **kwargs):
if expr == self.value:
z = symbols("z", real=True, finite=True, cls=Dummy)
return Lambda(z, self.distribution.cdf(z, **kwargs))
else:
return ContinuousPSpace.compute_cdf(self, expr, **kwargs)
def compute_characteristic_function(self, expr, **kwargs):
if expr == self.value:
t = symbols("t", real=True, cls=Dummy)
return Lambda(t, self.distribution.characteristic_function(t, **kwargs))
else:
return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs)
def compute_moment_generating_function(self, expr, **kwargs):
if expr == self.value:
t = symbols("t", real=True, cls=Dummy)
return Lambda(t, self.distribution.moment_generating_function(t, **kwargs))
else:
return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs)
def compute_density(self, expr, **kwargs):
# https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables
if expr == self.value:
return self.density
y = Dummy('y')
gs = solveset(expr - y, self.value, S.Reals)
if isinstance(gs, Intersection) and S.Reals in gs.args:
gs = list(gs.args[1])
if not gs:
raise ValueError("Can not solve %s for %s"%(expr, self.value))
fx = self.compute_density(self.value)
fy = sum(fx(g) * abs(g.diff(y)) for g in gs)
return Lambda(y, fy)
def compute_quantile(self, expr, **kwargs):
if expr == self.value:
p = symbols("p", real=True, cls=Dummy)
return Lambda(p, self.distribution.quantile(p, **kwargs))
else:
return ContinuousPSpace.compute_quantile(self, expr, **kwargs)
def _reduce_inequalities(conditions, var, **kwargs):
try:
return reduce_rational_inequalities(conditions, var, **kwargs)
except PolynomialError:
raise ValueError("Reduction of condition failed %s\n" % conditions[0])
def reduce_rational_inequalities_wrap(condition, var):
if condition.is_Relational:
return _reduce_inequalities([[condition]], var, relational=False)
if isinstance(condition, Or):
return Union(*[_reduce_inequalities([[arg]], var, relational=False)
for arg in condition.args])
if isinstance(condition, And):
intervals = [_reduce_inequalities([[arg]], var, relational=False)
for arg in condition.args]
I = intervals[0]
for i in intervals:
I = I.intersect(i)
return I
|
a9f47b50aed4c8437634ba3be74b2fb00bedb58daae0f2c0e81cef890e6f7cde | """
Finite Discrete Random Variables Module
See Also
========
sympy.stats.frv_types
sympy.stats.rv
sympy.stats.crv
"""
from __future__ import print_function, division
from itertools import product
from sympy import (Basic, Symbol, symbols, cacheit, sympify, Mul,
And, Or, Tuple, Piecewise, Eq, Lambda, exp, I, Dummy, nan)
from sympy.sets.sets import FiniteSet
from sympy.stats.rv import (RandomDomain, ProductDomain, ConditionalDomain,
PSpace, IndependentProductPSpace, SinglePSpace, random_symbols,
sumsets, rv_subs, NamedArgsMixin)
from sympy.core.containers import Dict
import random
class FiniteDensity(dict):
"""
A domain with Finite Density.
"""
def __call__(self, item):
"""
Make instance of a class callable.
If item belongs to current instance of a class, return it.
Otherwise, return 0.
"""
item = sympify(item)
if item in self:
return self[item]
else:
return 0
@property
def dict(self):
"""
Return item as dictionary.
"""
return dict(self)
class FiniteDomain(RandomDomain):
"""
A domain with discrete finite support
Represented using a FiniteSet.
"""
is_Finite = True
@property
def symbols(self):
return FiniteSet(sym for sym, val in self.elements)
@property
def elements(self):
return self.args[0]
@property
def dict(self):
return FiniteSet(*[Dict(dict(el)) for el in self.elements])
def __contains__(self, other):
return other in self.elements
def __iter__(self):
return self.elements.__iter__()
def as_boolean(self):
return Or(*[And(*[Eq(sym, val) for sym, val in item]) for item in self])
class SingleFiniteDomain(FiniteDomain):
"""
A FiniteDomain over a single symbol/set
Example: The possibilities of a *single* die roll.
"""
def __new__(cls, symbol, set):
if not isinstance(set, FiniteSet):
set = FiniteSet(*set)
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
return tuple(self.symbols)[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
@property
def set(self):
return self.args[1]
@property
def elements(self):
return FiniteSet(*[frozenset(((self.symbol, elem), )) for elem in self.set])
def __iter__(self):
return (frozenset(((self.symbol, elem),)) for elem in self.set)
def __contains__(self, other):
sym, val = tuple(other)[0]
return sym == self.symbol and val in self.set
class ProductFiniteDomain(ProductDomain, FiniteDomain):
"""
A Finite domain consisting of several other FiniteDomains
Example: The possibilities of the rolls of three independent dice
"""
def __iter__(self):
proditer = product(*self.domains)
return (sumsets(items) for items in proditer)
@property
def elements(self):
return FiniteSet(*self)
class ConditionalFiniteDomain(ConditionalDomain, ProductFiniteDomain):
"""
A FiniteDomain that has been restricted by a condition
Example: The possibilities of a die roll under the condition that the
roll is even.
"""
def __new__(cls, domain, condition):
"""
Create a new instance of ConditionalFiniteDomain class
"""
if condition is True:
return domain
cond = rv_subs(condition)
# Check that we aren't passed a condition like die1 == z
# where 'z' is a symbol that we don't know about
# We will never be able to test this equality through iteration
if not cond.free_symbols.issubset(domain.free_symbols):
raise ValueError('Condition "%s" contains foreign symbols \n%s.\n' % (
condition, tuple(cond.free_symbols - domain.free_symbols)) +
"Will be unable to iterate using this condition")
return Basic.__new__(cls, domain, cond)
def _test(self, elem):
"""
Test the value. If value is boolean, return it. If value is equality
relational (two objects are equal), return it with left-hand side
being equal to right-hand side. Otherwise, raise ValueError exception.
"""
val = self.condition.xreplace(dict(elem))
if val in [True, False]:
return val
elif val.is_Equality:
return val.lhs == val.rhs
raise ValueError("Undeciable if %s" % str(val))
def __contains__(self, other):
return other in self.fulldomain and self._test(other)
def __iter__(self):
return (elem for elem in self.fulldomain if self._test(elem))
@property
def set(self):
if isinstance(self.fulldomain, SingleFiniteDomain):
return FiniteSet(*[elem for elem in self.fulldomain.set
if frozenset(((self.fulldomain.symbol, elem),)) in self])
else:
raise NotImplementedError(
"Not implemented on multi-dimensional conditional domain")
def as_boolean(self):
return FiniteDomain.as_boolean(self)
class SingleFiniteDistribution(Basic, NamedArgsMixin):
def __new__(cls, *args):
args = list(map(sympify, args))
return Basic.__new__(cls, *args)
@property
@cacheit
def dict(self):
return dict((k, self.pdf(k)) for k in self.set)
@property
def pdf(self):
x = Symbol('x')
return Lambda(x, Piecewise(*(
[(v, Eq(k, x)) for k, v in self.dict.items()] + [(0, True)])))
@property
def characteristic_function(self):
t = Dummy('t', real=True)
return Lambda(t, sum(exp(I*k*t)*v for k, v in self.dict.items()))
@property
def moment_generating_function(self):
t = Dummy('t', real=True)
return Lambda(t, sum(exp(k * t) * v for k, v in self.dict.items()))
@property
def set(self):
return list(self.dict.keys())
values = property(lambda self: self.dict.values)
items = property(lambda self: self.dict.items)
__iter__ = property(lambda self: self.dict.__iter__)
__getitem__ = property(lambda self: self.dict.__getitem__)
__call__ = pdf
def __contains__(self, other):
return other in self.set
#=============================================
#========= Probability Space ===============
#=============================================
class FinitePSpace(PSpace):
"""
A Finite Probability Space
Represents the probabilities of a finite number of events.
"""
is_Finite = True
def __new__(cls, domain, density):
density = dict((sympify(key), sympify(val))
for key, val in density.items())
public_density = Dict(density)
obj = PSpace.__new__(cls, domain, public_density)
obj._density = density
return obj
def prob_of(self, elem):
elem = sympify(elem)
return self._density.get(elem, 0)
def where(self, condition):
assert all(r.symbol in self.symbols for r in random_symbols(condition))
return ConditionalFiniteDomain(self.domain, condition)
def compute_density(self, expr):
expr = expr.xreplace(dict(((rs, rs.symbol) for rs in self.values)))
d = FiniteDensity()
for elem in self.domain:
val = expr.xreplace(dict(elem))
prob = self.prob_of(elem)
d[val] = d.get(val, 0) + prob
return d
@cacheit
def compute_cdf(self, expr):
d = self.compute_density(expr)
cum_prob = 0
cdf = []
for key in sorted(d):
prob = d[key]
cum_prob += prob
cdf.append((key, cum_prob))
return dict(cdf)
@cacheit
def sorted_cdf(self, expr, python_float=False):
cdf = self.compute_cdf(expr)
items = list(cdf.items())
sorted_items = sorted(items, key=lambda val_cumprob: val_cumprob[1])
if python_float:
sorted_items = [(v, float(cum_prob))
for v, cum_prob in sorted_items]
return sorted_items
@cacheit
def compute_characteristic_function(self, expr):
d = self.compute_density(expr)
t = Dummy('t', real=True)
return Lambda(t, sum(exp(I*k*t)*v for k,v in d.items()))
@cacheit
def compute_moment_generating_function(self, expr):
d = self.compute_density(expr)
t = Dummy('t', real=True)
return Lambda(t, sum(exp(k * t) * v for k, v in d.items()))
def compute_expectation(self, expr, rvs=None, **kwargs):
rvs = rvs or self.values
expr = expr.xreplace(dict((rs, rs.symbol) for rs in rvs))
return sum([expr.xreplace(dict(elem)) * self.prob_of(elem)
for elem in self.domain])
def compute_quantile(self, expr):
cdf = self.compute_cdf(expr)
p = symbols('p', real=True, finite=True, cls=Dummy)
set = ((nan, (p < 0) | (p > 1)),)
for key, value in cdf.items():
set = set + ((key, p <= value), )
return Lambda(p, Piecewise(*set))
def probability(self, condition):
cond_symbols = frozenset(rs.symbol for rs in random_symbols(condition))
assert cond_symbols.issubset(self.symbols)
return sum(self.prob_of(elem) for elem in self.where(condition))
def conditional_space(self, condition):
domain = self.where(condition)
prob = self.probability(condition)
density = dict((key, val / prob)
for key, val in self._density.items() if domain._test(key))
return FinitePSpace(domain, density)
def sample(self):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
expr = Tuple(*self.values)
cdf = self.sorted_cdf(expr, python_float=True)
x = random.uniform(0, 1)
# Find first occurrence with cumulative probability less than x
# This should be replaced with binary search
for value, cum_prob in cdf:
if x < cum_prob:
# return dictionary mapping RandomSymbols to values
return dict(list(zip(expr, value)))
assert False, "We should never have gotten to this point"
class SingleFinitePSpace(SinglePSpace, FinitePSpace):
"""
A single finite probability space
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
This class is implemented by many of the standard FiniteRV types such as
Die, Bernoulli, Coin, etc....
"""
@property
def domain(self):
return SingleFiniteDomain(self.symbol, self.distribution.set)
@property
@cacheit
def _density(self):
return dict((FiniteSet((self.symbol, val)), prob)
for val, prob in self.distribution.dict.items())
class ProductFinitePSpace(IndependentProductPSpace, FinitePSpace):
"""
A collection of several independent finite probability spaces
"""
@property
def domain(self):
return ProductFiniteDomain(*[space.domain for space in self.spaces])
@property
@cacheit
def _density(self):
proditer = product(*[iter(space._density.items())
for space in self.spaces])
d = {}
for items in proditer:
elems, probs = list(zip(*items))
elem = sumsets(elems)
prob = Mul(*probs)
d[elem] = d.get(elem, 0) + prob
return Dict(d)
@property
@cacheit
def density(self):
return Dict(self._density)
def probability(self, condition):
return FinitePSpace.probability(self, condition)
def compute_density(self, expr):
return FinitePSpace.compute_density(self, expr)
|
89f2da4511d8a47d89be4b8ed92ec20fbed7a89ea64321e1cb99020c393a5ea5 | """
Python code printers
This module contains python code printers for plain python as well as NumPy & SciPy enabled code.
"""
from collections import defaultdict
from itertools import chain
from sympy.core import S
from .precedence import precedence
from .codeprinter import CodePrinter
_kw_py2and3 = {
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist
}
_kw_only_py2 = {'exec', 'print'}
_kw_only_py3 = {'False', 'nonlocal', 'True'}
_known_functions = {
'Abs': 'abs',
}
_known_functions_math = {
'acos': 'acos',
'acosh': 'acosh',
'asin': 'asin',
'asinh': 'asinh',
'atan': 'atan',
'atan2': 'atan2',
'atanh': 'atanh',
'ceiling': 'ceil',
'cos': 'cos',
'cosh': 'cosh',
'erf': 'erf',
'erfc': 'erfc',
'exp': 'exp',
'expm1': 'expm1',
'factorial': 'factorial',
'floor': 'floor',
'gamma': 'gamma',
'hypot': 'hypot',
'loggamma': 'lgamma',
'log': 'log',
'ln': 'log',
'log10': 'log10',
'log1p': 'log1p',
'log2': 'log2',
'sin': 'sin',
'sinh': 'sinh',
'Sqrt': 'sqrt',
'tan': 'tan',
'tanh': 'tanh'
} # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
# radians trunc fmod fsum gcd degrees fabs]
_known_constants_math = {
'Exp1': 'e',
'Pi': 'pi',
'E': 'e'
# Only in python >= 3.5:
# 'Infinity': 'inf',
# 'NaN': 'nan'
}
def _print_known_func(self, expr):
known = self.known_functions[expr.__class__.__name__]
return '{name}({args})'.format(name=self._module_format(known),
args=', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_known_const(self, expr):
known = self.known_constants[expr.__class__.__name__]
return self._module_format(known)
class AbstractPythonCodePrinter(CodePrinter):
printmethod = "_pythoncode"
language = "Python"
standard = "python3"
reserved_words = _kw_py2and3.union(_kw_only_py3)
modules = None # initialized to a set in __init__
tab = ' '
_kf = dict(chain(
_known_functions.items(),
[(k, 'math.' + v) for k, v in _known_functions_math.items()]
))
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
_operators = {'and': 'and', 'or': 'or', 'not': 'not'}
_default_settings = dict(
CodePrinter._default_settings,
user_functions={},
precision=17,
inline=True,
fully_qualified_modules=True,
contract=False
)
def __init__(self, settings=None):
super(AbstractPythonCodePrinter, self).__init__(settings)
self.module_imports = defaultdict(set)
self.known_functions = dict(self._kf, **(settings or {}).get(
'user_functions', {}))
self.known_constants = dict(self._kc, **(settings or {}).get(
'user_constants', {}))
def _declare_number_const(self, name, value):
return "%s = %s" % (name, value)
def _module_format(self, fqn, register=True):
parts = fqn.split('.')
if register and len(parts) > 1:
self.module_imports['.'.join(parts[:-1])].add(parts[-1])
if self._settings['fully_qualified_modules']:
return fqn
else:
return fqn.split('(')[0].split('[')[0].split('.')[-1]
def _format_code(self, lines):
return lines
def _get_statement(self, codestring):
return "{}".format(codestring)
def _get_comment(self, text):
return " # {0}".format(text)
def _expand_fold_binary_op(self, op, args):
"""
This method expands a fold on binary operations.
``functools.reduce`` is an example of a folded operation.
For example, the expression
`A + B + C + D`
is folded into
`((A + B) + C) + D`
"""
if len(args) == 1:
return self._print(args[0])
else:
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_fold_binary_op(op, args[:-1]),
self._print(args[-1]),
)
def _expand_reduce_binary_op(self, op, args):
"""
This method expands a reductin on binary operations.
Notice: this is NOT the same as ``functools.reduce``.
For example, the expression
`A + B + C + D`
is reduced into:
`(A + B) + (C + D)`
"""
if len(args) == 1:
return self._print(args[0])
else:
N = len(args)
Nhalf = N // 2
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_reduce_binary_op(args[:Nhalf]),
self._expand_reduce_binary_op(args[Nhalf:]),
)
def _get_einsum_string(self, subranks, contraction_indices):
letters = self._get_letter_generator_for_einsum()
contraction_string = ""
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
mapping = {}
letters_free = []
letters_dum = []
for i in indices:
for j in i:
if j not in mapping:
l = next(letters)
mapping[j] = l
else:
l = mapping[j]
contraction_string += l
if j in d:
if l not in letters_dum:
letters_dum.append(l)
else:
letters_free.append(l)
contraction_string += ","
contraction_string = contraction_string[:-1]
return contraction_string, letters_free, letters_dum
def _print_NaN(self, expr):
return "float('nan')"
def _print_Infinity(self, expr):
return "float('inf')"
def _print_NegativeInfinity(self, expr):
return "float('-inf')"
def _print_ComplexInfinity(self, expr):
return self._print_NaN(expr)
def _print_Mod(self, expr):
PREC = precedence(expr)
return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args)))
def _print_Piecewise(self, expr):
result = []
i = 0
for arg in expr.args:
e = arg.expr
c = arg.cond
if i == 0:
result.append('(')
result.append('(')
result.append(self._print(e))
result.append(')')
result.append(' if ')
result.append(self._print(c))
result.append(' else ')
i += 1
result = result[:-1]
if result[-1] == 'True':
result = result[:-2]
result.append(')')
else:
result.append(' else None)')
return ''.join(result)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
return super(AbstractPythonCodePrinter, self)._print_Relational(expr)
def _print_ITE(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(expr.rewrite(Piecewise))
def _print_Sum(self, expr):
loops = (
'for {i} in range({a}, {b}+1)'.format(
i=self._print(i),
a=self._print(a),
b=self._print(b))
for i, a, b in expr.limits)
return '(builtins.sum({function} {loops}))'.format(
function=self._print(expr.function),
loops=' '.join(loops))
def _print_ImaginaryUnit(self, expr):
return '1j'
def _print_MatrixBase(self, expr):
name = expr.__class__.__name__
func = self.known_functions.get(name, name)
return "%s(%s)" % (func, self._print(expr.tolist()))
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
lambda self, expr: self._print_MatrixBase(expr)
def _indent_codestring(self, codestring):
return '\n'.join([self.tab + line for line in codestring.split('\n')])
def _print_FunctionDefinition(self, fd):
body = '\n'.join(map(lambda arg: self._print(arg), fd.body))
return "def {name}({parameters}):\n{body}".format(
name=self._print(fd.name),
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
body=self._indent_codestring(body)
)
def _print_While(self, whl):
body = '\n'.join(map(lambda arg: self._print(arg), whl.body))
return "while {cond}:\n{body}".format(
cond=self._print(whl.condition),
body=self._indent_codestring(body)
)
def _print_Declaration(self, decl):
return '%s = %s' % (
self._print(decl.variable.symbol),
self._print(decl.variable.value)
)
def _print_Return(self, ret):
arg, = ret.args
return 'return %s' % self._print(arg)
def _print_Print(self, prnt):
print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args))
if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
print_args = '{0} % ({1})'.format(
self._print(prnt.format_string), print_args)
if prnt.file != None: # Must be '!= None', cannot be 'is not None'
print_args += ', file=%s' % self._print(prnt.file)
return 'print(%s)' % print_args
def _print_Stream(self, strm):
if str(strm.name) == 'stdout':
return self._module_format('sys.stdout')
elif str(strm.name) == 'stderr':
return self._module_format('sys.stderr')
else:
return self._print(strm.name)
def _print_NoneToken(self, arg):
return 'None'
class PythonCodePrinter(AbstractPythonCodePrinter):
def _print_sign(self, e):
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
f=self._module_format('math.copysign'), e=self._print(e.args[0]))
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
def _print_Indexed(self, expr):
base = expr.args[0]
index = expr.args[1:]
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))
for k in PythonCodePrinter._kf:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_math:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
def pycode(expr, **settings):
""" Converts an expr to a string of Python code
Parameters
==========
expr : Expr
A SymPy expression.
fully_qualified_modules : bool
Whether or not to write out full module names of functions
(``math.sin`` vs. ``sin``). default: ``True``.
Examples
========
>>> from sympy import tan, Symbol
>>> from sympy.printing.pycode import pycode
>>> pycode(tan(Symbol('x')) + 1)
'math.tan(x) + 1'
"""
return PythonCodePrinter(settings).doprint(expr)
_not_in_mpmath = 'log1p log2'.split()
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
_known_functions_mpmath = dict(_in_mpmath, **{
'sign': 'sign',
})
_known_constants_mpmath = {
'Pi': 'pi'
}
class MpmathPrinter(PythonCodePrinter):
"""
Lambda printer for mpmath which maintains precision for floats
"""
printmethod = "_mpmathcode"
_kf = dict(chain(
_known_functions.items(),
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
))
def _print_Float(self, e):
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that
# the caller of the lambdified function will have set it to sufficient
# precision to match the Floats in the expression.
# Remove 'mpz' if gmpy is installed.
args = str(tuple(map(int, e._mpf_)))
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
def _print_Rational(self, e):
return '{0}({1})/{0}({2})'.format(
self._module_format('mpmath.mpf'),
e.p,
e.q,
)
def _print_uppergamma(self, e):
return "{0}({1}, {2}, {3})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]),
self._module_format('mpmath.inf'))
def _print_lowergamma(self, e):
return "{0}({1}, 0, {2})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]))
def _print_log2(self, e):
return '{0}({1})/{0}(2)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_log1p(self, e):
return '{0}({1}+1)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
for k in MpmathPrinter._kf:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_mpmath:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
_known_functions_numpy = dict(_in_numpy, **{
'acos': 'arccos',
'acosh': 'arccosh',
'asin': 'arcsin',
'asinh': 'arcsinh',
'atan': 'arctan',
'atan2': 'arctan2',
'atanh': 'arctanh',
'exp2': 'exp2',
'sign': 'sign',
})
class NumPyPrinter(PythonCodePrinter):
"""
Numpy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
printmethod = "_numpycode"
_kf = dict(chain(
PythonCodePrinter._kf.items(),
[(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()]
))
_kc = {k: 'numpy.'+v for k, v in _known_constants_math.items()}
def _print_seq(self, seq):
"General sequence printer: converts to tuple"
# Print tuples here instead of lists because numba supports
# tuples in nopython mode.
delimiter=', '
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
def _print_MatMul(self, expr):
"Matrix multiplication printer"
if expr.as_coeff_matrices()[0] is not S(1):
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
return '({0})'.format(').dot('.join(self._print(i) for i in expr_list))
return '({0})'.format(').dot('.join(self._print(i) for i in expr.args))
def _print_MatPow(self, expr):
"Matrix power printer"
return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'),
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Inverse(self, expr):
"Matrix inverse printer"
return '{0}({1})'.format(self._module_format('numpy.linalg.inv'),
self._print(expr.args[0]))
def _print_DotProduct(self, expr):
# DotProduct allows any shape order, but numpy.dot does matrix
# multiplication, so we have to make sure it gets 1 x n by n x 1.
arg1, arg2 = expr.args
if arg1.shape[0] != 1:
arg1 = arg1.T
if arg2.shape[1] != 1:
arg2 = arg2.T
return "%s(%s, %s)" % (self._module_format('numpy.dot'),
self._print(arg1),
self._print(arg2))
def _print_Piecewise(self, expr):
"Piecewise function printer"
exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args))
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
return '{0}({1}, {2}, default=numpy.nan)'.format(self._module_format('numpy.select'), conds, exprs)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]),
lhs=lhs, rhs=rhs)
return super(NumPyPrinter, self)._print_Relational(expr)
def _print_And(self, expr):
"Logical And printer"
# We have to override LambdaPrinter because it uses Python 'and' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args))
def _print_Or(self, expr):
"Logical Or printer"
# We have to override LambdaPrinter because it uses Python 'or' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args))
def _print_Not(self, expr):
"Logical Not printer"
# We have to override LambdaPrinter because it uses Python 'not' keyword.
# If LambdaPrinter didn't define it, we would still have to define our
# own because StrPrinter doesn't define it.
return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args))
def _print_Min(self, expr):
return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args))
def _print_Max(self, expr):
return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args))
def _print_Pow(self, expr):
if expr.exp == 0.5:
return '{0}({1})'.format(self._module_format('numpy.sqrt'), self._print(expr.base))
else:
return super(NumPyPrinter, self)._print_Pow(expr)
def _print_arg(self, expr):
return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0]))
def _print_im(self, expr):
return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0]))
def _print_Mod(self, expr):
return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join(
map(lambda arg: self._print(arg), expr.args)))
def _print_re(self, expr):
return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0]))
def _print_sinc(self, expr):
return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi))
def _print_MatrixBase(self, expr):
func = self.known_functions.get(expr.__class__.__name__, None)
if func is None:
func = self._module_format('numpy.array')
return "%s(%s)" % (func, self._print(expr.tolist()))
def _print_CodegenArrayTensorProduct(self, expr):
array_list = [j for i, arg in enumerate(expr.args) for j in
(self._print(arg), "[%i, %i]" % (2*i, 2*i+1))]
return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list))
def _print_CodegenArrayContraction(self, expr):
from sympy.codegen.array_utils import CodegenArrayTensorProduct
base = expr.expr
contraction_indices = expr.contraction_indices
if not contraction_indices:
return self._print(base)
if isinstance(base, CodegenArrayTensorProduct):
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in base.subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)]
return "%s(%s)" % (
self._module_format('numpy.einsum'),
", ".join(elems)
)
raise NotImplementedError()
def _print_CodegenArrayDiagonal(self, expr):
diagonal_indices = list(expr.diagonal_indices)
if len(diagonal_indices) > 1:
# TODO: this should be handled in sympy.codegen.array_utils,
# possibly by creating the possibility of unfolding the
# CodegenArrayDiagonal object into nested ones. Same reasoning for
# the array contraction.
raise NotImplementedError
if len(diagonal_indices[0]) != 2:
raise NotImplementedError
return "%s(%s, 0, axis1=%s, axis2=%s)" % (
self._module_format("numpy.diagonal"),
self._print(expr.expr),
diagonal_indices[0][0],
diagonal_indices[0][1],
)
def _print_CodegenArrayPermuteDims(self, expr):
return "%s(%s, %s)" % (
self._module_format("numpy.transpose"),
self._print(expr.expr),
self._print(expr.permutation.args[0]),
)
def _print_CodegenArrayElementwiseAdd(self, expr):
return self._expand_fold_binary_op('numpy.add', expr.args)
for k in NumPyPrinter._kf:
setattr(NumPyPrinter, '_print_%s' % k, _print_known_func)
for k in NumPyPrinter._kc:
setattr(NumPyPrinter, '_print_%s' % k, _print_known_const)
_known_functions_scipy_special = {
'erf': 'erf',
'erfc': 'erfc',
'besselj': 'jv',
'bessely': 'yv',
'besseli': 'iv',
'besselk': 'kv',
'factorial': 'factorial',
'gamma': 'gamma',
'loggamma': 'gammaln',
'digamma': 'psi',
'RisingFactorial': 'poch',
'jacobi': 'eval_jacobi',
'gegenbauer': 'eval_gegenbauer',
'chebyshevt': 'eval_chebyt',
'chebyshevu': 'eval_chebyu',
'legendre': 'eval_legendre',
'hermite': 'eval_hermite',
'laguerre': 'eval_laguerre',
'assoc_laguerre': 'eval_genlaguerre',
}
_known_constants_scipy_constants = {
'GoldenRatio': 'golden_ratio',
'Pi': 'pi',
'E': 'e'
}
class SciPyPrinter(NumPyPrinter):
_kf = dict(chain(
NumPyPrinter._kf.items(),
[(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()]
))
_kc = {k: 'scipy.constants.' + v for k, v in _known_constants_scipy_constants.items()}
def _print_SparseMatrix(self, expr):
i, j, data = [], [], []
for (r, c), v in expr._smat.items():
i.append(r)
j.append(c)
data.append(v)
return "{name}({data}, ({i}, {j}), shape={shape})".format(
name=self._module_format('scipy.sparse.coo_matrix'),
data=data, i=i, j=j, shape=expr.shape
)
_print_ImmutableSparseMatrix = _print_SparseMatrix
# SciPy's lpmv has a different order of arguments from assoc_legendre
def _print_assoc_legendre(self, expr):
return "{0}({2}, {1}, {3})".format(
self._module_format('scipy.special.lpmv'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]))
for k in SciPyPrinter._kf:
setattr(SciPyPrinter, '_print_%s' % k, _print_known_func)
for k in SciPyPrinter._kc:
setattr(SciPyPrinter, '_print_%s' % k, _print_known_const)
class SymPyPrinter(PythonCodePrinter):
_kf = {k: 'sympy.' + v for k, v in chain(
_known_functions.items(),
_known_functions_math.items()
)}
def _print_Function(self, expr):
mod = expr.func.__module__ or ''
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
', '.join(map(lambda arg: self._print(arg), expr.args)))
|
40191685a65443d30413aaed8a41fc29477ab347136ac92f82f182e00b619a2d | """Printing subsystem"""
__all__ = []
from .pretty import pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode
__all__ += ['pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode']
from .latex import latex, print_latex, multiline_latex
__all__ += ['latex', 'print_latex', 'multiline_latex']
from .mathml import mathml, print_mathml
__all__ += ['mathml', 'print_mathml']
from .python import python, print_python
__all__ += ['python', 'print_python']
from .pycode import pycode
__all__ += ['pycode']
from .ccode import ccode, print_ccode
__all__ += ['ccode', 'print_ccode']
from .glsl import glsl_code, print_glsl
__all__ += ['glsl_code', 'print_glsl']
from .cxxcode import cxxcode
__all__ += ['cxxcode']
from .fcode import fcode, print_fcode
__all__ += ['fcode', 'print_fcode']
from .rcode import rcode, print_rcode
__all__ += ['rcode', 'print_rcode']
from .jscode import jscode, print_jscode
__all__ += ['jscode', 'print_jscode']
from .julia import julia_code
__all__ += ['julia_code']
from .mathematica import mathematica_code
__all__ += ['mathematica_code']
from .octave import octave_code
__all__ += ['octave_code']
from .rust import rust_code
__all__ += ['rust_code']
from .gtk import print_gtk
__all__ += ['print_gtk']
from .preview import preview
__all__ += ['preview']
from .repr import srepr
__all__ += ['srepr']
from .tree import print_tree
__all__ += ['print_tree']
from .str import StrPrinter, sstr, sstrrepr
__all__ += ['StrPrinter', 'sstr', 'sstrrepr']
from .tableform import TableForm
__all__ += ['TableForm']
from .dot import dotprint
__all__ += ['dotprint']
|
ecab562900de07dafc803a2cb55240583a4e570e702ebf82c585f471c01c59ea | """
A Printer which converts an expression into its LaTeX equivalent.
"""
from __future__ import print_function, division
import itertools
from sympy.core import S, Add, Symbol, Mod
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
from sympy.core.compatibility import default_sort_key, range
from sympy.utilities.iterables import has_variety
import re
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which sympy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': 'A',
'Beta': 'B',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': 'E',
'Zeta': 'Z',
'Eta': 'H',
'Theta': r'\Theta',
'Iota': 'I',
'Kappa': 'K',
'Lambda': r'\Lambda',
'Mu': 'M',
'Nu': 'N',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': 'O',
'Pi': r'\Pi',
'Rho': 'P',
'Sigma': r'\Sigma',
'Tau': 'T',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': 'X',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'X',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp', ])
# Variable name modifiers
modifier_dict = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[{ ]*[-+0-9]'), # match
)
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings = {
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
try:
self._settings['imaginary_unit_latex'] = \
imaginary_unit_table[self._settings['imaginary_unit']]
except KeyError:
self._settings['imaginary_unit_latex'] = \
self._settings['imaginary_unit']
def parenthesize(self, item, level, strict=False):
prec_val = precedence_traditional(item)
if (prec_val < level) or ((not strict) and prec_val <= level):
return r"\left({}\right)".format(self._print(item))
else:
return self._print(item)
def doprint(self, expr):
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy import Integral, Product, Sum
if expr.is_Mul:
if not first and _coeff_isneg(expr):
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if (not last and
any([expr.has(x) for x in (Integral, Product, Sum)])):
return True
return False
def _needs_add_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr):
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr):
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
ls = [self._print(o) for o in expr.args]
return self._deal_with_super_sub(expr.__class__.__name__) + \
r"\left(%s\right)" % ", ".join(ls)
def _print_bool(self, e):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif _coeff_isneg(term):
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
_print_Permutation = _print_Cycle
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr):
from sympy.core.power import Pow
from sympy.physics.units import Quantity
include_parens = False
if _coeff_isneg(expr):
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
from sympy.simplify import fraction
numer, denom = fraction(expr, exact=True)
separator = self._settings['mul_symbol_latex']
numbersep = self._settings['mul_symbol_latex_numbers']
def convert(expr):
if not expr.is_Mul:
return str(self._print(expr))
else:
_tex = last_term_tex = ""
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and
isinstance(x.base, Quantity)))
for i, term in enumerate(args):
term_tex = self._print(term)
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(term_tex):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_Pow(self, expr):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \
and self._settings['root_notation']:
base = self._print(expr.base)
expq = expr.exp.q
if expq == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (expq, base)
else:
tex = r"\sqrt[%d]{%s}" % (expq, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] \
and expr.exp.is_Rational \
and expr.exp.q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
p, q = expr.exp.p, expr.exp.q
# issue #12886: add parentheses for superscripts raised to powers
if '^' in base and expr.base.is_Symbol:
base = r"\left(%s\right)" % base
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_Rational and expr.exp.is_negative and \
expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# things like 1/x
return self._print_Mul(expr)
else:
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
else:
tex = r"%s^{%s}"
return self._helper_print_standard_power(expr, tex)
def _helper_print_standard_power(self, expr, template):
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if '^' in base and expr.base.is_Symbol:
base = r"\left(%s\right)" % base
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return template % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
o1 = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = '(' + LatexPrinter().doprint(v) + ')'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Derivative(self, expr):
if requires_partial(expr):
diff_symbol = r'\partial'
else:
diff_symbol = r'd'
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol, self._print(x), num)
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, dim, tex)
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, d%s" % self._print(symbol[0])
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, d%s" % self._print(symbol))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func):
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\'):
name = func
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr, exp=None):
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = "arc" + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
name = r'%s^{%s}' % (self._hprint_Function(func), exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
def _print_ElementwiseApplyFunction(self, expr):
return r"%s\left({%s}\ldots\right)" % (
self._print(expr.function),
self._print(expr.expr),
)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _hprint_variadic_function(self, expr, exp=None):
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Determinant = _print_Abs
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy import Equivalent, Implies
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg (%s)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym):
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, self._print(exp))
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec):
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, self._print(exp))
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, self._print(exp))
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (self._print(exp), tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (self._print(exp), tex)
return r"\zeta%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (self._print(exp), tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr, style='plain'):
if expr in self._settings['symbol_names']:
return self._settings['symbol_names'][expr]
result = self._deal_with_super_sub(expr.name) if \
'\\' not in expr.name else expr.name
if style == 'bold':
result = r"\mathbf{{{}}}".format(result)
return result
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr,
style=self._settings['mat_symbol_style'])
def _deal_with_super_sub(self, string):
if '{' in string:
return string
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_MatrixBase(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str % r"\\".join(lines)
_print_ImmutableMatrix = _print_ImmutableDenseMatrix \
= _print_Matrix \
= _print_MatrixBase
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return ':'.join(map(self._print, x))
return (self._print(expr.parent) + r'\left[' +
latexslice(expr.rowslice) + ', ' +
latexslice(expr.colslice) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True)
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
return r"%s^{\dagger}" % self._print(mat)
def _print_MatMul(self, expr):
from sympy import MatMul, Mul
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s\bmod{%s}\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True), self._print(expr.args[1]),
self._print(exp))
return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'], strict=True),
self._print(expr.args[1]))
def _print_HadamardProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \circ '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_HadamardPower(self, expr):
template = r"%s^{\circ {%s}}"
return self._helper_print_standard_power(expr, template)
def _print_KroneckerProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \otimes '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol):
return "\\left(%s\\right)^{%s}" % (self._print(base),
self._print(exp))
else:
return "%s^{%s}" % (self._print(base), self._print(exp))
def _print_ZeroMatrix(self, Z):
return r"\mathbb{0}"
def _print_OneMatrix(self, O):
return r"\mathbb{1}"
def _print_Identity(self, I):
return r"\mathbb{I}"
def _print_NDimArray(self, expr):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_UniversalSet(self, expr):
return r"\mathbb{U}"
def _print_tuple(self, expr):
return r"\left( %s\right)" % \
r", \ ".join([self._print(i) for i in expr])
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
return tex
def _print_Heaviside(self, expr, exp=None):
tex = r"\theta\left(%s\right)" % self._print(expr.args[0])
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_ProductSet(self, p):
if len(p.sets) > 1 and not has_variety(p.sets):
return self._print(p.sets[0]) + "^{%d}" % len(p.sets)
else:
return r" \times ".join(self._print(set) for set in p.sets)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
items = ", ".join(map(self._print, items))
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
dots = r'\ldots'
if s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return (r"\left\{" +
r", ".join(self._print(el) for el in printset) +
r"\right\}")
def _print_bernoulli(self, expr, exp=None):
tex = r"B_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
_print_bell = _print_bernoulli
def _print_fibonacci(self, expr, exp=None):
tex = r"F_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_tribonacci(self, expr, exp=None):
tex = r"T_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_SeqFormula(self, s):
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(r'\ldots')
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
return r" \cup ".join([self._print(i) for i in u.args])
def _print_Complement(self, u):
return r" \setminus ".join([self._print(i) for i in u.args])
def _print_Intersection(self, u):
return r" \cap ".join([self._print(i) for i in u.args])
def _print_SymmetricDifference(self, u):
return r" \triangle ".join([self._print(i) for i in u.args])
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
sets = s.args[1:]
varsets = [r"%s \in %s" % (self._print(var), self._print(setv))
for var, setv in zip(s.lamda.variables, sets)]
return r"\left\{%s\; |\; %s\right\}" % (
self._print(s.lamda.expr),
', '.join(varsets))
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s \mid %s \right\}" % \
(vars_print, self._print(s.condition.as_expr()))
return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; |\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
return self._print_Add(s.truncate()) + self._print(r' + \ldots')
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys._names[field._index]
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (self._print(exp), tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (self._print(exp), tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def translate(s):
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
def latex(expr, fold_frac_powers=False, fold_func_brackets=False,
fold_short_frac=None, inv_trig_style="abbreviated",
itex=False, ln_notation=False, long_frac_ratio=None,
mat_delim="[", mat_str=None, mode="plain", mul_symbol=None,
order=None, symbol_names=None, root_notation=True,
mat_symbol_style="plain", imaginary_unit="i", gothic_re_im=False):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or
the empty string. Defaults to ``[``.
mat_str : string, optional
Which matrix environment string to emit. ``smallmatrix``, ``matrix``,
``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix``
for matrices of no more than 10 columns, and ``array`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode``
is set to ``plain``, then the resulting code will not be delimited at
all (this is the default). If ``mode`` is set to ``inline`` then inline
LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or
``equation*``, the resulting code will be enclosed in the ``equation``
or ``equation*`` environment (remember to import ``amsmath`` for
``equation*``), unless the ``itex`` option is set. In the latter case,
the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``, ``ldot``,
``dot``, or ``times``.
order: string, optional
Any of the supported monomial orderings (currently ``lex``, ``grlex``,
or ``grevlex``), ``old``, and ``none``. This parameter does nothing for
Mul objects. Setting order to ``old`` uses the compatibility ordering
for Add defined in Printer. For very large expressions, set the
``order`` keyword to ``none`` if speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``plain`` (default) or ``bold``. If set to ``bold``,
a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are "i" (default)
and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so
"ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types list, tuple, and
dictionary.
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
"""
if symbol_names is None:
symbol_names = {}
settings = {
'fold_frac_powers': fold_frac_powers,
'fold_func_brackets': fold_func_brackets,
'fold_short_frac': fold_short_frac,
'inv_trig_style': inv_trig_style,
'itex': itex,
'ln_notation': ln_notation,
'long_frac_ratio': long_frac_ratio,
'mat_delim': mat_delim,
'mat_str': mat_str,
'mode': mode,
'mul_symbol': mul_symbol,
'order': order,
'symbol_names': symbol_names,
'root_notation': root_notation,
'mat_symbol_style': mat_symbol_style,
'imaginary_unit': imaginary_unit,
'gothic_re_im': gothic_re_im,
}
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings):
r"""
This function generates a LaTeX equation with a multiline right-hand side
in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment.
Parameters
==========
lhs : Expr
Left-hand side of equation
rhs : Expr
Right-hand side of equation
terms_per_line : integer, optional
Number of terms per line to print. Default is 1.
environment : "string", optional
Which LaTeX wnvironment to use for the output. Options are "align*"
(default), "eqnarray", and "IEEEeqnarray".
use_dots : boolean, optional
If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``.
Examples
========
>>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I
>>> x, y, alpha = symbols('x y alpha')
>>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y))
>>> print(multiline_latex(x, expr))
\begin{align*}
x = & e^{i \alpha} \\
& + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using at most two terms per line:
>>> print(multiline_latex(x, expr, 2))
\begin{align*}
x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using ``eqnarray`` and dots:
>>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True))
\begin{eqnarray}
x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{eqnarray}
Using ``IEEEeqnarray``:
>>> print(multiline_latex(x, expr, environment="IEEEeqnarray"))
\begin{IEEEeqnarray}{rCl}
x & = & e^{i \alpha} \nonumber\\
& & + \sin{\left(\alpha y \right)} \nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{IEEEeqnarray}
Notes
=====
All optional parameters from ``latex`` can also be used.
"""
# Based on code from https://github.com/sympy/sympy/issues/3001
l = LatexPrinter(**settings)
if environment == "eqnarray":
result = r'\begin{eqnarray}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{eqnarray}'
doubleet = True
elif environment == "IEEEeqnarray":
result = r'\begin{IEEEeqnarray}{rCl}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{IEEEeqnarray}'
doubleet = True
elif environment == "align*":
result = r'\begin{align*}' + '\n'
first_term = '= &'
nonumber = ''
end_term = '\n\\end{align*}'
doubleet = False
else:
raise ValueError("Unknown environment: {}".format(environment))
dots = ''
if use_dots:
dots=r'\dots'
terms = rhs.as_ordered_terms()
n_terms = len(terms)
term_count = 1
for i in range(n_terms):
term = terms[i]
term_start = ''
term_end = ''
sign = '+'
if term_count > terms_per_line:
if doubleet:
term_start = '& & '
else:
term_start = '& '
term_count = 1
if term_count == terms_per_line:
# End of line
if i < n_terms-1:
# There are terms remaining
term_end = dots + nonumber + r'\\' + '\n'
else:
term_end = ''
if term.as_ordered_factors()[0] == -1:
term = -1*term
sign = r'-'
if i == 0: # beginning
if sign == '+':
sign = ''
result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs),
first_term, sign, l.doprint(term), term_end)
else:
result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign,
l.doprint(term), term_end)
term_count += 1
result += end_term
return result
|
369e0668d1698de1a56efb1ff3e8114e1183b873321b16c00372113a983bb10c | from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.symbol import Symbol
from sympy.core.numbers import Integer, Rational, Float
from sympy.core.compatibility import default_sort_key
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.printing.repr import srepr
__all__ = ['dotprint']
default_styles = ((Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'}))
slotClasses = (Symbol, Integer, Rational, Float)
def purestr(x, with_args=False):
""" A string that follows obj = type(obj)(*obj.args) exactly """
sargs = ()
if not isinstance(x, Basic):
rv = str(x)
elif not x.args:
rv = srepr(x)
else:
args = x.args
if isinstance(x, Add) or \
isinstance(x, Mul) and x.is_commutative:
args = sorted(args, key=default_sort_key)
sargs = tuple(map(purestr, args))
rv = "%s(%s)"%(type(x).__name__, ', '.join(sargs))
if with_args:
rv = rv, sargs
return rv
def styleof(expr, styles=default_styles):
""" Merge style dictionaries in order
Examples
========
>>> from sympy import Symbol, Basic, Expr
>>> from sympy.printing.dot import styleof
>>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
... (Expr, {'color': 'black'})]
>>> styleof(Basic(1), styles)
{'color': 'blue', 'shape': 'ellipse'}
>>> x = Symbol('x')
>>> styleof(x + 1, styles) # this is an Expr
{'color': 'black', 'shape': 'ellipse'}
"""
style = dict()
for typ, sty in styles:
if isinstance(expr, typ):
style.update(sty)
return style
def attrprint(d, delimiter=', '):
""" Print a dictionary of attributes
Examples
========
>>> from sympy.printing.dot import attrprint
>>> print(attrprint({'color': 'blue', 'shape': 'ellipse'}))
"color"="blue", "shape"="ellipse"
"""
return delimiter.join('"%s"="%s"'%item for item in sorted(d.items()))
def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True):
""" String defining a node
Examples
========
>>> from sympy.printing.dot import dotnode
>>> from sympy.abc import x
>>> print(dotnode(x))
"Symbol('x')_()" ["color"="black", "label"="x", "shape"="ellipse"];
"""
style = styleof(expr, styles)
if isinstance(expr, Basic) and not expr.is_Atom:
label = str(expr.__class__.__name__)
else:
label = labelfunc(expr)
style['label'] = label
expr_str = purestr(expr)
if repeat:
expr_str += '_%s' % str(pos)
return '"%s" [%s];' % (expr_str, attrprint(style))
def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True):
""" List of strings for all expr->expr.arg pairs
See the docstring of dotprint for explanations of the options.
Examples
========
>>> from sympy.printing.dot import dotedges
>>> from sympy.abc import x
>>> for e in dotedges(x+2):
... print(e)
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
"""
from sympy.utilities.misc import func_name
if atom(expr):
return []
else:
expr_str, arg_strs = purestr(expr, with_args=True)
if repeat:
expr_str += '_%s' % str(pos)
arg_strs = ['%s_%s' % (a, str(pos + (i,)))
for i, a in enumerate(arg_strs)]
return ['"%s" -> "%s";' % (expr_str, a) for a in arg_strs]
template = \
"""digraph{
# Graph style
%(graphstyle)s
#########
# Nodes #
#########
%(nodes)s
#########
# Edges #
#########
%(edges)s
}"""
_graphstyle = {'rankdir': 'TD', 'ordering': 'out'}
def dotprint(expr, styles=default_styles, atom=lambda x: not isinstance(x,
Basic), maxdepth=None, repeat=True, labelfunc=str, **kwargs):
"""
DOT description of a SymPy expression tree
Options are
``styles``: Styles for different classes. The default is::
[(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})]``
``atom``: Function used to determine if an arg is an atom. The default is
``lambda x: not isinstance(x, Basic)``. Another good choice is
``lambda x: not x.args``.
``maxdepth``: The maximum depth. The default is None, meaning no limit.
``repeat``: Whether to different nodes for separate common subexpressions.
The default is True. For example, for ``x + x*y`` with
``repeat=True``, it will have two nodes for ``x`` and with
``repeat=False``, it will have one (warning: even if it appears
twice in the same object, like Pow(x, x), it will still only appear
once. Hence, with repeat=False, the number of arrows out of an
object might not equal the number of args it has).
``labelfunc``: How to label leaf nodes. The default is ``str``. Another
good option is ``srepr``. For example with ``str``, the leaf nodes
of ``x + 1`` are labeled, ``x`` and ``1``. With ``srepr``, they
are labeled ``Symbol('x')`` and ``Integer(1)``.
Additional keyword arguments are included as styles for the graph.
Examples
========
>>> from sympy.printing.dot import dotprint
>>> from sympy.abc import x
>>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE
digraph{
<BLANKLINE>
# Graph style
"ordering"="out"
"rankdir"="TD"
<BLANKLINE>
#########
# Nodes #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
"Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
"Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
<BLANKLINE>
#########
# Edges #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
}
"""
# repeat works by adding a signature tuple to the end of each node for its
# position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the
# Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0].
graphstyle = _graphstyle.copy()
graphstyle.update(kwargs)
nodes = []
edges = []
def traverse(e, depth, pos=()):
nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat))
if maxdepth and depth >= maxdepth:
return
edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat))
[traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)]
traverse(expr, 0)
return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'),
'nodes': '\n'.join(nodes),
'edges': '\n'.join(edges)}
|
37961f08a64a6b969448bc9b0e59422e02ced824bd385bbd7ca66b150d130b34 | """Integration method that emulates by-hand techniques.
This module also provides functionality to get the steps used to evaluate a
particular integral, in the ``integral_steps`` function. This will return
nested namedtuples representing the integration rules used. The
``manualintegrate`` function computes the integral using those steps given
an integrand; given the steps, ``_manualintegrate`` will evaluate them.
The integrator can be extended with new heuristics and evaluation
techniques. To do so, write a function that accepts an ``IntegralInfo``
object and returns either a namedtuple representing a rule or
``None``. Then, write another function that accepts the namedtuple's fields
and returns the antiderivative, and decorate it with
``@evaluates(namedtuple_type)``. If the new technique requires a new
match, add the key and call to the antiderivative function to integral_steps.
To enable simple substitutions, add the match to find_substitutions.
"""
from __future__ import print_function, division
from collections import namedtuple, defaultdict
import sympy
from sympy.core.compatibility import reduce, Mapping
from sympy.core.containers import Dict
from sympy.core.logic import fuzzy_not
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.functions.special.polynomials import OrthogonalPolynomial
from sympy.functions.elementary.piecewise import Piecewise
from sympy.strategies.core import switch, do_one, null_safe, condition
from sympy.core.relational import Eq, Ne
from sympy.polys.polytools import degree
from sympy.ntheory.factor_ import divisors
ZERO = sympy.S.Zero
def Rule(name, props=""):
# GOTCHA: namedtuple class name not considered!
def __eq__(self, other):
return self.__class__ == other.__class__ and tuple.__eq__(self, other)
__neq__ = lambda self, other: not __eq__(self, other)
cls = namedtuple(name, props + " context symbol")
cls.__eq__ = __eq__
cls.__ne__ = __neq__
return cls
ConstantRule = Rule("ConstantRule", "constant")
ConstantTimesRule = Rule("ConstantTimesRule", "constant other substep")
PowerRule = Rule("PowerRule", "base exp")
AddRule = Rule("AddRule", "substeps")
URule = Rule("URule", "u_var u_func constant substep")
PartsRule = Rule("PartsRule", "u dv v_step second_step")
CyclicPartsRule = Rule("CyclicPartsRule", "parts_rules coefficient")
TrigRule = Rule("TrigRule", "func arg")
ExpRule = Rule("ExpRule", "base exp")
ReciprocalRule = Rule("ReciprocalRule", "func")
ArcsinRule = Rule("ArcsinRule")
InverseHyperbolicRule = Rule("InverseHyperbolicRule", "func")
AlternativeRule = Rule("AlternativeRule", "alternatives")
DontKnowRule = Rule("DontKnowRule")
DerivativeRule = Rule("DerivativeRule")
RewriteRule = Rule("RewriteRule", "rewritten substep")
PiecewiseRule = Rule("PiecewiseRule", "subfunctions")
HeavisideRule = Rule("HeavisideRule", "harg ibnd substep")
TrigSubstitutionRule = Rule("TrigSubstitutionRule",
"theta func rewritten substep restriction")
ArctanRule = Rule("ArctanRule", "a b c")
ArccothRule = Rule("ArccothRule", "a b c")
ArctanhRule = Rule("ArctanhRule", "a b c")
JacobiRule = Rule("JacobiRule", "n a b")
GegenbauerRule = Rule("GegenbauerRule", "n a")
ChebyshevTRule = Rule("ChebyshevTRule", "n")
ChebyshevURule = Rule("ChebyshevURule", "n")
LegendreRule = Rule("LegendreRule", "n")
HermiteRule = Rule("HermiteRule", "n")
LaguerreRule = Rule("LaguerreRule", "n")
AssocLaguerreRule = Rule("AssocLaguerreRule", "n a")
CiRule = Rule("CiRule", "a b")
ChiRule = Rule("ChiRule", "a b")
EiRule = Rule("EiRule", "a b")
SiRule = Rule("SiRule", "a b")
ShiRule = Rule("ShiRule", "a b")
ErfRule = Rule("ErfRule", "a b c")
FresnelCRule = Rule("FresnelCRule", "a b c")
FresnelSRule = Rule("FresnelSRule", "a b c")
LiRule = Rule("LiRule", "a b")
PolylogRule = Rule("PolylogRule", "a b")
UpperGammaRule = Rule("UpperGammaRule", "a e")
EllipticFRule = Rule("EllipticFRule", "a d")
EllipticERule = Rule("EllipticERule", "a d")
IntegralInfo = namedtuple('IntegralInfo', 'integrand symbol')
evaluators = {}
def evaluates(rule):
def _evaluates(func):
func.rule = rule
evaluators[rule] = func
return func
return _evaluates
def contains_dont_know(rule):
if isinstance(rule, DontKnowRule):
return True
else:
for val in rule:
if isinstance(val, tuple):
if contains_dont_know(val):
return True
elif isinstance(val, list):
if any(contains_dont_know(i) for i in val):
return True
return False
def manual_diff(f, symbol):
"""Derivative of f in form expected by find_substitutions
SymPy's derivatives for some trig functions (like cot) aren't in a form
that works well with finding substitutions; this replaces the
derivatives for those particular forms with something that works better.
"""
if f.args:
arg = f.args[0]
if isinstance(f, sympy.tan):
return arg.diff(symbol) * sympy.sec(arg)**2
elif isinstance(f, sympy.cot):
return -arg.diff(symbol) * sympy.csc(arg)**2
elif isinstance(f, sympy.sec):
return arg.diff(symbol) * sympy.sec(arg) * sympy.tan(arg)
elif isinstance(f, sympy.csc):
return -arg.diff(symbol) * sympy.csc(arg) * sympy.cot(arg)
elif isinstance(f, sympy.Add):
return sum([manual_diff(arg, symbol) for arg in f.args])
elif isinstance(f, sympy.Mul):
if len(f.args) == 2 and isinstance(f.args[0], sympy.Number):
return f.args[0] * manual_diff(f.args[1], symbol)
return f.diff(symbol)
def manual_subs(expr, *args):
"""
A wrapper for `expr.subs(*args)` with additional logic for substitution
of invertible functions.
"""
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, (Dict, Mapping)):
sequence = sequence.items()
elif not iterable(sequence):
raise ValueError("Expected an iterable of (old, new) pairs")
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
new_subs = []
for old, new in sequence:
if isinstance(old, sympy.log):
# If log(x) = y, then exp(a*log(x)) = exp(a*y)
# that is, x**a = exp(a*y). Replace nontrivial powers of x
# before subs turns them into `exp(y)**a`, but
# do not replace x itself yet, to avoid `log(exp(y))`.
x0 = old.args[0]
expr = expr.replace(lambda x: x.is_Pow and x.base == x0,
lambda x: sympy.exp(x.exp*new))
new_subs.append((x0, sympy.exp(new)))
return expr.subs(list(sequence) + new_subs)
# Method based on that on SIN, described in "Symbolic Integration: The
# Stormy Decade"
def find_substitutions(integrand, symbol, u_var):
results = []
def test_subterm(u, u_diff):
substituted = integrand / u_diff
if symbol not in substituted.free_symbols:
# replaced everything already
return False
substituted = manual_subs(substituted, u, u_var).cancel()
if symbol not in substituted.free_symbols:
# avoid increasing the degree of a rational function
if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var):
deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()])
deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()])
if deg_after > deg_before:
return False
return substituted.as_independent(u_var, as_Add=False)
# special treatment for substitutions u = (a*x+b)**(1/n)
if (isinstance(u, sympy.Pow) and (1/u.exp).is_Integer and
sympy.Abs(u.exp) < 1):
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
match = u.base.match(a*symbol + b)
if match:
a, b = [match.get(i, ZERO) for i in (a, b)]
if a != 0 and b != 0:
substituted = substituted.subs(symbol,
(u_var**(1/u.exp) - b)/a)
return substituted.as_independent(u_var, as_Add=False)
return False
def possible_subterms(term):
if isinstance(term, (TrigonometricFunction,
sympy.asin, sympy.acos, sympy.atan,
sympy.exp, sympy.log, sympy.Heaviside)):
return [term.args[0]]
elif isinstance(term, (sympy.chebyshevt, sympy.chebyshevu,
sympy.legendre, sympy.hermite, sympy.laguerre)):
return [term.args[1]]
elif isinstance(term, (sympy.gegenbauer, sympy.assoc_laguerre)):
return [term.args[2]]
elif isinstance(term, sympy.jacobi):
return [term.args[3]]
elif isinstance(term, sympy.Mul):
r = []
for u in term.args:
r.append(u)
r.extend(possible_subterms(u))
return r
elif isinstance(term, sympy.Pow):
r = []
if term.args[1].is_constant(symbol):
r.append(term.args[0])
elif term.args[0].is_constant(symbol):
r.append(term.args[1])
if term.args[1].is_Integer:
r.extend([term.args[0]**d for d in divisors(term.args[1])
if 1 < d < abs(term.args[1])])
if term.args[0].is_Add:
r.extend([t for t in possible_subterms(term.args[0])
if t.is_Pow])
return r
elif isinstance(term, sympy.Add):
r = []
for arg in term.args:
r.append(arg)
r.extend(possible_subterms(arg))
return r
return []
for u in possible_subterms(integrand):
if u == symbol:
continue
u_diff = manual_diff(u, symbol)
new_integrand = test_subterm(u, u_diff)
if new_integrand is not False:
constant, new_integrand = new_integrand
if new_integrand == integrand.subs(symbol, u_var):
continue
substitution = (u, constant, new_integrand)
if substitution not in results:
results.append(substitution)
return results
def rewriter(condition, rewrite):
"""Strategy that rewrites an integrand."""
def _rewriter(integral):
integrand, symbol = integral
if condition(*integral):
rewritten = rewrite(*integral)
if rewritten != integrand:
substep = integral_steps(rewritten, symbol)
if not isinstance(substep, DontKnowRule) and substep:
return RewriteRule(
rewritten,
substep,
integrand, symbol)
return _rewriter
def proxy_rewriter(condition, rewrite):
"""Strategy that rewrites an integrand based on some other criteria."""
def _proxy_rewriter(criteria):
criteria, integral = criteria
integrand, symbol = integral
args = criteria + list(integral)
if condition(*args):
rewritten = rewrite(*args)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return _proxy_rewriter
def multiplexer(conditions):
"""Apply the rule that matches the condition, else None"""
def multiplexer_rl(expr):
for key, rule in conditions.items():
if key(expr):
return rule(expr)
return multiplexer_rl
def alternatives(*rules):
"""Strategy that makes an AlternativeRule out of multiple possible results."""
def _alternatives(integral):
alts = []
for rule in rules:
result = rule(integral)
if (result and not isinstance(result, DontKnowRule) and
result != integral and result not in alts):
alts.append(result)
if len(alts) == 1:
return alts[0]
elif alts:
doable = [rule for rule in alts if not contains_dont_know(rule)]
if doable:
return AlternativeRule(doable, *integral)
else:
return AlternativeRule(alts, *integral)
return _alternatives
def constant_rule(integral):
integrand, symbol = integral
return ConstantRule(integral.integrand, *integral)
def power_rule(integral):
integrand, symbol = integral
base, exp = integrand.as_base_exp()
if symbol not in exp.free_symbols and isinstance(base, sympy.Symbol):
if sympy.simplify(exp + 1) == 0:
return ReciprocalRule(base, integrand, symbol)
return PowerRule(base, exp, integrand, symbol)
elif symbol not in base.free_symbols and isinstance(exp, sympy.Symbol):
rule = ExpRule(base, exp, integrand, symbol)
if fuzzy_not(sympy.log(base).is_zero):
return rule
elif sympy.log(base).is_zero:
return ConstantRule(1, 1, symbol)
return PiecewiseRule([
(rule, sympy.Ne(sympy.log(base), 0)),
(ConstantRule(1, 1, symbol), True)
], integrand, symbol)
def exp_rule(integral):
integrand, symbol = integral
if isinstance(integrand.args[0], sympy.Symbol):
return ExpRule(sympy.E, integrand.args[0], integrand, symbol)
def orthogonal_poly_rule(integral):
orthogonal_poly_classes = {
sympy.jacobi: JacobiRule,
sympy.gegenbauer: GegenbauerRule,
sympy.chebyshevt: ChebyshevTRule,
sympy.chebyshevu: ChebyshevURule,
sympy.legendre: LegendreRule,
sympy.hermite: HermiteRule,
sympy.laguerre: LaguerreRule,
sympy.assoc_laguerre: AssocLaguerreRule
}
orthogonal_poly_var_index = {
sympy.jacobi: 3,
sympy.gegenbauer: 2,
sympy.assoc_laguerre: 2
}
integrand, symbol = integral
for klass in orthogonal_poly_classes:
if isinstance(integrand, klass):
var_index = orthogonal_poly_var_index.get(klass, 1)
if (integrand.args[var_index] is symbol and not
any(v.has(symbol) for v in integrand.args[:var_index])):
args = integrand.args[:var_index] + (integrand, symbol)
return orthogonal_poly_classes[klass](*args)
def special_function_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol], properties=[lambda x: not x.is_zero])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c', exclude=[symbol])
d = sympy.Wild('d', exclude=[symbol], properties=[lambda x: not x.is_zero])
e = sympy.Wild('e', exclude=[symbol], properties=[
lambda x: not (x.is_nonnegative and x.is_integer)])
wilds = (a, b, c, d, e)
# patterns consist of a SymPy class, a wildcard expr, an optional
# condition coded as a lambda (when Wild properties are not enough),
# followed by an applicable rule
patterns = (
(sympy.Mul, sympy.exp(a*symbol + b)/symbol, None, EiRule),
(sympy.Mul, sympy.cos(a*symbol + b)/symbol, None, CiRule),
(sympy.Mul, sympy.cosh(a*symbol + b)/symbol, None, ChiRule),
(sympy.Mul, sympy.sin(a*symbol + b)/symbol, None, SiRule),
(sympy.Mul, sympy.sinh(a*symbol + b)/symbol, None, ShiRule),
(sympy.Pow, 1/sympy.log(a*symbol + b), None, LiRule),
(sympy.exp, sympy.exp(a*symbol**2 + b*symbol + c), None, ErfRule),
(sympy.sin, sympy.sin(a*symbol**2 + b*symbol + c), None, FresnelSRule),
(sympy.cos, sympy.cos(a*symbol**2 + b*symbol + c), None, FresnelCRule),
(sympy.Mul, symbol**e*sympy.exp(a*symbol), None, UpperGammaRule),
(sympy.Mul, sympy.polylog(b, a*symbol)/symbol, None, PolylogRule),
(sympy.Pow, 1/sympy.sqrt(a - d*sympy.sin(symbol)**2),
lambda a, d: a != d, EllipticFRule),
(sympy.Pow, sympy.sqrt(a - d*sympy.sin(symbol)**2),
lambda a, d: a != d, EllipticERule),
)
for p in patterns:
if isinstance(integrand, p[0]):
match = integrand.match(p[1])
if match:
wild_vals = tuple(match.get(w) for w in wilds
if match.get(w) is not None)
if p[2] is None or p[2](*wild_vals):
args = wild_vals + (integrand, symbol)
return p[3](*args)
def inverse_trig_rule(integral):
integrand, symbol = integral
base, exp = integrand.as_base_exp()
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
match = base.match(a + b*symbol**2)
if not match:
return
def negative(x):
return x.is_negative or x.could_extract_minus_sign()
def ArcsinhRule(integrand, symbol):
return InverseHyperbolicRule(sympy.asinh, integrand, symbol)
def ArccoshRule(integrand, symbol):
return InverseHyperbolicRule(sympy.acosh, integrand, symbol)
def make_inverse_trig(RuleClass, base_exp, a, sign_a, b, sign_b):
u_var = sympy.Dummy("u")
current_base = base
current_symbol = symbol
constant = u_func = u_constant = substep = None
factored = integrand
if a != 1:
constant = a**base_exp
current_base = sign_a + sign_b * (b/a) * current_symbol**2
factored = current_base ** base_exp
if (b/a) != 1:
u_func = sympy.sqrt(b/a) * symbol
u_constant = sympy.sqrt(a/b)
current_symbol = u_var
current_base = sign_a + sign_b * current_symbol**2
substep = RuleClass(current_base ** base_exp, current_symbol)
if u_func is not None:
if u_constant != 1 and substep is not None:
substep = ConstantTimesRule(
u_constant, current_base ** base_exp, substep,
u_constant * current_base ** base_exp, symbol)
substep = URule(u_var, u_func, u_constant, substep, factored, symbol)
if constant is not None and substep is not None:
substep = ConstantTimesRule(constant, factored, substep, integrand, symbol)
return substep
a, b = [match.get(i, ZERO) for i in (a, b)]
# list of (rule, base_exp, a, sign_a, b, sign_b, condition)
possibilities = []
if sympy.simplify(2*exp + 1) == 0:
possibilities.append((ArcsinRule, exp, a, 1, -b, -1, sympy.And(a > 0, b < 0)))
possibilities.append((ArcsinhRule, exp, a, 1, b, 1, sympy.And(a > 0, b > 0)))
possibilities.append((ArccoshRule, exp, -a, -1, b, 1, sympy.And(a < 0, b > 0)))
possibilities = [p for p in possibilities if p[-1] is not sympy.false]
if a.is_number and b.is_number:
possibility = [p for p in possibilities if p[-1] is sympy.true]
if len(possibility) == 1:
return make_inverse_trig(*possibility[0][:-1])
elif possibilities:
return PiecewiseRule(
[(make_inverse_trig(*p[:-1]), p[-1]) for p in possibilities],
integrand, symbol)
def add_rule(integral):
integrand, symbol = integral
results = [integral_steps(g, symbol)
for g in integrand.as_ordered_terms()]
return None if None in results else AddRule(results, integrand, symbol)
def mul_rule(integral):
integrand, symbol = integral
args = integrand.args
# Constant times function case
coeff, f = integrand.as_independent(symbol)
next_step = integral_steps(f, symbol)
if coeff != 1 and next_step is not None:
return ConstantTimesRule(
coeff, f,
next_step,
integrand, symbol)
def _parts_rule(integrand, symbol):
# LIATE rule:
# log, inverse trig, algebraic, trigonometric, exponential
def pull_out_algebraic(integrand):
integrand = integrand.cancel().together()
# iterating over Piecewise args would not work here
algebraic = ([] if isinstance(integrand, sympy.Piecewise)
else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)])
if algebraic:
u = sympy.Mul(*algebraic)
dv = (integrand / u).cancel()
return u, dv
def pull_out_u(*functions):
def pull_out_u_rl(integrand):
if any([integrand.has(f) for f in functions]):
args = [arg for arg in integrand.args
if any(isinstance(arg, cls) for cls in functions)]
if args:
u = reduce(lambda a,b: a*b, args)
dv = integrand / u
return u, dv
return pull_out_u_rl
liate_rules = [pull_out_u(sympy.log), pull_out_u(sympy.atan, sympy.asin, sympy.acos),
pull_out_algebraic, pull_out_u(sympy.sin, sympy.cos),
pull_out_u(sympy.exp)]
dummy = sympy.Dummy("temporary")
# we can integrate log(x) and atan(x) by setting dv = 1
if isinstance(integrand, (sympy.log, sympy.atan, sympy.asin, sympy.acos)):
integrand = dummy * integrand
for index, rule in enumerate(liate_rules):
result = rule(integrand)
if result:
u, dv = result
# Don't pick u to be a constant if possible
if symbol not in u.free_symbols and not u.has(dummy):
return
u = u.subs(dummy, 1)
dv = dv.subs(dummy, 1)
# Don't pick a non-polynomial algebraic to be differentiated
if rule == pull_out_algebraic and not u.is_polynomial(symbol):
return
# Don't trade one logarithm for another
if isinstance(u, sympy.log):
rec_dv = 1/dv
if (rec_dv.is_polynomial(symbol) and
degree(rec_dv, symbol) == 1):
return
# Can integrate a polynomial times OrthogonalPolynomial
if rule == pull_out_algebraic and isinstance(dv, OrthogonalPolynomial):
v_step = integral_steps(dv, symbol)
if contains_dont_know(v_step):
return
else:
du = u.diff(symbol)
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
# make sure dv is amenable to integration
accept = False
if index < 2: # log and inverse trig are usually worth trying
accept = True
elif (rule == pull_out_algebraic and dv.args and
all(isinstance(a, (sympy.sin, sympy.cos, sympy.exp))
for a in dv.args)):
accept = True
else:
for rule in liate_rules[index + 1:]:
r = rule(integrand)
if r and r[0].subs(dummy, 1).equals(dv):
accept = True
break
if accept:
du = u.diff(symbol)
v_step = integral_steps(sympy.simplify(dv), symbol)
if not contains_dont_know(v_step):
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
def parts_rule(integral):
integrand, symbol = integral
constant, integrand = integrand.as_coeff_Mul()
result = _parts_rule(integrand, symbol)
steps = []
if result:
u, dv, v, du, v_step = result
steps.append(result)
if isinstance(v, sympy.Integral):
return
# Set a limit on the number of times u can be used
if isinstance(u, (sympy.sin, sympy.cos, sympy.exp, sympy.sinh, sympy.cosh)):
cachekey = u.xreplace({symbol: _cache_dummy})
if _parts_u_cache[cachekey] > 2:
return
_parts_u_cache[cachekey] += 1
# Try cyclic integration by parts a few times
for _ in range(4):
coefficient = ((v * du) / integrand).cancel()
if coefficient == 1:
break
if symbol not in coefficient.free_symbols:
rule = CyclicPartsRule(
[PartsRule(u, dv, v_step, None, None, None)
for (u, dv, v, du, v_step) in steps],
(-1) ** len(steps) * coefficient,
integrand, symbol
)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
# _parts_rule is sensitive to constants, factor it out
next_constant, next_integrand = (v * du).as_coeff_Mul()
result = _parts_rule(next_integrand, symbol)
if result:
u, dv, v, du, v_step = result
u *= next_constant
du *= next_constant
steps.append((u, dv, v, du, v_step))
else:
break
def make_second_step(steps, integrand):
if steps:
u, dv, v, du, v_step = steps[0]
return PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
else:
steps = integral_steps(integrand, symbol)
if steps:
return steps
else:
return DontKnowRule(integrand, symbol)
if steps:
u, dv, v, du, v_step = steps[0]
rule = PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
def trig_rule(integral):
integrand, symbol = integral
if isinstance(integrand, sympy.sin) or isinstance(integrand, sympy.cos):
arg = integrand.args[0]
if not isinstance(arg, sympy.Symbol):
return # perhaps a substitution can deal with it
if isinstance(integrand, sympy.sin):
func = 'sin'
else:
func = 'cos'
return TrigRule(func, arg, integrand, symbol)
if integrand == sympy.sec(symbol)**2:
return TrigRule('sec**2', symbol, integrand, symbol)
elif integrand == sympy.csc(symbol)**2:
return TrigRule('csc**2', symbol, integrand, symbol)
if isinstance(integrand, sympy.tan):
rewritten = sympy.sin(*integrand.args) / sympy.cos(*integrand.args)
elif isinstance(integrand, sympy.cot):
rewritten = sympy.cos(*integrand.args) / sympy.sin(*integrand.args)
elif isinstance(integrand, sympy.sec):
arg = integrand.args[0]
rewritten = ((sympy.sec(arg)**2 + sympy.tan(arg) * sympy.sec(arg)) /
(sympy.sec(arg) + sympy.tan(arg)))
elif isinstance(integrand, sympy.csc):
arg = integrand.args[0]
rewritten = ((sympy.csc(arg)**2 + sympy.cot(arg) * sympy.csc(arg)) /
(sympy.csc(arg) + sympy.cot(arg)))
else:
return
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol
)
def trig_product_rule(integral):
integrand, symbol = integral
sectan = sympy.sec(symbol) * sympy.tan(symbol)
q = integrand / sectan
if symbol not in q.free_symbols:
rule = TrigRule('sec*tan', symbol, sectan, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, sectan, rule, integrand, symbol)
return rule
csccot = -sympy.csc(symbol) * sympy.cot(symbol)
q = integrand / csccot
if symbol not in q.free_symbols:
rule = TrigRule('csc*cot', symbol, csccot, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, csccot, rule, integrand, symbol)
return rule
def quadratic_denom_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c', exclude=[symbol])
match = integrand.match(a / (b * symbol ** 2 + c))
if not match:
return
a, b, c = match[a], match[b], match[c]
return PiecewiseRule([(ArctanRule(a, b, c, integrand, symbol), sympy.Gt(c / b, 0)),
(ArccothRule(a, b, c, integrand, symbol), sympy.And(sympy.Gt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))),
(ArctanhRule(a, b, c, integrand, symbol), sympy.And(sympy.Lt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))),
], integrand, symbol)
def root_mul_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
c = sympy.Wild('c')
match = integrand.match(sympy.sqrt(a * symbol + b) * c)
if not match:
return
a, b, c = match[a], match[b], match[c]
d = sympy.Wild('d', exclude=[symbol])
e = sympy.Wild('e', exclude=[symbol])
f = sympy.Wild('f')
recursion_test = c.match(sympy.sqrt(d * symbol + e) * f)
if recursion_test:
return
u = sympy.Dummy('u')
u_func = sympy.sqrt(a * symbol + b)
integrand = integrand.subs(u_func, u)
integrand = integrand.subs(symbol, (u**2 - b) / a)
integrand = integrand * 2 * u / a
next_step = integral_steps(integrand, u)
if next_step:
return URule(u, u_func, None, next_step, integrand, symbol)
@sympy.cacheit
def make_wilds(symbol):
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
m = sympy.Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)])
n = sympy.Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)])
return a, b, m, n
@sympy.cacheit
def sincos_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.sin(a*symbol)**m * sympy.cos(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def tansec_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.tan(a*symbol)**m * sympy.sec(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def cotcsc_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sympy.cot(a*symbol)**m * sympy.csc(b*symbol)**n
return pattern, a, b, m, n
@sympy.cacheit
def heaviside_pattern(symbol):
m = sympy.Wild('m', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
g = sympy.Wild('g')
pattern = sympy.Heaviside(m*symbol + b) * g
return pattern, m, b, g
def uncurry(func):
def uncurry_rl(args):
return func(*args)
return uncurry_rl
def trig_rewriter(rewrite):
def trig_rewriter_rl(args):
a, b, m, n, integrand, symbol = args
rewritten = rewrite(a, b, m, n, integrand, symbol)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return trig_rewriter_rl
sincos_botheven_condition = uncurry(
lambda a, b, m, n, i, s: m.is_even and n.is_even and
m.is_nonnegative and n.is_nonnegative)
sincos_botheven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (((1 - sympy.cos(2*a*symbol)) / 2) ** (m / 2)) *
(((1 + sympy.cos(2*b*symbol)) / 2) ** (n / 2)) ))
sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3)
sincos_sinodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - sympy.cos(a*symbol)**2)**((m - 1) / 2) *
sympy.sin(a*symbol) *
sympy.cos(b*symbol) ** n))
sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3)
sincos_cosodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - sympy.sin(b*symbol)**2)**((n - 1) / 2) *
sympy.cos(b*symbol) *
sympy.sin(a*symbol) ** m))
tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
tansec_seceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + sympy.tan(b*symbol)**2) ** (n/2 - 1) *
sympy.sec(b*symbol)**2 *
sympy.tan(a*symbol) ** m ))
tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
tansec_tanodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (sympy.sec(a*symbol)**2 - 1) ** ((m - 1) / 2) *
sympy.tan(a*symbol) *
sympy.sec(b*symbol) ** n ))
tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0)
tan_tansquared = trig_rewriter(
lambda a, b, m, n, i, symbol: ( sympy.sec(a*symbol)**2 - 1))
cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
cotcsc_csceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + sympy.cot(b*symbol)**2) ** (n/2 - 1) *
sympy.csc(b*symbol)**2 *
sympy.cot(a*symbol) ** m ))
cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
cotcsc_cotodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (sympy.csc(a*symbol)**2 - 1) ** ((m - 1) / 2) *
sympy.cot(a*symbol) *
sympy.csc(b*symbol) ** n ))
def trig_sincos_rule(integral):
integrand, symbol = integral
if any(integrand.has(f) for f in (sympy.sin, sympy.cos)):
pattern, a, b, m, n = sincos_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
sincos_botheven_condition: sincos_botheven,
sincos_sinodd_condition: sincos_sinodd,
sincos_cosodd_condition: sincos_cosodd
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_tansec_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / sympy.cos(symbol): sympy.sec(symbol)
})
if any(integrand.has(f) for f in (sympy.tan, sympy.sec)):
pattern, a, b, m, n = tansec_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
tansec_tanodd_condition: tansec_tanodd,
tansec_seceven_condition: tansec_seceven,
tan_tansquared_condition: tan_tansquared
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_cotcsc_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / sympy.sin(symbol): sympy.csc(symbol),
1 / sympy.tan(symbol): sympy.cot(symbol),
sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol)
})
if any(integrand.has(f) for f in (sympy.cot, sympy.csc)):
pattern, a, b, m, n = cotcsc_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
cotcsc_cotodd_condition: cotcsc_cotodd,
cotcsc_csceven_condition: cotcsc_csceven
})(tuple(
[match.get(i, ZERO) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_sindouble_rule(integral):
integrand, symbol = integral
a = sympy.Wild('a', exclude=[sympy.sin(2*symbol)])
match = integrand.match(sympy.sin(2*symbol)*a)
if match:
sin_double = 2*sympy.sin(symbol)*sympy.cos(symbol)/sympy.sin(2*symbol)
return integral_steps(integrand * sin_double, symbol)
def trig_powers_products_rule(integral):
return do_one(null_safe(trig_sincos_rule),
null_safe(trig_tansec_rule),
null_safe(trig_cotcsc_rule),
null_safe(trig_sindouble_rule))(integral)
def trig_substitution_rule(integral):
integrand, symbol = integral
A = sympy.Wild('a', exclude=[0, symbol])
B = sympy.Wild('b', exclude=[0, symbol])
theta = sympy.Dummy("theta")
target_pattern = A + B*symbol**2
matches = integrand.find(target_pattern)
for expr in matches:
match = expr.match(target_pattern)
a = match.get(A, ZERO)
b = match.get(B, ZERO)
a_positive = ((a.is_number and a > 0) or a.is_positive)
b_positive = ((b.is_number and b > 0) or b.is_positive)
a_negative = ((a.is_number and a < 0) or a.is_negative)
b_negative = ((b.is_number and b < 0) or b.is_negative)
x_func = None
if a_positive and b_positive:
# a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2
x_func = (sympy.sqrt(a)/sympy.sqrt(b)) * sympy.tan(theta)
# Do not restrict the domain: tan(theta) takes on any real
# value on the interval -pi/2 < theta < pi/2 so x takes on
# any value
restriction = True
elif a_positive and b_negative:
# a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2
constant = sympy.sqrt(a)/sympy.sqrt(-b)
x_func = constant * sympy.sin(theta)
restriction = sympy.And(symbol > -constant, symbol < constant)
elif a_negative and b_positive:
# b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi
constant = sympy.sqrt(-a)/sympy.sqrt(b)
x_func = constant * sympy.sec(theta)
restriction = sympy.And(symbol > -constant, symbol < constant)
if x_func:
# Manually simplify sqrt(trig(theta)**2) to trig(theta)
# Valid due to assumed domain restriction
substitutions = {}
for f in [sympy.sin, sympy.cos, sympy.tan,
sympy.sec, sympy.csc, sympy.cot]:
substitutions[sympy.sqrt(f(theta)**2)] = f(theta)
substitutions[sympy.sqrt(f(theta)**(-2))] = 1/f(theta)
replaced = integrand.subs(symbol, x_func).trigsimp()
replaced = manual_subs(replaced, substitutions)
if not replaced.has(symbol):
replaced *= manual_diff(x_func, theta)
replaced = replaced.trigsimp()
secants = replaced.find(1/sympy.cos(theta))
if secants:
replaced = replaced.xreplace({
1/sympy.cos(theta): sympy.sec(theta)
})
substep = integral_steps(replaced, theta)
if not contains_dont_know(substep):
return TrigSubstitutionRule(
theta, x_func, replaced, substep, restriction,
integrand, symbol)
def heaviside_rule(integral):
integrand, symbol = integral
pattern, m, b, g = heaviside_pattern(symbol)
match = integrand.match(pattern)
if match and 0 != match[g]:
# f = Heaviside(m*x + b)*g
v_step = integral_steps(match[g], symbol)
result = _manualintegrate(v_step)
m, b = match[m], match[b]
return HeavisideRule(m*symbol + b, -b/m, result, integrand, symbol)
def substitution_rule(integral):
integrand, symbol = integral
u_var = sympy.Dummy("u")
substitutions = find_substitutions(integrand, symbol, u_var)
if substitutions:
ways = []
for u_func, c, substituted in substitutions:
subrule = integral_steps(substituted, u_var)
if contains_dont_know(subrule):
continue
if sympy.simplify(c - 1) != 0:
_, denom = c.as_numer_denom()
if subrule:
subrule = ConstantTimesRule(c, substituted, subrule, substituted, u_var)
if denom.free_symbols:
piecewise = []
could_be_zero = []
if isinstance(denom, sympy.Mul):
could_be_zero = denom.args
else:
could_be_zero.append(denom)
for expr in could_be_zero:
if not fuzzy_not(expr.is_zero):
substep = integral_steps(manual_subs(integrand, expr, 0), symbol)
if substep:
piecewise.append((
substep,
sympy.Eq(expr, 0)
))
piecewise.append((subrule, True))
subrule = PiecewiseRule(piecewise, substituted, symbol)
ways.append(URule(u_var, u_func, c,
subrule,
integrand, symbol))
if len(ways) > 1:
return AlternativeRule(ways, integrand, symbol)
elif ways:
return ways[0]
elif integrand.has(sympy.exp):
u_func = sympy.exp(symbol)
c = 1
substituted = integrand / u_func.diff(symbol)
substituted = substituted.subs(u_func, u_var)
if symbol not in substituted.free_symbols:
return URule(u_var, u_func, c,
integral_steps(substituted, u_var),
integrand, symbol)
partial_fractions_rule = rewriter(
lambda integrand, symbol: integrand.is_rational_function(),
lambda integrand, symbol: integrand.apart(symbol))
cancel_rule = rewriter(
# lambda integrand, symbol: integrand.is_algebraic_expr(),
# lambda integrand, symbol: isinstance(integrand, sympy.Mul),
lambda integrand, symbol: True,
lambda integrand, symbol: integrand.cancel())
distribute_expand_rule = rewriter(
lambda integrand, symbol: (
all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args)
or isinstance(integrand, sympy.Pow)
or isinstance(integrand, sympy.Mul)),
lambda integrand, symbol: integrand.expand())
trig_expand_rule = rewriter(
# If there are trig functions with different arguments, expand them
lambda integrand, symbol: (
len(set(a.args[0] for a in integrand.atoms(TrigonometricFunction))) > 1),
lambda integrand, symbol: integrand.expand(trig=True))
def derivative_rule(integral):
integrand = integral[0]
diff_variables = integrand.variables
undifferentiated_function = integrand.expr
integrand_variables = undifferentiated_function.free_symbols
if integral.symbol in integrand_variables:
if integral.symbol in diff_variables:
return DerivativeRule(*integral)
else:
return DontKnowRule(integrand, integral.symbol)
else:
return ConstantRule(integral.integrand, *integral)
def rewrites_rule(integral):
integrand, symbol = integral
if integrand.match(1/sympy.cos(symbol)):
rewritten = integrand.subs(1/sympy.cos(symbol), sympy.sec(symbol))
return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol)
def fallback_rule(integral):
return DontKnowRule(*integral)
# Cache is used to break cyclic integrals.
# Need to use the same dummy variable in cached expressions for them to match.
# Also record "u" of integration by parts, to avoid infinite repetition.
_integral_cache = {}
_parts_u_cache = defaultdict(int)
_cache_dummy = sympy.Dummy("z")
def integral_steps(integrand, symbol, **options):
"""Returns the steps needed to compute an integral.
This function attempts to mirror what a student would do by hand as
closely as possible.
SymPy Gamma uses this to provide a step-by-step explanation of an
integral. The code it uses to format the results of this function can be
found at
https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.
Examples
========
>>> from sympy import exp, sin, cos
>>> from sympy.integrals.manualintegrate import integral_steps
>>> from sympy.abc import x
>>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \
# doctest: +NORMALIZE_WHITESPACE
URule(u_var=_u, u_func=exp(x), constant=1,
substep=PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), True),
(ArccothRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False),
(ArctanhRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False)],
context=1/(_u**2 + 1), symbol=_u), context=exp(x)/(exp(2*x) + 1), symbol=x)
>>> print(repr(integral_steps(sin(x), x))) \
# doctest: +NORMALIZE_WHITESPACE
TrigRule(func='sin', arg=x, context=sin(x), symbol=x)
>>> print(repr(integral_steps((x**2 + 3)**2 , x))) \
# doctest: +NORMALIZE_WHITESPACE
RewriteRule(rewritten=x**4 + 6*x**2 + 9,
substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x),
ConstantTimesRule(constant=6, other=x**2,
substep=PowerRule(base=x, exp=2, context=x**2, symbol=x),
context=6*x**2, symbol=x),
ConstantRule(constant=9, context=9, symbol=x)],
context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x)
Returns
=======
rule : namedtuple
The first step; most rules have substeps that must also be
considered. These substeps can be evaluated using ``manualintegrate``
to obtain a result.
"""
cachekey = integrand.xreplace({symbol: _cache_dummy})
if cachekey in _integral_cache:
if _integral_cache[cachekey] is None:
# Stop this attempt, because it leads around in a loop
return DontKnowRule(integrand, symbol)
else:
# TODO: This is for future development, as currently
# _integral_cache gets no values other than None
return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol),
symbol)
else:
_integral_cache[cachekey] = None
integral = IntegralInfo(integrand, symbol)
def key(integral):
integrand = integral.integrand
if isinstance(integrand, TrigonometricFunction):
return TrigonometricFunction
elif isinstance(integrand, sympy.Derivative):
return sympy.Derivative
elif symbol not in integrand.free_symbols:
return sympy.Number
else:
for cls in (sympy.Pow, sympy.Symbol, sympy.exp, sympy.log,
sympy.Add, sympy.Mul, sympy.atan, sympy.asin,
sympy.acos, sympy.Heaviside, OrthogonalPolynomial):
if isinstance(integrand, cls):
return cls
def integral_is_subclass(*klasses):
def _integral_is_subclass(integral):
k = key(integral)
return k and issubclass(k, klasses)
return _integral_is_subclass
result = do_one(
null_safe(special_function_rule),
null_safe(switch(key, {
sympy.Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule), \
null_safe(quadratic_denom_rule)),
sympy.Symbol: power_rule,
sympy.exp: exp_rule,
sympy.Add: add_rule,
sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule), \
null_safe(heaviside_rule), null_safe(quadratic_denom_rule), \
null_safe(root_mul_rule)),
sympy.Derivative: derivative_rule,
TrigonometricFunction: trig_rule,
sympy.Heaviside: heaviside_rule,
OrthogonalPolynomial: orthogonal_poly_rule,
sympy.Number: constant_rule
})),
do_one(
null_safe(trig_rule),
null_safe(alternatives(
rewrites_rule,
substitution_rule,
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
partial_fractions_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
cancel_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.log, sympy.atan, sympy.asin, sympy.acos),
parts_rule),
condition(
integral_is_subclass(sympy.Mul, sympy.Pow),
distribute_expand_rule),
trig_powers_products_rule,
trig_expand_rule
)),
null_safe(trig_substitution_rule)
),
fallback_rule)(integral)
del _integral_cache[cachekey]
return result
@evaluates(ConstantRule)
def eval_constant(constant, integrand, symbol):
return constant * symbol
@evaluates(ConstantTimesRule)
def eval_constanttimes(constant, other, substep, integrand, symbol):
return constant * _manualintegrate(substep)
@evaluates(PowerRule)
def eval_power(base, exp, integrand, symbol):
return sympy.Piecewise(
((base**(exp + 1))/(exp + 1), sympy.Ne(exp, -1)),
(sympy.log(base), True),
)
@evaluates(ExpRule)
def eval_exp(base, exp, integrand, symbol):
return integrand / sympy.ln(base)
@evaluates(AddRule)
def eval_add(substeps, integrand, symbol):
return sum(map(_manualintegrate, substeps))
@evaluates(URule)
def eval_u(u_var, u_func, constant, substep, integrand, symbol):
result = _manualintegrate(substep)
if u_func.is_Pow and u_func.exp == -1:
# avoid needless -log(1/x) from substitution
result = result.subs(sympy.log(u_var), -sympy.log(u_func.base))
return result.subs(u_var, u_func)
@evaluates(PartsRule)
def eval_parts(u, dv, v_step, second_step, integrand, symbol):
v = _manualintegrate(v_step)
return u * v - _manualintegrate(second_step)
@evaluates(CyclicPartsRule)
def eval_cyclicparts(parts_rules, coefficient, integrand, symbol):
coefficient = 1 - coefficient
result = []
sign = 1
for rule in parts_rules:
result.append(sign * rule.u * _manualintegrate(rule.v_step))
sign *= -1
return sympy.Add(*result) / coefficient
@evaluates(TrigRule)
def eval_trig(func, arg, integrand, symbol):
if func == 'sin':
return -sympy.cos(arg)
elif func == 'cos':
return sympy.sin(arg)
elif func == 'sec*tan':
return sympy.sec(arg)
elif func == 'csc*cot':
return sympy.csc(arg)
elif func == 'sec**2':
return sympy.tan(arg)
elif func == 'csc**2':
return -sympy.cot(arg)
@evaluates(ArctanRule)
def eval_arctan(a, b, c, integrand, symbol):
return a / b * 1 / sympy.sqrt(c / b) * sympy.atan(symbol / sympy.sqrt(c / b))
@evaluates(ArccothRule)
def eval_arccoth(a, b, c, integrand, symbol):
return - a / b * 1 / sympy.sqrt(-c / b) * sympy.acoth(symbol / sympy.sqrt(-c / b))
@evaluates(ArctanhRule)
def eval_arctanh(a, b, c, integrand, symbol):
return - a / b * 1 / sympy.sqrt(-c / b) * sympy.atanh(symbol / sympy.sqrt(-c / b))
@evaluates(ReciprocalRule)
def eval_reciprocal(func, integrand, symbol):
return sympy.ln(func)
@evaluates(ArcsinRule)
def eval_arcsin(integrand, symbol):
return sympy.asin(symbol)
@evaluates(InverseHyperbolicRule)
def eval_inversehyperbolic(func, integrand, symbol):
return func(symbol)
@evaluates(AlternativeRule)
def eval_alternative(alternatives, integrand, symbol):
return _manualintegrate(alternatives[0])
@evaluates(RewriteRule)
def eval_rewrite(rewritten, substep, integrand, symbol):
return _manualintegrate(substep)
@evaluates(PiecewiseRule)
def eval_piecewise(substeps, integrand, symbol):
return sympy.Piecewise(*[(_manualintegrate(substep), cond)
for substep, cond in substeps])
@evaluates(TrigSubstitutionRule)
def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
func = func.subs(sympy.sec(theta), 1/sympy.cos(theta))
trig_function = list(func.find(TrigonometricFunction))
assert len(trig_function) == 1
trig_function = trig_function[0]
relation = sympy.solve(symbol - func, trig_function)
assert len(relation) == 1
numer, denom = sympy.fraction(relation[0])
if isinstance(trig_function, sympy.sin):
opposite = numer
hypotenuse = denom
adjacent = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.asin(relation[0])
elif isinstance(trig_function, sympy.cos):
adjacent = numer
hypotenuse = denom
opposite = sympy.sqrt(denom**2 - numer**2)
inverse = sympy.acos(relation[0])
elif isinstance(trig_function, sympy.tan):
opposite = numer
adjacent = denom
hypotenuse = sympy.sqrt(denom**2 + numer**2)
inverse = sympy.atan(relation[0])
substitution = [
(sympy.sin(theta), opposite/hypotenuse),
(sympy.cos(theta), adjacent/hypotenuse),
(sympy.tan(theta), opposite/adjacent),
(theta, inverse)
]
return sympy.Piecewise(
(_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
)
@evaluates(DerivativeRule)
def eval_derivativerule(integrand, symbol):
# isinstance(integrand, Derivative) should be True
variable_count = list(integrand.variable_count)
for i, (var, count) in enumerate(variable_count):
if var == symbol:
variable_count[i] = (var, count-1)
break
return sympy.Derivative(integrand.expr, *variable_count)
@evaluates(HeavisideRule)
def eval_heaviside(harg, ibnd, substep, integrand, symbol):
# If we are integrating over x and the integrand has the form
# Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol)
# then there needs to be continuity at -b/m == ibnd,
# so we subtract the appropriate term.
return sympy.Heaviside(harg)*(substep - substep.subs(symbol, ibnd))
@evaluates(JacobiRule)
def eval_jacobi(n, a, b, integrand, symbol):
return Piecewise(
(2*sympy.jacobi(n + 1, a - 1, b - 1, symbol)/(n + a + b), Ne(n + a + b, 0)),
(symbol, Eq(n, 0)),
((a + b + 2)*symbol**2/4 + (a - b)*symbol/2, Eq(n, 1)))
@evaluates(GegenbauerRule)
def eval_gegenbauer(n, a, integrand, symbol):
return Piecewise(
(sympy.gegenbauer(n + 1, a - 1, symbol)/(2*(a - 1)), Ne(a, 1)),
(sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(sympy.S.Zero, True))
@evaluates(ChebyshevTRule)
def eval_chebyshevt(n, integrand, symbol):
return Piecewise(((sympy.chebyshevt(n + 1, symbol)/(n + 1) -
sympy.chebyshevt(n - 1, symbol)/(n - 1))/2, Ne(sympy.Abs(n), 1)),
(symbol**2/2, True))
@evaluates(ChebyshevURule)
def eval_chebyshevu(n, integrand, symbol):
return Piecewise(
(sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(sympy.S.Zero, True))
@evaluates(LegendreRule)
def eval_legendre(n, integrand, symbol):
return (sympy.legendre(n + 1, symbol) - sympy.legendre(n - 1, symbol))/(2*n + 1)
@evaluates(HermiteRule)
def eval_hermite(n, integrand, symbol):
return sympy.hermite(n + 1, symbol)/(2*(n + 1))
@evaluates(LaguerreRule)
def eval_laguerre(n, integrand, symbol):
return sympy.laguerre(n, symbol) - sympy.laguerre(n + 1, symbol)
@evaluates(AssocLaguerreRule)
def eval_assoclaguerre(n, a, integrand, symbol):
return -sympy.assoc_laguerre(n + 1, a - 1, symbol)
@evaluates(CiRule)
def eval_ci(a, b, integrand, symbol):
return sympy.cos(b)*sympy.Ci(a*symbol) - sympy.sin(b)*sympy.Si(a*symbol)
@evaluates(ChiRule)
def eval_chi(a, b, integrand, symbol):
return sympy.cosh(b)*sympy.Chi(a*symbol) + sympy.sinh(b)*sympy.Shi(a*symbol)
@evaluates(EiRule)
def eval_ei(a, b, integrand, symbol):
return sympy.exp(b)*sympy.Ei(a*symbol)
@evaluates(SiRule)
def eval_si(a, b, integrand, symbol):
return sympy.sin(b)*sympy.Ci(a*symbol) + sympy.cos(b)*sympy.Si(a*symbol)
@evaluates(ShiRule)
def eval_shi(a, b, integrand, symbol):
return sympy.sinh(b)*sympy.Chi(a*symbol) + sympy.cosh(b)*sympy.Shi(a*symbol)
@evaluates(ErfRule)
def eval_erf(a, b, c, integrand, symbol):
return Piecewise(
(sympy.sqrt(sympy.pi/(-a))/2 * sympy.exp(c - b**2/(4*a)) *
sympy.erf((-2*a*symbol - b)/(2*sympy.sqrt(-a))), a < 0),
(sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) *
sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))), True))
@evaluates(FresnelCRule)
def eval_fresnelc(a, b, c, integrand, symbol):
return sympy.sqrt(sympy.pi/(2*a)) * (
sympy.cos(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) +
sympy.sin(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)))
@evaluates(FresnelSRule)
def eval_fresnels(a, b, c, integrand, symbol):
return sympy.sqrt(sympy.pi/(2*a)) * (
sympy.cos(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) -
sympy.sin(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)))
@evaluates(LiRule)
def eval_li(a, b, integrand, symbol):
return sympy.li(a*symbol + b)/a
@evaluates(PolylogRule)
def eval_polylog(a, b, integrand, symbol):
return sympy.polylog(b + 1, a*symbol)
@evaluates(UpperGammaRule)
def eval_uppergamma(a, e, integrand, symbol):
return symbol**e * (-a*symbol)**(-e) * sympy.uppergamma(e + 1, -a*symbol)/a
@evaluates(EllipticFRule)
def eval_elliptic_f(a, d, integrand, symbol):
return sympy.elliptic_f(symbol, d/a)/sympy.sqrt(a)
@evaluates(EllipticERule)
def eval_elliptic_e(a, d, integrand, symbol):
return sympy.elliptic_e(symbol, d/a)*sympy.sqrt(a)
@evaluates(DontKnowRule)
def eval_dontknowrule(integrand, symbol):
return sympy.Integral(integrand, symbol)
def _manualintegrate(rule):
evaluator = evaluators.get(rule.__class__)
if not evaluator:
raise ValueError("Cannot evaluate rule %s" % repr(rule))
return evaluator(*rule)
def manualintegrate(f, var):
"""manualintegrate(f, var)
Compute indefinite integral of a single variable using an algorithm that
resembles what a student would do by hand.
Unlike ``integrate``, var can only be a single symbol.
Examples
========
>>> from sympy import sin, cos, tan, exp, log, integrate
>>> from sympy.integrals.manualintegrate import manualintegrate
>>> from sympy.abc import x
>>> manualintegrate(1 / x, x)
log(x)
>>> integrate(1/x)
log(x)
>>> manualintegrate(log(x), x)
x*log(x) - x
>>> integrate(log(x))
x*log(x) - x
>>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
atan(exp(x))
>>> integrate(exp(x) / (1 + exp(2 * x)))
RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
>>> manualintegrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> manualintegrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> manualintegrate(tan(x), x)
-log(cos(x))
>>> integrate(tan(x), x)
-log(cos(x))
See Also
========
sympy.integrals.integrals.integrate
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
result = _manualintegrate(integral_steps(f, var))
# Clear the cache of u-parts
_parts_u_cache.clear()
# If we got Piecewise with two parts, put generic first
if isinstance(result, Piecewise) and len(result.args) == 2:
cond = result.args[0][1]
if isinstance(cond, Eq) and result.args[1][1] == True:
result = result.func(
(result.args[1][0], sympy.Ne(*cond.args)),
(result.args[0][0], True))
return result
|
f66098772edcca266e1c4f3ff3b26dff3eab1c279d43afd0fa9f9ac665cb50b6 | from __future__ import print_function, division
from itertools import permutations
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.mul import Mul
from sympy.core.symbol import Wild, Dummy, symbols
from sympy.core.basic import sympify
from sympy.core.numbers import Rational, pi, I
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.functions import exp, sin, cos, tan, cot, asin, atan
from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh
from sympy.functions import sqrt, erf, erfi, li, Ei
from sympy.functions import besselj, bessely, besseli, besselk
from sympy.functions import hankel1, hankel2, jn, yn
from sympy.functions.elementary.exponential import LambertW
from sympy.functions.elementary.piecewise import Piecewise
from sympy.simplify.radsimp import collect
from sympy.logic.boolalg import And, Or
from sympy.utilities.iterables import uniq
from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError
from sympy.polys.monomials import itermonomials
from sympy.polys.polyroots import root_factors
from sympy.polys.rings import PolyRing
from sympy.polys.solvers import solve_lin_sys
from sympy.polys.constructor import construct_domain
from sympy.core.compatibility import reduce, ordered
def components(f, x):
"""
Returns a set of all functional components of the given expression
which includes symbols, function applications and compositions and
non-integer powers. Fractional powers are collected with
minimal, positive exponents.
>>> from sympy import cos, sin
>>> from sympy.abc import x, y
>>> from sympy.integrals.heurisch import components
>>> components(sin(x)*cos(x)**2, x)
{x, sin(x), cos(x)}
See Also
========
heurisch
"""
result = set()
if x in f.free_symbols:
if f.is_symbol and f.is_commutative:
result.add(f)
elif f.is_Function or f.is_Derivative:
for g in f.args:
result |= components(g, x)
result.add(f)
elif f.is_Pow:
result |= components(f.base, x)
if not f.exp.is_Integer:
if f.exp.is_Rational:
result.add(f.base**Rational(1, f.exp.q))
else:
result |= components(f.exp, x) | {f}
else:
for g in f.args:
result |= components(g, x)
return result
# name -> [] of symbols
_symbols_cache = {}
# NB @cacheit is not convenient here
def _symbols(name, n):
"""get vector of symbols local to this module"""
try:
lsyms = _symbols_cache[name]
except KeyError:
lsyms = []
_symbols_cache[name] = lsyms
while len(lsyms) < n:
lsyms.append( Dummy('%s%i' % (name, len(lsyms))) )
return lsyms[:n]
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None):
"""
A wrapper around the heurisch integration algorithm.
This method takes the result from heurisch and checks for poles in the
denominator. For each of these poles, the integral is reevaluated, and
the final integration result is given in terms of a Piecewise.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.functions import cos
>>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper
>>> n, x = symbols('n x')
>>> heurisch(cos(n*x), x)
sin(n*x)/n
>>> heurisch_wrapper(cos(n*x), x)
Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True))
See Also
========
heurisch
"""
from sympy.solvers.solvers import solve, denoms
f = sympify(f)
if x not in f.free_symbols:
return f*x
res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset,
unnecessary_permutations)
if not isinstance(res, Basic):
return res
# We consider each denominator in the expression, and try to find
# cases where one or more symbolic denominator might be zero. The
# conditions for these cases are stored in the list slns.
slns = []
for d in denoms(res):
try:
slns += solve(d, dict=True, exclude=(x,))
except NotImplementedError:
pass
if not slns:
return res
slns = list(uniq(slns))
# Remove the solutions corresponding to poles in the original expression.
slns0 = []
for d in denoms(f):
try:
slns0 += solve(d, dict=True, exclude=(x,))
except NotImplementedError:
pass
slns = [s for s in slns if s not in slns0]
if not slns:
return res
if len(slns) > 1:
eqs = []
for sub_dict in slns:
eqs.extend([Eq(key, value) for key, value in sub_dict.items()])
slns = solve(eqs, dict=True, exclude=(x,)) + slns
# For each case listed in the list slns, we reevaluate the integral.
pairs = []
for sub_dict in slns:
expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations)
cond = And(*[Eq(key, value) for key, value in sub_dict.items()])
generic = Or(*[Ne(key, value) for key, value in sub_dict.items()])
pairs.append((expr, cond))
# If there is one condition, put the generic case first. Otherwise,
# doing so may lead to longer Piecewise formulas
if len(pairs) == 1:
pairs = [(heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations),
generic),
(pairs[0][0], True)]
else:
pairs.append((heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations),
True))
return Piecewise(*pairs)
class BesselTable(object):
"""
Derivatives of Bessel functions of orders n and n-1
in terms of each other.
See the docstring of DiffCache.
"""
def __init__(self):
self.table = {}
self.n = Dummy('n')
self.z = Dummy('z')
self._create_table()
def _create_table(t):
table, n, z = t.table, t.n, t.z
for f in (besselj, bessely, hankel1, hankel2):
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
f = besseli
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z + f(n, z))
f = besselk
table[f] = (-f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
for f in (jn, yn):
table[f] = (f(n-1, z) - (n+1)*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
def diffs(t, f, n, z):
if f in t.table:
diff0, diff1 = t.table[f]
repl = [(t.n, n), (t.z, z)]
return (diff0.subs(repl), diff1.subs(repl))
def has(t, f):
return f in t.table
_bessel_table = None
class DiffCache(object):
"""
Store for derivatives of expressions.
The standard form of the derivative of a Bessel function of order n
contains two Bessel functions of orders n-1 and n+1, respectively.
Such forms cannot be used in parallel Risch algorithm, because
there is a linear recurrence relation between the three functions
while the algorithm expects that functions and derivatives are
represented in terms of algebraically independent transcendentals.
The solution is to take two of the functions, e.g., those of orders
n and n-1, and to express the derivatives in terms of the pair.
To guarantee that the proper form is used the two derivatives are
cached as soon as one is encountered.
Derivatives of other functions are also cached at no extra cost.
All derivatives are with respect to the same variable `x`.
"""
def __init__(self, x):
self.cache = {}
self.x = x
global _bessel_table
if not _bessel_table:
_bessel_table = BesselTable()
def get_diff(self, f):
cache = self.cache
if f in cache:
pass
elif (not hasattr(f, 'func') or
not _bessel_table.has(f.func)):
cache[f] = cancel(f.diff(self.x))
else:
n, z = f.args
d0, d1 = _bessel_table.diffs(f.func, n, z)
dz = self.get_diff(z)
cache[f] = d0*dz
cache[f.func(n-1, z)] = d1*dz
return cache[f]
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None):
"""
Compute indefinite integral using heuristic Risch algorithm.
This is a heuristic approach to indefinite integration in finite
terms using the extended heuristic (parallel) Risch algorithm, based
on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including
transcendental elementary or special functions like Airy,
Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't
able to compute the antiderivative for a given function, then this is
not a proof that such a functions does not exist. One should use
recursive Risch algorithm in such case. It's an open question if
this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use toplevel
'integrate' function in most cases, as this procedure needs some
preprocessing steps and otherwise may fail.
Specification
=============
heurisch(f, x, rewrite=False, hints=None)
where
f : expression
x : symbol
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
hints -> a list of functions that may appear in anti-derivate
- hints = None --> no suggestions at all
- hints = [ ] --> try to figure out
- hints = [f1, ..., fn] --> we know better
Examples
========
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
See Manuel Bronstein's "Poor Man's Integrator":
[1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
For more information on the implemented algorithm refer to:
[2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
Method and its Implementation in Maple, Proceedings of
ISSAC'89, ACM Press, 212-217.
[3] J. H. Davenport, On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
[4] J. H. Davenport, On the Parallel Risch Algorithm (III):
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
[5] J. H. Davenport, B. M. Trager, On the Parallel Risch
Algorithm (II), ACM Transactions on Mathematical
Software 11 (1985), 356-362.
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
components
"""
f = sympify(f)
if x not in f.free_symbols:
return f*x
if not f.is_Add:
indep, f = f.as_independent(x)
else:
indep = S.One
rewritables = {
(sin, cos, cot): tan,
(sinh, cosh, coth): tanh,
}
if rewrite:
for candidates, rule in rewritables.items():
f = f.rewrite(candidates, rule)
else:
for candidates in rewritables.keys():
if f.has(*candidates):
break
else:
rewrite = True
terms = components(f, x)
if hints is not None:
if not hints:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
for g in set(terms): # using copy of terms
if g.is_Function:
if isinstance(g, li):
M = g.args[0].match(a*x**b)
if M is not None:
terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )
elif isinstance(g, exp):
M = g.args[0].match(a*x**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*x))
else: # M[a].is_negative or unknown
terms.add(erf(sqrt(-M[a])*x))
M = g.args[0].match(a*x**2 + b*x + c)
if M is not None:
if M[a].is_positive:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
elif M[a].is_negative:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))
M = g.args[0].match(a*log(x)**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
if M[a].is_negative:
terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))
elif g.is_Pow:
if g.exp.is_Rational and g.exp.q == 2:
M = g.base.match(a*x**2 + b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(asinh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add(asin(sqrt(-M[a]/M[b])*x))
M = g.base.match(a*x**2 - b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(acosh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add((-M[b]/2*sqrt(-M[a])*
atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))))
else:
terms |= set(hints)
dcache = DiffCache(x)
for g in set(terms): # using copy of terms
terms |= components(dcache.get_diff(g), x)
# TODO: caching is significant factor for why permutations work at all. Change this.
V = _symbols('x', len(terms))
# sort mapping expressions from largest to smallest (last is always x).
mapping = list(reversed(list(zip(*ordered( #
[(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
rev_mapping = {v: k for k, v in mapping} #
if mappings is None: #
# optimizing the number of permutations of mapping #
assert mapping[-1][0] == x # if not, find it and correct this comment
unnecessary_permutations = [mapping.pop(-1)]
mappings = permutations(mapping)
else:
unnecessary_permutations = unnecessary_permutations or []
def _substitute(expr):
return expr.subs(mapping)
for mapping in mappings:
mapping = list(mapping)
mapping = mapping + unnecessary_permutations
diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
denoms = [ g.as_numer_denom()[1] for g in diffs ]
if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
break
else:
if not rewrite:
result = heurisch(f, x, rewrite=True, hints=hints,
unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
numers = [ cancel(denom*g) for g in diffs ]
def _derivation(h):
return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])
def _deflation(p):
for y in V:
if not p.has(y):
continue
if _derivation(p) is not S.Zero:
c, q = p.as_poly(y).primitive()
return _deflation(c)*gcd(q, q.diff(y)).as_expr()
return p
def _splitter(p):
for y in V:
if not p.has(y):
continue
if _derivation(y) is not S.Zero:
c, q = p.as_poly(y).primitive()
q = q.as_expr()
h = gcd(q, _derivation(q), y)
s = quo(h, gcd(q, q.diff(y), y), y)
c_split = _splitter(c)
if s.as_poly(y).degree() == 0:
return (c_split[0], q * c_split[1])
q_split = _splitter(cancel(q / s))
return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
return (S.One, p)
special = {}
for term in terms:
if term.is_Function:
if isinstance(term, tan):
special[1 + _substitute(term)**2] = False
elif isinstance(term, tanh):
special[1 + _substitute(term)] = False
special[1 - _substitute(term)] = False
elif isinstance(term, LambertW):
special[_substitute(term)] = True
F = _substitute(f)
P, Q = F.as_numer_denom()
u_split = _splitter(denom)
v_split = _splitter(Q)
polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))
s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
polified = [ p.as_poly(*V) for p in [s, P, Q] ]
if None in polified:
return None
#--- definitions for _integrate
a, b, c = [ p.total_degree() for p in polified ]
poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()
def _exponent(g):
if g.is_Pow:
if g.exp.is_Rational and g.exp.q != 1:
if g.exp.p > 0:
return g.exp.p + g.exp.q - 1
else:
return abs(g.exp.p + g.exp.q)
else:
return 1
elif not g.is_Atom and g.args:
return max([ _exponent(h) for h in g.args ])
else:
return 1
A, B = _exponent(f), a + max(b, c)
if A > 1 and B > 1:
monoms = tuple(itermonomials(V, A + B - 1 + degree_offset))
else:
monoms = tuple(itermonomials(V, A + B + degree_offset))
poly_coeffs = _symbols('A', len(monoms))
poly_part = Add(*[ poly_coeffs[i]*monomial
for i, monomial in enumerate(monoms) ])
reducibles = set()
for poly in polys:
if poly.has(*V):
try:
factorization = factor(poly, greedy=True)
except PolynomialError:
factorization = poly
if factorization.is_Mul:
factors = factorization.args
else:
factors = (factorization, )
for fact in factors:
if fact.is_Pow:
reducibles.add(fact.base)
else:
reducibles.add(fact)
def _integrate(field=None):
irreducibles = set()
atans = set()
pairs = set()
for poly in reducibles:
for z in poly.free_symbols:
if z in V:
break # should this be: `irreducibles |= \
else: # set(root_factors(poly, z, filter=field))`
continue # and the line below deleted?
# |
# V
irreducibles |= set(root_factors(poly, z, filter=field))
log_part, atan_part = [], []
for poly in list(irreducibles):
m = collect(poly, I, evaluate=False)
y = m.get(I, S.Zero)
if y:
x = m.get(S.One, S.Zero)
if x.has(I) or y.has(I):
continue # nontrivial x + I*y
pairs.add((x, y))
irreducibles.remove(poly)
while pairs:
x, y = pairs.pop()
if (x, -y) in pairs:
pairs.remove((x, -y))
# Choosing b with no minus sign
if y.could_extract_minus_sign():
y = -y
irreducibles.add(x*x + y*y)
atans.add(atan(x/y))
else:
irreducibles.add(x + I*y)
B = _symbols('B', len(irreducibles))
C = _symbols('C', len(atans))
# Note: the ordering matters here
for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
if poly.has(*V):
poly_coeffs.append(b)
log_part.append(b * log(poly))
for poly, c in reversed(list(ordered(zip(atans, C)))):
if poly.has(*V):
poly_coeffs.append(c)
atan_part.append(c * poly)
# TODO: Currently it's better to use symbolic expressions here instead
# of rational functions, because it's simpler and FracElement doesn't
# give big speed improvement yet. This is because cancellation is slow
# due to slow polynomial GCD algorithms. If this gets improved then
# revise this code.
candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
h = F - _derivation(candidate) / denom
raw_numer = h.as_numer_denom()[0]
# Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
# that we have to determine. We can't use simply atoms() because log(3),
# sqrt(y) and similar expressions can appear, leading to non-trivial
# domains.
syms = set(poly_coeffs) | set(V)
non_syms = set([])
def find_non_syms(expr):
if expr.is_Integer or expr.is_Rational:
pass # ignore trivial numbers
elif expr in syms:
pass # ignore variables
elif not expr.has(*syms):
non_syms.add(expr)
elif expr.is_Add or expr.is_Mul or expr.is_Pow:
list(map(find_non_syms, expr.args))
else:
# TODO: Non-polynomial expression. This should have been
# filtered out at an earlier stage.
raise PolynomialError
try:
find_non_syms(raw_numer)
except PolynomialError:
return None
else:
ground, _ = construct_domain(non_syms, field=True)
coeff_ring = PolyRing(poly_coeffs, ground)
ring = PolyRing(V, coeff_ring)
try:
numer = ring.from_expr(raw_numer)
except ValueError:
raise PolynomialError
solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)
if solution is None:
return None
else:
return candidate.subs(solution).subs(
list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
if not (F.free_symbols - set(V)):
solution = _integrate('Q')
if solution is None:
solution = _integrate()
else:
solution = _integrate()
if solution is not None:
antideriv = solution.subs(rev_mapping)
antideriv = cancel(antideriv).expand(force=True)
if antideriv.is_Add:
antideriv = antideriv.as_independent(x)[1]
return indep*antideriv
else:
if retries >= 0:
result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
|
bced0ed9a757639b4c5b02e492173deba63c0533702ee9b278ca09920b875663 | """Base class for all the objects in SymPy"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import chain
from .assumptions import BasicMeta, ManagedProperties
from .cache import cacheit
from .sympify import _sympify, sympify, SympifyError
from .compatibility import (iterable, Iterator, ordered,
string_types, with_metaclass, zip_longest, range, PY3, Mapping)
from .singleton import S
from inspect import getmro
def as_Basic(expr):
"""Return expr as a Basic instance using strict sympify
or raise a TypeError; this is just a wrapper to _sympify,
raising a TypeError instead of a SympifyError."""
from sympy.utilities.misc import func_name
try:
return _sympify(expr)
except SympifyError:
raise TypeError(
'Argument must be a Basic object, not `%s`' % func_name(
expr))
class Basic(with_metaclass(ManagedProperties)):
"""
Base class for all objects in SymPy.
Conventions:
1) Always use ``.args``, when accessing parameters of some instance:
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
2) Never use internal methods or variables (the ones prefixed with ``_``):
>>> cot(x)._args # do not use this, use cot(x).args instead
(x,)
"""
__slots__ = ['_mhash', # hash value
'_args', # arguments
'_assumptions'
]
# To be overridden with True in the appropriate subclasses
is_number = False
is_Atom = False
is_Symbol = False
is_symbol = False
is_Indexed = False
is_Dummy = False
is_Wild = False
is_Function = False
is_Add = False
is_Mul = False
is_Pow = False
is_Number = False
is_Float = False
is_Rational = False
is_Integer = False
is_NumberSymbol = False
is_Order = False
is_Derivative = False
is_Piecewise = False
is_Poly = False
is_AlgebraicNumber = False
is_Relational = False
is_Equality = False
is_Boolean = False
is_Not = False
is_Matrix = False
is_Vector = False
is_Point = False
is_MatAdd = False
is_MatMul = False
def __new__(cls, *args):
obj = object.__new__(cls)
obj._assumptions = cls.default_assumptions
obj._mhash = None # will be set by __hash__ method.
obj._args = args # all items in args must be Basic objects
return obj
def copy(self):
return self.func(*self.args)
def __reduce_ex__(self, proto):
""" Pickling support."""
return type(self), self.__getnewargs__(), self.__getstate__()
def __getnewargs__(self):
return self.args
def __getstate__(self):
return {}
def __setstate__(self, state):
for k, v in state.items():
setattr(self, k, v)
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
@property
def assumptions0(self):
"""
Return object `type` assumptions.
For example:
Symbol('x', real=True)
Symbol('x', integer=True)
are different objects. In other words, besides Python type (Symbol in
this case), the initial assumptions are also forming their typeinfo.
Examples
========
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'commutative': True}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'commutative': True, 'complex': True, 'hermitian': True,
'imaginary': False, 'negative': False, 'nonnegative': True,
'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True,
'zero': False}
"""
return {}
def compare(self, other):
"""
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
Not in the mathematical sense. If the object is of a different type
from the "other" then their classes are ordered according to
the sorted_classes list.
Examples
========
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
"""
# all redefinitions of __cmp__ method should start with the
# following lines:
if self is other:
return 0
n1 = self.__class__
n2 = other.__class__
c = (n1 > n2) - (n1 < n2)
if c:
return c
#
st = self._hashable_content()
ot = other._hashable_content()
c = (len(st) > len(ot)) - (len(st) < len(ot))
if c:
return c
for l, r in zip(st, ot):
l = Basic(*l) if isinstance(l, frozenset) else l
r = Basic(*r) if isinstance(r, frozenset) else r
if isinstance(l, Basic):
c = l.compare(r)
else:
c = (l > r) - (l < r)
if c:
return c
return 0
@staticmethod
def _compare_pretty(a, b):
from sympy.series.order import Order
if isinstance(a, Order) and not isinstance(b, Order):
return 1
if not isinstance(a, Order) and isinstance(b, Order):
return -1
if a.is_Rational and b.is_Rational:
l = a.p * b.q
r = b.p * a.q
return (l > r) - (l < r)
else:
from sympy.core.symbol import Wild
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
r_a = a.match(p1 * p2**p3)
if r_a and p3 in r_a:
a3 = r_a[p3]
r_b = b.match(p1 * p2**p3)
if r_b and p3 in r_b:
b3 = r_b[p3]
c = Basic.compare(a3, b3)
if c != 0:
return c
return Basic.compare(a, b)
@classmethod
def fromiter(cls, args, **assumptions):
"""
Create a new object from an iterable.
This is a convenience function that allows one to create objects from
any iterable, without having to convert to a list or tuple first.
Examples
========
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
"""
return cls(*tuple(args), **assumptions)
@classmethod
def class_key(cls):
"""Nice order of classes. """
return 5, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
"""
Return a sort key.
Examples
========
>>> from sympy.core import S, I
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
"""
# XXX: remove this when issue 5169 is fixed
def inner_key(arg):
if isinstance(arg, Basic):
return arg.sort_key(order)
else:
return arg
args = self._sorted_args
args = len(args), tuple([inner_key(arg) for arg in args])
return self.class_key(), args, S.One.sort_key(), S.One
def __eq__(self, other):
"""Return a boolean indicating whether a == b on the basis of
their symbolic trees.
This is the same as a.compare(b) == 0 but faster.
Notes
=====
If a class that overrides __eq__() needs to retain the
implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting __hash__ =
<ParentClass>.__hash__. Otherwise the inheritance of __hash__()
will be blocked, just as if __hash__ had been explicitly set to
None.
References
==========
from http://docs.python.org/dev/reference/datamodel.html#object.__hash__
"""
if self is other:
return True
tself = type(self)
tother = type(other)
if tself is not tother:
try:
other = _sympify(other)
tother = type(other)
except SympifyError:
return NotImplemented
# As long as we have the ordering of classes (sympy.core),
# comparing types will be slow in Python 2, because it uses
# __cmp__. Until we can remove it
# (https://github.com/sympy/sympy/issues/4269), we only compare
# types in Python 2 directly if they actually have __ne__.
if PY3 or type(tself).__ne__ is not type.__ne__:
if tself != tother:
return False
elif tself is not tother:
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
"""a != b -> Compare two symbolic trees and see whether they are different
this is the same as:
a.compare(b) != 0
but faster
"""
return not self == other
def dummy_eq(self, other, symbol=None):
"""
Compare two expressions and handle dummy symbols.
Examples
========
>>> from sympy import Dummy
>>> from sympy.abc import x, y
>>> u = Dummy('u')
>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False
>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False
"""
s = self.as_dummy()
o = _sympify(other)
o = o.as_dummy()
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
if len(dummy_symbols) == 1:
dummy = dummy_symbols.pop()
else:
return s == o
if symbol is None:
symbols = o.free_symbols
if len(symbols) == 1:
symbol = symbols.pop()
else:
return s == o
tmp = dummy.__class__()
return s.subs(dummy, tmp) == o.subs(symbol, tmp)
# Note, we always use the default ordering (lex) in __str__ and __repr__,
# regardless of the global setting. See issue 5487.
def __repr__(self):
"""Method to return the string representation.
Return the expression as a string.
"""
from sympy.printing import sstr
return sstr(self, order=None)
def __str__(self):
from sympy.printing import sstr
return sstr(self, order=None)
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def atoms(self, *types):
"""Returns the atoms that form the current object.
By default, only objects that are truly atomic and can't
be divided into smaller pieces are returned: symbols, numbers,
and number symbols like I and pi. It is possible to request
atoms of any type, however, as demonstrated below.
Examples
========
>>> from sympy import I, pi, sin
>>> from sympy.abc import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
If one or more types are given, the results will contain only
those types of atoms.
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
{1, 2, I, pi}
Note that I (imaginary unit) and zoo (complex infinity) are special
types of number symbols and are not part of the NumberSymbol class.
The type can be given implicitly, too:
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
Be careful to check your assumptions when using the implicit option
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all
integers in an expression:
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
Finally, arguments to atoms() can select more than atomic atoms: any
sympy type (loaded in core/__init__.py) can be listed as an argument
and those types of "atoms" as found in scanning the arguments of the
expression recursively:
>>> from sympy import Function, Mul
>>> from sympy.core.function import AppliedUndef
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
else:
types = (Atom,)
result = set()
for expr in preorder_traversal(self):
if isinstance(expr, types):
result.add(expr)
return result
@property
def free_symbols(self):
"""Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes
this is not true. e.g. Integrals use Symbols for the dummy variables
which are bound variables, so Integral has a method to return all
symbols except those. Derivative keeps track of symbols with respect
to which it will perform a derivative; those are
bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a
free_symbols method."""
return set().union(*[a.free_symbols for a in self.args])
@property
def expr_free_symbols(self):
return set([])
def as_dummy(self):
"""Return the expression with any objects having structurally
bound symbols replaced with unique, canonical symbols within
the object in which they appear and having only the default
assumption for commutativity being True.
Examples
========
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x, y
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
Notes
=====
Any object that has structural dummy variables should have
a property, `bound_symbols` that returns a list of structural
dummy symbols of the object itself.
Lambda and Subs have bound symbols, but because of how they
are cached, they already compare the same regardless of their
bound symbols:
>>> from sympy import Lambda
>>> Lambda(x, x + 1) == Lambda(y, y + 1)
True
"""
def can(x):
d = {i: i.as_dummy() for i in x.bound_symbols}
# mask free that shadow bound
x = x.subs(d)
c = x.canonical_variables
# replace bound
x = x.xreplace(c)
# undo masking
x = x.xreplace(dict((v, k) for k, v in d.items()))
return x
return self.replace(
lambda x: hasattr(x, 'bound_symbols'),
lambda x: can(x))
@property
def canonical_variables(self):
"""Return a dictionary mapping any variable defined in
``self.bound_symbols`` to Symbols that do not clash
with any existing symbol in the expression.
Examples
========
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
"""
from sympy.core.symbol import Symbol
from sympy.utilities.iterables import numbered_symbols
if not hasattr(self, 'bound_symbols'):
return {}
dums = numbered_symbols('_')
reps = {}
v = self.bound_symbols
# this free will include bound symbols that are not part of
# self's bound symbols
free = set([i.name for i in self.atoms(Symbol) - set(v)])
for v in v:
d = next(dums)
if v.is_Symbol:
while v.name == d.name or d.name in free:
d = next(dums)
reps[v] = d
return reps
def rcall(self, *args):
"""Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for
operators. For instance in SymPy the the following will not work:
``(x+Lambda(y, 2*y))(z) == x+2*z``,
however you can use
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
"""
return Basic._recursive_call(self, args)
@staticmethod
def _recursive_call(expr_to_call, on_args):
"""Helper for rcall method.
"""
from sympy import Symbol
def the_call_method_is_overridden(expr):
for cls in getmro(type(expr)):
if '__call__' in cls.__dict__:
return cls != Basic
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
return expr_to_call # transformed into an UndefFunction
else:
return expr_to_call(*on_args)
elif expr_to_call.args:
args = [Basic._recursive_call(
sub, on_args) for sub in expr_to_call.args]
return type(expr_to_call)(*args)
else:
return expr_to_call
def is_hypergeometric(self, k):
from sympy.simplify import hypersimp
return hypersimp(self, k) is not None
@property
def is_comparable(self):
"""Return True if self can be computed to a real number
(or already is a real number) with precision, else False.
Examples
========
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
A False result does not mean that `self` cannot be rewritten
into a form that would be comparable. For example, the
difference computed below is zero but without simplification
it does not evaluate to a zero with precision:
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2)._prec
1
"""
is_real = self.is_real
if is_real is False:
return False
if not self.is_number:
return False
# don't re-eval numbers that are already evaluated since
# this will create spurious precision
n, i = [p.evalf(2) if not p.is_Number else p
for p in self.as_real_imag()]
if not (i.is_Number and n.is_Number):
return False
if i:
# if _prec = 1 we can't decide and if not,
# the answer is False because numbers with
# imaginary parts can't be compared
# so return False
return False
else:
return n._prec != 1
@property
def func(self):
"""
The top-level function in an expression.
The following should hold for all objects::
>> x == x.func(*x.args)
Examples
========
>>> from sympy.abc import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
"""
return self.__class__
@property
def args(self):
"""Returns a tuple of arguments of 'self'.
Examples
========
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
Notes
=====
Never use self._args, always use self.args.
Only use _args in __new__ when creating a new function.
Don't override .args() from Basic (so that it's easy to
change the interface in the future if needed).
"""
return self._args
@property
def _sorted_args(self):
"""
The same as ``args``. Derived classes which don't fix an
order on their arguments should override this method to
produce the sorted representation.
"""
return self.args
def as_poly(self, *gens, **args):
"""Converts ``self`` to a polynomial or returns ``None``.
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y))
None
"""
from sympy.polys import Poly, PolynomialError
try:
poly = Poly(self, *gens, **args)
if not poly.is_Poly:
return None
else:
return poly
except PolynomialError:
return None
def as_content_primitive(self, radical=False, clear=True):
"""A stub to allow Basic args (like Tuple) to be skipped when computing
the content and primitive components of an expression.
See Also
========
sympy.core.expr.Expr.as_content_primitive
"""
return S.One, self
def subs(self, *args, **kwargs):
"""
Substitutes old for new in an expression after sympifying args.
`args` is either:
- two arguments, e.g. foo.subs(old, new)
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the
replacements are processed in the order given with successive
patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs.
In this case the old/new pairs will be sorted by op count and in
case of a tie, by number of args and the default_sort_key. The
resulting sorted list is then processed as an iterable container
(see previous).
If the keyword ``simultaneous`` is True, the subexpressions will not be
evaluated until all the substitutions have been made.
Examples
========
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
To replace only the x**2 but not the x**4, use xreplace:
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
To delay evaluation until all substitutions have been made,
set the keyword ``simultaneous`` to True:
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
This has the added feature of not allowing subsequent substitutions
to affect those already made:
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
In order to obtain a canonical result, unordered iterables are
sorted by count_op length, number of arguments and by the
default_sort_key to break any ties. All other iterables are left
unsorted.
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e
>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
The resulting expression represents a literal replacement of the
old arguments with the new arguments. This may not reflect the
limiting behavior of the expression:
>>> (x**3 - 3*x).subs({x: oo})
nan
>>> limit(x**3 - 3*x, x, oo)
oo
If the substitution will be followed by numerical
evaluation, it is better to pass the substitution to
evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830
as the former will ensure that the desired level of precision is
obtained.
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
xreplace: exact node replacement in expr tree; also capable of
using matching rules
evalf: calculates the given formula to a desired level of precision
"""
from sympy.core.containers import Dict
from sympy.utilities import default_sort_key
from sympy import Dummy, Symbol
unordered = False
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, set):
unordered = True
elif isinstance(sequence, (Dict, Mapping)):
unordered = True
sequence = sequence.items()
elif not iterable(sequence):
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
When a single argument is passed to subs
it should be a dictionary of old: new pairs or an iterable
of (old, new) tuples."""))
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
sequence = list(sequence)
for i, s in enumerate(sequence):
if isinstance(s[0], string_types):
# when old is a string we prefer Symbol
s = Symbol(s[0]), s[1]
try:
s = [sympify(_, strict=not isinstance(_, string_types))
for _ in s]
except SympifyError:
# if it can't be sympified, skip it
sequence[i] = None
continue
# skip if there is no change
sequence[i] = None if _aresame(*s) else tuple(s)
sequence = list(filter(None, sequence))
if unordered:
sequence = dict(sequence)
if not all(k.is_Atom for k in sequence):
d = {}
for o, n in sequence.items():
try:
ops = o.count_ops(), len(o.args)
except TypeError:
ops = (0, 0)
d.setdefault(ops, []).append((o, n))
newseq = []
for k in sorted(d.keys(), reverse=True):
newseq.extend(
sorted([v[0] for v in d[k]], key=default_sort_key))
sequence = [(k, sequence[k]) for k in newseq]
del newseq, d
else:
sequence = sorted([(k, v) for (k, v) in sequence.items()],
key=default_sort_key)
if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs?
reps = {}
rv = self
kwargs['hack2'] = True
m = Dummy()
for old, new in sequence:
d = Dummy(commutative=new.is_commutative)
# using d*m so Subs will be used on dummy variables
# in things like Derivative(f(x, y), x) in which x
# is both free and bound
rv = rv._subs(old, d*m, **kwargs)
if not isinstance(rv, Basic):
break
reps[d] = new
reps[m] = S.One # get rid of m
return rv.xreplace(reps)
else:
rv = self
for old, new in sequence:
rv = rv._subs(old, new, **kwargs)
if not isinstance(rv, Basic):
break
return rv
@cacheit
def _subs(self, old, new, **hints):
"""Substitutes an expression old -> new.
If self is not equal to old then _eval_subs is called.
If _eval_subs doesn't want to make any special replacement
then a None is received which indicates that the fallback
should be applied wherein a search for replacements is made
amongst the arguments of self.
>>> from sympy import Add
>>> from sympy.abc import x, y, z
Examples
========
Add's _eval_subs knows how to target x + y in the following
so it makes the change:
>>> (x + y + z).subs(x + y, 1)
z + 1
Add's _eval_subs doesn't need to know how to find x + y in
the following:
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
True
The returned None will cause the fallback routine to traverse the args and
pass the z*(x + y) arg to Mul where the change will take place and the
substitution will succeed:
>>> (z*(x + y) + 3).subs(x + y, 1)
z + 3
** Developers Notes **
An _eval_subs routine for a class should be written if:
1) any arguments are not instances of Basic (e.g. bool, tuple);
2) some arguments should not be targeted (as in integration
variables);
3) if there is something other than a literal replacement
that should be attempted (as in Piecewise where the condition
may be updated without doing a replacement).
If it is overridden, here are some special cases that might arise:
1) If it turns out that no special change was made and all
the original sub-arguments should be checked for
replacements then None should be returned.
2) If it is necessary to do substitutions on a portion of
the expression then _subs should be called. _subs will
handle the case of any sub-expression being equal to old
(which usually would not be the case) while its fallback
will handle the recursion into the sub-arguments. For
example, after Add's _eval_subs removes some matching terms
it must process the remaining terms so it calls _subs
on each of the un-matched terms and then adds them
onto the terms previously obtained.
3) If the initial expression should remain unchanged then
the original expression should be returned. (Whenever an
expression is returned, modified or not, no further
substitution of old -> new is attempted.) Sum's _eval_subs
routine uses this strategy when a substitution is attempted
on any of its summation variables.
"""
def fallback(self, old, new):
"""
Try to replace old with new in any of self's arguments.
"""
hit = False
args = list(self.args)
for i, arg in enumerate(args):
if not hasattr(arg, '_eval_subs'):
continue
arg = arg._subs(old, new, **hints)
if not _aresame(arg, args[i]):
hit = True
args[i] = arg
if hit:
rv = self.func(*args)
hack2 = hints.get('hack2', False)
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
coeff = S.One
nonnumber = []
for i in args:
if i.is_Number:
coeff *= i
else:
nonnumber.append(i)
nonnumber = self.func(*nonnumber)
if coeff is S.One:
return nonnumber
else:
return self.func(coeff, nonnumber, evaluate=False)
return rv
return self
if _aresame(self, old):
return new
rv = self._eval_subs(old, new)
if rv is None:
rv = fallback(self, old, new)
return rv
def _eval_subs(self, old, new):
"""Override this stub if you want to do anything more than
attempt a replacement of old with new in the arguments of self.
See also: _subs
"""
return None
def xreplace(self, rule):
"""
Replace occurrences of objects within the expression.
Parameters
==========
rule : dict-like
Expresses a replacement rule
Returns
=======
xreplace : the result of the replacement
Examples
========
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
Replacements occur only if an entire node in the expression tree is
matched:
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
xreplace doesn't differentiate between free and bound symbols. In the
following, subs(x, y) would not change x since it is a bound symbol,
but xreplace does:
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
Trying to replace x with an expression raises an error:
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
subs: substitution of subexpressions as defined by the objects
themselves.
"""
value, _ = self._xreplace(rule)
return value
def _xreplace(self, rule):
"""
Helper for xreplace. Tracks whether a replacement actually occurred.
"""
if self in rule:
return rule[self], True
elif rule:
args = []
changed = False
for a in self.args:
_xreplace = getattr(a, '_xreplace', None)
if _xreplace is not None:
a_xr = _xreplace(rule)
args.append(a_xr[0])
changed |= a_xr[1]
else:
args.append(a)
args = tuple(args)
if changed:
return self.func(*args), True
return self, False
@cacheit
def has(self, *patterns):
"""
Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
Note ``has`` is a structural algorithm with no knowledge of
mathematics. Consider the following half-open interval:
>>> from sympy.sets import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
>>> i.args
(0, 5, True, False)
>>> i.has(4) # there is no "4" in the arguments
False
>>> i.has(0) # there *is* a "0" in the arguments
True
Instead, use ``contains`` to determine whether a number is in the
interval or not:
>>> i.contains(4)
True
>>> i.contains(0)
False
Note that ``expr.has(*patterns)`` is exactly equivalent to
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
returned when the list of patterns is empty.
>>> x.has()
False
"""
return any(self._has(pattern) for pattern in patterns)
def _has(self, pattern):
"""Helper for .has()"""
from sympy.core.function import UndefinedFunction, Function
if isinstance(pattern, UndefinedFunction):
return any(f.func == pattern or f == pattern
for f in self.atoms(Function, UndefinedFunction))
pattern = sympify(pattern)
if isinstance(pattern, BasicMeta):
return any(isinstance(arg, pattern)
for arg in preorder_traversal(self))
_has_matcher = getattr(pattern, '_has_matcher', None)
if _has_matcher is not None:
match = _has_matcher()
return any(match(arg) for arg in preorder_traversal(self))
else:
return any(arg == pattern for arg in preorder_traversal(self))
def _has_matcher(self):
"""Helper for .has()"""
return lambda other: self == other
def replace(self, query, value, map=False, simultaneous=True, exact=None):
"""
Replace matching subexpressions of ``self`` with ``value``.
If ``map = True`` then also return the mapping {old: new} where ``old``
was a sub-expression found with query and ``new`` is the replacement
value for it. If the expression itself doesn't match the query, then
the returned value will be ``self.xreplace(map)`` otherwise it should
be ``self.subs(ordered(map.items()))``.
Traverses an expression tree and performs replacement of matching
subexpressions from the bottom to the top of the tree. The default
approach is to do the replacement in a simultaneous fashion so
changes made are targeted only once. If this is not desired or causes
problems, ``simultaneous`` can be set to False.
In addition, if an expression containing more than one Wild symbol
is being used to match subexpressions and the ``exact`` flag is None
it will be set to True so the match will only succeed if all non-zero
values are received for each Wild that appears in the match pattern.
Setting this to False accepts a match of 0; while setting it True
accepts all matches that have a 0 in them. See example below for
cautions.
The list of possible combinations of queries and replacement values
is listed below:
Examples
========
Initial setup
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
1.1. type -> type
obj.replace(type, newtype)
When object of type ``type`` is found, replace it with the
result of passing its argument(s) to ``newtype``.
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
(cos(x), {sin(x): cos(x)})
>>> (x*y).replace(Mul, Add)
x + y
1.2. type -> func
obj.replace(type, func)
When object of type ``type`` is found, apply ``func`` to its
argument(s). ``func`` must be written to handle the number
of arguments of ``type``.
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching ``pattern`` with the expression
written in terms of the Wild symbols in ``pattern``.
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
Matching is exact by default when more than one Wild symbol
is used: matching fails unless the match gives non-zero
values for all Wild symbols:
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
>>> (2*x).replace(a*x + b, b - a)
2*x
When set to False, the results may be non-intuitive:
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of
pattern variables is used rather than an expression:
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
3.1. func -> func
obj.replace(filter, func)
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
is True.
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
The expression itself is also targeted by the query but is done in
such a fashion that changes are not made twice.
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
When matching a single symbol, `exact` will default to True, but
this may or may not be the behavior that is desired:
Here, we want `exact=False`:
>>> from sympy import Function
>>> f = Function('f')
>>> e = f(1) + f(0)
>>> q = f(a), lambda a: f(a + 1)
>>> e.replace(*q, exact=False)
f(1) + f(2)
>>> e.replace(*q, exact=True)
f(0) + f(2)
But here, the nature of matching makes selecting
the right setting tricky:
>>> e = x**(1 + y)
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
1
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(-x - y + 1)
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
1
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(1 - y)
It is probably better to use a different form of the query
that describes the target expression more precisely:
>>> (1 + x**(1 + y)).replace(
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
... lambda x: x.base**(1 - (x.exp - 1)))
...
x**(1 - y) + 1
See Also
========
subs: substitution of subexpressions as defined by the objects
themselves.
xreplace: exact node replacement in expr tree; also capable of
using matching rules
"""
from sympy.core.symbol import Dummy, Wild
from sympy.simplify.simplify import bottom_up
try:
query = _sympify(query)
except SympifyError:
pass
try:
value = _sympify(value)
except SympifyError:
pass
if isinstance(query, type):
_query = lambda expr: isinstance(expr, query)
if isinstance(value, type):
_value = lambda expr, result: value(*expr.args)
elif callable(value):
_value = lambda expr, result: value(*expr.args)
else:
raise TypeError(
"given a type, replace() expects another "
"type or a callable")
elif isinstance(query, Basic):
_query = lambda expr: expr.match(query)
if exact is None:
exact = (len(query.atoms(Wild)) > 1)
if isinstance(value, Basic):
if exact:
_value = lambda expr, result: (value.subs(result)
if all(result.values()) else expr)
else:
_value = lambda expr, result: value.subs(result)
elif callable(value):
# match dictionary keys get the trailing underscore stripped
# from them and are then passed as keywords to the callable;
# if ``exact`` is True, only accept match if there are no null
# values amongst those matched.
if exact:
_value = lambda expr, result: (value(**
{str(k)[:-1]: v for k, v in result.items()})
if all(val for val in result.values()) else expr)
else:
_value = lambda expr, result: value(**
{str(k)[:-1]: v for k, v in result.items()})
else:
raise TypeError(
"given an expression, replace() expects "
"another expression or a callable")
elif callable(query):
_query = query
if callable(value):
_value = lambda expr, result: value(expr)
else:
raise TypeError(
"given a callable, replace() expects "
"another callable")
else:
raise TypeError(
"first argument to replace() must be a "
"type, an expression or a callable")
mapping = {} # changes that took place
mask = [] # the dummies that were used as change placeholders
def rec_replace(expr):
result = _query(expr)
if result or result == {}:
new = _value(expr, result)
if new is not None and new != expr:
mapping[expr] = new
if simultaneous:
# don't let this expression be changed during rebuilding
com = getattr(new, 'is_commutative', True)
if com is None:
com = True
d = Dummy(commutative=com)
mask.append((d, new))
expr = d
else:
expr = new
return expr
rv = bottom_up(self, rec_replace, atoms=True)
# restore original expressions for Dummy symbols
if simultaneous:
mask = list(reversed(mask))
for o, n in mask:
r = {o: n}
rv = rv.xreplace(r)
if not map:
return rv
else:
if simultaneous:
# restore subexpressions in mapping
for o, n in mask:
r = {o: n}
mapping = {k.xreplace(r): v.xreplace(r)
for k, v in mapping.items()}
return rv, mapping
def find(self, query, group=False):
"""Find all subexpressions matching a query. """
query = _make_find_query(query)
results = list(filter(query, preorder_traversal(self)))
if not group:
return set(results)
else:
groups = {}
for result in results:
if result in groups:
groups[result] += 1
else:
groups[result] = 1
return groups
def count(self, query):
"""Count the number of matching subexpressions. """
query = _make_find_query(query)
return sum(bool(query(sub)) for sub in preorder_traversal(self))
def matches(self, expr, repl_dict={}, old=False):
"""
Helper method for match() that looks for a match between Wild symbols
in self and expressions in expr.
Examples
========
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
"""
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict.copy()
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
def match(self, pattern, old=False):
"""
Pattern matching.
Wild symbols match all.
Return ``None`` when expression (self) does not match
with pattern. Otherwise return a dictionary such that::
pattern.xreplace(self.match(pattern)) == self
Examples
========
>>> from sympy import Wild
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
The ``old`` flag will give the old-style pattern matching where
expressions and patterns are essentially solved to give the
match. Both of the following give None unless ``old=True``:
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
"""
pattern = sympify(pattern)
return pattern.matches(self, old=old)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from sympy import count_ops
return count_ops(self, visual)
def doit(self, **hints):
"""Evaluate objects that are not evaluated by default like limits,
integrals, sums and products. All objects of this kind will be
evaluated recursively, unless some species were excluded via 'hints'
or unless the 'deep' hint was set to 'False'.
>>> from sympy import Integral
>>> from sympy.abc import x
>>> 2*Integral(x, x)
2*Integral(x, x)
>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
"""
if hints.get('deep', True):
terms = [term.doit(**hints) if isinstance(term, Basic) else term
for term in self.args]
return self.func(*terms)
else:
return self
def _eval_rewrite(self, pattern, rule, **hints):
if self.is_Atom:
if hasattr(self, rule):
return getattr(self, rule)()
return self
if hints.get('deep', True):
args = [a._eval_rewrite(pattern, rule, **hints)
if isinstance(a, Basic) else a
for a in self.args]
else:
args = self.args
if pattern is None or isinstance(self, pattern):
if hasattr(self, rule):
rewritten = getattr(self, rule)(*args, **hints)
if rewritten is not None:
return rewritten
return self.func(*args) if hints.get('evaluate', True) else self
def _accept_eval_derivative(self, s):
# This method needs to be overridden by array-like objects
return s._visit_eval_derivative_scalar(self)
def _visit_eval_derivative_scalar(self, base):
# Base is a scalar
# Types are (base: scalar, self: scalar)
return base._eval_derivative(self)
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: scalar)
# Base is some kind of array/matrix,
# it should have `.applyfunc(lambda x: x.diff(self)` implemented:
return base._eval_derivative_array(self)
def _eval_derivative_n_times(self, s, n):
# This is the default evaluator for derivatives (as called by `diff`
# and `Derivative`), it will attempt a loop to derive the expression
# `n` times by calling the corresponding `_eval_derivative` method,
# while leaving the derivative unevaluated if `n` is symbolic. This
# method should be overridden if the object has a closed form for its
# symbolic n-th derivative.
from sympy import Integer
if isinstance(n, (int, Integer)):
obj = self
for i in range(n):
obj2 = obj._accept_eval_derivative(s)
if obj == obj2 or obj2 is None:
break
obj = obj2
return obj2
else:
return None
def rewrite(self, *args, **hints):
""" Rewrite functions in terms of other functions.
Rewrites expression containing applications of functions
of one kind in terms of functions of different kind. For
example you can rewrite trigonometric functions as complex
exponentials or combinatorial functions as gamma function.
As a pattern this function accepts a list of functions to
to rewrite (instances of DefinedFunction class). As rule
you can use string or a destination function instance (in
this case rewrite() will use the str() function).
There is also the possibility to pass hints on how to rewrite
the given expressions. For now there is only one such hint
defined called 'deep'. When 'deep' is set to False it will
forbid functions to rewrite their contents.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x
Unspecified pattern:
>>> sin(x).rewrite(exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a single function:
>>> sin(x).rewrite(sin, exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a list of functions:
>>> sin(x).rewrite([sin, ], exp)
-I*(exp(I*x) - exp(-I*x))/2
"""
if not args:
return self
else:
pattern = args[:-1]
if isinstance(args[-1], string_types):
rule = '_eval_rewrite_as_' + args[-1]
else:
try:
rule = '_eval_rewrite_as_' + args[-1].__name__
except:
rule = '_eval_rewrite_as_' + args[-1].__class__.__name__
if not pattern:
return self._eval_rewrite(None, rule, **hints)
else:
if iterable(pattern[0]):
pattern = pattern[0]
pattern = [p for p in pattern if self.has(p)]
if pattern:
return self._eval_rewrite(tuple(pattern), rule, **hints)
else:
return self
_constructor_postprocessor_mapping = {}
@classmethod
def _exec_constructor_postprocessors(cls, obj):
# WARNING: This API is experimental.
# This is an experimental API that introduces constructor
# postprosessors for SymPy Core elements. If an argument of a SymPy
# expression has a `_constructor_postprocessor_mapping` attribute, it will
# be interpreted as a dictionary containing lists of postprocessing
# functions for matching expression node names.
clsname = obj.__class__.__name__
postprocessors = defaultdict(list)
for i in obj.args:
try:
postprocessor_mappings = (
Basic._constructor_postprocessor_mapping[cls].items()
for cls in type(i).mro()
if cls in Basic._constructor_postprocessor_mapping
)
for k, v in chain.from_iterable(postprocessor_mappings):
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
except TypeError:
pass
for f in postprocessors.get(clsname, []):
obj = f(obj)
return obj
class Atom(Basic):
"""
A parent class for atomic things. An atom is an expression with no subexpressions.
Examples
========
Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_Atom = True
__slots__ = []
def matches(self, expr, repl_dict={}, old=False):
if self == expr:
return repl_dict
def xreplace(self, rule, hack2=False):
return rule.get(self, self)
def doit(self, **hints):
return self
@classmethod
def class_key(cls):
return 2, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def _eval_simplify(self, ratio, measure, rational, inverse):
return self
@property
def _sorted_args(self):
# this is here as a safeguard against accidentally using _sorted_args
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
# since there are no args. So the calling routine should be checking
# to see that this property is not called for Atoms.
raise AttributeError('Atoms have no args. It might be necessary'
' to make a check for Atoms in the calling code.')
def _aresame(a, b):
"""Return True if a and b are structurally the same, else False.
Examples
========
To SymPy, 2.0 == 2:
>>> from sympy import S
>>> 2.0 == S(2)
True
Since a simple 'same or not' result is sometimes useful, this routine was
written to provide that query:
>>> from sympy.core.basic import _aresame
>>> _aresame(S(2.0), S(2))
False
"""
from .function import AppliedUndef, UndefinedFunction as UndefFunc
for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)):
if i != j or type(i) != type(j):
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
if i.class_key() != j.class_key():
return False
else:
return False
return True
def _atomic(e, recursive=False):
"""Return atom-like quantities as far as substitution is
concerned: Derivatives, Functions and Symbols. Don't
return any 'atoms' that are inside such quantities unless
they also appear outside, too, unless `recursive` is True.
Examples
========
>>> from sympy import Derivative, Function, cos
>>> from sympy.abc import x, y
>>> from sympy.core.basic import _atomic
>>> f = Function('f')
>>> _atomic(x + y)
{x, y}
>>> _atomic(x + f(y))
{x, f(y)}
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
{y, cos(x), Derivative(f(x), x)}
"""
from sympy import Derivative, Function, Symbol
pot = preorder_traversal(e)
seen = set()
if isinstance(e, Basic):
free = getattr(e, "free_symbols", None)
if free is None:
return {e}
else:
return set()
atoms = set()
for p in pot:
if p in seen:
pot.skip()
continue
seen.add(p)
if isinstance(p, Symbol) and p in free:
atoms.add(p)
elif isinstance(p, (Derivative, Function)):
if not recursive:
pot.skip()
atoms.add(p)
return atoms
class preorder_traversal(Iterator):
"""
Do a pre-order traversal of a tree.
This iterator recursively yields nodes that it has visited in a pre-order
fashion. That is, it yields the current node then descends through the
tree breadth-first to yield all of a node's children's pre-order
traversal.
For an expression, the order of the traversal depends on the order of
.args, which in many cases can be arbitrary.
Parameters
==========
node : sympy expression
The expression to traverse.
keys : (default None) sort key(s)
The key(s) used to sort args of Basic objects. When None, args of Basic
objects are processed in arbitrary order. If key is defined, it will
be passed along to ordered() as the only key(s) to use to sort the
arguments; if ``key`` is simply True then the default keys of ordered
will be used.
Yields
======
subtree : sympy expression
All of the subtrees in the tree.
Examples
========
>>> from sympy import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
The nodes are returned in the order that they are encountered unless key
is given; simply passing key=True will guarantee that the traversal is
unique.
>>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP
[z*(x + y), z, x + y, y, x]
>>> list(preorder_traversal((x + y)*z, keys=True))
[z*(x + y), z, x + y, x, y]
"""
def __init__(self, node, keys=None):
self._skip_flag = False
self._pt = self._preorder_traversal(node, keys)
def _preorder_traversal(self, node, keys):
yield node
if self._skip_flag:
self._skip_flag = False
return
if isinstance(node, Basic):
if not keys and hasattr(node, '_argset'):
# LatticeOp keeps args as a set. We should use this if we
# don't care about the order, to prevent unnecessary sorting.
args = node._argset
else:
args = node.args
if keys:
if keys != True:
args = ordered(args, keys, default=False)
else:
args = ordered(args)
for arg in args:
for subtree in self._preorder_traversal(arg, keys):
yield subtree
elif iterable(node):
for item in node:
for subtree in self._preorder_traversal(item, keys):
yield subtree
def skip(self):
"""
Skip yielding current node's (last yielded node's) subtrees.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
>>> pt = preorder_traversal((x+y*z)*z)
>>> for i in pt:
... print(i)
... if i == x+y*z:
... pt.skip()
z*(x + y*z)
z
x + y*z
"""
self._skip_flag = True
def __next__(self):
return next(self._pt)
def __iter__(self):
return self
def _make_find_query(query):
"""Convert the argument of Basic.find() into a callable"""
try:
query = sympify(query)
except SympifyError:
pass
if isinstance(query, type):
return lambda expr: isinstance(expr, query)
elif isinstance(query, Basic):
return lambda expr: expr.match(query) is not None
return query
|
a9aa712f88f0f22d9c877452fae5d3b01758eca1d87246183a2f706acdc78a36 | """
There are three types of functions implemented in SymPy:
1) defined functions (in the sense that they can be evaluated) like
exp or sin; they have a name and a body:
f = exp
2) undefined function which have a name but no body. Undefined
functions can be defined using a Function class as follows:
f = Function('f')
(the result will be a Function instance)
3) anonymous function (or lambda function) which have a body (defined
with dummy variables) but have no name:
f = Lambda(x, exp(x)*x)
f = Lambda((x, y), exp(x)*y)
The fourth type of functions are composites, like (sin + cos)(x); these work in
SymPy core, but are not yet part of SymPy.
Examples
========
>>> import sympy
>>> f = sympy.Function("f")
>>> from sympy.abc import x
>>> f(x)
f(x)
>>> print(sympy.srepr(f(x).func))
Function('f')
>>> f(x).args
(x,)
"""
from __future__ import print_function, division
from .add import Add
from .assumptions import ManagedProperties, _assume_defined
from .basic import Basic, _atomic
from .cache import cacheit
from .compatibility import iterable, is_sequence, as_int, ordered, Iterable
from .decorators import _sympifyit
from .expr import Expr, AtomicExpr
from .numbers import Rational, Float
from .operations import LatticeOp
from .rules import Transform
from .singleton import S
from .sympify import sympify
from sympy.core.containers import Tuple, Dict
from sympy.core.logic import fuzzy_and
from sympy.core.compatibility import string_types, with_metaclass, PY3, range
from sympy.utilities import default_sort_key
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import has_dups, sift
from sympy.core.evaluate import global_evaluate
import mpmath
import mpmath.libmp as mlib
import inspect
from collections import Counter
def _coeff_isneg(a):
"""Return True if the leading Number is negative.
Examples
========
>>> from sympy.core.function import _coeff_isneg
>>> from sympy import S, Symbol, oo, pi
>>> _coeff_isneg(-3*pi)
True
>>> _coeff_isneg(S(3))
False
>>> _coeff_isneg(-oo)
True
>>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1
False
For matrix expressions:
>>> from sympy import MatrixSymbol, sqrt
>>> A = MatrixSymbol("A", 3, 3)
>>> _coeff_isneg(-sqrt(2)*A)
True
>>> _coeff_isneg(sqrt(2)*A)
False
"""
if a.is_MatMul:
a = a.args[0]
if a.is_Mul:
a = a.args[0]
return a.is_Number and a.is_negative
class PoleError(Exception):
pass
class ArgumentIndexError(ValueError):
def __str__(self):
return ("Invalid operation with argument number %s for Function %s" %
(self.args[1], self.args[0]))
# Python 2/3 version that does not raise a Deprecation warning
def arity(cls):
"""Return the arity of the function if it is known, else None.
When default values are specified for some arguments, they are
optional and the arity is reported as a tuple of possible values.
Examples
========
>>> from sympy.core.function import arity
>>> from sympy import log
>>> arity(lambda x: x)
1
>>> arity(log)
(1, 2)
>>> arity(lambda *x: sum(x)) is None
True
"""
eval_ = getattr(cls, 'eval', cls)
if PY3:
parameters = inspect.signature(eval_).parameters.items()
if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]:
return
p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD]
# how many have no default and how many have a default value
no, yes = map(len, sift(p_or_k,
lambda p:p.default == p.empty, binary=True))
return no if not yes else tuple(range(no, no + yes + 1))
else:
cls_ = int(hasattr(cls, 'eval')) # correction for cls arguments
evalargspec = inspect.getargspec(eval_)
if evalargspec.varargs:
return
else:
evalargs = len(evalargspec.args) - cls_
if evalargspec.defaults:
# if there are default args then they are optional; the
# fewest args will occur when all defaults are used and
# the most when none are used (i.e. all args are given)
fewest = evalargs - len(evalargspec.defaults)
return tuple(range(fewest, evalargs + 1))
return evalargs
class FunctionClass(ManagedProperties):
"""
Base class for function classes. FunctionClass is a subclass of type.
Use Function('<function name>' [ , signature ]) to create
undefined function classes.
"""
_new = type.__new__
def __init__(cls, *args, **kwargs):
# honor kwarg value or class-defined value before using
# the number of arguments in the eval function (if present)
nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls)))
# Canonicalize nargs here; change to set in nargs.
if is_sequence(nargs):
if not nargs:
raise ValueError(filldedent('''
Incorrectly specified nargs as %s:
if there are no arguments, it should be
`nargs = 0`;
if there are any number of arguments,
it should be
`nargs = None`''' % str(nargs)))
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
cls._nargs = nargs
super(FunctionClass, cls).__init__(*args, **kwargs)
@property
def __signature__(self):
"""
Allow Python 3's inspect.signature to give a useful signature for
Function subclasses.
"""
# Python 3 only, but backports (like the one in IPython) still might
# call this.
try:
from inspect import signature
except ImportError:
return None
# TODO: Look at nargs
return signature(self.eval)
@property
def free_symbols(self):
return set()
@property
def xreplace(self):
# Function needs args so we define a property that returns
# a function that takes args...and then use that function
# to return the right value
return lambda rule, **_: rule.get(self, self)
@property
def nargs(self):
"""Return a set of the allowed number of arguments for the function.
Examples
========
>>> from sympy.core.function import Function
>>> from sympy.abc import x, y
>>> f = Function('f')
If the function can take any number of arguments, the set of whole
numbers is returned:
>>> Function('f').nargs
Naturals0
If the function was initialized to accept one or more arguments, a
corresponding set will be returned:
>>> Function('f', nargs=1).nargs
{1}
>>> Function('f', nargs=(2, 1)).nargs
{1, 2}
The undefined function, after application, also has the nargs
attribute; the actual number of arguments is always available by
checking the ``args`` attribute:
>>> f = Function('f')
>>> f(1).nargs
Naturals0
>>> len(f(1).args)
1
"""
from sympy.sets.sets import FiniteSet
# XXX it would be nice to handle this in __init__ but there are import
# problems with trying to import FiniteSet there
return FiniteSet(*self._nargs) if self._nargs else S.Naturals0
def __repr__(cls):
return cls.__name__
class Application(with_metaclass(FunctionClass, Basic)):
"""
Base class for applied functions.
Instances of Application represent the result of applying an application of
any type to any object.
"""
is_Function = True
@cacheit
def __new__(cls, *args, **options):
from sympy.sets.fancysets import Naturals0
from sympy.sets.sets import FiniteSet
args = list(map(sympify, args))
evaluate = options.pop('evaluate', global_evaluate[0])
# WildFunction (and anything else like it) may have nargs defined
# and we throw that value away here
options.pop('nargs', None)
if options:
raise ValueError("Unknown options: %s" % options)
if evaluate:
evaluated = cls.eval(*args)
if evaluated is not None:
return evaluated
obj = super(Application, cls).__new__(cls, *args, **options)
# make nargs uniform here
sentinel = object()
objnargs = getattr(obj, "nargs", sentinel)
if objnargs is not sentinel:
# things passing through here:
# - functions subclassed from Function (e.g. myfunc(1).nargs)
# - functions like cos(1).nargs
# - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs
# Canonicalize nargs here
if is_sequence(objnargs):
nargs = tuple(ordered(set(objnargs)))
elif objnargs is not None:
nargs = (as_int(objnargs),)
else:
nargs = None
else:
# things passing through here:
# - WildFunction('f').nargs
# - AppliedUndef with no nargs like Function('f')(1).nargs
nargs = obj._nargs # note the underscore here
# convert to FiniteSet
obj.nargs = FiniteSet(*nargs) if nargs else Naturals0()
return obj
@classmethod
def eval(cls, *args):
"""
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be
instantiated and it should return either some simplified instance
(possible of some other class), or if the class cls should be
unmodified, return None.
Examples of eval() for the function "sign"
---------------------------------------------
.. code-block:: python
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero
if arg.is_positive: return S.One
if arg.is_negative: return S.NegativeOne
if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One:
return cls(coeff) * cls(terms)
"""
return
@property
def func(self):
return self.__class__
def _eval_subs(self, old, new):
if (old.is_Function and new.is_Function and
callable(old) and callable(new) and
old == self.func and len(self.args) in new.nargs):
return new(*[i._subs(old, new) for i in self.args])
class Function(Application, Expr):
"""
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.
Examples
========
First example shows how to use Function as a constructor for undefined
function classes:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> g = Function('g')(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
Assumptions can be passed to Function.
>>> f_real = Function('f', real=True)
>>> f_real(x).is_real
True
Note that assumptions on a function are unrelated to the assumptions on
the variable it is called on. If you want to add a relationship, subclass
Function and define the appropriate ``_eval_is_assumption`` methods.
In the following example Function is used as a base class for
``my_func`` that represents a mathematical function *my_func*. Suppose
that it is well known, that *my_func(0)* is *1* and *my_func* at infinity
goes to *0*, so we want those two simplifications to occur automatically.
Suppose also that *my_func(x)* is real exactly when *x* is real. Here is
an implementation that honours those requirements:
>>> from sympy import Function, S, oo, I, sin
>>> class my_func(Function):
...
... @classmethod
... def eval(cls, x):
... if x.is_Number:
... if x is S.Zero:
... return S.One
... elif x is S.Infinity:
... return S.Zero
...
... def _eval_is_real(self):
... return self.args[0].is_real
...
>>> x = S('x')
>>> my_func(0) + sin(0)
1
>>> my_func(oo)
0
>>> my_func(3.54).n() # Not yet implemented for my_func.
my_func(3.54)
>>> my_func(I).is_real
False
In order for ``my_func`` to become useful, several other methods would
need to be implemented. See source code of some of the already
implemented functions for more complete examples.
Also, if the function can take more than one argument, then ``nargs``
must be defined, e.g. if ``my_func`` can take one or two arguments
then,
>>> class my_func(Function):
... nargs = (1, 2)
...
>>>
"""
@property
def _diff_wrt(self):
return False
@cacheit
def __new__(cls, *args, **options):
# Handle calls like Function('f')
if cls is Function:
return UndefinedFunction(*args, **options)
n = len(args)
if n not in cls.nargs:
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
temp = ('%(name)s takes %(qual)s %(args)s '
'argument%(plural)s (%(given)s given)')
raise TypeError(temp % {
'name': cls,
'qual': 'exactly' if len(cls.nargs) == 1 else 'at least',
'args': min(cls.nargs),
'plural': 's'*(min(cls.nargs) != 1),
'given': n})
evaluate = options.get('evaluate', global_evaluate[0])
result = super(Function, cls).__new__(cls, *args, **options)
if evaluate and isinstance(result, cls) and result.args:
pr2 = min(cls._should_evalf(a) for a in result.args)
if pr2 > 0:
pr = max(cls._should_evalf(a) for a in result.args)
result = result.evalf(mlib.libmpf.prec_to_dps(pr))
return result
@classmethod
def _should_evalf(cls, arg):
"""
Decide if the function should automatically evalf().
By default (in this implementation), this happens if (and only if) the
ARG is a floating point number.
This function is used by __new__.
Returns the precision to evalf to, or -1 if it shouldn't evalf.
"""
from sympy.core.evalf import pure_complex
if arg.is_Float:
return arg._prec
if not arg.is_Add:
return -1
m = pure_complex(arg)
if m is None or not (m[0].is_Float or m[1].is_Float):
return -1
l = [i._prec for i in m if i.is_Float]
l.append(-1)
return max(l)
@classmethod
def class_key(cls):
from sympy.sets.fancysets import Naturals0
funcs = {
'exp': 10,
'log': 11,
'sin': 20,
'cos': 21,
'tan': 22,
'cot': 23,
'sinh': 30,
'cosh': 31,
'tanh': 32,
'coth': 33,
'conjugate': 40,
're': 41,
'im': 42,
'arg': 43,
}
name = cls.__name__
try:
i = funcs[name]
except KeyError:
i = 0 if isinstance(cls.nargs, Naturals0) else 10000
return 4, i, name
@property
def is_commutative(self):
"""
Returns whether the function is commutative.
"""
if all(getattr(t, 'is_commutative') for t in self.args):
return True
else:
return False
def _eval_evalf(self, prec):
def _get_mpmath_func(fname):
"""Lookup mpmath function based on name"""
if isinstance(self, AppliedUndef):
# Shouldn't lookup in mpmath but might have ._imp_
return None
if not hasattr(mpmath, fname):
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
fname = MPMATH_TRANSLATIONS.get(fname, None)
if fname is None:
return None
return getattr(mpmath, fname)
func = _get_mpmath_func(self.func.__name__)
# Fall-back evaluation
if func is None:
imp = getattr(self, '_imp_', None)
if imp is None:
return None
try:
return Float(imp(*[i.evalf(prec) for i in self.args]), prec)
except (TypeError, ValueError) as e:
return None
# Convert all args to mpf or mpc
# Convert the arguments to *higher* precision than requested for the
# final result.
# XXX + 5 is a guess, it is similar to what is used in evalf.py. Should
# we be more intelligent about it?
try:
args = [arg._to_mpmath(prec + 5) for arg in self.args]
def bad(m):
from mpmath import mpf, mpc
# the precision of an mpf value is the last element
# if that is 1 (and m[1] is not 1 which would indicate a
# power of 2), then the eval failed; so check that none of
# the arguments failed to compute to a finite precision.
# Note: An mpc value has two parts, the re and imag tuple;
# check each of those parts, too. Anything else is allowed to
# pass
if isinstance(m, mpf):
m = m._mpf_
return m[1] !=1 and m[-1] == 1
elif isinstance(m, mpc):
m, n = m._mpc_
return m[1] !=1 and m[-1] == 1 and \
n[1] !=1 and n[-1] == 1
else:
return False
if any(bad(a) for a in args):
raise ValueError # one or more args failed to compute with significance
except ValueError:
return
with mpmath.workprec(prec):
v = func(*args)
return Expr._from_mpmath(v, prec)
def _eval_derivative(self, s):
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
i = 0
l = []
for a in self.args:
i += 1
da = a.diff(s)
if da is S.Zero:
continue
try:
df = self.fdiff(i)
except ArgumentIndexError:
df = Function.fdiff(self, i)
l.append(df * da)
return Add(*l)
def _eval_is_commutative(self):
return fuzzy_and(a.is_commutative for a in self.args)
def _eval_is_complex(self):
return fuzzy_and(a.is_complex for a in self.args)
def as_base_exp(self):
"""
Returns the method as the 2-tuple (base, exponent).
"""
return self, S.One
def _eval_aseries(self, n, args0, x, logx):
"""
Compute an asymptotic expansion around args0, in terms of self.args.
This function is only used internally by _eval_nseries and should not
be called directly; derived classes can overwrite this to implement
asymptotic expansions.
"""
from sympy.utilities.misc import filldedent
raise PoleError(filldedent('''
Asymptotic expansion of %s around %s is
not implemented.''' % (type(self), args0)))
def _eval_nseries(self, x, n, logx):
"""
This function does compute series for multivariate functions,
but the expansion is always in terms of *one* variable.
Examples
========
>>> from sympy import atan2
>>> from sympy.abc import x, y
>>> atan2(x, y).series(x, n=2)
atan2(0, y) + x/y + O(x**2)
>>> atan2(x, y).series(y, n=2)
-y/x + atan2(x, 0) + O(y**2)
This function also computes asymptotic expansions, if necessary
and possible:
>>> from sympy import loggamma
>>> loggamma(1/x)._eval_nseries(x,0,None)
-1/x - log(x)/x + log(x)/2 + O(1)
"""
from sympy import Order
from sympy.sets.sets import FiniteSet
args = self.args
args0 = [t.limit(x, 0) for t in args]
if any(t.is_finite is False for t in args0):
from sympy import oo, zoo, nan
# XXX could use t.as_leading_term(x) here but it's a little
# slower
a = [t.compute_leading_term(x, logx=logx) for t in args]
a0 = [t.limit(x, 0) for t in a]
if any([t.has(oo, -oo, zoo, nan) for t in a0]):
return self._eval_aseries(n, args0, x, logx)
# Careful: the argument goes to oo, but only logarithmically so. We
# are supposed to do a power series expansion "around the
# logarithmic term". e.g.
# f(1+x+log(x))
# -> f(1+logx) + x*f'(1+logx) + O(x**2)
# where 'logx' is given in the argument
a = [t._eval_nseries(x, n, logx) for t in args]
z = [r - r0 for (r, r0) in zip(a, a0)]
p = [Dummy() for _ in z]
q = []
v = None
for ai, zi, pi in zip(a0, z, p):
if zi.has(x):
if v is not None:
raise NotImplementedError
q.append(ai + pi)
v = pi
else:
q.append(ai)
e1 = self.func(*q)
if v is None:
return e1
s = e1._eval_nseries(v, n, logx)
o = s.getO()
s = s.removeO()
s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x)
return s
if (self.func.nargs is S.Naturals0
or (self.func.nargs == FiniteSet(1) and args0[0])
or any(c > 1 for c in self.func.nargs)):
e = self
e1 = e.expand()
if e == e1:
#for example when e = sin(x+1) or e = sin(cos(x))
#let's try the general algorithm
term = e.subs(x, S.Zero)
if term.is_finite is False or term is S.NaN:
raise PoleError("Cannot expand %s around 0" % (self))
series = term
fact = S.One
_x = Dummy('x')
e = e.subs(x, _x)
for i in range(n - 1):
i += 1
fact *= Rational(i)
e = e.diff(_x)
subs = e.subs(_x, S.Zero)
if subs is S.NaN:
# try to evaluate a limit if we have to
subs = e.limit(_x, S.Zero)
if subs.is_finite is False:
raise PoleError("Cannot expand %s around 0" % (self))
term = subs*(x**i)/fact
term = term.expand()
series += term
return series + Order(x**n, x)
return e1.nseries(x, n=n, logx=logx)
arg = self.args[0]
l = []
g = None
# try to predict a number of terms needed
nterms = n + 2
cf = Order(arg.as_leading_term(x), x).getn()
if cf != 0:
nterms = int(nterms / cf)
for i in range(nterms):
g = self.taylor_term(i, arg, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
return Add(*l) + Order(x**n, x)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if not (1 <= argindex <= len(self.args)):
raise ArgumentIndexError(self, argindex)
ix = argindex - 1
A = self.args[ix]
if A._diff_wrt:
if len(self.args) == 1:
return Derivative(self, A)
if A.is_Symbol:
for i, v in enumerate(self.args):
if i != ix and A in v.free_symbols:
# it can't be in any other argument's free symbols
# issue 8510
break
else:
return Derivative(self, A)
else:
free = A.free_symbols
for i, a in enumerate(self.args):
if ix != i and a.free_symbols & free:
break
else:
# there is no possible interaction bewtween args
return Derivative(self, A)
# See issue 4624 and issue 4719, 5600 and 8510
D = Dummy('xi_%i' % argindex, dummy_index=hash(A))
args = self.args[:ix] + (D,) + self.args[ix + 1:]
return Subs(Derivative(self.func(*args), D), D, A)
def _eval_as_leading_term(self, x):
"""Stub that should be overridden by new Functions to return
the first non-zero term in a series if ever an x-dependent
argument whose leading term vanishes as x -> 0 might be encountered.
See, for example, cos._eval_as_leading_term.
"""
from sympy import Order
args = [a.as_leading_term(x) for a in self.args]
o = Order(1, x)
if any(x in a.free_symbols and o.contains(a) for a in args):
# Whereas x and any finite number are contained in O(1, x),
# expressions like 1/x are not. If any arg simplified to a
# vanishing expression as x -> 0 (like x or x**2, but not
# 3, 1/x, etc...) then the _eval_as_leading_term is needed
# to supply the first non-zero term of the series,
#
# e.g. expression leading term
# ---------- ------------
# cos(1/x) cos(1/x)
# cos(cos(x)) cos(1)
# cos(x) 1 <- _eval_as_leading_term needed
# sin(x) x <- _eval_as_leading_term needed
#
raise NotImplementedError(
'%s has no _eval_as_leading_term routine' % self.func)
else:
return self.func(*args)
def _sage_(self):
import sage.all as sage
fname = self.func.__name__
func = getattr(sage, fname, None)
args = [arg._sage_() for arg in self.args]
# In the case the function is not known in sage:
if func is None:
import sympy
if getattr(sympy, fname, None) is None:
# abstract function
return sage.function(fname)(*args)
else:
# the function defined in sympy is not known in sage
# this exception is caught in sage
raise AttributeError
return func(*args)
class AppliedUndef(Function):
"""
Base class for expressions resulting from the application of an undefined
function.
"""
is_number = False
def __new__(cls, *args, **options):
args = list(map(sympify, args))
obj = super(AppliedUndef, cls).__new__(cls, *args, **options)
return obj
def _eval_as_leading_term(self, x):
return self
def _sage_(self):
import sage.all as sage
fname = str(self.func)
args = [arg._sage_() for arg in self.args]
func = sage.function(fname)(*args)
return func
@property
def _diff_wrt(self):
"""
Allow derivatives wrt to undefined functions.
Examples
========
>>> from sympy import Function, Symbol
>>> f = Function('f')
>>> x = Symbol('x')
>>> f(x)._diff_wrt
True
>>> f(x).diff(x)
Derivative(f(x), x)
"""
return True
class UndefinedFunction(FunctionClass):
"""
The (meta)class of undefined functions.
"""
def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs):
__dict__ = __dict__ or {}
# Allow Function('f', real=True)
__dict__.update({'is_' + arg: val for arg, val in kwargs.items() if arg in _assume_defined})
# You can add other attributes, although they do have to be hashable
# (but seriously, if you want to add anything other than assumptions,
# just subclass Function)
__dict__.update(kwargs)
# Save these for __eq__
__dict__.update({'_extra_kwargs': kwargs})
__dict__['__module__'] = None # For pickling
ret = super(UndefinedFunction, mcl).__new__(mcl, name, bases, __dict__)
ret.name = name
return ret
def __instancecheck__(cls, instance):
return cls in type(instance).__mro__
_extra_kwargs = {}
def __hash__(self):
return hash((self.class_key(), frozenset(self._extra_kwargs.items())))
def __eq__(self, other):
return (isinstance(other, self.__class__) and
self.class_key() == other.class_key() and
self._extra_kwargs == other._extra_kwargs)
def __ne__(self, other):
return not self == other
class WildFunction(Function, AtomicExpr):
"""
A WildFunction function matches any function (with its arguments).
Examples
========
>>> from sympy import WildFunction, Function, cos
>>> from sympy.abc import x, y
>>> F = WildFunction('F')
>>> f = Function('f')
>>> F.nargs
Naturals0
>>> x.match(F)
>>> F.match(F)
{F_: F_}
>>> f(x).match(F)
{F_: f(x)}
>>> cos(x).match(F)
{F_: cos(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a given number of arguments, set ``nargs`` to the
desired value at instantiation:
>>> F = WildFunction('F', nargs=2)
>>> F.nargs
{2}
>>> f(x).match(F)
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a range of arguments, set ``nargs`` to a tuple
containing the desired number of arguments, e.g. if ``nargs = (1, 2)``
then functions with 1 or 2 arguments will be matched.
>>> F = WildFunction('F', nargs=(1, 2))
>>> F.nargs
{1, 2}
>>> f(x).match(F)
{F_: f(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
>>> f(x, y, 1).match(F)
"""
include = set()
def __init__(cls, name, **assumptions):
from sympy.sets.sets import Set, FiniteSet
cls.name = name
nargs = assumptions.pop('nargs', S.Naturals0)
if not isinstance(nargs, Set):
# Canonicalize nargs here. See also FunctionClass.
if is_sequence(nargs):
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
nargs = FiniteSet(*nargs)
cls.nargs = nargs
def matches(self, expr, repl_dict={}, old=False):
if not isinstance(expr, (AppliedUndef, Function)):
return None
if len(expr.args) not in self.nargs:
return None
repl_dict = repl_dict.copy()
repl_dict[self] = expr
return repl_dict
class Derivative(Expr):
"""
Carries out differentiation of the given expression with respect to symbols.
Examples
========
>>> from sympy import Derivative, Function, symbols, Subs
>>> from sympy.abc import x, y
>>> f, g = symbols('f g', cls=Function)
>>> Derivative(x**2, x, evaluate=True)
2*x
Denesting of derivatives retains the ordering of variables:
>>> Derivative(Derivative(f(x, y), y), x)
Derivative(f(x, y), y, x)
Contiguously identical symbols are merged into a tuple giving
the symbol and the count:
>>> Derivative(f(x), x, x, y, x)
Derivative(f(x), (x, 2), y, x)
If the derivative cannot be performed, and evaluate is True, the
order of the variables of differentiation will be made canonical:
>>> Derivative(f(x, y), y, x, evaluate=True)
Derivative(f(x, y), x, y)
Derivatives with respect to undefined functions can be calculated:
>>> Derivative(f(x)**2, f(x), evaluate=True)
2*f(x)
Such derivatives will show up when the chain rule is used to
evalulate a derivative:
>>> f(g(x)).diff(x)
Derivative(f(g(x)), g(x))*Derivative(g(x), x)
Substitution is used to represent derivatives of functions with
arguments that are not symbols or functions:
>>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3)
True
Notes
=====
Simplification of high-order derivatives:
Because there can be a significant amount of simplification that can be
done when multiple differentiations are performed, results will be
automatically simplified in a fairly conservative fashion unless the
keyword ``simplify`` is set to False.
>>> from sympy import cos, sin, sqrt, diff, Function, symbols
>>> from sympy.abc import x, y, z
>>> f, g = symbols('f,g', cls=Function)
>>> e = sqrt((x + 1)**2 + x)
>>> diff(e, (x, 5), simplify=False).count_ops()
136
>>> diff(e, (x, 5)).count_ops()
30
Ordering of variables:
If evaluate is set to True and the expression cannot be evaluated, the
list of differentiation symbols will be sorted, that is, the expression is
assumed to have continuous derivatives up to the order asked.
Derivative wrt non-Symbols:
For the most part, one may not differentiate wrt non-symbols.
For example, we do not allow differentiation wrt `x*y` because
there are multiple ways of structurally defining where x*y appears
in an expression: a very strict definition would make
(x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like
cos(x)) are not allowed, either:
>>> (x*y*z).diff(x*y)
Traceback (most recent call last):
...
ValueError: Can't calculate derivative wrt x*y.
To make it easier to work with variational calculus, however,
derivatives wrt AppliedUndef and Derivatives are allowed.
For example, in the Euler-Lagrange method one may write
F(t, u, v) where u = f(t) and v = f'(t). These variables can be
written explicity as functions of time::
>>> from sympy.abc import t
>>> F = Function('F')
>>> U = f(t)
>>> V = U.diff(t)
The derivative wrt f(t) can be obtained directly:
>>> direct = F(t, U, V).diff(U)
When differentiation wrt a non-Symbol is attempted, the non-Symbol
is temporarily converted to a Symbol while the differentiation
is performed and the same answer is obtained:
>>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U)
>>> assert direct == indirect
The implication of this non-symbol replacement is that all
functions are treated as independent of other functions and the
symbols are independent of the functions that contain them::
>>> x.diff(f(x))
0
>>> g(x).diff(f(x))
0
It also means that derivatives are assumed to depend only
on the variables of differentiation, not on anything contained
within the expression being differentiated::
>>> F = f(x)
>>> Fx = F.diff(x)
>>> Fx.diff(F) # derivative depends on x, not F
0
>>> Fxx = Fx.diff(x)
>>> Fxx.diff(Fx) # derivative depends on x, not Fx
0
The last example can be made explicit by showing the replacement
of Fx in Fxx with y:
>>> Fxx.subs(Fx, y)
Derivative(y, x)
Since that in itself will evaluate to zero, differentiating
wrt Fx will also be zero:
>>> _.doit()
0
Replacing undefined functions with concrete expressions
One must be careful to replace undefined functions with expressions
that contain variables consistent with the function definition and
the variables of differentiation or else insconsistent result will
be obtained. Consider the following example:
>>> eq = f(x)*g(y)
>>> eq.subs(f(x), x*y).diff(x, y).doit()
y*Derivative(g(y), y) + g(y)
>>> eq.diff(x, y).subs(f(x), x*y).doit()
y*Derivative(g(y), y)
The results differ because `f(x)` was replaced with an expression
that involved both variables of differentiation. In the abstract
case, differentiation of `f(x)` by `y` is 0; in the concrete case,
the presence of `y` made that derivative nonvanishing and produced
the extra `g(y)` term.
Defining differentiation for an object
An object must define ._eval_derivative(symbol) method that returns
the differentiation result. This function only needs to consider the
non-trivial case where expr contains symbol and it should call the diff()
method internally (not _eval_derivative); Derivative should be the only
one to call _eval_derivative.
Any class can allow derivatives to be taken with respect to
itself (while indicating its scalar nature). See the
docstring of Expr._diff_wrt.
See Also
========
_sort_variable_count
"""
is_Derivative = True
@property
def _diff_wrt(self):
"""An expression may be differentiated wrt a Derivative if
it is in elementary form.
Examples
========
>>> from sympy import Function, Derivative, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> Derivative(f(x), x)._diff_wrt
True
>>> Derivative(cos(x), x)._diff_wrt
False
>>> Derivative(x + 1, x)._diff_wrt
False
A Derivative might be an unevaluated form of what will not be
a valid variable of differentiation if evaluated. For example,
>>> Derivative(f(f(x)), x).doit()
Derivative(f(x), x)*Derivative(f(f(x)), f(x))
Such an expression will present the same ambiguities as arise
when dealing with any other product, like `2*x`, so `_diff_wrt`
is False:
>>> Derivative(f(f(x)), x)._diff_wrt
False
"""
return self.expr._diff_wrt and isinstance(self.doit(), Derivative)
def __new__(cls, expr, *variables, **kwargs):
from sympy.matrices.common import MatrixCommon
from sympy import Integer, MatrixExpr
from sympy.tensor.array import Array, NDimArray, derive_by_array
from sympy.utilities.misc import filldedent
expr = sympify(expr)
symbols_or_none = getattr(expr, "free_symbols", None)
has_symbol_set = isinstance(symbols_or_none, set)
if not has_symbol_set:
raise ValueError(filldedent('''
Since there are no variables in the expression %s,
it cannot be differentiated.''' % expr))
# determine value for variables if it wasn't given
if not variables:
variables = expr.free_symbols
if len(variables) != 1:
if expr.is_number:
return S.Zero
if len(variables) == 0:
raise ValueError(filldedent('''
Since there are no variables in the expression,
the variable(s) of differentiation must be supplied
to differentiate %s''' % expr))
else:
raise ValueError(filldedent('''
Since there is more than one variable in the
expression, the variable(s) of differentiation
must be supplied to differentiate %s''' % expr))
# Standardize the variables by sympifying them:
variables = list(sympify(variables))
# Split the list of variables into a list of the variables we are diff
# wrt, where each element of the list has the form (s, count) where
# s is the entity to diff wrt and count is the order of the
# derivative.
variable_count = []
array_likes = (tuple, list, Tuple)
for i, v in enumerate(variables):
if isinstance(v, Integer):
if i == 0:
raise ValueError("First variable cannot be a number: %i" % v)
count = v
prev, prevcount = variable_count[-1]
if prevcount != 1:
raise TypeError("tuple {0} followed by number {1}".format((prev, prevcount), v))
if count == 0:
variable_count.pop()
else:
variable_count[-1] = Tuple(prev, count)
else:
if isinstance(v, array_likes):
if len(v) == 0:
# Ignore empty tuples: Derivative(expr, ... , (), ... )
continue
if isinstance(v[0], array_likes):
# Derive by array: Derivative(expr, ... , [[x, y, z]], ... )
if len(v) == 1:
v = Array(v[0])
count = 1
else:
v, count = v
v = Array(v)
else:
v, count = v
if count == 0:
continue
else:
count = 1
variable_count.append(Tuple(v, count))
# light evaluation of contiguous, identical
# items: (x, 1), (x, 1) -> (x, 2)
merged = []
for t in variable_count:
v, c = t
if c.is_negative:
raise ValueError(
'order of differentiation must be nonnegative')
if merged and merged[-1][0] == v:
c += merged[-1][1]
if not c:
merged.pop()
else:
merged[-1] = Tuple(v, c)
else:
merged.append(t)
variable_count = merged
# sanity check of variables of differentation; we waited
# until the counts were computed since some variables may
# have been removed because the count was 0
for v, c in variable_count:
# v must have _diff_wrt True
if not v._diff_wrt:
__ = '' # filler to make error message neater
raise ValueError(filldedent('''
Can't calculate derivative wrt %s.%s''' % (v,
__)))
# We make a special case for 0th derivative, because there is no
# good way to unambiguously print this.
if len(variable_count) == 0:
return expr
evaluate = kwargs.get('evaluate', False)
if evaluate:
if isinstance(expr, Derivative):
expr = expr.canonical
variable_count = [
(v.canonical if isinstance(v, Derivative) else v, c)
for v, c in variable_count]
# Look for a quick exit if there are symbols that don't appear in
# expression at all. Note, this cannot check non-symbols like
# Derivatives as those can be created by intermediate
# derivatives.
zero = False
free = expr.free_symbols
for v, c in variable_count:
vfree = v.free_symbols
if c.is_positive and vfree:
if isinstance(v, AppliedUndef):
# these match exactly since
# x.diff(f(x)) == g(x).diff(f(x)) == 0
# and are not created by differentiation
D = Dummy()
if not expr.xreplace({v: D}).has(D):
zero = True
break
elif isinstance(v, MatrixExpr):
zero = False
break
elif isinstance(v, Symbol) and v not in free:
zero = True
break
else:
if not free & vfree:
# e.g. v is IndexedBase or Matrix
zero = True
break
if zero:
if isinstance(expr, (MatrixCommon, NDimArray)):
return expr.zeros(*expr.shape)
elif expr.is_scalar:
return S.Zero
# make the order of symbols canonical
#TODO: check if assumption of discontinuous derivatives exist
variable_count = cls._sort_variable_count(variable_count)
# denest
if isinstance(expr, Derivative):
variable_count = list(expr.variable_count) + variable_count
expr = expr.expr
return Derivative(expr, *variable_count, **kwargs)
# we return here if evaluate is False or if there is no
# _eval_derivative method
if not evaluate or not hasattr(expr, '_eval_derivative'):
# return an unevaluated Derivative
if evaluate and variable_count == [(expr, 1)] and expr.is_scalar:
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
return S.One
return Expr.__new__(cls, expr, *variable_count)
# evaluate the derivative by calling _eval_derivative method
# of expr for each variable
# -------------------------------------------------------------
nderivs = 0 # how many derivatives were performed
unhandled = []
for i, (v, count) in enumerate(variable_count):
old_expr = expr
old_v = None
is_symbol = v.is_symbol or isinstance(v,
(Iterable, Tuple, MatrixCommon, NDimArray))
if not is_symbol:
old_v = v
v = Dummy('xi')
expr = expr.xreplace({old_v: v})
# Derivatives and UndefinedFunctions are independent
# of all others
clashing = not (isinstance(old_v, Derivative) or \
isinstance(old_v, AppliedUndef))
if not v in expr.free_symbols and not clashing:
return expr.diff(v) # expr's version of 0
if not old_v.is_scalar and not hasattr(
old_v, '_eval_derivative'):
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
expr *= old_v.diff(old_v)
# Evaluate the derivative `n` times. If
# `_eval_derivative_n_times` is not overridden by the current
# object, the default in `Basic` will call a loop over
# `_eval_derivative`:
obj = expr._eval_derivative_n_times(v, count)
if obj is not None and obj.is_zero:
return obj
nderivs += count
if old_v is not None:
if obj is not None:
# remove the dummy that was used
obj = obj.subs(v, old_v)
# restore expr
expr = old_expr
if obj is None:
# we've already checked for quick-exit conditions
# that give 0 so the remaining variables
# are contained in the expression but the expression
# did not compute a derivative so we stop taking
# derivatives
unhandled = variable_count[i:]
break
expr = obj
# what we have so far can be made canonical
expr = expr.replace(
lambda x: isinstance(x, Derivative),
lambda x: x.canonical)
if unhandled:
if isinstance(expr, Derivative):
unhandled = list(expr.variable_count) + unhandled
expr = expr.expr
expr = Expr.__new__(cls, expr, *unhandled)
if (nderivs > 1) == True and kwargs.get('simplify', True):
from sympy.core.exprtools import factor_terms
from sympy.simplify.simplify import signsimp
expr = factor_terms(signsimp(expr))
return expr
@property
def canonical(cls):
return cls.func(cls.expr,
*Derivative._sort_variable_count(cls.variable_count))
@classmethod
def _sort_variable_count(cls, vc):
"""
Sort (variable, count) pairs into canonical order while
retaining order of variables that do not commute during
differentiation:
* symbols and functions commute with each other
* derivatives commute with each other
* a derivative doesn't commute with anything it contains
* any other object is not allowed to commute if it has
free symbols in common with another object
Examples
========
>>> from sympy import Derivative, Function, symbols, cos
>>> vsort = Derivative._sort_variable_count
>>> x, y, z = symbols('x y z')
>>> f, g, h = symbols('f g h', cls=Function)
Contiguous items are collapsed into one pair:
>>> vsort([(x, 1), (x, 1)])
[(x, 2)]
>>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)])
[(y, 2), (f(x), 2)]
Ordering is canonical.
>>> def vsort0(*v):
... # docstring helper to
... # change vi -> (vi, 0), sort, and return vi vals
... return [i[0] for i in vsort([(i, 0) for i in v])]
>>> vsort0(y, x)
[x, y]
>>> vsort0(g(y), g(x), f(y))
[f(y), g(x), g(y)]
Symbols are sorted as far to the left as possible but never
move to the left of a derivative having the same symbol in
its variables; the same applies to AppliedUndef which are
always sorted after Symbols:
>>> dfx = f(x).diff(x)
>>> assert vsort0(dfx, y) == [y, dfx]
>>> assert vsort0(dfx, x) == [dfx, x]
"""
from sympy.utilities.iterables import uniq, topological_sort
if not vc:
return []
vc = list(vc)
if len(vc) == 1:
return [Tuple(*vc[0])]
V = list(range(len(vc)))
E = []
v = lambda i: vc[i][0]
D = Dummy()
def _block(d, v, wrt=False):
# return True if v should not come before d else False
if d == v:
return wrt
if d.is_Symbol:
return False
if isinstance(d, Derivative):
# a derivative blocks if any of it's variables contain
# v; the wrt flag will return True for an exact match
# and will cause an AppliedUndef to block if v is in
# the arguments
if any(_block(k, v, wrt=True)
for k in d._wrt_variables):
return True
return False
if not wrt and isinstance(d, AppliedUndef):
return False
if v.is_Symbol:
return v in d.free_symbols
if isinstance(v, AppliedUndef):
return _block(d.xreplace({v: D}), D)
return d.free_symbols & v.free_symbols
for i in range(len(vc)):
for j in range(i):
if _block(v(j), v(i)):
E.append((j,i))
# this is the default ordering to use in case of ties
O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc))))
ix = topological_sort((V, E), key=lambda i: O[v(i)])
# merge counts of contiguously identical items
merged = []
for v, c in [vc[i] for i in ix]:
if merged and merged[-1][0] == v:
merged[-1][1] += c
else:
merged.append([v, c])
return [Tuple(*i) for i in merged]
def _eval_is_commutative(self):
return self.expr.is_commutative
def _eval_derivative(self, v):
# If v (the variable of differentiation) is not in
# self.variables, we might be able to take the derivative.
if v not in self._wrt_variables:
dedv = self.expr.diff(v)
if isinstance(dedv, Derivative):
return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count))
# dedv (d(self.expr)/dv) could have simplified things such that the
# derivative wrt things in self.variables can now be done. Thus,
# we set evaluate=True to see if there are any other derivatives
# that can be done. The most common case is when dedv is a simple
# number so that the derivative wrt anything else will vanish.
return self.func(dedv, *self.variables, evaluate=True)
# In this case v was in self.variables so the derivative wrt v has
# already been attempted and was not computed, either because it
# couldn't be or evaluate=False originally.
variable_count = list(self.variable_count)
variable_count.append((v, 1))
return self.func(self.expr, *variable_count, evaluate=False)
def doit(self, **hints):
expr = self.expr
if hints.get('deep', True):
expr = expr.doit(**hints)
hints['evaluate'] = True
rv = self.func(expr, *self.variable_count, **hints)
if rv!= self and rv.has(Derivative):
rv = rv.doit(**hints)
return rv
@_sympifyit('z0', NotImplementedError)
def doit_numerically(self, z0):
"""
Evaluate the derivative at z numerically.
When we can represent derivatives at a point, this should be folded
into the normal evalf. For now, we need a special method.
"""
if len(self.free_symbols) != 1 or len(self.variables) != 1:
raise NotImplementedError('partials and higher order derivatives')
z = list(self.free_symbols)[0]
def eval(x):
f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec))
f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec))
return f0._to_mpmath(mpmath.mp.prec)
return Expr._from_mpmath(mpmath.diff(eval,
z0._to_mpmath(mpmath.mp.prec)),
mpmath.mp.prec)
@property
def expr(self):
return self._args[0]
@property
def _wrt_variables(self):
# return the variables of differentiation without
# respect to the type of count (int or symbolic)
return [i[0] for i in self.variable_count]
@property
def variables(self):
# TODO: deprecate? YES, make this 'enumerated_variables' and
# name _wrt_variables as variables
# TODO: support for `d^n`?
rv = []
for v, count in self.variable_count:
if not count.is_Integer:
raise TypeError(filldedent('''
Cannot give expansion for symbolic count. If you just
want a list of all variables of differentiation, use
_wrt_variables.'''))
rv.extend([v]*count)
return tuple(rv)
@property
def variable_count(self):
return self._args[1:]
@property
def derivative_count(self):
return sum([count for var, count in self.variable_count], 0)
@property
def free_symbols(self):
return self.expr.free_symbols
def _eval_subs(self, old, new):
# The substitution (old, new) cannot be done inside
# Derivative(expr, vars) for a variety of reasons
# as handled below.
if old in self._wrt_variables:
# first handle the counts
expr = self.func(self.expr, *[(v, c.subs(old, new))
for v, c in self.variable_count])
if expr != self:
return expr._eval_subs(old, new)
# quick exit case
if not getattr(new, '_diff_wrt', False):
# case (0): new is not a valid variable of
# differentiation
if isinstance(old, Symbol):
# don't introduce a new symbol if the old will do
return Subs(self, old, new)
else:
xi = Dummy('xi')
return Subs(self.xreplace({old: xi}), xi, new)
# If both are Derivatives with the same expr, check if old is
# equivalent to self or if old is a subderivative of self.
if old.is_Derivative and old.expr == self.expr:
if self.canonical == old.canonical:
return new
# collections.Counter doesn't have __le__
def _subset(a, b):
return all((a[i] <= b[i]) == True for i in a)
old_vars = Counter(dict(reversed(old.variable_count)))
self_vars = Counter(dict(reversed(self.variable_count)))
if _subset(old_vars, self_vars):
return Derivative(new, *(self_vars - old_vars).items()).canonical
args = list(self.args)
newargs = list(x._subs(old, new) for x in args)
if args[0] == old:
# complete replacement of self.expr
# we already checked that the new is valid so we know
# it won't be a problem should it appear in variables
return Derivative(*newargs)
if newargs[0] != args[0]:
# case (1) can't change expr by introducing something that is in
# the _wrt_variables if it was already in the expr
# e.g.
# for Derivative(f(x, g(y)), y), x cannot be replaced with
# anything that has y in it; for f(g(x), g(y)).diff(g(y))
# g(x) cannot be replaced with anything that has g(y)
syms = {vi: Dummy() for vi in self._wrt_variables
if not vi.is_Symbol}
wrt = set(syms.get(vi, vi) for vi in self._wrt_variables)
forbidden = args[0].xreplace(syms).free_symbols & wrt
nfree = new.xreplace(syms).free_symbols
ofree = old.xreplace(syms).free_symbols
if (nfree - ofree) & forbidden:
return Subs(self, old, new)
viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:]))
if any(i != j for i, j in viter): # a wrt-variable change
# case (2) can't change vars by introducing a variable
# that is contained in expr, e.g.
# for Derivative(f(z, g(h(x), y)), y), y cannot be changed to
# x, h(x), or g(h(x), y)
for a in _atomic(self.expr, recursive=True):
for i in range(1, len(newargs)):
vi, _ = newargs[i]
if a == vi and vi != args[i][0]:
return Subs(self, old, new)
# more arg-wise checks
vc = newargs[1:]
oldv = self._wrt_variables
newe = self.expr
subs = []
for i, (vi, ci) in enumerate(vc):
if not vi._diff_wrt:
# case (3) invalid differentiation expression so
# create a replacement dummy
xi = Dummy('xi_%i' % i)
# replace the old valid variable with the dummy
# in the expression
newe = newe.xreplace({oldv[i]: xi})
# and replace the bad variable with the dummy
vc[i] = (xi, ci)
# and record the dummy with the new (invalid)
# differentiation expression
subs.append((xi, vi))
if subs:
# handle any residual substitution in the expression
newe = newe._subs(old, new)
# return the Subs-wrapped derivative
return Subs(Derivative(newe, *vc), *zip(*subs))
# everything was ok
return Derivative(*newargs)
def _eval_lseries(self, x, logx):
dx = self.variables
for term in self.expr.lseries(x, logx=logx):
yield self.func(term, *dx)
def _eval_nseries(self, x, n, logx):
arg = self.expr.nseries(x, n=n, logx=logx)
o = arg.getO()
dx = self.variables
rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())]
if o:
rv.append(o/x)
return Add(*rv)
def _eval_as_leading_term(self, x):
series_gen = self.expr.lseries(x)
d = S.Zero
for leading_term in series_gen:
d = diff(leading_term, *self.variables)
if d != 0:
break
return d
def _sage_(self):
import sage.all as sage
args = [arg._sage_() for arg in self.args]
return sage.derivative(*args)
def as_finite_difference(self, points=1, x0=None, wrt=None):
""" Expresses a Derivative instance as a finite difference.
Parameters
==========
points : sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. Default: 1 (step-size 1)
x0 : number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt : Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> f(x).diff(x).as_finite_difference()
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and
``order + 1`` respectively. We can change the step size by
passing a symbol as a parameter:
>>> f(x).diff(x).as_finite_difference(h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a
sequence:
>>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/...
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> d2fdxdy.as_finite_difference(wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
We can apply ``as_finite_difference`` to ``Derivative`` instances in
compound expressions using ``replace``:
>>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative,
... lambda arg: arg.as_finite_difference())
42**(-f(x - 1/2) + f(x + 1/2)) + 1
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.differentiate_finite
sympy.calculus.finite_diff.finite_diff_weights
"""
from ..calculus.finite_diff import _as_finite_diff
return _as_finite_diff(self, points, x0, wrt)
class Lambda(Expr):
"""
Lambda(x, expr) represents a lambda function similar to Python's
'lambda x: expr'. A function of several variables is written as
Lambda((x, y, ...), expr).
A simple example:
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> f = Lambda(x, x**2)
>>> f(4)
16
For multivariate functions, use:
>>> from sympy.abc import y, z, t
>>> f2 = Lambda((x, y, z, t), x + y**z + t**z)
>>> f2(1, 2, 3, 4)
73
A handy shortcut for lots of arguments:
>>> p = x, y, z
>>> f = Lambda(p, x + y*z)
>>> f(*p)
x + y*z
"""
is_Function = True
def __new__(cls, variables, expr):
from sympy.sets.sets import FiniteSet
v = list(variables) if iterable(variables) else [variables]
for i in v:
if not getattr(i, 'is_symbol', False):
raise TypeError('variable is not a symbol: %s' % i)
if len(v) == 1 and v[0] == expr:
return S.IdentityFunction
obj = Expr.__new__(cls, Tuple(*v), sympify(expr))
obj.nargs = FiniteSet(len(v))
return obj
@property
def variables(self):
"""The variables used in the internal representation of the function"""
return self._args[0]
bound_symbols = variables
@property
def expr(self):
"""The return value of the function"""
return self._args[1]
@property
def free_symbols(self):
return self.expr.free_symbols - set(self.variables)
def __call__(self, *args):
n = len(args)
if n not in self.nargs: # Lambda only ever has 1 value in nargs
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
## XXX does this apply to Lambda? If not, remove this comment.
temp = ('%(name)s takes exactly %(args)s '
'argument%(plural)s (%(given)s given)')
raise TypeError(temp % {
'name': self,
'args': list(self.nargs)[0],
'plural': 's'*(list(self.nargs)[0] != 1),
'given': n})
return self.expr.xreplace(dict(list(zip(self.variables, args))))
def __eq__(self, other):
if not isinstance(other, Lambda):
return False
if self.nargs != other.nargs:
return False
selfexpr = self.args[1]
otherexpr = other.args[1]
otherexpr = otherexpr.xreplace(dict(list(zip(other.args[0], self.args[0]))))
return selfexpr == otherexpr
def __ne__(self, other):
return not(self == other)
def __hash__(self):
return super(Lambda, self).__hash__()
def _hashable_content(self):
return (self.expr.xreplace(self.canonical_variables),)
@property
def is_identity(self):
"""Return ``True`` if this ``Lambda`` is an identity function. """
if len(self.args) == 2:
return self.args[0] == self.args[1]
else:
return None
class Subs(Expr):
"""
Represents unevaluated substitutions of an expression.
``Subs(expr, x, x0)`` receives 3 arguments: an expression, a variable or
list of distinct variables and a point or list of evaluation points
corresponding to those variables.
``Subs`` objects are generally useful to represent unevaluated derivatives
calculated at a point.
The variables may be expressions, but they are subjected to the limitations
of subs(), so it is usually a good practice to use only symbols for
variables, since in that case there can be no ambiguity.
There's no automatic expansion - use the method .doit() to effect all
possible substitutions of the object and also of objects inside the
expression.
When evaluating derivatives at a point that is not a symbol, a Subs object
is returned. One is also able to calculate derivatives of Subs objects - in
this case the expression is always expanded (for the unevaluated form, use
Derivative()).
Examples
========
>>> from sympy import Subs, Function, sin, cos
>>> from sympy.abc import x, y, z
>>> f = Function('f')
Subs are created when a particular substitution cannot be made. The
x in the derivative cannot be replaced with 0 because 0 is not a
valid variables of differentiation:
>>> f(x).diff(x).subs(x, 0)
Subs(Derivative(f(x), x), x, 0)
Once f is known, the derivative and evaluation at 0 can be done:
>>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0)
True
Subs can also be created directly with one or more variables:
>>> Subs(f(x)*sin(y) + z, (x, y), (0, 1))
Subs(z + f(x)*sin(y), (x, y), (0, 1))
>>> _.doit()
z + f(0)*sin(1)
Notes
=====
In order to allow expressions to combine before doit is done, a
representation of the Subs expression is used internally to make
expressions that are superficially different compare the same:
>>> a, b = Subs(x, x, 0), Subs(y, y, 0)
>>> a + b
2*Subs(x, x, 0)
This can lead to unexpected consequences when using methods
like `has` that are cached:
>>> s = Subs(x, x, 0)
>>> s.has(x), s.has(y)
(True, False)
>>> ss = s.subs(x, y)
>>> ss.has(x), ss.has(y)
(True, False)
>>> s, ss
(Subs(x, x, 0), Subs(y, y, 0))
"""
def __new__(cls, expr, variables, point, **assumptions):
from sympy import Symbol
if not is_sequence(variables, Tuple):
variables = [variables]
variables = Tuple(*variables)
if has_dups(variables):
repeated = [str(v) for v, i in Counter(variables).items() if i > 1]
__ = ', '.join(repeated)
raise ValueError(filldedent('''
The following expressions appear more than once: %s
''' % __))
point = Tuple(*(point if is_sequence(point, Tuple) else [point]))
if len(point) != len(variables):
raise ValueError('Number of point values must be the same as '
'the number of variables.')
if not point:
return sympify(expr)
# denest
if isinstance(expr, Subs):
variables = expr.variables + variables
point = expr.point + point
expr = expr.expr
else:
expr = sympify(expr)
# use symbols with names equal to the point value (with preppended _)
# to give a variable-independent expression
pre = "_"
pts = sorted(set(point), key=default_sort_key)
from sympy.printing import StrPrinter
class CustomStrPrinter(StrPrinter):
def _print_Dummy(self, expr):
return str(expr) + str(expr.dummy_index)
def mystr(expr, **settings):
p = CustomStrPrinter(settings)
return p.doprint(expr)
while 1:
s_pts = {p: Symbol(pre + mystr(p)) for p in pts}
reps = [(v, s_pts[p])
for v, p in zip(variables, point)]
# if any underscore-preppended symbol is already a free symbol
# and is a variable with a different point value, then there
# is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0))
# because the new symbol that would be created is _1 but _1
# is already mapped to 0 so __0 and __1 are used for the new
# symbols
if any(r in expr.free_symbols and
r in variables and
Symbol(pre + mystr(point[variables.index(r)])) != r
for _, r in reps):
pre += "_"
continue
break
obj = Expr.__new__(cls, expr, Tuple(*variables), point)
obj._expr = expr.xreplace(dict(reps))
return obj
def _eval_is_commutative(self):
return self.expr.is_commutative
def doit(self, **hints):
e, v, p = self.args
# remove self mappings
for i, (vi, pi) in enumerate(zip(v, p)):
if vi == pi:
v = v[:i] + v[i + 1:]
p = p[:i] + p[i + 1:]
if not v:
return self.expr
if isinstance(e, Derivative):
# apply functions first, e.g. f -> cos
undone = []
for i, vi in enumerate(v):
if isinstance(vi, FunctionClass):
e = e.subs(vi, p[i])
else:
undone.append((vi, p[i]))
if not isinstance(e, Derivative):
e = e.doit()
if isinstance(e, Derivative):
# do Subs that aren't related to differentiation
undone2 = []
D = Dummy()
for vi, pi in undone:
if D not in e.xreplace({vi: D}).free_symbols:
e = e.subs(vi, pi)
else:
undone2.append((vi, pi))
undone = undone2
# differentiate wrt variables that are present
wrt = []
D = Dummy()
expr = e.expr
free = expr.free_symbols
for vi, ci in e.variable_count:
if isinstance(vi, Symbol) and vi in free:
expr = expr.diff((vi, ci))
elif D in expr.subs(vi, D).free_symbols:
expr = expr.diff((vi, ci))
else:
wrt.append((vi, ci))
# inject remaining subs
rv = expr.subs(undone)
# do remaining differentiation *in order given*
for vc in wrt:
rv = rv.diff(vc)
else:
# inject remaining subs
rv = e.subs(undone)
else:
rv = e.doit(**hints).subs(list(zip(v, p)))
if hints.get('deep', True) and rv != self:
rv = rv.doit(**hints)
return rv
def evalf(self, prec=None, **options):
return self.doit().evalf(prec, **options)
n = evalf
@property
def variables(self):
"""The variables to be evaluated"""
return self._args[1]
bound_symbols = variables
@property
def expr(self):
"""The expression on which the substitution operates"""
return self._args[0]
@property
def point(self):
"""The values for which the variables are to be substituted"""
return self._args[2]
@property
def free_symbols(self):
return (self.expr.free_symbols - set(self.variables) |
set(self.point.free_symbols))
@property
def expr_free_symbols(self):
return (self.expr.expr_free_symbols - set(self.variables) |
set(self.point.expr_free_symbols))
def __eq__(self, other):
if not isinstance(other, Subs):
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
return not(self == other)
def __hash__(self):
return super(Subs, self).__hash__()
def _hashable_content(self):
return (self._expr.xreplace(self.canonical_variables),
) + tuple(ordered([(v, p) for v, p in
zip(self.variables, self.point) if not self.expr.has(v)]))
def _eval_subs(self, old, new):
# Subs doit will do the variables in order; the semantics
# of subs for Subs is have the following invariant for
# Subs object foo:
# foo.doit().subs(reps) == foo.subs(reps).doit()
pt = list(self.point)
if old in self.variables:
if _atomic(new) == set([new]) and not any(
i.has(new) for i in self.args):
# the substitution is neutral
return self.xreplace({old: new})
# any occurance of old before this point will get
# handled by replacements from here on
i = self.variables.index(old)
for j in range(i, len(self.variables)):
pt[j] = pt[j]._subs(old, new)
return self.func(self.expr, self.variables, pt)
v = [i._subs(old, new) for i in self.variables]
if v != list(self.variables):
return self.func(self.expr, self.variables + (old,), pt + [new])
expr = self.expr._subs(old, new)
pt = [i._subs(old, new) for i in self.point]
return self.func(expr, v, pt)
def _eval_derivative(self, s):
# Apply the chain rule of the derivative on the substitution variables:
val = Add.fromiter(p.diff(s) * Subs(self.expr.diff(v), self.variables, self.point).doit() for v, p in zip(self.variables, self.point))
# Check if there are free symbols in `self.expr`:
# First get the `expr_free_symbols`, which returns the free symbols
# that are directly contained in an expression node (i.e. stop
# searching if the node isn't an expression). At this point turn the
# expressions into `free_symbols` and check if there are common free
# symbols in `self.expr` and the deriving factor.
fs1 = {j for i in self.expr_free_symbols for j in i.free_symbols}
if len(fs1 & s.free_symbols) > 0:
val += Subs(self.expr.diff(s), self.variables, self.point).doit()
return val
def _eval_nseries(self, x, n, logx):
if x in self.point:
# x is the variable being substituted into
apos = self.point.index(x)
other = self.variables[apos]
else:
other = x
arg = self.expr.nseries(other, n=n, logx=logx)
o = arg.getO()
terms = Add.make_args(arg.removeO())
rv = Add(*[self.func(a, *self.args[1:]) for a in terms])
if o:
rv += o.subs(other, x)
return rv
def _eval_as_leading_term(self, x):
if x in self.point:
ipos = self.point.index(x)
xvar = self.variables[ipos]
return self.expr.as_leading_term(xvar)
if x in self.variables:
# if `x` is a dummy variable, it means it won't exist after the
# substitution has been performed:
return self
# The variable is independent of the substitution:
return self.expr.as_leading_term(x)
def diff(f, *symbols, **kwargs):
"""
Differentiate f with respect to symbols.
This is just a wrapper to unify .diff() and the Derivative class; its
interface is similar to that of integrate(). You can use the same
shortcuts for multiple variables as with Derivative. For example,
diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative
of f(x).
You can pass evaluate=False to get an unevaluated Derivative class. Note
that if there are 0 symbols (such as diff(f(x), x, 0), then the result will
be the function (the zeroth derivative), even if evaluate=False.
Examples
========
>>> from sympy import sin, cos, Function, diff
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> diff(sin(x), x)
cos(x)
>>> diff(f(x), x, x, x)
Derivative(f(x), (x, 3))
>>> diff(f(x), x, 3)
Derivative(f(x), (x, 3))
>>> diff(sin(x)*cos(y), x, 2, y, 2)
sin(x)*cos(y)
>>> type(diff(sin(x), x))
cos
>>> type(diff(sin(x), x, evaluate=False))
<class 'sympy.core.function.Derivative'>
>>> type(diff(sin(x), x, 0))
sin
>>> type(diff(sin(x), x, 0, evaluate=False))
sin
>>> diff(sin(x))
cos(x)
>>> diff(sin(x*y))
Traceback (most recent call last):
...
ValueError: specify differentiation variables to differentiate sin(x*y)
Note that ``diff(sin(x))`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
References
==========
http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html
See Also
========
Derivative
sympy.geometry.util.idiff: computes the derivative implicitly
"""
if hasattr(f, 'diff'):
return f.diff(*symbols, **kwargs)
kwargs.setdefault('evaluate', True)
return Derivative(f, *symbols, **kwargs)
def expand(e, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
r"""
Expand an expression using methods given as hints.
Hints evaluated unless explicitly set to False are: ``basic``, ``log``,
``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following
hints are supported but not applied unless set to True: ``complex``,
``func``, and ``trig``. In addition, the following meta-hints are
supported by some or all of the other hints: ``frac``, ``numer``,
``denom``, ``modulus``, and ``force``. ``deep`` is supported by all
hints. Additionally, subclasses of Expr may define their own hints or
meta-hints.
The ``basic`` hint is used for any special rewriting of an object that
should be done automatically (along with the other hints like ``mul``)
when expand is called. This is a catch-all hint to handle any sort of
expansion that may not be described by the existing hint names. To use
this hint an object should override the ``_eval_expand_basic`` method.
Objects may also define their own expand methods, which are not run by
default. See the API section below.
If ``deep`` is set to ``True`` (the default), things like arguments of
functions are recursively expanded. Use ``deep=False`` to only expand on
the top level.
If the ``force`` hint is used, assumptions about variables will be ignored
in making the expansion.
Hints
=====
These hints are run by default
mul
---
Distributes multiplication over addition:
>>> from sympy import cos, exp, sin
>>> from sympy.abc import x, y, z
>>> (y*(x + z)).expand(mul=True)
x*y + y*z
multinomial
-----------
Expand (x + y + ...)**n where n is a positive integer.
>>> ((x + y + z)**2).expand(multinomial=True)
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
power_exp
---------
Expand addition in exponents into multiplied bases.
>>> exp(x + y).expand(power_exp=True)
exp(x)*exp(y)
>>> (2**(x + y)).expand(power_exp=True)
2**x*2**y
power_base
----------
Split powers of multiplied bases.
This only happens by default if assumptions allow, or if the
``force`` meta-hint is used:
>>> ((x*y)**z).expand(power_base=True)
(x*y)**z
>>> ((x*y)**z).expand(power_base=True, force=True)
x**z*y**z
>>> ((2*y)**z).expand(power_base=True)
2**z*y**z
Note that in some cases where this expansion always holds, SymPy performs
it automatically:
>>> (x*y)**2
x**2*y**2
log
---
Pull out power of an argument as a coefficient and split logs products
into sums of logs.
Note that these only work if the arguments of the log function have the
proper assumptions--the arguments must be positive and the exponents must
be real--or else the ``force`` hint must be True:
>>> from sympy import log, symbols
>>> log(x**2*y).expand(log=True)
log(x**2*y)
>>> log(x**2*y).expand(log=True, force=True)
2*log(x) + log(y)
>>> x, y = symbols('x,y', positive=True)
>>> log(x**2*y).expand(log=True)
2*log(x) + log(y)
basic
-----
This hint is intended primarily as a way for custom subclasses to enable
expansion by default.
These hints are not run by default:
complex
-------
Split an expression into real and imaginary parts.
>>> x, y = symbols('x,y')
>>> (x + y).expand(complex=True)
re(x) + re(y) + I*im(x) + I*im(y)
>>> cos(x).expand(complex=True)
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x))
Note that this is just a wrapper around ``as_real_imag()``. Most objects
that wish to redefine ``_eval_expand_complex()`` should consider
redefining ``as_real_imag()`` instead.
func
----
Expand other functions.
>>> from sympy import gamma
>>> gamma(x + 1).expand(func=True)
x*gamma(x)
trig
----
Do trigonometric expansions.
>>> cos(x + y).expand(trig=True)
-sin(x)*sin(y) + cos(x)*cos(y)
>>> sin(2*x).expand(trig=True)
2*sin(x)*cos(x)
Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)``
and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x)
= 1`. The current implementation uses the form obtained from Chebyshev
polynomials, but this may change. See `this MathWorld article
<http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more
information.
Notes
=====
- You can shut off unwanted methods::
>>> (exp(x + y)*(x + y)).expand()
x*exp(x)*exp(y) + y*exp(x)*exp(y)
>>> (exp(x + y)*(x + y)).expand(power_exp=False)
x*exp(x + y) + y*exp(x + y)
>>> (exp(x + y)*(x + y)).expand(mul=False)
(x + y)*exp(x)*exp(y)
- Use deep=False to only expand on the top level::
>>> exp(x + exp(x + y)).expand()
exp(x)*exp(exp(x)*exp(y))
>>> exp(x + exp(x + y)).expand(deep=False)
exp(x)*exp(exp(x + y))
- Hints are applied in an arbitrary, but consistent order (in the current
implementation, they are applied in alphabetical order, except
multinomial comes before mul, but this may change). Because of this,
some hints may prevent expansion by other hints if they are applied
first. For example, ``mul`` may distribute multiplications and prevent
``log`` and ``power_base`` from expanding them. Also, if ``mul`` is
applied before ``multinomial`, the expression might not be fully
distributed. The solution is to use the various ``expand_hint`` helper
functions or to use ``hint=False`` to this function to finely control
which hints are applied. Here are some examples::
>>> from sympy import expand, expand_mul, expand_power_base
>>> x, y, z = symbols('x,y,z', positive=True)
>>> expand(log(x*(y + z)))
log(x) + log(y + z)
Here, we see that ``log`` was applied before ``mul``. To get the mul
expanded form, either of the following will work::
>>> expand_mul(log(x*(y + z)))
log(x*y + x*z)
>>> expand(log(x*(y + z)), log=False)
log(x*y + x*z)
A similar thing can happen with the ``power_base`` hint::
>>> expand((x*(y + z))**x)
(x*y + x*z)**x
To get the ``power_base`` expanded form, either of the following will
work::
>>> expand((x*(y + z))**x, mul=False)
x**x*(y + z)**x
>>> expand_power_base((x*(y + z))**x)
x**x*(y + z)**x
>>> expand((x + y)*y/x)
y + y**2/x
The parts of a rational expression can be targeted::
>>> expand((x + y)*y/x/(x + 1), frac=True)
(x*y + y**2)/(x**2 + x)
>>> expand((x + y)*y/x/(x + 1), numer=True)
(x*y + y**2)/(x*(x + 1))
>>> expand((x + y)*y/x/(x + 1), denom=True)
y*(x + y)/(x**2 + x)
- The ``modulus`` meta-hint can be used to reduce the coefficients of an
expression post-expansion::
>>> expand((3*x + 1)**2)
9*x**2 + 6*x + 1
>>> expand((3*x + 1)**2, modulus=5)
4*x**2 + x + 1
- Either ``expand()`` the function or ``.expand()`` the method can be
used. Both are equivalent::
>>> expand((x + 1)**2)
x**2 + 2*x + 1
>>> ((x + 1)**2).expand()
x**2 + 2*x + 1
API
===
Objects can define their own expand hints by defining
``_eval_expand_hint()``. The function should take the form::
def _eval_expand_hint(self, **hints):
# Only apply the method to the top-level expression
...
See also the example below. Objects should define ``_eval_expand_hint()``
methods only if ``hint`` applies to that specific object. The generic
``_eval_expand_hint()`` method defined in Expr will handle the no-op case.
Each hint should be responsible for expanding that hint only.
Furthermore, the expansion should be applied to the top-level expression
only. ``expand()`` takes care of the recursion that happens when
``deep=True``.
You should only call ``_eval_expand_hint()`` methods directly if you are
100% sure that the object has the method, as otherwise you are liable to
get unexpected ``AttributeError``s. Note, again, that you do not need to
recursively apply the hint to args of your object: this is handled
automatically by ``expand()``. ``_eval_expand_hint()`` should
generally not be used at all outside of an ``_eval_expand_hint()`` method.
If you want to apply a specific expansion from within another method, use
the public ``expand()`` function, method, or ``expand_hint()`` functions.
In order for expand to work, objects must be rebuildable by their args,
i.e., ``obj.func(*obj.args) == obj`` must hold.
Expand methods are passed ``**hints`` so that expand hints may use
'metahints'--hints that control how different expand methods are applied.
For example, the ``force=True`` hint described above that causes
``expand(log=True)`` to ignore assumptions is such a metahint. The
``deep`` meta-hint is handled exclusively by ``expand()`` and is not
passed to ``_eval_expand_hint()`` methods.
Note that expansion hints should generally be methods that perform some
kind of 'expansion'. For hints that simply rewrite an expression, use the
.rewrite() API.
Examples
========
>>> from sympy import Expr, sympify
>>> class MyClass(Expr):
... def __new__(cls, *args):
... args = sympify(args)
... return Expr.__new__(cls, *args)
...
... def _eval_expand_double(self, **hints):
... '''
... Doubles the args of MyClass.
...
... If there more than four args, doubling is not performed,
... unless force=True is also used (False by default).
... '''
... force = hints.pop('force', False)
... if not force and len(self.args) > 4:
... return self
... return self.func(*(self.args + self.args))
...
>>> a = MyClass(1, 2, MyClass(3, 4))
>>> a
MyClass(1, 2, MyClass(3, 4))
>>> a.expand(double=True)
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
>>> a.expand(double=True, deep=False)
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
>>> b = MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True)
MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True, force=True)
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
See Also
========
expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig,
expand_power_base, expand_power_exp, expand_func, hyperexpand
"""
# don't modify this; modify the Expr.expand method
hints['power_base'] = power_base
hints['power_exp'] = power_exp
hints['mul'] = mul
hints['log'] = log
hints['multinomial'] = multinomial
hints['basic'] = basic
return sympify(e).expand(deep=deep, modulus=modulus, **hints)
# This is a special application of two hints
def _mexpand(expr, recursive=False):
# expand multinomials and then expand products; this may not always
# be sufficient to give a fully expanded expression (see
# test_issue_8247_8354 in test_arit)
if expr is None:
return
was = None
while was != expr:
was, expr = expr, expand_mul(expand_multinomial(expr))
if not recursive:
break
return expr
# These are simple wrappers around single hints.
def expand_mul(expr, deep=True):
"""
Wrapper around expand that only uses the mul hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_mul, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2)
"""
return sympify(expr).expand(deep=deep, mul=True, power_exp=False,
power_base=False, basic=False, multinomial=False, log=False)
def expand_multinomial(expr, deep=True):
"""
Wrapper around expand that only uses the multinomial hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_multinomial, exp
>>> x, y = symbols('x y', positive=True)
>>> expand_multinomial((x + exp(x + 1))**2)
x**2 + 2*x*exp(x + 1) + exp(2*x + 2)
"""
return sympify(expr).expand(deep=deep, mul=False, power_exp=False,
power_base=False, basic=False, multinomial=True, log=False)
def expand_log(expr, deep=True, force=False):
"""
Wrapper around expand that only uses the log hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_log, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
(x + y)*(log(x) + 2*log(y))*exp(x + y)
"""
return sympify(expr).expand(deep=deep, log=True, mul=False,
power_exp=False, power_base=False, multinomial=False,
basic=False, force=force)
def expand_func(expr, deep=True):
"""
Wrapper around expand that only uses the func hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_func, gamma
>>> from sympy.abc import x
>>> expand_func(gamma(x + 2))
x*(x + 1)*gamma(x)
"""
return sympify(expr).expand(deep=deep, func=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_trig(expr, deep=True):
"""
Wrapper around expand that only uses the trig hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_trig, sin
>>> from sympy.abc import x, y
>>> expand_trig(sin(x+y)*(x+y))
(x + y)*(sin(x)*cos(y) + sin(y)*cos(x))
"""
return sympify(expr).expand(deep=deep, trig=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_complex(expr, deep=True):
"""
Wrapper around expand that only uses the complex hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_complex, exp, sqrt, I
>>> from sympy.abc import z
>>> expand_complex(exp(z))
I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z))
>>> expand_complex(sqrt(I))
sqrt(2)/2 + sqrt(2)*I/2
See Also
========
Expr.as_real_imag
"""
return sympify(expr).expand(deep=deep, complex=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_power_base(expr, deep=True, force=False):
"""
Wrapper around expand that only uses the power_base hint.
See the expand docstring for more information.
A wrapper to expand(power_base=True) which separates a power with a base
that is a Mul into a product of powers, without performing any other
expansions, provided that assumptions about the power's base and exponent
allow.
deep=False (default is True) will only apply to the top-level expression.
force=True (default is False) will cause the expansion to ignore
assumptions about the base and exponent. When False, the expansion will
only happen if the base is non-negative or the exponent is an integer.
>>> from sympy.abc import x, y, z
>>> from sympy import expand_power_base, sin, cos, exp
>>> (x*y)**2
x**2*y**2
>>> (2*x)**y
(2*x)**y
>>> expand_power_base(_)
2**y*x**y
>>> expand_power_base((x*y)**z)
(x*y)**z
>>> expand_power_base((x*y)**z, force=True)
x**z*y**z
>>> expand_power_base(sin((x*y)**z), deep=False)
sin((x*y)**z)
>>> expand_power_base(sin((x*y)**z), force=True)
sin(x**z*y**z)
>>> expand_power_base((2*sin(x))**y + (2*cos(x))**y)
2**y*sin(x)**y + 2**y*cos(x)**y
>>> expand_power_base((2*exp(y))**x)
2**x*exp(y)**x
>>> expand_power_base((2*cos(x))**y)
2**y*cos(x)**y
Notice that sums are left untouched. If this is not the desired behavior,
apply full ``expand()`` to the expression:
>>> expand_power_base(((x+y)*z)**2)
z**2*(x + y)**2
>>> (((x+y)*z)**2).expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
>>> expand_power_base((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)).expand()
2*2**z*y*y**z
"""
return sympify(expr).expand(deep=deep, log=False, mul=False,
power_exp=False, power_base=True, multinomial=False,
basic=False, force=force)
def expand_power_exp(expr, deep=True):
"""
Wrapper around expand that only uses the power_exp hint.
See the expand docstring for more information.
Examples
========
>>> from sympy import expand_power_exp
>>> from sympy.abc import x, y
>>> expand_power_exp(x**(y + 2))
x**2*x**y
"""
return sympify(expr).expand(deep=deep, complex=False, basic=False,
log=False, mul=False, power_exp=True, power_base=False, multinomial=False)
def count_ops(expr, visual=False):
"""
Return a representation (integer or expression) of the operations in expr.
If ``visual`` is ``False`` (default) then the sum of the coefficients of the
visual expression will be returned.
If ``visual`` is ``True`` then the number of each type of operation is shown
with the core class types (or their virtual equivalent) multiplied by the
number of times they occur.
If expr is an iterable, the sum of the op counts of the
items will be returned.
Examples
========
>>> from sympy.abc import a, b, x, y
>>> from sympy import sin, count_ops
Although there isn't a SUB object, minus signs are interpreted as
either negations or subtractions:
>>> (x - y).count_ops(visual=True)
SUB
>>> (-x).count_ops(visual=True)
NEG
Here, there are two Adds and a Pow:
>>> (1 + a + b**2).count_ops(visual=True)
2*ADD + POW
In the following, an Add, Mul, Pow and two functions:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
ADD + MUL + POW + 2*SIN
for a total of 5:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
5
Note that "what you type" is not always what you get. The expression
1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
than two DIVs:
>>> (1/x/y).count_ops(visual=True)
DIV + MUL
The visual option can be used to demonstrate the difference in
operations for expressions in different forms. Here, the Horner
representation is compared with the expanded form of a polynomial:
>>> eq=x*(1 + x*(2 + x*(3 + x)))
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
-MUL + 3*POW
The count_ops function also handles iterables:
>>> count_ops([x, sin(x), None, True, x + 2], visual=False)
2
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
ADD + SIN
>>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
2*ADD + SIN
"""
from sympy import Integral, Symbol
from sympy.core.relational import Relational
from sympy.simplify.radsimp import fraction
from sympy.logic.boolalg import BooleanFunction
from sympy.utilities.misc import func_name
expr = sympify(expr)
if isinstance(expr, Expr) and not expr.is_Relational:
ops = []
args = [expr]
NEG = Symbol('NEG')
DIV = Symbol('DIV')
SUB = Symbol('SUB')
ADD = Symbol('ADD')
while args:
a = args.pop()
if a.is_Rational:
#-1/3 = NEG + DIV
if a is not S.One:
if a.p < 0:
ops.append(NEG)
if a.q != 1:
ops.append(DIV)
continue
elif a.is_Mul or a.is_MatMul:
if _coeff_isneg(a):
ops.append(NEG)
if a.args[0] is S.NegativeOne:
a = a.as_two_terms()[1]
else:
a = -a
n, d = fraction(a)
if n.is_Integer:
ops.append(DIV)
if n < 0:
ops.append(NEG)
args.append(d)
continue # won't be -Mul but could be Add
elif d is not S.One:
if not d.is_Integer:
args.append(d)
ops.append(DIV)
args.append(n)
continue # could be -Mul
elif a.is_Add or a.is_MatAdd:
aargs = list(a.args)
negs = 0
for i, ai in enumerate(aargs):
if _coeff_isneg(ai):
negs += 1
args.append(-ai)
if i > 0:
ops.append(SUB)
else:
args.append(ai)
if i > 0:
ops.append(ADD)
if negs == len(aargs): # -x - y = NEG + SUB
ops.append(NEG)
elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD
ops.append(SUB - ADD)
continue
if a.is_Pow and a.exp is S.NegativeOne:
ops.append(DIV)
args.append(a.base) # won't be -Mul but could be Add
continue
if (a.is_Mul or
a.is_Pow or
a.is_Function or
isinstance(a, Derivative) or
isinstance(a, Integral)):
o = Symbol(a.func.__name__.upper())
# count the args
if (a.is_Mul or isinstance(a, LatticeOp)):
ops.append(o*(len(a.args) - 1))
else:
ops.append(o)
if not a.is_Symbol:
args.extend(a.args)
elif type(expr) is dict:
ops = [count_ops(k, visual=visual) +
count_ops(v, visual=visual) for k, v in expr.items()]
elif iterable(expr):
ops = [count_ops(i, visual=visual) for i in expr]
elif isinstance(expr, (Relational, BooleanFunction)):
ops = []
for arg in expr.args:
ops.append(count_ops(arg, visual=True))
o = Symbol(func_name(expr, short=True).upper())
ops.append(o)
elif not isinstance(expr, Basic):
ops = []
else: # it's Basic not isinstance(expr, Expr):
if not isinstance(expr, Basic):
raise TypeError("Invalid type of expr")
else:
ops = []
args = [expr]
while args:
a = args.pop()
if a.args:
o = Symbol(a.func.__name__.upper())
if a.is_Boolean:
ops.append(o*(len(a.args)-1))
else:
ops.append(o)
args.extend(a.args)
if not ops:
if visual:
return S.Zero
return 0
ops = Add(*ops)
if visual:
return ops
if ops.is_Number:
return int(ops)
return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))
def nfloat(expr, n=15, exponent=False, dkeys=False):
"""Make all Rationals in expr Floats except those in exponents
(unless the exponents flag is set to True). When processing
dictionaries, don't modify the keys unless ``dkeys=True``.
Examples
========
>>> from sympy.core.function import nfloat
>>> from sympy.abc import x, y
>>> from sympy import cos, pi, sqrt
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
x**4 + 0.5*x + sqrt(y) + 1.5
>>> nfloat(x**4 + sqrt(y), exponent=True)
x**4.0 + y**0.5
Container types are not modified:
>>> type(nfloat((1, 2))) is tuple
True
"""
from sympy.core.power import Pow
from sympy.polys.rootoftools import RootOf
kw = dict(n=n, exponent=exponent, dkeys=dkeys)
# handling of iterable containers
if iterable(expr, exclude=string_types):
if isinstance(expr, (dict, Dict)):
if dkeys:
args = [tuple(map(lambda i: nfloat(i, **kw), a))
for a in expr.items()]
else:
args = [(k, nfloat(v, **kw)) for k, v in expr.items()]
if isinstance(expr, dict):
return type(expr)(args)
else:
return expr.func(*args)
elif isinstance(expr, Basic):
return expr.func(*[nfloat(a, **kw) for a in expr.args])
return type(expr)([nfloat(a, **kw) for a in expr])
rv = sympify(expr)
if rv.is_Number:
return Float(rv, n)
elif rv.is_number:
# evalf doesn't always set the precision
rv = rv.n(n)
if rv.is_Number:
rv = Float(rv.n(n), n)
else:
pass # pure_complex(rv) is likely True
return rv
elif rv.is_Atom:
return rv
# watch out for RootOf instances that don't like to have
# their exponents replaced with Dummies and also sometimes have
# problems with evaluating at low precision (issue 6393)
rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)})
if not exponent:
reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)]
rv = rv.xreplace(dict(reps))
rv = rv.n(n)
if not exponent:
rv = rv.xreplace({d.exp: p.exp for p, d in reps})
else:
# Pow._eval_evalf special cases Integer exponents so if
# exponent is suppose to be handled we have to do so here
rv = rv.xreplace(Transform(
lambda x: Pow(x.base, Float(x.exp, n)),
lambda x: x.is_Pow and x.exp.is_Integer))
return rv.xreplace(Transform(
lambda x: x.func(*nfloat(x.args, n, exponent)),
lambda x: isinstance(x, Function)))
from sympy.core.symbol import Dummy, Symbol
|
ab3d252798f814892111b66715177f602f4c50e515996e693bea4e0026026673 | from __future__ import absolute_import, print_function, division
import numbers
import decimal
import fractions
import math
import re as regex
from .containers import Tuple
from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .decorators import _sympifyit
from .cache import cacheit, clear_cache
from .logic import fuzzy_not
from sympy.core.compatibility import (
as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY,
SYMPY_INTS, int_info)
from sympy.core.cache import lru_cache
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize,
prec_to_dps)
from sympy.utilities.misc import debug, filldedent
from .evaluate import global_evaluate
from sympy.utilities.exceptions import SymPyDeprecationWarning
rnd = mlib.round_nearest
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
"""Return a bool indicating whether the error between z1 and z2 is <= tol.
If ``tol`` is None then True will be returned if there is a significant
difference between the numbers: ``abs(z1 - z2)*10**p <= 1/2`` where ``p``
is the lower of the precisions of the values. A comparison of strings will
be made if ``z1`` is a Number and a) ``z2`` is a string or b) ``tol`` is ''
and ``z2`` is a Number.
When ``tol`` is a nonzero value, if z2 is non-zero and ``|z1| > 1``
the error is normalized by ``|z1|``, so if you want to see if the
absolute error between ``z1`` and ``z2`` is <= ``tol`` then call this
as ``comp(z1 - z2, 0, tol)``.
"""
if type(z2) is str:
if not isinstance(z1, Number):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
if tol is None:
if type(z2) is str and getattr(z1, 'is_Number', False):
return str(z1) == z2
a, b = Float(z1), Float(z2)
return int(abs(a - b)*10**prec_to_dps(
min(a._prec, b._prec)))*2 <= 1
elif all(getattr(i, 'is_Number', False) for i in (z1, z2)):
return z1._prec == z2._prec and str(z1) == str(z2)
raise ValueError('exact comparison requires two Numbers')
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return _mpf_zero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should sympy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
The algorithm is based on the well known Euclid's algorithm. To
improve speed, igcd() has its own caching mechanism implemented.
Examples
========
>>> from sympy.core.numbers import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
for b in args_temp:
a = igcd2(a, b) if b else a
return a
try:
from math import gcd as igcd2
except ImportError:
def igcd2(a, b):
"""Compute gcd of two Python integers a and b."""
if (a.bit_length() > BIGBITS and
b.bit_length() > BIGBITS):
return igcd_lehmer(a, b)
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a
# Use Lehmer's algorithm only for very large numbers.
# The limit could be different on Python 2.7 and 3.x.
# If so, then this could be defined in compatibility.py.
BIGBITS = 5000
def igcd_lehmer(a, b):
"""Computes greatest common divisor of two integers.
Euclid's algorithm for the computation of the greatest
common divisor gcd(a, b) of two (positive) integers
a and b is based on the division identity
a = q*b + r,
where the quotient q and the remainder r are integers
and 0 <= r < b. Then each common divisor of a and b
divides r, and it follows that gcd(a, b) == gcd(b, r).
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, q = a // b and r = a % b are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm is based on the observation that the quotients
qn = r(n-1) // rn are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy.core.numbers import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
"""
Return the number c such that, (a * c) = 1 (mod m)
where c has the same sign as m. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import S
>>> from sympy.core.numbers import mod_inverse
Suppose we wish to find multiplicative inverse x of
3 modulo 11. This is the same as finding x such
that 3 * x = 1 (mod 11). One value of x that satisfies
this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11).
This is the value return by mod_inverse:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
``a`` and ``m`` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, y, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if not (big is S.true or big is S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = []
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, string_types):
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from .containers import Tuple
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
raise TypeError(msg % (type(self).__name__, type(other).__name__))
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
else:
rat = self/other
w = int(rat) if rat > 0 else int(rat) - 1
r = self - other*w
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
raise TypeError(msg % (type(other).__name__, type(self).__name__))
return divmod(other, self)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
def _eval_is_finite(self):
return True
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity or other is S.NegativeInfinity:
return S.Zero
return AtomicExpr.__div__(self, other)
__truediv__ = __div__
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super(Number, self).__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, **kwargs):
# a -> c*t
if self.is_Rational or not kwargs.pop('rational', True):
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; spaces or underscores are also allowed. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
"""
__slots__ = ['_mpf_', '_prec']
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_Float = True
def __new__(cls, num, dps=None, prec=None, precision=None):
if prec is not None:
SymPyDeprecationWarning(
feature="Using 'prec=XX' to denote decimal precision",
useinstead="'dps=XX' for decimal precision and 'precision=XX' "\
"for binary precision",
issue=12820,
deprecated_since_version="1.1").warn()
dps = prec
del prec # avoid using this deprecated kwarg
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, string_types):
# Float already accepts spaces as digit separators; in Py 3.6
# underscores are allowed. In anticipation of that, we ignore
# legally placed underscores
num = num.replace(' ', '')
if '_' in num:
if num.startswith('_') or num.endswith('_') or any(
i in num for i in ('__', '_.', '._')):
# copy Py 3.6 error
raise ValueError("could not convert string to float: '%s'" % num)
num = num.replace('_', '')
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif num == 'inf' or num == '+inf':
return S.Infinity
elif num == '-inf':
return S.NegativeInfinity
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, float) and num == float('inf'):
return S.Infinity
elif isinstance(num, float) and num == float('-inf'):
return S.NegativeInfinity
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num) # faster than mlib.from_int
elif num is S.Infinity:
return num
elif num is S.NegativeInfinity:
return num
elif type(num).__module__ == 'numpy': # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, string_types) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = mlib.libmpf.dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, string_types):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = mlib.libmpf.dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = mlib.libmpf.dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, string_types):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
return S.NaN
elif num.is_infinite():
if num > 0:
return S.Infinity
else:
return S.NegativeInfinity
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if type(num[1]) is str:
# it's a hexadecimal (coming from a pickled object)
# assume that it is in standard form
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
return (S.NegativeOne**num[0]*num[1]*S(2)**num[2]).evalf(precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
# special cases
if _mpf_ == _mpf_zero:
pass # we want a Float
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = _mpf_
obj._prec = precision
return obj
@classmethod
def _new(cls, _mpf_, _prec):
# special cases
if _mpf_ == _mpf_zero:
return S.Zero # XXX this is different from Float which gives 0.0
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
# XXX: Should this be obj._prec = obj._mpf_[3]?
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs__(self):
return (mlib.to_pickable(self._mpf_),)
def __getstate__(self):
return {'_prec': self._prec}
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == _mpf_zero
def _eval_is_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == _mpf_zero
def __nonzero__(self):
return self._mpf_ != _mpf_zero
__bool__ = __nonzero__
def __neg__(self):
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and other != 0 and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__div__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_evaluate[0]:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_evaluate[0]:
return other.__mod__(self)
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_positive:
return S.Zero
if expt.is_negative:
return S.Infinity
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, _mpf_zero), (expt, _mpf_zero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == _mpf_zero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
__long__ = __int__
def __eq__(self, other):
if isinstance(other, float):
# coerce to Float at same precision
o = Float(other)
try:
ompf = o._as_mpf_val(self._prec)
except ValueError:
return False
return bool(mlib.mpf_eq(self._mpf_, ompf))
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
return bool(mlib.mpf_eq(self._mpf_, other._mpf_))
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_NumberSymbol:
return other.__lt__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_NumberSymbol:
return other.__le__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__ge__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_NumberSymbol:
return other.__gt__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_NumberSymbol:
return other.__ge__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__le__(self, other)
def __hash__(self):
return super(Float, self).__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def _sage_(self):
import sage.all as sage
return sage.RealNumber(str(self))
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
See Also
========
sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ['p', 'q']
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, string_types):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
else:
p = Rational(p)
q = Rational(q)
if isinstance(q, Rational):
p *= q.q
q = q.p
if isinstance(p, Rational):
q *= p.q
p = p.p
# p and q are now integers
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__div__(self, other)
return Number.__div__(self, other)
@_sympifyit('other', NotImplemented)
def __rdiv__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rdiv__(self, other)
return Number.__rdiv__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
if self.p != 1:
# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
return Integer(self.p)**expt*Integer(self.q)**(-expt)
# as the above caught negative self.p, now self is positive
return Integer(self.q)**Rational(
expt.p*(expt.q - 1), expt.q) / \
Integer(self.q)**Integer(expt.p)
if self.is_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
__long__ = __int__
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Number:
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_)
return False
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_NumberSymbol:
return other.__lt__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q > self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_gt(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__gt__(expr, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_NumberSymbol:
return other.__le__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q >= self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_ge(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__ge__(expr, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_NumberSymbol:
return other.__gt__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q < self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_lt(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__lt__(expr, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
expr = self
if other.is_NumberSymbol:
return other.__ge__(self)
elif other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q <= self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_le(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__le__(expr, other)
def __hash__(self):
return super(Rational, self).__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
def numerator(self):
return self.p
def denominator(self):
return self.q
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other is S.Zero:
return other
return Rational(
Integer(igcd(self.p, other.p)),
Integer(ilcm(self.q, other.q)))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def _sage_(self):
import sage.all as sage
return sage.Integer(self.p)/sage.Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ['p']
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, string_types):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
__long__ = __int__
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
from .containers import Tuple
if isinstance(other, Integer) and global_evaluate[0]:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
from .containers import Tuple
if isinstance(other, integer_types) and global_evaluate[0]:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, integer_types):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super(Integer, self)._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self)**ne
else:
return Rational(1, self.p)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
def __floordiv__(self, other):
return Integer(self.p // Integer(other).p)
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# Add sympify converters
for i_type in integer_types:
converter[i_type] = Integer
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ['rep', 'root', 'alias', 'minpoly']
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
def __new__(cls, expr, coeffs=None, alias=None, **args):
"""Construct a new algebraic number. """
from sympy import Poly
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
from sympy.core.symbol import Symbol
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
sargs = (root, scoeffs)
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __hash__(self):
return super(AlgebraicNumber, self).__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy import Dummy, Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.polys import CRootOf, minpoly
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(with_metaclass(Singleton, IntegerConstant)):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer, zoo
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
__slots__ = []
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative:
return S.ComplexInfinity
if expt.is_real is False:
return S.NaN
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __nonzero__(self):
return False
__bool__ = __nonzero__
def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted
"""Efficiently extract the coefficient of a summation. """
return S.One, self
class One(with_metaclass(Singleton, IntegerConstant)):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
p = 1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(with_metaclass(Singleton, IntegerConstant)):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt is S.Infinity or expt is S.NegativeInfinity:
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(with_metaclass(Singleton, RationalConstant)):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = []
@staticmethod
def __abs__():
return S.Half
class Infinity(with_metaclass(Singleton, Number)):
r"""Positive infinite quantity.
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_positive = True
is_infinite = True
is_number = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number):
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return NotImplemented
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number):
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number):
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_positive:
return self
return S.NegativeInfinity
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number):
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_nonnegative:
return self
return S.NegativeInfinity
return NotImplemented
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
from sympy.functions import re
if expt.is_positive:
return S.Infinity
if expt.is_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_real is False and expt.is_number:
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def _sage_(self):
import sage.all as sage
return sage.oo
def __hash__(self):
return super(Infinity, self).__hash__()
def __eq__(self, other):
return other is S.Infinity or other == float('inf')
def __ne__(self, other):
return other is not S.Infinity and other != float('inf')
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_real:
return S.false
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.NegativeInfinity:
return S.false
elif other.is_nonpositive:
return S.false
elif other.is_infinite and other.is_positive:
return S.true
return Expr.__le__(self, other)
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.NegativeInfinity:
return S.true
elif other.is_nonpositive:
return S.true
elif other.is_infinite and other.is_positive:
return S.false
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_real:
return S.true
return Expr.__ge__(self, other)
def __mod__(self, other):
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(with_metaclass(Singleton, Number)):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_commutative = True
is_negative = True
is_infinite = True
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number):
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return NotImplemented
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number):
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number):
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_positive:
return self
return S.Infinity
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number):
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_nonnegative:
return self
return S.Infinity
return NotImplemented
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
return S.NegativeOne**expt*S.Infinity**expt
def _as_mpf_val(self, prec):
return mlib.fninf
def _sage_(self):
import sage.all as sage
return -(sage.oo)
def __hash__(self):
return super(NegativeInfinity, self).__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity or other == float('-inf')
def __ne__(self, other):
return other is not S.NegativeInfinity and other != float('-inf')
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.Infinity:
return S.true
elif other.is_nonnegative:
return S.true
elif other.is_infinite and other.is_negative:
return S.false
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_real:
return S.true
return Expr.__le__(self, other)
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_real:
return S.false
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.Infinity:
return S.false
elif other.is_nonnegative:
return S.false
elif other.is_infinite and other.is_negative:
return S.true
return Expr.__ge__(self, other)
def __mod__(self, other):
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
class NaN(with_metaclass(Singleton, Number)):
"""
Not a Number.
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
constrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __div__(self, other):
return self
__truediv__ = __div__
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def _sage_(self):
import sage.all as sage
return sage.NaN
def __hash__(self):
return super(NaN, self).__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
def _eval_Eq(self, other):
# NaN is not mathematically equal to anything, even NaN
return S.false
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)):
r"""Complex infinity.
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo, oo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = True
is_real = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt is S.Zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
def _sage_(self):
import sage.all as sage
return sage.UnsignedInfinityRing.gen()
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = []
is_NumberSymbol = True
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __long__(self):
return self.__int__()
def __hash__(self):
return super(NumberSymbol, self).__hash__()
class Exp1(with_metaclass(Singleton, NumberSymbol)):
r"""The `e` constant.
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
from sympy import exp
return exp(expt)
def _eval_rewrite_as_sin(self, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I) + I*cos(I + S.Pi/2)
def _sage_(self):
import sage.all as sage
return sage.e
E = S.Exp1
class Pi(with_metaclass(Singleton, NumberSymbol)):
r"""The `\pi` constant.
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71), Rational(22, 7))
def _sage_(self):
import sage.all as sage
return sage.pi
pi = S.Pi
class GoldenRatio(with_metaclass(Singleton, NumberSymbol)):
r"""The golden ratio, `\phi`.
`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
def _sage_(self):
import sage.all as sage
return sage.golden_ratio
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)):
r"""The tribonacci constant.
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 2
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt, cbrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(with_metaclass(Singleton, NumberSymbol)):
r"""The Euler-Mascheroni constant.
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5))
def _sage_(self):
import sage.all as sage
return sage.euler_gamma
class Catalan(with_metaclass(Singleton, NumberSymbol)):
r"""Catalan's constant.
`K = 0.91596559\ldots` is given by the infinite series
.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10), S.One)
def _sage_(self):
import sage.all as sage
return sage.catalan
class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Number):
if isinstance(expt, Integer):
expt = expt.p % 4
if expt == 0:
return S.One
if expt == 1:
return S.ImaginaryUnit
if expt == 2:
return -S.One
return -S.ImaginaryUnit
return
def as_base_exp(self):
return S.NegativeOne, S.Half
def _sage_(self):
import sage.all as sage
return sage.I
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
converter[fractions.Fraction] = sympify_fractions
try:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
else:
raise ImportError
def sympify_mpz(x):
return Integer(long(x))
def sympify_mpq(x):
return Rational(long(x.numerator), long(x.denominator))
converter[type(gmpy.mpz(1))] = sympify_mpz
converter[type(gmpy.mpq(1, 2))] = sympify_mpq
except ImportError:
pass
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
converter[mpnumeric] = sympify_mpmath
def sympify_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
def _register_classes():
numbers.Number.register(Number)
numbers.Real.register(Float)
numbers.Rational.register(Rational)
numbers.Rational.register(Integer)
_register_classes()
|
c3d0462df4d92c221801a249aeb32338b559dcc5c24ad5ac6b7253a2e4eb2839 | """
Adaptive numerical evaluation of SymPy expressions, using mpmath
for mathematical functions.
"""
from __future__ import print_function, division
import math
import mpmath.libmp as libmp
from mpmath import (
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
from mpmath import inf as mpmath_inf
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
fnan, fnone, fone, fzero, mpf_abs, mpf_add,
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
mpf_sqrt, normalize, round_nearest, to_int, to_str)
from mpmath.libmp import bitcount as mpmath_bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp.libmpc import _infs_nan
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
from mpmath.libmp.gammazeta import mpf_bernoulli
from .compatibility import SYMPY_INTS, range
from .sympify import sympify
from .singleton import S
from sympy.utilities.iterables import is_sequence
LG10 = math.log(10, 2)
rnd = round_nearest
def bitcount(n):
"""Return smallest integer, b, such that |n|/2**b < 1.
"""
return mpmath_bitcount(abs(int(n)))
# Used in a few places as placeholder values to denote exponents and
# precision levels, e.g. of exact numbers. Must be careful to avoid
# passing these to mpmath functions or returning them in final results.
INF = float(mpmath_inf)
MINUS_INF = float(-mpmath_inf)
# ~= 100 digits. Real men set this to INF.
DEFAULT_MAXPREC = 333
class PrecisionExhausted(ArithmeticError):
pass
#----------------------------------------------------------------------------#
# #
# Helper functions for arithmetic and complex parts #
# #
#----------------------------------------------------------------------------#
"""
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
representing a floating-point number: [1, -1][sign]*man*2**exp where
sign is 0 or 1 and bc should correspond to the number of bits used to
represent the mantissa (man) in binary notation, e.g.
>>> from sympy.core.evalf import bitcount
>>> sign, man, exp, bc = 0, 5, 1, 3
>>> n = [1, -1][sign]*man*2**exp
>>> n, bitcount(man)
(10, 3)
A temporary result is a tuple (re, im, re_acc, im_acc) where
re and im are nonzero mpf value tuples representing approximate
numbers, or None to denote exact zeros.
re_acc, im_acc are integers denoting log2(e) where e is the estimated
relative accuracy of the respective complex part, but may be anything
if the corresponding complex part is None.
"""
def fastlog(x):
"""Fast approximation of log2(x) for an mpf value tuple x.
Notes: Calculated as exponent + width of mantissa. This is an
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
value and 2) it is too high by 1 in the case that x is an exact
power of 2. Although this is easy to remedy by testing to see if
the odd mpf mantissa is 1 (indicating that one was dealing with
an exact power of 2) that would decrease the speed and is not
necessary as this is only being used as an approximation for the
number of bits in x. The correct return value could be written as
"x[2] + (x[3] if x[1] != 1 else 0)".
Since mpf tuples always have an odd mantissa, no check is done
to see if the mantissa is a multiple of 2 (in which case the
result would be too large by 1).
Examples
========
>>> from sympy import log
>>> from sympy.core.evalf import fastlog, bitcount
>>> s, m, e = 0, 5, 1
>>> bc = bitcount(m)
>>> n = [1, -1][s]*m*2**e
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
(10, 3.3, 4)
"""
if not x or x == fzero:
return MINUS_INF
return x[2] + x[3]
def pure_complex(v, or_real=False):
"""Return a and b if v matches a + I*b where b is not zero and
a and b are Numbers, else None. If `or_real` is True then 0 will
be returned for `b` if `v` is a real number.
>>> from sympy.core.evalf import pure_complex
>>> from sympy import sqrt, I, S
>>> a, b, surd = S(2), S(3), sqrt(2)
>>> pure_complex(a)
>>> pure_complex(a, or_real=True)
(2, 0)
>>> pure_complex(surd)
>>> pure_complex(a + b*I)
(2, 3)
>>> pure_complex(I)
(0, 1)
"""
h, t = v.as_coeff_Add()
if not t:
if or_real:
return h, t
return
c, i = t.as_coeff_Mul()
if i is S.ImaginaryUnit:
return h, c
def scaled_zero(mag, sign=1):
"""Return an mpf representing a power of two with magnitude ``mag``
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
remove the sign from within the list that it was initially wrapped
in.
Examples
========
>>> from sympy.core.evalf import scaled_zero
>>> from sympy import Float
>>> z, p = scaled_zero(100)
>>> z, p
(([0], 1, 100, 1), -1)
>>> ok = scaled_zero(z)
>>> ok
(0, 1, 100, 1)
>>> Float(ok)
1.26765060022823e+30
>>> Float(ok, p)
0.e+30
>>> ok, p = scaled_zero(100, -1)
>>> Float(scaled_zero(ok), p)
-0.e+30
"""
if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
return (mag[0][0],) + mag[1:]
elif isinstance(mag, SYMPY_INTS):
if sign not in [-1, 1]:
raise ValueError('sign must be +/-1')
rv, p = mpf_shift(fone, mag), -1
s = 0 if sign == 1 else 1
rv = ([s],) + rv[1:]
return rv, p
else:
raise ValueError('scaled zero expects int or scaled_zero tuple.')
def iszero(mpf, scaled=False):
if not scaled:
return not mpf or not mpf[1] and not mpf[-1]
return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1
def complex_accuracy(result):
"""
Returns relative accuracy of a complex number with given accuracies
for the real and imaginary parts. The relative accuracy is defined
in the complex norm sense as ||z|+|error|| / |z| where error
is equal to (real absolute error) + (imag absolute error)*i.
The full expression for the (logarithmic) error can be approximated
easily by using the max norm to approximate the complex norm.
In the worst case (re and im equal), this is wrong by a factor
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
"""
re, im, re_acc, im_acc = result
if not im:
if not re:
return INF
return re_acc
if not re:
return im_acc
re_size = fastlog(re)
im_size = fastlog(im)
absolute_error = max(re_size - re_acc, im_size - im_acc)
relative_error = absolute_error - max(re_size, im_size)
return -relative_error
def get_abs(expr, prec, options):
re, im, re_acc, im_acc = evalf(expr, prec + 2, options)
if not re:
re, re_acc, im, im_acc = im, im_acc, re, re_acc
if im:
if expr.is_number:
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
prec + 2, options)
return abs_expr, None, acc, None
else:
if 'subs' in options:
return libmp.mpc_abs((re, im), prec), None, re_acc, None
return abs(expr), None, prec, None
elif re:
return mpf_abs(re), None, re_acc, None
else:
return None, None, None, None
def get_complex_part(expr, no, prec, options):
"""no = 0 for real part, no = 1 for imaginary part"""
workprec = prec
i = 0
while 1:
res = evalf(expr, workprec, options)
value, accuracy = res[no::2]
# XXX is the last one correct? Consider re((1+I)**2).n()
if (not value) or accuracy >= prec or -value[2] > prec:
return value, None, accuracy, None
workprec += max(30, 2**i)
i += 1
def evalf_abs(expr, prec, options):
return get_abs(expr.args[0], prec, options)
def evalf_re(expr, prec, options):
return get_complex_part(expr.args[0], 0, prec, options)
def evalf_im(expr, prec, options):
return get_complex_part(expr.args[0], 1, prec, options)
def finalize_complex(re, im, prec):
if re == fzero and im == fzero:
raise ValueError("got complex zero with unknown accuracy")
elif re == fzero:
return None, im, None, prec
elif im == fzero:
return re, None, prec, None
size_re = fastlog(re)
size_im = fastlog(im)
if size_re > size_im:
re_acc = prec
im_acc = prec + min(-(size_re - size_im), 0)
else:
im_acc = prec
re_acc = prec + min(-(size_im - size_re), 0)
return re, im, re_acc, im_acc
def chop_parts(value, prec):
"""
Chop off tiny real or complex parts.
"""
re, im, re_acc, im_acc = value
# Method 1: chop based on absolute value
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
re, re_acc = None, None
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
im, im_acc = None, None
# Method 2: chop if inaccurate and relatively small
if re and im:
delta = fastlog(re) - fastlog(im)
if re_acc < 2 and (delta - re_acc <= -prec + 4):
re, re_acc = None, None
if im_acc < 2 and (delta - im_acc >= prec - 4):
im, im_acc = None, None
return re, im, re_acc, im_acc
def check_target(expr, result, prec):
a = complex_accuracy(result)
if a < prec:
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
"from zero. Try simplifying the input, using chop=True, or providing "
"a higher maxn for evalf" % (expr))
def get_integer_part(expr, no, options, return_ints=False):
"""
With no = 1, computes ceiling(expr)
With no = -1, computes floor(expr)
Note: this function either gives the exact result or signals failure.
"""
from sympy.functions.elementary.complexes import re, im
# The expression is likely less than 2^30 or so
assumed_size = 30
ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options)
# We now know the size, so we can calculate how much extra precision
# (if any) is needed to get within the nearest integer
if ire and iim:
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
elif ire:
gap = fastlog(ire) - ire_acc
elif iim:
gap = fastlog(iim) - iim_acc
else:
# ... or maybe the expression was exactly zero
return None, None, None, None
margin = 10
if gap >= -margin:
prec = margin + assumed_size + gap
ire, iim, ire_acc, iim_acc = evalf(
expr, prec, options)
else:
prec = assumed_size
# We can now easily find the nearest integer, but to find floor/ceil, we
# must also calculate whether the difference to the nearest integer is
# positive or negative (which may fail if very close).
def calc_part(re_im, nexpr):
from sympy.core.add import Add
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if is_int:
# make sure that we had enough precision to distinguish
# between nint and the re or im part (re_im) of expr that
# was passed to calc_part
ire, iim, ire_acc, iim_acc = evalf(
re_im - nint, 10, options) # don't need much precision
assert not iim
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
if size > prec:
ire, iim, ire_acc, iim_acc = evalf(
re_im, size, options)
assert not iim
nexpr = ire
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if not is_int:
# if there are subs and they all contain integer re/im parts
# then we can (hopefully) safely substitute them into the
# expression
s = options.get('subs', False)
if s:
doit = True
from sympy.core.compatibility import as_int
# use strict=False with as_int because we take
# 2.0 == 2
for v in s.values():
try:
as_int(v, strict=False)
except ValueError:
try:
[as_int(i, strict=False) for i in v.as_real_imag()]
continue
except (ValueError, AttributeError):
doit = False
break
if doit:
re_im = re_im.subs(s)
re_im = Add(re_im, -nint, evaluate=False)
x, _, x_acc, _ = evalf(re_im, 10, options)
try:
check_target(re_im, (x, None, x_acc, None), 3)
except PrecisionExhausted:
if not re_im.equals(0):
raise PrecisionExhausted
x = fzero
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
nint = from_int(nint)
return nint, INF
re_, im_, re_acc, im_acc = None, None, None, None
if ire:
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
if iim:
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
if return_ints:
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
return re_, im_, re_acc, im_acc
def evalf_ceiling(expr, prec, options):
return get_integer_part(expr.args[0], 1, options)
def evalf_floor(expr, prec, options):
return get_integer_part(expr.args[0], -1, options)
#----------------------------------------------------------------------------#
# #
# Arithmetic operations #
# #
#----------------------------------------------------------------------------#
def add_terms(terms, prec, target_prec):
"""
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
Returns
-------
- None, None if there are no non-zero terms;
- terms[0] if there is only 1 term;
- scaled_zero if the sum of the terms produces a zero by cancellation
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
special handling since they are not actually zero and they are purposely
malformed to ensure that they can't be used in anything but accuracy
calculations;
- a tuple that is scaled to target_prec that corresponds to the
sum of the terms.
The returned mpf tuple will be normalized to target_prec; the input
prec is used to define the working precision.
XXX explain why this is needed and why one can't just loop using mpf_add
"""
terms = [t for t in terms if not iszero(t[0])]
if not terms:
return None, None
elif len(terms) == 1:
return terms[0]
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for t in terms:
arg = Float._new(t[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.add import Add
rv = evalf(Add(*special), prec + 4, {})
return rv[0], rv[2]
working_prec = 2*prec
sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
for x, accuracy in terms:
sign, man, exp, bc = x
if sign:
man = -man
absolute_error = max(absolute_error, bc + exp - accuracy)
delta = exp - sum_exp
if exp >= sum_exp:
# x much larger than existing sum?
# first: quick test
if ((delta > working_prec) and
((not sum_man) or
delta - bitcount(abs(sum_man)) > working_prec)):
sum_man = man
sum_exp = exp
else:
sum_man += (man << delta)
else:
delta = -delta
# x much smaller than existing sum?
if delta - bc > working_prec:
if not sum_man:
sum_man, sum_exp = man, exp
else:
sum_man = (sum_man << delta) + man
sum_exp = exp
if not sum_man:
return scaled_zero(absolute_error)
if sum_man < 0:
sum_sign = 1
sum_man = -sum_man
else:
sum_sign = 0
sum_bc = bitcount(sum_man)
sum_accuracy = sum_exp + sum_bc - absolute_error
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
rnd), sum_accuracy
return r
def evalf_add(v, prec, options):
res = pure_complex(v)
if res:
h, c = res
re, _, re_acc, _ = evalf(h, prec, options)
im, _, im_acc, _ = evalf(c, prec, options)
return re, im, re_acc, im_acc
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
i = 0
target_prec = prec
while 1:
options['maxprec'] = min(oldmaxprec, 2*prec)
terms = [evalf(arg, prec + 10, options) for arg in v.args]
re, re_acc = add_terms(
[a[0::2] for a in terms if a[0]], prec, target_prec)
im, im_acc = add_terms(
[a[1::2] for a in terms if a[1]], prec, target_prec)
acc = complex_accuracy((re, im, re_acc, im_acc))
if acc >= target_prec:
if options.get('verbose'):
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
break
else:
if (prec - target_prec) > options['maxprec']:
break
prec = prec + max(10 + 2**i, target_prec - acc)
i += 1
if options.get('verbose'):
print("ADD: restarting with prec", prec)
options['maxprec'] = oldmaxprec
if iszero(re, scaled=True):
re = scaled_zero(re)
if iszero(im, scaled=True):
im = scaled_zero(im)
return re, im, re_acc, im_acc
def evalf_mul(v, prec, options):
res = pure_complex(v)
if res:
# the only pure complex that is a mul is h*I
_, h = res
im, _, im_acc, _ = evalf(h, prec, options)
return None, im, None, im_acc
args = list(v.args)
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for arg in args:
arg = evalf(arg, prec, options)
if arg[0] is None:
continue
arg = Float._new(arg[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.mul import Mul
special = Mul(*special)
return evalf(special, prec + 4, {})
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
# XXX: big overestimate
working_prec = prec + len(args) + 5
# Empty product is 1
start = man, exp, bc = MPZ(1), 0, 1
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# I**direction; all other numbers get put into complex_factors
# to be multiplied out after the first phase.
last = len(args)
direction = 0
args.append(S.One)
complex_factors = []
for i, arg in enumerate(args):
if i != last and pure_complex(arg):
args[-1] = (args[-1]*arg).expand()
continue
elif i == last and arg is S.One:
continue
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2*s
man *= m
exp += e
bc += b
if bc > 3*working_prec:
man >>= working_prec
exp += working_prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
if not complex_factors:
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
else:
# initialize with the first term
if (man, exp, bc) != start:
# there was a real part; give it an imaginary part
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
i0 = 0
else:
# there is no real part to start (other than the starting 1)
wre, wim, wre_acc, wim_acc = complex_factors[0]
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
re = wre
im = wim
i0 = 1
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
use_prec = working_prec
A = mpf_mul(re, wre, use_prec)
B = mpf_mul(mpf_neg(im), wim, use_prec)
C = mpf_mul(re, wim, use_prec)
D = mpf_mul(im, wre, use_prec)
re = mpf_add(A, B, use_prec)
im = mpf_add(C, D, use_prec)
if options.get('verbose'):
print("MUL: wanted", prec, "accurate bits, got", acc)
# multiply by I
if direction & 1:
re, im = mpf_neg(im), re
return re, im, acc, acc
def evalf_pow(v, prec, options):
target_prec = prec
base, exp = v.args
# We handle x**n separately. This has two purposes: 1) it is much
# faster, because we avoid calling evalf on the exponent, and 2) it
# allows better handling of real/imaginary parts that are exactly zero
if exp.is_Integer:
p = exp.p
# Exact
if not p:
return fone, None, prec, None
# Exponentiation by p magnifies relative error by |p|, so the
# base must be evaluated with increased precision if p is large
prec += int(math.log(abs(p), 2))
re, im, re_acc, im_acc = evalf(base, prec + 5, options)
# Real to integer power
if re and not im:
return mpf_pow_int(re, p, target_prec), None, target_prec, None
# (x*I)**n = I**n * x**n
if im and not re:
z = mpf_pow_int(im, p, target_prec)
case = p % 4
if case == 0:
return z, None, target_prec, None
if case == 1:
return None, z, None, target_prec
if case == 2:
return mpf_neg(z), None, target_prec, None
if case == 3:
return None, mpf_neg(z), None, target_prec
# Zero raised to an integer power
if not re:
return None, None, None, None
# General complex number to arbitrary integer power
re, im = libmp.mpc_pow_int((re, im), p, prec)
# Assumes full accuracy in input
return finalize_complex(re, im, target_prec)
# Pure square root
if exp is S.Half:
xre, xim, _, _ = evalf(base, prec + 5, options)
# General complex square root
if xim:
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
return finalize_complex(re, im, prec)
if not xre:
return None, None, None, None
# Square root of a negative real number
if mpf_lt(xre, fzero):
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
# Positive square root
return mpf_sqrt(xre, prec), None, prec, None
# We first evaluate the exponent to find its magnitude
# This determines the working precision that must be used
prec += 10
yre, yim, _, _ = evalf(exp, prec, options)
# Special cases: x**0
if not (yre or yim):
return fone, None, prec, None
ysize = fastlog(yre)
# Restart if too big
# XXX: prec + ysize might exceed maxprec
if ysize > 5:
prec += ysize
yre, yim, _, _ = evalf(exp, prec, options)
# Pure exponential function; no need to evalf the base
if base is S.Exp1:
if yim:
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
return finalize_complex(re, im, target_prec)
return mpf_exp(yre, target_prec), None, target_prec, None
xre, xim, _, _ = evalf(base, prec + 5, options)
# 0**y
if not (xre or xim):
return None, None, None, None
# (real ** complex) or (complex ** complex)
if yim:
re, im = libmp.mpc_pow(
(xre or fzero, xim or fzero), (yre or fzero, yim),
target_prec)
return finalize_complex(re, im, target_prec)
# complex ** real
if xim:
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
return finalize_complex(re, im, target_prec)
# negative ** real
elif mpf_lt(xre, fzero):
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
return finalize_complex(re, im, target_prec)
# positive ** real
else:
return mpf_pow(xre, yre, target_prec), None, target_prec, None
#----------------------------------------------------------------------------#
# #
# Special functions #
# #
#----------------------------------------------------------------------------#
def evalf_trig(v, prec, options):
"""
This function handles sin and cos of complex arguments.
TODO: should also handle tan of complex arguments.
"""
from sympy import cos, sin
if isinstance(v, cos):
func = mpf_cos
elif isinstance(v, sin):
func = mpf_sin
else:
raise NotImplementedError
arg = v.args[0]
# 20 extra bits is possibly overkill. It does make the need
# to restart very unlikely
xprec = prec + 20
re, im, re_acc, im_acc = evalf(arg, xprec, options)
if im:
if 'subs' in options:
v = v.subs(options['subs'])
return evalf(v._eval_evalf(prec), prec, options)
if not re:
if isinstance(v, cos):
return fone, None, prec, None
elif isinstance(v, sin):
return None, None, None, None
else:
raise NotImplementedError
# For trigonometric functions, we are interested in the
# fixed-point (absolute) accuracy of the argument.
xsize = fastlog(re)
# Magnitude <= 1.0. OK to compute directly, because there is no
# danger of hitting the first root of cos (with sin, magnitude
# <= 2.0 would actually be ok)
if xsize < 1:
return func(re, prec, rnd), None, prec, None
# Very large
if xsize >= 10:
xprec = prec + xsize
re, im, re_acc, im_acc = evalf(arg, xprec, options)
# Need to repeat in case the argument is very close to a
# multiple of pi (or pi/2), hitting close to a root
while 1:
y = func(re, prec, rnd)
ysize = fastlog(y)
gap = -ysize
accuracy = (xprec - xsize) - gap
if accuracy < prec:
if options.get('verbose'):
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
print(to_str(y, 10))
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
return y, None, accuracy, None
xprec += gap
re, im, re_acc, im_acc = evalf(arg, xprec, options)
continue
else:
return y, None, prec, None
def evalf_log(expr, prec, options):
from sympy import Abs, Add, log
if len(expr.args)>1:
expr = expr.doit()
return evalf(expr, prec, options)
arg = expr.args[0]
workprec = prec + 10
xre, xim, xacc, _ = evalf(arg, workprec, options)
if xim:
# XXX: use get_abs etc instead
re = evalf_log(
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
im = mpf_atan2(xim, xre or fzero, prec)
return re[0], im, re[2], prec
imaginary_term = (mpf_cmp(xre, fzero) < 0)
re = mpf_log(mpf_abs(xre), prec, rnd)
size = fastlog(re)
if prec - size > workprec and re != fzero:
# We actually need to compute 1+x accurately, not x
arg = Add(S.NegativeOne, arg, evaluate=False)
xre, xim, _, _ = evalf_add(arg, prec, options)
prec2 = workprec - fastlog(xre)
# xre is now x - 1 so we add 1 back here to calculate x
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
re_acc = prec
if imaginary_term:
return re, mpf_pi(prec), re_acc, prec
else:
return re, None, re_acc, None
def evalf_atan(v, prec, options):
arg = v.args[0]
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
if xre is xim is None:
return (None,)*4
if xim:
raise NotImplementedError
return mpf_atan(xre, prec, rnd), None, prec, None
def evalf_subs(prec, subs):
""" Change all Float entries in `subs` to have precision prec. """
newsubs = {}
for a, b in subs.items():
b = S(b)
if b.is_Float:
b = b._eval_evalf(prec)
newsubs[a] = b
return newsubs
def evalf_piecewise(expr, prec, options):
from sympy import Float, Integer
if 'subs' in options:
expr = expr.subs(evalf_subs(prec, options['subs']))
newopts = options.copy()
del newopts['subs']
if hasattr(expr, 'func'):
return evalf(expr, prec, newopts)
if type(expr) == float:
return evalf(Float(expr), prec, newopts)
if type(expr) == int:
return evalf(Integer(expr), prec, newopts)
# We still have undefined symbols
raise NotImplementedError
def evalf_bernoulli(expr, prec, options):
arg = expr.args[0]
if not arg.is_Integer:
raise ValueError("Bernoulli number index must be an integer")
n = int(arg)
b = mpf_bernoulli(n, prec, rnd)
if b == fzero:
return None, None, None, None
return b, None, prec, None
#----------------------------------------------------------------------------#
# #
# High-level operations #
# #
#----------------------------------------------------------------------------#
def as_mpmath(x, prec, options):
from sympy.core.numbers import Infinity, NegativeInfinity, Zero
x = sympify(x)
if isinstance(x, Zero) or x == 0:
return mpf(0)
if isinstance(x, Infinity):
return mpf('inf')
if isinstance(x, NegativeInfinity):
return mpf('-inf')
# XXX
re, im, _, _ = evalf(x, prec, options)
if im:
return mpc(re or fzero, im)
return mpf(re)
def do_integral(expr, prec, options):
func = expr.args[0]
x, xlow, xhigh = expr.args[1]
if xlow == xhigh:
xlow = xhigh = 0
elif x not in func.free_symbols:
# only the difference in limits matters in this case
# so if there is a symbol in common that will cancel
# out when taking the difference, then use that
# difference
if xhigh.free_symbols & xlow.free_symbols:
diff = xhigh - xlow
if diff.is_number:
xlow, xhigh = 0, diff
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
options['maxprec'] = min(oldmaxprec, 2*prec)
with workprec(prec + 5):
xlow = as_mpmath(xlow, prec + 15, options)
xhigh = as_mpmath(xhigh, prec + 15, options)
# Integration is like summation, and we can phone home from
# the integrand function to update accuracy summation style
# Note that this accuracy is inaccurate, since it fails
# to account for the variable quadrature weights,
# but it is better than nothing
from sympy import cos, sin, Wild
have_part = [False, False]
max_real_term = [MINUS_INF]
max_imag_term = [MINUS_INF]
def f(t):
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
have_part[0] = re or have_part[0]
have_part[1] = im or have_part[1]
max_real_term[0] = max(max_real_term[0], fastlog(re))
max_imag_term[0] = max(max_imag_term[0], fastlog(im))
if im:
return mpc(re or fzero, im)
return mpf(re or fzero)
if options.get('quad') == 'osc':
A = Wild('A', exclude=[x])
B = Wild('B', exclude=[x])
D = Wild('D')
m = func.match(cos(A*x + B)*D)
if not m:
m = func.match(sin(A*x + B)*D)
if not m:
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
result = quadosc(f, [xlow, xhigh], period=period)
# XXX: quadosc does not do error detection yet
quadrature_error = MINUS_INF
else:
result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
quadrature_error = fastlog(quadrature_error._mpf_)
options['maxprec'] = oldmaxprec
if have_part[0]:
re = result.real._mpf_
if re == fzero:
re, re_acc = scaled_zero(
min(-prec, -max_real_term[0], -quadrature_error))
re = scaled_zero(re) # handled ok in evalf_integral
else:
re_acc = -max(max_real_term[0] - fastlog(re) -
prec, quadrature_error)
else:
re, re_acc = None, None
if have_part[1]:
im = result.imag._mpf_
if im == fzero:
im, im_acc = scaled_zero(
min(-prec, -max_imag_term[0], -quadrature_error))
im = scaled_zero(im) # handled ok in evalf_integral
else:
im_acc = -max(max_imag_term[0] - fastlog(im) -
prec, quadrature_error)
else:
im, im_acc = None, None
result = re, im, re_acc, im_acc
return result
def evalf_integral(expr, prec, options):
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
workprec = prec
i = 0
maxprec = options.get('maxprec', INF)
while 1:
result = do_integral(expr, workprec, options)
accuracy = complex_accuracy(result)
if accuracy >= prec: # achieved desired precision
break
if workprec >= maxprec: # can't increase accuracy any more
break
if accuracy == -1:
# maybe the answer really is zero and maybe we just haven't increased
# the precision enough. So increase by doubling to not take too long
# to get to maxprec.
workprec *= 2
else:
workprec += max(prec, 2**i)
workprec = min(workprec, maxprec)
i += 1
return result
def check_convergence(numer, denom, n):
"""
Returns (h, g, p) where
-- h is:
> 0 for convergence of rate 1/factorial(n)**h
< 0 for divergence of rate factorial(n)**(-h)
= 0 for geometric or polynomial convergence or divergence
-- abs(g) is:
> 1 for geometric convergence of rate 1/h**n
< 1 for geometric divergence of rate h**n
= 1 for polynomial convergence or divergence
(g < 0 indicates an alternating series)
-- p is:
> 1 for polynomial convergence of rate 1/n**h
<= 1 for polynomial divergence of rate n**(-h)
"""
from sympy import Poly
npol = Poly(numer, n)
dpol = Poly(denom, n)
p = npol.degree()
q = dpol.degree()
rate = q - p
if rate:
return rate, None, None
constant = dpol.LC() / npol.LC()
if abs(constant) != 1:
return rate, constant, None
if npol.degree() == dpol.degree() == 0:
return rate, constant, 0
pc = npol.all_coeffs()[1]
qc = dpol.all_coeffs()[1]
return rate, constant, (qc - pc)/dpol.LC()
def hypsum(expr, n, start, prec):
"""
Sum a rapidly convergent infinite hypergeometric series with
given general term, e.g. e = hypsum(1/factorial(n), n). The
quotient between successive terms must be a quotient of integer
polynomials.
"""
from sympy import Float, hypersimp, lambdify
if prec == float('inf'):
raise NotImplementedError('does not support inf prec')
if start:
expr = expr.subs(n, n + start)
hs = hypersimp(expr, n)
if hs is None:
raise NotImplementedError("a hypergeometric series is required")
num, den = hs.as_numer_denom()
func1 = lambdify(n, num)
func2 = lambdify(n, den)
h, g, p = check_convergence(num, den, n)
if h < 0:
raise ValueError("Sum diverges like (n!)^%i" % (-h))
term = expr.subs(n, 0)
if not term.is_Rational:
raise NotImplementedError("Non rational term functionality is not implemented.")
# Direct summation if geometric or faster
if h > 0 or (h == 0 and abs(g) > 1):
term = (MPZ(term.p) << prec) // term.q
s = term
k = 1
while abs(term) > 5:
term *= MPZ(func1(k - 1))
term //= MPZ(func2(k - 1))
s += term
k += 1
return from_man_exp(s, -prec)
else:
alt = g < 0
if abs(g) < 1:
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
if p < 1 or (p == 1 and not alt):
raise ValueError("Sum diverges like n^%i" % (-p))
# We have polynomial convergence: use Richardson extrapolation
vold = None
ndig = prec_to_dps(prec)
while True:
# Need to use at least quad precision because a lot of cancellation
# might occur in the extrapolation process; we check the answer to
# make sure that the desired precision has been reached, too.
prec2 = 4*prec
term0 = (MPZ(term.p) << prec2) // term.q
def summand(k, _term=[term0]):
if k:
k = int(k)
_term[0] *= MPZ(func1(k - 1))
_term[0] //= MPZ(func2(k - 1))
return make_mpf(from_man_exp(_term[0], -prec2))
with workprec(prec):
v = nsum(summand, [0, mpmath_inf], method='richardson')
vf = Float(v, ndig)
if vold is not None and vold == vf:
break
prec += prec # double precision each time
vold = vf
return v._mpf_
def evalf_prod(expr, prec, options):
from sympy import Sum
if all((l[1] - l[2]).is_Integer for l in expr.limits):
re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options)
else:
re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options)
return re, im, re_acc, im_acc
def evalf_sum(expr, prec, options):
from sympy import Float
if 'subs' in options:
expr = expr.subs(options['subs'])
func = expr.function
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
if func is S.Zero:
return None, None, prec, None
prec2 = prec + 10
try:
n, a, b = limits[0]
if b != S.Infinity or a != int(a):
raise NotImplementedError
# Use fast hypergeometric summation if possible
v = hypsum(func, n, int(a), prec2)
delta = prec - fastlog(v)
if fastlog(v) < -10:
v = hypsum(func, n, int(a), delta)
return v, None, min(prec, delta), None
except NotImplementedError:
# Euler-Maclaurin summation for general series
eps = Float(2.0)**(-prec)
for i in range(1, 5):
m = n = 2**i * prec
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
eval_integral=False)
err = err.evalf()
if err <= eps:
break
err = fastlog(evalf(abs(err), 20, options)[0])
re, im, re_acc, im_acc = evalf(s, prec2, options)
if re_acc is None:
re_acc = -err
if im_acc is None:
im_acc = -err
return re, im, re_acc, im_acc
#----------------------------------------------------------------------------#
# #
# Symbolic interface #
# #
#----------------------------------------------------------------------------#
def evalf_symbol(x, prec, options):
val = options['subs'][x]
if isinstance(val, mpf):
if not val:
return None, None, None, None
return val._mpf_, None, prec, None
else:
if not '_cache' in options:
options['_cache'] = {}
cache = options['_cache']
cached, cached_prec = cache.get(x, (None, MINUS_INF))
if cached_prec >= prec:
return cached
v = evalf(sympify(val), prec, options)
cache[x] = (v, prec)
return v
evalf_table = None
def _create_evalf_table():
global evalf_table
from sympy.functions.combinatorial.numbers import bernoulli
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero
from sympy.core.power import Pow
from sympy.core.symbol import Dummy, Symbol
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, cos, sin
from sympy.integrals.integrals import Integral
evalf_table = {
Symbol: evalf_symbol,
Dummy: evalf_symbol,
Float: lambda x, prec, options: (x._mpf_, None, prec, None),
Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
Zero: lambda x, prec, options: (None, None, prec, None),
One: lambda x, prec, options: (fone, None, prec, None),
Half: lambda x, prec, options: (fhalf, None, prec, None),
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
NaN: lambda x, prec, options: (fnan, None, prec, None),
exp: lambda x, prec, options: evalf_pow(
Pow(S.Exp1, x.args[0], evaluate=False), prec, options),
cos: evalf_trig,
sin: evalf_trig,
Add: evalf_add,
Mul: evalf_mul,
Pow: evalf_pow,
log: evalf_log,
atan: evalf_atan,
Abs: evalf_abs,
re: evalf_re,
im: evalf_im,
floor: evalf_floor,
ceiling: evalf_ceiling,
Integral: evalf_integral,
Sum: evalf_sum,
Product: evalf_prod,
Piecewise: evalf_piecewise,
bernoulli: evalf_bernoulli,
}
def evalf(x, prec, options):
from sympy import re as re_, im as im_
try:
rf = evalf_table[x.func]
r = rf(x, prec, options)
except KeyError:
# Fall back to ordinary evalf if possible
if 'subs' in options:
x = x.subs(evalf_subs(prec, options['subs']))
xe = x._eval_evalf(prec)
if xe is None:
raise NotImplementedError
as_real_imag = getattr(xe, "as_real_imag", None)
if as_real_imag is None:
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
re, im = as_real_imag()
if re.has(re_) or im.has(im_):
raise NotImplementedError
if re == 0:
re = None
reprec = None
elif re.is_number:
re = re._to_mpmath(prec, allow_ints=False)._mpf_
reprec = prec
else:
raise NotImplementedError
if im == 0:
im = None
imprec = None
elif im.is_number:
im = im._to_mpmath(prec, allow_ints=False)._mpf_
imprec = prec
else:
raise NotImplementedError
r = re, im, reprec, imprec
if options.get("verbose"):
print("### input", x)
print("### output", to_str(r[0] or fzero, 50))
print("### raw", r) # r[0], r[2]
print()
chop = options.get('chop', False)
if chop:
if chop is True:
chop_prec = prec
else:
# convert (approximately) from given tolerance;
# the formula here will will make 1e-i rounds to 0 for
# i in the range +/-27 while 2e-i will not be chopped
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
if chop_prec == 3:
chop_prec -= 1
r = chop_parts(r, chop_prec)
if options.get("strict"):
check_target(x, r, prec)
return r
class EvalfMixin(object):
"""Mixin class adding evalf capabililty."""
__slots__ = []
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""
Evaluate the given formula to an accuracy of n digits.
Optional keyword arguments:
subs=<dict>
Substitute numerical values for symbols, e.g.
subs={x:3, y:1+pi}. The substitutions must be given as a
dictionary.
maxn=<integer>
Allow a maximum temporary working precision of maxn digits
(default=100)
chop=<bool>
Replace tiny real or imaginary parts in subresults
by exact zeros (default=False)
strict=<bool>
Raise PrecisionExhausted if any subresult fails to evaluate
to full accuracy, given the available maxprec
(default=False)
quad=<str>
Choose algorithm for numerical quadrature. By default,
tanh-sinh quadrature is used. For oscillatory
integrals on an infinite interval, try quad='osc'.
verbose=<bool>
Print debug information (default=False)
Notes
=====
When Floats are naively substituted into an expression, precision errors
may adversely affect the result. For example, adding 1e16 (a Float) to 1
will truncate to 1e16; if 1e16 is then subtracted, the result will be 0.
That is exactly what happens in the following:
>>> from sympy.abc import x, y, z
>>> values = {x: 1e16, y: 1, z: 1e16}
>>> (x + y - z).subs(values)
0
Using the subs argument for evalf is the accurate way to evaluate such an
expression:
>>> (x + y - z).evalf(subs=values)
1.00000000000000
"""
from sympy import Float, Number
n = n if n is not None else 15
if subs and is_sequence(subs):
raise TypeError('subs must be given as a dictionary')
# for sake of sage that doesn't like evalf(1)
if n == 1 and isinstance(self, Number):
from sympy.core.expr import _mag
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
m = _mag(rv)
rv = rv.round(1 - m)
return rv
if not evalf_table:
_create_evalf_table()
prec = dps_to_prec(n)
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
'strict': strict, 'verbose': verbose}
if subs is not None:
options['subs'] = subs
if quad is not None:
options['quad'] = quad
try:
result = evalf(self, prec + 4, options)
except NotImplementedError:
# Fall back to the ordinary evalf
v = self._eval_evalf(prec)
if v is None:
return self
elif not v.is_number:
return v
try:
# If the result is numerical, normalize it
result = evalf(v, prec, options)
except NotImplementedError:
# Probably contains symbols or unknown functions
return v
re, im, re_acc, im_acc = result
if re:
p = max(min(prec, re_acc), 1)
re = Float._new(re, p)
else:
re = S.Zero
if im:
p = max(min(prec, im_acc), 1)
im = Float._new(im, p)
return re + im*S.ImaginaryUnit
else:
return re
n = evalf
def _evalf(self, prec):
"""Helper for evalf. Does the same thing but takes binary precision"""
r = self._eval_evalf(prec)
if r is None:
r = self
return r
def _eval_evalf(self, prec):
return
def _to_mpmath(self, prec, allow_ints=True):
# mpmath functions accept ints as input
errmsg = "cannot convert to mpmath number"
if allow_ints and self.is_Integer:
return self.p
if hasattr(self, '_as_mpf_val'):
return make_mpf(self._as_mpf_val(prec))
try:
re, im, _, _ = evalf(self, prec, {})
if im:
if not re:
re = fzero
return make_mpc((re, im))
elif re:
return make_mpf(re)
else:
return make_mpf(fzero)
except NotImplementedError:
v = self._eval_evalf(prec)
if v is None:
raise ValueError(errmsg)
if v.is_Float:
return make_mpf(v._mpf_)
# Number + Number*I is also fine
re, im = v.as_real_imag()
if allow_ints and re.is_Integer:
re = from_int(re.p)
elif re.is_Float:
re = re._mpf_
else:
raise ValueError(errmsg)
if allow_ints and im.is_Integer:
im = from_int(im.p)
elif im.is_Float:
im = im._mpf_
else:
raise ValueError(errmsg)
return make_mpc((re, im))
def N(x, n=15, **options):
r"""
Calls x.evalf(n, \*\*options).
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
See also the docstring of .evalf() for information on the options.
Examples
========
>>> from sympy import Sum, oo, N
>>> from sympy.abc import k
>>> Sum(1/k**k, (k, 1, oo))
Sum(k**(-k), (k, 1, oo))
>>> N(_, 4)
1.291
"""
return sympify(x).evalf(n, **options)
|
50899c625465c7bcf8c312c600f28371abe9bd439424f3a7386173f01a4d0830 | """Tools and arithmetics for monomials of distributed polynomials. """
from __future__ import print_function, division
from itertools import combinations_with_replacement, product
from textwrap import dedent
from sympy.core import Mul, S, Tuple, sympify
from sympy.core.compatibility import exec_, iterable, range
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr
from sympy.utilities import public
from sympy.core.compatibility import is_sequence
@public
def itermonomials(variables, max_degrees, min_degrees=None):
r"""
`max_degrees` and `min_degrees` are either both integers or both lists.
Unless otherwise specified, `min_degrees` is either 0 or [0,...,0].
A generator of all monomials `monom` is returned, such that
either
min_degree <= total_degree(monom) <= max_degree,
or
min_degrees[i] <= degree_list(monom)[i] <= max_degrees[i], for all i.
Case I:: `max_degrees` and `min_degrees` are both integers.
===========================================================
Given a set of variables `V` and a min_degree `N` and a max_degree `M`
generate a set of monomials of degree less than or equal to `N` and greater
than or equal to `M`. The total number of monomials in commutative
variables is huge and is given by the following formula if `M = 0`:
.. math::
\frac{(\#V + N)!}{\#V! N!}
For example if we would like to generate a dense polynomial of
a total degree `N = 50` and `M = 0`, which is the worst case, in 5
variables, assuming that exponents and all of coefficients are 32-bit long
and stored in an array we would need almost 80 GiB of memory! Fortunately
most polynomials, that we will encounter, are sparse.
Examples
========
Consider monomials in commutative variables `x` and `y`
and non-commutative variables `a` and `b`::
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2]
>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3]
>>> a, b = symbols('a, b', commutative=False)
>>> set(itermonomials([a, b, x], 2))
{1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b}
>>> sorted(itermonomials([x, y], 2, 1), key=monomial_key('grlex', [y, x]))
[x, y, x**2, x*y, y**2]
Case II:: `max_degrees` and `min_degrees` are both lists.
=========================================================
If max_degrees = [d_1, ..., d_n] and min_degrees = [e_1, ..., e_n],
the number of monomials generated is:
(d_1 - e_1 + 1) * ... * (d_n - e_n + 1)
Example
=======
Let us generate all monomials `monom` in variables `x`, and `y`
such that [1, 2][i] <= degree_list(monom)[i] <= [2, 4][i], i = 0, 1 ::
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from itertools import product
>>> from sympy.core import Mul
>>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y]))
[x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2]
"""
n = len(variables)
if is_sequence(max_degrees):
if len(max_degrees) != n:
raise ValueError('Argument sizes do not match')
if min_degrees is None:
min_degrees = [0]*n
elif not is_sequence(min_degrees):
raise ValueError('min_degrees is not a list')
else:
if len(min_degrees) != n:
raise ValueError('Argument sizes do not match')
if any(i < 0 for i in min_degrees):
raise ValueError("min_degrees can't contain negative numbers")
total_degree = False
else:
max_degree = max_degrees
if max_degree < 0:
raise ValueError("max_degrees can't be negative")
if min_degrees is None:
min_degree = 0
else:
if min_degrees < 0:
raise ValueError("min_degrees can't be negative")
min_degree = min_degrees
total_degree = True
if total_degree:
if min_degree > max_degree:
return
if not variables or max_degree == 0:
yield S(1)
return
# Force to list in case of passed tuple or other incompatible collection
variables = list(variables) + [S(1)]
if all(variable.is_commutative for variable in variables):
monomials_list_comm = []
for item in combinations_with_replacement(variables, max_degree):
powers = dict()
for variable in variables:
powers[variable] = 0
for variable in item:
if variable != 1:
powers[variable] += 1
if max(powers.values()) >= min_degree:
monomials_list_comm.append(Mul(*item))
for mon in set(monomials_list_comm):
yield mon
else:
monomials_list_non_comm = []
for item in product(variables, repeat=max_degree):
powers = dict()
for variable in variables:
powers[variable] = 0
for variable in item:
if variable != 1:
powers[variable] += 1
if max(powers.values()) >= min_degree:
monomials_list_non_comm.append(Mul(*item))
for mon in set(monomials_list_non_comm):
yield mon
else:
if any(min_degrees[i] > max_degrees[i] for i in range(n)):
raise ValueError('min_degrees[i] must be <= max_degrees[i] for all i')
power_lists = []
for var, min_d, max_d in zip(variables, min_degrees, max_degrees):
power_lists.append([var**i for i in range(min_d, max_d + 1)])
for powers in product(*power_lists):
yield Mul(*powers)
def monomial_count(V, N):
r"""
Computes the number of monomials.
The number of monomials is given by the following formula:
.. math::
\frac{(\#V + N)!}{\#V! N!}
where `N` is a total degree and `V` is a set of variables.
Examples
========
>>> from sympy.polys.monomials import itermonomials, monomial_count
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y
>>> monomial_count(2, 2)
6
>>> M = list(itermonomials([x, y], 2))
>>> sorted(M, key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2]
>>> len(M)
6
"""
from sympy import factorial
return factorial(V + N) / factorial(V) / factorial(N)
def monomial_mul(A, B):
"""
Multiplication of tuples representing monomials.
Examples
========
Lets multiply `x**3*y**4*z` with `x*y**2`::
>>> from sympy.polys.monomials import monomial_mul
>>> monomial_mul((3, 4, 1), (1, 2, 0))
(4, 6, 1)
which gives `x**4*y**5*z`.
"""
return tuple([ a + b for a, b in zip(A, B) ])
def monomial_div(A, B):
"""
Division of tuples representing monomials.
Examples
========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_div
>>> monomial_div((3, 4, 1), (1, 2, 0))
(2, 2, 1)
which gives `x**2*y**2*z`. However::
>>> monomial_div((3, 4, 1), (1, 2, 2)) is None
True
`x*y**2*z**2` does not divide `x**3*y**4*z`.
"""
C = monomial_ldiv(A, B)
if all(c >= 0 for c in C):
return tuple(C)
else:
return None
def monomial_ldiv(A, B):
"""
Division of tuples representing monomials.
Examples
========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_ldiv
>>> monomial_ldiv((3, 4, 1), (1, 2, 0))
(2, 2, 1)
which gives `x**2*y**2*z`.
>>> monomial_ldiv((3, 4, 1), (1, 2, 2))
(2, 2, -1)
which gives `x**2*y**2*z**-1`.
"""
return tuple([ a - b for a, b in zip(A, B) ])
def monomial_pow(A, n):
"""Return the n-th pow of the monomial. """
return tuple([ a*n for a in A ])
def monomial_gcd(A, B):
"""
Greatest common divisor of tuples representing monomials.
Examples
========
Lets compute GCD of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_gcd
>>> monomial_gcd((1, 4, 1), (3, 2, 0))
(1, 2, 0)
which gives `x*y**2`.
"""
return tuple([ min(a, b) for a, b in zip(A, B) ])
def monomial_lcm(A, B):
"""
Least common multiple of tuples representing monomials.
Examples
========
Lets compute LCM of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_lcm
>>> monomial_lcm((1, 4, 1), (3, 2, 0))
(3, 4, 1)
which gives `x**3*y**4*z`.
"""
return tuple([ max(a, b) for a, b in zip(A, B) ])
def monomial_divides(A, B):
"""
Does there exist a monomial X such that XA == B?
Examples
========
>>> from sympy.polys.monomials import monomial_divides
>>> monomial_divides((1, 2), (3, 4))
True
>>> monomial_divides((1, 2), (0, 2))
False
"""
return all(a <= b for a, b in zip(A, B))
def monomial_max(*monoms):
"""
Returns maximal degree for each variable in a set of monomials.
Examples
========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
We wish to find out what is the maximal degree for each of `x`, `y`
and `z` variables::
>>> from sympy.polys.monomials import monomial_max
>>> monomial_max((3,4,5), (0,5,1), (6,3,9))
(6, 5, 9)
"""
M = list(monoms[0])
for N in monoms[1:]:
for i, n in enumerate(N):
M[i] = max(M[i], n)
return tuple(M)
def monomial_min(*monoms):
"""
Returns minimal degree for each variable in a set of monomials.
Examples
========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
We wish to find out what is the minimal degree for each of `x`, `y`
and `z` variables::
>>> from sympy.polys.monomials import monomial_min
>>> monomial_min((3,4,5), (0,5,1), (6,3,9))
(0, 3, 1)
"""
M = list(monoms[0])
for N in monoms[1:]:
for i, n in enumerate(N):
M[i] = min(M[i], n)
return tuple(M)
def monomial_deg(M):
"""
Returns the total degree of a monomial.
Examples
========
The total degree of `xy^2` is 3:
>>> from sympy.polys.monomials import monomial_deg
>>> monomial_deg((1, 2))
3
"""
return sum(M)
def term_div(a, b, domain):
"""Division of two terms in over a ring/field. """
a_lm, a_lc = a
b_lm, b_lc = b
monom = monomial_div(a_lm, b_lm)
if domain.is_Field:
if monom is not None:
return monom, domain.quo(a_lc, b_lc)
else:
return None
else:
if not (monom is None or a_lc % b_lc):
return monom, domain.quo(a_lc, b_lc)
else:
return None
class MonomialOps(object):
"""Code generator of fast monomial arithmetic functions. """
def __init__(self, ngens):
self.ngens = ngens
def _build(self, code, name):
ns = {}
exec_(code, ns)
return ns[name]
def _vars(self, name):
return [ "%s%s" % (name, i) for i in range(self.ngens) ]
def mul(self):
name = "monomial_mul"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s + %s" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def pow(self):
name = "monomial_pow"
template = dedent("""\
def %(name)s(A, k):
(%(A)s,) = A
return (%(Ak)s,)
""")
A = self._vars("a")
Ak = [ "%s*k" % a for a in A ]
code = template % dict(name=name, A=", ".join(A), Ak=", ".join(Ak))
return self._build(code, name)
def mulpow(self):
name = "monomial_mulpow"
template = dedent("""\
def %(name)s(A, B, k):
(%(A)s,) = A
(%(B)s,) = B
return (%(ABk)s,)
""")
A = self._vars("a")
B = self._vars("b")
ABk = [ "%s + %s*k" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), ABk=", ".join(ABk))
return self._build(code, name)
def ldiv(self):
name = "monomial_ldiv"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s - %s" % (a, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def div(self):
name = "monomial_div"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
%(RAB)s
return (%(R)s,)
""")
A = self._vars("a")
B = self._vars("b")
RAB = [ "r%(i)s = a%(i)s - b%(i)s\n if r%(i)s < 0: return None" % dict(i=i) for i in range(self.ngens) ]
R = self._vars("r")
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), RAB="\n ".join(RAB), R=", ".join(R))
return self._build(code, name)
def lcm(self):
name = "monomial_lcm"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s if %s >= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
def gcd(self):
name = "monomial_gcd"
template = dedent("""\
def %(name)s(A, B):
(%(A)s,) = A
(%(B)s,) = B
return (%(AB)s,)
""")
A = self._vars("a")
B = self._vars("b")
AB = [ "%s if %s <= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ]
code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB))
return self._build(code, name)
@public
class Monomial(PicklableWithSlots):
"""Class representing a monomial, i.e. a product of powers. """
__slots__ = ['exponents', 'gens']
def __init__(self, monom, gens=None):
if not iterable(monom):
rep, gens = dict_from_expr(sympify(monom), gens=gens)
if len(rep) == 1 and list(rep.values())[0] == 1:
monom = list(rep.keys())[0]
else:
raise ValueError("Expected a monomial got {}".format(monom))
self.exponents = tuple(map(int, monom))
self.gens = gens
def rebuild(self, exponents, gens=None):
return self.__class__(exponents, gens or self.gens)
def __len__(self):
return len(self.exponents)
def __iter__(self):
return iter(self.exponents)
def __getitem__(self, item):
return self.exponents[item]
def __hash__(self):
return hash((self.__class__.__name__, self.exponents, self.gens))
def __str__(self):
if self.gens:
return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ])
else:
return "%s(%s)" % (self.__class__.__name__, self.exponents)
def as_expr(self, *gens):
"""Convert a monomial instance to a SymPy expression. """
gens = gens or self.gens
if not gens:
raise ValueError(
"can't convert %s to an expression without generators" % self)
return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ])
def __eq__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
return False
return self.exponents == exponents
def __ne__(self, other):
return not self == other
def __mul__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise NotImplementedError
return self.rebuild(monomial_mul(self.exponents, exponents))
def __div__(self, other):
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise NotImplementedError
result = monomial_div(self.exponents, exponents)
if result is not None:
return self.rebuild(result)
else:
raise ExactQuotientFailed(self, Monomial(other))
__floordiv__ = __truediv__ = __div__
def __pow__(self, other):
n = int(other)
if not n:
return self.rebuild([0]*len(self))
elif n > 0:
exponents = self.exponents
for i in range(1, n):
exponents = monomial_mul(exponents, self.exponents)
return self.rebuild(exponents)
else:
raise ValueError("a non-negative integer expected, got %s" % other)
def gcd(self, other):
"""Greatest common divisor of monomials. """
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise TypeError(
"an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_gcd(self.exponents, exponents))
def lcm(self, other):
"""Least common multiple of monomials. """
if isinstance(other, Monomial):
exponents = other.exponents
elif isinstance(other, (tuple, Tuple)):
exponents = other
else:
raise TypeError(
"an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_lcm(self.exponents, exponents))
|
f03a16b139e1c56f75744cceca6030575b6e9e0a47e7f69f471e2e8eea93042b | from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.compatibility import as_int, with_metaclass, range, PY3
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And
from sympy.sets.sets import Set, Interval, Union, FiniteSet
from sympy.utilities.misc import filldedent
class Naturals(with_metaclass(Singleton, Set)):
"""
Represents the natural numbers (or counting numbers) which are all
positive integers starting from 1. This set is also available as
the Singleton, S.Naturals.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
See Also
========
Naturals0 : non-negative integers (i.e. includes 0, too)
Integers : also includes negative integers
"""
is_iterable = True
_inf = S.One
_sup = S.Infinity
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_positive and other.is_integer:
return S.true
elif other.is_integer is False or other.is_positive is False:
return S.false
def __iter__(self):
i = self._inf
while True:
yield i
i = i + 1
@property
def _boundary(self):
return self
class Naturals0(Naturals):
"""Represents the whole numbers which are all the non-negative integers,
inclusive of zero.
See Also
========
Naturals : positive integers; does not include 0
Integers : also includes the negative integers
"""
_inf = S.Zero
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer and other.is_nonnegative:
return S.true
elif other.is_integer is False or other.is_nonnegative is False:
return S.false
class Integers(with_metaclass(Singleton, Set)):
"""
Represents all integers: positive, negative and zero. This set is also
available as the Singleton, S.Integers.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}
See Also
========
Naturals0 : non-negative integers
Integers : positive and negative integers and zero
"""
is_iterable = True
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer:
return S.true
elif other.is_integer is False:
return S.false
def __iter__(self):
yield S.Zero
i = S.One
while True:
yield i
yield -i
i = i + 1
@property
def _inf(self):
return -S.Infinity
@property
def _sup(self):
return S.Infinity
@property
def _boundary(self):
return self
class Reals(with_metaclass(Singleton, Interval)):
"""
Represents all real numbers
from negative infinity to positive infinity,
including all integer, rational and irrational numbers.
This set is also available as the Singleton, S.Reals.
Examples
========
>>> from sympy import S, Interval, Rational, pi, I
>>> 5 in S.Reals
True
>>> Rational(-1, 2) in S.Reals
True
>>> pi in S.Reals
True
>>> 3*I in S.Reals
False
>>> S.Reals.contains(pi)
True
See Also
========
ComplexRegion
"""
def __new__(cls):
return Interval.__new__(cls, -S.Infinity, S.Infinity)
def __eq__(self, other):
return other == Interval(-S.Infinity, S.Infinity)
def __hash__(self):
return hash(Interval(-S.Infinity, S.Infinity))
class ImageSet(Set):
"""
Image of a set under a mathematical function. The transformation
must be given as a Lambda function which has as many arguments
as the elements of the set upon which it operates, e.g. 1 argument
when acting on the set of integers or 2 arguments when acting on
a complex region.
This function is not normally called directly, but is called
from `imageset`.
Examples
========
>>> from sympy import Symbol, S, pi, Dummy, Lambda
>>> from sympy.sets.sets import FiniteSet, Interval
>>> from sympy.sets.fancysets import ImageSet
>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
{1, 4, 9}
>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
`x` value is in `base_set` or not before passing it as args)
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
{0}
See Also
========
sympy.sets.sets.imageset
"""
def __new__(cls, flambda, *sets):
if not isinstance(flambda, Lambda):
raise ValueError('first argument must be a Lambda')
if flambda is S.IdentityFunction and len(sets) == 1:
return sets[0]
if not flambda.expr.free_symbols or not flambda.expr.args:
return FiniteSet(flambda.expr)
return Basic.__new__(cls, flambda, *sets)
lamda = property(lambda self: self.args[0])
base_set = property(lambda self: self.args[1])
def __iter__(self):
already_seen = set()
for i in self.base_set:
val = self.lamda(i)
if val in already_seen:
continue
else:
already_seen.add(val)
yield val
def _is_multivariate(self):
return len(self.lamda.variables) > 1
def _contains(self, other):
from sympy.matrices import Matrix
from sympy.solvers.solveset import solveset, linsolve
from sympy.utilities.iterables import is_sequence, iterable, cartes
L = self.lamda
if is_sequence(other):
if not is_sequence(L.expr):
return S.false
if len(L.expr) != len(other):
raise ValueError(filldedent('''
Dimensions of other and output of Lambda are different.'''))
elif iterable(other):
raise ValueError(filldedent('''
`other` should be an ordered object like a Tuple.'''))
solns = None
if self._is_multivariate():
if not is_sequence(L.expr):
# exprs -> (numer, denom) and check again
# XXX this is a bad idea -- make the user
# remap self to desired form
return other.as_numer_denom() in self.func(
Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
eqs = [expr - val for val, expr in zip(other, L.expr)]
variables = L.variables
free = set(variables)
if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
solns = list(linsolve([e - val for e, val in
zip(L.expr, other)], variables))
else:
syms = [e.free_symbols & free for e in eqs]
solns = {}
for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
if not s:
if e != v:
return S.false
solns[vars[i]] = [v]
continue
elif len(s) == 1:
sy = s.pop()
sol = solveset(e, sy)
if sol is S.EmptySet:
return S.false
elif isinstance(sol, FiniteSet):
solns[sy] = list(sol)
else:
raise NotImplementedError
else:
raise NotImplementedError
solns = cartes(*[solns[s] for s in variables])
else:
x = L.variables[0]
if isinstance(L.expr, Expr):
# scalar -> scalar mapping
solnsSet = solveset(L.expr - other, x)
if solnsSet.is_FiniteSet:
solns = list(solnsSet)
else:
msgset = solnsSet
else:
# scalar -> vector
for e, o in zip(L.expr, other):
solns = solveset(e - o, x)
if solns is S.EmptySet:
return S.false
for soln in solns:
try:
if soln in self.base_set:
break # check next pair
except TypeError:
if self.base_set.contains(soln.evalf()):
break
else:
return S.false # never broke so there was no True
return S.true
if solns is None:
raise NotImplementedError(filldedent('''
Determining whether %s contains %s has not
been implemented.''' % (msgset, other)))
for soln in solns:
try:
if soln in self.base_set:
return S.true
except TypeError:
return self.base_set.contains(soln.evalf())
return S.false
@property
def is_iterable(self):
return self.base_set.is_iterable
def doit(self, **kwargs):
from sympy.sets.setexpr import SetExpr
f = self.lamda
base_set = self.base_set
return SetExpr(base_set)._eval_func(f).set
class Range(Set):
"""
Represents a range of integers. Can be called as Range(stop),
Range(start, stop), or Range(start, stop, step); when stop is
not given it defaults to 1.
`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value
(juse as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]
The step can also be negative:
>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]
The stop value is made canonical so equivalent ranges always
have the same args:
>>> Range(0, 10, 3)
Range(0, 12, 3)
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
set (``Range`` is always a subset of ``Integers``). If the starting point
is infinite, then the final value is ``stop - step``. To iterate such a
range, it needs to be reversed:
>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
ValueError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0
Although Range is a set (and supports the normal set
operations) it maintains the order of the elements and can
be used in contexts where `range` would be used.
>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]
Although slicing of a Range will always return a Range -- possibly
empty -- an empty set will be returned from any intersection that
is empty:
>>> Range(3)[:0]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet()
>>> Range(3).intersect(Range(4, oo))
EmptySet()
"""
is_iterable = True
def __new__(cls, *args):
from sympy.functions.elementary.integers import ceiling
if len(args) == 1:
if isinstance(args[0], range if PY3 else xrange):
args = args[0].__reduce__()[1] # use pickle method
# expand range
slc = slice(*args)
if slc.step == 0:
raise ValueError("step cannot be 0")
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
try:
start, stop, step = [
w if w in [S.NegativeInfinity, S.Infinity]
else sympify(as_int(w))
for w in (start, stop, step)]
except ValueError:
raise ValueError(filldedent('''
Finite arguments to Range must be integers; `imageset` can define
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
[0, 1/10, 1/5].'''))
if not step.is_Integer:
raise ValueError(filldedent('''
Ranges must have a literal integer step.'''))
if all(i.is_infinite for i in (start, stop)):
if start == stop:
# canonical null handled below
start = stop = S.One
else:
raise ValueError(filldedent('''
Either the start or end value of the Range must be finite.'''))
if start.is_infinite:
end = stop
else:
ref = start if start.is_finite else stop
n = ceiling((stop - ref)/step)
if n <= 0:
# null Range
start = end = 0
step = 1
else:
end = ref + n*step
return Basic.__new__(cls, start, end, step)
start = property(lambda self: self.args[0])
stop = property(lambda self: self.args[1])
step = property(lambda self: self.args[2])
@property
def reversed(self):
"""Return an equivalent Range in the opposite order.
Examples
========
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
"""
if not self:
return self
return self.func(
self.stop - self.step, self.start - self.step, -self.step)
def _contains(self, other):
if not self:
return S.false
if other.is_infinite:
return S.false
if not other.is_integer:
return other.is_integer
ref = self.start if self.start.is_finite else self.stop
if (ref - other) % self.step: # off sequence
return S.false
return _sympify(other >= self.inf and other <= self.sup)
def __iter__(self):
if self.start in [S.NegativeInfinity, S.Infinity]:
raise ValueError("Cannot iterate over Range with infinite start")
elif self:
i = self.start
step = self.step
while True:
if (step > 0 and not (self.start <= i < self.stop)) or \
(step < 0 and not (self.stop < i <= self.start)):
break
yield i
i += step
def __len__(self):
if not self:
return 0
dif = self.stop - self.start
if dif.is_infinite:
raise ValueError(
"Use .size to get the length of an infinite Range")
return abs(dif//self.step)
@property
def size(self):
try:
return _sympify(len(self))
except ValueError:
return S.Infinity
def __nonzero__(self):
return self.start != self.stop
__bool__ = __nonzero__
def __getitem__(self, i):
from sympy.functions.elementary.integers import ceiling
ooslice = "cannot slice from the end with an infinite value"
zerostep = "slice step cannot be zero"
# if we had to take every other element in the following
# oo, ..., 6, 4, 2, 0
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
ambiguous = "cannot unambiguously re-stride from the end " + \
"with an infinite value"
if isinstance(i, slice):
if self.size.is_finite:
start, stop, step = i.indices(self.size)
n = ceiling((stop - start)/step)
if n <= 0:
return Range(0)
canonical_stop = start + n*step
end = canonical_stop - step
ss = step*self.step
return Range(self[start], self[end] + ss, ss)
else: # infinite Range
start = i.start
stop = i.stop
if i.step == 0:
raise ValueError(zerostep)
step = i.step or 1
ss = step*self.step
#---------------------
# handle infinite on right
# e.g. Range(0, oo) or Range(0, -oo, -1)
# --------------------
if self.stop.is_infinite:
# start and stop are not interdependent --
# they only depend on step --so we use the
# equivalent reversed values
return self.reversed[
stop if stop is None else -stop + 1:
start if start is None else -start:
step].reversed
#---------------------
# handle infinite on the left
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
# --------------------
# consider combinations of
# start/stop {== None, < 0, == 0, > 0} and
# step {< 0, > 0}
if start is None:
if stop is None:
if step < 0:
return Range(self[-1], self.start, ss)
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step < 0:
return Range(self[-1], self[stop], ss)
else: # > 0
return Range(self.start, self[stop], ss)
elif stop == 0:
if step > 0:
return Range(0)
else: # < 0
raise ValueError(ooslice)
elif stop == 1:
if step > 0:
raise ValueError(ooslice) # infinite singleton
else: # < 0
raise ValueError(ooslice)
else: # > 1
raise ValueError(ooslice)
elif start < 0:
if stop is None:
if step < 0:
return Range(self[start], self.start, ss)
else: # > 0
return Range(self[start], self.stop, ss)
elif stop < 0:
return Range(self[start], self[stop], ss)
elif stop == 0:
if step < 0:
raise ValueError(ooslice)
else: # > 0
return Range(0)
elif stop > 0:
raise ValueError(ooslice)
elif start == 0:
if stop is None:
if step < 0:
raise ValueError(ooslice) # infinite singleton
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step > 1:
raise ValueError(ambiguous)
elif step == 1:
return Range(self.start, self[stop], ss)
else: # < 0
return Range(0)
else: # >= 0
raise ValueError(ooslice)
elif start > 0:
raise ValueError(ooslice)
else:
if not self:
raise IndexError('Range index out of range')
if i == 0:
return self.start
if i == -1 or i is S.Infinity:
return self.stop - self.step
rv = (self.stop if i < 0 else self.start) + i*self.step
if rv.is_infinite:
raise ValueError(ooslice)
if rv < self.inf or rv > self.sup:
raise IndexError("Range index out of range")
return rv
@property
def _inf(self):
if not self:
raise NotImplementedError
if self.step > 0:
return self.start
else:
return self.stop - self.step
@property
def _sup(self):
if not self:
raise NotImplementedError
if self.step > 0:
return self.stop - self.step
else:
return self.start
@property
def _boundary(self):
return self
if PY3:
converter[range] = Range
else:
converter[xrange] = Range
def normalize_theta_set(theta):
"""
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns
a normalized value of theta in the Set. For Interval, a maximum of
one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi],
returned normalized value would be [0, 2*pi). As of now intervals
with end points as non-multiples of `pi` is not supported.
Raises
======
NotImplementedError
The algorithms for Normalizing theta Set are not yet
implemented.
ValueError
The input is not valid, i.e. the input is not a real set.
RuntimeError
It is a bug, please report to the github issue tracker.
Examples
========
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
{0, pi}
"""
from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
if theta.is_Interval:
interval_len = theta.measure
# one complete circle
if interval_len >= 2*S.Pi:
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
k = coeff(theta.start)
return Union(Interval(0, k*S.Pi, False, True),
Interval(k*S.Pi, 2*S.Pi, True, True))
return Interval(0, 2*S.Pi, False, True)
k_start, k_end = coeff(theta.start), coeff(theta.end)
if k_start is None or k_end is None:
raise NotImplementedError("Normalizing theta without pi as coefficient is "
"not yet implemented")
new_start = k_start*S.Pi
new_end = k_end*S.Pi
if new_start > new_end:
return Union(Interval(S.Zero, new_end, False, theta.right_open),
Interval(new_start, 2*S.Pi, theta.left_open, True))
else:
return Interval(new_start, new_end, theta.left_open, theta.right_open)
elif theta.is_FiniteSet:
new_theta = []
for element in theta:
k = coeff(element)
if k is None:
raise NotImplementedError('Normalizing theta without pi as '
'coefficient, is not Implemented.')
else:
new_theta.append(k*S.Pi)
return FiniteSet(*new_theta)
elif theta.is_Union:
return Union(*[normalize_theta_set(interval) for interval in theta.args])
elif theta.is_subset(S.Reals):
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
"implemented" % type(theta))
else:
raise ValueError(" %s is not a real set" % (theta))
class ComplexRegion(Set):
"""
Represents the Set of all Complex Numbers. It can represent a
region of Complex Plane in both the standard forms Polar and
Rectangular coordinates.
* Polar Form
Input is in the form of the ProductSet or Union of ProductSets
of the intervals of r and theta, & use the flag polar=True.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
* Rectangular Form
Input is in the form of the ProductSet or Union of ProductSets
of interval of x and y the of the Complex numbers in a Plane.
Default input type is in rectangular form.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets import Interval
>>> from sympy import S, I, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c = Interval(1, 8)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
ComplexRegion(Interval(2, 3) x Interval(4, 6), False)
* c1 represents the rectangular region in complex plane
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
(2, 6), of the four vertices.
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
ComplexRegion(Union(Interval(2, 3) x Interval(4, 6), Interval(4, 6) x Interval(1, 8)), False)
* c2 represents the Union of two rectangular regions in complex
plane. One of them surrounded by the coordinates of c1 and
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
(4, 8).
>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False
>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
ComplexRegion(Interval(0, 1) x Interval.Ropen(0, 2*pi), True)
* c2 represents the region in complex plane inside the
Unit Disk centered at the origin.
>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
ComplexRegion(Interval(0, 1) x Interval(0, pi), True)
>>> intersection == upper_half_unit_disk
True
See Also
========
Reals
"""
is_ComplexRegion = True
def __new__(cls, sets, polar=False):
from sympy import sin, cos
x, y, r, theta = symbols('x, y, r, theta', cls=Dummy)
I = S.ImaginaryUnit
polar = sympify(polar)
# Rectangular Form
if polar == False:
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
# ** ProductSet of FiniteSets in the Complex Plane. **
# For Cases like ComplexRegion({2, 4}*{3}), It
# would return {2 + 3*I, 4 + 3*I}
complex_num = []
for x in sets.args[0]:
for y in sets.args[1]:
complex_num.append(x + I*y)
obj = FiniteSet(*complex_num)
else:
obj = ImageSet.__new__(cls, Lambda((x, y), x + I*y), sets)
obj._variables = (x, y)
obj._expr = x + I*y
# Polar Form
elif polar == True:
new_sets = []
# sets is Union of ProductSets
if not sets.is_ProductSet:
for k in sets.args:
new_sets.append(k)
# sets is ProductSets
else:
new_sets.append(sets)
# Normalize input theta
for k, v in enumerate(new_sets):
from sympy.sets import ProductSet
new_sets[k] = ProductSet(v.args[0],
normalize_theta_set(v.args[1]))
sets = Union(*new_sets)
obj = ImageSet.__new__(cls, Lambda((r, theta),
r*(cos(theta) + I*sin(theta))),
sets)
obj._variables = (r, theta)
obj._expr = r*(cos(theta) + I*sin(theta))
else:
raise ValueError("polar should be either True or False")
obj._sets = sets
obj._polar = polar
return obj
@property
def sets(self):
"""
Return raw input sets to the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.sets
Interval(2, 3) x Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.sets
Union(Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7))
"""
return self._sets
@property
def args(self):
return (self._sets, self._polar)
@property
def variables(self):
return self._variables
@property
def expr(self):
return self._expr
@property
def psets(self):
"""
Return a tuple of sets (ProductSets) input of the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.psets
(Interval(2, 3) x Interval(4, 5),)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.psets
(Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7))
"""
if self.sets.is_ProductSet:
psets = ()
psets = psets + (self.sets, )
else:
psets = self.sets.args
return psets
@property
def a_interval(self):
"""
Return the union of intervals of `x` when, self is in
rectangular form, or the union of intervals of `r` when
self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
"""
a_interval = []
for element in self.psets:
a_interval.append(element.args[0])
a_interval = Union(*a_interval)
return a_interval
@property
def b_interval(self):
"""
Return the union of intervals of `y` when, self is in
rectangular form, or the union of intervals of `theta`
when self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
"""
b_interval = []
for element in self.psets:
b_interval.append(element.args[1])
b_interval = Union(*b_interval)
return b_interval
@property
def polar(self):
"""
Returns True if self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union, S
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> theta = Interval(0, 2*S.Pi)
>>> C1 = ComplexRegion(a*b)
>>> C1.polar
False
>>> C2 = ComplexRegion(a*theta, polar=True)
>>> C2.polar
True
"""
return self._polar
@property
def _measure(self):
"""
The measure of self.sets.
Examples
========
>>> from sympy import Interval, ComplexRegion, S
>>> a, b = Interval(2, 5), Interval(4, 8)
>>> c = Interval(0, 2*S.Pi)
>>> c1 = ComplexRegion(a*b)
>>> c1.measure
12
>>> c2 = ComplexRegion(a*c, polar=True)
>>> c2.measure
6*pi
"""
return self.sets._measure
@classmethod
def from_real(cls, sets):
"""
Converts given subset of real numbers to a complex region.
Examples
========
>>> from sympy import Interval, ComplexRegion
>>> unit = Interval(0,1)
>>> ComplexRegion.from_real(unit)
ComplexRegion(Interval(0, 1) x {0}, False)
"""
if not sets.is_subset(S.Reals):
raise ValueError("sets must be a subset of the real line")
return cls(sets * FiniteSet(0))
def _contains(self, other):
from sympy.functions import arg, Abs
from sympy.core.containers import Tuple
other = sympify(other)
isTuple = isinstance(other, Tuple)
if isTuple and len(other) != 2:
raise ValueError('expecting Tuple of length 2')
# If the other is not an Expression, and neither a Tuple
if not isinstance(other, Expr) and not isinstance(other, Tuple):
return S.false
# self in rectangular form
if not self.polar:
re, im = other if isTuple else other.as_real_imag()
for element in self.psets:
if And(element.args[0]._contains(re),
element.args[1]._contains(im)):
return True
return False
# self in polar form
elif self.polar:
if isTuple:
r, theta = other
elif other.is_zero:
r, theta = S.Zero, S.Zero
else:
r, theta = Abs(other), arg(other)
for element in self.psets:
if And(element.args[0]._contains(r),
element.args[1]._contains(theta)):
return True
return False
class Complexes(with_metaclass(Singleton, ComplexRegion)):
def __new__(cls):
return ComplexRegion.__new__(cls, S.Reals*S.Reals)
def __eq__(self, other):
return other == ComplexRegion(S.Reals*S.Reals)
def __hash__(self):
return hash(ComplexRegion(S.Reals*S.Reals))
def __str__(self):
return "S.Complexes"
def __repr__(self):
return "S.Complexes"
|
41beb639cd331b0791d13dc814b07cfb66962181f624c8edf2263844082800da | from sympy import (FiniteSet, S, Symbol, sqrt, nan,
symbols, simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial,
cancel, exp, I, Piecewise)
from sympy.core.compatibility import range
from sympy.matrices import Matrix
from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial,
Hypergeometric, Rademacher, P, E, variance, covariance, skewness, sample,
density, where, FiniteRV, pspace, cdf,
correlation, moment, cmoment, smoment, characteristic_function,
moment_generating_function, quantile)
from sympy.stats.frv_types import DieDistribution
from sympy.utilities.pytest import raises
oo = S.Infinity
def BayesTest(A, B):
assert P(A, B) == P(And(A, B)) / P(B)
assert P(A, B) == P(B, A) * P(A) / P(B)
def test_discreteuniform():
# Symbolic
a, b, c, t = symbols('a b c t')
X = DiscreteUniform('X', [a, b, c])
assert E(X) == (a + b + c)/3
assert simplify(variance(X)
- ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')
Y = DiscreteUniform('Y', range(-5, 5))
# Numeric
assert E(Y) == S('-1/2')
assert variance(Y) == S('33/4')
for x in range(-5, 5):
assert P(Eq(Y, x)) == S('1/10')
assert P(Y <= x) == S(x + 6)/10
assert P(Y >= x) == S(5 - x)/10
assert dict(density(Die('D', 6)).items()) == \
dict(density(DiscreteUniform('U', range(1, 7))).items())
assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
def test_dice():
# TODO: Make iid method!
X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
a, b, t, p = symbols('a b t p')
assert E(X) == 3 + S.Half
assert variance(X) == S(35)/12
assert E(X + Y) == 7
assert E(X + X) == 7
assert E(a*X + b) == a*E(X) + b
assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
assert cmoment(X, 0) == 1
assert cmoment(4*X, 3) == 64*cmoment(X, 3)
assert covariance(X, Y) == S.Zero
assert covariance(X, X + Y) == variance(X)
assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
assert correlation(X, Y) == 0
assert correlation(X, Y) == correlation(Y, X)
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X, 0) == 1
assert P(X > 3) == S.Half
assert P(2*X > 6) == S.Half
assert P(X > Y) == S(5)/12
assert P(Eq(X, Y)) == P(Eq(X, 1))
assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
assert E(X + Y, Eq(X, Y)) == E(2*X)
assert moment(X, 0) == 1
assert moment(5*X, 2) == 25*moment(X, 2)
assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\
(S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\
(S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One))
assert P(X > 3, X > 3) == S.One
assert P(X > Y, Eq(Y, 6)) == S.Zero
assert P(Eq(X + Y, 12)) == S.One/36
assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One/6
assert density(X + Y) == density(Y + Z) != density(X + X)
d = density(2*X + Y**Z)
assert d[S(22)] == S.One/108 and d[S(4100)] == S.One/216 and S(3130) not in d
assert pspace(X).domain.as_boolean() == Or(
*[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
def test_given():
X = Die('X', 6)
assert density(X, X > 5) == {S(6): S(1)}
assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6)
assert sample(X, X > 5) == 6
def test_domains():
X, Y = Die('x', 6), Die('y', 6)
x, y = X.symbol, Y.symbol
# Domains
d = where(X > Y)
assert d.condition == (x > y)
d = where(And(X > Y, Y > 3))
assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6),
Eq(y, 5)), And(Eq(x, 6), Eq(y, 4)))
assert len(d.elements) == 3
assert len(pspace(X + Y).domain.elements) == 36
Z = Die('x', 4)
raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol
assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert X.pspace.domain.dict == FiniteSet(
*[Dict({X.symbol: i}) for i in range(1, 7)])
assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j})
for i in range(1, 7) for j in range(1, 7) if i > j])
def test_dice_bayes():
X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
BayesTest(X > 3, X + Y < 5)
BayesTest(Eq(X - Y, Z), Z > Y)
BayesTest(X > 3, X > 2)
def test_die_args():
raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides.
raises(ValueError, lambda: Die('X', 0))
raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides.
k = Symbol('k')
sym_die = Die('X', k)
raises(ValueError, lambda: density(sym_die).dict)
def test_bernoulli():
p, a, b, t = symbols('p a b t')
X = Bernoulli('B', p, a, b)
assert E(X) == a*p + b*(-p + 1)
assert density(X)[a] == p
assert density(X)[b] == 1 - p
assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)
X = Bernoulli('B', p, 1, 0)
z = Symbol("z")
assert E(X) == p
assert simplify(variance(X)) == p*(1 - p)
assert E(a*X + b) == a*E(X) + b
assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))
raises(ValueError, lambda: Bernoulli('B', 1.5))
raises(ValueError, lambda: Bernoulli('B', -0.5))
def test_cdf():
D = Die('D', 6)
o = S.One
assert cdf(
D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o})
def test_coins():
C, D = Coin('C'), Coin('D')
H, T = symbols('H, T')
assert P(Eq(C, D)) == S.Half
assert density(Tuple(C, D)) == {(H, H): S.One/4, (H, T): S.One/4,
(T, H): S.One/4, (T, T): S.One/4}
assert dict(density(C).items()) == {H: S.Half, T: S.Half}
F = Coin('F', S.One/10)
assert P(Eq(F, H)) == S(1)/10
d = pspace(C).domain
assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T))
raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T
def test_binomial_verify_parameters():
raises(ValueError, lambda: Binomial('b', .2, .5))
raises(ValueError, lambda: Binomial('b', 3, 1.5))
def test_binomial_numeric():
nvals = range(5)
pvals = [0, S(1)/4, S.Half, S(3)/4, 1]
for n in nvals:
for p in pvals:
X = Binomial('X', n, p)
assert E(X) == n*p
assert variance(X) == n*p*(1 - p)
if n > 0 and 0 < p < 1:
assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p))
for k in range(n + 1):
assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k)
def test_binomial_quantile():
X = Binomial('X', 50, S.Half)
assert quantile(X)(0.95) == S(31)
X = Binomial('X', 5, S(1)/2)
p = Symbol("p", positive=True)
assert quantile(X)(p) == Piecewise((nan, p > S(1)), (S(0), p <= S(1)/32),\
(S(1), p <= S(3)/16), (S(2), p <= S(1)/2), (S(3), p <= S(13)/16),\
(S(4), p <= S(31)/32), (S(5), p <= S(1)))
def test_binomial_symbolic():
n = 2 # Because we're using for loops, can't do symbolic n
p = symbols('p', positive=True)
X = Binomial('X', n, p)
t = Symbol('t')
assert simplify(E(X)) == n*p == simplify(moment(X, 1))
assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
assert cancel((skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p)))) == 0
assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2
# Test ability to change success/failure winnings
H, T = symbols('H T')
Y = Binomial('Y', n, p, succ=H, fail=T)
assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0
def test_hypergeometric_numeric():
for N in range(1, 5):
for m in range(0, N + 1):
for n in range(1, N + 1):
X = Hypergeometric('X', N, m, n)
N, m, n = map(sympify, (N, m, n))
assert sum(density(X).values()) == 1
assert E(X) == n * m / N
if N > 1:
assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1)
# Only test for skewness when defined
if N > 2 and 0 < m < N and n < N:
assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n)
/ (sqrt(n*m*(N - m)*(N - n))*(N - 2)))
def test_rademacher():
X = Rademacher('X')
t = Symbol('t')
assert E(X) == 0
assert variance(X) == 1
assert density(X)[-1] == S.Half
assert density(X)[1] == S.Half
assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
def test_FiniteRV():
F = FiniteRV('F', {1: S.Half, 2: S.One/4, 3: S.One/4})
p = Symbol("p", positive=True)
assert dict(density(F).items()) == {S(1): S.Half, S(2): S.One/4, S(3): S.One/4}
assert P(F >= 2) == S.Half
assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\
(S(2), p <= S(3)/4),(S(3), True))
assert pspace(F).domain.as_boolean() == Or(
*[Eq(F.symbol, i) for i in [1, 2, 3]])
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}))
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S(-1)/2, 3: S.One}))
raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: S(3)/2, 3: S.Zero,\
4: S(-1)/2, 5: S(-3)/4, 6: S(-1)/4}))
def test_density_call():
from sympy.abc import p
x = Bernoulli('x', p)
d = density(x)
assert d(0) == 1 - p
assert d(S.Zero) == 1 - p
assert d(5) == 0
assert 0 in d
assert 5 not in d
assert d(S(0)) == d[S(0)]
def test_DieDistribution():
from sympy.abc import x
X = DieDistribution(6)
assert X.pdf(S(1)/2) == S.Zero
assert X.pdf(x).subs({x: 1}).doit() == S(1)/6
assert X.pdf(x).subs({x: 7}).doit() == 0
assert X.pdf(x).subs({x: -1}).doit() == 0
assert X.pdf(x).subs({x: S(1)/3}).doit() == 0
raises(TypeError, lambda: X.pdf(x).subs({x: Matrix([0, 0])}))
raises(ValueError, lambda: X.pdf(x**2 - 1))
def test_FinitePSpace():
X = Die('X', 6)
space = pspace(X)
assert space.density == DieDistribution(6)
|
de98cc71cc21701edf3d50f155561f28bd7d0925bb949f578b1ea85aac9eea2d | from sympy import (Symbol, Abs, exp, S, N, pi, simplify, Interval, erf, erfc, Ne,
Eq, log, lowergamma, uppergamma, Sum, symbols, sqrt, And, gamma, beta,
Piecewise, Integral, sin, cos, tan, atan, besseli, factorial, binomial,
floor, expand_func, Rational, I, re, im, lambdify, hyper, diff, Or, Mul)
from sympy.core.compatibility import range
from sympy.external import import_module
from sympy.functions.special.error_functions import erfinv
from sympy.sets.sets import Intersection, FiniteSet
from sympy.stats import (P, E, where, density, variance, covariance, skewness,
given, pspace, cdf, characteristic_function, ContinuousRV, sample,
Arcsin, Benini, Beta, BetaPrime, Cauchy,
Chi, ChiSquared,
ChiNoncentral, Dagum, Erlang, Exponential,
FDistribution, FisherZ, Frechet, Gamma, GammaInverse,
Gompertz, Gumbel, Kumaraswamy, Laplace, Logistic,
LogNormal, Maxwell, Nakagami, Normal, Pareto,
QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz,
StudentT, Trapezoidal, Triangular, Uniform, UniformSum,
VonMises, Weibull, WignerSemicircle, correlation,
moment, cmoment, smoment, quantile)
from sympy.stats.crv_types import NormalDistribution
from sympy.stats.joint_rv import JointPSpace
from sympy.utilities.pytest import raises, XFAIL, slow, skip
from sympy.utilities.randtest import verify_numerically as tn
oo = S.Infinity
x, y, z = map(Symbol, 'xyz')
def test_single_normal():
mu = Symbol('mu', real=True, finite=True)
sigma = Symbol('sigma', real=True, positive=True, finite=True)
X = Normal('x', 0, 1)
Y = X*sigma + mu
assert simplify(E(Y)) == mu
assert simplify(variance(Y)) == sigma**2
pdf = density(Y)
x = Symbol('x')
assert (pdf(x) ==
2**S.Half*exp(-(mu - x)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
assert P(X**2 < 1) == erf(2**S.Half/2)
assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1))))
assert E(X, Eq(X, mu)) == mu
@XFAIL
def test_conditional_1d():
X = Normal('x', 0, 1)
Y = given(X, X >= 0)
assert density(Y) == 2 * density(X)
assert Y.pspace.domain.set == Interval(0, oo)
assert E(Y) == sqrt(2) / sqrt(pi)
assert E(X**2) == E(Y**2)
def test_ContinuousDomain():
X = Normal('x', 0, 1)
assert where(X**2 <= 1).set == Interval(-1, 1)
assert where(X**2 <= 1).symbol == X.symbol
where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
raises(ValueError, lambda: where(sin(X) > 1))
Y = given(X, X >= 0)
assert Y.pspace.domain.set == Interval(0, oo)
@slow
def test_multiple_normal():
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
p = Symbol("p", positive=True)
assert E(X + Y) == 0
assert variance(X + Y) == 2
assert variance(X + X) == 4
assert covariance(X, Y) == 0
assert covariance(2*X + Y, -X) == -2*variance(X)
assert skewness(X) == 0
assert skewness(X + Y) == 0
assert correlation(X, Y) == 0
assert correlation(X, X + Y) == correlation(X, X - Y)
assert moment(X, 2) == 1
assert cmoment(X, 3) == 0
assert moment(X + Y, 4) == 12
assert cmoment(X, 2) == variance(X)
assert smoment(X*X, 2) == 1
assert smoment(X + Y, 3) == skewness(X + Y)
assert E(X, Eq(X + Y, 0)) == 0
assert variance(X, Eq(X + Y, 0)) == S.Half
assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
def test_symbolic():
mu1, mu2 = symbols('mu1 mu2', real=True, finite=True)
s1, s2 = symbols('sigma1 sigma2', real=True, finite=True, positive=True)
rate = Symbol('lambda', real=True, positive=True, finite=True)
X = Normal('x', mu1, s1)
Y = Normal('y', mu2, s2)
Z = Exponential('z', rate)
a, b, c = symbols('a b c', real=True, finite=True)
assert E(X) == mu1
assert E(X + Y) == mu1 + mu2
assert E(a*X + b) == a*E(X) + b
assert variance(X) == s1**2
assert simplify(variance(X + a*Y + b)) == variance(X) + a**2*variance(Y)
assert E(Z) == 1/rate
assert E(a*Z + b) == a*E(Z) + b
assert E(X + a*Z + b) == mu1 + a/rate + b
def test_cdf():
X = Normal('x', 0, 1)
d = cdf(X)
assert P(X < 1) == d(1).rewrite(erfc)
assert d(0) == S.Half
d = cdf(X, X > 0) # given X>0
assert d(0) == 0
Y = Exponential('y', 10)
d = cdf(Y)
assert d(-5) == 0
assert P(Y > 3) == 1 - d(3)
raises(ValueError, lambda: cdf(X + Y))
Z = Exponential('z', 1)
f = cdf(Z)
z = Symbol('z')
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
def test_characteristic_function():
X = Uniform('x', 0, 1)
cf = characteristic_function(X)
assert cf(1) == -I*(-1 + exp(I))
Y = Normal('y', 1, 1)
cf = characteristic_function(Y)
assert cf(0) == 1
assert simplify(cf(1)) == exp(I - S(1)/2)
Z = Exponential('z', 5)
cf = characteristic_function(Z)
assert cf(0) == 1
assert simplify(cf(1)) == S(25)/26 + 5*I/26
def test_sample_continuous():
z = Symbol('z')
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert sample(Z) in Z.pspace.domain.set
sym, val = list(Z.pspace.sample().items())[0]
assert sym == Z and val in Interval(0, oo)
assert density(Z)(-1) == 0
def test_ContinuousRV():
x = Symbol('x')
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
# X and Y should be equivalent
X = ContinuousRV(x, pdf)
Y = Normal('y', 0, 1)
assert variance(X) == variance(Y)
assert P(X > 0) == P(Y > 0)
def test_arcsin():
from sympy import asin
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Arcsin('x', a, b)
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
assert cdf(X)(x) == Piecewise((0, a > x),
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
(1, True))
def test_benini():
alpha = Symbol("alpha", positive=True)
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=True)
X = Benini('x', alpha, beta, sigma)
assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
*exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
alpha = Symbol("alpha", positive=False)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", positive=False)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
alpha = Symbol("alpha", positive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=False)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
def test_beta():
a, b = symbols('alpha beta', positive=True)
B = Beta('x', a, b)
assert pspace(B).domain.set == Interval(0, 1)
dens = density(B)
x = Symbol('x')
assert dens(x) == x**(a - 1)*(1 - x)**(b - 1) / beta(a, b)
assert simplify(E(B)) == a / (a + b)
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
# Full symbolic solution is too much, test with numeric version
a, b = 1, 2
B = Beta('x', a, b)
assert expand_func(E(B)) == a / S(a + b)
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
def test_betaprime():
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=True)
X = BetaPrime('x', alpha, betap)
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
alpha = Symbol("alpha", positive=False)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=False)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
def test_cauchy():
x0 = Symbol("x0")
gamma = Symbol("gamma", positive=True)
p = Symbol("p", positive=True)
X = Cauchy('x', x0, gamma)
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
gamma = Symbol("gamma", positive=False)
raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_chi():
k = Symbol("k", integer=True)
X = Chi('x', k)
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: Chi('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: Chi('x', k))
def test_chi_noncentral():
k = Symbol("k", integer=True)
l = Symbol("l")
X = ChiNoncentral("x", k, l)
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=False)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=False)
l = Symbol("l", positive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
def test_chi_squared():
k = Symbol("k", integer=True)
X = ChiSquared('x', k)
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
assert E(X) == k
assert variance(X) == 2*k
X = ChiSquared('x', 15)
assert cdf(X)(3) == -14873*sqrt(6)*exp(-S(3)/2)/(5005*sqrt(pi)) + erf(sqrt(6)/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiSquared('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: ChiSquared('x', k))
def test_dagum():
p = Symbol("p", positive=True)
b = Symbol("b", positive=True)
a = Symbol("a", positive=True)
X = Dagum('x', p, a, b)
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
(0, True))
p = Symbol("p", positive=False)
raises(ValueError, lambda: Dagum('x', p, a, b))
p = Symbol("p", positive=True)
b = Symbol("b", positive=False)
raises(ValueError, lambda: Dagum('x', p, a, b))
b = Symbol("b", positive=True)
a = Symbol("a", positive=False)
raises(ValueError, lambda: Dagum('x', p, a, b))
def test_erlang():
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=True)
X = Erlang("x", k, l)
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
(0, True))
def test_exponential():
rate = Symbol('lambda', positive=True, real=True, finite=True)
X = Exponential('x', rate)
p = Symbol("p", positive=True, real=True,finite=True)
assert E(X) == 1/rate
assert variance(X) == 1/rate**2
assert skewness(X) == 2
assert skewness(X) == smoment(X, 3)
assert smoment(2*X, 4) == smoment(X, 4)
assert moment(X, 3) == 3*2*1/rate**3
assert P(X > 0) == S(1)
assert P(X > 1) == exp(-rate)
assert P(X > 10) == exp(-10*rate)
assert quantile(X)(p) == -log(1-p)/rate
assert where(X <= 1).set == Interval(0, 1)
def test_f_distribution():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FDistribution("x", d1, d2)
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
/(x*beta(d1/2, d2/2)))
d1 = Symbol("d1", positive=False)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=False)
raises(ValueError, lambda: FDistribution('x', d1, d2))
d2 = Symbol("d2", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d2))
def test_fisher_z():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FisherZ("x", d1, d2)
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
def test_frechet():
a = Symbol("a", positive=True)
s = Symbol("s", positive=True)
m = Symbol("m", real=True)
X = Frechet("x", a, s=s, m=m)
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
def test_gamma():
k = Symbol("k", positive=True)
theta = Symbol("theta", positive=True)
X = Gamma('x', k, theta)
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
assert cdf(X, meijerg=True)(z) == Piecewise(
(-k*lowergamma(k, 0)/gamma(k + 1) +
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
(0, True))
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
assert E(X) == moment(X, 1)
k, theta = symbols('k theta', real=True, finite=True, positive=True)
X = Gamma('x', k, theta)
assert E(X) == k*theta
assert variance(X) == k*theta**2
assert simplify(skewness(X)) == 2/sqrt(k)
def test_gamma_inverse():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = GammaInverse("x", a, b)
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
def test_sampling_gamma_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of gamma inverse.')
X = GammaInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_gompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = Gompertz("x", b, eta)
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_gumbel():
beta = Symbol("beta", positive=True)
mu = Symbol("mu")
x = Symbol("x")
X = Gumbel("x", beta, mu)
assert str(density(X)(x)) == 'exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta'
assert cdf(X)(x) == exp(-exp((mu - x)/beta))
def test_kumaraswamy():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = Kumaraswamy("x", a, b)
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
assert cdf(X)(x) == Piecewise((0, x < 0),
(-(-x**a + 1)**b + 1, x <= 1),
(1, True))
def test_laplace():
mu = Symbol("mu")
b = Symbol("b", positive=True)
X = Laplace('x', mu, b)
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
(-exp((mu - x)/b)/2 + 1, True))
def test_logistic():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
p = Symbol("p", positive=True)
X = Logistic('x', mu, s)
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
assert quantile(X)(p) == mu - s*log(-S(1) + 1/p)
def test_lognormal():
mean = Symbol('mu', real=True, finite=True)
std = Symbol('sigma', positive=True, real=True, finite=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
# Test sampling: Only e^mean in sample std of 0
for i in range(3):
X = LogNormal('x', i, 0)
assert S(sample(X)) == N(exp(i))
# The sympy integrator can't do this too well
#assert E(X) ==
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
def test_maxwell():
a = Symbol("a", positive=True)
X = Maxwell('x', a)
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
(sqrt(pi)*a**3))
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
assert simplify(variance(X)) == a**2*(-8 + 3*pi)/pi
assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
assert diff(cdf(X)(x), x) == density(X)(x)
def test_nakagami():
mu = Symbol("mu", positive=True)
omega = Symbol("omega", positive=True)
X = Nakagami('x', mu, omega)
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
*exp(-x**2*mu/omega)/gamma(mu))
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
*gamma(mu + S.Half)/gamma(mu + 1))
assert simplify(variance(X)) == (
omega - omega*gamma(mu + S(1)/2)**2/(gamma(mu)*gamma(mu + 1)))
assert cdf(X)(x) == Piecewise(
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
(0, True))
def test_pareto():
xm, beta = symbols('xm beta', positive=True, finite=True)
alpha = beta + 5
X = Pareto('x', xm, alpha)
dens = density(X)
x = Symbol('x')
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
assert simplify(E(X)) == alpha*xm/(alpha-1)
# computation of taylor series for MGF still too slow
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
def test_pareto_numeric():
xm, beta = 3, 2
alpha = beta + 5
X = Pareto('x', xm, alpha)
assert E(X) == alpha*xm/S(alpha - 1)
assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
# Skewness tests too slow. Try shortcutting function?
def test_raised_cosine():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = RaisedCosine("x", mu, s)
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
And(x <= mu + s, mu - s <= x)), (0, True)))
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_shiftedgompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = ShiftedGompertz("x", b, eta)
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
def test_studentt():
nu = Symbol("nu", positive=True)
X = StudentT('x', nu)
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S(1)/2)/(sqrt(nu)*beta(S(1)/2, nu/2))
assert cdf(X)(x) == S(1)/2 + x*gamma(nu/2 + S(1)/2)*hyper((S(1)/2, nu/2 + S(1)/2),
(S(3)/2,), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
def test_trapezoidal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
c = Symbol("c", real=True)
d = Symbol("d", real=True)
X = Trapezoidal('x', a, b, c, d)
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
(2/(-a - b + c + d), (b <= x) & (x < c)),
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
(0, True))
X = Trapezoidal('x', 0, 1, 2, 3)
assert E(X) == S(3)/2
assert variance(X) == S(5)/12
assert P(X < 2) == S(3)/4
@XFAIL
def test_triangular():
a = Symbol("a")
b = Symbol("b")
c = Symbol("c")
X = Triangular('x', a, b, c)
assert density(X)(x) == Piecewise(
((2*x - 2*a)/((-a + b)*(-a + c)), And(a <= x, x < c)),
(2/(-a + b), x == c),
((-2*x + 2*b)/((-a + b)*(b - c)), And(x <= b, c < x)),
(0, True))
def test_quadratic_u():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = QuadraticU("x", a, b)
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
And(x <= b, a <= x)), (0, True)))
def test_uniform():
l = Symbol('l', real=True, finite=True)
w = Symbol('w', positive=True, finite=True)
X = Uniform('x', l, l + w)
assert simplify(E(X)) == l + w/2
assert simplify(variance(X)) == w**2/12
# With numbers all is well
X = Uniform('x', 3, 5)
assert P(X < 3) == 0 and P(X > 5) == 0
assert P(X < 4) == P(X > 4) == S.Half
z = Symbol('z')
p = density(X)(z)
assert p.subs(z, 3.7) == S(1)/2
assert p.subs(z, -1) == 0
assert p.subs(z, 6) == 0
c = cdf(X)
assert c(2) == 0 and c(3) == 0
assert c(S(7)/2) == S(1)/4
assert c(5) == 1 and c(6) == 1
def test_uniform_P():
""" This stopped working because SingleContinuousPSpace.compute_density no
longer calls integrate on a DiracDelta but rather just solves directly.
integrate used to call UniformDistribution.expectation which special-cased
subsed out the Min and Max terms that Uniform produces
I decided to regress on this class for general cleanliness (and I suspect
speed) of the algorithm.
"""
l = Symbol('l', real=True, finite=True)
w = Symbol('w', positive=True, finite=True)
X = Uniform('x', l, l + w)
assert P(X < l) == 0 and P(X > l + w) == 0
@XFAIL
def test_uniformsum():
n = Symbol("n", integer=True)
_k = Symbol("k")
X = UniformSum('x', n)
assert density(X)(x) == (Sum((-1)**_k*(-_k + x)**(n - 1)
*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1))
def test_von_mises():
mu = Symbol("mu")
k = Symbol("k", positive=True)
X = VonMises("x", mu, k)
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
def test_weibull():
a, b = symbols('a b', positive=True)
X = Weibull('x', a, b)
assert simplify(E(X)) == simplify(a * gamma(1 + 1/b))
assert simplify(variance(X)) == simplify(a**2 * gamma(1 + 2/b) - E(X)**2)
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**(S(3)/2)
def test_weibull_numeric():
# Test for integers and rationals
a = 1
bvals = [S.Half, 1, S(3)/2, 5]
for b in bvals:
X = Weibull('x', a, b)
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
assert simplify(variance(X)) == simplify(
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
# Not testing Skew... it's slow with int/frac values > 3/2
def test_wignersemicircle():
R = Symbol("R", positive=True)
X = WignerSemicircle('x', R)
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
assert E(X) == 0
def test_prefab_sampling():
N = Normal('X', 0, 1)
L = LogNormal('L', 0, 1)
E = Exponential('Ex', 1)
P = Pareto('P', 1, 3)
W = Weibull('W', 1, 1)
U = Uniform('U', 0, 1)
B = Beta('B', 2, 5)
G = Gamma('G', 1, 3)
variables = [N, L, E, P, W, U, B, G]
niter = 10
for var in variables:
for i in range(niter):
assert sample(var) in var.pspace.domain.set
def test_input_value_assertions():
a, b = symbols('a b')
p, q = symbols('p q', positive=True)
m, n = symbols('m n', positive=False, real=True)
raises(ValueError, lambda: Normal('x', 3, 0))
raises(ValueError, lambda: Normal('x', m, n))
Normal('X', a, p) # No error raised
raises(ValueError, lambda: Exponential('x', m))
Exponential('Ex', p) # No error raised
for fn in [Pareto, Weibull, Beta, Gamma]:
raises(ValueError, lambda: fn('x', m, p))
raises(ValueError, lambda: fn('x', p, n))
fn('x', p, q) # No error raised
@XFAIL
def test_unevaluated():
X = Normal('x', 0, 1)
assert E(X, evaluate=False) == (
Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo)))
assert E(X + 1, evaluate=False) == (
Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo)) + 1)
assert P(X > 0, evaluate=False) == (
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)), (x, 0, oo)))
assert P(X > 0, X**2 < 1, evaluate=False) == (
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)*
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)),
(x, -1, 1))), (x, 0, 1)))
def test_probability_unevaluated():
T = Normal('T', 30, 3)
assert type(P(T > 33, evaluate=False)) == Integral
def test_density_unevaluated():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 2)
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
def test_NormalDistribution():
nd = NormalDistribution(0, 1)
x = Symbol('x')
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.One/2
assert isinstance(nd.sample(), float) or nd.sample().is_Number
assert nd.expectation(1, x) == 1
assert nd.expectation(x, x) == 0
assert nd.expectation(x**2, x) == 1
def test_random_parameters():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert density(meas, evaluate=False)(z)
assert isinstance(pspace(meas), JointPSpace)
#assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf *
# meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z)
def test_random_parameters_given():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
def test_conjugate_priors():
mu = Normal('mu', 2, 3)
x = Normal('x', mu, 1)
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
Mul)
def test_difficult_univariate():
""" Since using solve in place of deltaintegrate we're able to perform
substantially more complex density computations on single continuous random
variables """
x = Normal('x', 0, 1)
assert density(x**3)
assert density(exp(x**2))
assert density(log(x))
def test_issue_10003():
X = Exponential('x', 3)
G = Gamma('g', 1, 2)
assert P(X < -1) == S.Zero
assert P(G < -1) == S.Zero
@slow
def test_precomputed_cdf():
x = symbols("x", real=True, finite=True)
mu = symbols("mu", real=True, finite=True)
sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True)
n = symbols("n", integer=True, positive=True, finite=True)
distribs = [
Normal("X", mu, sigma),
Pareto("P", xm, alpha),
ChiSquared("C", n),
Exponential("E", sigma),
# LogNormal("L", mu, sigma),
]
for X in distribs:
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
compdiff = simplify(compdiff.rewrite(erfc))
assert compdiff == 0
@slow
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = Symbol('t')
x = Symbol('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Beta('b', 1, 2), 0, 1)
test_cf(Chi('c', 3), 0, mpmath.inf)
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
test_cf(Exponential('e', 6), 0, mpmath.inf)
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
test_cf(RaisedCosine('r', 3, 1), 2, 4)
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
test_cf(Uniform('u', -1, 1), -1, 1)
test_cf(WignerSemicircle('w', 3), -3, 3)
def test_long_precomputed_cdf():
x = symbols("x", real=True, finite=True)
distribs = [
Arcsin("A", -5, 9),
Dagum("D", 4, 10, 3),
Erlang("E", 14, 5),
Frechet("F", 2, 6, -3),
Gamma("G", 2, 7),
GammaInverse("GI", 3, 5),
Kumaraswamy("K", 6, 8),
Laplace("LA", -5, 4),
Logistic("L", -6, 7),
Nakagami("N", 2, 7),
StudentT("S", 4)
]
for distr in distribs:
for _ in range(5):
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
US = UniformSum("US", 5)
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
def test_issue_13324():
X = Uniform('X', 0, 1)
assert E(X, X > Rational(1, 2)) == Rational(3, 4)
assert E(X, X > 0) == Rational(1, 2)
def test_FiniteSet_prob():
x = symbols('x')
E = Exponential('E', 3)
N = Normal('N', 5, 7)
assert P(Eq(E, 1)) is S.Zero
assert P(Eq(N, 2)) is S.Zero
assert P(Eq(N, x)) is S.Zero
def test_prob_neq():
E = Exponential('E', 4)
X = ChiSquared('X', 4)
x = symbols('x')
assert P(Ne(E, 2)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 5)) == 1
assert P(Ne(E, x)) == 1
def test_union():
N = Normal('N', 3, 2)
assert simplify(P(N**2 - N > 2)) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + S(3)/2
assert simplify(P(N**2 - 4 > 0)) == \
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + S(3)/2
def test_Or():
N = Normal('N', 0, 1)
assert simplify(P(Or(N > 2, N < 1))) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + S(3)/2
assert P(Or(N < 0, N < 1)) == P(N < 1)
assert P(Or(N > 0, N < 0)) == 1
def test_conditional_eq():
E = Exponential('E', 1)
assert P(Eq(E, 1), Eq(E, 1)) == 1
assert P(Eq(E, 1), Eq(E, 2)) == 0
assert P(E > 1, Eq(E, 2)) == 1
assert P(E < 1, Eq(E, 2)) == 0
|
18e988953114014e6a6690830678c8dc147a97a78bc5687890c1e65b7c5b55fb | from sympy import (
Abs, acos, Add, asin, atan, Basic, binomial, besselsimp,
collect,cos, cosh, cot, coth, count_ops, csch, Derivative, diff, E,
Eq, erf, exp, exp_polar, expand, expand_multinomial, factor,
factorial, Float, fraction, Function, gamma, GoldenRatio, hyper,
hypersimp, I, Integral, integrate, log, logcombine, Lt, Matrix,
MatrixSymbol, Mul, nsimplify, O, oo, pi, Piecewise, posify, rad,
Rational, root, S, separatevars, signsimp, simplify, sign, sin,
sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan, tanh,
zoo)
from sympy.core.mul import _keep_coeff
from sympy.simplify.simplify import nthroot, inversecombine
from sympy.utilities.pytest import XFAIL, slow
from sympy.core.compatibility import range
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, k
def test_issue_7263():
assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \
673.447451402970) < 1e-12
@XFAIL
def test_factorial_simplify():
# There are more tests in test_factorials.py. These are just to
# ensure that simplify() calls factorial_simplify correctly
from sympy.specfun.factorials import factorial
x = Symbol('x')
assert simplify(factorial(x)/x) == factorial(x - 1)
assert simplify(factorial(factorial(x))) == factorial(factorial(x))
def test_simplify_expr():
x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
f = Function('f')
assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])
e = 1/x + 1/y
assert e != (x + y)/(x*y)
assert simplify(e) == (x + y)/(x*y)
e = A**2*s**4/(4*pi*k*m**3)
assert simplify(e) == e
e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x)
assert simplify(e) == 0
e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2
assert simplify(e) == -2*y
e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2
assert simplify(e) == -2*y
e = (x + x*y)/x
assert simplify(e) == 1 + y
e = (f(x) + y*f(x))/f(x)
assert simplify(e) == 1 + y
e = (2 * (1/n - cos(n * pi)/n))/pi
assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2
e = integrate(1/(x**3 + 1), x).diff(x)
assert simplify(e) == 1/(x**3 + 1)
e = integrate(x/(x**2 + 3*x + 1), x).diff(x)
assert simplify(e) == x/(x**2 + 3*x + 1)
f = Symbol('f')
A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv()
assert simplify((A*Matrix([0, f]))[1]) == \
-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2))
f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t)
assert simplify(f) == (y + a*z)/(z + t)
# issue 10347
expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1)
/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2
+ y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 +
y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*
(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt(
(-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 -
1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*(
y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*
(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2
*y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 -
1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2
+ 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2
+ 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(
z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2*
y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(
-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt((
-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 -
1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2
+ x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin(
z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2)
**2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 -
1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2
- 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)
**2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 -
1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos(
z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1)
)*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)
) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(
z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*(
y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*(
x**2 - y**2)*(y**2 - 1))
assert simplify(expr) == 2*x/(a**2*(x**2 - y**2))
A, B = symbols('A,B', commutative=False)
assert simplify(A*B - B*A) == A*B - B*A
assert simplify(A/(1 + y/x)) == x*A/(x + y)
assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y)
assert simplify(log(2) + log(3)) == log(6)
assert simplify(log(2*x) - log(2)) == log(x)
assert simplify(hyper([], [], x)) == exp(x)
def test_issue_3557():
f_1 = x*a + y*b + z*c - 1
f_2 = x*d + y*e + z*f - 1
f_3 = x*g + y*h + z*i - 1
solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False)
assert simplify(solutions[y]) == \
(a*i + c*d + f*g - a*f - c*g - d*i)/ \
(a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g)
def test_simplify_other():
assert simplify(sin(x)**2 + cos(x)**2) == 1
assert simplify(gamma(x + 1)/gamma(x)) == x
assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
assert simplify(
Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1)
nc = symbols('nc', commutative=False)
assert simplify(x + x*nc) == x*(1 + nc)
# issue 6123
# f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
# ans = integrate(f, (k, -oo, oo), conds='none')
ans = I*(-pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))*erf(x*exp(-3*I*pi/4)/
(2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))/
(2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
(-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
assert simplify(ans) == -(-1)**(S(3)/4)*sqrt(pi)/sqrt(t)
# issue 6370
assert simplify(2**(2 + x)/4) == 2**x
def test_simplify_complex():
cosAsExp = cos(x)._eval_rewrite_as_exp(x)
tanAsExp = tan(x)._eval_rewrite_as_exp(x)
assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341
# issue 10124
assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1),
-sin(1)], [sin(1), cos(1)]])
def test_simplify_ratio():
# roots of x**3-3*x+5
roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - '
'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))',
'1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + '
'(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)',
'-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)']
for r in roots:
r = S(r)
assert count_ops(simplify(r, ratio=1)) <= count_ops(r)
# If ratio=oo, simplify() is always applied:
assert simplify(r, ratio=oo) is not r
def test_simplify_measure():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
assert measure1(simplify(expr, measure=measure1)) <= measure1(expr)
assert measure2(simplify(expr, measure=measure2)) <= measure2(expr)
expr2 = Eq(sin(x)**2 + cos(x)**2, 1)
assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2)
assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2)
def test_simplify_rational():
expr = 2**x*2.**y
assert simplify(expr, rational = True) == 2**(x+y)
assert simplify(expr, rational = None) == 2.0**(x+y)
assert simplify(expr, rational = False) == expr
def test_simplify_issue_1308():
assert simplify(exp(-Rational(1, 2)) + exp(-Rational(3, 2))) == \
(1 + E)*exp(-Rational(3, 2))
def test_issue_5652():
assert simplify(E + exp(-E)) == exp(-E) + E
n = symbols('n', commutative=False)
assert simplify(n + n**(-n)) == n + n**(-n)
def test_simplify_fail1():
x = Symbol('x')
y = Symbol('y')
e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y)
assert simplify(e) == 1 / (-2*y)
def test_nthroot():
assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3
q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2)
assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2)
expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15)
assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15)
q = 1 + sqrt(2) + sqrt(3) + sqrt(5)
assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q
q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10)
assert nthroot(expand_multinomial(q**5), 5, 8) == q
q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(expand_multinomial(q**6), 6) == q
def test_nthroot1():
q = 1 + sqrt(2) + sqrt(3) + S(1)/10**20
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
q = 1 + sqrt(2) + sqrt(3) + S(1)/10**30
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
def test_separatevars():
x, y, z, n = symbols('x,y,z,n')
assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y)
assert separatevars(x*z + x*y*z) == x*z*(1 + y)
assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y)
assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
x*(sin(y) + y**2)*sin(x)
assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x)
assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z
assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1)
assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
y*exp(x/cos(n))*exp(-z/cos(n))/pi
assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2
# issue 4858
p = Symbol('p', positive=True)
assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x)
assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x))
assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
p*sqrt(y)*sqrt(1 + x)
# issue 4865
assert separatevars(sqrt(x*y)).is_Pow
assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y)
# issue 4957
# any type sequence for symbols is fine
assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
{'coeff': 1, x: 2*x + 2, y: y}
# separable
assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
{'coeff': y, x: 2*x + 2}
assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
{'coeff': y*(2*x + 2)}
# not separable
assert separatevars(3, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=()) is None
assert separatevars(2*x + y, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y}
# issue 4808
n, m = symbols('n,m', commutative=False)
assert separatevars(m + n*m) == (1 + n)*m
assert separatevars(x + x*n) == x*(1 + n)
# issue 4910
f = Function('f')
assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x)
# a noncommutable object present
eq = x*(1 + hyper((), (), y*z))
assert separatevars(eq) == eq
def test_separatevars_advanced_factor():
x, y, z = symbols('x,y,z')
assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \
(log(x) + 1)*(log(y) + 1)
assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) -
x*exp(y)*log(z) + x*exp(y) + exp(y)) == \
-((x + 1)*(log(z) - 1)*(exp(y) + 1))
x, y = symbols('x,y', positive=True)
assert separatevars(1 + log(x**log(y)) + log(x*y)) == \
(log(x) + 1)*(log(y) + 1)
def test_hypersimp():
n, k = symbols('n,k', integer=True)
assert hypersimp(factorial(k), k) == k + 1
assert hypersimp(factorial(k**2), k) is None
assert hypersimp(1/factorial(k), k) == 1/(k + 1)
assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2
assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1)
assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1)
term = (4*k + 1)*factorial(k)/factorial(2*k + 1)
assert hypersimp(term, k) == (S(1)/2)*((4*k + 5)/(3 + 14*k + 8*k**2))
term = 1/((2*k - 1)*factorial(2*k + 1))
assert hypersimp(term, k) == (k - S(1)/2)/((k + 1)*(2*k + 1)*(2*k + 3))
term = binomial(n, k)*(-1)**k/factorial(k)
assert hypersimp(term, k) == (k - n)/(k + 1)**2
def test_nsimplify():
x = Symbol("x")
assert nsimplify(0) == 0
assert nsimplify(-1) == -1
assert nsimplify(1) == 1
assert nsimplify(1 + x) == 1 + x
assert nsimplify(2.7) == Rational(27, 10)
assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
assert nsimplify(exp(5*pi*I/3, evaluate=False)) == \
sympify('1/2 - sqrt(3)*I/2')
assert nsimplify(sin(3*pi/5, evaluate=False)) == \
sympify('sqrt(sqrt(5)/8 + 5/8)')
assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
sqrt(pi) + sqrt(pi)/2*I
assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
2**Rational(1, 3)
assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
assert nsimplify(log(3).n(), rational=True) == \
sympify('109861228866811/100000000000000')
assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
-pi/4 - log(2) + S(7)/4
assert nsimplify(x/7.0) == x/7
assert nsimplify(pi/1e2) == pi/100
assert nsimplify(pi/1e2, rational=False) == pi/100.0
assert nsimplify(pi/1e-7) == 10000000*pi
assert not nsimplify(
factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
e = x**0.0
assert e.is_Pow and nsimplify(x**0.0) == 1
assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
assert nsimplify(-203.1) == -S(2031)/10
assert nsimplify(.2, tolerance=0) == S.One/5
assert nsimplify(-.2, tolerance=0) == -S.One/5
assert nsimplify(.2222, tolerance=0) == S(1111)/5000
assert nsimplify(-.2222, tolerance=0) == -S(1111)/5000
# issue 7211, PR 4112
assert nsimplify(S(2e-8)) == S(1)/50000000
# issue 7322 direct test
assert nsimplify(1e-42, rational=True) != 0
# issue 10336
inf = Float('inf')
infs = (-oo, oo, inf, -inf)
for i in infs:
ans = sign(i)*oo
assert nsimplify(i) == ans
assert nsimplify(i + x) == x + ans
assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)
# Make sure nsimplify on expressions uses full precision
assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x
def test_issue_9448():
tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))")
assert nsimplify(tmp) == S(1)/2
def test_extract_minus_sign():
x = Symbol("x")
y = Symbol("y")
a = Symbol("a")
b = Symbol("b")
assert simplify(-x/-y) == x/y
assert simplify(-x/y) == -x/y
assert simplify(x/y) == x/y
assert simplify(x/-y) == -x/y
assert simplify(-x/0) == zoo*x
assert simplify(S(-5)/0) == zoo
assert simplify(-a*x/(-y - b)) == a*x/(b + y)
def test_diff():
x = Symbol("x")
y = Symbol("y")
f = Function("f")
g = Function("g")
assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0
assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0
assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0
assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0
def test_logcombine_1():
x, y = symbols("x,y")
a = Symbol("a")
z, w = symbols("z,w", positive=True)
b = Symbol("b", real=True)
assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y)
assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2)
assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z)
assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x)
assert logcombine(b*log(z) - log(w)) == log(z**b/w)
assert logcombine(log(x)*log(z)) == log(x)*log(z)
assert logcombine(log(w)*log(x)) == log(w)*log(x)
assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)),
cos(log(z**2/w**b))]
assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \
log(log(x/y)/z)
assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x)
assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \
(x**2 + log(x/y))/(x*y)
# the following could also give log(z*x**log(y**2)), what we
# are testing is that a canonical result is obtained
assert logcombine(log(x)*2*log(y) + log(z), force=True) == \
log(z*y**log(x**2))
assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)*
sqrt(y)**3), force=True) == (
x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**(S(2)/3)*y**(S(3)/2))
assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \
acos(-log(x/y))*gamma(-log(x/y))
assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \
log(z**log(w**2))*log(x) + log(w*z)
assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3)
assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6)
assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3)
# a single unknown can combine
assert logcombine(log(x) + log(2)) == log(2*x)
eq = log(abs(x)) + log(abs(y))
assert logcombine(eq) == eq
reps = {x: 0, y: 0}
assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps)
def test_logcombine_complex_coeff():
i = Integral((sin(x**2) + cos(x**3))/x, x)
assert logcombine(i, force=True) == i
assert logcombine(i + 2*log(x), force=True) == \
i + log(x**2)
def test_issue_5950():
x, y = symbols("x,y", positive=True)
assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False)
assert logcombine(log(x) - log(y)) == log(x/y)
assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \
log(Rational(3,4), evaluate=False)
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
# issue 16438
k = Symbol('k', finite=True)
eq, rep = posify(k)
assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
'nonnegative': True, 'negative': False, 'complex': True, 'finite': True, 'infinite': False}
def test_issue_4194():
# simplify should call cancel
from sympy.abc import x, y
f = Function('f')
assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2
@XFAIL
def test_simplify_float_vs_integer():
# Test for issue 4473:
# https://github.com/sympy/sympy/issues/4473
assert simplify(x**2.0 - x**2) == 0
assert simplify(x**2 - x**2.0) == 0
def test_as_content_primitive():
assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y)
assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y)
assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y))
assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y))
# although the _as_content_primitive methods do not alter the underlying structure,
# the as_content_primitive function will touch up the expression and join
# bases that would otherwise have not been joined.
assert ((x*(2 + 2*x)*(3*x + 3)**2)).as_content_primitive() == \
(18, x*(x + 1)**3)
assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(2, x + 3*y*(y + 1) + 1)
assert ((2 + 6*x)**2).as_content_primitive() == \
(4, (3*x + 1)**2)
assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
(1, (_keep_coeff(S(2), (3*x + 1)))**(2*y))
assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(1, 10*x + 6*y*(y + 1) + 5)
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() == \
(11, x*(y + 1))
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
(121, x**2*(y + 1)**2)
assert (y**2).as_content_primitive() == \
(1, y**2)
assert (S.Infinity).as_content_primitive() == (1, oo)
eq = x**(2 + y)
assert (eq).as_content_primitive() == (1, eq)
assert (S.Half**(2 + x)).as_content_primitive() == (S(1)/4, 2**-x)
assert ((-S.Half)**(2 + x)).as_content_primitive() == \
(S(1)/4, (-S.Half)**x)
assert ((-S.Half)**(2 + x)).as_content_primitive() == \
(S(1)/4, (-S.Half)**x)
assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
assert (3**((1 + y)/2)).as_content_primitive() == \
(1, 3**(Mul(S(1)/2, 1 + y, evaluate=False)))
assert (5**(S(3)/4)).as_content_primitive() == (1, 5**(S(3)/4))
assert (5**(S(7)/4)).as_content_primitive() == (5, 5**(S(3)/4))
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).as_content_primitive() == \
(S(1)/14, 7.0*x + 21*y + 10*z)
assert (2**(S(3)/4) + 2**(S(1)/4)*sqrt(3)).as_content_primitive(radical=True) == \
(1, 2**(S(1)/4)*(sqrt(2) + sqrt(3)))
def test_signsimp():
e = x*(-x + 1) + x*(x - 1)
assert signsimp(Eq(e, 0)) is S.true
assert Abs(x - 1) == Abs(1 - x)
assert signsimp(y - x) == y - x
assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_besselsimp():
from sympy import besselj, besseli, exp_polar, cosh, cosine_transform
assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
besselj(y, z)
assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
besselj(a, 2*sqrt(x))
assert besselsimp(sqrt(2)*sqrt(pi)*x**(S(1)/4)*exp(I*pi/4)*exp(-I*pi*a/2) *
besseli(-S(1)/2, sqrt(x)*exp_polar(I*pi/2)) *
besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
besselj(a, sqrt(x)) * cos(sqrt(x))
assert besselsimp(besseli(S(-1)/2, z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
exp(-I*pi*a/2)*besselj(a, z)
assert cosine_transform(1/t*sin(a/t), t, y) == \
sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
s1 = simplify(e1)
s2 = simplify(e2)
s3 = simplify(e3)
assert simplify(Piecewise((e1, x < e2), (e3, True))) == \
Piecewise((s1, x < s2), (s3, True))
def test_polymorphism():
class A(Basic):
def _eval_simplify(x, **kwargs):
return 1
a = A(5, 2)
assert simplify(a) == 1
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert simplify(I*sqrt(n1)) == -sqrt(-n1)
def test_issue_6811():
eq = (x + 2*y)*(2*x + 2)
assert simplify(eq) == (x + 1)*(x + 2*y)*2
# reject the 2-arg Mul -- these are a headache for test writing
assert simplify(eq.expand()) == \
2*x**2 + 4*x*y + 2*x + 4*y
def test_issue_6920():
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
# wrap in f to show that the change happens wherever ei occurs
f = Function('f')
assert [simplify(f(ei)).args[0] for ei in e] == ok
def test_issue_7001():
from sympy.abc import r, R
assert simplify(-(r*Piecewise((4*pi/3, r <= R),
(-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((4*pi*r/3, r <= R),
(4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \
Piecewise((-1, r <= R), (0, True))
def test_inequality_no_auto_simplify():
# no simplify on creation but can be simplified
lhs = cos(x)**2 + sin(x)**2
rhs = 2
e = Lt(lhs, rhs, evaluate=False)
assert e is not S.true
assert simplify(e)
def test_issue_9398():
from sympy import Number, cancel
assert cancel(1e-14) != 0
assert cancel(1e-14*I) != 0
assert simplify(1e-14) != 0
assert simplify(1e-14*I) != 0
assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0
assert cancel(1e-20) != 0
assert cancel(1e-20*I) != 0
assert simplify(1e-20) != 0
assert simplify(1e-20*I) != 0
assert cancel(1e-100) != 0
assert cancel(1e-100*I) != 0
assert simplify(1e-100) != 0
assert simplify(1e-100*I) != 0
f = Float("1e-1000")
assert cancel(f) != 0
assert cancel(f*I) != 0
assert simplify(f) != 0
assert simplify(f*I) != 0
def test_issue_9324_simplify():
M = MatrixSymbol('M', 10, 10)
e = M[0, 0] + M[5, 4] + 1304
assert simplify(e) == e
def test_issue_13474():
x = Symbol('x')
assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
def test_simplify_function_inverse():
# "inverse" attribute does not guarantee that f(g(x)) is x
# so this simplification should not happen automatically.
# See issue #12140
x, y = symbols('x, y')
g = Function('g')
class f(Function):
def inverse(self, argindex=1):
return g
assert simplify(f(g(x))) == f(g(x))
assert inversecombine(f(g(x))) == x
assert simplify(f(g(x)), inverse=True) == x
assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1
assert simplify(f(g(x, y)), inverse=True) == f(g(x, y))
assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x
assert simplify(log(exp(x))) == log(exp(x))
assert simplify(log(exp(x)), inverse=True) == x
assert simplify(log(exp(x), 2), inverse=True) == x/log(2)
assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2)
def test_clear_coefficients():
from sympy.simplify.simplify import clear_coefficients
assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), S(1)/6)
assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + S(1)/6)
assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
assert clear_coefficients(S(3), x) == (0, x - 3)
assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
def test_nc_simplify():
from sympy.simplify.simplify import nc_simplify
from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul,
MatPow, Identity)
from sympy.core import Pow
from functools import reduce
a, b, c, d = symbols('a b c d', commutative = False)
x = Symbol('x')
A = MatrixSymbol("A", x, x)
B = MatrixSymbol("B", x, x)
C = MatrixSymbol("C", x, x)
D = MatrixSymbol("D", x, x)
subst = {a: A, b: B, c: C, d:D}
funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y }
def _to_matrix(expr):
if expr in subst:
return subst[expr]
if isinstance(expr, Pow):
return MatPow(_to_matrix(expr.args[0]), expr.args[1])
elif isinstance(expr, (Add, Mul)):
return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args])
else:
return expr*Identity(x)
def _check(expr, simplified, deep=True, matrix=True):
assert nc_simplify(expr, deep=deep) == simplified
assert expand(expr) == expand(simplified)
if matrix:
m_simp = _to_matrix(simplified).doit(inv_expand=False)
assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp
_check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2)
_check(a*b*(a*b)**-2*a*b, 1)
_check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False)
_check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3)
_check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2)
_check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3)
_check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3)
_check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2)
_check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2)
_check(b**-1*a**-1*(a*b)**2, a*b)
_check(a**-1*b*c**-1, (c*b**-1*a)**-1)
expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2
for i in range(10):
expr *= a*b
_check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10)
_check((a*b*a*b)**2, (a*b*a*b)**2, deep=False)
_check(a*b*(c*d)**2, a*b*(c*d)**2)
expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1
assert nc_simplify(expr) == (1-c)**-1
# commutative expressions should be returned without an error
assert nc_simplify(2*x**2) == 2*x**2
def test_issue_15965():
A = Sum(z*x**y, (x, 1, a))
anew = z*Sum(x**y, (x, 1, a))
B = Integral(x*y, x)
bnew = y*Integral(x, x)
assert simplify(A + B) == anew + bnew
assert simplify(A) == anew
assert simplify(B) == bnew
|
85f8b2efa6240b1d2de1381587e03fbba6126cd179d53d18d1bd57d3ff72f094 | from sympy import (
Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral,
LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne,
Wild, acos, asin, atan, atanh, cos, cosh, diff, erf, erfinv, erfc,
erfcinv, exp, im, log, pi, re, sec, sin,
sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh,
root, simplify, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo,
E, cbrt, denom, Add)
from sympy.core.compatibility import range
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, check_assumptions, denoms, \
failing_assumptions
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.utilities.pytest import slow, XFAIL, SKIP, raises, skip, ON_TRAVIS
from sympy.utilities.randtest import verify_numerically as tn
from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0}
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == set([S(2), -S(2)])
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
# duplicate symbols removed
assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2}
# unordered symbols
# only 1
assert solve(y - 3, set([y])) == [3]
# more than 1
assert solve(y - 3, set([x, y])) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == \
[(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]
assert solve(*args, set=True) == \
([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]))
assert solve(*args, dict=True) == \
[{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}]
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
flags = dict(dict=True)
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}]
flags.update(dict(simplify=False))
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}]
# failing undetermined system
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x-1, False], [x], set=True) == ([], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == set([-S(1), S(1)])
assert set(solve(Eq(x**2, 1), x)) == set([-S(1), S(1)])
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {y: S.Zero, x: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == set([
-2 + 3**Rational(1, 2),
S(4),
-2 - 3**Rational(1, 2)
])
assert set(solve((x**2 - 1)**2 - a, x)) == \
set([sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))])
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == set([S(0), 1/a**2])
assert set(solve(x*(root(x, 3) - 3), x)) == set([S(0), S(27)])
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2],
[ Rational(1, 2) - I*sqrt(3)/2, Rational(1, 2) + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for root in s:
assert root.func == CRootOf
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == [{x: 2*LambertW(y/2)}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [-Rational(3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: -t - t/n, z: -t - t/n, y: 0}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == set([-b/a, log(3)])
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [-3*pi/4, pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [set([
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
]), set([
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)]),
set([
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)])]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
-Rational(5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == set([S(-4), log(8) + pi*I])
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
ans = [(log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1]
assert result == ans
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, 3*pi/2]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [log(10)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = set((3*x - 1, 2*y - 4))
assert solve(eqns, set((x, y))) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \
{a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \
{a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \
{a: -2, b: 2, c: -1}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S(0) < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < 5*pi/6)
assert solve(Eq(False, x < 1)) == (S(1) <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S(1) <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(True, x)) == True
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == set([S(0), S(14)])
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [5*x/3]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [-295244/S(59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(-S.Half + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
set([log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)]),
set([2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)]),
set([log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)]),
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
set([log(-sqrt(3) + 2), log(sqrt(3) + 2)])
assert set(solve(x**y + x**(2*y) - 1, x)) == \
set([(-S.Half + sqrt(5)/2)**(1/y), (-S.Half - sqrt(5)/2)**(1/y)])
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(-S.Half - sqrt(3)*I/2)), log(E*(-S.Half + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == [{x: 2*LambertW(y/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == set([sqrt(y), S(0), -sqrt(y)])
assert set(solve(x*(x - y/x), x, check=True)) == set([sqrt(y), -sqrt(y)])
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert set(solve((
a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)])
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
set([log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a])
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
set([(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))])
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(S(1)/3)), S(1)/3)]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
set([(log(-sin(2)), -S(2)), (log(sin(2)), S(2))])
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([x, y], set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)})
assert set(solve(eqs, x, y)) == \
set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))])
assert set(solve(eqs, y, z)) == \
set([
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))])
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([x, y], set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)})
assert set(solve(eqs, x, y)) == set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))])
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], set([(S(1), S(3)), (S(3), S(1))]))
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
set([(S(1), S(3)), (S(3), S(1))])
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
set([(-sqrt(-y - 4),), (sqrt(-y - 4),)])
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
set([(S(1), S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))])
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S(1), []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == set([S(0), S(9)/16])
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
set([S.Zero, S(9)/16])
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == set([-S(1), S(2)])
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == set([S(5), S(13)])
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
set([-S(1)/2, -S(1)/3])
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == set([-S(8), S(2)])
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [-S(1)/11]
assert solve(p + 6*I) == []
# issue 8622
assert unrad((root(x + 1, 5) - root(x, 3))) == (
x**5 - x**3 - 3*x**2 - 3*x - 1, [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**(S(1)/3) + x)**(S(5)/2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**(S(1)/5)*s**4 + s**3 + 10*2**(S(2)/5)*s**3 +
10*2**(S(3)/5)*s**2 + 5*2**(S(4)/5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# is this needed?
#assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
# x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, [])
raises(NotImplementedError, lambda:
unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1))
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 - (-S(1)/2 -
sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 - S(13824)/343)**2)/2 -
S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 -
(-S(1)/2 + sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)/21 - (-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4,
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = 2*F/7 - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(-s*(-s**6 + sqrt(3)*s**6*I - 153*2**(S(2)/3)*3**(S(1)/3)*s**4 +
51*12**(S(1)/3)*s**4 - 102*2**(S(2)/3)*3**(S(5)/6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**(S(1)/3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*((1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, S(1)/3))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [S(1)/3]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
assert solve(
(a/x + exp(x/2)).diff(x), x) == [4*LambertW(sqrt(2)*sqrt(a)/4)]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
dQ4: I3 - I5,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6,
I1: I2 + I3,
Q4: -I3/2 + 3*I5/2 - dI4/2}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_2750 but solved with the matrix solver.'''
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == {
dI4: -I3 + 3*I5 - 2*Q4,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
dQ2: I2,
I1: I2 + I3,
Q2: 2*I3 + 2*I5 + 3*I6,
dQ4: I3 - I5,
I4: I3 - I5}
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[{f(x): 3*D, y: 9*D**2 + 4}]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([g(a)], set([
(-sqrt(h(a)**2*f(a)**2 + G)/f(a),),
(sqrt(h(a)**2*f(a)**2+ G)/f(a),)]))
args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)]
assert set(solve(*args)) == \
set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))])
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], set([
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))]))
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
set([-sqrt(-x), sqrt(-x)])
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
set([S(1)/2 + sqrt(35)/10, -sqrt(35)/10 + S(1)/2])
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(S(1)/3) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
assert check_assumptions(1, x) == True
raises(AssertionError, lambda: check_assumptions(2*x, x, positive=True))
raises(TypeError, lambda: check_assumptions(1, 1))
def test_failing_assumptions():
x = Symbol('x', real=True, positive=True)
y = Symbol('y')
assert failing_assumptions(6*x + y, **x.assumptions0) == \
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
'negative': None, 'zero': None}
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert set([simplify(w) for w in solve(tanh(x - 1)*tanh(x + 1) + 1)]) == set([
-log(2)/2 + log(1 - I),
-log(2)/2 + log(-1 - I),
-log(2)/2 + log(1 + I),
-log(2)/2 + log(-1 + I),])
assert set([simplify(w) for w in solve((tanh(x + 3)*tanh(x - 3) + 1)**2)]) == set([
-log(2)/2 + log(1 - I),
-log(2)/2 + log(-1 - I),
-log(2)/2 + log(1 + I),
-log(2)/2 + log(-1 + I),])
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + S(7)/4
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \
== 3
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \
== 3
assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1
assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,), (2,)]
assert set(solve(abs(x - 7) - 8)) == set([-S(1), S(15)])
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
-S(1)/2 + sqrt(61)/2, -sqrt(69)/2 + S(1)/2]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
@slow
def test_lambert_multivariate():
from sympy.abc import a, x, y
from sympy.solvers.bivariate import _filtered_gens, _lambert, _solve_lambert
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == set([x, exp(x)])
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
assert solve(x*log(x) + 3*x + 1, x) == [exp(-3 + LambertW(-exp(3)))]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
x0 = 1/log(a)
x1 = LambertW(S(1)/3)
x2 = a**(-5)
x3 = 3**(S(1)/3)
x4 = 3**(S(5)/6)*I
x5 = x1**(S(1)/3)*x2**(S(1)/3)/2
ans = solve(3*log(a**(3*x + 5)) + a**(3*x + 5), x)
assert ans == [
x0*log(3*x1*x2)/3, x0*log(-x5*(x3 - x4)), x0*log(-x5*(x3 + x4))]
# check collection
K = ((b + 3)*LambertW(1/(b + 3))/a**5)**(S(1)/3)
assert solve(
3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5),
x) == [
log(K*(1 - sqrt(3)*I)/-2)/log(a),
log(K*(1 + sqrt(3)*I)/-2)/log(a),
log((b + 3)*LambertW(1/(b + 3))/a**5)/(3*log(a))]
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
-S(3)/2 - LambertW(-4*log(2))/(2*log(2))]
# issue 4271
assert solve((a/x + exp(x/2)).diff(x, 2), x) == [
6*LambertW(root(-1, 3)*root(a, 3)/3)]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
assert solve(x**3 - 3**x, x) == [3, -3*LambertW(-log(3)/3)/log(3)]
assert solve(x**2 - 2**x, x) == [2, 4]
assert solve(-x**2 + 2**x, x) == [2, 4]
assert solve(3**cos(x) - cos(x)**3) == [acos(3), acos(-3*LambertW(-log(3)/3)/log(3))]
assert set(solve(3*log(x) - x*log(3))) == set( # 2.478... and 3
[3, -3*LambertW(-log(3)/3)/log(3)])
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
from sympy.abc import x
assert solve(3*sin(x) - x*sin(3), x) == [3]
a = S(6)/5
assert set(solve(x**a - a**x)) == set(
[a, -a*LambertW(-log(a)/a)/log(a)])
assert set(solve(3**cos(x) - cos(x)**3)) == set(
[acos(3), acos(-3*LambertW(-log(3)/3)/log(3))])
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(-S.Half + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [-2*atan(2 - sqrt(5)),
-2*atan(2 + sqrt(5))]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == set([(S(5)/3 + (-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3) + 40/(9*((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3))),), (S(5)/3 + 40/(9*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3)) + (S(251)/27 + sqrt(111)*I/9)**(S(1)/3),)])
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 2617
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = 191/S(20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == set([x**y])
assert _simple_dens(1/root(x, 3), [x]) == set([x])
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [set([tuple(i.evalf(2) for i in j) for j in R]) for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, -pi, pi, 14*pi/9, 16*pi/9, 2*pi, 2*I*(log(2) - log(-1 - sqrt(3)*I)),
2*I*(log(2) - log(-1 + sqrt(3)*I)), 2*I*(log(2) - log(1 - sqrt(3)*I)),
2*I*(log(2) - log(1 + sqrt(3)*I)), 2*I*(log(2) - log(-sqrt(3) - I)),
2*I*(log(2) - log(-sqrt(3) + I)), 2*I*(log(2) - log(sqrt(3) - I)),
2*I*(log(2) - log(sqrt(3) + I)), -2*I*log(-(-1)**(S(1)/9)), -2*I*log(
-(-1)**(S(2)/9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)), -2*I*log(-sin(
pi/18) + I*cos(pi/18)), -2*I*log(sin(pi/18) - I*cos(pi/18)), -2*I*log(
sin(pi/18) + I*cos(pi/18)), -2*I*log(exp(-2*I*pi/9)), -2*I*log(exp(
-I*pi/9)), -2*I*log(exp(I*pi/9)), -2*I*log(exp(2*I*pi/9))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, -pi, pi, 2*I*(log(2) - log(-sqrt(3) - I)), 2*I*(log(2) -
log(-sqrt(3) + I)), 2*I*(log(2) - log(sqrt(3) - I)), 2*I*(log(2) -
log(sqrt(3) + I))]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
s = solve(terms, [a, b, c, d, e, f, g], dict=True)
assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1),
c: -sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1),
c: sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == set([2, y])
assert denoms(x/2 + 1/y, y) == set([y])
assert denoms(x/2 + 1/y, [y]) == set([y])
assert denoms(1/x + 1/y + 1/z, [x, y]) == set([x, y])
assert denoms(1/x + 1/y + 1/z, x, y) == set([x, y])
assert denoms(1/x + 1/y + 1/z, set([x, y])) == set([x, y])
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: S(1)/6, x2: S(1)/6, x4: -S(2)/3, x1: -S(2)/3, x5: 1},
{x0: 1, x3: S(1)/2, x2: -S(1)/2, x4: 0, x1: 0, x5: -1},
{x0: 1, x3: -S(1)/3, x2: -S(1)/3, x4: S(1)/3, x1: S(1)/3, x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - S(9)/4) == [S(3)/2]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**(S(1)/4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S(1)/2]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**(S(1)/3)) == [S(2)/3]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
|
603030a2117f340b308ab31d00e8fc873874d6f27bd6a50d5ffe82c82577da43 | # -*- coding: utf-8 -*-
from __future__ import absolute_import
from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational
from sympy.core.numbers import pi
from sympy.functions import acos, Piecewise, sign
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter
)
from sympy.utilities.pytest import raises
from sympy.tensor import IndexedBase
x, y, z = symbols('x y z')
p = IndexedBase("p")
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
def test_NumPyPrinter():
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == 'scipy.sparse.coo_matrix([3], ([0], [1]), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
def test_NumPyPrinter_print_seq():
n = NumPyPrinter()
assert n._print_seq(range(2)) == '(0, 1,)'
|
609354652ccb1eb0eb4b3c4dee60fb710a6382a477774a9ebac35ae631abaaa5 | from sympy import (
Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Union, Ynm, Znm, arg, asin, acsc, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, Complement,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SymmetricDifference, SeqPer, SeqFormula,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, Intersection)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.utilities.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import degree, radian, kg, meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.core.compatibility import range
from sympy.combinatorics.permutations import Cycle, Permutation
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, a, b, c = symbols('x y z t a b c')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = set(l.capitalize() for l in greek_letters_set)
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r'\zeta\left(x\right)'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == \
r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == \
r'\left\{-2, -3, \ldots\right\}'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex(line * bigline * fset) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \
r'X\left[:5, 1:9:2\right]'
assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \
r'X\left[5, :5:2\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ {-1}}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ {-1}}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ {-1}}\right)^{-1}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"\sin\left({X^{T} X}\ldots\right)"
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1)) == r"\mathbb{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4)) == r"\mathbb{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1)) == r"\mathbb{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.One/2, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_7117():
# See also issue #5031 (hence the evaluate=False in these).
e = Eq(x + 1, 2*x)
q = Mul(2, e, evaluate=False)
assert latex(q) == r"2 \left(x + 1 = 2 x\right)"
q = Add(6, e, evaluate=False)
assert latex(q) == r"6 + \left(x + 1 = 2 x\right)"
q = Pow(e, 2, evaluate=False)
assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_14041():
import sympy.physics.mechanics as me
A_frame = me.ReferenceFrame('A')
thetad, phid = me.dynamicsymbols('theta, phi', 1)
L = Symbol('L')
assert latex(L*(phid + thetad)**2*A_frame.x) == \
r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid + thetad)**2*A_frame.x) == \
r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert latex((phid*thetad)**a*A_frame.x) == \
r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensorhead("A B C D", [L], [[1]])
H = tensorhead("H", [L, L], [[1], [1]])
K = tensorhead("K", [L, L, L, L], [[1], [1], [1], [1]])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, FiniteSet, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(Tuple(x, a), FiniteSet(sin(a*x), cos(a*x)), S.Complexes)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in '\
r'\mathbb{C} \wedge \left\{\sin{\left(a x \right)}, \cos{\left(a x '\
r'\right)}\right\} \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A = MatrixSymbol("A_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}"
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_DiffGeomMethods():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p)
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{rect_{0}}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_ptinting():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
|
64e5ccd1f320300703947f6f37d66cb6f5d3213c4df61b98dfeb9375ffb0d4c2 | from sympy.printing.dot import (purestr, styleof, attrprint, dotnode,
dotedges, dotprint)
from sympy import Symbol, Integer, Basic, Expr, srepr, Float, symbols
from sympy.abc import x
def test_purestr():
assert purestr(Symbol('x')) == "Symbol('x')"
assert purestr(Basic(1, 2)) == "Basic(1, 2)"
assert purestr(Float(2)) == "Float('2.0', precision=53)"
def test_styleof():
styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})]
assert styleof(Basic(1), styles) == {'color': 'blue', 'shape': 'ellipse'}
assert styleof(x + 1, styles) == {'color': 'black', 'shape': 'ellipse'}
def test_attrprint():
assert attrprint({'color': 'blue', 'shape': 'ellipse'}) == \
'"color"="blue", "shape"="ellipse"'
def test_dotnode():
assert dotnode(x, repeat=False) ==\
'"Symbol(\'x\')" ["color"="black", "label"="x", "shape"="ellipse"];'
assert dotnode(x+2, repeat=False) == \
'"Add(Integer(2), Symbol(\'x\'))" ["color"="black", "label"="Add", "shape"="ellipse"];', dotnode(x+2,repeat=0)
assert dotnode(x + x**2, repeat=False) == \
'"Add(Symbol(\'x\'), Pow(Symbol(\'x\'), Integer(2)))" ["color"="black", "label"="Add", "shape"="ellipse"];'
assert dotnode(x + x**2, repeat=True) == \
'"Add(Symbol(\'x\'), Pow(Symbol(\'x\'), Integer(2)))_()" ["color"="black", "label"="Add", "shape"="ellipse"];'
def test_dotedges():
assert sorted(dotedges(x+2, repeat=False)) == [
'"Add(Integer(2), Symbol(\'x\'))" -> "Integer(2)";',
'"Add(Integer(2), Symbol(\'x\'))" -> "Symbol(\'x\')";'
]
assert sorted(dotedges(x + 2, repeat=True)) == [
'"Add(Integer(2), Symbol(\'x\'))_()" -> "Integer(2)_(0,)";',
'"Add(Integer(2), Symbol(\'x\'))_()" -> "Symbol(\'x\')_(1,)";'
]
def test_dotprint():
text = dotprint(x+2, repeat=False)
assert all(e in text for e in dotedges(x+2, repeat=False))
assert all(n in text for n in [dotnode(expr, repeat=False) for expr in (x, Integer(2), x+2)])
assert 'digraph' in text
text = dotprint(x+x**2, repeat=False)
assert all(e in text for e in dotedges(x+x**2, repeat=False))
assert all(n in text for n in [dotnode(expr, repeat=False) for expr in (x, Integer(2), x**2)])
assert 'digraph' in text
text = dotprint(x+x**2, repeat=True)
assert all(e in text for e in dotedges(x+x**2, repeat=True))
assert all(n in text for n in [dotnode(expr, pos=()) for expr in [x + x**2]])
text = dotprint(x**x, repeat=True)
assert all(e in text for e in dotedges(x**x, repeat=True))
assert all(n in text for n in [dotnode(x, pos=(0,)), dotnode(x, pos=(1,))])
assert 'digraph' in text
def test_dotprint_depth():
text = dotprint(3*x+2, depth=1)
assert dotnode(3*x+2) in text
assert dotnode(x) not in text
text = dotprint(3*x+2)
assert "depth" not in text
def test_Matrix_and_non_basics():
from sympy import MatrixSymbol
n = Symbol('n')
assert dotprint(MatrixSymbol('X', n, n))
def test_labelfunc():
text = dotprint(x + 2, labelfunc=srepr)
assert "Symbol('x')" in text
assert "Integer(2)" in text
def test_commutative():
x, y = symbols('x y', commutative=False)
assert dotprint(x + y) == dotprint(y + x)
assert dotprint(x*y) != dotprint(y*x)
|
4b4b490aa7d8542379524999fe5789f439c2f8495fa7a14fe83d48305d85107a | from sympy.external import import_module
matchpy = import_module("matchpy")
from sympy.utilities.decorator import doctest_depends_on
from sympy.core import Integer, Float
import inspect, re
from sympy import powsimp
if matchpy:
from matchpy import (Operation, CommutativeOperation, AssociativeOperation,
ManyToOneReplacer, OneIdentityOperation, CustomConstraint)
from sympy import Pow, Add, Integral, Basic, Mul, S, Function, E
from sympy.functions import (log, sin, cos, tan, cot, csc, sec, sqrt, erf,
exp as sym_exp, gamma, acosh, asinh, atanh, acoth, acsch, asech, cosh, sinh,
tanh, coth, sech, csch, atan, acsc, asin, acot, acos, asec, fresnels,
fresnelc, erfc, erfi, Ei, uppergamma, polylog, zeta, factorial, polygamma, digamma, li,
expint, LambertW, loggamma)
from sympy.integrals.rubi.utility_function import (Gamma, rubi_exp, rubi_log, ProductLog, PolyGamma,
rubi_unevaluated_expr, process_trig)
from sympy.utilities.matchpy_connector import op_iter, op_len
@doctest_depends_on(modules=('matchpy',))
def rubi_object():
'''
Returns rubi ManyToOneReplacer by adding all rules from different modules.
Uncomment the lines to add integration capabilities of that module.
Currently, there are parsing issues with special_function,
derivative and miscellaneous_integration. Hence they are commented.
'''
from sympy.integrals.rubi.rules.integrand_simplification import integrand_simplification
from sympy.integrals.rubi.rules.linear_products import linear_products
from sympy.integrals.rubi.rules.quadratic_products import quadratic_products
from sympy.integrals.rubi.rules.binomial_products import binomial_products
from sympy.integrals.rubi.rules.trinomial_products import trinomial_products
from sympy.integrals.rubi.rules.miscellaneous_algebraic import miscellaneous_algebraic
from sympy.integrals.rubi.rules.exponential import exponential
from sympy.integrals.rubi.rules.logarithms import logarithms
from sympy.integrals.rubi.rules.sine import sine
from sympy.integrals.rubi.rules.tangent import tangent
from sympy.integrals.rubi.rules.secant import secant
from sympy.integrals.rubi.rules.miscellaneous_trig import miscellaneous_trig
from sympy.integrals.rubi.rules.inverse_trig import inverse_trig
from sympy.integrals.rubi.rules.hyperbolic import hyperbolic
from sympy.integrals.rubi.rules.inverse_hyperbolic import inverse_hyperbolic
from sympy.integrals.rubi.rules.special_functions import special_functions
#from sympy.integrals.rubi.rules.derivative import derivative
#from sympy.integrals.rubi.rules.piecewise_linear import piecewise_linear
from sympy.integrals.rubi.rules.miscellaneous_integration import miscellaneous_integration
rules = []
rules_applied = []
rules += integrand_simplification(rules_applied)
rules += linear_products(rules_applied)
rules += quadratic_products(rules_applied)
rules += binomial_products(rules_applied)
rules += trinomial_products(rules_applied)
rules += miscellaneous_algebraic(rules_applied)
rules += exponential(rules_applied)
rules += logarithms(rules_applied)
rules += special_functions(rules_applied)
rules += sine(rules_applied)
rules += tangent(rules_applied)
rules += secant(rules_applied)
rules += miscellaneous_trig(rules_applied)
rules += inverse_trig(rules_applied)
rules += hyperbolic(rules_applied)
rules += inverse_hyperbolic(rules_applied)
#rubi = piecewise_linear(rubi)
rules += miscellaneous_integration(rules_applied)
rubi = ManyToOneReplacer(*rules)
return rubi, rules_applied, rules
_E = rubi_unevaluated_expr(E)
Integrate = Function('Integrate')
rubi, rules_applied, rules = rubi_object()
def _has_cycle():
if rules_applied.count(rules_applied[-1]) == 1:
return False
if rules_applied[-1] == rules_applied[-2] == rules_applied[-3] == rules_applied[-4] == rules_applied[-5]:
return True
def process_final_integral(expr):
'''
When there is recursion for more than 10 rules or in total 20 rules have been applied
rubi returns `Integrate` in order to stop any further matching. After complete integration,
Integrate needs to be replaced back to Integral. Also rubi's `rubi_exp`
need to be replaced back to sympy's general `exp`.
Examples
========
>>> from sympy import Function, E
>>> from sympy.integrals.rubi.rubi import process_final_integral
>>> from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr
>>> Integrate = Function("Integrate")
>>> from sympy.abc import a, x
>>> _E = rubi_unevaluated_expr(E)
>>> process_final_integral(Integrate(a, x))
Integral(a, x)
>>> process_final_integral(_E**5)
exp(5)
'''
if expr.has(Integrate):
expr = expr.replace(Integrate, Integral)
if expr.has(_E):
expr = expr.replace(_E, E)
return expr
def rubi_powsimp(expr):
'''
This function is needed to preprocess an expression as done in matchpy
`x^a*x^b` in matchpy auotmatically transforms to `x^(a+b)`
Examples
========
>>> from sympy.integrals.rubi.rubi import rubi_powsimp
>>> from sympy.abc import a, b, x
>>> rubi_powsimp(x**a*x**b)
x**(a+b)
'''
lst_pow =[]
lst_non_pow = []
if isinstance(expr, Mul):
for i in expr.args:
if isinstance(i, (Pow, rubi_exp, sym_exp)):
lst_pow.append(i)
else:
lst_non_pow.append(i)
return powsimp(Mul(*lst_pow))*Mul(*lst_non_pow)
return expr
@doctest_depends_on(modules=('matchpy',))
def rubi_integrate(expr, var, showsteps=False):
'''
Rule based algorithm for integration. Integrates the expression by applying
transformation rules to the expression.
Returns `Integrate` if an expression cannot be integrated.
Parameters
==========
expr : integrand expression
var : variable of integration
Returns Integral object if unable to integrate.
'''
expr = expr.replace(sym_exp, rubi_exp)
rules_applied[:] = []
expr = process_trig(expr)
expr = rubi_powsimp(expr)
if isinstance(expr, (int, Integer)) or isinstance(expr, (float, Float)):
return S(expr)*var
if isinstance(expr, Add):
results = 0
for ex in expr.args:
rules_applied[:] = []
results += rubi.replace(Integral(ex, var))
rules_applied[:] = []
return process_final_integral(results)
results = rubi.replace(Integral(expr, var), max_count = 10)
return process_final_integral(results)
@doctest_depends_on(modules=('matchpy',))
def util_rubi_integrate(expr, var, showsteps=False):
expr = process_trig(expr)
expr = expr.replace(sym_exp, rubi_exp)
if isinstance(expr, (int, Integer)) or isinstance(expr, (float, Float)):
return S(expr)*var
if isinstance(expr, Add):
return rubi_integrate(expr, var)
if len(rules_applied) > 10:
if _has_cycle() or len(rules_applied) > 20:
return Integrate(expr, var)
results = rubi.replace(Integral(expr, var), max_count = 10)
rules_applied[:] = []
return results
@doctest_depends_on(modules=('matchpy',))
def get_matching_rule_definition(expr, var):
'''
Prints the list or rules which match to `expr`.
Parameters
==========
expr : integrand expression
var : variable of integration
'''
matcher = rubi.matcher
miter = matcher.match(Integral(expr, var))
for fun, e in miter:
print("Rule matching: ")
print(inspect.getsourcefile(fun))
code, lineno = inspect.getsourcelines(fun)
print("On line: ", lineno)
print("\n".join(code))
print("Pattern matching: ")
pattno = int(re.match(r"^\s*rule(\d+)", code[0]).group(1))
print(matcher.patterns[pattno-1])
print(e)
print()
|
87963907f832ba3b151ad3ffe54ce28c8315d4bfbce024702cce9a14760f3853 | import sys
from sympy.external import import_module
matchpy = import_module("matchpy")
if not matchpy:
#bin/test will not execute any tests now
disabled = True
if sys.version_info[:2] < (3, 6):
disabled = True
from sympy.core.symbol import symbols, Symbol
from sympy.functions import log
from sympy import (sqrt, simplify, S, atanh, hyper, I, atan, pi, Sum, cos, sin,
log, atan)
from sympy.integrals.rubi.utility_function import rubi_test
from sympy.utilities.pytest import SKIP
a, b, c, d, e, f, x, m, n, p, k = symbols('a b c d e f x m n p k', real=True, imaginary=False)
@SKIP
def test_rubi_integrate():
from sympy.integrals.rubi.rubi import rubi_integrate
assert rubi_integrate(x, x) == x**2/2
assert rubi_integrate(x**2,x) == x**3/3
assert rubi_integrate(x**3,x) == x**4/4
assert rubi_integrate(x**a, x) == x**(a + S(1))/(a + S(1))
assert rubi_integrate(S(1)/x, x) == log(x)
assert rubi_integrate(a*x, x) == a*(S(1)/S(2))*x**S(2)
assert rubi_integrate(1/(x**2*(a + b*x)**2), x) == -b/(a**2*(a + b*x)) - 1/(a**2*x) - 2*b*log(x)/a**3 + 2*b*log(a + b*x)/a**3
assert rubi_integrate(x**6/(a + b*x)**2, x) == (-a**6/(b**7*(a + b*x)) - S(6)*a**5*log(a + b*x)/b**7 + 5*a**4*x/b**6 - S(2)*a**3*x**2/b**5 + a**2*x**3/b**4 - a*x**4/(S(2)*b**3) + x**5/(S(5)*b**2))
assert rubi_integrate(1/(x**2*(a + b*x)**2), x) == -b/(a**2*(a + b*x)) - 1/(a**2*x) - 2*b*log(x)/a**3 + 2*b*log(a + b*x)/a**3
assert rubi_integrate(a + S(1)/x, x) == a*x + log(x)
assert rubi_integrate((a + b*x)**2/x**3, x) == -a**2/(2*x**2) - 2*a*b/x + b**2*log(x)
assert rubi_integrate(a**3*x, x) == S(1)/S(2)*a**3*x**2
assert rubi_integrate((a + b*x)**3/x**3, x) == -a**3/(2*x**2) - 3*a**2*b/x + 3*a*b**2*log(x) + b**3*x
assert rubi_integrate(x**3*(a + b*x), x) == a*x**4/4 + b*x**5/5
assert rubi_integrate((b*x)**m*(d*x + 2)**n, x) == 2**n*(b*x)**(m + 1)*hyper((-n, m + 1), (m + 2,), -d*x/2)/(b*(m + 1))
assert rubi_test(rubi_integrate(1/(1 + x**5), x), x, log(x + S(1))/S(5) + S(2)*Sum(-log((S(2)*x - S(2)*cos(pi*(S(2)*k/S(5) + S(-1)/5)))**S(2) - S(4)*sin(S(2)*pi*k/S(5) + S(3)*pi/S(10))**S(2) + S(4))*cos(pi*(S(2)*k/S(5) + S(-1)/5))/S(2) - (-S(2)*cos(pi*(S(2)*k/S(5) + S(-1)/5))**S(2) + S(2))*atan((-x/cos(pi*(S(2)*k/S(5) + S(-1)/5)) + S(1))/sqrt(-(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(-1))*(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(1))/cos(S(2)*pi*k/S(5) - pi/S(5))**S(2)))/(S(2)*sqrt(-(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(-1))*(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(1))/cos(S(2)*pi*k/S(5) - pi/S(5))**S(2))*cos(pi*(S(2)*k/S(5) + S(-1)/5))), (k, S(1), S(2)))/S(5), _numerical=True)
|
567cc7dc09035b5d6c0cd4404e39591a6d1ba7ab6ac15f97f2f32087001dc694 | from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I,
sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify,
WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo,
Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp,
simplify, together, collect, factorial, apart, combsimp, factor, refine,
cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E,
exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr,
integrate, gammasimp)
from sympy.core.expr import ExprBuilder
from sympy.core.function import AppliedUndef
from sympy.core.compatibility import range, round, PY3
from sympy.physics.secondquant import FockState
from sympy.physics.units import meter
from sympy.utilities.pytest import raises, XFAIL
from sympy.abc import a, b, c, n, t, u, x, y, z
# replace 3 instances with int when PY2 is dropped and
# delete this line
_rint = int if PY3 else float
class DummyNumber(object):
"""
Minimal implementation of a number that works with SymPy.
If one has a Number class (e.g. Sage Integer, or some other custom class)
that one wants to work well with SymPy, one has to implement at least the
methods of this class DummyNumber, resp. its subclasses I5 and F1_1.
Basically, one just needs to implement either __int__() or __float__() and
then one needs to make sure that the class works with Python integers and
with itself.
"""
def __radd__(self, a):
if isinstance(a, (int, float)):
return a + self.number
return NotImplemented
def __truediv__(a, b):
return a.__div__(b)
def __rtruediv__(a, b):
return a.__rdiv__(b)
def __add__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number + a
return NotImplemented
def __rsub__(self, a):
if isinstance(a, (int, float)):
return a - self.number
return NotImplemented
def __sub__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number - a
return NotImplemented
def __rmul__(self, a):
if isinstance(a, (int, float)):
return a * self.number
return NotImplemented
def __mul__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number * a
return NotImplemented
def __rdiv__(self, a):
if isinstance(a, (int, float)):
return a / self.number
return NotImplemented
def __div__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number / a
return NotImplemented
def __rpow__(self, a):
if isinstance(a, (int, float)):
return a ** self.number
return NotImplemented
def __pow__(self, a):
if isinstance(a, (int, float, DummyNumber)):
return self.number ** a
return NotImplemented
def __pos__(self):
return self.number
def __neg__(self):
return - self.number
class I5(DummyNumber):
number = 5
def __int__(self):
return self.number
class F1_1(DummyNumber):
number = 1.1
def __float__(self):
return self.number
i5 = I5()
f1_1 = F1_1()
# basic sympy objects
basic_objs = [
Rational(2),
Float("1.3"),
x,
y,
pow(x, y)*y,
]
# all supported objects
all_objs = basic_objs + [
5,
5.5,
i5,
f1_1
]
def dotest(s):
for x in all_objs:
for y in all_objs:
s(x, y)
return True
def test_basic():
def j(a, b):
x = a
x = +a
x = -a
x = a + b
x = a - b
x = a*b
x = a/b
x = a**b
assert dotest(j)
def test_ibasic():
def s(a, b):
x = a
x += b
x = a
x -= b
x = a
x *= b
x = a
x /= b
assert dotest(s)
def test_relational():
from sympy import Lt
assert (pi < 3) is S.false
assert (pi <= 3) is S.false
assert (pi > 3) is S.true
assert (pi >= 3) is S.true
assert (-pi < 3) is S.true
assert (-pi <= 3) is S.true
assert (-pi > 3) is S.false
assert (-pi >= 3) is S.false
r = Symbol('r', real=True)
assert (r - 2 < r - 3) is S.false
assert Lt(x + I, x + I + 2).func == Lt # issue 8288
def test_relational_assumptions():
from sympy import Lt, Gt, Le, Ge
m1 = Symbol("m1", nonnegative=False)
m2 = Symbol("m2", positive=False)
m3 = Symbol("m3", nonpositive=False)
m4 = Symbol("m4", negative=False)
assert (m1 < 0) == Lt(m1, 0)
assert (m2 <= 0) == Le(m2, 0)
assert (m3 > 0) == Gt(m3, 0)
assert (m4 >= 0) == Ge(m4, 0)
m1 = Symbol("m1", nonnegative=False, real=True)
m2 = Symbol("m2", positive=False, real=True)
m3 = Symbol("m3", nonpositive=False, real=True)
m4 = Symbol("m4", negative=False, real=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=True)
m2 = Symbol("m2", nonpositive=True)
m3 = Symbol("m3", positive=True)
m4 = Symbol("m4", nonnegative=True)
assert (m1 < 0) is S.true
assert (m2 <= 0) is S.true
assert (m3 > 0) is S.true
assert (m4 >= 0) is S.true
m1 = Symbol("m1", negative=False, real=True)
m2 = Symbol("m2", nonpositive=False, real=True)
m3 = Symbol("m3", positive=False, real=True)
m4 = Symbol("m4", nonnegative=False, real=True)
assert (m1 < 0) is S.false
assert (m2 <= 0) is S.false
assert (m3 > 0) is S.false
assert (m4 >= 0) is S.false
def test_relational_noncommutative():
from sympy import Lt, Gt, Le, Ge
A, B = symbols('A,B', commutative=False)
assert (A < B) == Lt(A, B)
assert (A <= B) == Le(A, B)
assert (A > B) == Gt(A, B)
assert (A >= B) == Ge(A, B)
def test_basic_nostr():
for obj in basic_objs:
raises(TypeError, lambda: obj + '1')
raises(TypeError, lambda: obj - '1')
if obj == 2:
assert obj * '1' == '11'
else:
raises(TypeError, lambda: obj * '1')
raises(TypeError, lambda: obj / '1')
raises(TypeError, lambda: obj ** '1')
def test_series_expansion_for_uniform_order():
assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x)
assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x)
assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x)
assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x)
def test_leadterm():
assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0)
assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2
assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1
assert (x**2 + 1/x).leadterm(x)[1] == -1
assert (1 + x**2).leadterm(x)[1] == 0
assert (x + 1).leadterm(x)[1] == 0
assert (x + x**2).leadterm(x)[1] == 1
assert (x**2).leadterm(x)[1] == 2
def test_as_leading_term():
assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3
assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2
assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x
assert (x**2 + 1/x).as_leading_term(x) == 1/x
assert (1 + x**2).as_leading_term(x) == 1
assert (x + 1).as_leading_term(x) == 1
assert (x + x**2).as_leading_term(x) == x
assert (x**2).as_leading_term(x) == x**2
assert (x + oo).as_leading_term(x) == oo
raises(ValueError, lambda: (x + 1).as_leading_term(1))
def test_leadterm2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \
(sin(1 + sin(1)), 0)
def test_leadterm3():
assert (y + z + x).leadterm(x) == (y + z, 0)
def test_as_leading_term2():
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \
sin(1 + sin(1))
def test_as_leading_term3():
assert (2 + pi + x).as_leading_term(x) == 2 + pi
assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x
def test_as_leading_term4():
# see issue 6843
n = Symbol('n', integer=True, positive=True)
r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \
n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \
1 + 1/(n*x + x) + 1/(n + 1) - 1/x
assert r.as_leading_term(x).cancel() == n/2
def test_as_leading_term_stub():
class foo(Function):
pass
assert foo(1/x).as_leading_term(x) == foo(1/x)
assert foo(1).as_leading_term(x) == foo(1)
raises(NotImplementedError, lambda: foo(x).as_leading_term(x))
def test_as_leading_term_deriv_integral():
# related to issue 11313
assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2
assert Derivative(x ** 3, y).as_leading_term(x) == 0
assert Integral(x ** 3, x).as_leading_term(x) == x**4/4
assert Integral(x ** 3, y).as_leading_term(x) == y*x**3
assert Derivative(exp(x), x).as_leading_term(x) == 1
assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x)
def test_atoms():
assert x.atoms() == {x}
assert (1 + x).atoms() == {x, S(1)}
assert (1 + 2*cos(x)).atoms(Symbol) == {x}
assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S(1), S(2), x}
assert (2*(x**(y**x))).atoms() == {S(2), x, y}
assert Rational(1, 2).atoms() == {S.Half}
assert Rational(1, 2).atoms(Symbol) == set([])
assert sin(oo).atoms(oo) == set()
assert Poly(0, x).atoms() == {S.Zero}
assert Poly(1, x).atoms() == {S.One}
assert Poly(x, x).atoms() == {x}
assert Poly(x, x, y).atoms() == {x}
assert Poly(x + y, x, y).atoms() == {x, y}
assert Poly(x + y, x, y, z).atoms() == {x, y}
assert Poly(x + y*t, x, y, z).atoms() == {t, x, y}
assert (I*pi).atoms(NumberSymbol) == {pi}
assert (I*pi).atoms(NumberSymbol, I) == \
(I*pi).atoms(I, NumberSymbol) == {pi, I}
assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)}
assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \
{1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z}
# issue 6132
f = Function('f')
e = (f(x) + sin(x) + 2)
assert e.atoms(AppliedUndef) == \
{f(x)}
assert e.atoms(AppliedUndef, Function) == \
{f(x), sin(x)}
assert e.atoms(Function) == \
{f(x), sin(x)}
assert e.atoms(AppliedUndef, Number) == \
{f(x), S(2)}
assert e.atoms(Function, Number) == \
{S(2), sin(x), f(x)}
def test_is_polynomial():
k = Symbol('k', nonnegative=True, integer=True)
assert Rational(2).is_polynomial(x, y, z) is True
assert (S.Pi).is_polynomial(x, y, z) is True
assert x.is_polynomial(x) is True
assert x.is_polynomial(y) is True
assert (x**2).is_polynomial(x) is True
assert (x**2).is_polynomial(y) is True
assert (x**(-2)).is_polynomial(x) is False
assert (x**(-2)).is_polynomial(y) is True
assert (2**x).is_polynomial(x) is False
assert (2**x).is_polynomial(y) is True
assert (x**k).is_polynomial(x) is False
assert (x**k).is_polynomial(k) is False
assert (x**x).is_polynomial(x) is False
assert (k**k).is_polynomial(k) is False
assert (k**x).is_polynomial(k) is False
assert (x**(-k)).is_polynomial(x) is False
assert ((2*x)**k).is_polynomial(x) is False
assert (x**2 + 3*x - 8).is_polynomial(x) is True
assert (x**2 + 3*x - 8).is_polynomial(y) is True
assert (x**2 + 3*x - 8).is_polynomial() is True
assert sqrt(x).is_polynomial(x) is False
assert (sqrt(x)**3).is_polynomial(x) is False
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True
assert (
(x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False
def test_is_rational_function():
assert Integer(1).is_rational_function() is True
assert Integer(1).is_rational_function(x) is True
assert Rational(17, 54).is_rational_function() is True
assert Rational(17, 54).is_rational_function(x) is True
assert (12/x).is_rational_function() is True
assert (12/x).is_rational_function(x) is True
assert (x/y).is_rational_function() is True
assert (x/y).is_rational_function(x) is True
assert (x/y).is_rational_function(x, y) is True
assert (x**2 + 1/x/y).is_rational_function() is True
assert (x**2 + 1/x/y).is_rational_function(x) is True
assert (x**2 + 1/x/y).is_rational_function(x, y) is True
assert (sin(y)/x).is_rational_function() is False
assert (sin(y)/x).is_rational_function(y) is False
assert (sin(y)/x).is_rational_function(x) is True
assert (sin(y)/x).is_rational_function(x, y) is False
assert (S.NaN).is_rational_function() is False
assert (S.Infinity).is_rational_function() is False
assert (-S.Infinity).is_rational_function() is False
assert (S.ComplexInfinity).is_rational_function() is False
def test_is_algebraic_expr():
assert sqrt(3).is_algebraic_expr(x) is True
assert sqrt(3).is_algebraic_expr() is True
eq = ((1 + x**2)/(1 - y**2))**(S(1)/3)
assert eq.is_algebraic_expr(x) is True
assert eq.is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True
assert (cos(y)/sqrt(x)).is_algebraic_expr() is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True
assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False
assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False
def test_SAGE1():
#see https://github.com/sympy/sympy/issues/3346
class MyInt:
def _sympy_(self):
return Integer(5)
m = MyInt()
e = Rational(2)*m
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE2():
class MyInt(object):
def __int__(self):
return 5
assert sympify(MyInt()) == 5
e = Rational(2)*MyInt()
assert e == 10
raises(TypeError, lambda: Rational(2)*MyInt)
def test_SAGE3():
class MySymbol:
def __rmul__(self, other):
return ('mys', other, self)
o = MySymbol()
e = x*o
assert e == ('mys', x, o)
def test_len():
e = x*y
assert len(e.args) == 2
e = x + y + z
assert len(e.args) == 3
def test_doit():
a = Integral(x**2, x)
assert isinstance(a.doit(), Integral) is False
assert isinstance(a.doit(integrals=True), Integral) is False
assert isinstance(a.doit(integrals=False), Integral) is True
assert (2*Integral(x, x)).doit() == x**2
def test_attribute_error():
raises(AttributeError, lambda: x.cos())
raises(AttributeError, lambda: x.sin())
raises(AttributeError, lambda: x.exp())
def test_args():
assert (x*y).args in ((x, y), (y, x))
assert (x + y).args in ((x, y), (y, x))
assert (x*y + 1).args in ((x*y, 1), (1, x*y))
assert sin(x*y).args == (x*y,)
assert sin(x*y).args[0] == x*y
assert (x**y).args == (x, y)
assert (x**y).args[0] == x
assert (x**y).args[1] == y
def test_noncommutative_expand_issue_3757():
A, B, C = symbols('A,B,C', commutative=False)
assert A*B - B*A != 0
assert (A*(A + B)*B).expand() == A**2*B + A*B**2
assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B
def test_as_numer_denom():
a, b, c = symbols('a, b, c')
assert nan.as_numer_denom() == (nan, 1)
assert oo.as_numer_denom() == (oo, 1)
assert (-oo).as_numer_denom() == (-oo, 1)
assert zoo.as_numer_denom() == (zoo, 1)
assert (-zoo).as_numer_denom() == (zoo, 1)
assert x.as_numer_denom() == (x, 1)
assert (1/x).as_numer_denom() == (1, x)
assert (x/y).as_numer_denom() == (x, y)
assert (x/2).as_numer_denom() == (x, 2)
assert (x*y/z).as_numer_denom() == (x*y, z)
assert (x/(y*z)).as_numer_denom() == (x, y*z)
assert Rational(1, 2).as_numer_denom() == (1, 2)
assert (1/y**2).as_numer_denom() == (1, y**2)
assert (x/y**2).as_numer_denom() == (x, y**2)
assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y)
assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7)
assert (x**-2).as_numer_denom() == (1, x**2)
assert (a/x + b/2/x + c/3/x).as_numer_denom() == \
(6*a + 3*b + 2*c, 6*x)
assert (a/x + b/2/x + c/3/y).as_numer_denom() == \
(2*c*x + y*(6*a + 3*b), 6*x*y)
assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \
(2*a + b + 4.0*c, 2*x)
# this should take no more than a few seconds
assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)]
).as_numer_denom()[1]/x).n(4)) == 705
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).as_numer_denom() == \
(x + i, 3)
assert (S.Infinity + x/3 + y/4).as_numer_denom() == \
(4*x + 3*y + S.Infinity, 12)
assert (oo*x + zoo*y).as_numer_denom() == \
(zoo*y + oo*x, 1)
A, B, C = symbols('A,B,C', commutative=False)
assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1)
assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x)
assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1)
assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x)
assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1)
assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x)
def test_trunc():
import math
x, y = symbols('x y')
assert math.trunc(2) == 2
assert math.trunc(4.57) == 4
assert math.trunc(-5.79) == -5
assert math.trunc(pi) == 3
assert math.trunc(log(7)) == 1
assert math.trunc(exp(5)) == 148
assert math.trunc(cos(pi)) == -1
assert math.trunc(sin(5)) == 0
raises(TypeError, lambda: math.trunc(x))
raises(TypeError, lambda: math.trunc(x + y**2))
raises(TypeError, lambda: math.trunc(oo))
def test_as_independent():
assert S.Zero.as_independent(x, as_Add=True) == (0, 0)
assert S.Zero.as_independent(x, as_Add=False) == (0, 0)
assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x))
assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y)
assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x))
assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y))
assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y))
assert (sin(x)).as_independent(x) == (1, sin(x))
assert (sin(x)).as_independent(y) == (sin(x), 1)
assert (2*sin(x)).as_independent(x) == (2, sin(x))
assert (2*sin(x)).as_independent(y) == (2*sin(x), 1)
# issue 4903 = 1766b
n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2)
assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1)
assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1)
assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1)
assert (3*x).as_independent(x, as_Add=True) == (0, 3*x)
assert (3*x).as_independent(x, as_Add=False) == (3, x)
assert (3 + x).as_independent(x, as_Add=True) == (3, x)
assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x)
# issue 5479
assert (3*x).as_independent(Symbol) == (3, x)
# issue 5648
assert (n1*x*y).as_independent(x) == (n1*y, x)
assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y))
assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y)
assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \
== (1, DiracDelta(x - n1)*DiracDelta(x - y))
assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3)
assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3)
assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3)
assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \
(DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1))
# issue 5784
assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \
(Integral(x, (x, 1, 2)), x)
eq = Add(x, -x, 2, -3, evaluate=False)
assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False))
eq = Mul(x, 1/x, 2, -3, evaluate=False)
eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False))
assert (x*y).as_independent(z, as_Add=True) == (x*y, 0)
@XFAIL
def test_call_2():
# TODO UndefinedFunction does not subclass Expr
f = Function('f')
assert (2*f)(x) == 2*f(x)
def test_replace():
f = log(sin(x)) + tan(sin(x**2))
assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
a = Wild('a')
b = Wild('b')
assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2))
assert f.replace(
sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
# test exact
assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, b - a) == 2*x
assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x
g = 2*sin(x**3)
assert g.replace(
lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9)
assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)})
assert sin(x).replace(cos, sin) == sin(x)
cond, func = lambda x: x.is_Mul, lambda x: 2*x
assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y})
assert (x*(1 + x*y)).replace(cond, func, map=True) == \
(2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y})
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \
(sin(x), {sin(x): sin(x)/y})
# if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y,
simultaneous=False) == sin(x)/y
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x)
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e,
simultaneous=False) == x**2/2 + O(x**3)
assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \
x*(x*y + 5) + 2
e = (x*y + 1)*(2*x*y + 1) + 1
assert e.replace(cond, func, map=True) == (
2*((2*x*y + 1)*(4*x*y + 1)) + 1,
{2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1):
2*((2*x*y + 1)*(4*x*y + 1))})
assert x.replace(x, y) == y
assert (x + 1).replace(1, 2) == x + 2
# https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0
n1, n2, n3 = symbols('n1:4', commutative=False)
f = Function('f')
assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2
assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2
# issue 16725
assert S(0).replace(Wild('x'), 1) == 1
# let the user override the default decision of False
assert S(0).replace(Wild('x'), 1, exact=True) == 0
def test_find():
expr = (x + y + 2 + sin(3*x))
assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)}
assert expr.find(lambda u: u.is_Symbol) == {x, y}
assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1}
assert expr.find(Integer) == {S(2), S(3)}
assert expr.find(Symbol) == {x, y}
assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1}
assert expr.find(Symbol, group=True) == {x: 2, y: 1}
a = Wild('a')
expr = sin(sin(x)) + sin(x) + cos(x) + x
assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))}
assert expr.find(
lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin(a)) == {sin(x), sin(sin(x))}
assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1}
assert expr.find(sin) == {sin(x), sin(sin(x))}
assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
def test_count():
expr = (x + y + 2 + sin(3*x))
assert expr.count(lambda u: u.is_Integer) == 2
assert expr.count(lambda u: u.is_Symbol) == 3
assert expr.count(Integer) == 2
assert expr.count(Symbol) == 3
assert expr.count(2) == 1
a = Wild('a')
assert expr.count(sin) == 1
assert expr.count(sin(a)) == 1
assert expr.count(lambda u: type(u) is sin) == 1
f = Function('f')
assert f(x).count(f(x)) == 1
assert f(x).diff(x).count(f(x)) == 1
assert f(x).diff(x).count(x) == 2
def test_has_basics():
f = Function('f')
g = Function('g')
p = Wild('p')
assert sin(x).has(x)
assert sin(x).has(sin)
assert not sin(x).has(y)
assert not sin(x).has(cos)
assert f(x).has(x)
assert f(x).has(f)
assert not f(x).has(y)
assert not f(x).has(g)
assert f(x).diff(x).has(x)
assert f(x).diff(x).has(f)
assert f(x).diff(x).has(Derivative)
assert not f(x).diff(x).has(y)
assert not f(x).diff(x).has(g)
assert not f(x).diff(x).has(sin)
assert (x**2).has(Symbol)
assert not (x**2).has(Wild)
assert (2*p).has(Wild)
assert not x.has()
def test_has_multiple():
f = x**2*y + sin(2**t + log(z))
assert f.has(x)
assert f.has(y)
assert f.has(z)
assert f.has(t)
assert not f.has(u)
assert f.has(x, y, z, t)
assert f.has(x, y, z, t, u)
i = Integer(4400)
assert not i.has(x)
assert (i*x**i).has(x)
assert not (i*y**i).has(x)
assert (i*y**i).has(x, y)
assert not (i*y**i).has(x, z)
def test_has_piecewise():
f = (x*y + 3/y)**(3 + 2)
g = Function('g')
h = Function('h')
p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True))
assert p.has(x)
assert p.has(y)
assert not p.has(z)
assert p.has(1)
assert p.has(3)
assert not p.has(4)
assert p.has(f)
assert p.has(g)
assert not p.has(h)
def test_has_iterative():
A, B, C = symbols('A,B,C', commutative=False)
f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B)
assert f.has(x)
assert f.has(x*y)
assert f.has(x*sin(x))
assert not f.has(x*sin(y))
assert f.has(x*A)
assert f.has(x*A*B)
assert not f.has(x*A*C)
assert f.has(x*A*B*C)
assert not f.has(x*A*C*B)
assert f.has(x*sin(x)*A*B*C)
assert not f.has(x*sin(x)*A*C*B)
assert not f.has(x*sin(y)*A*B*C)
assert f.has(x*gamma(x))
assert not f.has(x + sin(x))
assert (x & y & z).has(x & z)
def test_has_integrals():
f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z))
assert f.has(x + y)
assert f.has(x + z)
assert f.has(y + z)
assert f.has(x*y)
assert f.has(x*z)
assert f.has(y*z)
assert not f.has(2*x + y)
assert not f.has(2*x*y)
def test_has_tuple():
f = Function('f')
g = Function('g')
h = Function('h')
assert Tuple(x, y).has(x)
assert not Tuple(x, y).has(z)
assert Tuple(f(x), g(x)).has(x)
assert not Tuple(f(x), g(x)).has(y)
assert Tuple(f(x), g(x)).has(f)
assert Tuple(f(x), g(x)).has(f(x))
assert not Tuple(f, g).has(x)
assert Tuple(f, g).has(f)
assert not Tuple(f, g).has(h)
assert Tuple(True).has(True) is True # .has(1) will also be True
def test_has_units():
from sympy.physics.units import m, s
assert (x*m/s).has(x)
assert (x*m/s).has(y, z) is False
def test_has_polys():
poly = Poly(x**2 + x*y*sin(z), x, y, t)
assert poly.has(x)
assert poly.has(x, y, z)
assert poly.has(x, y, z, t)
def test_has_physics():
assert FockState((x, y)).has(x)
def test_as_poly_as_expr():
f = x**2 + 2*x*y
assert f.as_poly().as_expr() == f
assert f.as_poly(x, y).as_expr() == f
assert (f + sin(x)).as_poly(x, y) is None
p = Poly(f, x, y)
assert p.as_poly() == p
def test_nonzero():
assert bool(S.Zero) is False
assert bool(S.One) is True
assert bool(x) is True
assert bool(x + y) is True
assert bool(x - x) is False
assert bool(x*y) is True
assert bool(x*1) is True
assert bool(x*0) is False
def test_is_number():
assert Float(3.14).is_number is True
assert Integer(737).is_number is True
assert Rational(3, 2).is_number is True
assert Rational(8).is_number is True
assert x.is_number is False
assert (2*x).is_number is False
assert (x + y).is_number is False
assert log(2).is_number is True
assert log(x).is_number is False
assert (2 + log(2)).is_number is True
assert (8 + log(2)).is_number is True
assert (2 + log(x)).is_number is False
assert (8 + log(2) + x).is_number is False
assert (1 + x**2/x - x).is_number is True
assert Tuple(Integer(1)).is_number is False
assert Add(2, x).is_number is False
assert Mul(3, 4).is_number is True
assert Pow(log(2), 2).is_number is True
assert oo.is_number is True
g = WildFunction('g')
assert g.is_number is False
assert (2*g).is_number is False
assert (x**2).subs(x, 3).is_number is True
# test extensibility of .is_number
# on subinstances of Basic
class A(Basic):
pass
a = A()
assert a.is_number is False
def test_as_coeff_add():
assert S(2).as_coeff_add() == (2, ())
assert S(3.0).as_coeff_add() == (0, (S(3.0),))
assert S(-3.0).as_coeff_add() == (0, (S(-3.0),))
assert x.as_coeff_add() == (0, (x,))
assert (x - 1).as_coeff_add() == (-1, (x,))
assert (x + 1).as_coeff_add() == (1, (x,))
assert (x + 2).as_coeff_add() == (2, (x,))
assert (x + y).as_coeff_add(y) == (x, (y,))
assert (3*x).as_coeff_add(y) == (3*x, ())
# don't do expansion
e = (x + y)**2
assert e.as_coeff_add(y) == (0, (e,))
def test_as_coeff_mul():
assert S(2).as_coeff_mul() == (2, ())
assert S(3.0).as_coeff_mul() == (1, (S(3.0),))
assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),))
assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ())
assert x.as_coeff_mul() == (1, (x,))
assert (-x).as_coeff_mul() == (-1, (x,))
assert (2*x).as_coeff_mul() == (2, (x,))
assert (x*y).as_coeff_mul(y) == (x, (y,))
assert (3 + x).as_coeff_mul() == (1, (3 + x,))
assert (3 + x).as_coeff_mul(y) == (3 + x, ())
# don't do expansion
e = exp(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
e = 2**(x + y)
assert e.as_coeff_mul(y) == (1, (e,))
assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,))
assert (1.1*x).as_coeff_mul() == (1, (1.1, x))
assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x))
def test_as_coeff_exponent():
assert (3*x**4).as_coeff_exponent(x) == (3, 4)
assert (2*x**3).as_coeff_exponent(x) == (2, 3)
assert (4*x**2).as_coeff_exponent(x) == (4, 2)
assert (6*x**1).as_coeff_exponent(x) == (6, 1)
assert (3*x**0).as_coeff_exponent(x) == (3, 0)
assert (2*x**0).as_coeff_exponent(x) == (2, 0)
assert (1*x**0).as_coeff_exponent(x) == (1, 0)
assert (0*x**0).as_coeff_exponent(x) == (0, 0)
assert (-1*x**0).as_coeff_exponent(x) == (-1, 0)
assert (-2*x**0).as_coeff_exponent(x) == (-2, 0)
assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3)
assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \
(log(2)/(2 + pi), 0)
# issue 4784
D = Derivative
f = Function('f')
fx = D(f(x), x)
assert fx.as_coeff_exponent(f(x)) == (fx, 0)
def test_extractions():
assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2
assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None
assert (2*x).extract_multiplicatively(2) == x
assert (2*x).extract_multiplicatively(3) is None
assert (2*x).extract_multiplicatively(-1) is None
assert (Rational(1, 2)*x).extract_multiplicatively(3) == x/6
assert (sqrt(x)).extract_multiplicatively(x) is None
assert (sqrt(x)).extract_multiplicatively(1/x) is None
assert x.extract_multiplicatively(-x) is None
assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I
assert (-2 - 4*I).extract_multiplicatively(3) is None
assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4
assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x
assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x
assert (-4*y**2*x).extract_multiplicatively(-3*y) is None
assert (2*x).extract_multiplicatively(1) == 2*x
assert (-oo).extract_multiplicatively(5) == -oo
assert (oo).extract_multiplicatively(5) == oo
assert ((x*y)**3).extract_additively(1) is None
assert (x + 1).extract_additively(x) == 1
assert (x + 1).extract_additively(2*x) is None
assert (x + 1).extract_additively(-x) is None
assert (-x + 1).extract_additively(2*x) is None
assert (2*x + 3).extract_additively(x) == x + 3
assert (2*x + 3).extract_additively(2) == 2*x + 1
assert (2*x + 3).extract_additively(3) == 2*x
assert (2*x + 3).extract_additively(-2) is None
assert (2*x + 3).extract_additively(3*x) is None
assert (2*x + 3).extract_additively(2*x) == 3
assert x.extract_additively(0) == x
assert S(2).extract_additively(x) is None
assert S(2.).extract_additively(2) == S.Zero
assert S(2*x + 3).extract_additively(x + 1) == x + 2
assert S(2*x + 3).extract_additively(y + 1) is None
assert S(2*x - 3).extract_additively(x + 1) is None
assert S(2*x - 3).extract_additively(y + z) is None
assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \
4*a*x + 3*x + y
assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \
4*a*x + 3*x + y
assert (y*(x + 1)).extract_additively(x + 1) is None
assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \
y*(x + 1) + 3
assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \
x*(x + y) + 3
assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \
x + y + (x + 1)*(x + y) + 3
assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \
(x + 2*y)*(y + 1) + 3
n = Symbol("n", integer=True)
assert (Integer(-3)).could_extract_minus_sign() is True
assert (-n*x + x).could_extract_minus_sign() != \
(n*x - x).could_extract_minus_sign()
assert (x - y).could_extract_minus_sign() != \
(-x + y).could_extract_minus_sign()
assert (1 - x - y).could_extract_minus_sign() is True
assert (1 - x + y).could_extract_minus_sign() is False
assert ((-x - x*y)/y).could_extract_minus_sign() is True
assert (-(x + x*y)/y).could_extract_minus_sign() is True
assert ((x + x*y)/(-y)).could_extract_minus_sign() is True
assert ((x + x*y)/y).could_extract_minus_sign() is False
assert (x*(-x - x**3)).could_extract_minus_sign() is True
assert ((-x - y)/(x + y)).could_extract_minus_sign() is True
class sign_invariant(Function, Expr):
nargs = 1
def __neg__(self):
return self
foo = sign_invariant(x)
assert foo == -foo
assert foo.could_extract_minus_sign() is False
# The results of each of these will vary on different machines, e.g.
# the first one might be False and the other (then) is true or vice versa,
# so both are included.
assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \
((-x - y)/(y - x)).could_extract_minus_sign() is False
assert (x - y).could_extract_minus_sign() is False
assert (-x + y).could_extract_minus_sign() is True
def test_nan_extractions():
for r in (1, 0, I, nan):
assert nan.extract_additively(r) is None
assert nan.extract_multiplicatively(r) is None
def test_coeff():
assert (x + 1).coeff(x + 1) == 1
assert (3*x).coeff(0) == 0
assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2
assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2
assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (3 + 2*x + 4*x**2).coeff(-1) == 0
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (-x/8 + x*y).coeff(x) == -S(1)/8 + y
assert (-x/8 + x*y).coeff(-x) == S(1)/8
assert (4*x).coeff(2*x) == 0
assert (2*x).coeff(2*x) == 1
assert (-oo*x).coeff(x*oo) == -1
assert (10*x).coeff(x, 0) == 0
assert (10*x).coeff(10*x, 0) == 0
n1, n2 = symbols('n1 n2', commutative=False)
assert (n1*n2).coeff(n1) == 1
assert (n1*n2).coeff(n2) == n1
assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x)
assert (n2*n1 + x*n1).coeff(n1) == n2 + x
assert (n2*n1 + x*n1**2).coeff(n1) == n2
assert (n1**x).coeff(n1) == 0
assert (n1*n2 + n2*n1).coeff(n1) == 0
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2
f = Function('f')
assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr.coeff(x + y) == 0
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
assert (x + y + 3*z).coeff(1) == x + y
assert (-x + 2*y).coeff(-1) == x
assert (x - 2*y).coeff(-1) == 2*y
assert (3 + 2*x + 4*x**2).coeff(1) == 0
assert (-x - 2*y).coeff(2) == -y
assert (x + sqrt(2)*x).coeff(sqrt(2)) == x
assert (3 + 2*x + 4*x**2).coeff(x) == 2
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
assert (z*(x + y)**2).coeff((x + y)**2) == z
assert (z*(x + y)**2).coeff(x + y) == 0
assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y
assert (x + 2*y + 3).coeff(1) == x
assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3
assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x
assert x.coeff(0, 0) == 0
assert x.coeff(x, 0) == 0
n, m, o, l = symbols('n m o l', commutative=False)
assert n.coeff(n) == 1
assert y.coeff(n) == 0
assert (3*n).coeff(n) == 3
assert (2 + n).coeff(x*m) == 0
assert (2*x*n*m).coeff(x) == 2*n*m
assert (2 + n).coeff(x*m*n + y) == 0
assert (2*x*n*m).coeff(3*n) == 0
assert (n*m + m*n*m).coeff(n) == 1 + m
assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m
assert (n*m + m*n).coeff(n) == 0
assert (n*m + o*m*n).coeff(m*n) == o
assert (n*m + o*m*n).coeff(m*n, right=1) == 1
assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1)
assert (x*y).coeff(z, 0) == x*y
def test_coeff2():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff((psi(r).diff(r))) == 2/r
def test_coeff2_0():
r, kappa = symbols('r, kappa')
psi = Function("psi")
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
g = g.expand()
assert g.coeff(psi(r).diff(r, 2)) == 1
def test_coeff_expand():
expr = z*(x + y)**2
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
assert expr.coeff(z) == (x + y)**2
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
def test_integrate():
assert x.integrate(x) == x**2/2
assert x.integrate((x, 0, 1)) == S(1)/2
def test_as_base_exp():
assert x.as_base_exp() == (x, S.One)
assert (x*y*z).as_base_exp() == (x*y*z, S.One)
assert (x + y + z).as_base_exp() == (x + y + z, S.One)
assert ((x + y)**z).as_base_exp() == (x + y, z)
def test_issue_4963():
assert hasattr(Mul(x, y), "is_commutative")
assert hasattr(Mul(x, y, evaluate=False), "is_commutative")
assert hasattr(Pow(x, y), "is_commutative")
assert hasattr(Pow(x, y, evaluate=False), "is_commutative")
expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1
assert hasattr(expr, "is_commutative")
def test_action_verbs():
assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \
(1/(exp(3*pi*x/5) + 1)).nsimplify()
assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True)
assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp()
assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \
(1/(a + b*sqrt(c))).radsimp(symbolic=False)
assert powsimp(x**y*x**z*y**z, combine='all') == \
(x**y*x**z*y**z).powsimp(combine='all')
assert (x**t*y**t).powsimp(force=True) == (x*y)**t
assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
assert together(1/x + 1/y) == (1/x + 1/y).together()
assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \
(a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y)
assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp()
assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp()
assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor()
assert refine(sqrt(x**2)) == sqrt(x**2).refine()
assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel()
def test_as_powers_dict():
assert x.as_powers_dict() == {x: 1}
assert (x**y*z).as_powers_dict() == {x: y, z: 1}
assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)}
assert (x*y).as_powers_dict()[z] == 0
assert (x + y).as_powers_dict()[z] == 0
def test_as_coefficients_dict():
check = [S(1), x, y, x*y, 1]
assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \
[3, 5, 1, 0, 3]
assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i]
for i in check] == [3, 5, 1, 0, 3]
assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3, 0]
assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \
[0, 0, 0, 3.0, 0]
assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0
def test_args_cnc():
A = symbols('A', commutative=False)
assert (x + A).args_cnc() == \
[[], [x + A]]
assert (x + a).args_cnc() == \
[[a + x], []]
assert (x*a).args_cnc() == \
[[a, x], []]
assert (x*y*A*(A + 1)).args_cnc(cset=True) == \
[{x, y}, [A, 1 + A]]
assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x}, []]
assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \
[{x, x**2}, []]
raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True))
assert Mul(x, y, x, evaluate=False).args_cnc() == \
[[x, y, x], []]
# always split -1 from leading number
assert (-1.*x).args_cnc() == [[-1, 1.0, x], []]
def test_new_rawargs():
n = Symbol('n', commutative=False)
a = x + n
assert a.is_commutative is False
assert a._new_rawargs(x).is_commutative
assert a._new_rawargs(x, y).is_commutative
assert a._new_rawargs(x, n).is_commutative is False
assert a._new_rawargs(x, y, n).is_commutative is False
m = x*n
assert m.is_commutative is False
assert m._new_rawargs(x).is_commutative
assert m._new_rawargs(n).is_commutative is False
assert m._new_rawargs(x, y).is_commutative
assert m._new_rawargs(x, n).is_commutative is False
assert m._new_rawargs(x, y, n).is_commutative is False
assert m._new_rawargs(x, n, reeval=False).is_commutative is False
assert m._new_rawargs(S.One) is S.One
def test_issue_5226():
assert Add(evaluate=False) == 0
assert Mul(evaluate=False) == 1
assert Mul(x + y, evaluate=False).is_Add
def test_free_symbols():
# free_symbols should return the free symbols of an object
assert S(1).free_symbols == set()
assert (x).free_symbols == {x}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert (-Integral(x, (x, 1, y))).free_symbols == {y}
assert meter.free_symbols == set()
assert (meter**x).free_symbols == {x}
def test_issue_5300():
x = Symbol('x', commutative=False)
assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3
def test_floordiv():
from sympy.functions.elementary.integers import floor
assert x // y == floor(x / y)
def test_as_coeff_Mul():
assert S(0).as_coeff_Mul() == (S.One, S.Zero)
assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1))
assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1))
assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1))
assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x)
assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x)
assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x)
assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y)
assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y)
assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y)
assert (x).as_coeff_Mul() == (S.One, x)
assert (x*y).as_coeff_Mul() == (S.One, x*y)
assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x)
def test_as_coeff_Add():
assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0))
assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0))
assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0))
assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x)
assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x)
assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x)
assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x)
assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y)
assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y)
assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y)
assert (x).as_coeff_Add() == (S.Zero, x)
assert (x*y).as_coeff_Add() == (S.Zero, x*y)
def test_expr_sorting():
f, g = symbols('f,g', cls=Function)
exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n,
sin(x**2), cos(x), cos(x**2), tan(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[3], [1, 2]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [[1, 2], [1, 2, 3]]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{x: -y}, {x: y}]
assert sorted(exprs, key=default_sort_key) == exprs
exprs = [{1}, {1, 2}]
assert sorted(exprs, key=default_sort_key) == exprs
a, b = exprs = [Dummy('x'), Dummy('x')]
assert sorted([b, a], key=default_sort_key) == exprs
def test_as_ordered_factors():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_factors() == [x]
assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \
== [Integer(2), x, x**n, sin(x), cos(x)]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Mul(*args)
assert expr.as_ordered_factors() == args
A, B = symbols('A,B', commutative=False)
assert (A*B).as_ordered_factors() == [A, B]
assert (B*A).as_ordered_factors() == [B, A]
def test_as_ordered_terms():
f, g = symbols('f,g', cls=Function)
assert x.as_ordered_terms() == [x]
assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \
== [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1]
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
expr = Add(*args)
assert expr.as_ordered_terms() == args
assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1]
assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I]
assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I]
assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I]
assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I]
assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I]
assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I]
assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I]
assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I]
f = x**2*y**2 + x*y**4 + y + 2
assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2]
assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2]
assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2]
assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4]
k = symbols('k')
assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k])
def test_sort_key_atomic_expr():
from sympy.physics.units import m, s
assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s]
def test_eval_interval():
assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0)
# issue 4199
# first subs and limit gives NaN
a = x/y
assert a._eval_interval(x, S(0), oo)._eval_interval(y, oo, S(0)) is S.NaN
# second subs and limit gives NaN
assert a._eval_interval(x, S(0), oo)._eval_interval(y, S(0), oo) is S.NaN
# difference gives S.NaN
a = x - y
assert a._eval_interval(x, S(1), oo)._eval_interval(y, oo, S(1)) is S.NaN
raises(ValueError, lambda: x._eval_interval(x, None, None))
a = -y*Heaviside(x - y)
assert a._eval_interval(x, -oo, oo) == -y
assert a._eval_interval(x, oo, -oo) == y
def test_eval_interval_zoo():
# Test that limit is used when zoo is returned
assert Si(1/x)._eval_interval(x, S(0), S(1)) == -pi/2 + Si(1)
def test_primitive():
assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2)
assert (6*x + 2).primitive() == (2, 3*x + 1)
assert (x/2 + 3).primitive() == (S(1)/2, x + 6)
eq = (6*x + 2)*(x/2 + 3)
assert eq.primitive()[0] == 1
eq = (2 + 2*x)**2
assert eq.primitive()[0] == 1
assert (4.0*x).primitive() == (1, 4.0*x)
assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y)
assert (-2*x).primitive() == (2, -x)
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \
(S(1)/14, 7.0*x + 21*y + 10*z)
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
assert (i + x/3).primitive() == \
(S(1)/3, i + x)
assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \
(S(1)/21, 14*x + 12*y + oo)
assert S.Zero.primitive() == (S.One, S.Zero)
def test_issue_5843():
a = 1 + x
assert (2*a).extract_multiplicatively(a) == 2
assert (4*a).extract_multiplicatively(2*a) == 2
assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a
def test_is_constant():
from sympy.solvers.solvers import checksol
Sum(x, (x, 1, 10)).is_constant() is True
Sum(x, (x, 1, n)).is_constant() is False
Sum(x, (x, 1, n)).is_constant(y) is True
Sum(x, (x, 1, n)).is_constant(n) is False
Sum(x, (x, 1, n)).is_constant(x) is True
eq = a*cos(x)**2 + a*sin(x)**2 - a
eq.is_constant() is True
assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
assert x.is_constant() is False
assert x.is_constant(y) is True
assert checksol(x, x, Sum(x, (x, 1, n))) is False
assert checksol(x, x, Sum(x, (x, 1, n))) is False
f = Function('f')
assert f(1).is_constant
assert checksol(x, x, f(x)) is False
assert Pow(x, S(0), evaluate=False).is_constant() is True # == 1
assert Pow(S(0), x, evaluate=False).is_constant() is False # == 0 or 1
assert (2**x).is_constant() is False
assert Pow(S(2), S(3), evaluate=False).is_constant() is True
z1, z2 = symbols('z1 z2', zero=True)
assert (z1 + 2*z2).is_constant() is True
assert meter.is_constant() is True
assert (3*meter).is_constant() is True
assert (x*meter).is_constant() is False
assert Poly(3,x).is_constant() is True
def test_equals():
assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0)
assert (x**2 - 1).equals((x + 1)*(x - 1))
assert (cos(x)**2 + sin(x)**2).equals(1)
assert (a*cos(x)**2 + a*sin(x)**2).equals(a)
r = sqrt(2)
assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0)
assert factorial(x + 1).equals((x + 1)*factorial(x))
assert sqrt(3).equals(2*sqrt(3)) is False
assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False
assert (sqrt(5) + sqrt(3)).equals(0) is False
assert (sqrt(5) + pi).equals(0) is False
assert meter.equals(0) is False
assert (3*meter**2).equals(0) is False
eq = -(-1)**(S(3)/4)*6**(S(1)/4) + (-6)**(S(1)/4)*I
if eq != 0: # if canonicalization makes this zero, skip the test
assert eq.equals(0)
assert sqrt(x).equals(0) is False
# from integrate(x*sqrt(1 + 2*x), x);
# diff is zero only when assumptions allow
i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \
2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x)
ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15
diff = i - ans
assert diff.equals(0) is False
assert diff.subs(x, -S.Half/2) == 7*sqrt(2)/120
# there are regions for x for which the expression is True, for
# example, when x < -1/2 or x > 0 the expression is zero
p = Symbol('p', positive=True)
assert diff.subs(x, p).equals(0) is True
assert diff.subs(x, -1).equals(0) is True
# prove via minimal_polynomial or self-consistency
eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert eq.equals(0)
q = 3**Rational(1, 3) + 3
p = expand(q**3)**Rational(1, 3)
assert (p - q).equals(0)
# issue 6829
# eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S(1)/3
# z = eq.subs(x, solve(eq, x)[0])
q = symbols('q')
z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4) + q/4 + (-sqrt(-2*(-(q
- S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q
- S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q -
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) -
S(13)/6)/2 - S(1)/4)**2 - S(1)/3)
assert z.equals(0)
def test_random():
from sympy import posify, lucas
assert posify(x)[0]._random() is not None
assert lucas(n)._random(2, -2, 0, -1, 1) is None
# issue 8662
assert Piecewise((Max(x, y), z))._random() is None
def test_round():
from sympy.abc import x
assert Float('0.1249999').round(2) == 0.12
d20 = 12345678901234567890
ans = S(d20).round(2)
assert ans.is_Integer and ans == d20
ans = S(d20).round(-2)
assert ans.is_Integer and ans == 12345678901234567900
assert S('1/7').round(4) == 0.1429
assert S('.[12345]').round(4) == 0.1235
assert S('.1349').round(2) == 0.13
n = S(12345)
ans = n.round()
assert ans.is_Integer
assert ans == n
ans = n.round(1)
assert ans.is_Integer
assert ans == n
ans = n.round(4)
assert ans.is_Integer
assert ans == n
assert n.round(-1) == 12340
r = Float(str(n)).round(-4)
assert r == 10000
# in fact, it should equal many values since __eq__
# compares at equal precision
assert all(r == i for i in range(9984, 10049))
assert n.round(-5) == 0
assert (pi + sqrt(2)).round(2) == 4.56
assert (10*(pi + sqrt(2))).round(-1) == 50
raises(TypeError, lambda: round(x + 2, 2))
assert S(2.3).round(1) == 2.3
# rounding in SymPy (as in Decimal) should be
# exact for the given precision; we check here
# that when a 5 follows the last digit that
# the rounded digit will be even.
for i in range(-99, 100):
# construct a decimal that ends in 5, e.g. 123 -> 0.1235
s = str(abs(i))
p = len(s) # we are going to round to the last digit of i
n = '0.%s5' % s # put a 5 after i's digits
j = p + 2 # 2 for '0.'
if i < 0: # 1 for '-'
j += 1
n = '-' + n
v = str(Float(n).round(p))[:j] # pertinent digits
if v.endswith('.'):
continue # it ends with 0 which is even
L = int(v[-1]) # last digit
assert L % 2 == 0, (n, '->', v)
assert (Float(.3, 3) + 2*pi).round() == 7
assert (Float(.3, 3) + 2*pi*100).round() == 629
assert (pi + 2*E*I).round() == 3 + 5*I
# don't let request for extra precision give more than
# what is known (in this case, only 3 digits)
assert (Float(.03, 3) + 2*pi/100).round(5) == 0.0928
assert (Float(.03, 3) + 2*pi/100).round(4) == 0.0928
assert S.Zero.round() == 0
a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0))
assert a.round(10) == Float('3.0000000000', '')
assert a.round(25) == Float('3.0000000000000000000000000', '')
assert a.round(26) == Float('3.00000000000000000000000000', '')
assert a.round(27) == Float('2.999999999999999999999999999', '')
assert a.round(30) == Float('2.999999999999999999999999999', '')
raises(TypeError, lambda: x.round())
f = Function('f')
raises(TypeError, lambda: f(1).round())
# exact magnitude of 10
assert str(S(1).round()) == '1'
assert str(S(100).round()) == '100'
# applied to real and imaginary portions
assert (2*pi + E*I).round() == 6 + 3*I
assert (2*pi + I/10).round() == 6
assert (pi/10 + 2*I).round() == 2*I
# the lhs re and im parts are Float with dps of 2
# and those on the right have dps of 15 so they won't compare
# equal unless we use string or compare components (which will
# then coerce the floats to the same precision) or re-create
# the floats
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
assert (pi/10 + E*I).round(2).as_real_imag() == (0.31, 2.72)
assert (pi/10 + E*I).round(2) == Float(0.31, 2) + I*Float(2.72, 3)
# issue 6914
assert (I**(I + 3)).round(3) == Float('-0.208', '')*I
# issue 8720
assert S(-123.6).round() == -124
assert S(-1.5).round() == -2
assert S(-100.5).round() == -100
assert S(-1.5 - 10.5*I).round() == -2 - 10*I
# issue 7961
assert str(S(0.006).round(2)) == '0.01'
assert str(S(0.00106).round(4)) == '0.0011'
# issue 8147
assert S.NaN.round() == S.NaN
assert S.Infinity.round() == S.Infinity
assert S.NegativeInfinity.round() == S.NegativeInfinity
assert S.ComplexInfinity.round() == S.ComplexInfinity
# check that types match
for i in range(2):
f = float(i)
# 2 args
assert all(type(round(i, p)) is _rint for p in (-1, 0, 1))
assert all(S(i).round(p).is_Integer for p in (-1, 0, 1))
assert all(type(round(f, p)) is float for p in (-1, 0, 1))
assert all(S(f).round(p).is_Float for p in (-1, 0, 1))
# 1 arg (p is None)
assert type(round(i)) is _rint
assert S(i).round().is_Integer
assert type(round(f)) is _rint
assert S(f).round().is_Integer
def test_held_expression_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
e1 = x*he
assert isinstance(e1, Mul)
assert e1.args == (x, he)
assert e1.doit() == 1
assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False
) == Derivative(x, x)
assert UnevaluatedExpr(Derivative(x, x)).doit() == 1
xx = Mul(x, x, evaluate=False)
assert xx != x**2
ue2 = UnevaluatedExpr(xx)
assert isinstance(ue2, UnevaluatedExpr)
assert ue2.args == (xx,)
assert ue2.doit() == x**2
assert ue2.doit(deep=False) == xx
x2 = UnevaluatedExpr(2)*2
assert type(x2) is Mul
assert x2.args == (2, UnevaluatedExpr(2))
def test_round_exception_nostr():
# Don't use the string form of the expression in the round exception, as
# it's too slow
s = Symbol('bad')
try:
s.round()
except TypeError as e:
assert 'bad' not in str(e)
else:
# Did not raise
raise AssertionError("Did not raise")
def test_extract_branch_factor():
assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1)
def test_identity_removal():
assert Add.make_args(x + 0) == (x,)
assert Mul.make_args(x*1) == (x,)
def test_float_0():
assert Float(0.0) + 1 == Float(1.0)
@XFAIL
def test_float_0_fail():
assert Float(0.0)*x == Float(0.0)
assert (x + Float(0.0)).is_Add
def test_issue_6325():
ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/(
(a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2)
e = sqrt((a + b*t)**2 + (c + z*t)**2)
assert diff(e, t, 2) == ans
e.diff(t, 2) == ans
assert diff(e, t, 2, simplify=False) != ans
def test_issue_7426():
f1 = a % c
f2 = x % z
assert f1.equals(f2) is None
def test_issue_1112():
x = Symbol('x', positive=False)
assert (x > 0) is S.false
def test_issue_10161():
x = symbols('x', real=True)
assert x*abs(x)*abs(x) == x**3
def test_issue_10755():
x = symbols('x')
raises(TypeError, lambda: int(log(x)))
raises(TypeError, lambda: log(x).round(2))
def test_issue_11877():
x = symbols('x')
assert integrate(log(S(1)/2 - x), (x, 0, S(1)/2)) == -S(1)/2 -log(2)/2
def test_normal():
x = symbols('x')
e = Mul(S.Half, 1 + x, evaluate=False)
assert e.normal() == e
def test_ExprBuilder():
eb = ExprBuilder(Mul)
eb.args.extend([x, x])
assert eb.build() == x**2
|
a047a063bc878e9b9bfb7334c262801b368c0cc370df74d6afd65b2392d12f6d | from __future__ import absolute_import
import numbers as nums
import decimal
from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E,
Integer, S, factorial, Catalan, EulerGamma, GoldenRatio,
TribonacciConstant, cos, exp,
Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le,
AlgebraicNumber, simplify, sin, fibonacci, RealField,
sympify, srepr)
from sympy.core.compatibility import long
from sympy.core.power import integer_nthroot, isqrt, integer_log
from sympy.core.logic import fuzzy_not
from sympy.core.numbers import (igcd, ilcm, igcdex, seterr,
igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse)
from sympy.core.mod import Mod
from sympy.polys.domains.groundtypes import PythonRational
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.utilities.iterables import permutations
from sympy.utilities.pytest import XFAIL, raises
from mpmath import mpf
from mpmath.rational import mpq
import mpmath
from sympy import numbers
t = Symbol('t', real=False)
_ninf = float(-oo)
_inf = float(oo)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_seterr():
seterr(divide=True)
raises(ValueError, lambda: S.Zero/S.Zero)
seterr(divide=False)
assert S.Zero / S.Zero == S.NaN
def test_mod():
x = Rational(1, 2)
y = Rational(3, 4)
z = Rational(5, 18043)
assert x % x == 0
assert x % y == 1/S(2)
assert x % z == 3/S(36086)
assert y % x == 1/S(4)
assert y % y == 0
assert y % z == 9/S(72172)
assert z % x == 5/S(18043)
assert z % y == 5/S(18043)
assert z % z == 0
a = Float(2.6)
assert (a % .2) == 0
assert (a % 2).round(15) == 0.6
assert (a % 0.5).round(15) == 0.1
p = Symbol('p', infinite=True)
assert oo % oo == nan
assert zoo % oo == nan
assert 5 % oo == nan
assert p % 5 == nan
# In these two tests, if the precision of m does
# not match the precision of the ans, then it is
# likely that the change made now gives an answer
# with degraded accuracy.
r = Rational(500, 41)
f = Float('.36', 3)
m = r % f
ans = Float(r % Rational(f), 3)
assert m == ans and m._prec == ans._prec
f = Float('8.36', 3)
m = f % r
ans = Float(Rational(f) % r, 3)
assert m == ans and m._prec == ans._prec
s = S.Zero
assert s % float(1) == S.Zero
# No rounding required since these numbers can be represented
# exactly.
assert Rational(3, 4) % Float(1.1) == 0.75
assert Float(1.5) % Rational(5, 4) == 0.25
assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25
assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25')
assert 2.75 % Float('1.5') == Float('1.25')
a = Integer(7)
b = Integer(4)
assert type(a % b) == Integer
assert a % b == Integer(3)
assert Integer(1) % Rational(2, 3) == Rational(1, 3)
assert Rational(7, 5) % Integer(1) == Rational(2, 5)
assert Integer(2) % 1.5 == 0.5
assert Integer(3).__rmod__(Integer(10)) == Integer(1)
assert Integer(10) % 4 == Integer(2)
assert 15 % Integer(4) == Integer(3)
def test_divmod():
assert divmod(S(12), S(8)) == Tuple(1, 4)
assert divmod(-S(12), S(8)) == Tuple(-2, 4)
assert divmod(S(0), S(1)) == Tuple(0, 0)
raises(ZeroDivisionError, lambda: divmod(S(0), S(0)))
raises(ZeroDivisionError, lambda: divmod(S(1), S(0)))
assert divmod(S(12), 8) == Tuple(1, 4)
assert divmod(12, S(8)) == Tuple(1, 4)
assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2"))
assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2"))
assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5"))
assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("2"), S("0.1")) == Tuple(S("20"), S("0"))
assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("2"), 2) == Tuple(S("1"), S("0"))
assert divmod(2, S("2")) == Tuple(S("1"), S("0"))
assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5"))
assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2"))
assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5"))
assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), Float("1/6"))
assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3/2"), S("0.1")) == Tuple(S("15"), S("0"))
assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2"))
assert divmod(2, S("3/2")) == Tuple(S("1"), S("0.5"))
assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0"))
assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0"))
assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0"))
assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0"))
assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5"))
assert divmod(2, S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5"))
assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1"))
assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3"))
assert divmod(2, S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3"))
assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1"))
assert divmod(2, S("0.1")) == Tuple(S("20"), S("0"))
assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1"))
assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0"))
assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1"))
assert str(divmod(S("2"), 0.3)) == '(6, 0.2)'
assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)'
assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)'
assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)'
assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)'
assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)'
assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)'
assert divmod(-3, S(2)) == (-2, 1)
assert divmod(S(-3), S(2)) == (-2, 1)
assert divmod(S(-3), 2) == (-2, 1)
assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2)
assert divmod(S(4), S(-2.1)) == divmod(4, -2.1)
assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5)
def test_igcd():
assert igcd(0, 0) == 0
assert igcd(0, 1) == 1
assert igcd(1, 0) == 1
assert igcd(0, 7) == 7
assert igcd(7, 0) == 7
assert igcd(7, 1) == 1
assert igcd(1, 7) == 1
assert igcd(-1, 0) == 1
assert igcd(0, -1) == 1
assert igcd(-1, -1) == 1
assert igcd(-1, 7) == 1
assert igcd(7, -1) == 1
assert igcd(8, 2) == 2
assert igcd(4, 8) == 4
assert igcd(8, 16) == 8
assert igcd(7, -3) == 1
assert igcd(-7, 3) == 1
assert igcd(-7, -3) == 1
assert igcd(*[10, 20, 30]) == 10
raises(TypeError, lambda: igcd())
raises(TypeError, lambda: igcd(2))
raises(ValueError, lambda: igcd(0, None))
raises(ValueError, lambda: igcd(1, 2.2))
for args in permutations((45.1, 1, 30)):
raises(ValueError, lambda: igcd(*args))
for args in permutations((1, 2, None)):
raises(ValueError, lambda: igcd(*args))
def test_igcd_lehmer():
a, b = fibonacci(10001), fibonacci(10000)
# len(str(a)) == 2090
# small divisors, long Euclidean sequence
assert igcd_lehmer(a, b) == 1
c = fibonacci(100)
assert igcd_lehmer(a*c, b*c) == c
# big divisor
assert igcd_lehmer(a, 10**1000) == 1
# swapping argmument
assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1)
def test_igcd2():
# short loop
assert igcd2(2**100 - 1, 2**99 - 1) == 1
# Lehmer's algorithm
a, b = int(fibonacci(10001)), int(fibonacci(10000))
assert igcd2(a, b) == 1
def test_ilcm():
assert ilcm(0, 0) == 0
assert ilcm(1, 0) == 0
assert ilcm(0, 1) == 0
assert ilcm(1, 1) == 1
assert ilcm(2, 1) == 2
assert ilcm(8, 2) == 8
assert ilcm(8, 6) == 24
assert ilcm(8, 7) == 56
assert ilcm(*[10, 20, 30]) == 60
raises(ValueError, lambda: ilcm(8.1, 7))
raises(ValueError, lambda: ilcm(8, 7.1))
raises(TypeError, lambda: ilcm(8))
def test_igcdex():
assert igcdex(2, 3) == (-1, 1, 1)
assert igcdex(10, 12) == (-1, 1, 2)
assert igcdex(100, 2004) == (-20, 1, 4)
assert igcdex(0, 0) == (0, 1, 0)
assert igcdex(1, 0) == (1, 0, 1)
def _strictly_equal(a, b):
return (a.p, a.q, type(a.p), type(a.q)) == \
(b.p, b.q, type(b.p), type(b.q))
def _test_rational_new(cls):
"""
Tests that are common between Integer and Rational.
"""
assert cls(0) is S.Zero
assert cls(1) is S.One
assert cls(-1) is S.NegativeOne
# These look odd, but are similar to int():
assert cls('1') is S.One
assert cls(u'-1') is S.NegativeOne
i = Integer(10)
assert _strictly_equal(i, cls('10'))
assert _strictly_equal(i, cls(u'10'))
assert _strictly_equal(i, cls(long(10)))
assert _strictly_equal(i, cls(i))
raises(TypeError, lambda: cls(Symbol('x')))
def test_Integer_new():
"""
Test for Integer constructor
"""
_test_rational_new(Integer)
assert _strictly_equal(Integer(0.9), S.Zero)
assert _strictly_equal(Integer(10.5), Integer(10))
raises(ValueError, lambda: Integer("10.5"))
assert Integer(Rational('1.' + '9'*20)) == 1
def test_Rational_new():
""""
Test for Rational constructor
"""
_test_rational_new(Rational)
n1 = Rational(1, 2)
assert n1 == Rational(Integer(1), 2)
assert n1 == Rational(Integer(1), Integer(2))
assert n1 == Rational(1, Integer(2))
assert n1 == Rational(Rational(1, 2))
assert 1 == Rational(n1, n1)
assert Rational(3, 2) == Rational(Rational(1, 2), Rational(1, 3))
assert Rational(3, 1) == Rational(1, Rational(1, 3))
n3_4 = Rational(3, 4)
assert Rational('3/4') == n3_4
assert -Rational('-3/4') == n3_4
assert Rational('.76').limit_denominator(4) == n3_4
assert Rational(19, 25).limit_denominator(4) == n3_4
assert Rational('19/25').limit_denominator(4) == n3_4
assert Rational(1.0, 3) == Rational(1, 3)
assert Rational(1, 3.0) == Rational(1, 3)
assert Rational(Float(0.5)) == Rational(1, 2)
assert Rational('1e2/1e-2') == Rational(10000)
assert Rational('1 234') == Rational(1234)
assert Rational('1/1 234') == Rational(1, 1234)
assert Rational(-1, 0) == S.ComplexInfinity
assert Rational(1, 0) == S.ComplexInfinity
# Make sure Rational doesn't lose precision on Floats
assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100)
raises(TypeError, lambda: Rational('3**3'))
raises(TypeError, lambda: Rational('1/2 + 2/3'))
# handle fractions.Fraction instances
try:
import fractions
assert Rational(fractions.Fraction(1, 2)) == Rational(1, 2)
except ImportError:
pass
assert Rational(mpq(2, 6)) == Rational(1, 3)
assert Rational(PythonRational(2, 6)) == Rational(1, 3)
def test_Number_new():
""""
Test for Number constructor
"""
# Expected behavior on numbers and strings
assert Number(1) is S.One
assert Number(2).__class__ is Integer
assert Number(-622).__class__ is Integer
assert Number(5, 3).__class__ is Rational
assert Number(5.3).__class__ is Float
assert Number('1') is S.One
assert Number('2').__class__ is Integer
assert Number('-622').__class__ is Integer
assert Number('5/3').__class__ is Rational
assert Number('5.3').__class__ is Float
raises(ValueError, lambda: Number('cos'))
raises(TypeError, lambda: Number(cos))
a = Rational(3, 5)
assert Number(a) is a # Check idempotence on Numbers
def test_Number_cmp():
n1 = Number(1)
n2 = Number(2)
n3 = Number(-3)
assert n1 < n2
assert n1 <= n2
assert n3 < n1
assert n2 > n3
assert n2 >= n3
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Rational_cmp():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n6 = Rational(1)
n7 = Rational(3)
n8 = Rational(-3)
assert n8 < n5
assert n5 < n6
assert n6 < n7
assert n8 < n7
assert n7 > n8
assert (n1 + 1)**n2 < 2
assert ((n1 + n6)/n7) < 1
assert n4 < n3
assert n2 < n3
assert n1 < n2
assert n3 > n1
assert not n3 < n1
assert not (Rational(-1) > 0)
assert Rational(-1) < 0
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Float():
def eq(a, b):
t = Float("1.0E-15")
return (-t < a - b < t)
a = Float(2) ** Float(3)
assert eq(a.evalf(), Float(8))
assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
a = Float(2) ** Float(4)
assert eq(a.evalf(), Float(16))
assert (S(.3) == S(.5)) is False
x_str = Float((0, '13333333333333', -52, 53))
x2_str = Float((0, '26666666666666', -53, 53))
x_hex = Float((0, long(0x13333333333333), -52, 53))
x_dec = Float((0, 5404319552844595, -52, 53))
assert x_str == x_hex == x_dec == Float(1.2)
# This looses a binary digit of precision, so it isn't equal to the above,
# but check that it normalizes correctly
x2_hex = Float((0, long(0x13333333333333)*2, -53, 53))
assert x2_hex._mpf_ == (0, 5404319552844595, -52, 52)
# XXX: Should this test also hold?
# assert x2_hex._prec == 52
# x2_str and 1.2 are superficially the same
assert str(x2_str) == str(Float(1.2))
# but are different at the mpf level
assert Float(1.2)._mpf_ == (0, long(5404319552844595), -52, 53)
assert x2_str._mpf_ == (0, long(10808639105689190), -53, 53)
assert Float((0, long(0), -123, -1)) is S.NaN
assert Float((0, long(0), -456, -2)) is S.Infinity
assert Float((1, long(0), -789, -3)) is S.NegativeInfinity
assert Float(oo) is Float('+_inf') is S.Infinity
assert Float(-oo) is Float('-_inf') is S.NegativeInfinity
raises(ValueError, lambda: Float((0, 7, 1, 3), ''))
assert Float('0.0').is_finite is True
assert Float('0.0').is_negative is False
assert Float('0.0').is_positive is False
assert Float('0.0').is_infinite is False
assert Float('0.0').is_zero is True
# rationality properties
assert Float(1).is_rational is None
assert Float(1).is_irrational is None
assert sqrt(2).n(15).is_rational is None
assert sqrt(2).n(15).is_irrational is None
# do not automatically evalf
def teq(a):
assert (a.evalf() == a) is False
assert (a.evalf() != a) is True
assert (a == a.evalf()) is False
assert (a != a.evalf()) is True
teq(pi)
teq(2*pi)
teq(cos(0.1, evaluate=False))
# long integer
i = 12345678901234567890
assert same_and_same_prec(Float(12, ''), Float('12', ''))
assert same_and_same_prec(Float(Integer(i), ''), Float(i, ''))
assert same_and_same_prec(Float(i, ''), Float(str(i), 20))
assert same_and_same_prec(Float(str(i)), Float(i, ''))
assert same_and_same_prec(Float(i), Float(i, ''))
# inexact floats (repeating binary = denom not multiple of 2)
# cannot have precision greater than 15
assert Float(.125, 22) == .125
assert Float(2.0, 22) == 2
assert float(Float('.12500000000000001', '')) == .125
raises(ValueError, lambda: Float(.12500000000000001, ''))
# allow spaces
Float('123 456.123 456') == Float('123456.123456')
Integer('123 456') == Integer('123456')
Rational('123 456.123 456') == Rational('123456.123456')
assert Float(' .3e2') == Float('0.3e2')
# allow underscore
assert Float('1_23.4_56') == Float('123.456')
assert Float('1_23.4_5_6', 12) == Float('123.456', 12)
# ...but not in all cases (per Py 3.6)
raises(ValueError, lambda: Float('_1'))
raises(ValueError, lambda: Float('1_'))
raises(ValueError, lambda: Float('1_.'))
raises(ValueError, lambda: Float('1._'))
raises(ValueError, lambda: Float('1__2'))
# allow auto precision detection
assert Float('.1', '') == Float(.1, 1)
assert Float('.125', '') == Float(.125, 3)
assert Float('.100', '') == Float(.1, 3)
assert Float('2.0', '') == Float('2', 2)
raises(ValueError, lambda: Float("12.3d-4", ""))
raises(ValueError, lambda: Float(12.3, ""))
raises(ValueError, lambda: Float('.'))
raises(ValueError, lambda: Float('-.'))
zero = Float('0.0')
assert Float('-0') == zero
assert Float('.0') == zero
assert Float('-.0') == zero
assert Float('-0.0') == zero
assert Float(0.0) == zero
assert Float(0) == zero
assert Float(0, '') == Float('0', '')
assert Float(1) == Float(1.0)
assert Float(S.Zero) == zero
assert Float(S.One) == Float(1.0)
assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)
assert Float(decimal.Decimal('nan')) == S.NaN
assert Float(decimal.Decimal('Infinity')) == S.Infinity
assert Float(decimal.Decimal('-Infinity')) == S.NegativeInfinity
assert '{0:.3f}'.format(Float(4.236622)) == '4.237'
assert '{0:.35f}'.format(Float(pi.n(40), 40)) == \
'3.14159265358979323846264338327950288'
# unicode
assert Float(u'0.73908513321516064100000000') == \
Float('0.73908513321516064100000000')
assert Float(u'0.73908513321516064100000000', 28) == \
Float('0.73908513321516064100000000', 28)
# binary precision
# Decimal value 0.1 cannot be expressed precisely as a base 2 fraction
a = Float(S(1)/10, dps=15)
b = Float(S(1)/10, dps=16)
p = Float(S(1)/10, precision=53)
q = Float(S(1)/10, precision=54)
assert a._mpf_ == p._mpf_
assert not a._mpf_ == q._mpf_
assert not b._mpf_ == q._mpf_
# Precision specifying errors
raises(ValueError, lambda: Float("1.23", dps=3, precision=10))
raises(ValueError, lambda: Float("1.23", dps="", precision=10))
raises(ValueError, lambda: Float("1.23", dps=3, precision=""))
raises(ValueError, lambda: Float("1.23", dps="", precision=""))
# from NumberSymbol
assert same_and_same_prec(Float(pi, 32), pi.evalf(32))
assert same_and_same_prec(Float(Catalan), Catalan.evalf())
@conserve_mpmath_dps
def test_float_mpf():
import mpmath
mpmath.mp.dps = 100
mp_pi = mpmath.pi()
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
mpmath.mp.dps = 15
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
def test_Float_RealElement():
repi = RealField(dps=100)(pi.evalf(100))
# We still have to pass the precision because Float doesn't know what
# RealElement is, but make sure it keeps full precision from the result.
assert Float(repi, 100) == pi.evalf(100)
def test_Float_default_to_highprec_from_str():
s = str(pi.evalf(128))
assert same_and_same_prec(Float(s), Float(s, ''))
def test_Float_eval():
a = Float(3.2)
assert (a**2).is_Float
def test_Float_issue_2107():
a = Float(0.1, 10)
b = Float("0.1", 10)
assert a - a == 0
assert a + (-a) == 0
assert S.Zero + a - a == 0
assert S.Zero + a + (-a) == 0
assert b - b == 0
assert b + (-b) == 0
assert S.Zero + b - b == 0
assert S.Zero + b + (-b) == 0
def test_issue_14289():
from sympy.polys.numberfields import to_number_field
a = 1 - sqrt(2)
b = to_number_field(a)
assert b.as_expr() == a
assert b.minpoly(a).expand() == 0
def test_Float_from_tuple():
a = Float((0, '1L', 0, 1))
b = Float((0, '1', 0, 1))
assert a == b
def test_Infinity():
assert oo != 1
assert 1*oo == oo
assert 1 != oo
assert oo != -oo
assert oo != Symbol("x")**3
assert oo + 1 == oo
assert 2 + oo == oo
assert 3*oo + 2 == oo
assert S.Half**oo == 0
assert S.Half**(-oo) == oo
assert -oo*3 == -oo
assert oo + oo == oo
assert -oo + oo*(-5) == -oo
assert 1/oo == 0
assert 1/(-oo) == 0
assert 8/oo == 0
assert oo % 2 == nan
assert 2 % oo == nan
assert oo/oo == nan
assert oo/-oo == nan
assert -oo/oo == nan
assert -oo/-oo == nan
assert oo - oo == nan
assert oo - -oo == oo
assert -oo - oo == -oo
assert -oo - -oo == nan
assert oo + -oo == nan
assert -oo + oo == nan
assert oo + oo == oo
assert -oo + oo == nan
assert oo + -oo == nan
assert -oo + -oo == -oo
assert oo*oo == oo
assert -oo*oo == -oo
assert oo*-oo == -oo
assert -oo*-oo == oo
assert oo/0 == oo
assert -oo/0 == -oo
assert 0/oo == 0
assert 0/-oo == 0
assert oo*0 == nan
assert -oo*0 == nan
assert 0*oo == nan
assert 0*-oo == nan
assert oo + 0 == oo
assert -oo + 0 == -oo
assert 0 + oo == oo
assert 0 + -oo == -oo
assert oo - 0 == oo
assert -oo - 0 == -oo
assert 0 - oo == -oo
assert 0 - -oo == oo
assert oo/2 == oo
assert -oo/2 == -oo
assert oo/-2 == -oo
assert -oo/-2 == oo
assert oo*2 == oo
assert -oo*2 == -oo
assert oo*-2 == -oo
assert 2/oo == 0
assert 2/-oo == 0
assert -2/oo == 0
assert -2/-oo == 0
assert 2*oo == oo
assert 2*-oo == -oo
assert -2*oo == -oo
assert -2*-oo == oo
assert 2 + oo == oo
assert 2 - oo == -oo
assert -2 + oo == oo
assert -2 - oo == -oo
assert 2 + -oo == -oo
assert 2 - -oo == oo
assert -2 + -oo == -oo
assert -2 - -oo == oo
assert S(2) + oo == oo
assert S(2) - oo == -oo
assert oo/I == -oo*I
assert -oo/I == oo*I
assert oo*float(1) == _inf and (oo*float(1)) is oo
assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo
assert oo/float(1) == _inf and (oo/float(1)) is oo
assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo
assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo
assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo
assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo
assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo
assert oo + float(1) == _inf and (oo + float(1)) is oo
assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo
assert oo - float(1) == _inf and (oo - float(1)) is oo
assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo
assert float(1)*oo == _inf and (float(1)*oo) is oo
assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo
assert float(1)/oo == 0
assert float(1)/-oo == 0
assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo
assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo
assert float(-1)/oo == 0
assert float(-1)/-oo == 0
assert float(1) + oo is oo
assert float(1) + -oo is -oo
assert float(1) - oo is -oo
assert float(1) - -oo is oo
assert oo == float(oo)
assert (oo != float(oo)) is False
assert type(float(oo)) is float
assert -oo == float(-oo)
assert (-oo != float(-oo)) is False
assert type(float(-oo)) is float
assert Float('nan') == nan
assert nan*1.0 == nan
assert -1.0*nan == nan
assert nan*oo == nan
assert nan*-oo == nan
assert nan/oo == nan
assert nan/-oo == nan
assert nan + oo == nan
assert nan + -oo == nan
assert nan - oo == nan
assert nan - -oo == nan
assert -oo * S.Zero == nan
assert oo*nan == nan
assert -oo*nan == nan
assert oo/nan == nan
assert -oo/nan == nan
assert oo + nan == nan
assert -oo + nan == nan
assert oo - nan == nan
assert -oo - nan == nan
assert S.Zero * oo == nan
assert oo.is_Rational is False
assert isinstance(oo, Rational) is False
assert S.One/oo == 0
assert -S.One/oo == 0
assert S.One/-oo == 0
assert -S.One/-oo == 0
assert S.One*oo == oo
assert -S.One*oo == -oo
assert S.One*-oo == -oo
assert -S.One*-oo == oo
assert S.One/nan == nan
assert S.One - -oo == oo
assert S.One + nan == nan
assert S.One - nan == nan
assert nan - S.One == nan
assert nan/S.One == nan
assert -oo - S.One == -oo
def test_Infinity_2():
x = Symbol('x')
assert oo*x != oo
assert oo*(pi - 1) == oo
assert oo*(1 - pi) == -oo
assert (-oo)*x != -oo
assert (-oo)*(pi - 1) == -oo
assert (-oo)*(1 - pi) == oo
assert (-1)**S.NaN is S.NaN
assert oo - _inf is S.NaN
assert oo + _ninf is S.NaN
assert oo*0 is S.NaN
assert oo/_inf is S.NaN
assert oo/_ninf is S.NaN
assert oo**S.NaN is S.NaN
assert -oo + _inf is S.NaN
assert -oo - _ninf is S.NaN
assert -oo*S.NaN is S.NaN
assert -oo*0 is S.NaN
assert -oo/_inf is S.NaN
assert -oo/_ninf is S.NaN
assert -oo/S.NaN is S.NaN
assert abs(-oo) == oo
assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN))
assert (-oo)**3 == -oo
assert (-oo)**2 == oo
assert abs(S.ComplexInfinity) == oo
def test_Mul_Infinity_Zero():
assert Float(0)*_inf == nan
assert Float(0)*_ninf == nan
assert Float(0)*_inf == nan
assert Float(0)*_ninf == nan
assert _inf*Float(0) == nan
assert _ninf*Float(0) == nan
assert _inf*Float(0) == nan
assert _ninf*Float(0) == nan
def test_Div_By_Zero():
assert 1/S(0) == zoo
assert 1/Float(0) == _inf
assert 0/S(0) == nan
assert 0/Float(0) == nan
assert S(0)/0 == nan
assert Float(0)/0 == nan
assert -1/S(0) == zoo
assert -1/Float(0) == _ninf
def test_Infinity_inequations():
assert oo > pi
assert not (oo < pi)
assert exp(-3) < oo
assert _inf > pi
assert not (_inf < pi)
assert exp(-3) < _inf
raises(TypeError, lambda: oo < I)
raises(TypeError, lambda: oo <= I)
raises(TypeError, lambda: oo > I)
raises(TypeError, lambda: oo >= I)
raises(TypeError, lambda: -oo < I)
raises(TypeError, lambda: -oo <= I)
raises(TypeError, lambda: -oo > I)
raises(TypeError, lambda: -oo >= I)
raises(TypeError, lambda: I < oo)
raises(TypeError, lambda: I <= oo)
raises(TypeError, lambda: I > oo)
raises(TypeError, lambda: I >= oo)
raises(TypeError, lambda: I < -oo)
raises(TypeError, lambda: I <= -oo)
raises(TypeError, lambda: I > -oo)
raises(TypeError, lambda: I >= -oo)
assert oo > -oo and oo >= -oo
assert (oo < -oo) == False and (oo <= -oo) == False
assert -oo < oo and -oo <= oo
assert (-oo > oo) == False and (-oo >= oo) == False
assert (oo < oo) == False # issue 7775
assert (oo > oo) == False
assert (-oo > -oo) == False and (-oo < -oo) == False
assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo
assert (-oo < -_inf) == False
assert (oo > _inf) == False
assert -oo >= -_inf
assert oo <= _inf
x = Symbol('x')
b = Symbol('b', finite=True, real=True)
assert (x < oo) == Lt(x, oo) # issue 7775
assert b < oo and b > -oo and b <= oo and b >= -oo
assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False
assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b
assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x)
assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x)
assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x)
assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x)
def test_NaN():
assert nan is nan
assert nan != 1
assert 1*nan is nan
assert 1 != nan
assert -nan is nan
assert oo != Symbol("x")**3
assert 2 + nan is nan
assert 3*nan + 2 is nan
assert -nan*3 is nan
assert nan + nan is nan
assert -nan + nan*(-5) is nan
assert 8/nan is nan
raises(TypeError, lambda: nan > 0)
raises(TypeError, lambda: nan < 0)
raises(TypeError, lambda: nan >= 0)
raises(TypeError, lambda: nan <= 0)
raises(TypeError, lambda: 0 < nan)
raises(TypeError, lambda: 0 > nan)
raises(TypeError, lambda: 0 <= nan)
raises(TypeError, lambda: 0 >= nan)
assert nan**0 == 1 # as per IEEE 754
assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work
# test Pow._eval_power's handling of NaN
assert Pow(nan, 0, evaluate=False)**2 == 1
for n in (1, 1., S.One, S.NegativeOne, Float(1)):
assert n + nan is nan
assert n - nan is nan
assert nan + n is nan
assert nan - n is nan
assert n/nan is nan
assert nan/n is nan
def test_special_numbers():
assert isinstance(S.NaN, Number) is True
assert isinstance(S.Infinity, Number) is True
assert isinstance(S.NegativeInfinity, Number) is True
assert S.NaN.is_number is True
assert S.Infinity.is_number is True
assert S.NegativeInfinity.is_number is True
assert S.ComplexInfinity.is_number is True
assert isinstance(S.NaN, Rational) is False
assert isinstance(S.Infinity, Rational) is False
assert isinstance(S.NegativeInfinity, Rational) is False
assert S.NaN.is_rational is not True
assert S.Infinity.is_rational is not True
assert S.NegativeInfinity.is_rational is not True
def test_powers():
assert integer_nthroot(1, 2) == (1, True)
assert integer_nthroot(1, 5) == (1, True)
assert integer_nthroot(2, 1) == (2, True)
assert integer_nthroot(2, 2) == (1, False)
assert integer_nthroot(2, 5) == (1, False)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(123**25, 25) == (123, True)
assert integer_nthroot(123**25 + 1, 25) == (123, False)
assert integer_nthroot(123**25 - 1, 25) == (122, False)
assert integer_nthroot(1, 1) == (1, True)
assert integer_nthroot(0, 1) == (0, True)
assert integer_nthroot(0, 3) == (0, True)
assert integer_nthroot(10000, 1) == (10000, True)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(16, 2) == (4, True)
assert integer_nthroot(26, 2) == (5, False)
assert integer_nthroot(1234567**7, 7) == (1234567, True)
assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False)
assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False)
b = 25**1000
assert integer_nthroot(b, 1000) == (25, True)
assert integer_nthroot(b + 1, 1000) == (25, False)
assert integer_nthroot(b - 1, 1000) == (24, False)
c = 10**400
c2 = c**2
assert integer_nthroot(c2, 2) == (c, True)
assert integer_nthroot(c2 + 1, 2) == (c, False)
assert integer_nthroot(c2 - 1, 2) == (c - 1, False)
assert integer_nthroot(2, 10**10) == (1, False)
p, r = integer_nthroot(int(factorial(10000)), 100)
assert p % (10**10) == 5322420655
assert not r
# Test that this is fast
assert integer_nthroot(2, 10**10) == (1, False)
# output should be int if possible
assert type(integer_nthroot(2**61, 2)[0]) is int
def test_integer_nthroot_overflow():
assert integer_nthroot(10**(50*50), 50) == (10**50, True)
assert integer_nthroot(10**100000, 10000) == (10**10, True)
def test_integer_log():
raises(ValueError, lambda: integer_log(2, 1))
raises(ValueError, lambda: integer_log(0, 2))
raises(ValueError, lambda: integer_log(1.1, 2))
raises(ValueError, lambda: integer_log(1, 2.2))
assert integer_log(1, 2) == (0, True)
assert integer_log(1, 3) == (0, True)
assert integer_log(2, 3) == (0, False)
assert integer_log(3, 3) == (1, True)
assert integer_log(3*2, 3) == (1, False)
assert integer_log(3**2, 3) == (2, True)
assert integer_log(3*4, 3) == (2, False)
assert integer_log(3**3, 3) == (3, True)
assert integer_log(27, 5) == (2, False)
assert integer_log(2, 3) == (0, False)
assert integer_log(-4, -2) == (2, False)
assert integer_log(27, -3) == (3, False)
assert integer_log(-49, 7) == (0, False)
assert integer_log(-49, -7) == (2, False)
def test_isqrt():
from math import sqrt as _sqrt
limit = 17984395633462800708566937239551
assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0]
assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0]
def test_powers_Integer():
"""Test Integer._eval_power"""
# check infinity
assert S(1) ** S.Infinity == S.NaN
assert S(-1)** S.Infinity == S.NaN
assert S(2) ** S.Infinity == S.Infinity
assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit
assert S(0) ** S.Infinity == 0
# check Nan
assert S(1) ** S.NaN == S.NaN
assert S(-1) ** S.NaN == S.NaN
# check for exact roots
assert S(-1) ** Rational(6, 5) == - (-1)**(S(1)/5)
assert sqrt(S(4)) == 2
assert sqrt(S(-4)) == I * 2
assert S(16) ** Rational(1, 4) == 2
assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4)
assert S(9) ** Rational(3, 2) == 27
assert S(-9) ** Rational(3, 2) == -27*I
assert S(27) ** Rational(2, 3) == 9
assert S(-27) ** Rational(2, 3) == 9 * (S(-1) ** Rational(2, 3))
assert (-2) ** Rational(-2, 1) == Rational(1, 4)
# not exact roots
assert sqrt(-3) == I*sqrt(3)
assert (3) ** (S(3)/2) == 3 * sqrt(3)
assert (-3) ** (S(3)/2) == - 3 * sqrt(-3)
assert (-3) ** (S(5)/2) == 9 * I * sqrt(3)
assert (-3) ** (S(7)/2) == - I * 27 * sqrt(3)
assert (2) ** (S(3)/2) == 2 * sqrt(2)
assert (2) ** (S(-3)/2) == sqrt(2) / 4
assert (81) ** (S(2)/3) == 9 * (S(3) ** (S(2)/3))
assert (-81) ** (S(2)/3) == 9 * (S(-3) ** (S(2)/3))
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
# join roots
assert sqrt(6) + sqrt(24) == 3*sqrt(6)
assert sqrt(2) * sqrt(3) == sqrt(6)
# separate symbols & constansts
x = Symbol("x")
assert sqrt(49 * x) == 7 * sqrt(x)
assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi)
# check that it is fast for big numbers
assert (2**64 + 1) ** Rational(4, 3)
assert (2**64 + 1) ** Rational(17, 25)
# negative rational power and negative base
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
assert (-2) ** Rational(-10, 3) == \
(-1)**Rational(2, 3)*2**Rational(2, 3)/16
assert abs(Pow(-2, Rational(-10, 3)).n() -
Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16
# negative base and rational power with some simplification
assert (-8) ** Rational(2, 5) == \
2*(-1)**Rational(2, 5)*2**Rational(1, 5)
assert (-4) ** Rational(9, 5) == \
-8*(-1)**Rational(4, 5)*2**Rational(3, 5)
assert S(1234).factors() == {617: 1, 2: 1}
assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1}
# test that eval_power factors numbers bigger than
# the current limit in factor_trial_division (2**15)
from sympy import nextprime
n = nextprime(2**15)
assert sqrt(n**2) == n
assert sqrt(n**3) == n*sqrt(n)
assert sqrt(4*n) == 2*sqrt(n)
# check that factors of base with powers sharing gcd with power are removed
assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6)
assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6)
# check that bases sharing a gcd are exptracted
assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \
2**Rational(8, 15)*3**Rational(9, 20)
assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \
4*2**Rational(7, 10)*3**Rational(8, 15)
assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \
4*(-3)**Rational(8, 15)*2**Rational(7, 10)
assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9)
assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3)
assert 2**Rational(2, 3)*6**Rational(8, 9) == \
2*2**Rational(5, 9)*3**Rational(8, 9)
assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3)
assert 3*Pow(3, 2, evaluate=False) == 3**3
assert 3*Pow(3, -1/S(3), evaluate=False) == 3**(2/S(3))
assert (-2)**(1/S(3))*(-3)**(1/S(4))*(-5)**(5/S(6)) == \
-(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \
5**Rational(5, 6)
assert Integer(-2)**Symbol('', even=True) == \
Integer(2)**Symbol('', even=True)
assert (-1)**Float(.5) == 1.0*I
def test_powers_Rational():
"""Test Rational._eval_power"""
# check infinity
assert Rational(1, 2) ** S.Infinity == 0
assert Rational(3, 2) ** S.Infinity == S.Infinity
assert Rational(-1, 2) ** S.Infinity == 0
assert Rational(-3, 2) ** S.Infinity == \
S.Infinity + S.Infinity * S.ImaginaryUnit
# check Nan
assert Rational(3, 4) ** S.NaN == S.NaN
assert Rational(-2, 3) ** S.NaN == S.NaN
# exact roots on numerator
assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3
assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9
assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3
assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9
assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2
assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4)
# exact root on denominator
assert sqrt(Rational(1, 4)) == Rational(1, 2)
assert sqrt(Rational(1, -4)) == I * Rational(1, 2)
assert sqrt(Rational(3, 4)) == sqrt(3) / 2
assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2
assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3
# not exact roots
assert sqrt(Rational(1, 2)) == sqrt(2) / 2
assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7))
assert Rational(-3, 2)**Rational(-7, 3) == \
-4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27
assert Rational(-3, 2)**Rational(-2, 3) == \
-(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3
assert Rational(-3, 2)**Rational(-10, 3) == \
8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81
assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() -
Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16
# negative integer power and negative rational base
assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4)
a = Rational(1, 10)
assert a**Float(a, 2) == Float(a, 2)**Float(a, 2)
assert Rational(-2, 3)**Symbol('', even=True) == \
Rational(2, 3)**Symbol('', even=True)
def test_powers_Float():
assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3))
def test_abs1():
assert Rational(1, 6) != Rational(-1, 6)
assert abs(Rational(1, 6)) == abs(Rational(-1, 6))
def test_accept_int():
assert Float(4) == 4
def test_dont_accept_str():
assert Float("0.2") != "0.2"
assert not (Float("0.2") == "0.2")
def test_int():
a = Rational(5)
assert int(a) == 5
a = Rational(9, 10)
assert int(a) == int(-a) == 0
assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3)
assert int(pi) == 3
assert int(E) == 2
assert int(GoldenRatio) == 1
assert int(TribonacciConstant) == 2
# issue 10368
a = S(32442016954)/78058255275
assert type(int(a)) is type(int(-a)) is int
def test_long():
a = Rational(5)
assert long(a) == 5
a = Rational(9, 10)
assert long(a) == long(-a) == 0
a = Integer(2**100)
assert long(a) == a
assert long(pi) == 3
assert long(E) == 2
assert long(GoldenRatio) == 1
assert long(TribonacciConstant) == 2
def test_real_bug():
x = Symbol("x")
assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"]
assert str(2.1*x*x) != "(2.0*x)*x"
def test_bug_sqrt():
assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1
def test_pi_Pi():
"Test that pi (instance) is imported, but Pi (class) is not"
from sympy import pi
with raises(ImportError):
from sympy import Pi
def test_no_len():
# there should be no len for numbers
raises(TypeError, lambda: len(Rational(2)))
raises(TypeError, lambda: len(Rational(2, 3)))
raises(TypeError, lambda: len(Integer(2)))
def test_issue_3321():
assert sqrt(Rational(1, 5)) == sqrt(Rational(1, 5))
assert 5 * sqrt(Rational(1, 5)) == sqrt(5)
def test_issue_3692():
assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2
assert ((-5)**Rational(1, 6)).expand(complex=True) == \
5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2
assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3)
def test_issue_3423():
x = Symbol("x")
assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half)
assert sqrt(x - 1) != I*sqrt(1 - x)
def test_issue_3449():
x = Symbol("x")
assert sqrt(x - 1).subs(x, 5) == 2
def test_issue_13890():
x = Symbol("x")
e = (-x/4 - S(1)/12)**x - 1
f = simplify(e)
a = S(9)/5
assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15
def test_Integer_factors():
def F(i):
return Integer(i).factors()
assert F(1) == {}
assert F(2) == {2: 1}
assert F(3) == {3: 1}
assert F(4) == {2: 2}
assert F(5) == {5: 1}
assert F(6) == {2: 1, 3: 1}
assert F(7) == {7: 1}
assert F(8) == {2: 3}
assert F(9) == {3: 2}
assert F(10) == {2: 1, 5: 1}
assert F(11) == {11: 1}
assert F(12) == {2: 2, 3: 1}
assert F(13) == {13: 1}
assert F(14) == {2: 1, 7: 1}
assert F(15) == {3: 1, 5: 1}
assert F(16) == {2: 4}
assert F(17) == {17: 1}
assert F(18) == {2: 1, 3: 2}
assert F(19) == {19: 1}
assert F(20) == {2: 2, 5: 1}
assert F(21) == {3: 1, 7: 1}
assert F(22) == {2: 1, 11: 1}
assert F(23) == {23: 1}
assert F(24) == {2: 3, 3: 1}
assert F(25) == {5: 2}
assert F(26) == {2: 1, 13: 1}
assert F(27) == {3: 3}
assert F(28) == {2: 2, 7: 1}
assert F(29) == {29: 1}
assert F(30) == {2: 1, 3: 1, 5: 1}
assert F(31) == {31: 1}
assert F(32) == {2: 5}
assert F(33) == {3: 1, 11: 1}
assert F(34) == {2: 1, 17: 1}
assert F(35) == {5: 1, 7: 1}
assert F(36) == {2: 2, 3: 2}
assert F(37) == {37: 1}
assert F(38) == {2: 1, 19: 1}
assert F(39) == {3: 1, 13: 1}
assert F(40) == {2: 3, 5: 1}
assert F(41) == {41: 1}
assert F(42) == {2: 1, 3: 1, 7: 1}
assert F(43) == {43: 1}
assert F(44) == {2: 2, 11: 1}
assert F(45) == {3: 2, 5: 1}
assert F(46) == {2: 1, 23: 1}
assert F(47) == {47: 1}
assert F(48) == {2: 4, 3: 1}
assert F(49) == {7: 2}
assert F(50) == {2: 1, 5: 2}
assert F(51) == {3: 1, 17: 1}
def test_Rational_factors():
def F(p, q, visual=None):
return Rational(p, q).factors(visual=visual)
assert F(2, 3) == {2: 1, 3: -1}
assert F(2, 9) == {2: 1, 3: -2}
assert F(2, 15) == {2: 1, 3: -1, 5: -1}
assert F(6, 10) == {3: 1, 5: -1}
def test_issue_4107():
assert pi*(E + 10) + pi*(-E - 10) != 0
assert pi*(E + 10**10) + pi*(-E - 10**10) != 0
assert pi*(E + 10**20) + pi*(-E - 10**20) != 0
assert pi*(E + 10**80) + pi*(-E - 10**80) != 0
assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0
assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0
assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0
assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0
def test_IntegerInteger():
a = Integer(4)
b = Integer(a)
assert a == b
def test_Rational_gcd_lcm_cofactors():
assert Integer(4).gcd(2) == Integer(2)
assert Integer(4).lcm(2) == Integer(4)
assert Integer(4).gcd(Integer(2)) == Integer(2)
assert Integer(4).lcm(Integer(2)) == Integer(4)
a, b = 720**99911, 480**12342
assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b)
assert Integer(4).gcd(3) == Integer(1)
assert Integer(4).lcm(3) == Integer(12)
assert Integer(4).gcd(Integer(3)) == Integer(1)
assert Integer(4).lcm(Integer(3)) == Integer(12)
assert Rational(4, 3).gcd(2) == Rational(2, 3)
assert Rational(4, 3).lcm(2) == Integer(4)
assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3)
assert Rational(4, 3).lcm(Integer(2)) == Integer(4)
assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9)
assert Integer(4).lcm(Rational(2, 9)) == Integer(4)
assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9)
assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3)
assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45)
assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4)
assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7))
assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1))
assert Integer(4).cofactors(Integer(2)) == \
(Integer(2), Integer(2), Integer(1))
assert Integer(4).gcd(Float(2.0)) == S.One
assert Integer(4).lcm(Float(2.0)) == Float(8.0)
assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0))
assert Rational(1, 2).gcd(Float(2.0)) == S.One
assert Rational(1, 2).lcm(Float(2.0)) == Float(1.0)
assert Rational(1, 2).cofactors(Float(2.0)) == \
(S.One, Rational(1, 2), Float(2.0))
def test_Float_gcd_lcm_cofactors():
assert Float(2.0).gcd(Integer(4)) == S.One
assert Float(2.0).lcm(Integer(4)) == Float(8.0)
assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4))
assert Float(2.0).gcd(Rational(1, 2)) == S.One
assert Float(2.0).lcm(Rational(1, 2)) == Float(1.0)
assert Float(2.0).cofactors(Rational(1, 2)) == \
(S.One, Float(2.0), Rational(1, 2))
def test_issue_4611():
assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10
x = Symbol("x")
assert (pi + x).evalf() == pi.evalf() + x
assert (E + x).evalf() == E.evalf() + x
assert (Catalan + x).evalf() == Catalan.evalf() + x
assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x
assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x
assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x
@conserve_mpmath_dps
def test_conversion_to_mpmath():
assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1)
assert mpmath.mpmathify(Rational(1, 2)) == mpmath.mpf(0.5)
assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23')
assert mpmath.mpmathify(I) == mpmath.mpc(1j)
assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(Rational(1, 2) + Rational(1, 2)*I) == mpmath.mpc(0.5 + 0.5j)
assert mpmath.mpmathify(2*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(Rational(1, 2)*I) == mpmath.mpc(0.5j)
mpmath.mp.dps = 100
assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j
assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j
def test_relational():
# real
x = S(.1)
assert (x != cos) is True
assert (x == cos) is False
# rational
x = Rational(1, 3)
assert (x != cos) is True
assert (x == cos) is False
# integer defers to rational so these tests are omitted
# number symbol
x = pi
assert (x != cos) is True
assert (x == cos) is False
def test_Integer_as_index():
assert 'hello'[Integer(2):] == 'llo'
def test_Rational_int():
assert int( Rational(7, 5)) == 1
assert int( Rational(1, 2)) == 0
assert int(-Rational(1, 2)) == 0
assert int(-Rational(7, 5)) == -1
def test_zoo():
b = Symbol('b', finite=True)
nz = Symbol('nz', nonzero=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
im = Symbol('i', imaginary=True)
c = Symbol('c', complex=True)
pb = Symbol('pb', positive=True, finite=True)
nb = Symbol('nb', negative=True, finite=True)
imb = Symbol('ib', imaginary=True, finite=True)
for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3),
b, nz, p, n, im, pb, nb, imb, c]:
if i.is_finite and (i.is_real or i.is_imaginary):
assert i + zoo is zoo
assert i - zoo is zoo
assert zoo + i is zoo
assert zoo - i is zoo
elif i.is_finite is not False:
assert (i + zoo).is_Add
assert (i - zoo).is_Add
assert (zoo + i).is_Add
assert (zoo - i).is_Add
else:
assert (i + zoo) is S.NaN
assert (i - zoo) is S.NaN
assert (zoo + i) is S.NaN
assert (zoo - i) is S.NaN
if fuzzy_not(i.is_zero) and (i.is_real or i.is_imaginary):
assert i*zoo is zoo
assert zoo*i is zoo
elif i.is_zero:
assert i*zoo is S.NaN
assert zoo*i is S.NaN
else:
assert (i*zoo).is_Mul
assert (zoo*i).is_Mul
if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary):
assert zoo/i is zoo
elif (1/i).is_zero:
assert zoo/i is S.NaN
elif i.is_zero:
assert zoo/i is zoo
else:
assert (zoo/i).is_Mul
assert (I*oo).is_Mul # allow directed infinity
assert zoo + zoo is S.NaN
assert zoo * zoo is zoo
assert zoo - zoo is S.NaN
assert zoo/zoo is S.NaN
assert zoo**zoo is S.NaN
assert zoo**0 is S.One
assert zoo**2 is zoo
assert 1/zoo is S.Zero
assert Mul.flatten([S(-1), oo, S(0)]) == ([S.NaN], [], None)
def test_issue_4122():
x = Symbol('x', nonpositive=True)
assert (oo + x).is_Add
x = Symbol('x', finite=True)
assert (oo + x).is_Add # x could be imaginary
x = Symbol('x', nonnegative=True)
assert oo + x == oo
x = Symbol('x', finite=True, real=True)
assert oo + x == oo
# similarly for negative infinity
x = Symbol('x', nonnegative=True)
assert (-oo + x).is_Add
x = Symbol('x', finite=True)
assert (-oo + x).is_Add
x = Symbol('x', nonpositive=True)
assert -oo + x == -oo
x = Symbol('x', finite=True, real=True)
assert -oo + x == -oo
def test_GoldenRatio_expand():
assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2
def test_TribonacciConstant_expand():
assert TribonacciConstant.expand(func=True) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_as_content_primitive():
assert S.Zero.as_content_primitive() == (1, 0)
assert S.Half.as_content_primitive() == (S.Half, 1)
assert (-S.Half).as_content_primitive() == (S.Half, -1)
assert S(3).as_content_primitive() == (3, 1)
assert S(3.1).as_content_primitive() == (1, 3.1)
def test_hashing_sympy_integers():
# Test for issue 5072
assert set([Integer(3)]) == set([int(3)])
assert hash(Integer(4)) == hash(int(4))
def test_rounding_issue_4172():
assert int((E**100).round()) == \
26881171418161354484126255515800135873611119
assert int((pi**100).round()) == \
51878483143196131920862615246303013562686760680406
assert int((Rational(1)/EulerGamma**100).round()) == \
734833795660954410469466
@XFAIL
def test_mpmath_issues():
from mpmath.libmp.libmpf import _normalize
import mpmath.libmp as mlib
rnd = mlib.round_nearest
mpf = (0, long(0), -123, -1, 53, rnd) # nan
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
mpf = (0, long(0), -456, -2, 53, rnd) # +inf
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
mpf = (1, long(0), -789, -3, 53, rnd) # -inf
assert _normalize(mpf, 53) != (0, long(0), 0, 0)
from mpmath.libmp.libmpf import fnan
assert mlib.mpf_eq(fnan, fnan)
def test_Catalan_EulerGamma_prec():
n = GoldenRatio
f = Float(n.n(), 5)
assert f._mpf_ == (0, long(212079), -17, 18)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
n = EulerGamma
f = Float(n.n(), 5)
assert f._mpf_ == (0, long(302627), -19, 19)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
def test_Float_eq():
assert Float(.12, 3) != Float(.12, 4)
assert Float(.12, 3) == .12
assert 0.12 == Float(.12, 3)
assert Float('.12', 22) != .12
def test_int_NumberSymbols():
assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \
[3, 0, 2, 1, 0]
def test_issue_6640():
from mpmath.libmp.libmpf import finf, fninf
# fnan is not included because Float no longer returns fnan,
# but otherwise, the same sort of test could apply
assert Float(finf).is_zero is False
assert Float(fninf).is_zero is False
assert bool(Float(0)) is False
def test_issue_6349():
assert Float('23.e3', '')._prec == 10
assert Float('23e3', '')._prec == 20
assert Float('23000', '')._prec == 20
assert Float('-23000', '')._prec == 20
def test_mpf_norm():
assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
def test_latex():
assert latex(pi) == r"\pi"
assert latex(E) == r"e"
assert latex(GoldenRatio) == r"\phi"
assert latex(TribonacciConstant) == r"\text{TribonacciConstant}"
assert latex(EulerGamma) == r"\gamma"
assert latex(oo) == r"\infty"
assert latex(-oo) == r"-\infty"
assert latex(zoo) == r"\tilde{\infty}"
assert latex(nan) == r"\text{NaN}"
assert latex(I) == r"i"
def test_issue_7742():
assert -oo % 1 == nan
def test_simplify_AlgebraicNumber():
A = AlgebraicNumber
e = 3**(S(1)/6)*(3 + (135 + 78*sqrt(3))**(S(2)/3))/(45 + 26*sqrt(3))**(S(1)/3)
assert simplify(A(e)) == A(12) # wester test_C20
e = (41 + 29*sqrt(2))**(S(1)/5)
assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21
e = (3 + 4*I)**(Rational(3, 2))
assert simplify(A(e)) == A(2 + 11*I) # issue 4401
def test_Float_idempotence():
x = Float('1.23', '')
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
x = Float(10**20)
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
def test_comp():
# sqrt(2) = 1.414213 5623730950...
a = sqrt(2).n(7)
assert comp(a, 1.41421346) is False
assert comp(a, 1.41421347)
assert comp(a, 1.41421366)
assert comp(a, 1.41421367) is False
assert comp(sqrt(2).n(2), '1.4')
assert comp(sqrt(2).n(2), Float(1.4, 2), '')
raises(ValueError, lambda: comp(sqrt(2).n(2), 1.4, ''))
assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False
def test_issue_9491():
assert oo**zoo == nan
def test_issue_10063():
assert 2**Float(3) == Float(8)
def test_issue_10020():
assert oo**I is S.NaN
assert oo**(1 + I) is S.ComplexInfinity
assert oo**(-1 + I) is S.Zero
assert (-oo)**I is S.NaN
assert (-oo)**(-1 + I) is S.Zero
assert oo**t == Pow(oo, t, evaluate=False)
assert (-oo)**t == Pow(-oo, t, evaluate=False)
def test_invert_numbers():
assert S(2).invert(5) == 3
assert S(2).invert(S(5)/2) == S.Half
assert S(2).invert(5.) == 0.5
assert S(2).invert(S(5)) == 3
assert S(2.).invert(5) == 0.5
assert S(sqrt(2)).invert(5) == 1/sqrt(2)
assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2)
def test_mod_inverse():
assert mod_inverse(3, 11) == 4
assert mod_inverse(5, 11) == 9
assert mod_inverse(21124921, 521512) == 7713
assert mod_inverse(124215421, 5125) == 2981
assert mod_inverse(214, 12515) == 1579
assert mod_inverse(5823991, 3299) == 1442
assert mod_inverse(123, 44) == 39
assert mod_inverse(2, 5) == 3
assert mod_inverse(-2, 5) == 2
assert mod_inverse(2, -5) == -2
assert mod_inverse(-2, -5) == -3
assert mod_inverse(-3, -7) == -5
x = Symbol('x')
assert S(2).invert(x) == S.Half
raises(TypeError, lambda: mod_inverse(2, x))
raises(ValueError, lambda: mod_inverse(2, S.Half))
raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2))
def test_golden_ratio_rewrite_as_sqrt():
assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half
def test_tribonacci_constant_rewrite_as_sqrt():
assert TribonacciConstant.rewrite(sqrt) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_comparisons_with_unknown_type():
class Foo(object):
"""
Class that is unaware of Basic, and relies on both classes returning
the NotImplemented singleton for equivalence to evaluate to False.
"""
ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3)
foo = Foo()
for n in ni, nf, nr, oo, -oo, zoo, nan:
assert n != foo
assert foo != n
assert not n == foo
assert not foo == n
raises(TypeError, lambda: n < foo)
raises(TypeError, lambda: foo > n)
raises(TypeError, lambda: n > foo)
raises(TypeError, lambda: foo < n)
raises(TypeError, lambda: n <= foo)
raises(TypeError, lambda: foo >= n)
raises(TypeError, lambda: n >= foo)
raises(TypeError, lambda: foo <= n)
class Bar(object):
"""
Class that considers itself equal to any instance of Number except
infinities and nans, and relies on sympy types returning the
NotImplemented singleton for symmetric equality relations.
"""
def __eq__(self, other):
if other in (oo, -oo, zoo, nan):
return False
if isinstance(other, Number):
return True
return NotImplemented
def __ne__(self, other):
return not self == other
bar = Bar()
for n in ni, nf, nr:
assert n == bar
assert bar == n
assert not n != bar
assert not bar != n
for n in oo, -oo, zoo, nan:
assert n != bar
assert bar != n
assert not n == bar
assert not bar == n
for n in ni, nf, nr, oo, -oo, zoo, nan:
raises(TypeError, lambda: n < bar)
raises(TypeError, lambda: bar > n)
raises(TypeError, lambda: n > bar)
raises(TypeError, lambda: bar < n)
raises(TypeError, lambda: n <= bar)
raises(TypeError, lambda: bar >= n)
raises(TypeError, lambda: n >= bar)
raises(TypeError, lambda: bar <= n)
def test_NumberSymbol_comparison():
rpi = Rational('905502432259640373/288230376151711744')
fpi = Float(float(pi))
assert (rpi == pi) == (pi == rpi)
assert (rpi != pi) == (pi != rpi)
assert (rpi < pi) == (pi > rpi)
assert (rpi <= pi) == (pi >= rpi)
assert (rpi > pi) == (pi < rpi)
assert (rpi >= pi) == (pi <= rpi)
assert (fpi == pi) == (pi == fpi)
assert (fpi != pi) == (pi != fpi)
assert (fpi < pi) == (pi > fpi)
assert (fpi <= pi) == (pi >= fpi)
assert (fpi > pi) == (pi < fpi)
assert (fpi >= pi) == (pi <= fpi)
def test_Integer_precision():
# Make sure Integer inputs for keyword args work
assert Float('1.0', dps=Integer(15))._prec == 53
assert Float('1.0', precision=Integer(15))._prec == 15
assert type(Float('1.0', precision=Integer(15))._prec) == int
assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15)
def test_numpy_to_float():
from sympy.utilities.pytest import skip
from sympy.external import import_module
np = import_module('numpy')
if not np:
skip('numpy not installed. Abort numpy tests.')
def check_prec_and_relerr(npval, ratval):
prec = np.finfo(npval).nmant + 1
x = Float(npval)
assert x._prec == prec
y = Float(ratval, precision=prec)
assert abs((x - y)/y) < 2**(-(prec + 1))
check_prec_and_relerr(np.float16(2.0/3), S(2)/3)
check_prec_and_relerr(np.float32(2.0/3), S(2)/3)
check_prec_and_relerr(np.float64(2.0/3), S(2)/3)
# extended precision, on some arch/compilers:
x = np.longdouble(2)/3
check_prec_and_relerr(x, S(2)/3)
y = Float(x, precision=10)
assert same_and_same_prec(y, Float(S(2)/3, precision=10))
raises(TypeError, lambda: Float(np.complex64(1+2j)))
raises(TypeError, lambda: Float(np.complex128(1+2j)))
def test_Integer_ceiling_floor():
a = Integer(4)
assert(a.floor() == a)
assert(a.ceiling() == a)
def test_ComplexInfinity():
assert((zoo).floor() == zoo)
assert((zoo).ceiling() == zoo)
assert(zoo**zoo == S.NaN)
def test_Infinity_floor_ceiling_power():
assert((oo).floor() == oo)
assert((oo).ceiling() == oo)
assert((oo)**S.NaN == S.NaN)
assert((oo)**zoo == S.NaN)
def test_One_power():
assert((S.One)**12 == S.One)
assert((S.NegativeOne)**S.NaN == S.NaN)
def test_NegativeInfinity():
assert((-oo).floor() == -oo)
assert((-oo).ceiling() == -oo)
assert((-oo)**11 == -oo)
assert((-oo)**12 == oo)
def test_issue_6133():
raises(TypeError, lambda: (-oo < None))
raises(TypeError, lambda: (S(-2) < None))
raises(TypeError, lambda: (oo < None))
raises(TypeError, lambda: (oo > None))
raises(TypeError, lambda: (S(2) < None))
def test_abc():
x = numbers.Float(5)
assert(isinstance(x, nums.Number))
assert(isinstance(x, numbers.Number))
assert(isinstance(x, nums.Real))
y = numbers.Rational(1, 3)
assert(isinstance(y, nums.Number))
assert(y.numerator() == 1)
assert(y.denominator() == 3)
assert(isinstance(y, nums.Rational))
z = numbers.Integer(3)
assert(isinstance(z, nums.Number))
|
18d5ac73f33fed740133a4d80f622a2cb4330187097f2eee736b86b9458e6922 | from sympy import (Lambda, Symbol, Function, Derivative, Subs, sqrt,
log, exp, Rational, Float, sin, cos, acos, diff, I, re, im,
E, expand, pi, O, Sum, S, polygamma, loggamma, expint,
Tuple, Dummy, Eq, Expr, symbols, nfloat, Piecewise, Indexed,
Matrix, Basic, Dict)
from sympy.utilities.pytest import XFAIL, raises
from sympy.core.basic import _aresame
from sympy.core.function import PoleError, _mexpand, arity
from sympy.core.sympify import sympify
from sympy.sets.sets import FiniteSet
from sympy.solvers.solveset import solveset
from sympy.utilities.iterables import subsets, variations
from sympy.core.cache import clear_cache
from sympy.core.compatibility import range
from sympy.tensor.array import NDimArray
from sympy.abc import t, w, x, y, z
f, g, h = symbols('f g h', cls=Function)
_xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)]
def test_f_expand_complex():
x = Symbol('x', real=True)
assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x))
assert exp(x).expand(complex=True) == exp(x)
assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \
I*sin(im(z))*exp(re(z))
def test_bug1():
e = sqrt(-log(w))
assert e.subs(log(w), -x) == sqrt(x)
e = sqrt(-5*log(w))
assert e.subs(log(w), -x) == sqrt(5*x)
def test_general_function():
nu = Function('nu')
e = nu(x)
edx = e.diff(x)
edy = e.diff(y)
edxdx = e.diff(x).diff(x)
edxdy = e.diff(x).diff(y)
assert e == nu(x)
assert edx != nu(x)
assert edx == diff(nu(x), x)
assert edy == 0
assert edxdx == diff(diff(nu(x), x), x)
assert edxdy == 0
def test_general_function_nullary():
nu = Function('nu')
e = nu()
edx = e.diff(x)
edxdx = e.diff(x).diff(x)
assert e == nu()
assert edx != nu()
assert edx == 0
assert edxdx == 0
def test_derivative_subs_bug():
e = diff(g(x), x)
assert e.subs(g(x), f(x)) != e
assert e.subs(g(x), f(x)) == Derivative(f(x), x)
assert e.subs(g(x), -f(x)) == Derivative(-f(x), x)
assert e.subs(x, y) == Derivative(g(y), y)
def test_derivative_subs_self_bug():
d = diff(f(x), x)
assert d.subs(d, y) == y
def test_derivative_linearity():
assert diff(-f(x), x) == -diff(f(x), x)
assert diff(8*f(x), x) == 8*diff(f(x), x)
assert diff(8*f(x), x) != 7*diff(f(x), x)
assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x)
assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x)
def test_derivative_evaluate():
assert Derivative(sin(x), x) != diff(sin(x), x)
assert Derivative(sin(x), x).doit() == diff(sin(x), x)
assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x)
assert Derivative(sin(x), x, 0) == sin(x)
assert Derivative(sin(x), (x, y), (x, -y)) == sin(x)
def test_diff_symbols():
assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z)
assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3))
assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3)
# issue 5028
assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2]
assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z)
assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \
Derivative(f(x, y, z), x, y, z, z)
assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \
Derivative(f(x, y, z), x, y, z, z)
assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \
Derivative(f(x, y, z), x, y, z)
raises(TypeError, lambda: cos(x).diff((x, y)).variables)
assert cos(x).diff((x, y))._wrt_variables == [x]
def test_Function():
class myfunc(Function):
@classmethod
def eval(cls): # zero args
return
assert myfunc.nargs == FiniteSet(0)
assert myfunc().nargs == FiniteSet(0)
raises(TypeError, lambda: myfunc(x).nargs)
class myfunc(Function):
@classmethod
def eval(cls, x): # one arg
return
assert myfunc.nargs == FiniteSet(1)
assert myfunc(x).nargs == FiniteSet(1)
raises(TypeError, lambda: myfunc(x, y).nargs)
class myfunc(Function):
@classmethod
def eval(cls, *x): # star args
return
assert myfunc.nargs == S.Naturals0
assert myfunc(x).nargs == S.Naturals0
def test_nargs():
f = Function('f')
assert f.nargs == S.Naturals0
assert f(1).nargs == S.Naturals0
assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2)
assert sin.nargs == FiniteSet(1)
assert sin(2).nargs == FiniteSet(1)
assert log.nargs == FiniteSet(1, 2)
assert log(2).nargs == FiniteSet(1, 2)
assert Function('f', nargs=2).nargs == FiniteSet(2)
assert Function('f', nargs=0).nargs == FiniteSet(0)
assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1)
assert Function('f', nargs=None).nargs == S.Naturals0
raises(ValueError, lambda: Function('f', nargs=()))
def test_arity():
f = lambda x, y: 1
assert arity(f) == 2
def f(x, y, z=None):
pass
assert arity(f) == (2, 3)
assert arity(lambda *x: x) is None
assert arity(log) == (1, 2)
def test_Lambda():
e = Lambda(x, x**2)
assert e(4) == 16
assert e(x) == x**2
assert e(y) == y**2
assert Lambda((), 42)() == 42
assert Lambda((), 42) == Lambda((), 42)
assert Lambda((), 42) != Lambda((), 43)
assert Lambda((), f(x))() == f(x)
assert Lambda((), 42).nargs == FiniteSet(0)
assert Lambda(x, x**2) == Lambda(x, x**2)
assert Lambda(x, x**2) == Lambda(y, y**2)
assert Lambda(x, x**2) != Lambda(y, y**2 + 1)
assert Lambda((x, y), x**y) == Lambda((y, x), y**x)
assert Lambda((x, y), x**y) != Lambda((x, y), y**x)
assert Lambda((x, y), x**y)(x, y) == x**y
assert Lambda((x, y), x**y)(3, 3) == 3**3
assert Lambda((x, y), x**y)(x, 3) == x**3
assert Lambda((x, y), x**y)(3, y) == 3**y
assert Lambda(x, f(x))(x) == f(x)
assert Lambda(x, x**2)(e(x)) == x**4
assert e(e(x)) == x**4
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert Lambda((x1, x2), x1 + x2)(x, y) == x + y
assert Lambda((x, y), x + y).nargs == FiniteSet(2)
p = x, y, z, t
assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z)
assert Lambda(x, 2*x) + Lambda(y, 2*y) == 2*Lambda(x, 2*x)
assert Lambda(x, 2*x) not in [ Lambda(x, x) ]
raises(TypeError, lambda: Lambda(1, x))
assert Lambda(x, 1)(1) is S.One
def test_IdentityFunction():
assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction
assert Lambda(x, 2*x) is not S.IdentityFunction
assert Lambda((x, y), x) is not S.IdentityFunction
def test_Lambda_symbols():
assert Lambda(x, 2*x).free_symbols == set()
assert Lambda(x, x*y).free_symbols == {y}
assert Lambda((), 42).free_symbols == set()
assert Lambda((), x*y).free_symbols == {x,y}
def test_functionclas_symbols():
assert f.free_symbols == set()
def test_Lambda_arguments():
raises(TypeError, lambda: Lambda(x, 2*x)(x, y))
raises(TypeError, lambda: Lambda((x, y), x + y)(x))
raises(TypeError, lambda: Lambda((), 42)(x))
def test_Lambda_equality():
assert Lambda(x, 2*x) == Lambda(y, 2*y)
# although variables are casts as Dummies, the expressions
# should still compare equal
assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x)
assert Lambda(x, 2*x) != Lambda((x, y), 2*x)
assert Lambda(x, 2*x) != 2*x
def test_Subs():
assert Subs(1, (), ()) is S.One
# check null subs influence on hashing
assert Subs(x, y, z) != Subs(x, y, 1)
# neutral subs works
assert Subs(x, x, 1).subs(x, y).has(y)
# self mapping var/point
assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x)
assert Subs(x, x, 0).has(x) # it's a structural answer
assert not Subs(x, x, 0).free_symbols
assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1))
assert Subs(x, (x,), (0,)) == Subs(x, x, 0)
assert Subs(x, x, 0) == Subs(y, y, 0)
assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
assert Subs(f(x), x, 0).doit() == f(0)
assert Subs(f(x**2), x**2, 0).doit() == f(0)
assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
Subs(f(x, y, z), (x, y, z), (0, 0, 1))
assert Subs(x, y, 2).subs(x, y).doit() == 2
assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))
assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)
assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))
assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y
assert Subs(f(x), x, 0).free_symbols == set([])
assert Subs(f(x, y), x, z).free_symbols == {y, z}
assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
2*Subs(Derivative(f(x, 2), x), x, 0)
assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)
e = Subs(y**2*f(x), x, y)
assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)
assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
e1 = Subs(z*f(x), x, 1)
e2 = Subs(z*f(y), y, 1)
assert e1 + e2 == 2*e1
assert e1.__hash__() == e2.__hash__()
assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ]
assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
x, x + y)
assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
z + Rational('1/2').n(2)*f(0)
assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
).doit() == 2*exp(x)
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
).doit(deep=False) == 2*Derivative(exp(x), x)
assert Derivative(f(x, g(x)), x).doit() == Derivative(
f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative(
f(y, g(x)), y), y, x)
def test_doitdoit():
done = Derivative(f(x, g(x)), x, g(x)).doit()
assert done == done.doit()
@XFAIL
def test_Subs2():
# this reflects a limitation of subs(), probably won't fix
assert Subs(f(x), x**2, x).doit() == f(sqrt(x))
def test_expand_function():
assert expand(x + y) == x + y
assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y)
assert expand((x + y)**11, modulus=11) == x**11 + y**11
def test_function_comparable():
assert sin(x).is_comparable is False
assert cos(x).is_comparable is False
assert sin(Float('0.1')).is_comparable is True
assert cos(Float('0.1')).is_comparable is True
assert sin(E).is_comparable is True
assert cos(E).is_comparable is True
assert sin(Rational(1, 3)).is_comparable is True
assert cos(Rational(1, 3)).is_comparable is True
@XFAIL
def test_function_comparable_infinities():
assert sin(oo).is_comparable is False
assert sin(-oo).is_comparable is False
assert sin(zoo).is_comparable is False
assert sin(nan).is_comparable is False
def test_deriv1():
# These all requre derivatives evaluated at a point (issue 4719) to work.
# See issue 4624
assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x)
assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x)
assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs(
Derivative(f(x), x), x, 2*x)
assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2)
assert f(2 + 3*x).diff(x) == 3*Subs(
Derivative(f(x), x), x, 3*x + 2)
assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs(
Derivative(f(x), x), x, 3*sin(x))
# See issue 8510
assert f(x, x + z).diff(x) == (
Subs(Derivative(f(y, x + z), y), y, x) +
Subs(Derivative(f(x, y), y), y, x + z))
assert f(x, x**2).diff(x) == (
2*x*Subs(Derivative(f(x, y), y), y, x**2) +
Subs(Derivative(f(y, x**2), y), y, x))
# but Subs is not always necessary
assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y))
def test_deriv2():
assert (x**3).diff(x) == 3*x**2
assert (x**3).diff(x, evaluate=False) != 3*x**2
assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x)
assert diff(x**3, x) == 3*x**2
assert diff(x**3, x, evaluate=False) != 3*x**2
assert diff(x**3, x, evaluate=False) == Derivative(x**3, x)
def test_func_deriv():
assert f(x).diff(x) == Derivative(f(x), x)
# issue 4534
assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0
assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1))
assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1))
assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0
def test_suppressed_evaluation():
a = sin(0, evaluate=False)
assert a != 0
assert a.func is sin
assert a.args == (0,)
def test_function_evalf():
def eq(a, b, eps):
return abs(a - b) < eps
assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13)
assert eq(
sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23)
assert eq(sin(1 + I).evalf(
15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13)
assert eq(exp(1 + I).evalf(15), Float(
"1.46869393991588") + Float("2.28735528717884239")*I, 1e-13)
assert eq(exp(-0.5 + 1.5*I).evalf(15), Float(
"0.0429042815937374") + Float("0.605011292285002")*I, 1e-13)
assert eq(log(pi + sqrt(2)*I).evalf(
15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13)
assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13)
def test_extensibility_eval():
class MyFunc(Function):
@classmethod
def eval(cls, *args):
return (0, 0, 0)
assert MyFunc(0) == (0, 0, 0)
def test_function_non_commutative():
x = Symbol('x', commutative=False)
assert f(x).is_commutative is False
assert sin(x).is_commutative is False
assert exp(x).is_commutative is False
assert log(x).is_commutative is False
assert f(x).is_complex is False
assert sin(x).is_complex is False
assert exp(x).is_complex is False
assert log(x).is_complex is False
def test_function_complex():
x = Symbol('x', complex=True)
assert f(x).is_commutative is True
assert sin(x).is_commutative is True
assert exp(x).is_commutative is True
assert log(x).is_commutative is True
assert f(x).is_complex is True
assert sin(x).is_complex is True
assert exp(x).is_complex is True
assert log(x).is_complex is True
def test_function__eval_nseries():
n = Symbol('n')
assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2)
assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2)
assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2)
assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + O(x)
assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + O(x) # XXX: wrong, branch cuts
assert loggamma(1/x)._eval_nseries(x, 0, None) == \
log(x)/2 - log(x)/x - 1/x + O(1, x)
assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)
# issue 6725:
assert expint(S(3)/2, -x)._eval_nseries(x, 5, None) == \
2 - 2*sqrt(pi)*sqrt(-x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5)
assert sin(sqrt(x))._eval_nseries(x, 3, None) == \
sqrt(x) - x**(S(3)/2)/6 + x**(S(5)/2)/120 + O(x**3)
def test_doit():
n = Symbol('n', integer=True)
f = Sum(2 * n * x, (n, 1, 3))
d = Derivative(f, x)
assert d.doit() == 12
assert d.doit(deep=False) == Sum(2*n, (n, 1, 3))
def test_evalf_default():
from sympy.functions.special.gamma_functions import polygamma
assert type(sin(4.0)) == Float
assert type(re(sin(I + 1.0))) == Float
assert type(im(sin(I + 1.0))) == Float
assert type(sin(4)) == sin
assert type(polygamma(2.0, 4.0)) == Float
assert type(sin(Rational(1, 4))) == sin
def test_issue_5399():
args = [x, y, S(2), S.Half]
def ok(a):
"""Return True if the input args for diff are ok"""
if not a:
return False
if a[0].is_Symbol is False:
return False
s_at = [i for i in range(len(a)) if a[i].is_Symbol]
n_at = [i for i in range(len(a)) if not a[i].is_Symbol]
# every symbol is followed by symbol or int
# every number is followed by a symbol
return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer
for i in s_at if i + 1 < len(a)) and
all(a[i + 1].is_Symbol
for i in n_at if i + 1 < len(a)))
eq = x**10*y**8
for a in subsets(args):
for v in variations(a, len(a)):
if ok(v):
noraise = eq.diff(*v)
else:
raises(ValueError, lambda: eq.diff(*v))
def test_derivative_numerically():
from random import random
z0 = random() + I*random()
assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15
def test_fdiff_argument_index_error():
from sympy.core.function import ArgumentIndexError
class myfunc(Function):
nargs = 1 # define since there is no eval routine
def fdiff(self, idx):
raise ArgumentIndexError
mf = myfunc(x)
assert mf.diff(x) == Derivative(mf, x)
raises(TypeError, lambda: myfunc(x, x))
def test_deriv_wrt_function():
x = f(t)
xd = diff(x, t)
xdd = diff(xd, t)
y = g(t)
yd = diff(y, t)
assert diff(x, t) == xd
assert diff(2 * x + 4, t) == 2 * xd
assert diff(2 * x + 4 + y, t) == 2 * xd + yd
assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y
assert diff(2 * x + 4 + y * x, x) == 2 + y
assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y +
8 * x * xd)
assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y +
8 * x * xd)
assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3
assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0
assert diff(sin(x), t) == xd * cos(x)
assert diff(exp(x), t) == xd * exp(x)
assert diff(sqrt(x), t) == xd / (2 * sqrt(x))
def test_diff_wrt_value():
assert Expr()._diff_wrt is False
assert x._diff_wrt is True
assert f(x)._diff_wrt is True
assert Derivative(f(x), x)._diff_wrt is True
assert Derivative(x**2, x)._diff_wrt is False
def test_diff_wrt():
fx = f(x)
dfx = diff(f(x), x)
ddfx = diff(f(x), x, x)
assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx
assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx
assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx
assert diff(fx**2, dfx) == 0
assert diff(fx**2, ddfx) == 0
assert diff(dfx**2, fx) == 0
assert diff(dfx**2, ddfx) == 0
assert diff(ddfx**2, dfx) == 0
assert diff(fx*dfx*ddfx, fx) == dfx*ddfx
assert diff(fx*dfx*ddfx, dfx) == fx*ddfx
assert diff(fx*dfx*ddfx, ddfx) == fx*dfx
assert diff(f(x), x).diff(f(x)) == 0
assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x))
assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx)
# Chain rule cases
assert f(g(x)).diff(x) == \
Derivative(g(x), x)*Derivative(f(g(x)), g(x))
assert diff(f(g(x), h(y)), x) == \
Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x))
assert diff(f(g(x), h(x)), x) == (
Subs(Derivative(f(y, h(x)), y), y, g(x))*Derivative(g(x), x) +
Subs(Derivative(f(g(x), y), y), y, h(x))*Derivative(h(x), x))
assert f(
sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x))
assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x))
def test_diff_wrt_func_subs():
assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x)
def test_subs_in_derivative():
expr = sin(x*exp(y))
u = Function('u')
v = Function('v')
assert Derivative(expr, y).subs(expr, y) == Derivative(y, y)
assert Derivative(expr, y).subs(y, x).doit() == \
Derivative(expr, y).doit().subs(y, x)
assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x)
assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y)
assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit()
assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y))
assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y))
assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \
Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit()
assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z)
assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y))
assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \
Derivative(f(g(x), u(y)), u(y))
assert Derivative(f(x, f(x, x)), f(x, x)).subs(
f, Lambda((x, y), x + y)) == Subs(
Derivative(z + x, z), z, 2*x)
assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x))
assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x))
# Issue 13791. No comparison (it's a long formula) but this used to raise an exception.
assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr)
# This is also related to issues 13791 and 13795; issue 15190
F = Lambda((x, y), exp(2*x + 3*y))
abstract = f(x, f(x, x)).diff(x, 2)
concrete = F(x, F(x, x)).diff(x, 2)
assert (abstract.subs(f, F).doit() - concrete).simplify() == 0
# don't introduce a new symbol if not necessary
assert x in f(x).diff(x).subs(x, 0).atoms()
# case (4)
assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y)
) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y))
assert Derivative(f(x, x), x).subs(x, 0
) == Subs(Derivative(f(x, x), x), x, 0)
# issue 15194
assert Derivative(f(y, g(x)), (x, z)).subs(z, x
) == Derivative(f(y, g(x)), (x, x))
df = f(x).diff(x)
assert df.subs(df, 1) is S.One
assert df.diff(df) is S.One
dxy = Derivative(f(x, y), x, y)
dyx = Derivative(f(x, y), y, x)
assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One
assert dxy.diff(dyx) is S.One
assert Derivative(f(x, y), x, 2, y, 3).subs(
dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2)
assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs(
Derivative(f(x, x - y), y), x, x + y)
def test_diff_wrt_not_allowed():
# issue 7027 included
for wrt in (
cos(x), re(x), x**2, x*y, 1 + x,
Derivative(cos(x), x), Derivative(f(f(x)), x)):
raises(ValueError, lambda: diff(f(x), wrt))
# if we don't differentiate wrt then don't raise error
assert diff(exp(x*y), x*y, 0) == exp(x*y)
def test_klein_gordon_lagrangian():
m = Symbol('m')
phi = f(x, t)
L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2
eqna = Eq(
diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0)
eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0)
assert eqna == eqnb
def test_sho_lagrangian():
m = Symbol('m')
k = Symbol('k')
x = f(t)
L = m*diff(x, t)**2/2 - k*x**2/2
eqna = Eq(diff(L, x), diff(L, diff(x, t), t))
eqnb = Eq(-k*x, m*diff(x, t, t))
assert eqna == eqnb
assert diff(L, x, t) == diff(L, t, x)
assert diff(L, diff(x, t), t) == m*diff(x, t, 2)
assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2)
def test_straight_line():
F = f(x)
Fd = F.diff(x)
L = sqrt(1 + Fd**2)
assert diff(L, F) == 0
assert diff(L, Fd) == Fd/sqrt(1 + Fd**2)
def test_sort_variable():
vsort = Derivative._sort_variable_count
def vsort0(*v, **kw):
reverse = kw.get('reverse', False)
return [i[0] for i in vsort([(i, 0) for i in (
reversed(v) if reverse else v)])]
for R in range(2):
assert vsort0(y, x, reverse=R) == [x, y]
assert vsort0(f(x), x, reverse=R) == [x, f(x)]
assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)]
assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)]
assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)]
fx = f(x).diff(x)
assert vsort0(fx, y, reverse=R) == [y, fx]
fy = f(y).diff(y)
assert vsort0(fy, fx, reverse=R) == [fx, fy]
fxx = fx.diff(x)
assert vsort0(fxx, fx, reverse=R) == [fx, fxx]
assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)]
assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)]
assert vsort0(Basic(y, z), Basic(x), reverse=R) == [
Basic(x), Basic(y, z)]
assert vsort0(fx, x, reverse=R) == [
x, fx] if R else [fx, x]
assert vsort0(Basic(x), x, reverse=R) == [
x, Basic(x)] if R else [Basic(x), x]
assert vsort0(Basic(f(x)), f(x), reverse=R) == [
f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)]
assert vsort0(Basic(x, z), Basic(x), reverse=R) == [
Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)]
assert vsort([]) == []
assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)])
assert vsort([(x, y), (x, z)]) == [(x, y + z)]
assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)]
# coverage complete; legacy tests below
assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [
(f(x), 1), (g(x), 1), (h(x), 1)]
assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1),
(f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1),
(h(x), 1)]
assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1),
(y, 1), (f(x), 1), (f(y), 1)]
assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1),
(h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1),
(f(x), 1), (g(x), 1), (h(x), 1)]
assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1),
(g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)]
assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2),
(g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3),
(z, 4), (f(x), 3), (g(x), 1)]
assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)]
assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple)
assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)]
assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [
(f(x), 1), (g(x), 1), (h(y), 1)]
assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)]
assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [
(f(x), 2), (f(y), 1)]
dfx = f(x).diff(x)
self = [(dfx, 1), (x, 1)]
assert vsort(self) == self
assert vsort([
(dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [
(y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)]
dfy = f(y).diff(y)
assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)]
d2fx = dfx.diff(x)
assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)]
def test_multiple_derivative():
# Issue #15007
assert f(x, y).diff(y, y, x, y, x
) == Derivative(f(x, y), (x, 2), (y, 3))
def test_unhandled():
class MyExpr(Expr):
def _eval_derivative(self, s):
if not s.name.startswith('xi'):
return self
else:
return None
d = Dummy()
eq = MyExpr(f(x), y, z)
assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x))
assert diff(eq, f(x), x) == Derivative(eq, f(x))
assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z))
assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x)
def test_nfloat():
from sympy.core.basic import _aresame
from sympy.polys.rootoftools import rootof
x = Symbol("x")
eq = x**(S(4)/3) + 4*x**(S(1)/3)/3
assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(S(1)/3))
assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3))
eq = x**(S(4)/3) + 4*x**(x/3)/3
assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(x/3))
big = 12345678901234567890
# specify precision to match value used in nfloat
Float_big = Float(big, 15)
assert _aresame(nfloat(big), Float_big)
assert _aresame(nfloat(big*x), Float_big*x)
assert _aresame(nfloat(x**big, exponent=True), x**Float_big)
assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2)))
# issue 6342
f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4')
assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139)))
# issue 6632
assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \
9.99999999800000e-11
# issue 7122
eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0)
assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)'
# issue 10933
for t in (dict, Dict):
d = t({S.Half: S.Half})
n = nfloat(d)
assert isinstance(n, t)
assert _aresame(list(n.items()).pop(), (S.Half, Float(.5)))
for t in (dict, Dict):
d = t({S.Half: S.Half})
n = nfloat(d, dkeys=True)
assert isinstance(n, t)
assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5)))
d = [S.Half]
n = nfloat(d)
assert type(n) is list
assert _aresame(n[0], Float(.5))
assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5))
assert _aresame(nfloat(S(True)), S(True))
assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5))
assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false
# pass along kwargs
assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}]
def test_issue_7068():
from sympy.abc import a, b
f = Function('f')
y1 = Dummy('y')
y2 = Dummy('y')
func1 = f(a + y1 * b)
func2 = f(a + y2 * b)
func1_y = func1.diff(y1)
func2_y = func2.diff(y2)
assert func1_y != func2_y
z1 = Subs(f(a), a, y1)
z2 = Subs(f(a), a, y2)
assert z1 != z2
def test_issue_7231():
from sympy.abc import a
ans1 = f(x).series(x, a)
res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) +
(-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 +
(-a + x)**3*Subs(Derivative(f(y), y, y, y),
y, a)/6 +
(-a + x)**4*Subs(Derivative(f(y), y, y, y, y),
y, a)/24 +
(-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y),
y, a)/120 + O((-a + x)**6, (x, a)))
assert res == ans1
ans2 = f(x).series(x, a)
assert res == ans2
def test_issue_7687():
from sympy.core.function import Function
from sympy.abc import x
f = Function('f')(x)
ff = Function('f')(x)
match_with_cache = ff.matches(f)
assert isinstance(f, type(ff))
clear_cache()
ff = Function('f')(x)
assert isinstance(f, type(ff))
assert match_with_cache == ff.matches(f)
def test_issue_7688():
from sympy.core.function import Function, UndefinedFunction
f = Function('f') # actually an UndefinedFunction
clear_cache()
class A(UndefinedFunction):
pass
a = A('f')
assert isinstance(a, type(f))
def test_mexpand():
from sympy.abc import x
assert _mexpand(None) is None
assert _mexpand(1) is S.One
assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand()
def test_issue_8469():
# This should not take forever to run
N = 40
def g(w, theta):
return 1/(1+exp(w-theta))
ws = symbols(['w%i'%i for i in range(N)])
import functools
expr = functools.reduce(g,ws)
def test_issue_12996():
# foo=True imitates the sort of arguments that Derivative can get
# from Integral when it passes doit to the expression
assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x)
def test_should_evalf():
# This should not take forever to run (see #8506)
assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin)
def test_Derivative_as_finite_difference():
# Central 1st derivative at gridpoint
x, h = symbols('x h', real=True)
dfdx = f(x).diff(x)
assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) -
(S(1)/12*(f(x-2)-f(x+2)) + S(2)/3*(f(x+1)-f(x-1)))).simplify() == 0
# Central 1st derivative "half-way"
assert (dfdx.as_finite_difference() -
(f(x + S(1)/2)-f(x - S(1)/2))).simplify() == 0
assert (dfdx.as_finite_difference(h) -
(f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0
assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(S(9)/(8*2*h)*(f(x+h) - f(x-h)) +
S(1)/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0
# One sided 1st derivative at gridpoint
assert (dfdx.as_finite_difference([0, 1, 2], 0) -
(-S(3)/2*f(0) + 2*f(1) - f(2)/2)).simplify() == 0
assert (dfdx.as_finite_difference([x, x+h], x) -
(f(x+h) - f(x))/h).simplify() == 0
assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) -
(-S(3)/(2*h)*f(x-h) + 2/h*f(x) -
S(1)/(2*h)*f(x+h))).simplify() == 0
# One sided 1st derivative "half-way"
assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h])
- 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h)
+ S(3)/8*f(x + 3*h) - S(5)/24*f(x + 5*h)
+ S(1)/24*f(x + 7*h))).simplify() == 0
d2fdx2 = f(x).diff(x, 2)
# Central 2nd derivative at gridpoint
assert (d2fdx2.as_finite_difference([x-h, x, x+h]) -
h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0
assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) -
h**-2 * (-S(1)/12*(f(x - 2*h) + f(x + 2*h)) +
S(4)/3*(f(x+h) + f(x-h)) - S(5)/2*f(x))).simplify() == 0
# Central 2nd derivative "half-way"
assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(2*h)**-2 * (S(1)/2*(f(x - 3*h) + f(x + 3*h)) -
S(1)/2*(f(x+h) + f(x-h)))).simplify() == 0
# One sided 2nd derivative at gridpoint
assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
h**-2 * (2*f(x) - 5*f(x+h) +
4*f(x+2*h) - f(x+3*h))).simplify() == 0
# One sided 2nd derivative at "half-way"
assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
(2*h)**-2 * (S(3)/2*f(x-h) - S(7)/2*f(x+h) + S(5)/2*f(x + 3*h) -
S(1)/2*f(x + 5*h))).simplify() == 0
d3fdx3 = f(x).diff(x, 3)
# Central 3rd derivative at gridpoint
assert (d3fdx3.as_finite_difference() -
(-f(x - 3/S(2)) + 3*f(x - 1/S(2)) -
3*f(x + 1/S(2)) + f(x + 3/S(2)))).simplify() == 0
assert (d3fdx3.as_finite_difference(
[x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) -
h**-3 * (S(1)/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) +
f(x + 2*h) + S(13)/8*(f(x-h) - f(x+h)))).simplify() == 0
# Central 3rd derivative at "half-way"
assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
(2*h)**-3 * (f(x + 3*h)-f(x - 3*h) +
3*(f(x-h)-f(x+h)))).simplify() == 0
# One sided 3rd derivative at gridpoint
assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0
# One sided 3rd derivative at "half-way"
assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
(2*h)**-3 * (f(x + 5*h)-f(x-h) +
3*(f(x+h)-f(x + 3*h)))).simplify() == 0
# issue 11007
y = Symbol('y', real=True)
d2fdxdy = f(x, y).diff(x, y)
ref0 = Derivative(f(x + S(1)/2, y), y) - Derivative(f(x - S(1)/2, y), y)
assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0
half = S(1)/2
xm, xp, ym, yp = x-half, x+half, y-half, y+half
ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp)
assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0
def test_issue_11159():
# Tests Application._eval_subs
expr1 = E
expr0 = expr1 * expr1
expr1 = expr0.subs(expr1,expr0)
assert expr0 == expr1
def test_issue_12005():
e1 = Subs(Derivative(f(x), x), x, x)
assert e1.diff(x) == Derivative(f(x), x, x)
e2 = Subs(Derivative(f(x), x), x, x**2 + 1)
assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1)
e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2)
assert e3.diff(y) == 4*y
e4 = Subs(Derivative(f(x + y), y), y, (x**2))
assert e4.diff(y) == S.Zero
e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
assert e5.diff(x) == Derivative(f(x), x, x)
assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
def test_issue_13843():
x = symbols('x')
f = Function('f')
m, n = symbols('m n', integer=True)
assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n))
assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8))
assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n))
def test_order_could_be_zero():
x, y = symbols('x, y')
n = symbols('n', integer=True, nonnegative=True)
m = symbols('m', integer=True, positive=True)
assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True))
assert diff(y, (x, n + 1)) == S.Zero
assert diff(y, (x, m)) == S.Zero
def test_undefined_function_eq():
f = Function('f')
f2 = Function('f')
g = Function('g')
f_real = Function('f', is_real=True)
# This test may only be meaningful if the cache is turned off
assert f == f2
assert hash(f) == hash(f2)
assert f == f
assert f != g
assert f != f_real
def test_function_assumptions():
x = Symbol('x')
f = Function('f')
f_real = Function('f', real=True)
assert f != f_real
assert f(x) != f_real(x)
assert f(x).is_real is None
assert f_real(x).is_real is True
# Can also do it this way, but it won't be equal to f_real because of the
# way UndefinedFunction.__new__ works.
f_real2 = Function('f', is_real=True)
assert f_real2(x).is_real is True
def test_undef_fcn_float_issue_6938():
f = Function('ceil')
assert not f(0.3).is_number
f = Function('sin')
assert not f(0.3).is_number
assert not f(pi).evalf().is_number
x = Symbol('x')
assert not f(x).evalf(subs={x:1.2}).is_number
def test_undefined_function_eval():
# Issue 15170. Make sure UndefinedFunction with eval defined works
# properly. The issue there was that the hash was determined before _nargs
# was set, which is included in the hash, hence changing the hash. The
# class is added to sympy.core.core.all_classes before the hash is
# changed, meaning "temp in all_classes" would fail, causing sympify(temp(t))
# to give a new class. We will eventually remove all_classes, but make
# sure this continues to work.
fdiff = lambda self, argindex=1: cos(self.args[argindex - 1])
eval = classmethod(lambda cls, t: None)
_imp_ = classmethod(lambda cls, t: sin(t))
temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_)
expr = temp(t)
assert sympify(expr) == expr
assert type(sympify(expr)).fdiff.__name__ == "<lambda>"
assert expr.diff(t) == cos(t)
def test_issue_15241():
F = f(x)
Fx = F.diff(x)
assert (F + x*Fx).diff(x, Fx) == 2
assert (F + x*Fx).diff(Fx, x) == 1
assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1
assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1
y = f(x)
G = f(y)
Gy = G.diff(y)
assert (G + y*Gy).diff(y, Gy) == 2
assert (G + y*Gy).diff(Gy, y) == 1
assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1
assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1
def test_issue_15226():
assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0
def test_issue_7027():
for wrt in (cos(x), re(x), Derivative(cos(x), x)):
raises(ValueError, lambda: diff(f(x), wrt))
def test_derivative_quick_exit():
assert f(x).diff(y) == 0
assert f(x).diff(y, f(x)) == 0
assert f(x).diff(x, f(y)) == 0
assert f(f(x)).diff(x, f(x), f(y)) == 0
assert f(f(x)).diff(x, f(x), y) == 0
assert f(x).diff(g(x)) == 0
assert f(x).diff(x, f(x).diff(x)) == 1
df = f(x).diff(x)
assert f(x).diff(df) == 0
dg = g(x).diff(x)
assert dg.diff(df).doit() == 0
def test_issue_15084_13166():
eq = f(x, g(x))
assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y))
# issue 13166
assert eq.diff(x, 2).doit() == (
(Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) +
Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x),
x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) +
Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)),
_xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x))
# issue 6681
assert diff(f(x, t, g(x, t)), x).doit() == (
Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) +
Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x))
# make sure the order doesn't matter when using diff
assert eq.diff(x, g(x)) == eq.diff(g(x), x)
def test_negative_counts():
# issue 13873
raises(ValueError, lambda: sin(x).diff(x, -1))
def test_Derivative__new__():
raises(TypeError, lambda: f(x).diff((x, 2), 0))
assert f(x, y).diff([(x, y), 0]) == f(x, y)
assert f(x, y).diff([(x, y), 1]) == NDimArray([
Derivative(f(x, y), x), Derivative(f(x, y), y)])
assert f(x,y).diff(y, (x, z), y, x) == Derivative(
f(x, y), (x, z + 1), (y, 2))
assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit
def test_issue_14719_10150():
class V(Expr):
_diff_wrt = True
is_scalar = False
assert V().diff(V()) == Derivative(V(), V())
assert (2*V()).diff(V()) == 2*Derivative(V(), V())
class X(Expr):
_diff_wrt = True
assert X().diff(X()) == 1
assert (2*X()).diff(X()) == 2
def test_noncommutative_issue_15131():
x = Symbol('x', commutative=False)
t = Symbol('t', commutative=False)
fx = Function('Fx', commutative=False)(x)
ft = Function('Ft', commutative=False)(t)
A = Symbol('A', commutative=False)
eq = fx * A * ft
eqdt = eq.diff(t)
assert eqdt.args[-1] == ft.diff(t)
def test_Subs_Derivative():
a = Derivative(f(g(x), h(x)), g(x), h(x),x)
b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x)
c = f(g(x), h(x)).diff(g(x), h(x), x)
d = f(g(x), h(x)).diff(g(x), h(x)).diff(x)
e = Derivative(f(g(x), h(x)), x)
eqs = (a, b, c, d, e)
subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y))
).subs(g(x), 1/x).subs(h(x), x**3)
ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2
assert all(subs(i).doit().expand() == ans for i in eqs)
assert all(subs(i.doit()).doit().expand() == ans for i in eqs)
def test_issue_15360():
f = Function('f')
assert f.name == 'f'
|
6de863a1b8ea67f8a5aec5cea1851172ae1f266f7fa0fb7acc592197b390bc99 | from sympy import (Abs, Add, atan, ceiling, cos, E, Eq, exp, factor,
factorial, fibonacci, floor, Function, GoldenRatio, I, Integral,
integrate, log, Mul, N, oo, pi, Pow, product, Product,
Rational, S, Sum, simplify, sin, sqrt, sstr, sympify, Symbol, Max, nfloat)
from sympy.core.evalf import (complex_accuracy, PrecisionExhausted,
scaled_zero, get_integer_part, as_mpmath, evalf)
from mpmath import inf, ninf
from mpmath.libmp.libmpf import from_float
from sympy.core.compatibility import long, range
from sympy.core.expr import unchanged
from sympy.utilities.pytest import raises, XFAIL
from sympy.abc import n, x, y
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_evalf_helpers():
assert complex_accuracy((from_float(2.0), None, 35, None)) == 35
assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37
assert complex_accuracy(
(from_float(2.0), from_float(1000.0), 35, 100)) == 43
assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35
assert complex_accuracy(
(from_float(2.0), from_float(1000.0), 100, 35)) == 35
def test_evalf_basic():
assert NS('pi', 15) == '3.14159265358979'
assert NS('2/3', 10) == '0.6666666667'
assert NS('355/113-pi', 6) == '2.66764e-7'
assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979'
def test_cancellation():
assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15,
maxn=1200) == '1.00000000000000e-1000'
def test_evalf_powers():
assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435'
assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882'
'9089887365167832438044244613405349992494711208'
'95526746555473864642912223')
assert NS('2**(1/10**50)', 15) == '1.00000000000000'
assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51'
# Evaluation of Rump's ill-conditioned polynomial
def test_evalf_rump():
a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y)
assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821'
def test_evalf_complex():
assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I'
assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I'
assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I'
assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I'
assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I'
@XFAIL
def test_evalf_complex_bug():
assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I',
'0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I')
def test_evalf_complex_powers():
assert NS('(E+pi*I)**100000000000000000') == \
'-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I'
# XXX: rewrite if a+a*I simplification introduced in sympy
#assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I')
assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I'
assert NS(
'(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I'
assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I'
assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010'
assert NS(
'(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I'
assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I'
assert NS(
'(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18'
@XFAIL
def test_evalf_complex_powers_bug():
assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I'
def test_evalf_exponentiation():
assert NS(sqrt(-pi)) == '1.77245385090552*I'
assert NS(Pow(pi*I, Rational(
1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I'
assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I'
assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I'
assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I'
assert NS(exp(pi)) == '23.1406926327793'
assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I'
assert NS(pi**pi) == '36.4621596072079'
assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I'
assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I'
# An example from Smith, "Multiple Precision Complex Arithmetic and Functions"
def test_evalf_complex_cancellation():
A = Rational('63287/100000')
B = Rational('52498/100000')
C = Rational('69301/100000')
D = Rational('83542/100000')
F = Rational('2231321613/2500000000')
# XXX: the number of returned mantissa digits in the real part could
# change with the implementation. What matters is that the returned digits are
# correct; those that are showing now are correct.
# >>> ((A+B*I)*(C+D*I)).expand()
# 64471/10000000000 + 2231321613*I/2500000000
# >>> 2231321613*4
# 8925286452L
assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I'
assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I'
assert NS((A + B*I)*(
C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I')
def test_evalf_logs():
assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I'
assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I'
assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I'
assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000'
assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185'
def test_evalf_trig():
assert NS('sin(1)', 15) == '0.841470984807897'
assert NS('cos(1)', 15) == '0.540302305868140'
assert NS('sin(10**-6)', 15) == '9.99999999999833e-7'
assert NS('cos(10**-6)', 15) == '0.999999999999500'
assert NS('sin(E*10**100)', 15) == '0.409160531722613'
# Some input near roots
assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12'
assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \
'6.99999999428333e-5'
assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \
'6.99999999428333e-5'
# Check detection of various false identities
def test_evalf_near_integers():
# Binet's formula
f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5))
assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046'
# Some near-integer identities from
# http://mathworld.wolfram.com/AlmostInteger.html
assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000'
assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857'
assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17'
assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11'
def test_evalf_ramanujan():
assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13'
# A related identity
A = 262537412640768744*exp(-pi*sqrt(163))
B = 196884*exp(-2*pi*sqrt(163))
C = 103378831900730205293632*exp(-3*pi*sqrt(163))
assert NS(1 - A - B + C, 10) == '1.613679005e-59'
# Input that for various reasons have failed at some point
def test_evalf_bugs():
assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50'
assert NS('log(10**100,10)', 10) == '100.0000000'
assert NS('log(2)', 10) == '0.6931471806'
assert NS(
'(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667'
assert NS(sin(1) + Rational(
1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I'
assert x.evalf() == x
assert NS((1 + I)**2*I, 6) == '-2.00000'
d = {n: (
-1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)}
assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I'
assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
assert NS((1 + I)**2*I, 15) == '-2.00000000000000'
# issue 4758 (1/2):
assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
# issue 4758 (2/2): With the bug present, this still only fails if the
# terms are in the order given here. This is not generally the case,
# because the order depends on the hashes of the terms.
assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
subs={n: .01}) == '19.8100000000000'
assert NS(((x - 1)*((1 - x))**1000).n()
) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)'
assert NS((-x).n()) == '-x'
assert NS((-2*x).n()) == '-2.00000000000000*x'
assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n()
# issue 6660. Also NaN != mpmath.nan
# In this order:
# 0*nan, 0/nan, 0*inf, 0/inf
# 0+nan, 0-nan, 0+inf, 0-inf
# >>> n = Some Number
# n*nan, n/nan, n*inf, n/inf
# n+nan, n-nan, n+inf, n-inf
assert (0*E**(oo)).n() == S.NaN
assert (0/E**(oo)).n() == S.Zero
assert (0+E**(oo)).n() == S.Infinity
assert (0-E**(oo)).n() == S.NegativeInfinity
assert (5*E**(oo)).n() == S.Infinity
assert (5/E**(oo)).n() == S.Zero
assert (5+E**(oo)).n() == S.Infinity
assert (5-E**(oo)).n() == S.NegativeInfinity
#issue 7416
assert as_mpmath(0.0, 10, {'chop': True}) == 0
#issue 5412
assert ((oo*I).n() == S.Infinity*I)
assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I)
#issue 11518
assert NS(2*x**2.5, 5) == '2.0000*x**2.5000'
#issue 13076
assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)'
def test_evalf_integer_parts():
a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
b = floor(log(8)/log(2), evaluate=False)
assert a.evalf() == 3
assert b.evalf() == 3
# equals, as a fallback, can still fail but it might succeed as here
assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
long(11188719610782480504630258070757734324011354208865721592720336800)
assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
long(11188719610782480504630258070757734324011354208865721592720336801)
assert int(floor((GoldenRatio**999 / sqrt(5) + Rational(1, 2)))
.evalf(1000)) == fibonacci(999)
assert int(floor((GoldenRatio**1000 / sqrt(5) + Rational(1, 2)))
.evalf(1000)) == fibonacci(1000)
assert ceiling(x).evalf(subs={x: 3}) == 3
assert ceiling(x).evalf(subs={x: 3*I}) == 3*I
assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2 + 3*I
assert ceiling(x).evalf(subs={x: 3.}) == 3
assert ceiling(x).evalf(subs={x: 3.*I}) == 3*I
assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2 + 3*I
assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9
assert float((floor(0.5, evaluate=False)+20).evalf()) == 20
def test_evalf_trig_zero_detection():
a = sin(160*pi, evaluate=False)
t = a.evalf(maxn=100)
assert abs(t) < 1e-100
assert t._prec < 2
assert a.evalf(chop=True) == 0
raises(PrecisionExhausted, lambda: a.evalf(strict=True))
def test_evalf_sum():
assert Sum(n,(n,1,2)).evalf() == 3.
assert Sum(n,(n,1,2)).doit().evalf() == 3.
# the next test should return instantly
assert Sum(1/n,(n,1,2)).evalf() == 1.5
# issue 8219
assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf()
# issue 8254
assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf()
# issue 8411
s = Sum(1/x**2, (x, 100, oo))
assert s.n() == s.doit().n()
def test_evalf_divergent_series():
raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf())
raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf())
def test_evalf_product():
assert Product(n, (n, 1, 10)).evalf() == 3628800.
assert Product(1 - S.Half**2/n**2, (n, 1, oo)).evalf(5)==0.63662
assert Product(n, (n, -1, 3)).evalf() == 0
def test_evalf_py_methods():
assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10
assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10
assert abs(
complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10
raises(TypeError, lambda: float(pi + x))
def test_evalf_power_subs_bugs():
assert (x**2).evalf(subs={x: 0}) == 0
assert sqrt(x).evalf(subs={x: 0}) == 0
assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0
assert (x**x).evalf(subs={x: 0}) == 1
assert (3**x).evalf(subs={x: 0}) == 1
assert exp(x).evalf(subs={x: 0}) == 1
assert ((2 + I)**x).evalf(subs={x: 0}) == 1
assert (0**x).evalf(subs={x: 0}) == 1
def test_evalf_arguments():
raises(TypeError, lambda: pi.evalf(method="garbage"))
def test_implemented_function_evalf():
from sympy.utilities.lambdify import implemented_function
f = Function('f')
f = implemented_function(f, lambda x: x + 1)
assert str(f(x)) == "f(x)"
assert str(f(2)) == "f(2)"
assert f(2).evalf() == 3
assert f(x).evalf() == f(x)
f = implemented_function(Function('sin'), lambda x: x + 1)
assert f(2).evalf() != sin(2)
del f._imp_ # XXX: due to caching _imp_ would influence all other tests
def test_evaluate_false():
for no in [0, False]:
assert Add(3, 2, evaluate=no).is_Add
assert Mul(3, 2, evaluate=no).is_Mul
assert Pow(3, 2, evaluate=no).is_Pow
assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0
def test_evalf_relational():
assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y)
# if this first assertion fails it should be replaced with
# one that doesn't
assert unchanged(Eq, (3 - I)**2/2 + I, 0)
assert Eq((3 - I)**2/2 + I, 0).n() is S.false
# note: these don't always evaluate to Boolean
assert nfloat(Eq((3 - I)**2 + I, 0)) == Eq((3.0 - I)**2 + I, 0)
def test_issue_5486():
assert not cos(sqrt(0.5 + I)).n().is_Function
def test_issue_5486_bug():
from sympy import I, Expr
assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15
def test_bugs():
from sympy import polar_lift, re
assert abs(re((1 + I)**2)) < 1e-15
# anything that evalf's to 0 will do in place of polar_lift
assert abs(polar_lift(0)).n() == 0
def test_subs():
assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \
'-4.92535585957223e-10'
assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \
'1.00000000000000'
raises(TypeError, lambda: x.evalf(subs=(x, 1)))
def test_issue_4956_5204():
# issue 4956
v = S('''(-27*12**(1/3)*sqrt(31)*I +
27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) +
(29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I +
87*2**(1/3)*3**(1/6)*I)**2)''')
assert NS(v, 1) == '0.e-118 - 0.e-118*I'
# issue 5204
v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) +
108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 +
54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 +
54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 +
54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 +
54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 +
54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 +
54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 +
54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 +
4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) +
76788*I*83**(1/2))**2)''')
assert NS(v, 5) == '0.077284 + 1.1104*I'
assert NS(v, 1) == '0.08 + 1.*I'
def test_old_docstring():
a = (E + pi*I)*(E - pi*I)
assert NS(a) == '17.2586605000200'
assert a.n() == 17.25866050002001
def test_issue_4806():
assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5
assert atan(0, evaluate=False).n() == 0
def test_evalf_mul():
# sympy should not try to expand this; it should be handled term-wise
# in evalf through mpmath
assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I'
def test_scaled_zero():
a, b = (([0], 1, 100, 1), -1)
assert scaled_zero(100) == (a, b)
assert scaled_zero(a) == (0, 1, 100, 1)
a, b = (([1], 1, 100, 1), -1)
assert scaled_zero(100, -1) == (a, b)
assert scaled_zero(a) == (1, 1, 100, 1)
raises(ValueError, lambda: scaled_zero(scaled_zero(100)))
raises(ValueError, lambda: scaled_zero(100, 2))
raises(ValueError, lambda: scaled_zero(100, 0))
raises(ValueError, lambda: scaled_zero((1, 5, 1, 3)))
def test_chop_value():
for i in range(-27, 28):
assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i)
def test_infinities():
assert oo.evalf(chop=True) == inf
assert (-oo).evalf(chop=True) == ninf
def test_to_mpmath():
assert sqrt(3)._to_mpmath(20)._mpf_ == (0, long(908093), -19, 20)
assert S(3.2)._to_mpmath(20)._mpf_ == (0, long(838861), -18, 20)
def test_issue_6632_evalf():
add = (-100000*sqrt(2500000001) + 5000000001)
assert add.n() == 9.999999998e-11
assert (add*add).n() == 9.999999996e-21
def test_issue_4945():
from sympy.abc import H
from sympy import zoo
assert (H/0).evalf(subs={H:1}) == zoo*H
def test_evalf_integral():
# test that workprec has to increase in order to get a result other than 0
eps = Rational(1, 1000000)
assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10
def test_issue_8821_highprec_from_str():
s = str(pi.evalf(128))
p = N(s)
assert Abs(sin(p)) < 1e-15
p = N(s, 64)
assert Abs(sin(p)) < 1e-64
def test_issue_8853():
p = Symbol('x', even=True, positive=True)
assert floor(-p - S.Half).is_even == False
assert floor(-p + S.Half).is_even == True
assert ceiling(p - S.Half).is_even == True
assert ceiling(p + S.Half).is_even == False
assert get_integer_part(S.Half, -1, {}, True) == (0, 0)
assert get_integer_part(S.Half, 1, {}, True) == (1, 0)
assert get_integer_part(-S.Half, -1, {}, True) == (-1, 0)
assert get_integer_part(-S.Half, 1, {}, True) == (0, 0)
def test_issue_9326():
from sympy import Dummy
d1 = Dummy('d')
d2 = Dummy('d')
e = d1 + d2
assert e.evalf(subs = {d1: 1, d2: 2}) == 3
def test_issue_10323():
assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1
def test_AssocOp_Function():
# the first arg of Min is not comparable in the imaginary part
raises(ValueError, lambda: S('''
Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 -
sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 +
I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 -
sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))'''))
# if that is changed so a non-comparable number remains as
# an arg, then the Min/Max instantiation needs to be changed
# to watch out for non-comparable args when making simplifications
# and the following test should be added instead (with e being
# the sympified expression above):
# raises(ValueError, lambda: e._eval_evalf(2))
def test_issue_10395():
eq = x*Max(0, y)
assert nfloat(eq) == eq
eq = x*Max(y, -1.1)
assert nfloat(eq) == eq
assert Max(y, 4).n() == Max(4.0, y)
def test_issue_13098():
assert floor(log(S('9.'+'9'*20), 10)) == 0
assert ceiling(log(S('9.'+'9'*20), 10)) == 1
assert floor(log(20 - S('9.'+'9'*20), 10)) == 1
assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2
def test_issue_14601():
e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2)
subst = {x:0.0, y:0.0}
e2 = e.evalf(subs=subst)
assert float(e2) == 0.0
assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0
def test_issue_11151():
z = S.Zero
e = Sum(z, (x, 1, 2))
assert e != z # it shouldn't evaluate
# when it does evaluate, this is what it should give
assert evalf(e, 15, {}) == \
evalf(z, 15, {}) == (None, None, 15, None)
# so this shouldn't fail
assert (e/2).n() == 0
# this was where the issue appeared
expr0 = Sum(x**2 + x, (x, 1, 2))
expr1 = Sum(0, (x, 1, 2))
expr2 = expr1/expr0
assert simplify(factor(expr2) - expr2) == 0
|
57548b0f32803213a238c203eb194408749c2c609c157f10772dc2b41c80c757 | """Tests for tools and arithmetics for monomials of distributed polynomials. """
from sympy.polys.monomials import (
itermonomials, monomial_count,
monomial_mul, monomial_div,
monomial_gcd, monomial_lcm,
monomial_max, monomial_min,
monomial_divides, monomial_pow,
Monomial,
)
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.abc import a, b, c, x, y, z
from sympy.core import S, symbols
from sympy.utilities.pytest import raises
def test_monomials():
# total_degree tests
assert set(itermonomials([], 0)) == {S(1)}
assert set(itermonomials([], 1)) == {S(1)}
assert set(itermonomials([], 2)) == {S(1)}
assert set(itermonomials([], 0, 0)) == {S(1)}
assert set(itermonomials([], 1, 0)) == {S(1)}
assert set(itermonomials([], 2, 0)) == {S(1)}
raises(StopIteration, lambda: next(itermonomials([], 0, 1)))
raises(StopIteration, lambda: next(itermonomials([], 0, 2)))
raises(StopIteration, lambda: next(itermonomials([], 0, 3)))
assert set(itermonomials([], 0, 1)) == set()
assert set(itermonomials([], 0, 2)) == set()
assert set(itermonomials([], 0, 3)) == set()
raises(ValueError, lambda: set(itermonomials([], -1)))
raises(ValueError, lambda: set(itermonomials([x], -1)))
raises(ValueError, lambda: set(itermonomials([x, y], -1)))
assert set(itermonomials([x], 0)) == {S(1)}
assert set(itermonomials([x], 1)) == {S(1), x}
assert set(itermonomials([x], 2)) == {S(1), x, x**2}
assert set(itermonomials([x], 3)) == {S(1), x, x**2, x**3}
assert set(itermonomials([x, y], 0)) == {S(1)}
assert set(itermonomials([x, y], 1)) == {S(1), x, y}
assert set(itermonomials([x, y], 2)) == {S(1), x, y, x**2, y**2, x*y}
assert set(itermonomials([x, y], 3)) == \
{S(1), x, y, x**2, x**3, y**2, y**3, x*y, x*y**2, y*x**2}
i, j, k = symbols('i j k', commutative=False)
assert set(itermonomials([i, j, k], 0)) == {S(1)}
assert set(itermonomials([i, j, k], 1)) == {S(1), i, j, k}
assert set(itermonomials([i, j, k], 2)) == \
{S(1), i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j}
assert set(itermonomials([i, j, k], 3)) == \
{S(1), i, j, k, i**2, j**2, k**2, i*j, i*k, j*i, j*k, k*i, k*j,
i**3, j**3, k**3,
i**2 * j, i**2 * k, j * i**2, k * i**2,
j**2 * i, j**2 * k, i * j**2, k * j**2,
k**2 * i, k**2 * j, i * k**2, j * k**2,
i*j*i, i*k*i, j*i*j, j*k*j, k*i*k, k*j*k,
i*j*k, i*k*j, j*i*k, j*k*i, k*i*j, k*j*i,
}
assert set(itermonomials([x, i, j], 0)) == {S(1)}
assert set(itermonomials([x, i, j], 1)) == {S(1), x, i, j}
assert set(itermonomials([x, i, j], 2)) == {S(1), x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2}
assert set(itermonomials([x, i, j], 3)) == \
{S(1), x, i, j, x*i, x*j, i*j, j*i, x**2, i**2, j**2,
x**3, i**3, j**3,
x**2 * i, x**2 * j,
x * i**2, j * i**2, i**2 * j, i*j*i,
x * j**2, i * j**2, j**2 * i, j*i*j,
x * i * j, x * j * i
}
# degree_list tests
assert set(itermonomials([], [])) == {S(1)}
raises(ValueError, lambda: set(itermonomials([], [0])))
raises(ValueError, lambda: set(itermonomials([], [1])))
raises(ValueError, lambda: set(itermonomials([], [2])))
raises(ValueError, lambda: set(itermonomials([x], [1], [])))
raises(ValueError, lambda: set(itermonomials([x], [1, 2], [])))
raises(ValueError, lambda: set(itermonomials([x], [1, 2, 3], [])))
raises(ValueError, lambda: set(itermonomials([x], [], [1])))
raises(ValueError, lambda: set(itermonomials([x], [], [1, 2])))
raises(ValueError, lambda: set(itermonomials([x], [], [1, 2, 3])))
raises(ValueError, lambda: set(itermonomials([x, y], [1, 2], [1, 2, 3])))
raises(ValueError, lambda: set(itermonomials([x, y, z], [1, 2, 3], [0, 1])))
raises(ValueError, lambda: set(itermonomials([x], [1], [-1])))
raises(ValueError, lambda: set(itermonomials([x, y], [1, 2], [1, -1])))
raises(ValueError, lambda: set(itermonomials([], [], 1)))
raises(ValueError, lambda: set(itermonomials([], [], 2)))
raises(ValueError, lambda: set(itermonomials([], [], 3)))
raises(ValueError, lambda: set(itermonomials([x, y], [0, 1], [1, 2])))
raises(ValueError, lambda: set(itermonomials([x, y, z], [0, 0, 3], [0, 1, 2])))
assert set(itermonomials([x], [0])) == {S(1)}
assert set(itermonomials([x], [1])) == {S(1), x}
assert set(itermonomials([x], [2])) == {S(1), x, x**2}
assert set(itermonomials([x], [3])) == {S(1), x, x**2, x**3}
assert set(itermonomials([x], [3], [1])) == {x, x**3, x**2}
assert set(itermonomials([x], [3], [2])) == {x**3, x**2}
assert set(itermonomials([x, y], [0, 0])) == {S(1)}
assert set(itermonomials([x, y], [0, 1])) == {S(1), y}
assert set(itermonomials([x, y], [0, 2])) == {S(1), y, y**2}
assert set(itermonomials([x, y], [0, 2], [0, 1])) == {y, y**2}
assert set(itermonomials([x, y], [0, 2], [0, 2])) == {y**2}
assert set(itermonomials([x, y], [1, 0])) == {S(1), x}
assert set(itermonomials([x, y], [1, 1])) == {S(1), x, y, x*y}
assert set(itermonomials([x, y], [1, 2])) == {S(1), x, y, x*y, y**2, x*y**2}
assert set(itermonomials([x, y], [1, 2], [1, 1])) == {x*y, x*y**2}
assert set(itermonomials([x, y], [1, 2], [1, 2])) == {x*y**2}
assert set(itermonomials([x, y], [2, 0])) == {S(1), x, x**2}
assert set(itermonomials([x, y], [2, 1])) == {S(1), x, y, x*y, x**2, x**2*y}
assert set(itermonomials([x, y], [2, 2])) == \
{S(1), y**2, x*y**2, x, x*y, x**2, x**2*y**2, y, x**2*y}
i, j, k = symbols('i j k', commutative=False)
assert set(itermonomials([i, j, k], [0, 0, 0])) == {S(1)}
assert set(itermonomials([i, j, k], [0, 0, 1])) == {1, k}
assert set(itermonomials([i, j, k], [0, 1, 0])) == {1, j}
assert set(itermonomials([i, j, k], [1, 0, 0])) == {i, 1}
assert set(itermonomials([i, j, k], [0, 0, 2])) == {k**2, 1, k}
assert set(itermonomials([i, j, k], [0, 2, 0])) == {1, j, j**2}
assert set(itermonomials([i, j, k], [2, 0, 0])) == {i, 1, i**2}
assert set(itermonomials([i, j, k], [1, 1, 1])) == {1, k, j, j*k, i*k, i, i*j, i*j*k}
assert set(itermonomials([i, j, k], [2, 2, 2])) == \
{1, k, i**2*k**2, j*k, j**2, i, i*k, j*k**2, i*j**2*k**2,
i**2*j, i**2*j**2, k**2, j**2*k, i*j**2*k,
j**2*k**2, i*j, i**2*k, i**2*j**2*k, j, i**2*j*k,
i*j**2, i*k**2, i*j*k, i**2*j**2*k**2, i*j*k**2, i**2, i**2*j*k**2
}
assert set(itermonomials([x, j, k], [0, 0, 0])) == {S(1)}
assert set(itermonomials([x, j, k], [0, 0, 1])) == {1, k}
assert set(itermonomials([x, j, k], [0, 1, 0])) == {1, j}
assert set(itermonomials([x, j, k], [1, 0, 0])) == {x, 1}
assert set(itermonomials([x, j, k], [0, 0, 2])) == {k**2, 1, k}
assert set(itermonomials([x, j, k], [0, 2, 0])) == {1, j, j**2}
assert set(itermonomials([x, j, k], [2, 0, 0])) == {x, 1, x**2}
assert set(itermonomials([x, j, k], [1, 1, 1])) == {1, k, j, j*k, x*k, x, x*j, x*j*k}
assert set(itermonomials([x, j, k], [2, 2, 2])) == \
{1, k, x**2*k**2, j*k, j**2, x, x*k, j*k**2, x*j**2*k**2,
x**2*j, x**2*j**2, k**2, j**2*k, x*j**2*k,
j**2*k**2, x*j, x**2*k, x**2*j**2*k, j, x**2*j*k,
x*j**2, x*k**2, x*j*k, x**2*j**2*k**2, x*j*k**2, x**2, x**2*j*k**2
}
def test_monomial_count():
assert monomial_count(2, 2) == 6
assert monomial_count(2, 3) == 10
def test_monomial_mul():
assert monomial_mul((3, 4, 1), (1, 2, 0)) == (4, 6, 1)
def test_monomial_div():
assert monomial_div((3, 4, 1), (1, 2, 0)) == (2, 2, 1)
def test_monomial_gcd():
assert monomial_gcd((3, 4, 1), (1, 2, 0)) == (1, 2, 0)
def test_monomial_lcm():
assert monomial_lcm((3, 4, 1), (1, 2, 0)) == (3, 4, 1)
def test_monomial_max():
assert monomial_max((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (6, 5, 9)
def test_monomial_pow():
assert monomial_pow((1, 2, 3), 3) == (3, 6, 9)
def test_monomial_min():
assert monomial_min((3, 4, 5), (0, 5, 1), (6, 3, 9)) == (0, 3, 1)
def test_monomial_divides():
assert monomial_divides((1, 2, 3), (4, 5, 6)) is True
assert monomial_divides((1, 2, 3), (0, 5, 6)) is False
def test_Monomial():
m = Monomial((3, 4, 1), (x, y, z))
n = Monomial((1, 2, 0), (x, y, z))
assert m.as_expr() == x**3*y**4*z
assert n.as_expr() == x**1*y**2
assert m.as_expr(a, b, c) == a**3*b**4*c
assert n.as_expr(a, b, c) == a**1*b**2
assert m.exponents == (3, 4, 1)
assert m.gens == (x, y, z)
assert n.exponents == (1, 2, 0)
assert n.gens == (x, y, z)
assert m == (3, 4, 1)
assert n != (3, 4, 1)
assert m != (1, 2, 0)
assert n == (1, 2, 0)
assert (m == 1) is False
assert m[0] == m[-3] == 3
assert m[1] == m[-2] == 4
assert m[2] == m[-1] == 1
assert n[0] == n[-3] == 1
assert n[1] == n[-2] == 2
assert n[2] == n[-1] == 0
assert m[:2] == (3, 4)
assert n[:2] == (1, 2)
assert m*n == Monomial((4, 6, 1))
assert m/n == Monomial((2, 2, 1))
assert m*(1, 2, 0) == Monomial((4, 6, 1))
assert m/(1, 2, 0) == Monomial((2, 2, 1))
assert m.gcd(n) == Monomial((1, 2, 0))
assert m.lcm(n) == Monomial((3, 4, 1))
assert m.gcd((1, 2, 0)) == Monomial((1, 2, 0))
assert m.lcm((1, 2, 0)) == Monomial((3, 4, 1))
assert m**0 == Monomial((0, 0, 0))
assert m**1 == m
assert m**2 == Monomial((6, 8, 2))
assert m**3 == Monomial((9, 12, 3))
raises(ExactQuotientFailed, lambda: m/Monomial((5, 2, 0)))
mm = Monomial((1, 2, 3))
raises(ValueError, lambda: mm.as_expr())
assert str(mm) == 'Monomial((1, 2, 3))'
assert str(m) == 'x**3*y**4*z**1'
raises(NotImplementedError, lambda: m*1)
raises(NotImplementedError, lambda: m/1)
raises(ValueError, lambda: m**-1)
raises(TypeError, lambda: m.gcd(3))
raises(TypeError, lambda: m.lcm(3))
|
18162234922c490f5deaa0040ec8bf860efc0ca6484403ed8b3f3d2fb67ff477 | """
Continuous Random Variables - Prebuilt variables
Contains
========
Arcsin
Benini
Beta
BetaNoncentral
BetaPrime
Cauchy
Chi
ChiNoncentral
ChiSquared
Dagum
Erlang
Exponential
FDistribution
FisherZ
Frechet
Gamma
GammaInverse
Gumbel
Gompertz
Kumaraswamy
Laplace
Logistic
LogNormal
Maxwell
Nakagami
Normal
Pareto
QuadraticU
RaisedCosine
Rayleigh
ShiftedGompertz
StudentT
Trapezoidal
Triangular
Uniform
UniformSum
VonMises
Weibull
WignerSemicircle
"""
from __future__ import print_function, division
from sympy import (log, sqrt, pi, S, Dummy, Interval, sympify, gamma,
Piecewise, And, Eq, binomial, factorial, Sum, floor, Abs,
Lambda, Basic, lowergamma, erf, erfi, erfinv, I, hyper,
uppergamma, sinh, atan, Ne, expint)
from sympy import beta as beta_fn
from sympy import cos, sin, tan, atan, exp, besseli, besselj, besselk
from sympy.external import import_module
from sympy.matrices import MatrixBase
from sympy.stats.crv import (SingleContinuousPSpace, SingleContinuousDistribution,
ContinuousDistributionHandmade)
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.joint_rv_types import multivariate_rv
from sympy.stats.rv import _value_check, RandomSymbol
import random
oo = S.Infinity
__all__ = ['ContinuousRV',
'Arcsin',
'Benini',
'Beta',
'BetaNoncentral',
'BetaPrime',
'Cauchy',
'Chi',
'ChiNoncentral',
'ChiSquared',
'Dagum',
'Erlang',
'Exponential',
'FDistribution',
'FisherZ',
'Frechet',
'Gamma',
'GammaInverse',
'Gompertz',
'Gumbel',
'Kumaraswamy',
'Laplace',
'Logistic',
'LogNormal',
'Maxwell',
'Nakagami',
'Normal',
'Pareto',
'QuadraticU',
'RaisedCosine',
'Rayleigh',
'StudentT',
'ShiftedGompertz',
'Trapezoidal',
'Triangular',
'Uniform',
'UniformSum',
'VonMises',
'Weibull',
'WignerSemicircle'
]
def ContinuousRV(symbol, density, set=Interval(-oo, oo)):
"""
Create a Continuous Random Variable given the following:
-- a symbol
-- a probability density function
-- set on which the pdf is valid (defaults to entire real line)
Returns a RandomSymbol.
Many common continuous random variable types are already implemented.
This function should be necessary only very rarely.
Examples
========
>>> from sympy import Symbol, sqrt, exp, pi
>>> from sympy.stats import ContinuousRV, P, E
>>> x = Symbol("x")
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
>>> X = ContinuousRV(x, pdf)
>>> E(X)
0
>>> P(X>0)
1/2
"""
pdf = Piecewise((density, set.as_relational(symbol)), (0, True))
pdf = Lambda(symbol, pdf)
dist = ContinuousDistributionHandmade(pdf, set)
return SingleContinuousPSpace(symbol, dist).value
def rv(symbol, cls, args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleContinuousPSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
########################################
# Continuous Probability Distributions #
########################################
#-------------------------------------------------------------------------------
# Arcsin distribution ----------------------------------------------------------
class ArcsinDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
def pdf(self, x):
return 1/(pi*sqrt((x - self.a)*(self.b - x)))
def _cdf(self, x):
from sympy import asin
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < a),
(2*asin(sqrt((x - a)/(b - a)))/pi, x <= b),
(S.One, True))
def Arcsin(name, a=0, b=1):
r"""
Create a Continuous Random Variable with an arcsin distribution.
The density of the arcsin distribution is given by
.. math::
f(x) := \frac{1}{\pi\sqrt{(x-a)(b-x)}}
with :math:`x \in (a,b)`. It must hold that :math:`-\infty < a < b < \infty`.
Parameters
==========
a : Real number, the left interval boundary
b : Real number, the right interval boundary
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Arcsin, density, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = Arcsin("x", a, b)
>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))
>>> cdf(X)(z)
Piecewise((0, a > z),
(2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z),
(1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Arcsine_distribution
"""
return rv(name, ArcsinDistribution, (a, b))
#-------------------------------------------------------------------------------
# Benini distribution ----------------------------------------------------------
class BeniniDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'sigma')
@staticmethod
def check(alpha, beta, sigma):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(sigma > 0, "Scale parameter Sigma must be positive.")
@property
def set(self):
return Interval(self.sigma, oo)
def pdf(self, x):
alpha, beta, sigma = self.alpha, self.beta, self.sigma
return (exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)
*(alpha/x + 2*beta*log(x/sigma)/x))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function of the '
'Benini distribution does not exist.')
def Benini(name, alpha, beta, sigma):
r"""
Create a Continuous Random Variable with a Benini distribution.
The density of the Benini distribution is given by
.. math::
f(x) := e^{-\alpha\log{\frac{x}{\sigma}}
-\beta\log^2\left[{\frac{x}{\sigma}}\right]}
\left(\frac{\alpha}{x}+\frac{2\beta\log{\frac{x}{\sigma}}}{x}\right)
This is a heavy-tailed distrubtion and is also known as the log-Rayleigh
distribution.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
sigma : Real number, `\sigma > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Benini, density, cdf
>>> from sympy import Symbol, simplify, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Benini("x", alpha, beta, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ / z \\ / z \ 2/ z \
| 2*beta*log|-----|| - alpha*log|-----| - beta*log |-----|
|alpha \sigma/| \sigma/ \sigma/
|----- + -----------------|*e
\ z z /
>>> cdf(X)(z)
Piecewise((1 - exp(-alpha*log(z/sigma) - beta*log(z/sigma)**2), sigma <= z),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Benini_distribution
.. [2] http://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html
"""
return rv(name, BeniniDistribution, (alpha, beta, sigma))
#-------------------------------------------------------------------------------
# Beta distribution ------------------------------------------------------------
class BetaDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)
def sample(self):
return random.betavariate(self.alpha, self.beta)
def _characteristic_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), I*t)
def _moment_generating_function(self, t):
return hyper((self.alpha,), (self.alpha + self.beta,), t)
def Beta(name, alpha, beta):
r"""
Create a Continuous Random Variable with a Beta distribution.
The density of the Beta distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Beta, density, E, variance
>>> from sympy import Symbol, simplify, pprint, factor
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Beta("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 beta - 1
z *(1 - z)
--------------------------
B(alpha, beta)
>>> simplify(E(X))
alpha/(alpha + beta)
>>> factor(simplify(variance(X))) #doctest: +SKIP
alpha*beta/((alpha + beta)**2*(alpha + beta + 1))
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_distribution
.. [2] http://mathworld.wolfram.com/BetaDistribution.html
"""
return rv(name, BetaDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Noncentral Beta distribution ------------------------------------------------------------
class BetaNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta', 'lamda')
set = Interval(0, 1)
@staticmethod
def check(alpha, beta, lamda):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
_value_check(lamda >= 0, "Noncentrality parameter Lambda must be positive")
def pdf(self, x):
alpha, beta, lamda = self.alpha, self.beta, self.lamda
k = Dummy("k")
return Sum(exp(-lamda / 2) * (lamda / 2)**k * x**(alpha + k - 1) *(
1 - x)**(beta - 1) / (factorial(k) * beta_fn(alpha + k, beta)), (k, 0, oo))
def BetaNoncentral(name, alpha, beta, lamda):
r"""
Create a Continuous Random Variable with a Type I Noncentral Beta distribution.
The density of the Noncentral Beta distribution is given by
.. math::
f(x) := \sum_{k=0}^\infty e^{-\lambda/2}\frac{(\lambda/2)^k}{k!}
\frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha+k,\beta)}
with :math:`x \in [0,1]`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
lamda: Real number, `\lambda >= 0`, noncentrality parameter
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import BetaNoncentral, density, cdf
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> lamda = Symbol("lamda", nonnegative=True)
>>> z = Symbol("z")
>>> X = BetaNoncentral("x", alpha, beta, lamda)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
oo
_____
\ `
\ -lamda
\ k -------
\ k + alpha - 1 /lamda\ beta - 1 2
) z *|-----| *(1 - z) *e
/ \ 2 /
/ ------------------------------------------------
/ B(k + alpha, beta)*k!
/____,
k = 0
Compute cdf with specific 'x', 'alpha', 'beta' and 'lamda' values as follows :
>>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit()
exp(-1/2)*Integral(Sum(2**(-_k)*_x**_k/(beta(_k + 1, 1)*factorial(_k)), (_k, 0, oo)), (_x, 0, 2))
The argument evaluate=False prevents an attempt at evaluation
of the sum for general x, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_beta_distribution
.. [2] https://reference.wolfram.com/language/ref/NoncentralBetaDistribution.html
"""
return rv(name, BetaNoncentralDistribution, (alpha, beta, lamda))
#-------------------------------------------------------------------------------
# Beta prime distribution ------------------------------------------------------
class BetaPrimeDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Shape parameter Alpha must be positive.")
_value_check(beta > 0, "Shape parameter Beta must be positive.")
set = Interval(0, oo)
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta)
def BetaPrime(name, alpha, beta):
r"""
Create a continuous random variable with a Beta prime distribution.
The density of the Beta prime distribution is given by
.. math::
f(x) := \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}
with :math:`x > 0`.
Parameters
==========
alpha : Real number, `\alpha > 0`, a shape
beta : Real number, `\beta > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import BetaPrime, density
>>> from sympy import Symbol, pprint
>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = BetaPrime("x", alpha, beta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
alpha - 1 -alpha - beta
z *(z + 1)
-------------------------------
B(alpha, beta)
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_prime_distribution
.. [2] http://mathworld.wolfram.com/BetaPrimeDistribution.html
"""
return rv(name, BetaPrimeDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Cauchy distribution ----------------------------------------------------------
class CauchyDistribution(SingleContinuousDistribution):
_argnames = ('x0', 'gamma')
@staticmethod
def check(x0, gamma):
_value_check(gamma > 0, "Scale parameter Gamma must be positive.")
def pdf(self, x):
return 1/(pi*self.gamma*(1 + ((x - self.x0)/self.gamma)**2))
def _cdf(self, x):
x0, gamma = self.x0, self.gamma
return (1/pi)*atan((x - x0)/gamma) + S.Half
def _characteristic_function(self, t):
return exp(self.x0 * I * t - self.gamma * Abs(t))
def _moment_generating_function(self, t):
raise NotImplementedError("The moment generating function for the "
"Cauchy distribution does not exist.")
def _quantile(self, p):
return self.x0 + self.gamma*tan(pi*(p - S.Half))
def Cauchy(name, x0, gamma):
r"""
Create a continuous random variable with a Cauchy distribution.
The density of the Cauchy distribution is given by
.. math::
f(x) := \frac{1}{\pi \gamma [1 + {(\frac{x-x_0}{\gamma})}^2]}
Parameters
==========
x0 : Real number, the location
gamma : Real number, `\gamma > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Cauchy, density
>>> from sympy import Symbol
>>> x0 = Symbol("x0")
>>> gamma = Symbol("gamma", positive=True)
>>> z = Symbol("z")
>>> X = Cauchy("x", x0, gamma)
>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_distribution
.. [2] http://mathworld.wolfram.com/CauchyDistribution.html
"""
return rv(name, CauchyDistribution, (x0, gamma))
#-------------------------------------------------------------------------------
# Chi distribution -------------------------------------------------------------
class ChiDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
return 2**(1 - self.k/2)*x**(self.k - 1)*exp(-x**2/2)/gamma(self.k/2)
def _characteristic_function(self, t):
k = self.k
part_1 = hyper((k/2,), (S(1)/2,), -t**2/2)
part_2 = I*t*sqrt(2)*gamma((k+1)/2)/gamma(k/2)
part_3 = hyper(((k+1)/2,), (S(3)/2,), -t**2/2)
return part_1 + part_2*part_3
def _moment_generating_function(self, t):
k = self.k
part_1 = hyper((k / 2,), (S(1) / 2,), t ** 2 / 2)
part_2 = t * sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2)
part_3 = hyper(((k + 1) / 2,), (S(3) / 2,), t ** 2 / 2)
return part_1 + part_2 * part_3
def Chi(name, k):
r"""
Create a continuous random variable with a Chi distribution.
The density of the Chi distribution is given by
.. math::
f(x) := \frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Chi, density, E
>>> from sympy import Symbol, simplify
>>> k = Symbol("k", integer=True)
>>> z = Symbol("z")
>>> X = Chi("x", k)
>>> density(X)(z)
2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2)
>>> simplify(E(X))
sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2)
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_distribution
.. [2] http://mathworld.wolfram.com/ChiDistribution.html
"""
return rv(name, ChiDistribution, (k,))
#-------------------------------------------------------------------------------
# Non-central Chi distribution -------------------------------------------------
class ChiNoncentralDistribution(SingleContinuousDistribution):
_argnames = ('k', 'l')
@staticmethod
def check(k, l):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
_value_check(l > 0, "Shift parameter Lambda must be positive.")
set = Interval(0, oo)
def pdf(self, x):
k, l = self.k, self.l
return exp(-(x**2+l**2)/2)*x**k*l / (l*x)**(k/2) * besseli(k/2-1, l*x)
def ChiNoncentral(name, k, l):
r"""
Create a continuous random variable with a non-central Chi distribution.
The density of the non-central Chi distribution is given by
.. math::
f(x) := \frac{e^{-(x^2+\lambda^2)/2} x^k\lambda}
{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)
with `x \geq 0`. Here, `I_\nu (x)` is the
:ref:`modified Bessel function of the first kind <besseli>`.
Parameters
==========
k : A positive Integer, `k > 0`, the number of degrees of freedom
lambda : Real number, `\lambda > 0`, Shift parameter
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ChiNoncentral, density
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True)
>>> l = Symbol("l")
>>> z = Symbol("z")
>>> X = ChiNoncentral("x", k, l)
>>> density(X)(z)
l*z**k*(l*z)**(-k/2)*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Noncentral_chi_distribution
"""
return rv(name, ChiNoncentralDistribution, (k, l))
#-------------------------------------------------------------------------------
# Chi squared distribution -----------------------------------------------------
class ChiSquaredDistribution(SingleContinuousDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k > 0, "Number of degrees of freedom (k) must be positive.")
_value_check(k.is_integer, "Number of degrees of freedom (k) must be an integer.")
set = Interval(0, oo)
def pdf(self, x):
k = self.k
return 1/(2**(k/2)*gamma(k/2))*x**(k/2 - 1)*exp(-x/2)
def _cdf(self, x):
k = self.k
return Piecewise(
(S.One/gamma(k/2)*lowergamma(k/2, x/2), x >= 0),
(0, True)
)
def _characteristic_function(self, t):
return (1 - 2*I*t)**(-self.k/2)
def _moment_generating_function(self, t):
return (1 - 2*t)**(-self.k/2)
def ChiSquared(name, k):
r"""
Create a continuous random variable with a Chi-squared distribution.
The density of the Chi-squared distribution is given by
.. math::
f(x) := \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}
x^{\frac{k}{2}-1} e^{-\frac{x}{2}}
with :math:`x \geq 0`.
Parameters
==========
k : Positive integer, The number of degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ChiSquared, density, E, variance, moment
>>> from sympy import Symbol
>>> k = Symbol("k", integer=True, positive=True)
>>> z = Symbol("z")
>>> X = ChiSquared("x", k)
>>> density(X)(z)
2**(-k/2)*z**(k/2 - 1)*exp(-z/2)/gamma(k/2)
>>> E(X)
k
>>> variance(X)
2*k
>>> moment(X, 3)
k**3 + 6*k**2 + 8*k
References
==========
.. [1] https://en.wikipedia.org/wiki/Chi_squared_distribution
.. [2] http://mathworld.wolfram.com/Chi-SquaredDistribution.html
"""
return rv(name, ChiSquaredDistribution, (k, ))
#-------------------------------------------------------------------------------
# Dagum distribution -----------------------------------------------------------
class DagumDistribution(SingleContinuousDistribution):
_argnames = ('p', 'a', 'b')
@staticmethod
def check(p, a, b):
_value_check(p > 0, "Shape parameter p must be positive.")
_value_check(a > 0, "Shape parameter a must be positive.")
_value_check(b > 0, "Scale parameter b must be positive.")
def pdf(self, x):
p, a, b = self.p, self.a, self.b
return a*p/x*((x/b)**(a*p)/(((x/b)**a + 1)**(p + 1)))
def _cdf(self, x):
p, a, b = self.p, self.a, self.b
return Piecewise(((S.One + (S(x)/b)**-a)**-p, x>=0),
(S.Zero, True))
def Dagum(name, p, a, b):
r"""
Create a continuous random variable with a Dagum distribution.
The density of the Dagum distribution is given by
.. math::
f(x) := \frac{a p}{x} \left( \frac{\left(\tfrac{x}{b}\right)^{a p}}
{\left(\left(\tfrac{x}{b}\right)^a + 1 \right)^{p+1}} \right)
with :math:`x > 0`.
Parameters
==========
p : Real number, `p > 0`, a shape
a : Real number, `a > 0`, a shape
b : Real number, `b > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Dagum, density, cdf
>>> from sympy import Symbol
>>> p = Symbol("p", positive=True)
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Dagum("x", p, a, b)
>>> density(X)(z)
a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z
>>> cdf(X)(z)
Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dagum_distribution
"""
return rv(name, DagumDistribution, (p, a, b))
#-------------------------------------------------------------------------------
# Erlang distribution ----------------------------------------------------------
def Erlang(name, k, l):
r"""
Create a continuous random variable with an Erlang distribution.
The density of the Erlang distribution is given by
.. math::
f(x) := \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}
with :math:`x \in [0,\infty]`.
Parameters
==========
k : Positive integer
l : Real number, `\lambda > 0`, the rate
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Erlang, density, cdf, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> k = Symbol("k", integer=True, positive=True)
>>> l = Symbol("l", positive=True)
>>> z = Symbol("z")
>>> X = Erlang("x", k, l)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k k - 1 -l*z
l *z *e
---------------
Gamma(k)
>>> C = cdf(X)(z)
>>> pprint(C, use_unicode=False)
/lowergamma(k, l*z)
|------------------ for z > 0
< Gamma(k)
|
\ 0 otherwise
>>> E(X)
k/l
>>> simplify(variance(X))
k/l**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Erlang_distribution
.. [2] http://mathworld.wolfram.com/ErlangDistribution.html
"""
return rv(name, GammaDistribution, (k, S.One/l))
#-------------------------------------------------------------------------------
# Exponential distribution -----------------------------------------------------
class ExponentialDistribution(SingleContinuousDistribution):
_argnames = ('rate',)
set = Interval(0, oo)
@staticmethod
def check(rate):
_value_check(rate > 0, "Rate must be positive.")
def pdf(self, x):
return self.rate * exp(-self.rate*x)
def sample(self):
return random.expovariate(self.rate)
def _cdf(self, x):
return Piecewise(
(S.One - exp(-self.rate*x), x >= 0),
(0, True),
)
def _characteristic_function(self, t):
rate = self.rate
return rate / (rate - I*t)
def _moment_generating_function(self, t):
rate = self.rate
return rate / (rate - t)
def _quantile(self, p):
return -log(1-p)/self.rate
def Exponential(name, rate):
r"""
Create a continuous random variable with an Exponential distribution.
The density of the exponential distribution is given by
.. math::
f(x) := \lambda \exp(-\lambda x)
with `x > 0`. Note that the expected value is `1/\lambda`.
Parameters
==========
rate : A positive Real number, `\lambda > 0`, the rate (or inverse scale/inverse mean)
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Exponential, density, cdf, E
>>> from sympy.stats import variance, std, skewness, quantile
>>> from sympy import Symbol, symbols
>>> l = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> p = Symbol("p")
>>> X = Exponential("x", l)
>>> density(X)(z)
lambda*exp(-lambda*z)
>>> cdf(X)(z)
Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> E(X)
1/lambda
>>> variance(X)
lambda**(-2)
>>> skewness(X)
2
>>> X = Exponential('x', 10)
>>> density(X)(z)
10*exp(-10*z)
>>> E(X)
1/10
>>> std(X)
1/10
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponential_distribution
.. [2] http://mathworld.wolfram.com/ExponentialDistribution.html
"""
return rv(name, ExponentialDistribution, (rate, ))
#-------------------------------------------------------------------------------
# F distribution ---------------------------------------------------------------
class FDistributionDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
set = Interval(0, oo)
@staticmethod
def check(d1, d2):
_value_check((d1 > 0, d1.is_integer),
"Degrees of freedom d1 must be positive integer.")
_value_check((d2 > 0, d2.is_integer),
"Degrees of freedom d2 must be positive integer.")
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2))
/ (x * beta_fn(d1/2, d2/2)))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'F-distribution does not exist.')
def FDistribution(name, d1, d2):
r"""
Create a continuous random variable with a F distribution.
The density of the F distribution is given by
.. math::
f(x) := \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}
{(d_1 x + d_2)^{d_1 + d_2}}}}
{x \mathrm{B} \left(\frac{d_1}{2}, \frac{d_2}{2}\right)}
with :math:`x > 0`.
Parameters
==========
d1 : `d_1 > 0`, where d_1 is the degrees of freedom (n_1 - 1)
d2 : `d_2 > 0`, where d_2 is the degrees of freedom (n_2 - 1)
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import FDistribution, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FDistribution("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d2
-- ______________________________
2 / d1 -d1 - d2
d2 *\/ (d1*z) *(d1*z + d2)
--------------------------------------
/d1 d2\
z*B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/F-distribution
.. [2] http://mathworld.wolfram.com/F-Distribution.html
"""
return rv(name, FDistributionDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Fisher Z distribution --------------------------------------------------------
class FisherZDistribution(SingleContinuousDistribution):
_argnames = ('d1', 'd2')
def pdf(self, x):
d1, d2 = self.d1, self.d2
return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) *
exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2))
def FisherZ(name, d1, d2):
r"""
Create a Continuous Random Variable with an Fisher's Z distribution.
The density of the Fisher's Z distribution is given by
.. math::
f(x) := \frac{2d_1^{d_1/2} d_2^{d_2/2}} {\mathrm{B}(d_1/2, d_2/2)}
\frac{e^{d_1z}}{\left(d_1e^{2z}+d_2\right)^{\left(d_1+d_2\right)/2}}
.. TODO - What is the difference between these degrees of freedom?
Parameters
==========
d1 : `d_1 > 0`, degree of freedom
d2 : `d_2 > 0`, degree of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import FisherZ, density
>>> from sympy import Symbol, simplify, pprint
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
>>> X = FisherZ("x", d1, d2)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
d1 d2
d1 d2 - -- - --
-- -- 2 2
2 2 / 2*z \ d1*z
2*d1 *d2 *\d1*e + d2/ *e
-----------------------------------------
/d1 d2\
B|--, --|
\2 2 /
References
==========
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_z-distribution
.. [2] http://mathworld.wolfram.com/Fishersz-Distribution.html
"""
return rv(name, FisherZDistribution, (d1, d2))
#-------------------------------------------------------------------------------
# Frechet distribution ---------------------------------------------------------
class FrechetDistribution(SingleContinuousDistribution):
_argnames = ('a', 's', 'm')
set = Interval(0, oo)
def __new__(cls, a, s=1, m=0):
a, s, m = list(map(sympify, (a, s, m)))
return Basic.__new__(cls, a, s, m)
def pdf(self, x):
a, s, m = self.a, self.s, self.m
return a/s * ((x-m)/s)**(-1-a) * exp(-((x-m)/s)**(-a))
def _cdf(self, x):
a, s, m = self.a, self.s, self.m
return Piecewise((exp(-((x-m)/s)**(-a)), x >= m),
(S.Zero, True))
def Frechet(name, a, s=1, m=0):
r"""
Create a continuous random variable with a Frechet distribution.
The density of the Frechet distribution is given by
.. math::
f(x) := \frac{\alpha}{s} \left(\frac{x-m}{s}\right)^{-1-\alpha}
e^{-(\frac{x-m}{s})^{-\alpha}}
with :math:`x \geq m`.
Parameters
==========
a : Real number, :math:`a \in \left(0, \infty\right)` the shape
s : Real number, :math:`s \in \left(0, \infty\right)` the scale
m : Real number, :math:`m \in \left(-\infty, \infty\right)` the minimum
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Frechet, density, E, std, cdf
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> s = Symbol("s", positive=True)
>>> m = Symbol("m", real=True)
>>> z = Symbol("z")
>>> X = Frechet("x", a, s, m)
>>> density(X)(z)
a*((-m + z)/s)**(-a - 1)*exp(-((-m + z)/s)**(-a))/s
>>> cdf(X)(z)
Piecewise((exp(-((-m + z)/s)**(-a)), m <= z), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
"""
return rv(name, FrechetDistribution, (a, s, m))
#-------------------------------------------------------------------------------
# Gamma distribution -----------------------------------------------------------
class GammaDistribution(SingleContinuousDistribution):
_argnames = ('k', 'theta')
set = Interval(0, oo)
@staticmethod
def check(k, theta):
_value_check(k > 0, "k must be positive")
_value_check(theta > 0, "Theta must be positive")
def pdf(self, x):
k, theta = self.k, self.theta
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def sample(self):
return random.gammavariate(self.k, self.theta)
def _cdf(self, x):
k, theta = self.k, self.theta
return Piecewise(
(lowergamma(k, S(x)/theta)/gamma(k), x > 0),
(S.Zero, True))
def _characteristic_function(self, t):
return (1 - self.theta*I*t)**(-self.k)
def _moment_generating_function(self, t):
return (1- self.theta*t)**(-self.k)
def Gamma(name, k, theta):
r"""
Create a continuous random variable with a Gamma distribution.
The density of the Gamma distribution is given by
.. math::
f(x) := \frac{1}{\Gamma(k) \theta^k} x^{k - 1} e^{-\frac{x}{\theta}}
with :math:`x \in [0,1]`.
Parameters
==========
k : Real number, `k > 0`, a shape
theta : Real number, `\theta > 0`, a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Gamma, density, cdf, E, variance
>>> from sympy import Symbol, pprint, simplify
>>> k = Symbol("k", positive=True)
>>> theta = Symbol("theta", positive=True)
>>> z = Symbol("z")
>>> X = Gamma("x", k, theta)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-z
-----
-k k - 1 theta
theta *z *e
---------------------
Gamma(k)
>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
/ / z \
|k*lowergamma|k, -----|
| \ theta/
<---------------------- for z >= 0
| Gamma(k + 1)
|
\ 0 otherwise
>>> E(X)
k*theta
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_distribution
.. [2] http://mathworld.wolfram.com/GammaDistribution.html
"""
return rv(name, GammaDistribution, (k, theta))
#-------------------------------------------------------------------------------
# Inverse Gamma distribution ---------------------------------------------------
class GammaInverseDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "alpha must be positive")
_value_check(b > 0, "beta must be positive")
def pdf(self, x):
a, b = self.a, self.b
return b**a/gamma(a) * x**(-a-1) * exp(-b/x)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise((uppergamma(a,b/x)/gamma(a), x > 0),
(S.Zero, True))
def sample(self):
scipy = import_module('scipy')
if scipy:
from scipy.stats import invgamma
return invgamma.rvs(float(self.a), 0, float(self.b))
else:
raise NotImplementedError('Sampling the inverse Gamma Distribution requires Scipy.')
def _characteristic_function(self, t):
a, b = self.a, self.b
return 2 * (-I*b*t)**(a/2) * besselk(sqrt(-4*I*b*t)) / gamma(a)
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the '
'gamma inverse distribution does not exist.')
def GammaInverse(name, a, b):
r"""
Create a continuous random variable with an inverse Gamma distribution.
The density of the inverse Gamma distribution is given by
.. math::
f(x) := \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1}
\exp\left(\frac{-\beta}{x}\right)
with :math:`x > 0`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import GammaInverse, density, cdf, E, variance
>>> from sympy import Symbol, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = GammaInverse("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
---
a -a - 1 z
b *z *e
---------------
Gamma(a)
>>> cdf(X)(z)
Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse-gamma_distribution
"""
return rv(name, GammaInverseDistribution, (a, b))
#-------------------------------------------------------------------------------
# Gumbel distribution --------------------------------------------------------
class GumbelDistribution(SingleContinuousDistribution):
_argnames = ('beta', 'mu')
set = Interval(-oo, oo)
def pdf(self, x):
beta, mu = self.beta, self.mu
z = (x - mu)/beta
return (1/beta)*exp(-(z + exp(-z)))
def _cdf(self, x):
beta, mu = self.beta, self.mu
return exp(-exp((mu - x)/beta))
def _characteristic_function(self, t):
return gamma(1 - I*self.beta*t) * exp(I*self.mu*t)
def _moment_generating_function(self, t):
return gamma(1 - self.beta*t) * exp(I*self.mu*t)
def Gumbel(name, beta, mu):
r"""
Create a Continuous Random Variable with Gumbel distribution.
The density of the Gumbel distribution is given by
.. math::
f(x) := \dfrac{1}{\beta} \exp \left( -\dfrac{x-\mu}{\beta}
- \exp \left( -\dfrac{x - \mu}{\beta} \right) \right)
with :math:`x \in [ - \infty, \infty ]`.
Parameters
==========
mu: Real number, 'mu' is a location
beta: Real number, 'beta > 0' is a scale
Returns
==========
A RandomSymbol
Examples
==========
>>> from sympy.stats import Gumbel, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> x = Symbol("x")
>>> mu = Symbol("mu")
>>> beta = Symbol("beta", positive=True)
>>> X = Gumbel("x", beta, mu)
>>> density(X)(x)
exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta
>>> cdf(X)(x)
exp(-exp((mu - x)/beta))
References
==========
.. [1] http://mathworld.wolfram.com/GumbelDistribution.html
.. [2] https://en.wikipedia.org/wiki/Gumbel_distribution
"""
return rv(name, GumbelDistribution, (beta, mu))
#-------------------------------------------------------------------------------
# Gompertz distribution --------------------------------------------------------
class GompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
eta, b = self.eta, self.b
return b*eta*exp(b*x)*exp(eta)*exp(-eta*exp(b*x))
def _cdf(self, x):
eta, b = self.eta, self.b
return 1 - exp(eta)*exp(-eta*exp(b*x))
def _moment_generating_function(self, t):
eta, b = self.eta, self.b
return eta * exp(eta) * expint(t/b, eta)
def Gompertz(name, b, eta):
r"""
Create a Continuous Random Variable with Gompertz distribution.
The density of the Gompertz distribution is given by
.. math::
f(x) := b \eta e^{b x} e^{\eta} \exp \left(-\eta e^{bx} \right)
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Gompertz, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> z = Symbol("z")
>>> X = Gompertz("x", b, eta)
>>> density(X)(z)
b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z))
References
==========
.. [1] https://en.wikipedia.org/wiki/Gompertz_distribution
"""
return rv(name, GompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# Kumaraswamy distribution -----------------------------------------------------
class KumaraswamyDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
set = Interval(0, oo)
@staticmethod
def check(a, b):
_value_check(a > 0, "a must be positive")
_value_check(b > 0, "b must be positive")
def pdf(self, x):
a, b = self.a, self.b
return a * b * x**(a-1) * (1-x**a)**(b-1)
def _cdf(self, x):
a, b = self.a, self.b
return Piecewise(
(S.Zero, x < S.Zero),
(1 - (1 - x**a)**b, x <= S.One),
(S.One, True))
def Kumaraswamy(name, a, b):
r"""
Create a Continuous Random Variable with a Kumaraswamy distribution.
The density of the Kumaraswamy distribution is given by
.. math::
f(x) := a b x^{a-1} (1-x^a)^{b-1}
with :math:`x \in [0,1]`.
Parameters
==========
a : Real number, `a > 0` a shape
b : Real number, `b > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Kumaraswamy, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Kumaraswamy("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
b - 1
a - 1 / a\
a*b*z *\1 - z /
>>> cdf(X)(z)
Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Kumaraswamy_distribution
"""
return rv(name, KumaraswamyDistribution, (a, b))
#-------------------------------------------------------------------------------
# Laplace distribution ---------------------------------------------------------
class LaplaceDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'b')
def pdf(self, x):
mu, b = self.mu, self.b
return 1/(2*b)*exp(-Abs(x - mu)/b)
def _cdf(self, x):
mu, b = self.mu, self.b
return Piecewise(
(S.Half*exp((x - mu)/b), x < mu),
(S.One - S.Half*exp(-(x - mu)/b), x >= mu)
)
def _characteristic_function(self, t):
return exp(self.mu*I*t) / (1 + self.b**2*t**2)
def _moment_generating_function(self, t):
return exp(self.mu*t) / (1 - self.b**2*t**2)
def Laplace(name, mu, b):
r"""
Create a continuous random variable with a Laplace distribution.
The density of the Laplace distribution is given by
.. math::
f(x) := \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}b \right)
Parameters
==========
mu : Real number or a list/matrix, the location (mean) or the
location vector
b : Real number or a positive definite matrix, representing a scale
or the covariance matrix.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Laplace, density, cdf
>>> from sympy import Symbol, pprint
>>> mu = Symbol("mu")
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Laplace("x", mu, b)
>>> density(X)(z)
exp(-Abs(mu - z)/b)/(2*b)
>>> cdf(X)(z)
Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True))
>>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]])
>>> pprint(density(L)(1, 2), use_unicode=False)
5 / ____\
e *besselk\0, \/ 35 /
---------------------
pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Laplace_distribution
.. [2] http://mathworld.wolfram.com/LaplaceDistribution.html
"""
if isinstance(mu, (list, MatrixBase)) and\
isinstance(b, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
return multivariate_rv(
MultivariateLaplaceDistribution, name, mu, b)
return rv(name, LaplaceDistribution, (mu, b))
#-------------------------------------------------------------------------------
# Logistic distribution --------------------------------------------------------
class LogisticDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
def pdf(self, x):
mu, s = self.mu, self.s
return exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2)
def _cdf(self, x):
mu, s = self.mu, self.s
return S.One/(1 + exp(-(x - mu)/s))
def _characteristic_function(self, t):
return Piecewise((exp(I*t*self.mu) * pi*self.s*t / sinh(pi*self.s*t), Ne(t, 0)), (S.One, True))
def _moment_generating_function(self, t):
return exp(self.mu*t) * Beta(1 - self.s*t, 1 + self.s*t)
def _quantile(self, p):
return self.mu - self.s*log(-S.One + S.One/p)
def Logistic(name, mu, s):
r"""
Create a continuous random variable with a logistic distribution.
The density of the logistic distribution is given by
.. math::
f(x) := \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2}
Parameters
==========
mu : Real number, the location (mean)
s : Real number, `s > 0` a scale
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Logistic, density, cdf
>>> from sympy import Symbol
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = Logistic("x", mu, s)
>>> density(X)(z)
exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2)
>>> cdf(X)(z)
1/(exp((mu - z)/s) + 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Logistic_distribution
.. [2] http://mathworld.wolfram.com/LogisticDistribution.html
"""
return rv(name, LogisticDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Log Normal distribution ------------------------------------------------------
class LogNormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
set = Interval(0, oo)
def pdf(self, x):
mean, std = self.mean, self.std
return exp(-(log(x) - mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std)
def sample(self):
return random.lognormvariate(self.mean, self.std)
def _cdf(self, x):
mean, std = self.mean, self.std
return Piecewise(
(S.Half + S.Half*erf((log(x) - mean)/sqrt(2)/std), x > 0),
(S.Zero, True)
)
def _moment_generating_function(self, t):
raise NotImplementedError('Moment generating function of the log-normal distribution is not defined.')
def LogNormal(name, mean, std):
r"""
Create a continuous random variable with a log-normal distribution.
The density of the log-normal distribution is given by
.. math::
f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}}
e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}
with :math:`x \geq 0`.
Parameters
==========
mu : Real number, the log-scale
sigma : Real number, :math:`\sigma^2 > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import LogNormal, density
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = LogNormal("x", mu, sigma)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-(-mu + log(z))
-----------------
2
___ 2*sigma
\/ 2 *e
------------------------
____
2*\/ pi *sigma*z
>>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z)
References
==========
.. [1] https://en.wikipedia.org/wiki/Lognormal
.. [2] http://mathworld.wolfram.com/LogNormalDistribution.html
"""
return rv(name, LogNormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Maxwell distribution ---------------------------------------------------------
class MaxwellDistribution(SingleContinuousDistribution):
_argnames = ('a',)
set = Interval(0, oo)
def pdf(self, x):
a = self.a
return sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
def _cdf(self, x):
a = self.a
return erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
def Maxwell(name, a):
r"""
Create a continuous random variable with a Maxwell distribution.
The density of the Maxwell distribution is given by
.. math::
f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3}
with :math:`x \geq 0`.
.. TODO - what does the parameter mean?
Parameters
==========
a : Real number, `a > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Maxwell, density, E, variance
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", positive=True)
>>> z = Symbol("z")
>>> X = Maxwell("x", a)
>>> density(X)(z)
sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3)
>>> E(X)
2*sqrt(2)*a/sqrt(pi)
>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Maxwell_distribution
.. [2] http://mathworld.wolfram.com/MaxwellDistribution.html
"""
return rv(name, MaxwellDistribution, (a, ))
#-------------------------------------------------------------------------------
# Nakagami distribution --------------------------------------------------------
class NakagamiDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'omega')
set = Interval(0, oo)
def pdf(self, x):
mu, omega = self.mu, self.omega
return 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu - 1)*exp(-mu/omega*x**2)
def _cdf(self, x):
mu, omega = self.mu, self.omega
return Piecewise(
(lowergamma(mu, (mu/omega)*x**2)/gamma(mu), x > 0),
(S.Zero, True))
def Nakagami(name, mu, omega):
r"""
Create a continuous random variable with a Nakagami distribution.
The density of the Nakagami distribution is given by
.. math::
f(x) := \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1}
\exp\left(-\frac{\mu}{\omega}x^2 \right)
with :math:`x > 0`.
Parameters
==========
mu : Real number, `\mu \geq \frac{1}{2}` a shape
omega : Real number, `\omega > 0`, the spread
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Nakagami, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", positive=True)
>>> omega = Symbol("omega", positive=True)
>>> z = Symbol("z")
>>> X = Nakagami("x", mu, omega)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-mu*z
-------
mu -mu 2*mu - 1 omega
2*mu *omega *z *e
----------------------------------
Gamma(mu)
>>> simplify(E(X))
sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1)
>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
omega*Gamma (mu + 1/2)
omega - -----------------------
Gamma(mu)*Gamma(mu + 1)
>>> cdf(X)(z)
Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0),
(0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Nakagami_distribution
"""
return rv(name, NakagamiDistribution, (mu, omega))
#-------------------------------------------------------------------------------
# Normal distribution ----------------------------------------------------------
class NormalDistribution(SingleContinuousDistribution):
_argnames = ('mean', 'std')
@staticmethod
def check(mean, std):
_value_check(std > 0, "Standard deviation must be positive")
def pdf(self, x):
return exp(-(x - self.mean)**2 / (2*self.std**2)) / (sqrt(2*pi)*self.std)
def sample(self):
return random.normalvariate(self.mean, self.std)
def _cdf(self, x):
mean, std = self.mean, self.std
return erf(sqrt(2)*(-mean + x)/(2*std))/2 + S.Half
def _characteristic_function(self, t):
mean, std = self.mean, self.std
return exp(I*mean*t - std**2*t**2/2)
def _moment_generating_function(self, t):
mean, std = self.mean, self.std
return exp(mean*t + std**2*t**2/2)
def _quantile(self, p):
mean, std = self.mean, self.std
return mean + std*sqrt(2)*erfinv(2*p - 1)
def Normal(name, mean, std):
r"""
Create a continuous random variable with a Normal distribution.
The density of the Normal distribution is given by
.. math::
f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }
Parameters
==========
mu : Real number or a list representing the mean or the mean vector
sigma : Real number or a positive definite sqaure matrix,
:math:`\sigma^2 > 0` the variance
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Normal, density, E, std, cdf, skewness, quantile
>>> from sympy import Symbol, simplify, pprint, factor, together, factor_terms
>>> mu = Symbol("mu")
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> y = Symbol("y")
>>> p = Symbol("p")
>>> X = Normal("x", mu, sigma)
>>> density(X)(z)
sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)
>>> C = simplify(cdf(X))(z) # it needs a little more help...
>>> pprint(C, use_unicode=False)
/ ___ \
|\/ 2 *(-mu + z)|
erf|---------------|
\ 2*sigma / 1
-------------------- + -
2 2
>>> quantile(X)(p)
mu + sqrt(2)*sigma*erfinv(2*p - 1)
>>> simplify(skewness(X))
0
>>> X = Normal("x", 0, 1) # Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*exp(-z**2/2)/(2*sqrt(pi))
>>> E(2*X + 1)
1
>>> simplify(std(2*X + 1))
2
>>> m = Normal('X', [1, 2], [[2, 1], [1, 2]])
>>> from sympy.stats.joint_rv import marginal_distribution
>>> pprint(density(m)(y, z))
/1 y\ /2*y z\ / z\ / y 2*z \
|- - -|*|--- - -| + |1 - -|*|- - + --- - 1|
___ \2 2/ \ 3 3/ \ 2/ \ 3 3 /
\/ 3 *e
--------------------------------------------------
6*pi
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
References
==========
.. [1] https://en.wikipedia.org/wiki/Normal_distribution
.. [2] http://mathworld.wolfram.com/NormalDistributionFunction.html
"""
if isinstance(mean, (list, MatrixBase)) and\
isinstance(std, (list, MatrixBase)):
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
return multivariate_rv(
MultivariateNormalDistribution, name, mean, std)
return rv(name, NormalDistribution, (mean, std))
#-------------------------------------------------------------------------------
# Pareto distribution ----------------------------------------------------------
class ParetoDistribution(SingleContinuousDistribution):
_argnames = ('xm', 'alpha')
@property
def set(self):
return Interval(self.xm, oo)
@staticmethod
def check(xm, alpha):
_value_check(xm > 0, "Xm must be positive")
_value_check(alpha > 0, "Alpha must be positive")
def pdf(self, x):
xm, alpha = self.xm, self.alpha
return alpha * xm**alpha / x**(alpha + 1)
def sample(self):
return random.paretovariate(self.alpha)
def _cdf(self, x):
xm, alpha = self.xm, self.alpha
return Piecewise(
(S.One - xm**alpha/x**alpha, x>=xm),
(0, True),
)
def _moment_generating_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-xm*t)**alpha * uppergamma(-alpha, -xm*t)
def _characteristic_function(self, t):
xm, alpha = self.xm, self.alpha
return alpha * (-I * xm * t) ** alpha * uppergamma(-alpha, -I * xm * t)
def Pareto(name, xm, alpha):
r"""
Create a continuous random variable with the Pareto distribution.
The density of the Pareto distribution is given by
.. math::
f(x) := \frac{\alpha\,x_m^\alpha}{x^{\alpha+1}}
with :math:`x \in [x_m,\infty]`.
Parameters
==========
xm : Real number, `x_m > 0`, a scale
alpha : Real number, `\alpha > 0`, a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Pareto, density
>>> from sympy import Symbol
>>> xm = Symbol("xm", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")
>>> X = Pareto("x", xm, beta)
>>> density(X)(z)
beta*xm**beta*z**(-beta - 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pareto_distribution
.. [2] http://mathworld.wolfram.com/ParetoDistribution.html
"""
return rv(name, ParetoDistribution, (xm, alpha))
#-------------------------------------------------------------------------------
# QuadraticU distribution ------------------------------------------------------
class QuadraticUDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b')
@property
def set(self):
return Interval(self.a, self.b)
def pdf(self, x):
a, b = self.a, self.b
alpha = 12 / (b-a)**3
beta = (a+b) / 2
return Piecewise(
(alpha * (x-beta)**2, And(a<=x, x<=b)),
(S.Zero, True))
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3 * (exp(a*t) * (4 + (a**2 + 2*a*(-2 + b) + b**2) * t) - exp(b*t) * (4 + (-4*b + (a + b)**2) * t)) / ((a-b)**3 * t**2)
def _characteristic_function(self, t):
def _moment_generating_function(self, t):
a, b = self.a, self.b
return -3*I*(exp(I*a*t*exp(I*b*t)) * (4*I - (-4*b + (a+b)**2)*t)) / ((a-b)**3 * t**2)
def QuadraticU(name, a, b):
r"""
Create a Continuous Random Variable with a U-quadratic distribution.
The density of the U-quadratic distribution is given by
.. math::
f(x) := \alpha (x-\beta)^2
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number
b : Real number, :math:`a < b`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import QuadraticU, density, E, variance
>>> from sympy import Symbol, simplify, factor, pprint
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")
>>> X = QuadraticU("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ 2
| / a b \
|12*|- - - - + z|
| \ 2 2 /
<----------------- for And(b >= z, a <= z)
| 3
| (-a + b)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/U-quadratic_distribution
"""
return rv(name, QuadraticUDistribution, (a, b))
#-------------------------------------------------------------------------------
# RaisedCosine distribution ----------------------------------------------------
class RaisedCosineDistribution(SingleContinuousDistribution):
_argnames = ('mu', 's')
@property
def set(self):
return Interval(self.mu - self.s, self.mu + self.s)
@staticmethod
def check(mu, s):
_value_check(s > 0, "s must be positive")
def pdf(self, x):
mu, s = self.mu, self.s
return Piecewise(
((1+cos(pi*(x-mu)/s)) / (2*s), And(mu-s<=x, x<=mu+s)),
(S.Zero, True))
def _characteristic_function(self, t):
mu, s = self.mu, self.s
return Piecewise((exp(-I*pi*mu/s)/2, Eq(t, -pi/s)),
(exp(I*pi*mu/s)/2, Eq(t, pi/s)),
(pi**2*sin(s*t)*exp(I*mu*t) / (s*t*(pi**2 - s**2*t**2)), True))
def _moment_generating_function(self, t):
mu, s = self.mu, self.s
return pi**2 * sinh(s*t) * exp(mu*t) / (s*t*(pi**2 + s**2*t**2))
def RaisedCosine(name, mu, s):
r"""
Create a Continuous Random Variable with a raised cosine distribution.
The density of the raised cosine distribution is given by
.. math::
f(x) := \frac{1}{2s}\left(1+\cos\left(\frac{x-\mu}{s}\pi\right)\right)
with :math:`x \in [\mu-s,\mu+s]`.
Parameters
==========
mu : Real number
s : Real number, `s > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import RaisedCosine, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")
>>> X = RaisedCosine("x", mu, s)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ /pi*(-mu + z)\
|cos|------------| + 1
| \ s /
<--------------------- for And(z >= mu - s, z <= mu + s)
| 2*s
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Raised_cosine_distribution
"""
return rv(name, RaisedCosineDistribution, (mu, s))
#-------------------------------------------------------------------------------
# Rayleigh distribution --------------------------------------------------------
class RayleighDistribution(SingleContinuousDistribution):
_argnames = ('sigma',)
set = Interval(0, oo)
def pdf(self, x):
sigma = self.sigma
return x/sigma**2*exp(-x**2/(2*sigma**2))
def _cdf(self, x):
sigma = self.sigma
return 1 - exp(-(x**2/(2*sigma**2)))
def _characteristic_function(self, t):
sigma = self.sigma
return 1 - sigma*t*exp(-sigma**2*t**2/2) * sqrt(pi/2) * (erfi(sigma*t/sqrt(2)) - I)
def _moment_generating_function(self, t):
sigma = self.sigma
return 1 + sigma*t*exp(sigma**2*t**2/2) * sqrt(pi/2) * (erf(sigma*t/sqrt(2)) + 1)
def Rayleigh(name, sigma):
r"""
Create a continuous random variable with a Rayleigh distribution.
The density of the Rayleigh distribution is given by
.. math ::
f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}
with :math:`x > 0`.
Parameters
==========
sigma : Real number, `\sigma > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Rayleigh, density, E, variance
>>> from sympy import Symbol, simplify
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
>>> X = Rayleigh("x", sigma)
>>> density(X)(z)
z*exp(-z**2/(2*sigma**2))/sigma**2
>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2
>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Rayleigh_distribution
.. [2] http://mathworld.wolfram.com/RayleighDistribution.html
"""
return rv(name, RayleighDistribution, (sigma, ))
#-------------------------------------------------------------------------------
# Shifted Gompertz distribution ------------------------------------------------
class ShiftedGompertzDistribution(SingleContinuousDistribution):
_argnames = ('b', 'eta')
set = Interval(0, oo)
@staticmethod
def check(b, eta):
_value_check(b > 0, "b must be positive")
_value_check(eta > 0, "eta must be positive")
def pdf(self, x):
b, eta = self.b, self.eta
return b*exp(-b*x)*exp(-eta*exp(-b*x))*(1+eta*(1-exp(-b*x)))
def ShiftedGompertz(name, b, eta):
r"""
Create a continuous random variable with a Shifted Gompertz distribution.
The density of the Shifted Gompertz distribution is given by
.. math::
f(x) := b e^{-b x} e^{-\eta \exp(-b x)} \left[1 + \eta(1 - e^(-bx)) \right]
with :math: 'x \in [0, \inf)'.
Parameters
==========
b: Real number, 'b > 0' a scale
eta: Real number, 'eta > 0' a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import ShiftedGompertz, density, E, variance
>>> from sympy import Symbol
>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> x = Symbol("x")
>>> X = ShiftedGompertz("x", b, eta)
>>> density(X)(x)
b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
References
==========
.. [1] https://en.wikipedia.org/wiki/Shifted_Gompertz_distribution
"""
return rv(name, ShiftedGompertzDistribution, (b, eta))
#-------------------------------------------------------------------------------
# StudentT distribution --------------------------------------------------------
class StudentTDistribution(SingleContinuousDistribution):
_argnames = ('nu',)
def pdf(self, x):
nu = self.nu
return 1/(sqrt(nu)*beta_fn(S(1)/2, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2)
def _cdf(self, x):
nu = self.nu
return S.Half + x*gamma((nu+1)/2)*hyper((S.Half, (nu+1)/2),
(S(3)/2,), -x**2/nu)/(sqrt(pi*nu)*gamma(nu/2))
def _moment_generating_function(self, t):
raise NotImplementedError('The moment generating function for the Student-T distribution is undefined.')
def StudentT(name, nu):
r"""
Create a continuous random variable with a student's t distribution.
The density of the student's t distribution is given by
.. math::
f(x) := \frac{\Gamma \left(\frac{\nu+1}{2} \right)}
{\sqrt{\nu\pi}\Gamma \left(\frac{\nu}{2} \right)}
\left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}
Parameters
==========
nu : Real number, `\nu > 0`, the degrees of freedom
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import StudentT, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint
>>> nu = Symbol("nu", positive=True)
>>> z = Symbol("z")
>>> X = StudentT("x", nu)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
nu 1
- -- - -
2 2
/ 2\
| z |
|1 + --|
\ nu/
-----------------
____ / nu\
\/ nu *B|1/2, --|
\ 2 /
>>> cdf(X)(z)
1/2 + z*gamma(nu/2 + 1/2)*hyper((1/2, nu/2 + 1/2), (3/2,),
-z**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Student_t-distribution
.. [2] http://mathworld.wolfram.com/Studentst-Distribution.html
"""
return rv(name, StudentTDistribution, (nu, ))
#-------------------------------------------------------------------------------
# Trapezoidal distribution ------------------------------------------------------
class TrapezoidalDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c', 'd')
def pdf(self, x):
a, b, c, d = self.a, self.b, self.c, self.d
return Piecewise(
(2*(x-a) / ((b-a)*(d+c-a-b)), And(a <= x, x < b)),
(2 / (d+c-a-b), And(b <= x, x < c)),
(2*(d-x) / ((d-c)*(d+c-a-b)), And(c <= x, x <= d)),
(S.Zero, True))
def Trapezoidal(name, a, b, c, d):
r"""
Create a continuous random variable with a trapezoidal distribution.
The density of the trapezoidal distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(d+c-a-b)} & \mathrm{for\ } a \le x < b, \\
\frac{2}{d+c-a-b} & \mathrm{for\ } b \le x < c, \\
\frac{2(d-x)}{(d-c)(d+c-a-b)} & \mathrm{for\ } c \le x < d, \\
0 & \mathrm{for\ } d < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a < d`
b : Real number, :math:`a <= b < c`
c : Real number, :math:`b < c <= d`
d : Real number
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Trapezoidal, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> d = Symbol("d")
>>> z = Symbol("z")
>>> X = Trapezoidal("x", a,b,c,d)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|------------------------- for And(a <= z, b > z)
|(-a + b)*(-a - b + c + d)
|
| 2
| -------------- for And(b <= z, c > z)
< -a - b + c + d
|
| 2*d - 2*z
|------------------------- for And(d >= z, c <= z)
|(-c + d)*(-a - b + c + d)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Trapezoidal_distribution
"""
return rv(name, TrapezoidalDistribution, (a, b, c, d))
#-------------------------------------------------------------------------------
# Triangular distribution ------------------------------------------------------
class TriangularDistribution(SingleContinuousDistribution):
_argnames = ('a', 'b', 'c')
def pdf(self, x):
a, b, c = self.a, self.b, self.c
return Piecewise(
(2*(x - a)/((b - a)*(c - a)), And(a <= x, x < c)),
(2/(b - a), Eq(x, c)),
(2*(b - x)/((b - a)*(b - c)), And(c < x, x <= b)),
(S.Zero, True))
def _characteristic_function(self, t):
a, b, c = self.a, self.b, self.c
return -2 *((b-c) * exp(I*a*t) - (b-a) * exp(I*c*t) + (c-a) * exp(I*b*t)) / ((b-a)*(c-a)*(b-c)*t**2)
def _moment_generating_function(self, t):
a, b, c = self.a, self.b, self.c
return 2 * ((b - c) * exp(a * t) - (b - a) * exp(c * t) + (c + a) * exp(b * t)) / (
(b - a) * (c - a) * (b - c) * t ** 2)
def Triangular(name, a, b, c):
r"""
Create a continuous random variable with a triangular distribution.
The density of the triangular distribution is given by
.. math::
f(x) := \begin{cases}
0 & \mathrm{for\ } x < a, \\
\frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x < c, \\
\frac{2}{b-a} & \mathrm{for\ } x = c, \\
\frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b, \\
0 & \mathrm{for\ } b < x.
\end{cases}
Parameters
==========
a : Real number, :math:`a \in \left(-\infty, \infty\right)`
b : Real number, :math:`a < b`
c : Real number, :math:`a \leq c \leq b`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Triangular, density, E
>>> from sympy import Symbol, pprint
>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> z = Symbol("z")
>>> X = Triangular("x", a,b,c)
>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|----------------- for And(a <= z, c > z)
|(-a + b)*(-a + c)
|
| 2
| ------ for c = z
< -a + b
|
| 2*b - 2*z
|---------------- for And(b >= z, c < z)
|(-a + b)*(b - c)
|
\ 0 otherwise
References
==========
.. [1] https://en.wikipedia.org/wiki/Triangular_distribution
.. [2] http://mathworld.wolfram.com/TriangularDistribution.html
"""
return rv(name, TriangularDistribution, (a, b, c))
#-------------------------------------------------------------------------------
# Uniform distribution ---------------------------------------------------------
class UniformDistribution(SingleContinuousDistribution):
_argnames = ('left', 'right')
def pdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.One/(right - left), And(left <= x, x <= right)),
(S.Zero, True)
)
def _cdf(self, x):
left, right = self.left, self.right
return Piecewise(
(S.Zero, x < left),
((x - left)/(right - left), x <= right),
(S.One, True)
)
def _characteristic_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(I*t*right) - exp(I*t*left)) / (I*t*(right - left)), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
left, right = self.left, self.right
return Piecewise(((exp(t*right) - exp(t*left)) / (t * (right - left)), Ne(t, 0)),
(S.One, True))
def expectation(self, expr, var, **kwargs):
from sympy import Max, Min
kwargs['evaluate'] = True
result = SingleContinuousDistribution.expectation(self, expr, var, **kwargs)
result = result.subs({Max(self.left, self.right): self.right,
Min(self.left, self.right): self.left})
return result
def sample(self):
return random.uniform(self.left, self.right)
def Uniform(name, left, right):
r"""
Create a continuous random variable with a uniform distribution.
The density of the uniform distribution is given by
.. math::
f(x) := \begin{cases}
\frac{1}{b - a} & \text{for } x \in [a,b] \\
0 & \text{otherwise}
\end{cases}
with :math:`x \in [a,b]`.
Parameters
==========
a : Real number, :math:`-\infty < a` the left boundary
b : Real number, :math:`a < b < \infty` the right boundary
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Uniform, density, cdf, E, variance, skewness
>>> from sympy import Symbol, simplify
>>> a = Symbol("a", negative=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
>>> X = Uniform("x", a, b)
>>> density(X)(z)
Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True))
>>> cdf(X)(z) # doctest: +SKIP
-a/(-a + b) + z/(-a + b)
>>> simplify(E(X))
a/2 + b/2
>>> simplify(variance(X))
a**2/12 - a*b/6 + b**2/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
.. [2] http://mathworld.wolfram.com/UniformDistribution.html
"""
return rv(name, UniformDistribution, (left, right))
#-------------------------------------------------------------------------------
# UniformSum distribution ------------------------------------------------------
class UniformSumDistribution(SingleContinuousDistribution):
_argnames = ('n',)
@property
def set(self):
return Interval(0, self.n)
def pdf(self, x):
n = self.n
k = Dummy("k")
return 1/factorial(
n - 1)*Sum((-1)**k*binomial(n, k)*(x - k)**(n - 1), (k, 0, floor(x)))
def _cdf(self, x):
n = self.n
k = Dummy("k")
return Piecewise((S.Zero, x < 0),
(1/factorial(n)*Sum((-1)**k*binomial(n, k)*(x - k)**(n),
(k, 0, floor(x))), x <= n),
(S.One, True))
def _characteristic_function(self, t):
return ((exp(I*t) - 1) / (I*t))**self.n
def _moment_generating_function(self, t):
return ((exp(t) - 1) / t)**self.n
def UniformSum(name, n):
r"""
Create a continuous random variable with an Irwin-Hall distribution.
The probability distribution function depends on a single parameter
`n` which is an integer.
The density of the Irwin-Hall distribution is given by
.. math ::
f(x) := \frac{1}{(n-1)!}\sum_{k=0}^{\left\lfloor x\right\rfloor}(-1)^k
\binom{n}{k}(x-k)^{n-1}
Parameters
==========
n : A positive Integer, `n > 0`
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import UniformSum, density, cdf
>>> from sympy import Symbol, pprint
>>> n = Symbol("n", integer=True)
>>> z = Symbol("z")
>>> X = UniformSum("x", n)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)
___
\ `
\ k n - 1 /n\
) (-1) *(-k + z) *| |
/ \k/
/__,
k = 0
--------------------------------
(n - 1)!
>>> cdf(X)(z)
Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k),
(_k, 0, floor(z)))/factorial(n), n >= z), (1, True))
Compute cdf with specific 'x' and 'n' values as follows :
>>> cdf(UniformSum("x", 5), evaluate=False)(2).doit()
9/40
The argument evaluate=False prevents an attempt at evaluation
of the sum for general n, before the argument 2 is passed.
References
==========
.. [1] https://en.wikipedia.org/wiki/Uniform_sum_distribution
.. [2] http://mathworld.wolfram.com/UniformSumDistribution.html
"""
return rv(name, UniformSumDistribution, (n, ))
#-------------------------------------------------------------------------------
# VonMises distribution --------------------------------------------------------
class VonMisesDistribution(SingleContinuousDistribution):
_argnames = ('mu', 'k')
set = Interval(0, 2*pi)
@staticmethod
def check(mu, k):
_value_check(k > 0, "k must be positive")
def pdf(self, x):
mu, k = self.mu, self.k
return exp(k*cos(x-mu)) / (2*pi*besseli(0, k))
def VonMises(name, mu, k):
r"""
Create a Continuous Random Variable with a von Mises distribution.
The density of the von Mises distribution is given by
.. math::
f(x) := \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}
with :math:`x \in [0,2\pi]`.
Parameters
==========
mu : Real number, measure of location
k : Real number, measure of concentration
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import VonMises, density, E, variance
>>> from sympy import Symbol, simplify, pprint
>>> mu = Symbol("mu")
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = VonMises("x", mu, k)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k*cos(mu - z)
e
------------------
2*pi*besseli(0, k)
References
==========
.. [1] https://en.wikipedia.org/wiki/Von_Mises_distribution
.. [2] http://mathworld.wolfram.com/vonMisesDistribution.html
"""
return rv(name, VonMisesDistribution, (mu, k))
#-------------------------------------------------------------------------------
# Weibull distribution ---------------------------------------------------------
class WeibullDistribution(SingleContinuousDistribution):
_argnames = ('alpha', 'beta')
set = Interval(0, oo)
@staticmethod
def check(alpha, beta):
_value_check(alpha > 0, "Alpha must be positive")
_value_check(beta > 0, "Beta must be positive")
def pdf(self, x):
alpha, beta = self.alpha, self.beta
return beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha
def sample(self):
return random.weibullvariate(self.alpha, self.beta)
def Weibull(name, alpha, beta):
r"""
Create a continuous random variable with a Weibull distribution.
The density of the Weibull distribution is given by
.. math::
f(x) := \begin{cases}
\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}
e^{-(x/\lambda)^{k}} & x\geq0\\
0 & x<0
\end{cases}
Parameters
==========
lambda : Real number, :math:`\lambda > 0` a scale
k : Real number, `k > 0` a shape
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Weibull, density, E, variance
>>> from sympy import Symbol, simplify
>>> l = Symbol("lambda", positive=True)
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")
>>> X = Weibull("x", l, k)
>>> density(X)(z)
k*(z/lambda)**(k - 1)*exp(-(z/lambda)**k)/lambda
>>> simplify(E(X))
lambda*gamma(1 + 1/k)
>>> simplify(variance(X))
lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k))
References
==========
.. [1] https://en.wikipedia.org/wiki/Weibull_distribution
.. [2] http://mathworld.wolfram.com/WeibullDistribution.html
"""
return rv(name, WeibullDistribution, (alpha, beta))
#-------------------------------------------------------------------------------
# Wigner semicircle distribution -----------------------------------------------
class WignerSemicircleDistribution(SingleContinuousDistribution):
_argnames = ('R',)
@property
def set(self):
return Interval(-self.R, self.R)
def pdf(self, x):
R = self.R
return 2/(pi*R**2)*sqrt(R**2 - x**2)
def _characteristic_function(self, t):
return Piecewise((2 * besselj(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def _moment_generating_function(self, t):
return Piecewise((2 * besseli(1, self.R*t) / (self.R*t), Ne(t, 0)),
(S.One, True))
def WignerSemicircle(name, R):
r"""
Create a continuous random variable with a Wigner semicircle distribution.
The density of the Wigner semicircle distribution is given by
.. math::
f(x) := \frac2{\pi R^2}\,\sqrt{R^2-x^2}
with :math:`x \in [-R,R]`.
Parameters
==========
R : Real number, `R > 0`, the radius
Returns
=======
A `RandomSymbol`.
Examples
========
>>> from sympy.stats import WignerSemicircle, density, E
>>> from sympy import Symbol, simplify
>>> R = Symbol("R", positive=True)
>>> z = Symbol("z")
>>> X = WignerSemicircle("x", R)
>>> density(X)(z)
2*sqrt(R**2 - z**2)/(pi*R**2)
>>> E(X)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
.. [2] http://mathworld.wolfram.com/WignersSemicircleLaw.html
"""
return rv(name, WignerSemicircleDistribution, (R,))
|
b4eee2d2c71102514a1ff6a4172ec4685375799da0a7f40d650a660dd01ae596 | """
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
Hypergeometric
Rademacher
"""
from __future__ import print_function, division
from sympy import (S, sympify, Rational, binomial, cacheit, Integer,
Dict, Basic, KroneckerDelta, Dummy, Eq)
from sympy.concrete.summations import Sum
from sympy.core.compatibility import as_int, range
from sympy.stats.rv import _value_check
from sympy.stats.frv import (SingleFinitePSpace, SingleFiniteDistribution)
__all__ = ['FiniteRV',
'DiscreteUniform',
'Die',
'Bernoulli',
'Coin',
'Binomial',
'Hypergeometric',
'Rademacher'
]
def rv(name, cls, *args):
args = list(map(sympify, args))
i = 0
while i < len(args): # Converting to Dict since dict is not hashable
if isinstance(args[i], dict):
args[i] = Dict(args[i])
i += 1
dist = cls(*args)
dist.check(*args)
return SingleFinitePSpace(name, dist).value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
@staticmethod
def check(density):
for p in density.values():
_value_check((p >= 0, p <= 1),
"Probability at a point must be between 0 and 1.")
_value_check(Eq(sum(density.values()), 1), "Total Probability must be 1.")
def FiniteRV(name, density):
"""
Create a Finite Random Variable given a dict representing the density.
Returns a RandomSymbol.
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
"""
return rv(name, FiniteDistributionHandmade, density)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@property
def p(self):
return Rational(1, len(self.args))
@property
@cacheit
def dict(self):
return dict((k, self.p) for k in self.set)
@property
def set(self):
return self.args
def pdf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
def DiscreteUniform(name, items):
"""
Create a Finite Random Variable representing a uniform distribution over
the input set.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols
>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution
.. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html
"""
return rv(name, DiscreteUniformDistribution, *items)
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
@staticmethod
def check(sides):
_value_check((sides.is_positive, sides.is_integer),
"number of sides must be a positive integer.")
@property
@cacheit
def dict(self):
as_int(self.sides) # Check that self.sides can be converted to an integer
return super(DieDistribution, self).dict
@property
def set(self):
return list(map(Integer, list(range(1, self.sides + 1))))
def pdf(self, x):
x = sympify(x)
if x.is_number:
if x.is_Integer and x >= 1 and x <= self.sides:
return Rational(1, self.sides)
return S.Zero
if x.is_Symbol:
i = Dummy('i', integer=True, positive=True)
return Sum(KroneckerDelta(x, i)/self.sides, (i, 1, self.sides))
raise ValueError("'x' expected as an argument of type 'number' or 'symbol', "
"not %s" % (type(x)))
def Die(name, sides=6):
"""
Create a Finite Random Variable representing a fair die.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Die, density
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
@staticmethod
def check(p, succ, fail):
_value_check((p >= 0, p <= 1),
"p should be in range [0, 1].")
@property
@cacheit
def dict(self):
return {self.succ: self.p, self.fail: 1 - self.p}
def Bernoulli(name, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a Bernoulli process.
Returns a RandomSymbol
Examples
========
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution
.. [2] http://mathworld.wolfram.com/BernoulliDistribution.html
"""
return rv(name, BernoulliDistribution, p, succ, fail)
def Coin(name, p=S.Half):
"""
Create a Finite Random Variable representing a Coin toss.
Probability p is the chance of gettings "Heads." Half by default
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
See Also
========
sympy.stats.Binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Coin_flipping
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
@staticmethod
def check(n, p, succ, fail):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer.")
_value_check((p <= 1, p >= 0),
"p should be in range [0, 1].")
@property
@cacheit
def dict(self):
n, p, succ, fail = self.n, self.p, self.succ, self.fail
n = as_int(n)
return dict((k*succ + (n - k)*fail,
binomial(n, k) * p**k * (1 - p)**(n - k)) for k in range(0, n + 1))
def Binomial(name, n, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a binomial distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
References
==========
.. [1] https://en.wikipedia.org/wiki/Binomial_distribution
.. [2] http://mathworld.wolfram.com/BinomialDistribution.html
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@property
@cacheit
def dict(self):
N, m, n = self.N, self.m, self.n
N, m, n = list(map(sympify, (N, m, n)))
density = dict((sympify(k),
Rational(binomial(m, k) * binomial(N - m, n - k),
binomial(N, n)))
for k in range(max(0, n + m - N), min(m, n) + 1))
return density
def Hypergeometric(name, N, m, n):
"""
Create a Finite Random Variable representing a hypergeometric distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> from sympy import S
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
References
==========
.. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution
.. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
@cacheit
def dict(self):
return {-1: S.Half, 1: S.Half}
def Rademacher(name):
"""
Create a Finite Random Variable representing a Rademacher distribution.
Return a RandomSymbol.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] https://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)
|
3fbc8fe9f30c6b1b9e47e70c24a4aa7df09571c4d5a49b37692c227b0ee57e49 | """
SymPy statistics module
Introduces a random variable type into the SymPy language.
Random variables may be declared using prebuilt functions such as
Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
Queries on random expressions can be made using the functions
========================= =============================
Expression Meaning
------------------------- -----------------------------
``P(condition)`` Probability
``E(expression)`` Expected value
``H(expression)`` Entropy
``variance(expression)`` Variance
``density(expression)`` Probability Density Function
``sample(expression)`` Produce a realization
``where(condition)`` Where the condition is true
========================= =============================
Examples
========
>>> from sympy.stats import P, E, variance, Die, Normal
>>> from sympy import Eq, simplify
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
>>> P(X>3) # Probability X is greater than 3
1/2
>>> E(X+Y) # Expectation of the sum of two dice
7
>>> variance(X+Y) # Variance of the sum of two dice
35/6
>>> simplify(P(Z>1)) # Probability of Z being greater than 1
1/2 - erf(sqrt(2)/2)/2
"""
__all__ = []
from . import rv_interface
from .rv_interface import (
cdf, characteristic_function, covariance, density, dependent, E, given, independent, P, pspace,
random_symbols, sample, sample_iter, skewness, std, variance, where,
correlation, moment, cmoment, smoment, sampling_density, moment_generating_function, entropy, H,
quantile
)
__all__.extend(rv_interface.__all__)
from . import frv_types
from .frv_types import (
Bernoulli, Binomial, Coin, Die, DiscreteUniform, FiniteRV, Hypergeometric,
Rademacher,
)
__all__.extend(frv_types.__all__)
from . import crv_types
from .crv_types import (
ContinuousRV,
Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiNoncentral, ChiSquared,
Dagum, Erlang, Exponential, FDistribution, FisherZ, Frechet, Gamma,
GammaInverse, Gumbel, Gompertz, Kumaraswamy, Laplace, Logistic, LogNormal,
Maxwell, Nakagami, Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh,
ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises,
Weibull, WignerSemicircle
)
__all__.extend(crv_types.__all__)
from . import drv_types
from .drv_types import (Geometric, Logarithmic, NegativeBinomial, Poisson, YuleSimon, Zeta)
__all__.extend(drv_types.__all__)
from . import symbolic_probability
from .symbolic_probability import Probability, Expectation, Variance, Covariance
__all__.extend(symbolic_probability.__all__)
|
bacea8306fc686cf6cebc99f509888b939e4cc01b034ee7290c364feb87950a6 | from sympy import (sympify, S, pi, sqrt, exp, Lambda, Indexed, Gt, IndexedBase,
besselk, gamma, Interval, Range, factorial, Mul, Integer,
Add, rf, Eq, Piecewise, Symbol, imageset, Intersection)
from sympy.matrices import ImmutableMatrix
from sympy.matrices.expressions.determinant import det
from sympy.stats.joint_rv import (JointDistribution, JointPSpace,
JointDistributionHandmade, MarginalDistribution)
from sympy.stats.rv import _value_check, random_symbols
# __all__ = ['MultivariateNormal',
# 'MultivariateLaplace',
# 'MultivariateT',
# 'NormalGamma'
# ]
def multivariate_rv(cls, sym, *args):
args = list(map(sympify, args))
dist = cls(*args)
args = dist.args
dist.check(*args)
return JointPSpace(sym, dist).value
def JointRV(symbol, pdf, _set=None):
"""
Create a Joint Random Variable where each of its component is conitinuous,
given the following:
-- a symbol
-- a PDF in terms of indexed symbols of the symbol given
as the first argument
NOTE: As of now, the set for each component for a `JointRV` is
equal to the set of all integers, which can not be changed.
Returns a RandomSymbol.
Examples
========
>>> from sympy import symbols, exp, pi, Indexed, S
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv_types import JointRV
>>> x1, x2 = (Indexed('x', i) for i in (1, 2))
>>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi)
>>> N1 = JointRV('x', pdf) #Multivariate Normal distribution
>>> density(N1)(1, 2)
exp(-2)/(2*pi)
"""
#TODO: Add support for sets provided by the user
symbol = sympify(symbol)
syms = list(i for i in pdf.free_symbols if isinstance(i, Indexed)
and i.base == IndexedBase(symbol))
syms.sort(key = lambda index: index.args[1])
_set = S.Reals**len(syms)
pdf = Lambda(syms, pdf)
dist = JointDistributionHandmade(pdf, _set)
jrv = JointPSpace(symbol, dist).value
rvs = random_symbols(pdf)
if len(rvs) != 0:
dist = MarginalDistribution(dist, (jrv,))
return JointPSpace(symbol, dist).value
return jrv
#-------------------------------------------------------------------------------
# Multivariate Normal distribution ---------------------------------------------------------
class MultivariateNormalDistribution(JointDistribution):
_argnames = ['mu', 'sigma']
is_Continuous=True
@property
def set(self):
k = len(self.mu)
return S.Reals**k
def check(self, mu, sigma):
_value_check(len(mu) == len(sigma.col(0)),
"Size of the mean vector and covariance matrix are incorrect.")
#check if covariance matrix is positive definite or not.
_value_check((i > 0 for i in sigma.eigenvals().keys()),
"The covariance matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.sigma
k = len(mu)
args = ImmutableMatrix(args)
x = args - mu
return S(1)/sqrt((2*pi)**(k)*det(sigma))*exp(
-S(1)/2*x.transpose()*(sigma.inv()*\
x))[0]
def marginal_distribution(self, indices, sym):
sym = ImmutableMatrix([Indexed(sym, i) for i in indices])
_mu, _sigma = self.mu, self.sigma
k = len(self.mu)
for i in range(k):
if i not in indices:
_mu = _mu.row_del(i)
_sigma = _sigma.col_del(i)
_sigma = _sigma.row_del(i)
return Lambda(sym, S(1)/sqrt((2*pi)**(len(_mu))*det(_sigma))*exp(
-S(1)/2*(_mu - sym).transpose()*(_sigma.inv()*\
(_mu - sym)))[0])
#-------------------------------------------------------------------------------
# Multivariate Laplace distribution ---------------------------------------------------------
class MultivariateLaplaceDistribution(JointDistribution):
_argnames = ['mu', 'sigma']
is_Continuous=True
@property
def set(self):
k = len(self.mu)
return S.Reals**k
def check(self, mu, sigma):
_value_check(len(mu) == len(sigma.col(0)),
"Size of the mean vector and covariance matrix are incorrect.")
#check if covariance matrix is positive definite or not.
_value_check((i > 0 for i in sigma.eigenvals().keys()),
"The covariance matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.sigma
mu_T = mu.transpose()
k = S(len(mu))
sigma_inv = sigma.inv()
args = ImmutableMatrix(args)
args_T = args.transpose()
x = (mu_T*sigma_inv*mu)[0]
y = (args_T*sigma_inv*args)[0]
v = 1 - k/2
return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\
*(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\
*exp((args_T*sigma_inv*mu)[0])
#-------------------------------------------------------------------------------
# Multivariate StudentT distribution ---------------------------------------------------------
class MultivariateTDistribution(JointDistribution):
_argnames = ['mu', 'shape_mat', 'dof']
is_Continuous=True
@property
def set(self):
k = len(self.mu)
return S.Reals**k
def check(self, mu, sigma, v):
_value_check(len(mu) == len(sigma.col(0)),
"Size of the location vector and shape matrix are incorrect.")
#check if covariance matrix is positive definite or not.
_value_check((i > 0 for i in sigma.eigenvals().keys()),
"The shape matrix must be positive definite. ")
def pdf(self, *args):
mu, sigma = self.mu, self.shape_mat
v = S(self.dof)
k = S(len(mu))
sigma_inv = sigma.inv()
args = ImmutableMatrix(args)
x = args - mu
return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\
*(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2)
def MultivariateT(syms, mu, sigma, v):
"""
Creates a joint random variable with multivariate T-distribution.
Parameters
==========
syms: list/tuple/set of symbols for identifying each component
mu: A list/tuple/set consisting of k means,represents a k
dimensional location vector
sigma: The shape matrix for the distribution
Returns
=======
A random symbol
"""
return multivariate_rv(MultivariateTDistribution, syms, mu, sigma, v)
#-------------------------------------------------------------------------------
# Multivariate Normal Gamma distribution ---------------------------------------------------------
class NormalGammaDistribution(JointDistribution):
_argnames = ['mu', 'lamda', 'alpha', 'beta']
is_Continuous=True
def check(self, mu, lamda, alpha, beta):
_value_check(mu.is_real, "Location must be real.")
_value_check(lamda > 0, "Lambda must be positive")
_value_check(alpha > 0, "alpha must be positive")
_value_check(beta > 0, "beta must be positive")
@property
def set(self):
return S.Reals*Interval(0, S.Infinity)
def pdf(self, x, tau):
beta, alpha, lamda = self.beta, self.alpha, self.lamda
mu = self.mu
return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\
tau**(alpha - S(1)/2)*exp(-1*beta*tau)*\
exp(-1*(lamda*tau*(x - mu)**2)/S(2))
def marginal_distribution(self, indices, *sym):
if len(indices) == 2:
return self.pdf(*sym)
if indices[0] == 0:
#For marginal over `x`, return non-standardized Student-T's
#distribution
x = sym[0]
v, mu, sigma = self.alpha - S(1)/2, self.mu, \
S(self.beta)/(self.lamda * self.alpha)
return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\
(1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2))
#For marginal over `tau`, return Gamma distribution as per construction
from sympy.stats.crv_types import GammaDistribution
return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0]))
def NormalGamma(syms, mu, lamda, alpha, beta):
"""
Creates a bivariate joint random variable with multivariate Normal gamma
distribution.
Parameters
==========
syms: list/tuple/set of two symbols for identifying each component
mu: A real number, as the mean of the normal distribution
alpha: a positive integer
beta: a positive integer
lamda: a positive integer
Returns
=======
A random symbol
"""
return multivariate_rv(NormalGammaDistribution, syms, mu, lamda, alpha, beta)
#-------------------------------------------------------------------------------
# Multivariate Beta/Dirichlet distribution ---------------------------------------------------------
class MultivariateBetaDistribution(JointDistribution):
_argnames = ['alpha']
is_Continuous = True
def check(self, alpha):
_value_check(len(alpha) >= 2, "At least two categories should be passed.")
for a_k in alpha:
_value_check((a_k > 0) != False, "Each concentration parameter"
" should be positive.")
@property
def set(self):
k = len(self.alpha)
return Interval(0, 1)**k
def pdf(self, *syms):
alpha = self.alpha
B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha))
return Mul.fromiter([sym**(a_k - 1) for a_k, sym in zip(alpha, syms)])/B
def MultivariateBeta(syms, *alpha):
"""
Creates a continuous random variable with Dirichlet/Multivariate Beta
Distribution.
The density of the dirichlet distribution can be found at [1].
Parameters
==========
alpha: positive real numbers signifying concentration numbers.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import MultivariateBeta
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> B = MultivariateBeta('B', [a1, a2])
>>> C = MultivariateBeta('C', a1, a2)
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> density(B)(x, y)
x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2))
>>> marginal_distribution(C, C[0])(x)
x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Dirichlet_distribution
.. [2] http://mathworld.wolfram.com/DirichletDistribution.html
"""
if not isinstance(alpha[0], list):
alpha = (list(alpha),)
return multivariate_rv(MultivariateBetaDistribution, syms, alpha[0])
Dirichlet = MultivariateBeta
#-------------------------------------------------------------------------------
# Multivariate Ewens distribution ---------------------------------------------------------
class MultivariateEwensDistribution(JointDistribution):
_argnames = ['n', 'theta']
is_Discrete = True
is_Continuous = False
def check(self, n, theta):
_value_check(isinstance(n, Integer) and (n > 0) == True,
"sample size should be positive integer.")
_value_check(theta.is_positive, "mutation rate should be positive.")
@property
def set(self):
prod_set = Range(0, self.n//1 + 1)
for i in range(2, self.n + 1):
prod_set *= Range(0, self.n//i + 1)
return prod_set
def pdf(self, *syms):
n, theta = self.n, self.theta
term_1 = factorial(n)/rf(theta, n)
term_2 = Mul.fromiter([theta**syms[j]/((j+1)**syms[j]*factorial(syms[j]))
for j in range(n)])
cond = Eq(sum([(k+1)*syms[k] for k in range(n)]), n)
return Piecewise((term_1 * term_2, cond), (0, True))
def MultivariateEwens(syms, n, theta):
"""
Creates a discrete random variable with Multivariate Ewens
Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: positive integer of class Integer,
size of the sample or the integer whose partitions are considered
theta: mutation rate, must be positive real number.
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import MultivariateEwens
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> ed = MultivariateEwens('E', 2, 1)
>>> density(ed)(a1, a2)
Piecewise((2**(-a2)/(factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True))
>>> marginal_distribution(ed, ed[0])(a1)
Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True))
References
==========
.. [1] https://en.wikipedia.org/wiki/Ewens%27s_sampling_formula
.. [2] http://www.stat.rutgers.edu/home/hcrane/Papers/STS529.pdf
"""
return multivariate_rv(MultivariateEwensDistribution, syms, n, theta)
#-------------------------------------------------------------------------------
# Multinomial distribution ---------------------------------------------------------
class MultinomialDistribution(JointDistribution):
_argnames = ['n', 'p']
is_Continuous=False
is_Discrete = True
def check(self, n, p):
_value_check(n > 0,
"number of trials must be a positve integer")
for p_k in p:
_value_check((p_k >= 0, p_k <= 1),
"probability must be in range [0, 1]")
_value_check(Eq(sum(p), 1),
"probabilities must sum to 1")
@property
def set(self):
return Intersection(S.Naturals0, Interval(0, self.n))**len(self.p)
def pdf(self, *x):
n, p = self.n, self.p
term_1 = factorial(n)/Mul.fromiter([factorial(x_k) for x_k in x])
term_2 = Mul.fromiter([p_k**x_k for p_k, x_k in zip(p, x)])
return Piecewise((term_1 * term_2, Eq(sum(x), n)), (0, True))
def Multinomial(syms, n, *p):
"""
Creates a discrete random variable with Multinomial Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: positive integer of class Integer,
number of trials
p: event probabilites, >= 0 and <= 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import Multinomial
>>> from sympy import symbols
>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)
>>> M = Multinomial('M', 3, p1, p2, p3)
>>> density(M)(x1, x2, x3)
Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)),
Eq(x1 + x2 + x3, 3)), (0, True))
>>> marginal_distribution(M, M[0])(x1).subs(x1, 1)
3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Multinomial_distribution
.. [2] http://mathworld.wolfram.com/MultinomialDistribution.html
"""
if not isinstance(p[0], list):
p = (list(p), )
return multivariate_rv(MultinomialDistribution, syms, n, p[0])
#-------------------------------------------------------------------------------
# Negative Multinomial Distribution ---------------------------------------------------------
class NegativeMultinomialDistribution(JointDistribution):
_argnames = ['k0', 'p']
is_Continuous=False
is_Discrete = True
def check(self, k0, p):
_value_check(k0 > 0,
"number of failures must be a positve integer")
for p_k in p:
_value_check((p_k >= 0, p_k <= 1),
"probability must be in range [0, 1].")
_value_check(sum(p) <= 1,
"success probabilities must not be greater than 1.")
@property
def set(self):
return Range(0, S.Infinity)**len(self.p)
def pdf(self, *k):
k0, p = self.k0, self.p
term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0)
term_2 = Mul.fromiter([pi**ki/factorial(ki) for pi, ki in zip(p, k)])
return term_1 * term_2
def NegativeMultinomial(syms, k0, *p):
"""
Creates a discrete random variable with Negative Multinomial Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
k0: positive integer of class Integer,
number of failures before the experiment is stopped
p: event probabilites, >= 0 and <= 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv import marginal_distribution
>>> from sympy.stats.joint_rv_types import NegativeMultinomial
>>> from sympy import symbols
>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)
>>> N = NegativeMultinomial('M', 3, p1, p2, p3)
>>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1)
>>> density(N)(x1, x2, x3)
p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 +
x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3))
>>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2)
0.25
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_multinomial_distribution
.. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html
"""
if not isinstance(p[0], list):
p = (list(p), )
return multivariate_rv(NegativeMultinomialDistribution, syms, k0, p[0])
|
6f7be12e91cb3471abbe0fd66e8230ba6c3f02509485f579cbcd8035ab77417f | """
Contains
========
Geometric
Poisson
Logarithmic
NegativeBinomial
Poisson
YuleSimon
Zeta
"""
from __future__ import print_function, division
from sympy import (factorial, exp, S, sympify, And, I, zeta, polylog, log, beta,
hyper, binomial, Piecewise, floor)
from sympy.stats import density
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.joint_rv import JointPSpace, CompoundDistribution
from sympy.stats.rv import _value_check, RandomSymbol
import random
__all__ = ['Geometric',
'Logarithmic',
'NegativeBinomial',
'Poisson',
'YuleSimon',
'Zeta'
]
def rv(symbol, cls, *args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
pspace = SingleDiscretePSpace(symbol, dist)
if any(isinstance(arg, RandomSymbol) for arg in args):
pspace = JointPSpace(symbol, CompoundDistribution(dist))
return pspace.value
#-------------------------------------------------------------------------------
# Geometric distribution ------------------------------------------------------------
class GeometricDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check((0 < p, p <= 1), "p must be between 0 and 1")
def pdf(self, k):
return (1 - self.p)**(k - 1) * self.p
def _characteristic_function(self, t):
p = self.p
return p * exp(I*t) / (1 - (1 - p)*exp(I*t))
def _moment_generating_function(self, t):
p = self.p
return p * exp(t) / (1 - (1 - p) * exp(t))
def Geometric(name, p):
r"""
Create a discrete random variable with a Geometric distribution.
The density of the Geometric distribution is given by
.. math::
f(k) := p (1 - p)^{k - 1}
Parameters
==========
p: A probability between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Geometric, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Geometric("x", p)
>>> density(X)(z)
(4/5)**(z - 1)/5
>>> E(X)
5
>>> variance(X)
20
References
==========
.. [1] https://en.wikipedia.org/wiki/Geometric_distribution
.. [2] http://mathworld.wolfram.com/GeometricDistribution.html
"""
return rv(name, GeometricDistribution, p)
#-------------------------------------------------------------------------------
# Logarithmic distribution ------------------------------------------------------------
class LogarithmicDistribution(SingleDiscreteDistribution):
_argnames = ('p',)
set = S.Naturals
@staticmethod
def check(p):
_value_check((p > 0, p < 1), "p should be between 0 and 1")
def pdf(self, k):
p = self.p
return (-1) * p**k / (k * log(1 - p))
def _characteristic_function(self, t):
p = self.p
return log(1 - p * exp(I*t)) / log(1 - p)
def _moment_generating_function(self, t):
p = self.p
return log(1 - p * exp(t)) / log(1 - p)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def Logarithmic(name, p):
r"""
Create a discrete random variable with a Logarithmic distribution.
The density of the Logarithmic distribution is given by
.. math::
f(k) := \frac{-p^k}{k \ln{(1 - p)}}
Parameters
==========
p: A value between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Logarithmic, density, E, variance
>>> from sympy import Symbol, S
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = Logarithmic("x", p)
>>> density(X)(z)
-5**(-z)/(z*log(4/5))
>>> E(X)
-1/(-4*log(5) + 8*log(2))
>>> variance(X)
-1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution
.. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html
"""
return rv(name, LogarithmicDistribution, p)
#-------------------------------------------------------------------------------
# Negative binomial distribution ------------------------------------------------------------
class NegativeBinomialDistribution(SingleDiscreteDistribution):
_argnames = ('r', 'p')
set = S.Naturals0
@staticmethod
def check(r, p):
_value_check(r > 0, 'r should be positive')
_value_check((p > 0, p < 1), 'p should be between 0 and 1')
def pdf(self, k):
r = self.r
p = self.p
return binomial(k + r - 1, k) * (1 - p)**r * p**k
def _characteristic_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(I*t)))**r
def _moment_generating_function(self, t):
r = self.r
p = self.p
return ((1 - p) / (1 - p * exp(t)))**r
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def NegativeBinomial(name, r, p):
r"""
Create a discrete random variable with a Negative Binomial distribution.
The density of the Negative Binomial distribution is given by
.. math::
f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k
Parameters
==========
r: A positive value
p: A value between 0 and 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import NegativeBinomial, density, E, variance
>>> from sympy import Symbol, S
>>> r = 5
>>> p = S.One / 5
>>> z = Symbol("z")
>>> X = NegativeBinomial("x", r, p)
>>> density(X)(z)
1024*5**(-z)*binomial(z + 4, z)/3125
>>> E(X)
5/4
>>> variance(X)
25/16
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution
.. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html
"""
return rv(name, NegativeBinomialDistribution, r, p)
#-------------------------------------------------------------------------------
# Poisson distribution ------------------------------------------------------------
class PoissonDistribution(SingleDiscreteDistribution):
_argnames = ('lamda',)
set = S.Naturals0
@staticmethod
def check(lamda):
_value_check(lamda > 0, "Lambda must be positive")
def pdf(self, k):
return self.lamda**k / factorial(k) * exp(-self.lamda)
def sample(self):
def search(x, y, u):
while x < y:
mid = (x + y)//2
if u <= self.cdf(mid):
y = mid
else:
x = mid + 1
return x
u = random.uniform(0, 1)
if u <= self.cdf(S.Zero):
return S.Zero
n = S.One
while True:
if u > self.cdf(2*n):
n *= 2
else:
return search(n, 2*n, u)
def _characteristic_function(self, t):
return exp(self.lamda * (exp(I*t) - 1))
def _moment_generating_function(self, t):
return exp(self.lamda * (exp(t) - 1))
def Poisson(name, lamda):
r"""
Create a discrete random variable with a Poisson distribution.
The density of the Poisson distribution is given by
.. math::
f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!}
Parameters
==========
lamda: Positive number, a rate
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Poisson, density, E, variance
>>> from sympy import Symbol, simplify
>>> rate = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> X = Poisson("x", rate)
>>> density(X)(z)
lambda**z*exp(-lambda)/factorial(z)
>>> E(X)
lambda
>>> simplify(variance(X))
lambda
References
==========
.. [1] https://en.wikipedia.org/wiki/Poisson_distribution
.. [2] http://mathworld.wolfram.com/PoissonDistribution.html
"""
return rv(name, PoissonDistribution, lamda)
#-------------------------------------------------------------------------------
# Yule-Simon distribution ------------------------------------------------------------
class YuleSimonDistribution(SingleDiscreteDistribution):
_argnames = ('rho',)
set = S.Naturals
@staticmethod
def check(rho):
_value_check(rho > 0, 'rho should be positive')
def pdf(self, k):
rho = self.rho
return rho * beta(k, rho + 1)
def _cdf(self, x):
return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True))
def _characteristic_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1)
def _moment_generating_function(self, t):
rho = self.rho
return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def YuleSimon(name, rho):
r"""
Create a discrete random variable with a Yule-Simon distribution.
The density of the Yule-Simon distribution is given by
.. math::
f(k) := \rho B(k, \rho + 1)
Parameters
==========
rho: A positive value
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import YuleSimon, density, E, variance
>>> from sympy import Symbol, simplify
>>> p = 5
>>> z = Symbol("z")
>>> X = YuleSimon("x", p)
>>> density(X)(z)
5*beta(z, 6)
>>> simplify(E(X))
5/4
>>> simplify(variance(X))
25/48
References
==========
.. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution
"""
return rv(name, YuleSimonDistribution, rho)
#-------------------------------------------------------------------------------
# Zeta distribution ------------------------------------------------------------
class ZetaDistribution(SingleDiscreteDistribution):
_argnames = ('s',)
set = S.Naturals
@staticmethod
def check(s):
_value_check(s > 1, 's should be greater than 1')
def pdf(self, k):
s = self.s
return 1 / (k**s * zeta(s))
def _characteristic_function(self, t):
return polylog(self.s, exp(I*t)) / zeta(self.s)
def _moment_generating_function(self, t):
return polylog(self.s, exp(t)) / zeta(self.s)
def sample(self):
### TODO
raise NotImplementedError("Sampling of %s is not implemented" % density(self))
def Zeta(name, s):
r"""
Create a discrete random variable with a Zeta distribution.
The density of the Zeta distribution is given by
.. math::
f(k) := \frac{1}{k^s \zeta{(s)}}
Parameters
==========
s: A value greater than 1
Returns
=======
A RandomSymbol.
Examples
========
>>> from sympy.stats import Zeta, density, E, variance
>>> from sympy import Symbol
>>> s = 5
>>> z = Symbol("z")
>>> X = Zeta("x", s)
>>> density(X)(z)
1/(z**5*zeta(5))
>>> E(X)
pi**4/(90*zeta(5))
>>> variance(X)
-pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Zeta_distribution
"""
return rv(name, ZetaDistribution, s)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.